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Abstract

In the first and second chapters we study whether the current trend of using

stronger solution concepts is justified for the optimal mechanism design. In the

first chapter, we take a simple auction model and allow for type-dependent outside

options. We argue that Bayesian foundation for dominant strategy mechanisms is

valid when symmetry conditions are satisfied. This contrasts with monotonicity

constraints used before in the literature. In the second chapter we develop the

idea further by looking into the practical application of type-dependency of outside

options in auctions - namely, a possibility of collusion between agents. We show

that in this environment for a certain range of primitives no maxmin foundation

for dominant strategy mechanisms will exist. Finally, in the last chapter we study a

voting environment and non-transferable utility mechanism design. We argue that

strategic voting as opposed to truthful voting may lead to higher total welfare

through better realization of preference intensities in the risky environment. We

also study optimal mechanisms rules, that are sufficiently close to the first best

for the uniform distribution, and argue that strategic voting may be a proxy for

information transmission if the opportunities to communicate preference intensities

are scarce.
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Chapter 1

Generalized Individual

Rationality Constraints and a

Bayesian Foundation for

Dominant Strategy Mechanisms.
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1.1 Introduction

In line with the Wilson doctrine, the literature in mechanism design has been try-

ing to come up with mechanisms robust to the relaxation of common knowledge

assumptions. In particular, it has been important to relax the assumption that dis-

tribution of payoff types of different players is fixed and perceived by everybody to

be the same and that to each payoff type corresponds exactly one possible belief

of the types of the other players coming from the common prior (the “naive type

space” assumption). Generally speaking, this relaxation from the naive type space

to universal type space, a space allowing all possible beliefs and higher-order beliefs

about other players types, might give rise to mechanisms that can be very com-

plicated. However, the number (the power of the set) of constraints a mechanism

designer has to satisfy also increases dramatically. Thus, a recent paper (Bergemann

and Morris (2005)) shows that if efficiency of the mechanism is to be maintained one

has to design an ex post incentive compatible mechanism in various environments

and for different solution concepts.

Nevertheless, the gap between possible mechanisms that would be optimal rather

than efficient and between ex post incentive compatible mechanisms (dominant

strategy mechanisms in private value environments) was harder to bridge. Indeed,

it is not clear why despite the standard logic of mechanism design literature, a

mechanism designer should not ask all the relevant information including higher

order beliefs if he is to maximize total revenue. One of the attempts to bridge

this gap has been Chung and Ely (2007): in an auction environment, they try to

establish a “maxmin” foundation for dominant strategy mechanisms - an idea that

if a mechanism designer is extremely risk-averse and believes that he should only

consider worst possible beliefs and higher order beliefs for the game he designed,
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than any Bayesian incentive compatible mechanism would perform worse than a

dominant strategy mechanism which is independent of any beliefs. In fact, the

authors prove even a stronger result in an environment satisfying their regularity

condition. They are able to show that there exists a single belief about other players’

types, such that if a mechanism designer holds this belief the best mechanism he

can come up with is again a dominant strategy mechanism. Then, it can be argued

that dominant strategy mechanism is optimal in a Bayesian sense for a mechanism

designer holding this particular belief.

Our departing point from that paper is to allow type-dependent outside options.

Type-dependent utilities have resulted naturally in many practical applications cov-

ering labor contracts with type-dependent reservation wages (Kahn (1985), Moore

(1985)), regulation of electricity bypass (Laffont and Tirole (1990)), regulation of

monopoly with fixed costs (Lewis and Sappington (1989)), models of international

trade (Brainard and Martimort (1996)), models of corruption (Saha (2001)) and

models of competition between several principals (Biglaiser and Mezzetti (1993,

2000)). Our main motivation for type-dependent outside options will be a pos-

sibility of collusion between bidders, the problem we study in the next chapter.

Generally type-dependent outside options make the models harder to analyze since

it will be no longer the case that only incentive compatibility constraints of the most

efficient types will be binding. Indeed, if an outside option of efficient types is high

enough, mechanism designer will have to increase transfers to that type, which may

make a contract for the efficient type attractive to the inefficient types. This idea

that incentive compatibility constraints of the less efficient types may be binding

in type-dependent outside options models has received the name of “countervailing

incentives” (coined by Lewis and Sappington (1989)).
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Thus, the purpose of this chapter is to extend the auction environment allow-

ing type-dependent outside options and investigate whether Bayesian and maxmin

foundations continue to hold for such an environment. The regularity condition of

Chung and Ely was necessary for them to show that monotonicity constraints in

the dominant strategy mechanism never bind and so under some conjecture of a

mechanism designer about beliefs and higher order neliefs of players and after some

simplifications the best Bayesian mechanism has the same objective function as the

objective function of the best dominant strategy mechanism. We argue that what

matters for establishing Bayesian and maxmin foundation is not whether mono-

tonicity constraints bind, but whether there is a symmetry in binding individual

rationality and incentive compatibility constraints for a bidder across different types

of the other bidders. In Chung and Ely’s environment, if monotonicity constraints

do not bind, it is always the case that the binding constraints of the dominant

strategy mechanism are incentive compatibility constraints between a high type

and a type directly lower and individual rationality constraint of the lowest type

independent of the types of the other bidders. Only when monotonicity constraints

do bind, there can be an asymmetry. It is this asymmetry, we argue, that prevents

us from establishing maxmin foundation. To prove our point we consider only such

valuations that regularity condition is always satisfied, but there can be asymmetry

in binding constraints. We also construct an example for the asymmetric case that

shows that there exist no Bayesian foundation for any conjecture of the auction-

eer on the universal type space. Since in our environment monotonicity constraints

never bind and since the break-up of monotonicity constraints in Chung and Ely

(2007) environment implies asymmetry of binding constraints, we emphasize that

symmetry conditions rather than regularity condition are crucial to understanding
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of whether there exist a Bayesian and maxmin foundation for dominant strategy

mechanisms.

The structure of the paper is the following. In section 2, we introduce the model

and relevant concepts, In section 3, we review dominant strategy mechanisms and

find a best one for the generalized individual rationality constraints. In section 4, we

solve the “minmax” problem (finding worst possible beliefs to which a mechanism

designer can respond with the best possible mechanism) for payoff type spaces

arguing that finite mechanism designer revenue is achieved only on a rectangle

of beliefs of the low type and high type of a player and that minimal revenue is

actually a minimum of those achieved at three specific belief points. We also derive

conditions under which Bayesian and “maxmin” foundation can be established. In

section 5, we construct an example that shows that when symmetry conditions are

not satisfied dominant strategy mechanism may not have a Bayesian foundation. In

section 6, we review monotonicity conditions of dominant strategy mechanisms in

the case of standard individual rationality constraints and argue that when they are

binding incentive compatibility and individual rationality constraints for different

values of one player may bind differently across different values of the other player.

1.2 Preliminaries

1.2.1 Auction environment

A single indivisible unit is offered in an auction. There are two risk-neutral bidders

and each bidder has a low and a high types. Valuations are assumed to be private

with the sets of possible valuation Vi =
{
vli, v

h
i

}
. The bidders valuations are dis-

tributed with some probability distribution ν ∈ ∆ (×iVi). We assume that ν has
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full support. A bidder’s expected utility Ui is given by Ui = pivi − ti, where pi is

the probability of getting the object and ti an expected transfer to the mechanism

designer.

1.2.2 Types

To finish the description of environment in which bidders compete for the object,

one must specify not just valuations and distribution from which they come from,

but also beliefs and higher-order beliefs of the bidders. We model beliefs and higher-

order beliefs by using type spaces Ω = (Ωi, θi, πi)i=1,2, where Ωi is a measurable set

of types, θi : Ωi → Vi denotes a measurable mapping from types to valuations of

these types and πi : Ωi → ∆Ωi is a measurable mapping determining beliefs of

every type.

For our purposes it will be sufficient to deal only with payoff and universal type

spaces. Payoff type spaces, usually with an additional common prior property, were

used almost exclusively in auction theory and mechanism design until recently. The

payoff type space has the property that for every valuation vi, there exist just one

type ωvi , such that θi (ω
vi) = vi and, thus, for every valuation there exist just one

belief. As have been shown in Bergmann and Morris (2005), Neeman (2004) such

an assumption is with loss of generality and Wilson Doctrine dictates us to avoid

making it.

Thus, the response in recent literature was to maintain narrow type spaces, but

limit dangers of such assumption by employing stronger solution concepts, such as

dominant strategy mechanisms. Chung and Ely (2007) investigate whether such an

approach is reasonable by stripping all implicit assumptions about type spaces and

considering the most general type space, a universal type space as in Mertens and
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Zamir (1985), where Ω∗ = (Ω∗i , θ
∗
i , π

∗
i )i with every Ωi being a compact topological

space and with the property that for every valuation vi and for every infinite hi-

erarchy of beliefs π̂i, there exist a type of player i, ωi, such that θi (ωi) = vi and

πi (ωi) = π̂i. In their auction environment they investigate whether there may exist

a conjecture of an auctioneer about types, a distribution µ over Ω∗, which ratio-

nalizes in some sense (which will be discussed later) the use of dominant strategy

mechanisms. If this is the case they say that there exist a Bayesian foundation for

using a dominant strategy mechanism.

In our paper we will try to investigate whether such rationalization exist by

relaxing assumptions about auction environment.1 In particular, we will consider

tighter individual rationality constraints and use either payoff or universal type

spaces.

1.2.3 Mechanisms

Once a type space is fixed, the mechanism designer has to come up with a best

possible mechanism.

Definition 1.1. A mechanism consists of a set of messages Mi for each bidder i,

an allocation rule p : M → [0; 1]N and a transfer function t : M → RN

Thus, every bidder chooses a message in Mi, and according to the total profile

of messages m, receives an object with probability pi (m) and pays to an auctioneer

ti (m).

1Although we consider only two bidders, two valuations model, it is not im-
portant to our conclusions: when symmetry conditions are satisfied Bayesian and
maxmin foundations will continue to exist and if they are not satisfied it will be
just as easy to construct an example when no Bayesian foundation exists.
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We assume that outside options a1 (V1, V2) and a2 (V1, V2) of every player de-

pend only on payoff valuations and are given by the set of {a11
1 , a

12
1 , a

21
1 , a

22
1 } and

{a11
2 , a

12
2 , a

21
2 , a

22
2 }, where the first lower index indicates whether the first player is

low or high (1 for the low valuation) and the second index indicates whether the

second player is low or high (1 for the low valuation). We also assume that every set

of messages Mi must have a message of ∅i, such that if some mi = {∅i}, pi (m) = 0

and ti (m) = 0, while Ui = ai (V1, V2) so that player i ’quits’ the mechanism and

receives his outside option. We would also require that both players have to par-

ticipate in the mechanism, so that we could abstract from the analysis of when it

is optimal to serve just one player. Therefore, it is possible to imagine a situation

when an object is sold to one player, but the other has to get a positive surplus. As

we would see in the next chapter this is natural in environments where collusion

threat is real since eliminating bidders in auctions may lower reservation price and,

hence, a mechanism designer may want to attract more bidders. In other environ-

ments that feature type-dependent outside options and utility functions that are

non-linear in the quantity of the allocated resource, it has been shown that it is

possible in an optimum to reach a situation when a mechanism designer sells pos-

itive quantity to a low type of a player, this type gets a positive surplus because

of binding incentive constraints and it is optimal for a mechanism designer to still

serve this type (see, e.g., a bypass problem analyzed by Laffont and Tirole (1990)

and a problem of providing insurance contracts by monopoly analyzed by Stiglitz

(1997)). In our environment the quantity of the allocated resource is the probability

of receiving the object and since utilities are linearly dependent on it, we would

often get that the optimal ’quantity’ is zero for one player, but that player would

still get a positive surplus.
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A direct revelation mechanism for a given type space Ω is such where Mi = Ωi∪

{∅i}. For the payoff type space, the mechanism depends only on types’ valuations

and we simplify notation by setting pi
(
vl1, v

l
2

)
= p11

i , pi
(
vl1, v

h
1

)
= p12

i , pi
(
vh1 , v

l
2

)
=

p21
i , pi

(
vh1 , v

h
2

)
= p22

i and similarly for the transfers.

For a given mechanism under a fixed type space, we have a game of incomplete

information and the mechanism designer has to adopt a solution concept and, then,

try to design a mechanism that will maximize total revenue under this solution

concept. To minimize dangers of using simple type spaces, the common approach

has been to adopt a strong solution concept that wouldn’t depend on the fine details

of that simple type space. In particular, for independent valuations, a dominant

strategy mechanism is often used.

Definition 1.2. A direct revelation mechanism is dominant strategy incentive com-

patible under type space Ω, if for each bidder and every type profile ω ∈ Ω and for

each possible misreport of a type ω̂i individual rationality and incentive compati-

bility constraints are satisfied.

pi (ω) θi (ωi)− ti (ω) ≥ ai (θi (ωi) , θi (ω−i))

pi (ωi, ω−i) θi (ωi)− ti (ωi, ω−i) ≥ pi (ω̂i, ω−i) θi (ωi)− ti (ω̂i, ω−i)

When Ω is a payoff type space the above constraints depend only on valuations

and, thus, we don’t have to specify beliefs on this type space when we say that a

mechanism is dominant strategy incentive compatible for a payoff type space.

To provide a foundation for using stronger solution concepts when trying to

avoid any assumptions on type spaces, Chung and Ely eliminate any assumptions
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on beliefs (i.e. use a universal type space), while keeping the standard solution

concept of Bayesian equilibrium.

Definition 1.3. A direct-revelation mechanism for type space Ω = (Ωi, θi, πi) is

Bayesian incentive compatible (BIC) if for each bidder i and every type ωi ∈ Ωi

ˆ

Ω−i

(pi (ω) θi (ωi)− ti (ω))πi (ωi) dω−i ≥
ˆ

Ω−i

ai (θi (ωi) , θ−i (ω−i))πi (ωi) dω−i

ˆ

Ω−i

[(pi (ωi, ω−i) θi (ωi)− ti (ωi, ω−i))− (pi (ω̂i, ω−i) θi (ωi)− ti (ω̂i, ω−i))] πi (ωi) dω−i ≥ 0

The class of all BIC mechanisms is Ψ.

In our paper we will investigate whether dominant strategy mechanism can be

optimal in the class of all BIC nechanisms under a Bayesian or maxmin criteria.

1.2.4 Decision-making. Bayesian and maxmin foundations.

Given the valuation distribution ν (assumed to be known to the auctioneer), the

mechanism designer makes a conjecture about types µ that is consistent with val-

uation distribution. Thus, the marginal of µ on V must be equal to ν. We call

the compact subset of all such conjectures M(ν). Under every conjecture we can

calculate mechanism designer’s revenue under a mechanism Γ.

Rµ (Γ) =

ˆ

Ω∗

(t1 (ω) + t2 (ω)) dµ (ω)
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Definition 1.4. A mechanism Γ has a Bayesian foundation if there exist such a

conjecture µ ∈M(ν) that

Rµ (Γ) = sup
Γ′∈Ψ

Rµ

(
Γ
′
)

In other words mechanism Γ is the best a mechanism designer can do if he has

a conjecture µ about types in the universal type space.

Definition 1.5. A mechanism Γ has a maxmin foundation if it is the mechanism

that solves the following problem

sup
Γ′

inf
µ
Rµ

(
Γ
′
)

We can interpret, then, a decision to use such a mechanism Γ as one of a cautious

mechanism designer who is unsure about distribution of types in the universal

type space and who considers a worst possible case. Alternatively, one can think

about this in the following terms. When a mechanism designer chooses a mechanism

Γ
′
, nature chooses the worst possible distribution of types µ

(
Γ
′)

to minimize his

revenue. Knowing this a mechanism designer chooses optimally a mechanism Γ.

It is immediate to realize that a mechanism designer can do no worse than the

optimal dominant strategy mechanism. However, Chung and Ely (2007) also showed

that if some regularity condition on distribution and values is satisfied, there always

exists a conjecture µ∗ (ν) under which a mechanism designer can do no better. Then,

if ΠD (ν) is the maximum revenue under optimal dominant strategy mechanism,

ΠD (ν) = sup
Γ∈Ψ

Rµ∗ (Γ) ≥ inf
µ∈M(ν)

sup
Γ∈Ψ

Rµ (Γ) ≥ sup
Γ∈Ψ

inf
µ∈M(ν)

Rµ (Γ)
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and, hence, if a regularity condition is satisfied, dominant strategy mechanism has

both a Bayesian foundation and a maxmin foundation.

We begin our analysis by studying dominant strategy mechanisms in the en-

larged environment of potentially tighter individual rationality constraints.

1.3 Dominant strategy mechanism with general-

ized individual rationality constraints.

For generalized IR constraints it is no longer the case that individual rationality

constraints of a low type and incentive compatibility constraints of a high type are

always binding . The next lemma shows that depending on individual rationality

bounds, there can exist three cases: when both IR constraints bind, when an IR

constraint of a low type and IC constraint of a high type bind, and finally when

an IC constraint of a low type and IR constraint of a high type bind.

Lemma 1.1. If a mechanism designer maximizes revenue obtained from a first

player (similarly for a second player) αt11
1 +βt12

1 +γt21
1 +δt22

1 in a dominant strategy

mechanism that satisfies generalized IR constraints:

p11
1 v

l
1 − t11

1 ≥ a11
1 (1.1)

p12
1 v

l
1 − t12

1 ≥ a12
1 (1.2)

p21
1 v

h
1 − t21

1 ≥ a21
1 (1.3)
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p22
1 v

h
1 − t22

1 ≥ a22
1 (1.4)

and IC constraints:

p11
1 v

l
1 − t11

1 ≥ p21
1 v

l
1 − t21

1 (1.5)

p21
1 v

h
1 − t21

1 ≥ p11
1 v

h
1 − t11

1 (1.6)

p12
1 v

l
1 − t12

1 ≥ p22
1 v

l
1 − t22

1 (1.7)

p22
1 v

h
1 − t22

1 ≥ p12
1 v

h
1 − t12

1 (1.8)

then t1j1 , t
2j
1 , where j denotes the low or high type of another player, are determined

by:

If a2j
1 − a

1j
1 ≤ p1j

1

(
vh1 − vl1

)
, then


t1j1 = p1j

1 v
l
1 − a

1j
1

t2j1 = p2j
1 v

h
1 − p

1j
1

(
vh1 − vl1

)
− a1j

1

If p1j
1

(
vh1 − vl1

)
≤ a2j

1 − a
1j
1 ≤ p2j

1

(
vh1 − vl1

)
, then


t1j1 = p1j

1 v
l
1 − a

1j
1

t2j1 = p2j
1 v

h
1 − a

2j
1

If a2j
1 − a

1j
1 ≥ p2j

1

(
vh1 − vl1

)
, then


t1j1 = p1j

1 v
l
1 + p2j

1

(
vh1 − vl1

)
− a2j

1

t2j1 = p2j
1 v

h
1 − a

2j
1

Proof. First of all, notice that the problem can be treated as two separate problems,

with the first one maximizing αt11
1 + γt21

1 under constraints (1.1), (1.3), (1.5), (1.6)

and the second one is maximizing βt12
1 + δt22

1 under the constraints (1.2), (1.4),

(1.7), (1.8). So we can concentrate on the first problem with the second one being

symmetric. Second, notice that at least one constraint out of any pair of constraints

(1.1) and (1.5), (1.3) and(1.6) must be binding as otherwise it would be possible

to increase t11
1 or t21

1 . Also notice that when (1.5) and(1.6) are both binding (and
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t11
1 = t21

1 , while p11
1 = p21

1 ) either (1.1) or (1.3) must still be binding, as otherwise we

could increase both t11
1 and t21

1 . Hence, without loss of generality we could conclude

that there could be only three cases. When at least both IR constraints are binding,

at least IR of a low type and at least IC for a high type constraints are binding,

and IR of a high type and IC of a low type constraints are binding.

If both IR constraints bind, we have

t1j1 = p1j
1 v

l
1 − a

1j
1

t2j1 = p2j
1 v

h
1 − a

2j
1

to have this solution the inequalities from IC must be satisfied

(
p2j

1 − p
1j
1

)
vl1 ≤ t2j1 − t

1j
1 = p2j

1 v
h
1 − a

2j
1 − p

1j
1 v

l
1 + a1j

1 ≤
(
p2j

1 − p
1j
1

)
vh1

or

p1j
1

(
vh1 − vl1

)
≤ a2j

1 − a
1j
1 ≤ p2j

1

(
vh1 − vl1

)
(1.9)

If IR constraint of a low type and IC constraint of a high type are binding, we

have

t1j1 = p1j
1 v

l
1 − a

1j
1

t2j1 = p2j
1 v

h
1 − p

1j
1 v

h
1 + t1j1 = p2j

1 v
h
1 − p

1j
1

(
vh1 − vl1

)
− a1j

1

and the IR constraint of a high type and IC constraint of a low type must be

satisfied

p2j
1 v

h
1 − p

1j
1

(
vh1 − vl1

)
− a1j

1 ≤ p2j
1 v

h
1 − a

2j
1 ⇔ a2j

1 − a
1j
1 ≤ p1j

1

(
vh1 − vl1

)
(1.10)
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p2j

1 − p
1j
1

)
vh1 ≥

(
p2j

1 − p
1j
1

)
vl1

If IR constraint of a high type and IC constraint of a low type is binding

t2j1 = p2j
1 v

h
1 − a

2j
1

t1j1 = −
(
p2j

1 − p
1j
1

)
vl1 + t2j1 = p1j

1 v
l
1 + p2j

1

(
vh1 − vl1

)
− a2j

1

and the IR constraint of a low type and IC constraint of a high type must be

satisfied

p1j
1 v

l
1 + p2j

1

(
vh1 − vl1

)
− a2j

1 ≤ p1j
1 v

l
1 − a

1j
1 ⇐⇒ a2j

1 − a
1j
1 ≥ p2j

1

(
vh1 − vl1

)
(1.11)

(
p2j

1 − p
1j
1

)
vl1 ≤

(
p2j

1 − p
1j
1

)
vh1

We conclude thus that a) monotonicity constraints p2j
1 ≥ p1j

1 must be satisfied

and b) inequalities (1.9), (1.10), (1.11) determine the solution since these inequali-

ties are mutually exclusive and completely exhaustive.

Next lemma establishes that the optimal probabilities are such that monotonic-

ity constraints are always satisfied.

Lemma 1.2. If values are such that values such that vl1 < vl2 < vh1 < vh2 , then

regardless of aij1 and aij2 , p21
1 = 1 and p12

2 = 1. Hence, it is always the case that

optimal probabilities are such that p21
1 ≥ p11

1 , p22
1 ≥ p12

1 , p12
2 ≥ p11

2 and p22
2 ≥ p21

2 .

Proof. First of all, notice from lemma 1 that transfers are continuous functions of

probabilities. Next, notice that the coefficient before p21
1 is either equal to γvh1 if

a21
1 −a11

1 ≤ p21
1

(
vh1 − vl1

)
or γvh1 +α

(
vh1 − vl1

)
if a21

1 −a11
1 ≥ p21

1

(
vh1 − vl1

)
. As for the

coefficient before p21
2 it is either equal to γvl2 if b22− b21 ≥ p21

2

(
vh2 − vl2

)
or γvl2− δvh2
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if b22−b21 ≤ p21
2

(
vh2 − vl2

)
. Since γvh1 > γvl2 according to our assumption, it’s always

optimal to increase p21
1 as much as possible.

The proof that p12
2 = 1 is similar with the minimum coefficient for p12

2 equal to

βvh2 and a maximum coefficient before p12
1 equal to βvl1.

These two lemmas essentially establish that the optimal revenue from the best

dominant strategy mechanism can be expressed in the following way

Rdsm
1

(
p11

1 , p
12
1 , p

21
1 , p

22
1

)
= αmin

{
p11

1 v
l
1 − a11

1 , p
11
1 v

l
1 + p21

1

(
vh1 − vl1

)
− a21

1

}
+

+ βmin
{
p12

1 v
l
1 − a12

1 , p
12
1 v

l
1 + p22

1

(
vh1 − vl1

)
− a22

1

}
+

+ γmin
{
p21

1 v
h
1 − a21

1 , p
21
1 v

h
1 − p11

1

(
vh1 − vl1

)
− a11

1

}
+

+ δmin
{
p22

1 v
h
1 − a22

1 , p
22
1 v

h
1 − p12

1

(
vh1 − vl1

)
− a12

1

}
with the second term under the minimum sign never chosen at the same time for

low and high type of the first player under the same type of the second player.

1.4 Maxmin foundation for dominant strategy mech-

anism.

We start investigating whether there exist a maxmin foundation for dominant

strategy mechanisms by considering simple payoff-type spaces. As was discussed

in the preliminaries, we can then represent a mechanism by a set of probabilities

{p11
i , p

12
i , p

21
i , p

22
i }and transfers {t11

i , t
12
i , t

21
i , t

22
i }. Also, assume a simple structure of

beliefs on the payoff type space. Suppose the belief of a low (high) player i that

player −i is a low type is given by µi (λi). Then, we extend naturally the higher

order beliefs. For example, a low type of player 1 believes with probability µ1 that
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the second player is a low type who believes with probability µ2 that the first player

is a low type and with probability (1− µ2) that the first player is a high type. With

probability (1− µ1) the low type of the first player believes that the second player

is a high type who believes with probability λ2 that the first player is a low type and

with remaining probability (1− λ2) that the first player is a high type. The higher

order believes are determined in a similar fashion. As was shown in Chung and Ely

(2007) considering such simplistic type spaces is sufficient for establishing maxmin

foundation of dominant strategies. We study whether considering these type spaces

is enough to establish a maxmin foundation for generalized auction environment.

It will be shown that generally revenue from an optimal Bayesian mechanism on

such type spaces is non-smaller than revenue from the optimal dominant strategy

mechanism. However, for some conditions on bounds, two revenues are the same.

That means that for these conditions there exist very simple conjectures on types in

the universal type space that rationalize dominant strategy mechanisms and, thus,

establish maxmin foundation. Hence the focus of this section is to find such µ1 and

λ1 that will minimize the revenue of the mechanism designer.

Similarly to the section on dominant strategy mechanism, we will first find op-

timal transfers as functions of probabilities to receive a good. As before, at this

stage maximizing revenue obtained from the first player is independent of max-

imizing revenue from the second player. The sub-problem of maximizing trans-

fers obtained from the first player is characterized by an objective function of

RB.m
1 = αt11

1 + βt12
1 + γt21

1 + δt22
1 subject to the following IC and IR constraints:

µ1t
11
1 + (1− µ1) t12

1 ≤ µ1

(
p11

1 v
l
1 − a11

1

)
+ (1− µ1)

(
p12

1 v
l
1 − a12

1

)
(1.12)

λ1t
21
1 + (1− λ1) t22

1 ≤ λ1

(
p21

1 v
h
1 − a21

1

)
+ (1− λ1)

(
p22

1 v
h
1 − a22

1

)
(1.13)
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µ1t
11
1 +(1− µ1) t12

1 ≤ µ1t
21
1 +(1− µ1) t22

1 +vl1
(
µ1

(
p11

1 − p21
1

)
+ (1− µ1)

(
p12

1 − p22
1

))
(1.14)

λ1t
21
1 +(1− λ1) t22

1 ≤ λ1t
11
1 +(1− λ1) t12

1 +vh1
(
λ1

(
−p11

1 + p21
1

)
+ (1− λ1)

(
−p12

1 + p22
1

))
(1.15)

Next lemma derive a necessary condition for beliefs so that the optimal revenue is

finite.

Lemma 1.3. For maximal revenue obtained from a mechanism above to be finite,

it has to be the case that

µ1 ∈
[
min

{
α + γ,

α

α + β

}
,max

{
α + γ,

α

α + β

}]

λ1 ∈
[
min

{
α + γ,

γ

γ + δ

}
,max

{
α + γ,

γ

γ + δ

}]
Proof. Suppose we have some finite transfers t∗1 that satisfy above constraints (the

domain set is always non-empty). Then, we will consider four types of perturba-

tions to those transfers so that three of the four constraints are always satisfied.

Essentially those perturbations to transfers will be bets for the low or high type

of the first player (or for both types) on whether the second player will be low or

high.

1. Bets for the low type of the first player. Consider the following transfers to the

mechanism designer t1 = t∗1 +a
(
ε,− µ1

1−µ1 ε, 0, 0
)

, where a is some positive constant.

Notice that both IR and IC constraint for a low type are always satisfied. It has

to be the case that when IC constraint for a high type is satisfied (so that the

high type doesn’t accept this bet), the change in mechanism designer’s revenue is
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negative. Hence the following implication must be true

0 ≤ λ1ε−
(1− λ1)µ1

1− µ1

ε ⇒αε− β µ1
1−µ1 ε ≤ 0

or

0 ≤ λ1 − µ1

1− µ1

ε ⇒
(
α− β µ1

1−µ1

)
ε ≤ 0

Hence it must be the case that

For λ1 > µ1 ⇒ µ1 ≥ α
α+β

For λ1 < µ1 ⇒ µ1 ≤ α
α+β

For λ1 = µ1 ⇒ µ1 = α
α+β

2. Bets for the high type of the first player. Now, let’s consider such a per-

turbation that both IR and IC constraint of a high type is always satisfied and

t1 = t∗1 + a
(

0, 0, ε,− λ1
1−λ1 ε

)
. Then, the following implication must be true.

0 ≤ µ1ε−
(1− µ1)λ1

1− λ1

ε ⇒γε− δ λ1
1−λ1 ε ≤ 0

or

0 ≤ µ1 − λ1

1− λ1

ε ⇒
(
γ − δ λ1

1−λ1

)
ε ≤ 0

Hence it must be the case that

For λ1 > µ1 ⇒ λ1 ≤ γ
γ+δ

For λ1 < µ1 ⇒ λ1 ≥ γ
γ+δ

For λ1 = µ1 ⇒ λ1 = γ
γ+δ

3. Bets for both types of the first player.

Suppose now t1 = t∗1 + a
(
ε,− µ1

1−µ1 ε, ε,−
µ1

1−µ1 ε
)

. Notice that for this pertur-

bation, individual rationality constraint of a low type is always satisfied and IC
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constraints for both types are satisfied. Hence, it must be the case that whenever

individual rationality constraint of a high type is satisfied, the change in revenue is

negative.

0 ≥ λ1 − µ1

1− µ1

ε ⇒
(

(α + γ)− (β + δ) µ1
1−µ1

)
ε ≤ 0

and hence it must be the case that

For λ1 > µ1 ⇒ µ1 ≤ α + γ

For λ1 < µ1 ⇒ µ1 ≥ α + γ

For λ1 = µ1 ⇒ µ1 = α + γ

4. Bets for both types of the first player. Finally, suppose

t1 = t∗1 + a

(
ε,− λ1

1− λ1

ε, ε,− λ1

1− λ1

ε

)

and individual rationality constraint of a high type is always satisfied. Then, it

must be the case that

0 ≥ µ1 − λ1

1− λ1

ε ⇒
(

(α + γ)− (β + δ) λ1
1−λ1

)
ε ≤ 0

from which it follows

For λ1 > µ1 ⇒ λ1 ≥ α + γ

For λ1 < µ1 ⇒ λ1 ≤ α + γ

For λ1 = µ1 ⇒ λ1 = α + γ

Taking everything together, we get exactly the conditions in the statement of

the lemma.

In theory there could be other bets that give the mechanism designer infinite

profits, however for our purposes it is enough to concentrate on the beliefs specified
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in the graph below. We draw a case of γ
γ+δ

> α
α+β

with the other case being

completely symmetric along the line of λ1 = µ1.

Since we are interested in finding infµ sup
Γ is b.m.R

µ(Γ), we will limit attention

to first-order beliefs only in the specified range. To determine the exact form of

transfers as functions of optimal probabilities, we have to find out which constraints

are binding when. As it will turn out, the boundary of the rectangle of the possible

beliefs specified above is a set of beliefs where one or two constraints do not have

to be binding. The next four lemmas establish this result.

Lemma 1.4. IR constraint of a low type is binding unless λ1 = α + γ. Moreover,

for this λ1, under the condition that p21
1 ≥ p11

1 and p22
1 ≥ p12

1 , mechanism designer

revenue is minimal when µ1 = α
α+β

.

Proof. Suppose IR constraint of a low type (1.12) is not binding, then it’s immedi-

ate to realize that IC constraint of a low type (1.14) must be binding as otherwise

we could perturb transfers by t1 = t∗1 + a (ε, σ, 0, 0). Also, IR constraint of a high

type (1.13) must be binding as otherwise we can have t1 = t∗1 + a (ε, o, ε, 0). As

for the IC constraint of a high type (1.15), it must be binding unless no possible

perturbations of transfers will increase revenue. If (1.14) and (1.13) are binding per-

turbations can only be of the form ∆ =
(
−1−µ1

µ1
σ + µ1−λ1

µ1(1−λ1)
ε, σ, ε,− λ1

1−λ1 ε
)

. Then
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change in revenue is equal to

∆R = σ

(
β − α1− µ1

µ1

)
+ ε

(
α

µ1 − λ1

µ1 (1− λ1)
+ γ − δλ1

1− λ1

)

and since σ and ε can be of any sign both expressions in brackets must be zero. It

follows that µ1 = α
α+β

and λ1 = α + γ. Rewriting (1.14) and (1.13), we get

(α + γ) t21
1 + (β + δ) t22

1 = (α + γ)
(
p21

1 v
h
1 − a21

1

)
+ (β + δ)

(
p22

1 v
h
1 − a22

1

)
α
(
t11
1 − t21

1

)
+ β

(
t12
1 − t22

1

)
= vl1

(
α
(
p11

1 − p21
1

)
+ β

(
p12

1 − p22
1

))
and summing them up we get that total revenue for these beliefs and binding IR

constraint of a high type and IC constraint of a low type

RIC,IR
1 = α

(
p11

1 v
l
1 + p21

1

(
vh1 − vl1

)
− a21

1

)
+ β

(
p12

1 v
l
1 + p22

1

(
vh1 − vl1

)
− a22

1

)
+

+ γ
(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
Now suppose all three constraints but IR of a low type are binding, then all

the possible perturbations must be of the form ∆ above for which the following

condition is satisfied

0 = λ1

(
−1− µ1

µ1

σ +
µ1 − λ1

µ1 (1− λ1)
ε

)
+ (1− λ1)σ =

µ1 − λ1

µ1

σ +
λ1

µ1

µ1 − λ1

1− λ1

ε

And, thus, either λ1 = µ1 = α + γ (the only way that two beliefs may be equal to

each other) or σ = − λ1
1−λ1 ε and then perturbation is equal to ∆ =

(
ε,− λ1

1−λ1 ε, ε,−
λ1

1−λ1 ε
)



CHAPTER 1. BAYESIAN FOUNDATION FOR D.S.M 23

and the change in revenue is equal to

∆R1 =

(
(α + γ)− (β + δ)

λ1

1− λ1

)
ε

and since ε can be of any sign, it must be the case that λ1 = α + γ.

Let’s also find mechanism designer revenue. Rewriting IR constraint of a low

type and IC constraints for λ1 = α + γ, we get.

(α + γ) t21
1 + (β + δ) t22

1 = (α + γ)
(
p21

1 v
h
1 − a21

1

)
+ (β + δ)

(
p22

1 v
h
1 − a22

1

)
(1.16)

µ1

(
t11
1 − t21

1

)
+ (1− µ1)

(
t12
1 − t22

1

)
= vl1

(
µ1

(
p11

1 − p21
1

)
+ (1− µ1)

(
p12

1 − p22
1

))
(1.17)

(α + γ)
(
t21
1 − t11

1

)
+(β + δ)

(
t22
1 − t12

1

)
= vh1

(
(α + γ)

(
−p11

1 + p21
1

)
+ (β + δ)

(
−p12

1 + p22
1

))
(1.18)

Rewriting (18), taking into account (16) we get

(α + γ) t11
1 + (β + δ) t12

1 = (α + γ)
(
p11

1 v
h
1 − a21

1

)
+ (β + δ)

(
p12

1 v
h
1 − a22

1

)
(1.19)

Multiplying (16), (17) and (19) by x, y, and z, where x = γ−µ1(γ+δ)
α+γ−µ1 , y = α−µ1(α+β)

α+γ−µ1 ,

z = γ−(α+γ)(γ+δ)
α+γ−µ1 and simplifying resulting expression, we get that mechanism de-

signer revenue is equal to

R1 =
γ − µ1 (γ + δ)

γ + α− µ1

[
(α + γ)

(
p21

1 − p11
1

)
+ (β + δ)

(
p22

1 − p12
1

)] (
vh1 − vl1

)
+

+ (α + γ)
(
p11

1 v
h
1 − a21

1

)
+ (β + δ)

(
p12

1 v
h
1 − a22

1

)
+ γ

(
p21

1 − p11
1

)
vl1 + δ

(
p22

1 − p12
1

)
vl1

When λ1 = α + γ, we know that µ1 ∈
[
min

{
α + γ, γ

γ+δ

}
,max

{
α + γ, γ

γ+δ

}]
and hence coefficient before the square brackets is positive. Then, if optimal prob-
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abilities are such that the expression in square brackets is positive, this revenue is

minimal when µ1 = α
α+β

, with the total revenue equal to RIC,IR

Lemma 1.5. IR constraint of a high type is binding unless µ1 = α+ γ. Moreover,

for this µ1 under the condition that p21
1 ≥ p11

1 and p22
1 ≥ p12

1 , mechanism designer

revenue is minimal when λ1 = γ
γ+δ

.

Proof. If IR constraint of a high type is not binding, we can immediately conclude,

by an argument similar to the one in previous lemma, that IR of a low type must be

binding and IC of a high type must be binding. Then, all the possible perturbations

of transfers must be of the form ∆ =
(
ε,− µ1

1−µ1 ε, σ,−
λ1

1−λ1σ + λ1−µ1
(1−λ1)(1−µ1)

ε
)

. It

follows that IC of a low type does not have to be binding if µ1 = α + γ and

λ1 = γ
γ+δ

with mechanism designer revenue (found again by adding two binding

constraints) is equal to

RIR,IC
1 = α

(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+ γ

(
p21

1 v
h
1 − p11

1

(
vh1 − vl1

)
− a11

1

)
+

+ δ
(
p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
− a12

1

)
If all constraints but IR constraint of a high type is binding, then we can only

consider perturbations of the form ∆ =
(
ε,− µ1

1−µ1 ε, ε,−
µ1

1−µ1 ε
)

and the change in

revenue can be made positive unless µ1 = α + γ. Then, from binding constraints

we can again derive

(α + γ) t11
1 + (β + δ) t12

1 = (α + γ)
(
p11

1 v
l
1 − a11

1

)
+ (β + δ)

(
p12

1 v
l
1 − a12

1

)
(α + γ) t21

1 + (β + δ) t22
1 = (α + γ)

(
p21

1 v
l
1 − a11

1

)
+ (β + δ)

(
p22

1 v
l
1 − a12

1

)
λ1

(
t21
1 − t11

1

)
+ (1− λ1)

(
t22
1 − t12

1

)
= vh1

(
λ1

(
p21

1 − p11
1

)
+ (1− λ1)

(
p22

1 − p12
1

))
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And multiplying these constraints by x = α−λ1(α+β)
α+γ−λ1 , y = γ−λ1(γ+δ)

α+γ−λ1 and z =

α−(α+γ)(α+β)
α+γ−λ1 and, then, simplifying we obtain mechanism designer revenue as

R1 = (α + γ)
(
p11

1 v
l
1 − a11

1

)
+ (β + δ)

(
p12

1 v
l
1 − a12

1

)
+

+ γ
(
p21

1 − p11
1

)
vh1 + δ

(
p22

1 − p12
1

)
vh1 +

+
λ1 (γ + δ)− γ
α + γ − λ1

[
(α + γ)

(
p21

1 − p11
1

)
+ (β + δ)

(
p22

1 − p12
1

)] (
vh1 − vl1

)
And again if the expression in square brackets is positive2 the revenue is minimal

when λ1(γ+δ)−γ
α+γ−λ1 is minimal. From lemma 3 we derive that this coefficient is positive

and, hence, minimized at λ1 = γ
γ+δ

with the revenue of RIR,IC
1

Lemma 1.6. IC constraint of a low type is binding unless λ1 = γ
γ+δ

. Moreover,

for this λ1, mechanism designer revenue is minimal either at µ1 = α + γ or at

µ1 = α
α+β

.

Proof. If IC constraint of a low type is not binding, it is immediate to realize

that IR of a low type must be binding. However, all other constraints may be

not binding. We have already established in lemma 5 that IR constraint of a high

type and IC constraint of a low type do not have to be binding when λ1 = γ
γ+δ

and µ1 = α + γ. Similarly, both IC constraints do not have to be binding when a

change in revenue from a perturbation ∆ =
(
ε,− µ1

1−µ1 ε, σ,−
λ1

1−λ1σ
)

is always zero.

Equivalently,

∆R1 =

(
α− β µ1

1− µ1

)
ε+

(
γ − δ λ1

1− λ1

)
σ = 0

2(same expression as in lemma 5)
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From which it follows that µ1 = α
α+β

, λ1 = γ
γ+δ

and revenue, derived by adding up

two IR constraints, is given by

RIR,IR
1 = α

(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+ γ

(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
When all constraints but IC constraint of a low type bind, we can only consider

perturbations of the form ∆ =
(

0, 0, σ,− λ1
1−λ1σ

)
with the change in revenue equal

to ∆R1 =
(
γ − δ λ1

1−λ1

)
σ, from which it follows that λ1 = γ

γ+δ
so that change in

revenue is zero.

For this λ1 and binding constraints

µ1t
11
1 + (1− µ1) t12

1 = µ1

(
p11

1 v
l
1 − a11

1

)
+ (1− µ1)

(
p12

1 v
l
1 − a12

1

)
(1.20)

γt21
1 + δt22

1 = γ
(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
(1.21)

γ
(
t21
1 − t11

1

)
+ δ

(
t22
1 − t12

1

)
= γ

(
p21

1 − p11
1

)
vh1 + δ

(
p22

1 − p12
1

)
vh1 (1.22)

From (1.21) and (1.22) we derive that

γt11
1 + δt12

1 = γ
(
p11

1 v
h
1 − a21

1

)
+ δ

(
p12

1 v
h
1 − a22

1

)
(1.23)

and multiplying (1.20) and (1.23) by x = βγ−αδ
α−µ1(γ+δ)

and y = a−µ1(α+β)
γ−µ1(γ+δ)

and adding

up 21, we get that the revenue is equal to

R1 = α
(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+ γ

(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
+

+
a− µ1 (α + β)

γ − µ1 (γ + δ)

[
γp11

1

(
vh1 − vl1

)
+ δp12

1

(
vh1 − vl1

)
− γ

(
a21

1 − a11
1

)
− δ

(
a22

1 − a12
1

)]
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And depending on whether the expression in square brackets is positive or negative

the mechanism designer’s revenue is minimized at either µ1 = α+γ, or µ1 = α
α+β

Lemma 1.7. IC constraint of a high type is binding unless µ1 = α
α+β

. Moreover,

for this µ1, mechanism designer revenue is minimal either at λ1 = α + γ or at

λ1 = γ
γ+δ

.

Proof. Suppose IC constraint of a high type is not binding, then it’s immediate to

get that IR constraint of a high type must be binding. As for the other constraints

we saw in lemmas 4 and 6 that for µ1 = α
α+β

and λ1 = α + γ, IR constraint of

a low type doesn’t have to be binding and for µ1 = α
α+β

and λ1 = γ
γ+δ

, both IC

constraints do not have to be binding.

When all other constraints are binding, we can consider perturbations in the

form of ∆ =
(
ε,− µ1

1−µ1 ε, 0, 0
)

, from which it will follow that µ1must be equal to

α
α+β

. For this µ1 we can derive mechanism designer revenue, and it will turn out,

similarly to lemma 6, that depending on the parameters revenue will be minimal

at either λ1 = α + γ or at λ1 = γ
γ+δ

Lemma 1.8. If all constraints are binding, minimal revenue can be always found on

the boundary of feasible domain, i.e. either λ1 = α+γ, or λ1 = γ
γ+δ

, or µ1 = α+γ,

or µ1 = α
α+β

.

Proof. Multiplying IR constraints by x1 = α+γ−λ1
µ1−λ1 , y1 = α+γ−µ1

λ1−µ1 and IC constraints

by x2 = γ−λ1(γ+δ)
λ1−µ1 , y2 = µ1(α+β)−α

λ1−µ1 , we can find total revenue. Taking a derivative

with respect to λ1, we get that it’s equal to

dR1

dλ1

=
A

(λ1 − µ1)2
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where A is a constant that doesn’t depend on λ1. Hence, revenue is always increasing

or decreasing with λ1 and minimal revenue can always be found on either λ1 =

α + γ, or λ1 = γ
γ+δ

.

We conclude the set of lemmas with the following proposition.

Proposition 1.1. Minimal revenue obtained from a first player in a Bayesian

mechanism is achieved at either (µ1, λ1) =
(
α + γ, γ

γ+δ

)
or at (µ1, λ1) =

(
α

α+β
, γ
γ+δ

)
or at (µ1, λ1) =

(
α

α+β
, α + γ

)
and is the minimal of the following three expressions

R1 = α
(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+ γ

(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
(1.24)

R1 = α
(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+ γ

(
p21

1 v
h
1 − p11

1

(
vh1 − vl1

)
− a11

1

)
+(1.25)

+ δ
(
p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
− a12

1

)

R1 = α
(
p11

1 v
l
1 + p21

1

(
vh1 − vl1

)
− a21

1

)
+ β

(
p12

1 v
l
1 + p22

1

(
vh1 − vl1

)
− a22

1

)
+(1.26)

+ γ
(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
Proof. Lemmas 3-8 establish the result.

We can now compare revenues from a dominant strategy mechanism to revenues

from a Bayesian mechanism. From lemmas 1 and 2, we can express revenue obtained
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by a mechanism designer from the first player in the following way:

Rdsm
1

(
p11

1 , p
12
1 , p

21
1 , p

22
1

)
= αmin

{
p11

1 v
l
1 − a11

1 , p
11
1 v

l
1 + p21

1

(
vh1 − vl1

)
− a21

1

}
+

+ βmin
{
p12

1 v
l
1 − a12

1 , p
12
1 v

l
1 + p22

1

(
vh1 − vl1

)
− a22

1

}
+

+ γmin
{
p21

1 v
h
1 − a21

1 , p
21
1 v

h
1 − p11

1

(
vh1 − vl1

)
− a11

1

}
+

+ δmin
{
p22

1 v
h
1 − a22

1 , p
22
1 v

h
1 − p12

1

(
vh1 − vl1

)
− a12

1

}
While proposition 1 establishes that for the worst possible belief optimal revenue

from a Bayesian mechanism RBm
1 (p11

1 , p
12
1 , p

21
1 , p

22
1 ) is not bigger tha

min{α
(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+ γ

(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
,

α
(
p11

1 v
l
1 + p21

1

(
vh1 − vl1

)
− a21

1

)
+ β

(
p12

1 v
l
1 + p22

1

(
vh1 − vl1

)
− a22

1

)
+

+ γ
(
p21

1 v
h
1 − a21

1

)
+ δ

(
p22

1 v
h
1 − a22

1

)
,

α
(
p11

1 v
l
1 − a11

1

)
+ β

(
p12

1 v
l
1 − a12

1

)
+

+ γ
(
p21

1 v
h
1 − p11

1

(
vh1 − vl1

)
− a11

1

)
+ δ

(
p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
− a12

1

)
}

Leading to the following theorem

Theorem 1.1. There exist a Bayesian and maxmin foundation for dominant strat-

egy mechanisms if there is a symmetry between binding IR and IC constraints of

bidder 1 across different types of bidder 2.

Proof. Observing carefully the revenue of dominant strategy mechanism and rev-

enues from a Bayesian mechanism, we see that

Rdsm
1

(
p11

1 , p
12
1 , p

21
1 , p

22
1

)
≤ RBm

1

(
p11

1 , p
12
1 , p

21
1 , p

22
1

)
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and the objective functions are equivalent when for any constraint that is binding

for bidder 1 for a low type of bidder 2, the same constraint is binding for the high

type of player 2. If there is any asymmetry the objective function in a Bayesian

mechanism is strictly greater when using the same probabilities as in the optimal

dominant strategy mechanism. Thus, if optimal probabilities are chosen for the

Bayesian mechanism, the revenue is going to be even greater and no Bayesian

foundation could be provided.

Essentially if the conditions of theorem are satisfied this theorem helps us con-

struct a very simple conjecture on the universal type space that will have a positive

support on a subset of this type space - a payoff type space. Depending on what is

the minimum of proposition 1, this conjecture will have (µ1, λ1) =
(
α + γ, γ

γ+δ

)
or

(µ1, λ1) =
(

α
α+β

, γ
γ+δ

)
or (µ1, λ1) =

(
α

α+β
, α + γ

)
.

To establish whether maxmin foundation exists when conditions of the theorem

1 is not satisfied, we have to consider more complex type spaces. We show though

by the example below, that there can exist no Bayesian foundation when these

conditions are broken.

1.5 Bayesian foundation for dominant strategy

mechanism

Suppose that valuations of players and its distribution are represented by the fol-

lowing table.

vl2 = 11 vh2 = 15

vl1 = 4 0.1 0.2

vh1 = 12 0.01 0.69
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Let’s, first of all, recall the standard argument for zero outside options when

a maxmin foundation can be established. Let’s consider a very simple type space,

where for every valuation of a player there exists just one belief and these beliefs

are common knowledge. Suppose for the low type of the first player we set that

µ1 = 0.11 and for the high type of the first player we set λ1 = 0.01
0.7

= 1
70

. Then,

from individual rationality constraint of a low type and incentive compatibility

constraint of a high type, we derive that in a Bayesian equilibrium it must be the

case that

0.11
(
p11

1 v
l
1 − t11

1

)
+ 0.89

(
p12

1 v
l
1 − t12

1

)
≥ 0

1

70

(
p21

1 v
h
1 − t21

1

)
+

69

70

(
p22

1 v
h
1 − t22

1

)
≥ 1

70

(
p11

1 v
h
1 − t11

1

)
+

69

70

(
p12

1 v
h
1 − t12

1

)
multiplying the second equation by 0.7 and summing it with the first one, we derive

R = 0.1t11
1 + 0.2t12

1 + 0.01t21
1 + 0.69t22

1 ≤ 0.1p11
1 v

l
1 + 0.2p12

1 v
l
1 +

+ 0.01
(
p21

1 v
h
1 − p11

1

(
vh1 − vl1

))
+ 0.69

(
p22

1 v
h
1 − p12

1

(
vh1 − vl1

))
which is exactly the bound one derives from an optimal dominant strategy mecha-

nism when outside options are zero and individual rationality constraints are bind-

ing for the low type and incentive compatibility constraints are binding for the high

type.

Suppose now that outside options are equal to zero for the second player and for

the low type of the first player, but for the high type of the first player they are equal

to seven regardless of the type of the second player. So, aij2 = 0, a1j
1 = 0, a2j

1 = 7.

By lemma 2 of section 3 we know that in the optimal dominant strategy mechanism

p21
1 = 1, p12

2 = 1 and since αvl1 − γ
(
vh1 − vl1

)
= 0.33 > 0 = αvl2 − β

(
vh2 − vl2

)
, it

is always optimal to sell the object when both players are low to the first player



CHAPTER 1. BAYESIAN FOUNDATION FOR D.S.M 32

and, thus, we have p11
1 = 1. Moreover, due to δvh2 > δvh1 + β

(
vh1 − vl1

)
, it is always

optimal to sell the object when both players are high to the second player. Thus,

we have p22
2 = 1. Finally since outside options are such that p22

1

(
vh1 − vl1

)
= 0 <

a2j
1 − a

1j
1 = 7 < p11

1

(
vh1 − vl1

)
= 8, we know by lemma 1 that IR constraint of the

first player binds when players have the same type, while IC constraints bind when

they have the opposite type. It follows that t11
1 = t21

1 = 4, t12
1 = t22

1 = −7,

The optimal dominant strategy mechanism is thus represented by

11 15

4 p11
1 = 1, t11

1 = 4, t11
2 = 0 p12

2 = 1, t12
1 = −7, t12

2 = 15

12 p21
1 = 1, t21

1 = 4, t21
2 = 0 p22

2 = 1, t22
1 = −7, t22

2 = 15

Notice that in this example, the low type of the first player gets additional

surplus when the second player is high (7 > 0) and the high type of the first player

gets an additional surplus when the second player is low (8 > 7). Notice that for a

Bayesian first player we can always improve upon this mechanism unless the low

type believes with probability one that the second player is low and the high type

believes with probability one that the second player is high. For example, suppose

the first-order belief of the low type of the first player was less than one. Then, we

can increase both transfers t11
1 and t21

1 and still satisfy IR constraints on average

as first player is getting surplus utility in cases when both players have different

types. Thus, it is important in this construction that in the dominant strategy

mechanism IR constraint of a low type when the other player is high was not

binding. Moreover, since beliefs of one and zero, necessary to rationalize optimal

dominant strategy mechanism, are too extreme, it will be possible for a mechanism

designer to introduce Cremerer-McLean types of bets, separate high and low types
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and benefit from such a bet. That is our intuition why it is necessary to have

symmetry in IR constraints in order to establish a Bayesian foundation.

We will show now that this dominant strategy mechanism can not be rational-

izable by any conjecture η on the universal type space by contradiction. Essentially,

lemma 10 shows that to rationalize optimal dominant strategy mechanism the first-

order belief of a low player can not be too high as otherwise it will be possible to

introduce Cremerer and McLean bets on the type of the second player, while lemma

11 shows that to rationalize it the first-order belief of the low type can not be too

low as otherwise we can increase transfers t11
1 and t21

1 . Two lemmas establish the

necessary contradiction. We begin with preliminary lemma 9 necessary for the proof

of lemma 10.

Lemma 1.9. If η rationalizes the optimal dominant strategy mechanism, than given

some non-null subset of low types of the first player, the probability of the sec-

ond type being low can not be too high. For any x ∈ [0, 1], if η (µ1 > x) > 0,

η (v2 = 12|µ1 > x) ≤ 4
11

Proof. Suppose that for a low type of the first player we introduce a message µ1 > x

under which we sell the object to the second player regardless of his type.

v2 = 11 v2 = 15

µ1 ≤ x p11
1 = 1, t11

1 = 4, t11
2 = 0 p12

2 = 1, t12
1 = −7, t12

2 = 15

µ1 > x p11
2 = 1, t11

1 = 0, t11
2 = 11 p12

2 = 1, t12
1 = −7, t12

2 = 11

v1 = 12 p21
1 = 1, t21

1 = 4, t21
2 = 0 p22

2 = 1, t22
1 = −7, t22

2 = 15

Notice that it is still a dominant strategy for all the players to report truthfully

since the low type of the first player gets the same utility regardless of the message

they send and since the high type finds it unprofitable to send a new message. Total
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difference in revenue is given by

∆R = 7η (v2 = l|µ1 > x)− 4 (1− η (v2 = l|µ1 > x))

Hence if η (v2 = l|µ1 > x) > 4
11

, there is a profitable way to increase revenue from

dominant strategy mechanism.

Lemma 1.10. If the optimal dominant strategy is rationalizable by a conjecture

η, than the belief of the low type of the first player can not be too high. Formally,

η
(
µ1 >

6
13

)
= 0

Proof. We will introduce for a low type two messages “µ1 ≤ x” and “µ1 > x”.

Compared to the optimal dominant strategy mechanism, we change only transfers

for the message µ1 > x.

x ∈ [0, 1) v2 = 11 v2 = 15

µ1 ≤ x p11
1 = 1, t11

1 = 4, t11
2 = 0 p12

2 = 1, t12
1 = −7, t12

2 = 15

µ1 > x p11
1 = p11

2 = 0, t11
1 = −8, t11

2 = 0 p12
2 = 1, t12

1 = −7 + 8x
1−x , t12

2 = 15

v1 = 12 p21
1 = 1, t21

1 = 4, t21
2 = 0 p22

2 = 1, t22
1 = −7, t22

2 = 15

First of all, note that truth-telling is still a dominant strategy for bidder 2.

Second, notice that the high type of the first player does not want to send a message

µ1 ≤ x as before, but also does not want to send message µ1 > x for any λ1. Third,

a low type wants to send a message µ1 > x if and only if

8µ1 + (1− µ1)

(
− 8x

1− x

)
> 0

which is equivalent to µ1 > x.
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Finally, let’s calculate the change in profits for the mechanism designer.

∆R = −12η
(
vl2|µ1 > x

)
+
(
1− η

(
vl2|µ1 > x

))( 8x

1− x

)

simplifying we get ∆R > 0 if

x >
3η
(
vl2|µ1 > x

)
2 + η

(
vl2|µ1 > x

)
The right hand side is increasing in η

(
vl2|µ1 > x

)
, so we can conclude that since

η
(
vl2|µ1 > x

)
≤ 4

11
from previous lemma, for any x such that x > 6

13
, the change in

revenue of the mechanism designer must be positive.

Thus, if a dominant strategy mechanism is rationalizable by some η, it has to

be the case that beliefs of a low type of player 1 are not too high. Otherwise, the

mechanism designer can profit from introducing bets for a low type of the first

player on the types of the second player.

Lemma 1.11. If the optimal dominant strategy is rationalizable by a conjecture

η, than the belief of the low type of the first player can not be too high. Formally,

η
(
µ1 ≤ 7

8

)
= 0

Proof. We now consider a very simple modification of the original mechanism that

is clearly increasing total revenue - we increase transfers t11
1 , t21

1 from 4 to 5.

v2 = 11 v2 = 15

v1 = 4 p11
1 = 1, t11

1 = 5, t11
2 = 0 p12

2 = 1, t12
1 = −7, t12

2 = 15

v1 = 12 p21
1 = 1, t21

1 = 5, t21
2 = 0 p22

2 = 1, t22
1 = −7, t22

2 = 15

Note that all the IC constraints are obviously satisfied. IR constraints of a

second player and of a high type of a first player are also obviously satisfied since

their outside options are equal to zero and seven respectively. Finally, IR constraint
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of the low type of the first player is satisfied if −µ1 + 7 (1− µ1) ≥ 0, which is

equivalent to µ1 ≤ 7
8

and, hence it must the case that µ1 >
7
8

for any conjecture η

that rationalizes the optimal dominant strategy mechanism.

Theorem 1.2. The optimal dominant strategy mechanism is not rationalizable by

any conjecture η of the mechanism designer.

Proof. By lemmas 10 and 11, we get that 7
8
< µ1 ≤ 6

13
, which is a contradiction.

1.6 Standard problem and monotonicity constraints.

In this section we briefly link regularity condition of Chung and Ely (2007) to

symmetry conditions of our paper.

Monotonicity constraints are binding in the sense of Chung and Ely if the fol-

lowing situation occurs. Suppose that in the model with zero outside options you

assume that in the optimal dominant strategy mechanism individual rationality

constraints are binding (satisfied with equality) only for the lowest types and in-

centive compatibility constraints are binding for two types that are closest to each

other (the higher type does not want to pretend to be a lower type), while all

other constraints are slack. With transfers derived from such an assumption derive

optimal probabilities. If it is the case that pi
(
vj+1
i , v−i

)
≤ pi

(
vji , v−i

)
then initial

assumption was incorrect since some other incentive constraints are either violated

or binding. Regularity conditions of Chung and Ely are necessary and sufficient to

guarantee that monotonicity constraints are not binding.

Let’s derive conditions when monotonicity constraints bind in the dominant

strategy mechanisms for a simple 2 players, 2 values standard case. Recall that for

the standard problem with zero outside opportunities, it is always the case that
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IC constraint of a high type and IR constraint of a low type bind with additional

monotonicity constraints. Thus, ignoring the monotonicity constraints, the optimal

mechanism designer revenue is equal to the maximum of

R = α
(
p11

1 v
l
1 + p11

2 v
l
2

)
+ β

(
p12

1 v
l
1 + p12

2 v
h
2 − p11

2

(
vh2 − vl2

))
+

+ γ
(
p21

1 v
h
1 − p11

1

(
vh1 − vl1

)
+ p21

2 v
l
2

)
+

+ δ
(
p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
+ p22

2 v
h
2 − p21

2

(
vh2 − vl2

))
Suppose without loss of generality that vl1 < vl2. Then, it is immediate to obtain

optimal probabilities for a low type of the first player and high type of the second

player: p12
2 = 1 and p12

1 = 0. Thus, there are only two potential cases where mono-

tonicity constraints could bind. One is when optimal probabilities from optimizing

R mechanism designer’s revenue ignoring monotonicity constraints are such that

p21
2 > p22

2 . And, the other is when p11
1 > p21

1 .

1. p21
2 > p22

2 . For this it must be the case that vh2 ≤ vh1 (otherwise, p22
2 = 1) and

γvl2 − δ
(
vh2 − vl2

)
≥ γvh1 . These two inequalities are inconsistent.

2. p11
1 > p21

1 . For this it must be the case αvl1− γ
(
vh1 − vl1

)
≥ αvl2− β

(
vh2 − vl2

)
,

αvl1 − γ
(
vh1 − vl1

)
> 0 (otherwise, p11

1 = 0) and γvh1 ≤ γvl2 − δ
(
vh2 − vl2

)
(otherwise, p21

1 = 1). In this case a monotonicity constraint binds, which

implies that at the actual optimum IC constraints for both the high type and

the low type of the first player bind when the second player is of the low value.

Therefore, there is asymmetry in binding constraints for a low type of the first

player since when the second player is low both IC and IR constraints are

binding, but when the second player is high only IR constraint is binding.
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1.7 Conclusion

In conclusion we would like to argue loosely that even for an environment with

outside options perturbed slightly around zero with several players and valuations it

is even harder to establish Bayesian and maxmin foundations. Suppose that outside

options are all coming from the set of {0, ε} with equal probability. Then, the larger

is the number of players and the number of possible valuations, the more probable

would be an event when for some two players and for valuations of each player

that are the closest to each other we get ai
(
vk+1
i , vmj , v−ij

)
− ai

(
vki , v

m
j , v−ij

)
> 0,

while ai
(
vk+1
i , vm+1

j , v−ij
)
− ai

(
vki , v

m+1
j , v−ij

)
< 0. Suppose also that for all these

valuations optimal probability of receiving the object for player i is zero. Then, IR

constraint is binding for player i when player i has valuation vk+1
i and player j has

valuation vmj or when player i has valuation vki and player j has valuation vm+1
j .

By the logic of our example such a situation can only be rationalized in a Bayesian

mechanism when type with valuation k + 1 of player i believes with certainty that

player j has a valuation m and type with valuation k of player i believes with

certainty that player j has a valuation m+ 1. However, because these believes are

so extreme and opposite to each other, a mechanism designer would benefit by

introducing Cremerer and McLean type of bets.

We conclude by stating that a predominance of using stronger solution concepts

like a dominant strategy equilibrium as a response to the relaxation of different

common knowledge assumptions may be somewhat premature. We argue that in a

generalized case of tighter individual rationality constraints it is sufficiently easy to

construct an example where no conjecture of a mechanism designer on the universal

type space would rationalize the use of dominant strategy mechanisms. In our next

chapter we take a common applied problem of a collusion threat and argue that
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even a stronger claim can be made - for a certain range of parameters dominant

strategy mechanisms will have no maxmin foundation.



Chapter 2

Maxmin Foundations of Dominant

Strategy Mechanisms under a

Collusion Threat.

40
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2.1 Introduction.

In this chapter, we will continue investigating whether there exists a “maxmin” and

Bayesian foundation for dominant strategy mechanisms in an auction environment

by considering a practical application of type-dependent outside options, namely

a possible threat of collusion between bidders. While a collusion threat generally

leads to tighter participation constraints and lower revenue for the auctioneer, a

possibility of collusion also enlarges the number of possible strategies of the bidders

since every type of every player has to decide whether to try to collude or not and

what type to report if a collusion attempt is unsuccessful.

It turns out that this feature of the environment will be essential in proving a

stronger result compared to previous chapter: for a certain range of primitives, it

will be possible to show that the maximal revenue achieved in an optimal dominant

strategy mechanism can be lower than the revenue achieved from some Bayesian

mechanism robust to all perturbations in beliefs and higher order beliefs. Therefore,

we will show that for a certain range of primitives no “maxmin” (rather than just

Bayesian) foundation exists. The intuition behind this result lies at the heart of

the difference between dominant strategy implementation and (Bayesian) equilib-

rium implementation - in a general case for a general dominant strategy mechanism

one has to check that a profile of strategies where the first player uses a dominant

strategy and the second player uses any strategy is preferred by the first player

to the profile where the first player uses any other strategy. However, a profile

where both strategies are not part of the equilibrium is never relevant to establish-

ing equilibrium profile under Bayesian Nash equilibrium. Thus, dominant strategy

equilibrium can be an extremely strict solution concept for revenue maximization,

especially when the number of strategies is increased, while the number of payoff
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types stays the same. As it is possible to show that no “maxmin” foundation exists

even for a simple case of two players with independent valuations, we will argue that

a move of the recent literature to stronger solution concepts as a way of avoiding

making any explicit or implicit assumptions on beliefs and higher order beliefs may

have been somewhat premature.

In this chapter, we will model the ability of a mechanism designer to resist collu-

sion formation through external rules in a reduced way. In particular, we will assume

that when two bidders collude, they do so through a second price knockout auc-

tion after which only one of bidders participates in the mechanism and receives the

object for the reservation price. We view, thus, the largeness of a reservation price

as a proxy to whether mechanism designer can fight collusion formation through

some explicit rules effectively. In this way we can abstract from all the usual mod-

elling difficulties such as shell-bidding that arise when collusion threat is real. The

use of second price knockout auctions also allows us to model the collusion game

as receiving fixed collusion type-dependent payoffs, which links this chapter to the

previous one.

2.2 Preliminaries

2.2.1 Timing

The timing of the game is the following.

1. An auctioneer proposes a direct mechanism pi (vi, v−i) and ti (vi, v−i) spec-

ifying probabilities of receiving an object and accompanying transfers as a

function of reports (vi, v−i) of payoff types.
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2. Every bidder decides independently whether to collude or not, voting ’yes’ or

’no’ to the collusion question. Votes of bidders are private information.

3. If both voters voted ’yes’ they play a second-price knockout auction among

themselves with the winner getting an object from the auctioneer for a reser-

vation price r.1

4. If one of the voters voted ’no’, bidders update their beliefs about other bidder’s

type and participate in the mechanism.

2.2.2 Collusion payoffs

Suppose we have the following values vl1 < vl2 < vh1 < vh2 and distribution of those

values

vl2 vh2

vl1 α β

vh1 γ δ

If some types of both players want to collude, we model their payoffs in the

following way - the two players play second price knockout auction for the right

to get an object at a reservation price r.2 One can think of this mechanism as if

there is a mediator who asks players their valuations, uses second-price auction to

determine payoffs and pays z1 and z2 in transfers for the first and the second players

in such a way that it balances the budget ex ante. Under these assumptions the

payoffs under collusion Ci (vi, v−i) can be characterized in the following way

1The auctioneer is not allowed to choose r as, otherwise, he would chose r to be
infinity.

2The underlying assumption is that the mechanism that a player face when
entering alone is different from the mechanism that a player face when two players
participate in the mechanism
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vl2 vh2

vl1 z1, z2 + vl2 −max{vl1 − r, 0} − r z1, z2 + vh2 −max{vl1 − r, 0} − r

vh1 z1 + vh1 −max{vl2 − r, 0} − r, z2 z1, z2 + vh2 −max{vh1 − r, 0} − r

Where z1 and z2 are such that budget is balanced ex-ante3 and are determined

by the following equation

z1 + z2 = (α + β)max{vl1 − r, 0}+ γmax{vl2 − r, 0}+ δmax{vh1 − r, 0} =

= (α + β) vl1 + γvl2 + δvh1 − r (2.1)

for r ≤ vl1, an assumption we will maintain throughout the rest of the paper.

2.2.3 Mechanisms

In this paper we consider only mechanisms that depend on valuation reports. This

class is clearly sufficient for dominant strategy implementation due to revelation

principle and the fact that collusion game is essentially modeled as fixed outside

options of players. However, on type spaces where any infinite hierarchy of beliefs

and higher-order beliefs is possible restricting mechanisms to this class may be with

loss of generality when finding maximal possible revenue. Our purpose, then, is to

establish conditions under which no maxmin foundation exists. Since if

Πdsm < sup
Γ∈ψ

inf
η∈M(υ)

Πη (Γ)

3If we want to balance budget ex-post, we lose the dominant strategy equilibrium
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for some (narrow) class Ψ, then for a broader class of mechanisms Φ such that

Ψ ⊂ Φ, it will still be true that

Πdsm < sup
Γ∈Φ

inf
η∈M(υ

Πη (Γ)

Therefore, rather than reducing the type space and trying to find conditions

under which maxmin foundation exists as we did in previous chapter, we reduce the

class of possible mechanisms and find conditions under which maxmin foundation

does not exist.4

In this paper we also assume that both players should get at least zero payoff,

which can be modeled as an inclusion of message {∅} to the set of messages that

provides zero transfer from the mechanism designer and zero probability of receiving

a good.

2.2.4 Strategies

Given simple mechanisms of section 2.3. every type of every player has to de-

cide whether to vote ’yes’ or ’no’ to the collusion question at the first stage and

which type to report if no collusion is formed at the second stage. Throughout this

paper we assume that vote of a bidder to the collusion question is private informa-

tion of that bidder.5Therefore, a strategy for every player can be summarized by(
V l
imil, V

h
i mih

)
, where messages mil,mih ∈ {l, h}, V l

i , V
h
i ∈ {N, Y }are sent by the

low and high types of player i.

4A standard description of (universal) type space is given in section 2.2. of
Chapter 1

5The assumption that collusion votes are private information is not important
to the analysis since it can at most change beliefs of players about each other type.
However, dominant strategy mechanisms and Bayesian mechanisms that are robust
to all possible beliefs and higher-order beliefs do not use this information.
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We say that a voting profile
(
V l

1V
h

1 , V
l

2V
h

2

)
is truthfully implemented in domi-

nant strategies (Bayesian implemented) if strategies
(
V l

1 l, V
h

1 h
)

of the first player

and
(
V l

2 l, V
h

2 h
)

of a second player are equilibrium strategies under dominant strat-

egy mechanism (Bayesian incentive compatible mechanism), where V l,h
i ∈ {N, Y }-

a vote of ’yes’ or ’no’ to the collusion question.

We say that a voting profile
(
V l

1V
h

1 , V
l

2V
h

2

)
is optimal in dominant strategies

mechanism (Bayesian incentive compatible mechanism) when revenue is maximized

implementing such a profile under a dominant strategy (Bayesian equilibrium) so-

lution concept.

2.2.5 Equilibrium concepts

Dominant strategy equilibrium

A profile of
(
V l

1 l, V
h

1 h
)

and
(
V l

2 l, V
h

2 h
)

is a truthful equilibrium in dominant

strategies if strategy of every player is a best response to any possible alternative

strategy of the other player. Hence equilibrium in dominant strategies is equivalent

to satisfying the following collusion constraints, individual rationality constraints

and incentive compatibility constraints.

1. Collusion constraints. For every type of the first or second player who

voted ’no’ to the collusion question, it must be the case that the mechanism

payoff is at least as high as the one this player would have got in collusion.

This must be the case regardless of whether the other player actually voted

’yes’ since for a dominant strategy equilibrium voting ’no’ must also be a best

response to a strategy of voting ’yes’ of the other player.6 Since these votes are

6One could argue that under a less strict condition of dominance after iterated
deletion of dominant strategies not all strategies can be relevant. We turn to this
question in the end of the paper.
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private information the mechanism can not depend directly on them. Hence,

we derive the following condition.

pi
(
vmi , v

k
−i
)
vmi − ti

(
vmi , v

k
−i
)
≥ Ci

(
vmi , v

k
−i
)

(2.2)

for every i, k and m such that V m
i = {N}.

2. Individual Rationality constraints.

pi
(
vmi , v

k
−i
)
vmi − ti

(
vmi , v

k
−i
)
≥ 0 (2.3)

for every m, k, and i (again since a player −i can always vote ’no’, it must

be the case that under truth telling players’ payoff is larger than zero for any

reports of both players).

3. Incentive compatibility constraints. When a players votes ’no’ to the

collusion question he must reveal his type correctly

pi
(
vmi , v

k
−i
)
vmi − ti

(
vmi , v

k
−i
)
≥ pi

(
vni , v

k
−i
)
vmi − ti

(
vni , v

k
−i
)

(2.4)

for all m, k and n such that V m
i ∈ {N}. And when he votes ’yes’ to the

collusion question he must receive in collusion more than he could have got

by voting ’no’ and reporting a different type

Ci
(
vmi , v

k
−i
)
≥ pi

(
vni , v

k
−i
)
vmi − ti

(
vni , v

k
−i
)

for all m, k and n such that V m
i ∈ {Y }.7

7This condition will almost always be satisfied as it only limits the upper bound
for some transfers that a mechanism designer receives.
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Bayesian equilibrium

We will say that a profile of
(
V l

1 l, V
h

1 h
)

and
(
V l

2 l, V
h

2 h
)

is a truthful Bayesian

incentive compatible equilibrium of a mechanism that depends only on reports

of valuations of players with first-oder beliefs (µi, λi), where µi, (λi) is a belief of

a low (high) type of a player i that the player −i is of a low type, if it satisfies

the following collusion constraints, individual rationality constraints and incentive

compatibility constraints.8

1. Collusion constraints. For every type of the first or second player who

votes ’no’ to the collusion question, it must be the case that the payoff in the

mechanism is at least as high as the one this player would get in collusion

conditional on other player voting ’yes’. So, taking a low type of player i for

example

µi
(
pi
(
vli, v

l
−i
)
vli − ti

(
vli, v

l
−i
))

+ (1− µi)
(
pi
(
vli, v

h
−i
)
vli − ti

(
vli, v

h
−i
))
≥(2.5)

≥ µiCi
(
vli, v

l
−i
)

+ (1− µi)Ci
(
vli, v

h
−i
)

for every i, if V l
i = {N}, V l

−i = {Y } and V h
−i = {Y }. Or

pi
(
vli, v

k
−i
)
vli − ti

(
vli, v

k
−i
)
≥ Ci

(
vli, v

k
−i
)

(2.6)

for every i, if V k
−i = {Y } and V −k−i = {N}.

8Rigorously speaking, there is no reason why we should be interested only in
truthful equilibria under Bayesian mechanisms as no revelation argument can be
applied for using payoff-dependent mechanisms when type spaces can be arbitrarily
complicated. For our purposes though, it’s sufficient to find an equilibrium that will
be robust to perturbations in beliefs and higher order beliefs and will be better than
dominant strategy equilibria. As it is convenient to consider truthful equilibria we
will settle on doing so.
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2. Individual Rationality constraints. These constraints are only relevant

for the types participating in the mechanism. Bayesian updating happens only

when a player votes ’yes’ and still participates in the mechanism. This means

that the other player voted ’no’ and, hence, it must be that (I will describe

only the low type with exactly same conditions for a high type)

µi
(
pi
(
vli, v

l
−i
)
vli − ti

(
vli, v

l
−i
))

+ (1− µi)
(
pi
(
vli, v

h
−i
)
vli − ti

(
vli, v

h
−i
))
≥ 0

(2.7)

for every i, if V l
i = {N} or if V l

i = {Y } and V l
−i, V

h
−i = {N}. And

pi
(
vli, v

k
−i
)
vli − ti

(
vli, v

k
−i
)
≥ 0 (2.8)

for every i, if V l
i = {Y } and V k

−i = {N}, V −k−i = {Y }.

3. Incentive compatibility constraints. Again a player facing the mechanism

must find it optimal to reveal his type correctly. For the low type of player i,

we get

µi
(
pi
(
vli, v

l
−i
)
vli − ti

(
vli, v

l
−i
))

+ (1− µi)
(
pi
(
vli, v

h
−i
)
vli − ti

(
vli, v

h
−i
))
≥

µi
(
pi
(
vhi , v

l
−i
)
vli − ti

(
vhi , v

l
−i
))

+ (1− µi)
(
pi
(
vhi , v

h
−i
)
vli − ti

(
vhi , v

h
−i
))

(2.9)

for every i, if V l
i = {N} or if V l

i = {Y } and V l
−i, V

h
−i = {N}. And

pi
(
vli, v

k
−i
)
vli − ti

(
vli, v

k
−i
)
≥ pi

(
vhi , v

k
−i
)
vli − ti

(
vhi , v

k
−i
)

(2.10)

for every i, if V l
i = {Y } and V k

−i = {N}, V −k−i = {Y }. While a player reaching

a collusion outcome must find it optimal not to vote ’no’ and misreport one’s
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type. For example, for a low type

µiCi
(
vli, v

l
−i
)

+ (1− µi)Ci
(
vli, v

h
−i
)
≥

µi
(
pi
(
vhi , v

l
−i
)
vli − ti

(
vhi , v

l
−i
))

+ (1− µi)
(
pi
(
vhi , v

h
−i
)
vli − ti

(
vhi , v

h
−i
))

(2.11)

if V l
i , V

l
−i, V

h
−i = {Y }. And if some type of the other player voter ’no’ the

condition becomes9

µiCi
(
vli, v

l
−i
)

+ (1− µi)
(
pi
(
vli, v

h
−i
)
vli − ti

(
vli, v

h
−i
))
≥

µi
(
pi
(
vhi , v

l
−i
)
vli − ti

(
vhi , v

l
−i
))

+ (1− µi)
(
pi
(
vhi , v

h
−i
)
vli − ti

(
vhi , v

h
−i
))

(2.12)

2.3 Maxmin foundation of a dominant strategy

mechanism

In this section, we will consider different dominant strategy mechanisms that a

mechanism designer could offer by changing an implemented voting profile. We will

also compare some of them to their respective counterpart mechanisms implemented

in a Bayesian equilibrium. Rather than establishing the optimal dominant strategy

mechanism (or even best maxmin mechanism) our purpose will be to investigate

whether there exists a maxmin foundation for dominant strategy mechanism. Thus,

to prove that under some conditions no maxmin foundation exists it will be sufficient

to show that all possibly optimal dominant strategy mechanisms are either not

optimal in dominant strategy mechanisms class or achieve less revenue than some

Bayesian mechanisms for all beliefs and higher order beliefs. The condition that we

9Again, constraints (2.11) and (2.12) will almost always be slack
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get under which no maxmin foundation exists is fairly intuitive and requires that

collusion transfers z1 and z2 should not be too far apart from each other, and that

the probability of an event where collusion is formed in a Bayesian mechanism is

not too large.

Our analysis will consist of the following five steps.

First, we will consider NY −NN , Y N−NN, NN−NY , NN−Y N , NN−NN

voting profiles implemented in dominant strategies and argue that they are always

inferior to NN − Y Y and Y Y − NN voting profiles implemented in dominant

strategies. Intuitively, it is so since Y Y −NN andNN−Y Y voting profiles eliminate

collusion constraints on the type who voted N for the player with NY voting profile

without changing instances of participation in the mechanism.

Second, we will argue that NY −NY , NY −Y N , Y N −NY , Y N −Y N voting

profiles, when every player votes “yes” to the collusion question exactly once, are

inferior in the maxmin sense to their corresponding voting profiles implemented

through Bayesian mechanisms.

Third, we will find optimal NN −Y Y and Y Y −NN implemented in dominant

strategies.

Fourth, we will look into NY − Y Y , Y N − Y Y, Y Y −NY , Y Y − Y N , Y Y −

Y Y voting profiles implemented in dominant strategies and find when they are

suboptimal.

Finally, we show that for some range of parameters voting profiles NY − NY ,

NY −Y N , Y N−NY , Y N−Y N implemented through a Bayesian mechanism will

be better than NN − Y Y and Y Y −NN voting profiles implemented in dominant

strategies for any beliefs and higher-order beliefs.
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Lemma 2.1. NN − NY, NN − Y N, NY − NN, Y N − NN , NN − NN voting

profiles implemented in dominant strategies are never strictly optimal.

Proof. To prove this fact it’s sufficient to point out that all the constraints that

have to be satisfied to implement NN − Y Y voting profile in dominant strategies

also have to be satisfied for implementing NN −NY , NN − Y N and NN −NN

voting profiles in dominant strategies. This includes collusion constraints for the

low and high type of the first player

p11
1 v

l
1 − t11

1 ≥ z1 (2.13)

p12
1 v

l
1 − t12

1 ≥ z1 (2.14)

p21
1 v

h
1 − t21

1 ≥ z1 + vh1 − vl2 (2.15)

p22
1 v

h
1 − t22

1 ≥ z1 (2.16)

incentive compatibility constraints for the first and second player

p1j
1 v

l
1 − t

1j
1 ≥ p2j

1 v
l
1 − t

2j
1 (2.17)

p2j
1 v

h
1 − t

2j
1 ≥ p1j

1 v
h
1 − t

1j
1 (2.18)

pi12 v
l
2 − ti12 ≥ pi22 v

l
2 − ti22 (2.19)

pi22 v
h
2 − ti22 ≥ pi12 v

h
2 − ti12 (2.20)

for j, i = 1, 2. Moreover, all individual rationality constraints for the second player

have to be satisfied as well with even tighter bounds on those types of the second

player that vote N to the collusion question.



CHAPTER 2. MAXMIN FOUNDATIONS FOR D.S.M 53

Similarly, all the constraints that have to be satisfied in implementing Y Y −

NN voting structure in dominant strategies have to be satisfied in implementing

Y N − NN and NY − NN voting profiles in dominant strategies. Hence, none of

the voting profiles in the title of the lemma can be strictly optimal.

While we have shown that the above dominant strategy mechanisms are never

optimal, we would also avoid using Bayesian mechanisms that implement such

voting profiles in establishing whether there is a maxmin foundation for other dom-

inant strategy mechanisms making it harder to show that under certain conditions

no maxmin foundation exists. The reason why we avoid using such Bayesian mech-

anisms is because they do not satisfy trembling hand refinement. Take for example

a voting profile NN−NN . In a Bayesian mechanism that implements such a profile

we could ignore all collusion constraints since nobody is voting yes to the collusion

question, but if some type of some player starts voting with very small probability

Y instead of N , it is, first, not decreasing the payoff of that player, and, second,

the other player immediately wants to switch from voting N to voting Y .

We next consider voting profiles that result in exactly one Y vote.

Lemma 2.2. Dominant strategy mechanisms that implement NY −NY , NY −Y N ,

Y N −NY , Y N − Y N voting profiles never have a maxmin foundation.

Proof. In this proof we will consider NY −NY voting profile dealing with all other

profiles in the appendix 1. Let’s write down all the constraints of the first player for

the dominant strategy implementation. According to this voting profile collusion

is formed when both players are high types and all other pairs participate in the

mechanism. The relevant constraints for this voting profile for the first player are

the following. The low type of a player 1 must get a payoff at least as high as in
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collusion.

p11
1 v

l
1 − t11

1 ≥ z1 (2.21)

p12
1 v

l
1 − t12

1 ≥ z1 (2.22)

Individual rationality constraint must be satisfied for a high type

p21
1 v

h
1 − t21

1 ≥ 0 (2.23)

and incentive compatibility constraints for a low type and a high type must satisfy

the following conditions

p21
1 v

h
1 − t21

1 ≥ p11
1 v

h
1 − t11

1 (2.24)

p11
1 v

l
1 − t11

1 ≥ p21
1 v

l
1 − t11

1 (2.25)

Also, somewhat less obvious, we also have to ensure that payoff in collusion out-

comes for a high type of player 1 must be bigger than payoff he would have got by

participating in a mechanism as a low type, since we are seeking implementation

in dominant strategies and player 2 may always vote Y to the collusion question.

Thus, we have to ensure that

z1 + vh1 − vl2 ≥ p11
1 v

h
1 − t11

1 (2.26)

z1 ≥ p12
1 v

h
1 − t12

1 (2.27)

Observing the above constraints, we could notice that (2.23) follows from (2.24)

and (2.21). Also, from (2.27) and (2.22), it follows that p12
1 = 0 and t12

1 = −z1. As

is in the standard problem with zero individual rationality constraints, we guess

that (2.21) and (2.24) are binding and we will guess that (2.25) and (2.26) are



CHAPTER 2. MAXMIN FOUNDATIONS FOR D.S.M 55

satisfied in the optimum. Then, we can find optimal transfers t11
1 = p11

1 v
l
1 − z1,

t12
1 = p12

1 v
l
1 − z1 = −z1, t21

1 = p21
1 v

h
1 − p11

1

(
vh1 − vl1

)
+ z1.

For the second player we get similar collusion constraints

p11
2 v

l
2 − t11

2 ≥ z2 (2.28)

p21
2 v

l
2 − t21

2 ≥ z2 (2.29)

individual rationality constraints

p12
2 v

h
2 − t12

2 ≥ 0 (2.30)

and IC constraints10

p12
2 v

h
2 − t12

2 ≥ p11
2 v

h
2 − t11

2 (2.31)

p11
2 v

l
2 − t11

2 ≥ p12
2 v

l
2 − t12

2 (2.32)

z2 + vh2 − vl1 ≥ p11
2 v

h
2 − t11

2 (2.33)

z2 + vh2 − vh1 ≥ p21
2 v

h
2 − t21

2 (2.34)

with similar optimal transfers t11
2 = p11

2 v
l
2−z2, t21

2 = −z2, t12
2 = p12

2 v
h
2−p11

2

(
vh2 − vl2

)
−

z2 with (2.33) and (2.34) being slack at the optimum. Then, taking together the

optimal transfers for the first and the second player, we conclude that at the opti-

mum it must be the case that p12
2 = p21

1 = 1. Also, p11
2 = 1 if αvl2 − β

(
vh2 − vl2

)
>

αvl1 − γ
(
vh1 − vl1

)
and αvl2 − β

(
vh2 − vl2

)
> 0, p11

1 = 1 if αvl2 − β
(
vh2 − vl2

)
<

αvl1 − γ
(
vh1 − vl1

)
and αvl1 − γ

(
vh1 − vl1

)
> 0 and otherwise p11

2 = p11
1 = 0. We

10We omit the IC constraints that high type find it optimal to vote Y rather
than voting N and participating as a low type as these constraints will be satisfied.



CHAPTER 2. MAXMIN FOUNDATIONS FOR D.S.M 56

conclude that the maximal revenue in implementing NY −NY in dominant strate-

gies is equal to

ΠNY−NY
d.s.m = max

{
αvl2 − β

(
vh2 − vl2

)
, αvl1 − γ

(
vh1 − vl1

)
, 0
}

+ (2.35)

+ βvh2 + γvh1 + δr − (α + β + γ) (z1 + z2)

Now let’s consider the same voting profile implemented through a Bayesian

mechanism. One of the important differences between a dominant strategy imple-

mentation and Bayesian implementation is that under Bayesian implementation

a player thinking whether to collude or not only considers events when the other

player would collude. This implies that collusion constraints are only relevant when

one player votes “yes” and the other player votes “no” to the collusion question.

In the following analysis we will find in a class of valuations-dependent mech-

anisms that implement NY − NY voting profile, one that solves the supΓ infµ Π

problem on the universal type spaces. We could think about this problem in the

following way. Suppose for any mechanism that a mechanism designer chooses, na-

ture picks the worst possible beliefs and higher-order beliefs. What mechanism will

then be chosen by a mechanism designer. Generally solving such kind of problems

may be extremely hard, but since we will reduce the class of possible mechanisms

to simple valuations-based mechanisms and since only two first-order beliefs will be

relevant for the following analysis, it will be easy to find sufficient conditions when

no maxmin foundation exists.

Following definitions in section 2−4−2, implementing NY −NY in a Bayesian

equilibrium require that for low and high types of the first player with any first-order
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beliefs µ1 and λ1 the following constraints are satisfied.

p12
1 v

l
1 − t12

1 ≥ z1 (2.36)

µ1

(
p11

1 v
l
1 − t11

1

)
+ (1− µ1)

(
p12

1 v
l
1 − t12

1

)
≥ 0 (2.37)

p21
1 v

h
1 − t21

1 ≥ 0 (2.38)

p21
1 v

h
1 − t21

1 ≥ p11
1 v

h
1 − t11

1 (2.39)

However, in case when µ1 = 1, i.e. when the first player beliefs the second player

to be the low type with certainty, there is an additional IC constraint11

p11
1 v

l
1 − t11

1 ≥ p21
1 v

l
1 − t21

1 (2.40)

There is also an additional constraint for the high type of a first player. Since this

type can vote N rather than Y and misreport his type, it must be the case that

the following constraint is satisfied12

λ1

(
p21

1 v
h
1 − t21

1

)
+ (1− λ1) z1 ≥ λ1

(
p11

1 v
h
1 − t11

1

)
+ (1− λ1)

(
p12

1 v
h
1 − t12

1

)
(2.41)

It is obvious from (2.36)-(2.41) that the constraints are tightest for µ1 = 1 and λ1 =

0 with the same type of constraints binding as in the dominant strategy implemen-

tation and the optimal transfers: t11
1 = p11

1 v
l
1, t

12
1 = −z1, t

21
1 = p21

1 v
h
1 −p11

1

(
vh1 − vl1

)
.

Notice, first of all, that these transfers satisfy the above set of constraints for any

11If µ1 6= 1, then setting t22
1 = −∞ always satisfy IC constraint of a low type for

non-degenerate distribution of types.
12The additional IC constraints are not necessarily satisfied if we ignore them and

solve for optimal transfers as functions of probabilities, but after we find optimal
probabilities we make sure that these IC constraints are indeed satisfied.
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λ1, µ1 and, second, that t11
1 and t21

1 are bigger than their corresponding optimal

transfers in dominant strategy implementation by z1. This is so since the low type

of the second player votes N to the collusion question, hence, we don’t have to

provide additional payoff for the low type of the first player to make him vote N

if the second player is also low. That implies that t11
1 is bigger than its optimal

counterpart in the dominant strategy implementation by z1. Moreover, because of

IC constraint (2.39), t21
1 is also bigger by z1.

For the second player we have similar constraints:

p21
2 v

l
2 − t21

2 ≥ z2 (2.42)

µ2

(
p11

2 v
l
2 − t11

2

)
+ (1− µ2)

(
p21

2 v
l
2 − t21

2

)
≥ 0 (2.43)

p12
2 v

h
2 − t12

2 ≥ 0 (2.44)

p12
2 v

h
2 − t12

2 ≥ p11
2 v

h
2 − t11

2 (2.45)

For µ2 = 1, i.e. for the case when the low type of the second player believes the

first player to be the low type with certainty, there is an additional IC constraint

p11
2 v

l
2 − t11

2 ≥ p12
2 v

l
2 − t12

2 (2.46)

For the high type there is also an additional IC constraint

λ2

(
p12

2 v
h
2 − t12

2

)
+(1− λ2)

(
z2 + vh2 − vh1

)
≥ λ2

(
p11

2 v
h
2 − t11

2

)
+(1− λ2)

(
p21

2 v
h
2 − t21

2

)
All the same considerations as for the first player can be applied again and for

worst possible beliefs of µ2 = 1 and λ2 = 0, we get the tightest set of constraints
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that results in t11
2 = p11

2 v
l
2, t

21
2 = p21

2 v
l
2− z2, t

12
2 = p12

2 v
h
2 − p11

2

(
vh2 − vl2

)
. Hence total

revenue is equal to

Π = p11
1

(
αvl1 − γ

(
vh1 − vl1

))
+ p11

2

(
αvl2 − β

(
vh2 − vl2

))
+

+ βp12
1 v

l
1 + βp12

2 v
h
2 + γp21

1 v
h
1 + γp21

2 v
h
2 − βz1 − γz2 + δr

and it must be the case that p21
1 = 1, p12

2 = 1 so additional IC constraints are

satisfied. The total revenue is equal to

ΠNY−NY
B.m. = max

{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
}

+β
(
vh2 − z1

)
+γ
(
vh1 − z2

)
+δr

Thus, since ΠNY−NY
B.m. is bigger than ΠNY−NY

d.s.m. by (α + γ) z1+(α + β) z2, which is

strictly greater than zero for non-degenerate distribution of types, it becomes clear

that a dominant strategy mechanism that implements NY − NY voting profile

never has a maxmin foundation.

For the remaining voting profiles (NY −Y N, Y N −NY, Y N −Y N), the proof

is completely analogous. We find optimal Bayesian mechanisms in the Appendix

1.

This lemma deserves some discussion as it will be one of the driving forces of

the main result. When comparing IC, IR and collusion constraints of the above

dominant strategy mechanism to those of a Bayesian mechanism for worst possible

beliefs (µ1 = 1, λ1 = 0), one could notice that one major difference is that for

implementation in dominant strategies we require

p11
1 v

l
1 − t11

1 ≥ z1
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while for the worst case beliefs of µ1 = 1, we only require

p11
1 v

l
1 − t11

1 ≥ 0

This wedge is coming from the idea that in Bayesian implementation votes Y or

N to the collusion question are only important if the other player also voted Y .

Therefore, in Bayesian implementation in order to make a player vote N we need to

provide him collusion payoffs only in situations when the other player voted Y . In

the dominant strategy implementation, however, we can never exclude the strategy

of other player voting Y from the set of allowed strategies. Moreover, as I show

in conclusion, even when we adopt a stricter notion of iterated deletion of strictly

dominated strategies, the strategy of the other player voting Y can not be excluded.

In the next lemma we introduce possible candidates to optimal dominant strat-

egy mechanisms and, thus, to those dominant strategy mechanisms that might have

a maxmin foundation.

Lemma 2.3. The highest revenue from implementing an NN − Y Y voting profile

in a dominant strategy mechanism is equal to

ΠNN−Y Y
dsm = (β + δ) vh2 + γvl2 +

(
vh1 − vl2
vh1 − vl1

)
max

{
αvl1, αv

l
2 − β

(
vh2 − vl2

)}
+

+

(
vl2 − vl1
vh1 − vl1

)
max

{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
}
− z1

while the highest revenue from implementing a Y Y − NN in a dominant strategy

mechanism is equal to

ΠY Y−NN
dsm = (α + β) vl1 + (γ + δ) vh1 − z2



CHAPTER 2. MAXMIN FOUNDATIONS FOR D.S.M 61

Proof. Recall the matrix of collusion payoffs for r ≤ vl1

vl2 vh2

vl1 z1, z2 + vl2 − vl1 z1, z2 + vh2 − vl1

vh1 z1 + vh1 − vl2, z2 z1, z2 + vh2 − vh1

Hence, using notation of Chapter 1, we have a21
1 − a11

1 = vh1 − vl2, a22
1 − a12

1 = 0,

aij2 = 0 for implementing NN−Y Y profile and a12
2 −a11

2 = vh2−vl2, a22
2 −a21

2 = vh2−vh1 ,

aij1 = 0 for Y Y−NN voting profile. In what follows we also incorporate the results of

lemma 2 of Chapter 1 that optimal probabilities p21
1 , p12

2 are such that p21
1 = p12

2 = 1.

NN-YY voting profile

When a mechanism designer picks the first player to give him collusion payoffs,

we know that since p12
1 = 0 and since 0 = a22

1 − a12
1 ≤ p12

1

(
vh1 − vl1

)
by lemma 1 of

Chapter 1, we can say that transfers of the first player are equal to

t12
1 = p12

1 v
l
1 − a12

1 = −z1

t22
1 = p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
− a22

1 = p22
1 v

h
1 − z1

Moreover, since a21
1 − a11

1 = vh1 − vl2 < p21
1

(
vh1 − vl1

)
= vh1 − vl1, we can pin down

transfers to the low type of the first player when the second player is low

t11
1 = p11

1 v
l
1 − a11

1 = p11
1 v

l
1 − z1

Also, since a12
2 = a11

2 = a22
2 = a21

2 = 0, we can immediately pin down all transfers

from the second player:

t11
2 = p11

2 v
l
2

t21
2 = p21

2 v
l
2 = 0
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t12
2 = p12

2 v
h
2 − p11

2

(
vh2 − vl2

)
= vh2 − p11

2

(
vh2 − vl2

)
t22
2 = p22

2 v
h
2

It follows immediately that optimal probabilities when both players are high

types is determined by p22
2 = 1, since δvh2 > δvh1 . As for t21

1 , the exact form of

transfers will depend on whether a21
1 − a11

1 = vh1 − vl2 is bigger than p11
1

(
vh1 − vl1

)
. If

this is the case, then by lemma 1 of Chapter 1

t21
1 = vh1 − a21

1 = vl2 − z1

otherwise,

t21
1 = vh1 − p11

1

(
vh1 − vl1

)
− a11

1 = vh1 − p11
1

(
vh1 − vl1

)
− z1

Thus, for p11
1 <

vh1−vl2
vh1−vl1

, which is always smaller than 1, the coefficient before p11
1

is equal to αvl1, while and for p11
1 >

vh1−vl2
vh1−vl1

, the coefficient before p11
1 is equal to

αvl1 − γ
(
vh1 − vl1

)
. The coefficient for p11

2 is always equal to αvl2 − β
(
vh2 − vl2

)
.

Summarizing the above, we have several cases:

a) If αvl1 − γ
(
vh1 − vl1

)
> αvl2 − β

(
vh2 − vl2

)
and αvl1 − γ

(
vh1 − vl1

)
> 0, then

p11
1 = 1. And total revenue is equal to

ΠNN−Y Y
dsm = α

(
vl1 − z1

)
+ β

(
−z1 + vh2

)
+ γ

(
vl1 − z1

)
+ δ

(
vh2 − z1

)
=

= (β + δ) vh2 + (γ + α) vl1 − z1
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b) If 0 ≥ αvl1 − γ
(
vh1 − vl1

)
and 0 ≥ αvl2 − β

(
vh2 − vl2

)
, then p11

1 =
vh1−vl2
vh1−vl1

, p11
2 = 0

ΠNN−Y Y
dsm = α

(
vh1 − vl2
vh1 − vl1

vl1 − z1

)
+ β

(
−z1 + vh2

)
+ γ

(
vl2 − z1

)
+ δ

(
vh2 − z1

)
=

= (β + δ) vh2 + γvl2 + α
vh1 − vl2
vh1 − vl1

vl1 − z1

c) If αvl1 − γ
(
vh1 − vl1

)
< αvl2 − β

(
vh2 − vl2

)
< αvl1 and αvl2 − β

(
vh2 − vl2

)
> 0, then

p11
1 =

vh1−vl2
vh1−vl1

, p11
2 =

vl2−vl1
vh1−vl1

ΠNN−Y Y
dsm = α

(
vh1 − vl2
vh1 − vl1

vl1 +
vl2 − vl1
vh1 − vl1

vl2 − z1

)
+ β

(
−z1 + vh2 −

vl2 − vl1
vh1 − vl1

(
vh2 − vl2

))
+

+ γ
(
vl2 − z1

)
+ δ

(
vh2 − z1

)
= α

(
vh1 − vl2
vh1 − vl1

vl1 +
vl2 − vl1
vh1 − vl1

vl2

)
+

+ (β + δ) vh2 + β

(
− v

l
2 − vl1
vh1 − vl1

(
vh2 − vl2

))
+ γvl2 − z1

d) If αvl1 < αvl2 − β
(
vh2 − vl2

)
and αvl2 − β

(
vh2 − vl2

)
> 0, then p11

1 = 0, p11
2 = 1

ΠNN−Y Y
dsm = α

(
vl2 − z1

)
+β
(
vl2 − z1

)
+γ
(
vl2 − z1

)
+δ
(
vh2 − z1

)
= (α + β + γ) vl2+δvh2−z1

which together gives us the formula in the statement of the lemma

YY-NN voting profile

Suppose now the mechanism designer “buys out” the second player. Then since

aij1 = 0 we have the standard case and using lemma 1 and lemma 2 of Chapter 1,

we immediately pin down transfers for the first player:

t11
1 = p11

1 v
l
1

t21
1 = p21

1 v
h
1 − p11

1

(
vh1 − vl1

)
= vh1 − p11

1

(
vh1 − vl1

)
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t12
1 = p12

1 v
l
1 = 0

t22
1 = p22

1 v
h
1

Since a12
2 −a11

2 = vh2−vl2 ≥ p12
2

(
vh2 − vl2

)
and a22

2 −a21
2 = vh2−vh1 ≥ p21

2

(
vh2 − vl2

)
=

0 by using lemma 1 and 2 of Chapter 1, the transfers of the second player are

expressed by

t11
2 = p11

2 v
l
2 + p12

2

(
vh2 − vl2

)
− a12

2 = p11
2 v

l
2 + vl1 − vl2 − z2

t12
2 = p12

2 v
h
2 − a12

2 = vl1 − z2

t22
2 = p22

2 v
h
2 − a22

2 = p22
2 v

h
2 − vh2 + vh1 − z2

As for t21
2 , it formula depends on whether a22

2 − a21
2 = vh2 − vh1 is bigger than

p22
2

(
vh2 − vl2

)
. If this is the case, then

t21
2 = p22

2

(
vh2 − vl2

)
− a22

2 = p22
2

(
vh2 − vl2

)
− vh2 + vh1 − z2

and otherwise,

t21
2 = p21

2 v
l
2 − a21

2 = −z2

Solving for optimal probabilities, we note, first of all, that p11
2 = 1 since αvl2 >

αvl1. Secondly, the coefficient before p22
1 , which is equal to δvh1 , is always smaller

than the minimal coefficient before p22
2 , which is equal to δvh2 . Hence, p22

2 = 1. Thus,

total revenue in this case is equal to

ΠY Y−NN
dsm = α

(
vl1 − z2

)
+ β

(
vl1 − z2

)
+ γ

(
vh1 − z2

)
+ δ

(
vh1 − z2

)
=

= (α + β) vl1 + (γ + δ) vh1 − z2
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Implementing these voting profiles in dominant strategies may be a best thing

for a mechanism designer who is anxious about possible beliefs and higher-order

beliefs of the players. Moreover, it can be shown by Theorem 1 of Chapter 1 that

there exist a maxmin foundation if the set of voting profiles possible for implemen-

tation is limited by {NN − Y Y, Y Y −NN} (in other words there exists such a

conjecture of a mechanism designer on the universal type space that under Bayesian

implementation provides revenue at most equal to that of dominant strategy im-

plementation). However, since our purpose is to find conditions under which no

maxmin foundation exists, we omit this result.

We now turn to the remaining voting profiles of dominant strategy implemen-

tation.

Lemma 2.4. NY −Y Y , Y Y −NY , Y Y −Y Y voting profiles are either not optimal

dominant strategy mechanisms or do not have a maxmin foundation. Voting profiles

YN-YY, YY-YN are either not optimal dominant strategy mechanisms or do not

have a maxmin foundation for a range of parameters where (α + β) vl1 +γvl2 +δvh1 <

vl2 .

Proof. First of all, notice that the revenue from implementing NN − Y Y voting

structure in dominant strategies has a lower bound that is bigger than r

ΠNN−Y Y
d.s.m = (β + δ) vh2 + γvl2 +

(
vh1 − vl2
vh1 − vl1

)
max

{
αvl1, αv

l
2 − β

(
vh2 − vl2

)}
+

+

(
vl2 − vl1
vh1 − vl1

)
max

{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
}
− z1 >

> δvh2 + (γ + α + β) vl2 − z1 > r = ΠY Y−Y Y
d.s.m
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as

r + z1 < r + z1 + z2 = (α + β) vl1 + γvl2 + δvh1 < δvh2 + (γ + α + β) vl2

Thus, implementing voting profile Y Y − Y Y is never optimal among dominant

strategy mechanisms.

Second, consider NY − Y Y voting structure. Because of the following collusion

and incentive compatibility constraints

p11
1 v

l
1 − t11

1 ≥ z1 (2.47)

p12
1 v

l
1 − t12

1 ≥ z1 (2.48)

z1 + vh1 − vl2 ≥ p11
1 v

h
1 − t11

1 (2.49)

p12
2 v

h
2 − t12

2 ≥ p11
2 v

h
2 − t11

2 (2.50)

the upper bound of the mechanism designer is given by

ΠNY−Y Y
d.s.m ≤ (γ + δ) r + β

(
vh2 − z1

)
− αz1 + max

{
αvl1

vh1 − vl2
vh1 − vl1

, αvl2 − β
(
vh2 − vl2

)}

with the maximum coming from the incentive compatibility constraints (2.50) and

(2.49). Comparing this upper bound to the revenue achieved from implementing
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optimal NY − Y N in a Bayesian equilibrium, we derive

ΠNY−Y N
B.m. =

vh1 − vl2
vh1 − vl1

max
{
αvl1, av

l
2 − β

(
vh2 − vl2

)}
+

+
vl2 − vl1
vh1 − vl1

max
{
avl2 − β

(
vh2 − vl2

)
, 0
}

+ βvh2 + δ
(
vh1 − z2

)
− αz1 + γr >

> max

{
αvl1

vh1 − vl2
vh1 − vl1

, avl2 − β
(
vh2 − vl2

)}
+ βvh2 + δ

(
vh1 − z2

)
− αz1 + γr >

> max

{
αvl1

vh1 − vl2
vh1 − vl1

, αvl2 − β
(
vh2 − vl2

)}
+ (γ + δ) r + β

(
vh2 − z1

)
− αz1 ≥

≥ ΠNY−Y Y
d.s.m

since r + z2 < vh1 by equation (2.1). Thus, implementing NY − Y N in dominant

strategies can’t have a maxmin foundation.

Third, we turn to Y N − Y Y voting profile. Incorporating collusion constraints,

we can notice that the upper bound to revenue is given by

ΠY N−Y Y
d.s.m ≤ (α + β) r + γ

(
vl2 − z1

)
+ δ

(
vh2 − z1

)
Comparing this bound to the revenue derived from the optimal NN − Y Y voting

profile implemented in dominant strategies we notice that

ΠNN−Y Y
d.s.m = (α + β + γ) vl2+δvh2−z1 > (α + β) r+γ

(
vl2 − z1

)
+δ
(
vh2 − z1

)
≥ ΠY N−Y Y

d.s.m

since by our assumption

r + z1 < r + z1 + z2 = (α + β) vl1 + γvl2 + δvh1 < vl2
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Fourth, let’s consider Y Y −NY case. Incorporating collusion constraints on the

low type of a second player, we derive upper bound on the revenue

ΠY Y−NY
d.s.m ≤ (β + δ) r + α

(
vl1 − z2

)
+ γ

(
vh1 − z2

)
and comparing this bound to the revenue from an optimal Bayesian mechanism, we

derive

ΠY N−NY
B.m. = α

(
vl1 − z2

)
+ βr + γvh1 + δ

(
vh2 − z1

)
>

> (β + δ) r + α
(
vl1 − z2

)
+ γ

(
vh1 − z2

)
≥ ΠY Y−NY

d.s.m

as

δ
(
vh2 − r − z1

)
+ γz2 > 0

Thus, implementing Y Y −NY voting profile in dominant strategies can never have

a maxmin foundation.

Finally, let’s consider Y Y −Y N case. Incorporating collusion constraints on the

high type of the second player, we derive upper bound on the revenue

ΠY Y−Y N
d.s.m ≤ (α + γ) r + β

(
vl1 − z2

)
+ δ

(
vh1 − z2

)
and comparing it to an optimal Bayesian mechanism that implements Y N − Y N ,

we notice that

ΠY N−Y N
B.m. = αr + β

(
vl1 − z2

)
+ γ

(
vl2 − z1

)
+ δvh2 > (α + γ) r + β

(
vl1 − z2

)
+ δ

(
vh1 − z2

)
since vl2 − r − z1 > 0.
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Having covered all possible voting profiles that could be implemented in dom-

inant strategies, we can finally establish conditions under which no maxmin foun-

dation could exist. Suppose as in the statement of lemma we consider the range

of parameters to satisfy condition (α + β) vl1 + γvl2 + δvh1 < vl2 . We can interpret

it as saying that the probability of both types being high should not be too large.

Summarizing previous four lemmas (and results of Appendix 1) we get the following

two tables for revenues from robust Bayesian mechanisms

Profiles Revenues from Bayesian mechanisms that are robust to maxmin criterion

NY −NY
max

{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
}

+

+β
(
vh2 − z1

)
+ γ

(
vh1 − z2

)
+ δr

NY − Y N
vh1−vl2
vh1−vl1

max
{
αvl1, av

l
2 − β

(
vh2 − vl2

)}
+

vl2−vl1
vh1−vl1

max
{
avl2 − β

(
vh2 − vl2

)
, 0
}

+

+βvh2 + δ
(
vh1 − z2

)
− αz1 + γr

Y N −NY α
(
vl1 − z2

)
+ βr + γvh1 + δ

(
vh2 − z1

)
Y N − Y N αr + β

(
vl1 − z2

)
+ γ

(
vl2 − z1

)
+ δvh2

and revenues from dominant strategy mechanisms that are candidates to having

maxmin foundation

Voting profiles Revenues from dominant strategy mechanisms

NN − Y Y
(β + δ) vh2 + γvl2 +

(
vh1−vl2
vh1−vl1

)
max

{
αvl1, αv

l
2 − β

(
vh2 − vl2

)}
+

+
(
vl2−vl1
vh1−vl1

)
max

{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
}
− z1

Y Y −NN (α+ β) vl1 + (γ + δ) vh1 − z2

Which leads us to the following theorem.

Theorem 2.1. When (α + β) vl1 + γvl2 + δvh1 < vl2 and the maximum of the four

revenues from robust Bayesian mechanisms is bigger than the maximum of the two

revenues from dominant strategy mechanisms, dominant strategy mechanisms have

no maxmin foundation.
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Proof. Lemmas 1-4 establish the result.

We would like now to give a simple sufficient condition when no maxmin foun-

dation exists. We would pick a voting profile NY − NY implemented through

Bayesian implementation for all possible beliefs and higher-order beliefs and find

conditions when revenue from implementing this mechanism is bigger than revenue

from the above dominant strategy mechanisms. Note that this doesn’t imply that

such a Bayesian mechanism will be optimal, but it does imply non-existence of the

maxmin foundation. Intuitively, the sufficient condition that we get says that prob-

ability of both players being high should not be too large (as otherwise the relative

loss of getting just a reservation price rather than first or second player high valu-

ation would not be compensated by the relaxed collusion constraints when one of

the players is not a high type) and that collusion transfers that players get should

not be too far apart from each other (as otherwise mechanism designer will find it

optimal to “buy out” a player who doesn’t get too much in collusion)

Corollary 2.1. If collusion transfers z1, z2 are not too different from each other

−d < z2 − z1 < c and if the probability of both players being high is not too large,

δ < δ̄, there exists no maxmin foundation for dominant strategy mechanisms.

Proof. Comparing ΠNY−NY
B.m. to ΠNN−Y Y

d.s.m. , we derive that ∆Π1 = ΠNY−NY
B.m. −ΠNN−Y Y

d.s.m.

is equivalent to

∆Π1 =

(
vh1 − vl2
vh1 − vl1

)(
max

{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
})

+

−
(
vh1 − vl2
vh1 − vl1

)
max

{
αvl1, αv

l
2 − β

(
vh2 − vl2

)}
+ αz1 + γ

(
vh1 − vl2 + z1 − z2

)
+

+ δ
(
r + z1 − vh2

)
≥ αz1 + γ (z1 − z2) + δ

(
r + z1 − vh2

)
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Therefore, if z1 > z2 − c, where

c =
0.5α (α + β) vl1 + γvl2 + δvh1 − r

0.5α + γ
> 0

we get from equation (1) that

(α + β) vl1 + γvl2 + δvh1 = r + z1 + z2 < r + c+ 2z1

which implies

z1 > 0.5
(
(α + β) vl1 + γvl2 + δvh1 − r − c

)
Hence, there exists δ such that for δ < δ̄1, ∆Π1 > 0. To see this set

δ̄1 =
αz1 + γ (z1 − z2)

vh2 − r − z1

and notice that this threshold for δ is bigger than zero since

αz1 + γ (z1 − z2) > 0.5α
(
(α + β) vl1 + γvl2 + δvh1 − r

)
− (0.5α + γ) c = 0

Now let’s compare ΠNY−NY
B.m. to ΠY Y−NN

d.s.m. . For ∆Π2 = ΠNY−NY
B.m. − ΠNN−Y Y

d.s.m. we

derive

∆Π2 = max
{
αvl1 − γ

(
vh1 − vl1

)
, αvl2 − β

(
vh2 − vl2

)
, 0
}

+ β
(
vh2 − vl1 + z2 − z1

)
+

+ α
(
z2 − vl1

)
+ δ

(
r + z2 − vh1

)
≥ β

(
vl2 − vl1 + z2 − z1

)
+

+ α
(
z2 + vl2 − vl1

)
+ δ

(
r + z2 − vh1

)
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Suppose z2 > z1 − d, where

d =
(α + β)

(
vl2 − vl1

)
+ 0.5α

(
(α + β) vl1 + γvl2 + δvh1 − r

)
β + 0.5α

> 0

then using again equation (1), we observe that

z2 > 0.5
(
(α + β) vl1 + γvl2 + δvh1 − r − d

)
Hence, for δ < δ̄2, ∆Π2 > 0 where

δ̄2 =
β
(
vl2 − vl1 + z2 − z1

)
+ α

(
z2 + vl2 − vl1

)
vh1 − r − z2

> 0

since

β
(
vl2 − vl1 + z2 − z1

)
+ α

(
z2 + vl2 − vl1

)
> (α + β)

(
vl2 − vl1

)
+

+0.5α
(
(α + β) vl1 + γvl2 + δvh1 − r

)
− (0.5α + β) d = 0

Not taking δ̄ = min

{
δ̄1, δ̄2,

(α+β)(vl2−vl1)
vh1

}
, and collusion transfers z1, z2 such

that −d < z2 − z1 < c, we obtain the result.

A possible critique of this result may be that assumption of common knowledge

of collusion transfers z1 and z2 may be too strong and contrary to the spirit of our

exercise. Although we don’t have a formal result for the environment when these

transfers are private information, we make the following observation. If a mechanism

designer does not know collusion transfers, then dominant strategy implementation

would require even stricter conditions to be satisfied, essentially lowering revenue

from a dominant strategy mechanism to a much smaller revenue since the corre-



CHAPTER 2. MAXMIN FOUNDATIONS FOR D.S.M 73

spondence between collusion transfers and mechanism designer payoffs is one to

one and since a mechanism designer can not predict whether it is beneficial to “buy

out” player one or player two. However, Bayesian mechanisms that we consider

require that collusion payoffs are guaranteed for both players only at a particular

instances (if, for example, NY −NY voting profile is implemented we need to pro-

vide collusion payoffs for player 1 when the first player is low and the second player

is high and for player 2 when the first player is high and the second player is low).

Since probabilities of facing such uncertainties will be smaller for Bayesian mech-

anisms that we consider, it will be even less appealing to use dominant strategy

mechanisms.

2.4 Conclusion

We conclude by stating that in practical environments where strategy spaced can

be sufficiently rich like in auction environments where collusion threat is real, domi-

nant strategy implementation may require too many conditions to be satisfied even

compared to Bayesian equilibrium implementation robust to perturbations in beliefs

and higher order beliefs. The difference between two solution concepts is too strong

even if we somewhat relax dominant strategy implementation to implementation

in dominant strategies after iterated deletion of weakly dominated strategies. Take

for example a voting profile of NY −NY . Under such a voting profile in dominant

strategy mechanism that we used collusion payoff has to be guaranteed to the low

type of the first player even when the second player is also low, since it is possible

that the low type of the second player may vote Y to the collusion question. But

in dominant strategy implementation after iterated deletion of strictly dominated

strategies, the strategy of voting Y for the low type of the second player can only
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be excluded if the strategy of voting Y for the low type of the first player has been

excluded before. But this is not possible when a second player can still vote Y . We

believe, thus, that this difference between dominant strategy implementation and

equilibrium implementation is too large in practical applications to be bridged by

demanding robustness of Bayesian equilibria to all possible beliefs and higher order

beliefs.
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2.5 Appendix 1

We derive below optimal NY − Y N , Y N − NY, Y N − Y N implemented in a

Bayesian equilibrium.

Implementing NY − Y N voting structure in a Bayesian mechanism In

this case high type of player 1 and low type of player 2 vote “yes” to the collusion

question, so the constraints will be the following

p11
1 v

l
1 − t11

1 ≥ z1 (2.51)

µ1

(
p11

1 v
l
1 − t11

1

)
+ (1− µ1)

(
p12

1 v
l
1 − t12

1

)
≥ 0 (2.52)

p22
1 v

h
1 − t22

1 ≥ 0 (2.53)

p22
1 v

h
1 − t22

1 ≥ p12
1 v

h
1 − t12

1 (2.54)

However, in case when µ1 = 0, i.e. the first player beliefs the second player to be

the high type with certainty, there is an additional IC constraint

p12
1 v

l
1 − t12

1 ≥ p22
1 v

l
1 − t22

1 (2.55)

Also, high type of a player 1, must not vote ’no’ and misreport himself to be of a

low type

λ1

(
z1 + vh1 − vl2

)
+(1− λ1)

(
p22

1 v
h
1 − t22

1

)
≥ λ1

(
p11

1 v
h
1 − t11

1

)
+(1− λ1)

(
p12

1 v
h
1 − t12

1

)
(2.56)

It can be noticed that for µ1 > 0, the revenue must be increasing with respect

to µ1, as for higher µ1 it is possible to increase t12
1 and relax (2.54). Then, similarly
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to the case of NY − NY voting profile, we set µ1 = 0. It follows then that (2.53)

will be always satisfied due to (2.52) and (2.54). Also, (2.55) can be assumed to be

satisfied at the optimum. Also (2.56) is the tightest when λ1 = 1 because of (2.54).

Thus, simplifying (2.56) we get

t11
1 ≥ p11

1 v
h
1 − z1 − vh1 + vl2 (2.57)

So, we can solve for optimal transfers at µ1 = 0: t11
1 = p11

1 v
l
1 − z1, t

12
1 = p12

1 v
l
1,

t22
1 = p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
. With (2.57) satisfied when p11

1 ≤
vh1−vl2
vh1−vl1

.

For the second player the analysis is almost the same except for binding IC

constraints. The constraints for the second player are:

p22
2 v

h
2 − t22

2 ≥ z2 + vh2 − vh1 (2.58)

λ2

(
p12

2 v
h
2 − t12

2

)
+ (1− λ2)

(
p22

2 v
h
2 − t22

2

)
≥ 0 (2.59)

p11
2 v

l
2 − t11

2 ≥ 0 (2.60)

p11
2 v

l
2 − t11

2 ≥ p12
2 v

l
2 − t12

2 (2.61)

When λ2 = 1, i.e. the high type of the second player believes the first player to be

the low type with certainty, there is an additional IC constraint13

p12
2 v

h
2 − t12

2 ≥ p11
2 v

h
2 − t11

2 (2.63)

13There is also an additional constraint for the low type of a second player not
to vote ’no’ and misreport to be a high type

µ2

(
p11

2 v
l
2 − t11

2

)
+ (1− µ2) z2 ≥ µ2

(
p12

2 v
l
2 − t12

2

)
+ (1− µ2)

(
p22

2 v
l
2 − t22

2

)
(2.62)

which is the tightest for µ2 = 0 and which will be satisfied if p22
2 = 1 (this will be

the case).
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Again λ2 = 1 gives the tightest set of constraints. However, now it will be

an additional incentive constraint ICH→L that will be binding and ICL→H can be

assumed to be satisfied. Also, it is clear that (2.59) will be satisfied from (2.63) and

(2.60) and so, we can solve for transfers: t11
2 = p11

2 v
l
2, t

22
2 = p22

2 v
h
2 − z2 − vh2 + vh1 ,

t12
2 = p12

2 v
h
2 − p11

2

(
vh2 − vl2

)
. Note that ICL→H is satisfied as long as p12

2 ≥ p11
2 .

The total profit is, thus, equal to

ΠNY−Y N
B.m. = p11

1

(
αvl1
)

+ p11
2

(
avl2 − β

(
vh2 − vl2

))
+ p12

1

(
βvl1 − δ

(
vh1 − vl1

))
+

+ p12
2

(
βvh2
)

+ p22
1

(
δvh1
)

+ p22
2

(
δvh2
)
− αz1 − δ

(
z2 + vh2 − vh1

)
+ γr

Hence, p12
2 = p22

2 = 1 and total revenue is equal to

ΠNY−Y N
B.m. =

vh1 − vl2
vh1 − vl1

max
{
αvl1, av

l
2 − β

(
vh2 − vl2

)}
+

+
vl2 − vl1
vh1 − vl1

max
{
avl2 − β

(
vh2 − vl2

)
, 0
}

+ βvh2 + δ
(
vh1 − z2

)
− αz1 + γr

Implementing Y N −NY voting structure in a Bayesian mechanism The

constraints for the first and the second player are the following:

p22
1 v

h
1 − t22

1 ≥ z1 (2.64)

λ1

(
p21

1 v
h
1 − t21

1

)
+ (1− λ1)

(
p22

1 v
h
1 − t22

1

)
≥ 0

p11
1 v

l
1 − t11

1 ≥ 0

p11
1 v

l
1 − t11

1 ≥ p21
1 v

l
1 − t21

1
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with an additional constraint for λ1 = 114

p21
1 v

h
1 − t21

1 ≥ p11
1 v

h
1 − t11

1

And for the second player

p11
2 v

l
2 − t11

2 ≥ z2 + vl2 − vl1 (2.65)

µ2

(
p11

2 v
l
2 − t11

2

)
+ (1− µ2)

(
p21

2 v
l
2 − t21

2

)
≥ 0

p22
2 v

h
2 − t22

2 ≥ 0

p22
2 v

h
2 − t22

2 ≥ p21
2 v

h
2 − t21

2

with an additional constraint for µ2 = 015

p21
2 v

l
2 − t21

2 ≥ p22
2 v

l
2 − t22

2

Again, the revenue is minimized at λ1 = 1, µ2 = 0, i.e. when high type of a

first player believe the second player to be the low type and low type of second

14There is an extra IC constraint for a low type not to vote ’no’ and misreport
himself to be a high type

µ1

(
p11

1 v
l
1 − t11

1

)
+ (1− µ1) z1 ≥ µ1

(
p21

1 v
l
1 − t21

1

)
+ (1− µ1)

(
p22

1 v
l
1 − t22

1

)
which is the tightest at µ1 = 0 and which will be always satisfied if (2.64) is binding
(which will be the case)

15There is also an additional IC constraint for a high type of a second player not
to vote “no” and misreport his type to be that of a low one.

λ2

(
z2 + vh2 − vl1

)
+(1− λ2)

(
p22

2 v
h
2 − t22

2

)
≥ λ2

(
p11

2 v
h
2 − t11

2

)
+(1− λ2)

(
p21

2 v
h
2 − t21

2

)
which is the tightest for λ2 = 1 and which is always satisfied when (2.65) is binding
(which will be the case)
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player believe the second player to be the high type. In this case we can easily solve

for transfers as before: t22
1 = p22

1 v
h
1 − z1, t

21
1 = p21

1 v
h
1 − p11

1

(
vh1 − vl1

)
, t11

1 = p11
1 v

l
1,

t22
2 = p22

2 v
h
2 − p21

2

(
vh2 − vl2

)
, t21

2 = p21
2 v

l
2, t

11
2 = p11

2 v
l
2 − z2 − vl2 + vl1. And the total

revenue is equal to

ΠY N−NY
B.m. = p11

1

(
αvl1 − γ

(
vh1 − vl1

))
+ p11

2

(
αvl2
)

+ p21
1

(
γvh1
)

+ p21
2

(
γvl2 − δ

(
vh2 − vl2

))
+

+ p22
1

(
δvh1
)

+ p22
2

(
δvh2
)
− δz1 − α

(
z2 + vl2 − vl1

)
+ βr

and hence p11
2 = p21

1 = p22
2 = 1 and maximal revenue is given by

ΠY N−NY
B.m. = α

(
vl1 − z2

)
+ βr + γvh1 + δ

(
vh2 − z1

)
Implementing Y N−Y N voting structure in a Bayesian mechanism Con-

straints in this case are the following:

p21
1 v

h
1 − t21

1 ≥ z1 + vh1 − vl2 (2.66)

λ1

(
p21

1 v
h
1 − t21

1

)
+ (1− λ1)

(
p22

1 v
h
1 − t22

1

)
≥ 0

p12
1 v

l
1 − t12

1 ≥ 0

p12
1 v

l
1 − t12

1 ≥ p22
1 v

l
1 − t22

1
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With an additional IC constraint for λ1 = 016

p22
1 v

h
1 − t22

1 ≥ p12
1 v

h
1 − t12

1

p12
2 v

h
2 − t12

2 ≥ z2 + vh2 − vl1 (2.67)

λ2

(
p12

2 v
h
2 − t12

2

)
+ (1− λ2)

(
p22

2 v
h
2 − t22

2

)
≥ 0

p21
2 v

l
2 − t21

2 ≥ 0

p21
2 v

l
2 − t21

2 ≥ p22
2 v

l
2 − t22

2

with an additional IC constraint for λ2 = 017

p22
2 v

h
2 − t22

2 ≥ p21
2 v

h
2 − t21

2

Again, taking λ1 = λ2 = 0, we solve for transfers: t12
1 = p12

1 v
l
1, t

21
1 = p21

1 v
h
1 −

z1 − vh1 + vl2, t
22
1 = p22

1 v
h
1 − p12

1

(
vh1 − vl1

)
, t12

2 = p12
2 v

h
2 − z2 − vh2 + vl1, t

21
2 = p21

2 v
l
2,

t22
2 = p22

2 v
h
2 − p21

2

(
vh2 − vl2

)
. Thus, we can immediately see that it will be optimal to

have p12
2 = p21

1 = p22
2 = 1 and the optimal revenue is equal to

16There is also an additional IC constraint for a low type of a player 1 not to
vote “no” and misreport itself to be of a high type

µ1z1 + (1− µ1)
(
p12

1 v
l
1 − t12

1

)
≥ µ1

(
p21

1 v
l
1 − t21

1

)
+ (1− µ1)

(
p22

1 v
l
1 − t22

1

)
which is the tightest for µ1 = 1 and which will be satisfied for binding (2.66) and
p21

1 = 1
17There is also an additional IC constraint for a low type of a player 2 not to

vote “no” and misreport itself to be a low type

µ2

(
z2 + vl2 − vl1

)
+ (1− µ2)

(
p21

2 v
l
2 − t21

2

)
≥ µ2

(
p12

2 v
l
2 − t12

2

)
+ (1− µ2)

(
p22

2 v
l
2 − t22

2

)
which is the tightest for µ2 = 1 and which will be satisfied for binding (2.67) and
p12

2 = 1
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ΠY N−Y N
B.m. = αr + β

(
vl1 − z2

)
+ γ

(
vl2 − z1

)
+ δvh2
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3.1 Introduction

The Gibbard-Satterthwaite theorem showed that there exists no resolute voting

rule except for dictatorial ones for three or more alternatives that is strategy proof,

is defined for universal domain of preferences and satisfies the Pareto condition.

Several directions of research followed this result. First, the domain was restricted

to find non-manipulable voting rules (Kalai and Muller (1977), Barbie, Puppe and

Tasnadi (2003)). Second, the attention was focused on degrees of manipulability

of different voting rules resulting in both analytical (Nitzan (1985), Leppeley and

Mbih (1987), Favardin, Leppeley, Serais (2002) and Leppeley and Valgones (2003))

and simulational (Nitzan (1985), Kelly (1993) and Smith (1999)) results. These

papers concentrated on calculating the percentage of preference profiles that leads to

untruthful voting. While the question of manipulability may be of its own interest,

the more relevant question seems to be a normative one: how strategic voting affects

total welfare and which rules affect it the most when strategic voting is taken

into consideration? Moreover, a recent paper (Maskin (2008)) shows that if one

assumes non-manipulability and some other basic assumptions, no optimal rule can

be cardinal. This result provides an important starting point for this chapter, the

main idea of which is to show that strategic voting may lead to higher total welfare

through better realization of preference intensities. We prove in Theorem 1 that for

any distribution function that generates values of different alternatives, strategic

voting, when it exists, leads to ex ante Pareto improvement compared to sincere

voting. The reason why this is true is the risky nature of strategic voting - when

somebody casts a strategic ballot, she tries to increase the probability of a favorable

alternative, but it also increases the probability of unfavorable alternatives, which

were regarded by this individual as not likely to win. Thus, only those with high
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enough stakes would want to engage in strategic voting. This introduces a cardinal

component into the voting rules that may lead to greater total ex ante welfare.

The above idea also links strategic voting to the literature on costly voting

(Ledyard (1984), Myerson (2000)), which establishes that despite positive costs it

is always possible to achieve a Pareto efficient outcome in a large election with two

alternatives and majority voting. Although only those with costs going to zero are

participating in an election in that model, since costs and utilities are uncorrelated,

those for whom stakes are higher abstain less, which enables us to achieve Pareto

efficiency.

The importance of realization of cardinal intensities in a voting model, also

renders interest to a mechanism design problem with non-transferable utility, where

the strength of the preferences has to be communicated to the mechanism designer,

but where there are no actual payments in money between the parties. It turns

out that just as in the voting setting, exposing agents to uncertainty can help to

elicit their preferences, and in the end achieve a second-best outcome that looks

very close to the first best. We derive in Theorem 2 the second best for the uniform

distribution case and characterize optimal rules that are very close to the first

best. Hence, we conclude that in the settings where the uncertainty is high and

when information transmission is high, optimal mechanisms will almost achieve a

Pareto outcome. If, however, opportunities to communicate preference intensities

are scarce, strategic voting becomes a proxy for such information transmission.

Our model on mechanism design is close to the one studied by Borgers and Postl

(2009). However, they study a situation where agents’ preference rankings are the

opposite of each other and so two players have to figure out whether they should

compromise or whether somebody’s first choice will be picked. In our model we allow
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for all the possible rankings. It also turns out that differently from the optimal rules

in their model, optimal rules in our model look similar to the standard optimal rules

in the public good provision literature, i.e. in a setting with transferable utility. We

describe the potential similarities when we derive those rules.

In section 2 we analyze a simple symmetric model of voting, emphasizing that

strategic voting leads to welfare improvement, whenever equilibria with strategic

voting exist. We also characterize the nature of equilibria that involve strategic

voting. In section 3, we talk about similarities to the two alternatives, costly vot-

ing literature. In section 4, we consider a mechanism design problem in a similar

environment to the one in the first part. Section 5 concludes.

3.2 A Voting Model

3.2.1 Assumptions and Structure of Equilibria

Suppose there are 2 voters, i = 1, 2 and 3 alternatives, j = x, y, z. Utility of a

given alternative for a given voter is represented by vij. We assume that vij are iid

according to some distribution function G().

The outcome is determined by a scoring rule of the type (1, A, 0) and, in partic-

ular, 0.5 < A < 1. As it will be shown below this rule is convenient for consideration

since for a every preference profile, there can be at most two voting ballots of pref-

erence rankings that could be cast optimally. To see this, let’s consider the following

table of outcomes, where rows are ballots cast by a first player and columns are

ballots cast by a second player.
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α β γ δ ε 1− α− β − γ − δ − ε

xyz xzy yxz yzx zxy zyx

xyz x x x̃y y x y

xzy x x x z x̃z z

yxz x̃y x y y x y

yzx y z y y z ỹz

zxy x x̃z x z z z

zyx y z y ỹz z z

Here x̃y denotes a tie between the first and the second alternative. Observing

the table of outcomes, it becomes clear that it’s never optimal for a type xyz to cast

a vote different from xyz or xzy. For example, it is never optimal to cast a vote of

yxz. Voting yxz can be optimal when a voter expects a “close race“ between second

and third alternatives and puts his second best alternative on top of the ballot to

prevent his least liked alternative from winning. However, with this scoring rule

any type can guarantee that at least his second-placed alternative wins by voting

sincerely, so there is no need to misreport one’s type as yxz.

We now turn to analyzing all equilibria of the game. As it will turn out there

will always be a sincere voting equilibrium (which is not surprising since this envi-

ronment is characterized by high uncertainty), but depending on the distribution

function G (), there could be also a couple of equilibria that involve strategic voting.

Suppose that probabilities of voting a particular profile ballot for the second

player is given by (α, β, γ, δ, ε, 1−α−β−γ−δ−ε). Finding the differences in utilities

from voting in two possible ways (sincerely and strategically) and suppressing the



CHAPTER 3. STRATEGIC VOTING AND MECHANISM DESIGN 87

index of the voter, we derive the following expressions

Uxyz − Uxzy = v1
x

(ε
2
− γ

2

)
+ v1

y

(
1− α− β − ε− γ

2

)
− v1

z

(
1− α− β − γ − ε

2

)

Uyxz−Uyzx = v1
x

(
β + ε+

α

2

)
+v1

y

(
1− 2α− β − γ − δ − ε

2

)
−v1

z

(
1− α + β − γ − δ + ε

2

)

Uzxy − Uzyx = v1
z

(
δ

2
− β

2

)
+ v1

x

(
α + γ +

β

2

)
− v1

y

(
α + γ +

δ

2

)
Thus, the misreporting for types xyz, yxz, zxy from xyz to xzy, from yxz to yzx,

from zxy to zyx occur whenever in a corresponding order

1

2
v1
x (γ − ε) > v1

y

(
1− α− β − ε− γ

2

)
− v1

z

(
1− α− β − γ − ε

2

)
(3.1)

v1
y

(
−1 + 2α + β + γ + δ + ε

2

)
> v1

x

(
β + ε+

α

2

)
− v1

z

(
1− α + β − γ − δ + ε

2

)
(3.2)

v1
z

(
β

2
− δ

2

)
> v1

x

(
α + γ +

β

2

)
− v1

y

(
α + γ +

δ

2

)
(3.3)

Note, first of all, that these bounds are always tighter than corresponding con-

ditional ones (i.e the ones that are determined by conditional inequalities, e.g.

v1
x > v1

y > v1
z for a type xyz). For a type xyz

1

2
v1
y (γ − ε) < v1

y

(
1− α− β − ε− γ

2

)
− v1

z

(
1− α− β − γ − ε

2

)

is equivalent to

(v1
y − v1

z)
(
α + β + γ +

ε

2
− 1
)
< 0
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and this always holds. For a type yxz

v1
x

(
−1 + 2α + β + γ + δ + ε

2

)
< v1

x

(
β + ε+

α

2

)
− v1

z

(
1− α + β − γ − δ + ε

2

)

is equivalent to

(v1
x − v1

z)

(
α− β + γ + δ − ε− 1

2

)
< 0

and finally for a type zxy

v1
x

(
β

2
− δ

2

)
< v1

x

(
α + γ +

β

2

)
−v1

y

(
α + γ +

δ

2

)
⇐⇒ (v1−v2)

(
−α− γ − δ

2

)
< 0

Note also that misreporting occurs if and only if the highest utility is multiplied

by a positive number, e.g. when γ − ε is positive in the first inequality. To see this

we can express these inequalities, e.g. (3.9) in the following way:

1

2
(v1
x − v1

y)(γ − ε) > (v1
y − v1

z)
(

1− α− β − γ − ε

2

)

and as the right hand side is always positive γ − ε has to be positive if a type xyz

wants to cast a ballot xzy.

Let’s define η, κ and λ to be the probabilities with which (3.1), (3.2), (3.3) occur,

then summarizing the above, we derive the following structure of best responses for

all types. For η, κ, λ depending on α, β, γ, δ, ε

xyz : votes xzy with probability η and xyz with probability 1− η if γ > ε and

o/w always votes xyz

xzy : votes xyz with probability η and xzy with probability 1− η if γ < ε and

o/w always votes xzy
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yxz : votes yzx with probability κ and yxz with probability 1 − κ if α >

1− α− β − γ − δ − ε and o/w always votes yxz

yzx : votes yxz with probability κ and yzx with probability 1 − κ if α <

1− α− β − γ − δ − ε and o/w always votes yzx

zxy : votes zyx with probability λ and zxy with probability 1− λ if β > δ and

o/w always votes zxy

zyx : votes zxy with probability λ and zyx with probability 1− λ if β < δ and

o/w always votes zyx

Let’s now impose equilibrium symmetry conditions on these probabilities. Sup-

pose γ > ε, then, since the same distribution function generates all utilities and

since xyz-type votes xzy with probability η we get that α = 1
6
(1−η), β = 1

6
(1 +η),

η > 0 . Assume that α ≥ 1 − α − β − γ − δ − ε, then, we have γ = 1
6
(1 − κ),

δ = 1
6
(1 + κ), k ≥ 0 and, thus

1

6
(1− κ) > ε

1

6
(1− η) ≥ 1

3
− ε

Summing these inequalities up we get −κ
6
− η

6
> 0, η > 0, k ≥ 0 which is a

contradiction. So, we must have α < 1−α−β−γ−δ−ε and γ = 1
6
(1+κ), δ = 1

6
(1−κ),

k > 0. Moreover, as β > δ, we get ε = 1
6
(1− λ), 1− α− β − γ − δ − ε = 1

6
(1 + λ),

λ > 0. Therefore, in equilibrium we get a cyclical permutation of types (xzy, yxz,

zyx) that are never engaged in strategic voting and a cycle of types (xyz, zxy, yzx)

that do vote strategically.
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Using inequalities above, we can express κ, η, λ in the following way.

η = Pr

[
1

2
v1
x

κ+ λ

6
> v1

y

(
5

12
+
λ

6
− κ

12

)
+ v1

z

(
− 5

12
+
κ

6
− λ

12

)
|v1
x > v1

y > v1
z

]
(3.4)

κ = Pr

[
1

2
v1
y

η + λ

6
> v1

z

(
5

12
+
η

6
− λ

12

)
+ v1

x

(
− 5

12
+
λ

6
− η

12

)
|v1
y > v1

z > v1
x

]
(3.5)

λ = Pr

[
1

2
v1
z

κ+ η

6
> v1

x

(
5

12
+
κ

6
− η

12

)
+ v1

y

(
− 5

12
+
η

6
− κ

12

)
|v1
z > v1

x > v1
y

]
(3.6)

Lemma 3.1. This symmetrical system of equations (3.4)-(3.6) might have at most

one solution, in which κ = λ = η.

Proof. Let’s rewrite inequalities in the following way

η = Pr

[
v1
x − v1

y >

(
5 + λ− 2κ

κ+ λ

)(
v1
y − v1

z

)
|v1
x > v1

y > v1
z

]

κ = Pr

[
v1
y − v1

z >

(
5 + η − 2λ

η + λ

)(
v1
z − v1

x

)
|v1
y > v1

z > v1
x

]

λ = Pr

[
v1
z − v1

x >

(
5 + κ− 2η

η + κ

)(
v1
x − v1

y

)
|v1
z > v1

x > v1
y

]
Suppose, for example, that η > κ (any other strict inequalities are covered in the

same way since the system is symmetric), then since all utilities are distributed

according to the same distribution function, it has to be the case that

5 + λ− 2κ

κ+ λ
<

5 + η − 2λ

η + λ
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From which it follows that 5 (η − κ) + 3 (λ2 − ηκ) < 0, which implies λ < η. But

then it follows that

5 + λ− 2κ

κ+ λ
<

5 + κ− 2η

η + κ

and so 5(η − λ)+3(−κ2 + ηλ)¡0, which in tern implies that it must be the case that

κ > λ. This implies

5 + η − 2λ

η + λ
<

5 + κ− 2η

η + κ

or equivalently 5 (κ− λ) + 3 (η2 − λκ) < 0, which implies η < λ and we get a

contradiction.

If we assume that γ = ε by same analysis we would get a sincere equilibrium

of α = β = γ = δ = ε = 1
6
. So sincere voting is always an equilibrium of this

incomplete information game. If we assume γ < ε, we get a similar equilibrium,

where two cyclical sets of preference ranks with probabilities higher than 1
6

and

lower than 1
6

are switching.

If there is strategic voting the probability of it is equal to η and is determined

by the following equation.

η = Pr

[
v1 >

5 + η

2η
v2 +

η − 5

2η
v3|v1 > v2 > v3

]
(3.7)

where v1, v2 and v3 are maximal, middle and minimum elements drawn from a

distribution G (), or

η = 6

+∞ˆ

−∞

+∞ˆ

v3

+∞ˆ
5+η
2η

v2+ η−5
2η

v3

g(v1)g(v2)g(v3)dv1dv2dv3 (3.8)

Example 3.1. Uniform Case
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Suppose v ∼ U [−x;x]. Let’s find η. To do this we need to adjust the limits of

integration since it has to be the case that

5 + η

2η
v2 +

η − 5

2η
v3 < x

or

v2 <
2η

η + 5
x− η − 5

η + 5
v3

which always binds for v3 < x. Substituting these limits into the formula above we

get after simplification

8x3η = 6

xˆ

−x

2η
η+5

x− η−5
η+5

v3ˆ

v3

xˆ
5+η
2η

v2+ η−5
2η

v3

dv1dv2dv3 = 2
η

η + 5

(
8x3
)

Implying

η =
2η

η + 5

which doesn’t have a solution for η ∈ (0, 1)

Example 3.2. Pareto distribution (with a parameter k and xmin = 1)

This distribution has very ”fat” tails, so, not surprisingly, there exists non-zero

solution, which is, nevertheless rapidly declining1

k → 1 k = 2 k = 3 k = 4

η 0.465 0.259 0.139 0.058

1Mathematica was used to solve the necessary equations numerically.



CHAPTER 3. STRATEGIC VOTING AND MECHANISM DESIGN 93

The intuition for these two different examples comes from the equation (3.7).

One could notice that for non-zero solution to exist, it’s necessary to have ”fat”

tails of a distribution function, so that the probability of first-best alternative being

relatively large is sufficiently high so that a person faces high stakes sufficiently

often.

It will be shown in the next part, that equilibria that involve strategic voting

can be seen as a cooperation across individuals with different preferences profiles

that leads to the shift of probability mass of different preference rankings in such

a way that enables them to benefit from such move. This cooperation is incentive

compatible in a sense that for all individuals with given preferences it is optimal to

pursue the above strategy.

3.2.2 Welfare Analysis

Theorem 3.1. Outcome of equilibria that involve strategic voting are ex ante wel-

fare improving compared to a sincere voting equilibrium outcome for any distribution

function generating utilities G(v)

Proof. To analyze welfare with and without strategic voting, we have to compare

the probabilities of different outcomes and utilities at those outcomes, taking into

account that utilities from a given alternative are dependent on the fact of whether

voter deviated or not from sincere voting. We shall analyze equilibrium with strate-

gic voting when γ > ε (with the other equilibrium being completely symmetrical)

and we will consider the situation, where first voter have xyz or xzy preference

rankings, while the second one has yxz or yzx preference rankings (other blocks of

possible rank preferences are again completely symmetrical).

For the preference rankings above we have the following outcomes:
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For a preference profile of (xyz, yxz) only the first voter will vote strategically

if the stakes are high enough. So with probability 1 − η there is no misreporting

resulting in a tie between xand y and with probability η we get (xzy, yxz) ballot

profile with x being chosen.

For a preference profile of (xyz, yzx) both voters will vote strategically some-

times. Thus, with probability (1− η)2 we have sincere voting with y being chosen.

With probability η(1 − η) we get (xyz, yxz) as a ballot profile with a tie between

x and y. With probability η(1 − η) we get (xzy, yzx) ballot profile with z being

chosen. Finally, with probability η2 we get (xzy, yxz) ballot profile with x being

the winner.

For a preference profile of (xzy, yxz) - there is only sincere voting and x is being

chosen.

For a preference profile of (xzy, yzx) - with probability 1− η there is no misre-

porting and z is chosen and with probability η we get (xzy, yxz) ballot profile with

x as a winner.

Let’s denote ã, b̃, c̃ as expectations of first-best, second-best and third-best al-

ternatives conditional on the fact that a voter has voted strategically, â, b̂, ĉ as

expectations of v1, v2, v3 conditional on the fact that a voter has voted sincerely

and a, b, c as unconditional expectations of v1, v2, v3. Then,

6∆SW = η

(
1

2
ã− 1

2
b̃+

1

2
b− 1

2
a

)
+ η(1− η)

(
1

2
c̃− 1

2
ã+

1

2
â− 1

2
b̂

)
+

+ η(1− η)
(
c̃− b̃− â+ b̂

)
+ η2

(
ã− b̃+ c̃− ã

)
+ η

(
c̃− b̃+ a− b

)

6∆SW = η

(
5

2
c̃− 5

2
b̃− 1

2
b+

1

2
a− 1

2
â+

1

2
b̂

)
+ η2

(
1

2
ã− 1

2
c̃+

1

2
â− 1

2
b̂

)
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Note that a− b = η
(
ã− b̃

)
+ (1− η)

(
â− b̂

)
and, thus,

6∇SW = η

(
5

2
c̃− 5

2
b̃− 1

2
â+

1

2
b̂+

1

2
η
(
ã− b̃

)
+

1

2
(1− η)

(
â− b̂

))
+

+ η2

(
1

2
ã− 1

2
c̃+

1

2
â− 1

2
b̂

)
= η

(
5

2
c̃− 5

2
b̃

)
+ η2

(
ã− 1

2
b̃− 1

2
c̃

)

Recall that in the region with strategic voting we have v1 >
5+η
2η
v2 + η−5

2η
v3 and

so it must be the case that ã > 5+η
2η
b̃+ η−5

2η
c̃. Hence,

6∇SW = η

(
5

2
c̃− 5

2
b̃

)
+ η2

(
ã− 1

2
b̃− 1

2
c̃

)
>

> η

(
5

2
c̃− 5

2
b̃+ η

(
5 + η

2η
b̃+

η − 5

2η
c̃− 1

2
b̃− 1

2
c̃

))
= 0

Therefore, we have shown that through strategic voting and, thus, better re-

alization of cardinal intensities, voters can achieve higher ex ante total welfare.

Whenever strategic voting equilibria exist, they are always ex ante Pareto improv-

ing compared to sincere voting.

3.3 Costs and Two Alternative Voting

In this section I will emphasize intuition from the first section but through a dif-

ferent channel, namely through costly voting. In the previous model with three

alternatives strategic voting has a cost of increasing probability that the least pre-

ferred alternative is going to be the winner. Hence, strategic voting was only used

by voters who had high enough cardinal difference between the first best and the

second best. In this section I link this intuition to a relatively more studied envi-
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ronment where there are only two alternatives, but voting itself is costly. Again,

as is the case in Ledyard (1984), who considers an environment of two alternatives

and infinite number of voters, it will turn out that only those voters who have

high enough difference in utilities for the alternatives will vote and through better

realization of cardinal differences and tilting of an outcome towards an alternative

with higher preference intensity, higher total ex ante welfare can be achieved.

Suppose there are two alternatives x, y and two voters. Utility from an alter-

native Ux, Uy is an iid with a distribution function G(). The cost of voting is c.

Suppose now, that probability of abstention is p. Then, the expected utilities from

voting and abstention for the voter that has x alternative as a first best are as

follows:

U v
xy =

1

2
(1− p)

(
1

2
Ux +

1

2
Uy

)
+

(
1− 1

2
(1− p)

)
Ux − c

Ua
xy =

1

2
Ux +

1

2
Uy

Thus, a voter will vote whenever U v
xy − Ua

xy is positive or when

(
1− 1

2
(1− p)

)(
1

2
Ux −

1

2
Uy

)
− c > 0

So, the probability of abstention can be found from the following equation

p = Pr

{
Ux − Uy <

4c

1 + p
|Ux > Uy

}
(3.9)

Let’s now turn to the normative analysis. The matrix of outcomes when the

first voter is of a type xy will look as follows
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xy yx

V A V A

V x x x̃y x

A x x̃y y x̃y

where x̃y means a tie between x and y.

So, compared to sincere voting with no costs, there is a loss in total welfare

when both voters are of the same type xy and they both abstain, but there is a gain

when two voters are of different types and one voter abstains, while the other voter

votes since in this case the outcome is tilted towards more intensively supported

alternative. Moreover, there are costs from just voting. In the end, whether the gains

outweigh the losses is determined in equilibrium and depends on the primitives G()

and c. We might expect that if the society is relatively homogeneous (i.e. density

function g() has high peak and small tails) the gains from costly voting would be

small, while if there are “fat” tails in the distribution, introducing some costs can

be beneficial to total welfare.

Let’s denote by ã, b̃ the expected utilities for first-ranked alternative and second-

ranked alternative when the voter has voted and by â, b̂ when the voter hasn’t.

Then,

∆SW =
1

2
p2
(
â+ b̂− 2â

)
+ p(1− p)

(
b̂+ ã−

(
1

2
â+

1

2
b̂

)
−
(

1

2
ã+

1

2
b̃

))
−

− 2c(1− p) =
1

2
p(1− p)

(
ã− b̃

)
+

1

2
p
(
b̂− â

)
− 2c(1− p)

Now, let’s assume that the support of G() is from zero to infinity and let’s

denote 4c
1+p

by t. Then, from (3.9)
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p = 2

∞̂

0

y+tˆ

y

g(x)g(y)dxdy

and

∆SW = p

∞̂

0

∞̂

y+t

(x− y) g(x)g(y)dxdy −
∞̂

0

y+tˆ

y

(x− y) g(x)g(y)dxdy − 1

2
t(1− p2)

When c = 0, p = 0 and hence t = 0 and so we can analyze ∆SW with respect to

t. Note that

p
′

t|t=0 = 2

∞̂

0

g2(y)dy

and, thus,

∆SW ′
t |t=0 = 2

∞̂

0

g2(y)dy

∞̂

0

∞̂

y

(x− y) g(x)g(y)dxdy − 1

2

So, whenever the difference between the first and second ranked alternatives are

expected to be high and whenever the density is not too heavily concentrated near

zero, positive costs are going to increase total expected welfare compared to the

situation with no costs.

Example 3.3. Uniform density

∆SW ′
t |t=0 = 2

1ˆ

0

dy

1ˆ

0

1ˆ

y

(x− y) dxdy − 1

2
= −1

6

Example 3.4. Pareto Distribution

∆SW ′
t |t=0 =

4k2 + k − 1

2(2k − 1)(2k + 1)(k − 1)
> 0
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Confirming our intuition for different distribution functions.

3.4 Mechanism Design Problem

In this section I would study how optimal rules in Bayesian mechanism design with

non-transferable utility are connected to voting rules. This setting also appears to

be relatively understudied and, hence, is of its own interest.

Consider an environment similar to the one in the previous section, with the

following normalization assumption: the utility from a first-best alternative is equal

to 1 and from the worst alternative is equal to 0. This normalization follows our

research in section 2 and can be loosely thought of as allowing scoring rule to depend

on the intensity of the second-best preference. It will be, therefore, interesting, to

see if such a relaxation in the scoring rule can help to achieve greater ex ante total

welfare. This normalization assumption, as it will turn out, is not without a loss of

generality since in a situation when two players have completely reverse orderings

of preferences, e.g. XY Z and ZY X, it doesn’t matter for efficiency whether X or Z

is chosen, whenever alternative Y is not optimal. Hence, it will be easier to satisfy

incentive compatibility constraints by choosing X and Z alternatives optimally.2 In

this sense, we can view our results as an upper bound to what can be achieved.

This environment is close to the one studied by Borgers and Postl (2009). They

study the situation, where the performance rankings of two players are completely

asymmetrical, e.g. XY Z and ZY X, and find that they can’t use the usual approach

of a public choice literature (e.g. d’Aspremont and Gerard-Varet (1979) and Guth

2If we, however, attach different weights to utilities of agents, such normalization
would be without loss of generality. Unfortunately, it turns out that this case is much
harder to solve analytically, so we have to focus our attention to normalized equal
weights environment.
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and Hellwig (1986)) since when they use the usual incentive compatibility constraint

without imposing non-negativity constraints on probabilities, these constraints are

violated. In my extension of the analysis to the whole possible set of preference

orderings I don’t encounter this problem and, hence, my results are closer to the

traditional public good literature.

Let’s denote by fX(R1, R2, a1, a2), fY (R1, R2, a1, a2), fZ(R1, R2, a1, a2) mecha-

nism rules that correspond to the probabilities that X, Y, Z alternatives are chosen

given the preference orderings and utility from a second-best alternative. The ex

ante probabilities for a first player that alternative X or Y is chosen are equal to

p1(R1, a1) =
1

6

∑
R2

ˆ
fX(R1, R2, a1, a2)g(a2)da2

q1(R1, a1) =
1

6

∑
R2

ˆ
fY (R1, R2, a1, a2)g(a2)da2

Suppose a voter has a profile XY Z, then the first player will reveal his prefer-

ence ranking and utility from the second-best alternative truthfully whenever the

following IC conditions are satisfied.

p1(XY Z, a1) + q1(XY Z, a1)a1 ≥ p1(R′1, a
′
1) + q1(R′1, a

′
1)a1

p1(R′1, a
′
1) + q1(R′1, a

′
1)a′1 ≥ p1(XY Z, a1) + q1(XY Z, a1)a′1

which implies local incentive compatibility constraint

p1
a1

(XY Z, a1) + q1
a1

(XY Z, a1)a1 = 0
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and global incentive compatibility constraints of 3

p1(XY Z, a1) + q1(XY Z, a1)a1 ≥ max
R′ 6=XY Z,a′1

p1(R′1, a
′
1) + q1(R′1, a

′
1)a1

Now, we can note that utility of a first player is

U1(XY Z, a1) = p1(XY Z, a1) + q1(XY Z, a1)a1

and hence, taking derivative with respect to the utility of second-best alternative

and using local incentive compatibility constraint, we get the standard result that

U1
a1

(XY Z, a1) = q1(XY Z, a1), which implies that probability of getting the first-

best alternative for any a1 can be derived by the following equation

p1(XY Z, a1) = p1(XY Z, 1) + q1(XY Z, 1)− q1(XY Z, a1)a1 −
1ˆ

a1

q1(XY Z, x)dx

(3.10)

We would now assume uniform distribution since most of analytical results

could only be derived for this case. Then we have the following lemma proved in

the appendix 2. 4

Lemma 3.2. When there exist a Pareto dominating alternative, it is always cho-

sen. When utility of one alternative is always non-smaller than utility of any other

3In this environment, as is the standard case in the literature, local incentive
compatibility constraints would imply global ones. However, for the agent not to
misreport its preference ranking, it’s important to assume a symmetric environment,
where every preference profile of the second agent is equally likely. In such an
environment, when nothing is known about preferences of the second player, it is
never optimal to misreport one’s own preference ranking. We show that global IC
constraints are satisfied in the end of the paper.

4For the non-uniform distribution this is true under certain monotonicity as-
sumptions. Since our focus here will be on the uniform case and since this simplifies
exposition a lot while not changing any results, we use this result from the very
beginning.
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alternative, it is always chosen unless second-best alternative has the value 0 or 1

for at least one of the players. Formally,

fX(XY Z,R2, a1, a2) = 1 if R2 = XY Z, XZY or ZXY

fX(XY Z,R2, a1, a2) = 1 if R2 = Y ZX

It follows from the lemma that for uniform distribution

1ˆ

0

p1 (XY Z, a1) da1 =
1

2
+

1

6

1ˆ

0

1ˆ

0

fX (XY Z, Y XZ, a1, a2) da1da2+ (3.11)

+
1

6

1ˆ

0

1ˆ

0

fX (XY Z,ZY X, a1, a2) da1da2

1ˆ

0

q1 (XY Z, a1) da1 =
1

6
+

1

6

1ˆ

0

1ˆ

0

fY (XY Z, Y XZ, a1, a2) da1da2+ (3.12)

+
1

6

1ˆ

0

1ˆ

0

fY (XY Z,ZY X, a1, a2) da1da2

Using the IC condition (3.10) we can show that
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1ˆ

0

p1 (XY Z, a1) da1 = p1(XY Z, 1) + q1(XY Z, 1)−
1ˆ

0

q1 (XY Z, a1) a1da1 −

−
1ˆ

0

1ˆ

a1

q1 (XY Z, x) dxda1 = p1(XY Z, 1) + q1(XY Z, 1)−
1ˆ

0

q1 (XY Z, a1) a1da1 −(3.13)

−
1ˆ

0

xˆ

0

q1(XY Z, x)da1dx = p1(XY Z, 1) + q1(XY Z, 1)−
1ˆ

0

q1(XY Z, a1) [2a1] da1

We can prove the following theorem.

Theorem 3.2. For the uniform distribution the optimal mechanism rules are char-

acterized by

fY (XY Z, Y XZ, a1, a2) = 1 iff a1 ≥ a2

fY (XY Z,ZY X, a1, a2) = 1 iff a1 + a2 ≥ 1.157

Thus, inefficiency occurs only when the preference ranks of two players are opposite

to each other and when the sum of utilities of the second-best alternative is between

1 and 1.157.

Proof. Using lemma 2 the equation (3.13) simplifies to

1ˆ

0

p1 (XY Z, a1) da1 = p1(XY Z, 1) + q1(XY Z, 1)− 1

6
−

−1

3

1ˆ

0

1ˆ

0

a1f
Y (XY Z, Y XZ, a1, a2) da1da2 −

1

3

1ˆ

0

1ˆ

0

a1f
Y (XY Z,ZY X, a1, a2) da2da1
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Hence, using (3.11) and (3.12), we derive

2

3
+

1

6

1ˆ

0

1ˆ

0

fA(XY Z, Y XZ, a1, a2)da1da2 +
1

6

1ˆ

0

1ˆ

0

fA(XY Z,ZY X, a1, a2)da1da2 =

= p1(XY Z, 1) + q1(XY Z, 1) −(3.14)

−1

3

1ˆ

0

1ˆ

0

a1

[
fB(XY Z, Y XZ, a1, a2) + fB(XY Z,ZY X, a1, a2)

]
da1da2

Due to symmetry reasons and dropping constant terms, we can concentrate on

maximizing the following part of total ex ante welfare

EU (XY Z, Y XZ, a1, a2) + EU (XY Z,ZY X, a1, a2) =

=
1

6

1ˆ

0

1ˆ

0

fX (XY Z, Y XZ, a1, a2) (1 + a2) da1da2+

+
1

6

1ˆ

0

1ˆ

0

fY (XY Z, Y XZ, a1, a2) (1 + a1) da1da2+

+
1

6

1ˆ

0

1ˆ

0

fY (XY Z,ZY X, a1, a2)(a1 + a2 − 1)da1da2

The relevant constraints for maximizing this part of the total welfare are incentive

compatibility constraint for a first player when her rank is XY Z (3.14) and two

similar constraints for a second player, when his ranks are Y XZ and ZY X. Let’s

assume that Lagrange multipliers corresponding to these constraints are: λ, µ1, µ2.
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Incorporating all three IC constraints, the relevant part of a Lagrangian becomes5

6L =

1ˆ

0

1ˆ

0



fY (XY Z, Y XZ, a1, a2) (1 + a1 − 2λa1 − µ1) +

+fY (XY Z,ZY X, a1, a2) (a1 + a2 − 1− 2λa1 − 2µ2a2 + µ2) +

+fX (XY Z, Y XZ, a1, a2) (1 + a2 − λ− 2µ1a2)+

fX (XY Z,ZY X, a1, a2) (−λ+ µ2)


da1da2

(3.15)

Assuming symmetry in mechanism rules for different players and voting profiles,

λ = µ1 = µ2 and guessing that optimal λ < 0.5 we get the following optimal

mechanism rules

fY (XY Z, Y XZ, a1, a2) = 1 iff a1 ≥ a2 (3.16)

fY (XY Z,ZY X, a1, a2) = 1 iff a1 + a2 ≥
1− λ
1− 2λ

> 1 (3.17)

Thus, we can achieve full efficiency in the case of (XY Z, Y XZ) profile, but there

is some inefficiency in a (XY Z,ZY X) profile. As was pointed out by Borgers and

Postl (2009) such a rule for (XY Z,ZY X) pair resembles the optimal rules in the

public good provision literature. Indeed, there are certain similarities between the

two models as in our model probability of getting a first-best option may serve

essentially as money, while second-best alternative can be thought of a public good,

preference for which is varied and has to be revealed. The fact, that the optimal rule

in our paper resembles standard optimal rules, while in Borgers and Postl (2009)

the rule is different, appears to be a testament to their very specific environment, in

which following the standard techniques of the provision of public goods literature

results in violation of non-negativity probability constraints.

5Technically for a1 = 1, we should also add λfX and λf y into the Lagrangian,
but this doesn’t change any results we are about to present.
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As was pointed out earlier, for a profile of preferences (XY Z,ZY X) it does not

matter for efficiency whether X or Z is chosen when a1 +a2 ≤ 1, which means that

there is greater freedom in choosing fX(XY Z,ZY X, a1, a2) and fZ(XY Z,ZY X, a1, a2)

to satisfy incentive compatibility constraints. Indeed, because of this, the only term

which mattered for incentive compatibility was only expected probability of choos-

ing first alternative conditional on a (XY Z,ZY X) profile. This can be seen from

plucking back the optimal mechanism rules into a non-integrated incentive compat-

ibility constraint.

For a1 >
λ

1−2λ
, we derive

1ˆ

0

fX (XY Z,ZY X, a1, a2) da2 =
λ

(1− 2λ)
+ a1 − a2

1 (3.18)

and for a1 <
λ

1−2λ
we get

1ˆ

0

fX(XY Z,ZY X, a1, a2)da2 =
λ

(1− 2λ)
− 1

2

λ2

(1− 2λ)2 + a1 −
1

2
a2

1 (3.19)

So, there are multiple mechanism rules that are optimal in this context since

the only thing that can be pinned down is the expected probability of choosing A

or C alternative in a (XY Z,ZY X) case given a1. To find λ, we have to use the

condition that integrated probabilities should add up to one. Integrating (3.18) and

(3.19) on the corresponding intervals of a1 it follows from the above that

1ˆ

0

1ˆ

0

fX (XY Z,ZY X, a1, a2) da1da2 =
λ

(1− 2λ)
− 1

3

λ3

(1− 2λ)3 +
1

6
(3.20)
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and similarly, for the second player

1ˆ

0

1ˆ

0

fZ(XY Z,ZY X, a1, a2)da1da2 =
λ

(1− 2λ)
− 1

3

λ3

(1− 2λ)3 +
1

6
(3.21)

and incorporating mechanism rule (3.17) for fY (XY Z,ZY X, a1, a2) we get

1ˆ

0

1ˆ

0

fY (XY Z,ZY X, a1, a2)da1da2 =
1

2

(
1− λ

1− 2λ

)2

(3.22)

Summing up (3.20) (3.21) and (3.22) (one can think of this equation as summing up

vectors of probabilities of choosing A alternative, rows of probabilities of choosing

C alternative and summing up probabilities of choosing B alternative), we get

1 =
2λ

(1− 2λ)
− 2

3

λ3

(1− 2λ)3 +
5

6
− λ

1− 2λ
+

1

2

λ2

(1− 2λ)2

and solving the above equation we get that λ
1−2λ

is equal to roughly 0.157. So, the

inefficiency for the uniform case is relatively small. 6

3.5 Conclusion

Linking the two parts of this research together, we would like to point out that

whenever the opportunities to reveal information about preferences are limited as

in the section on voting, strategic voting becomes an instrument through which

6In the appendix I show that with suggested
1́

0

fA(XY Z,ZY X, 1, a2)da2 and

1́

0

fC(XY Z,ZY X, 1, a2)da2 the relevant probabilities always lie in the range from

zero to one. Also I show that global IC conditions are satisfied.
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different cardinal intensities are realized. In such environments where opportunities

to reveal cardinal intensities are scarce agents implicitly cooperate in such a way

that for any distribution function generating utility, welfare in equilibrium with

strategic voting is always higher than in an equilibrium with sincere voting.

We have also seen that employing mechanism design can substantially increase

ex ante welfare with only minor losses compared to the first best. Also, the optimal

rules appear to be following the standard optimal rules of the public good provision

literature.

We would also like to highlight that, while in this paper we assumed that only

very limited information is known about other player types, it is an open question

of how information structure and precision of information influences strategic vot-

ing and total welfare. The environment of Gibbard-Satterthwaite corresponds to

common knowledge of the whole preference profile, which leads to large amount of

strategic voting. At the same time, in an environment, where individuals do not

know anything about preferences of others, the optimal strategy will often be to vote

sincerely. In this respect, it is important to investigate how social welfare depends

on information structure. A conjecture that one may make is that as precision of

information increases, first, there are wider possibilities of realization of preference

intensities, but later (as the precision gets very high), strategic voting is used too

often, which leads to bad voting outcomes. Thus, there might exist a possibility of

non-monotonic relation between social welfare and precision of information. We be-

lieve that studying benefits of the strategic voting and corresponding mechanisms

as a function of information structure is an exciting area for further research.
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3.6 Appendix 1. Non-negativity of probabilities

and global IC conditions.

Let’s show that with suggested mechanism rules of section 4, the probabilities, of

getting X or Z,
1́

0

fX(XY Z,ZY X, 1, a2)da2 and
1́

0

fZ(XY Z,ZY X, 1, a2)da2, al-

ways lie in the range from zero to one.To do this it is sufficient to check that

0 ≤
1ˆ

0

fX(XY Z,ZY X, a1, a2)da2 +

1ˆ

0

fY (XY Z,ZY X, a1, a2)da2 ≤ 1

For a1 <
λ

1−2λ
, we derive

1ˆ

0

fX(XY Z,ZY X, a1, a2)da2 +

1ˆ

0

fY (XY Z,ZY X, a1, a2)da2 =

=
λ

(1− 2λ)
− 1

2

λ2

(1− 2λ)2 + a1 −
1

2
a2

1

which is minimal at a1 = 0 and equal to λ
(1−2λ)

− 1
2

λ2

(1−2λ)2
> 0 and maximal at

a1 = λ
1−2λ

and equal to 2λ
(1−2λ)

− λ2

(1−2λ)2
< 1.

For a1 >
λ

1−2λ
, we get

1ˆ

0

fX(XY Z,ZY X, a1, a2)da2 +

1ˆ

0

fY (XY Z,ZY X, a1, a2)da2 =

=
λ

(1− 2λ)
+ a1 − a2

1 +

(
a1 −

λ

(1− 2λ)

)
= 2a1 − a2

1
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which is minimal at a1 = 1−λ
1−2λ
− 1 and equal to 2λ

(1−2λ)
− λ2

(1−2λ)2
> 0 and maximal at

a1 = 1 and equal to 1. So, we can conclude
1́

0

fZ(XY Z,ZY X, a1, a2)da2 is always

in the range from zero to one.

We also want briefly to show that misreporting one’s preference ranking is never

optimal. Using the mechanism rules we derive that utility is given by

U1 (XY Z, a1) =
2

3
+

1

6
a1 +

1

6
a2

1 +
1

6

λ

1− 2λ
(1− a1)

for a1 >
λ

1−2λ
, and

U1 (XY Z, a1) =
2

3
+

1

6
a1 +

1

12
a2

1 +
1

6

λ

1− 2λ

(
1− 1

2

λ

1− 2λ

)

for a1 <
λ

1−2λ

We also find that misreporting one’s type as XZY is maximized when second-

best (mis)report of a
′
1 = 0 for any a1, which results in the total utility of

UXZY,0
1 (XY Z, a1) =

2

3
+

1

6

λ

1− 2λ
(1− a1)

(
1− 1

2

λ

1− 2λ

)
+

1

6
a1

which is always smaller than the above two utilities.

Similarly, misreporting one’s type to Y XZ, utility is maximized with the sub-

sequent (mis)report of a
′
1 = 1 for any a1, resulting in the total utility of

UY XZ,1
1 (XY Z, a1) =

1

2
+

1

3
a1 +

1

6

λ

1− 2λ
a1 −

1

6

λ

1− 2λ

which is also always smaller than truthful reporting.

Observing the mechanism rules, it becomes clear that all other misreports are

always worse than sincere reporting.
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3.7 Appendix 2. Proof of lemma 2.

In this section we show that the conjecture used in section 4 is true for the uni-

form case. Under uniform case equation (3.13), which is an integrated incentive

compatibility constraint for a first player with a profile XY Z, takes the following

form

1

6

∑
R2

1ˆ

0

1ˆ

0

[
fX (XY Z,R2, a1, a2) + a1f

Y (XY Z,R2, a1, a2)
]
da1da2 =

= p1(XY Z, 1) + q1(XY Z, 1)

Incorporating the fact that f z () = 1 − fx () − f y () and ignoring constant terms,

we can represent the total welfare conditional on the first player having preference

profile XY Z by (abusing notation we drop XY Z and a1, a2 from mechanism rules

and we indicate the report of a preference of the second player by a lower index)

the following term

6W =

1ˆ

0

1ˆ

0

[
2fXXY Z + (a1 + a2) fYXY Z + (2− a2) fXXZY + (a1 − a2) fYXZY

]
da1da2 +

+

1ˆ

0

1ˆ

0

[
(1 + a2) fXYXZ + (1 + a1) fYY XZ + (1− a2) fXY ZX + (1 + a1 − a2) fYY ZX

]
da1da2

+

1ˆ

0

1ˆ

0

[
a2f

X
ZXY + (a1 − 1) fYZXY + (a1 + a2 − 1) fYZY X

]
da1da2

Thus, introducing Lagrange multipliers, λ1 for the integrated incentive compatibil-

ity constraint of a type XY Z of the first player and µ1, µ2...µ6 for every type of the

second player, we can write down the Lagrangian as we did in section 4. Writing
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down and comparing the coefficients for every fXR2
and fYR2

we get the results of the

conjecture.
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