
 
 
 

ESSAYS IN ECONOMIC THEORY 
 
 

Charles Roddie 

 

 

A THESIS PRESENTED TO THE FACULTY  

OF PRINCETON UNIVERSITY 

IN CANDIDACY FOR THE DEGREE  

OF DOCTOR OF PHILOSOPHY 

  

RECOMMENDED FOR ACCEPTANCE  

BY THE DEPARTMENT OF ECONOMICS 

 

Adviser: Wolfgang Pesendorfer 

 

 

November 2008 



 

 

 

 

 
© Copyright by Charles Roddie, 2008. All rights reserved.  



 

 

 

 
 

Acknowledgements 

 

I am grateful to Wolfgang Pesendorfer for advice and support and to 
Stephen Morris, Dilip Abreu, Satoru Takahashi, Thomas Romer, Drew 

Fudenberg, and George Mailath for valuable discussions. 

 

 

 

 

 

Dedication 

 

This thesis is dedicated to my family, my friends and my church, with 
gratitude for their constant support. 

 

 

 



Contents

Abstract iii

1 Repeated Signalling and Reputation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Equilibrium selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 The Iterated Riley solution . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 The Iterated Riley equilibrium and the D! condition . . . . . . . . . . . 14

1.6 Limit properties of the Iterated Riley equilibrium . . . . . . . . . . . . . 17

1.7 Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9 Further work and extensions . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 A Repeated Signalling Model of Reciprocity 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Riley equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Re�nement and equilibrium selection . . . . . . . . . . . . . . . . . . . . 45

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Mobility and redistribution with non-linear taxes 49

i



3.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 The movement phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 A weaker result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 A stronger result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

ii



Abstract

In the �rst chapter, �Repeated signalling and reputation�, a signaller repeatedly signals
his type to an uninformed player. The paper adapts the divinity re�nements of the
static signalling game to the repeated signalling game, selecting a dynamic version of the
Riley equilibrium, de�ned iteratively, in which types separate minimally in each period.
The model provides an alternative framework for studying reputation, generating under
appropriate limits a modi�ed Stackelberg property: each type above the lowest takes the
action that maximizes Stackelberg payo¤s, subject to separating from the lowest type.
In contrast to the usual approach to reputation there are no behavioural types. It can
be solved under arbitrary discount factors of both players: if the signaller discounts, the
result above holds with the signaller�s Stackelberg payo¤s replaced by simply de�ned
�discounted Stackelberg� payo¤s. If the respondent has preferences not only over the
actions but also over the type of the signaller, a di¤erential equation characterizes the
limit, combining reputational and pure type-signalling motives. Applications include
work incentives, reputations for product quality, and limit pricing.

The second chapter, �A two-way repeated signalling model of reciprocation�, studies
a model with two signallers who signal their good will to each other by acting generously.
The incentive to signal good will is that preferences of each type are dependent not only
on one�s own good-will but also on the perceived good-will of the other. The model is
found to be solvable as a �nite game and as an in�nite game under a Markov assumption
and the solution is characterized.

The third chapter, �Mobility and redistribution under general taxes�, studies taxa-
tion and redistribution in a multi-regional setting with free mobility. The situation is
described by a two-stage game with policy setting by regional governments and then
migration and work choice by the population. When taxes are allowed to be non-linear
and can discriminate between residents and immigrants, competition for taxable workers
implies severe restrictions on redistribution in a stable equilibrium. The restrictions are
independent of how policies in each region are generated, as long as policies are locally
Pareto e¢ cient. The formulation allows the study of tax policy under both moral hazard
and mobility. There is a clean division between these two issues, both of which reduce
the ability of regions to redistribute wealth.
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Chapter 1

Repeated Signalling and Reputation

1.1 Introduction

A signalling model of reputation

The economic idea of reputation is that a patient player by taking a certain action may
cause others to expect him to do the same thing in the future, even if it will be against
his immediate interests. By doing this he has e¤ectively the ability to commit to any
action, receiving (close to) Stackelberg payo¤s1. In the standard model of reputation
([12], [13], [19]) this conclusion requires the possibility of the patient player being a be-
havioural or commitment type. Such a type uses a �xed exogenous strategy, independent
of expectations about the other player�s strategy; in the simplest case this strategy is a
particular action that is always taken. The normal type(s) of the long-run player can
then develop a reputation for one of these actions over time by repeatedly mimicing one
of these behavioural types, if his discount factor is high enough.

The signalling model of reputation proposed here has a di¤erent logic. Here there are
only normal types of the signaller, giving a range of preferences. Instead of pooling with
a behavioural type, each normal type separates from "worse" types. Types are correlated
over time and this separation occurs at every stage. The signaller wants to be seen as a
higher type and this give an incentive to take higher actions than are myopically optimal:
by taking a higher action today, the signaller will be seen as a higher type today, and
so will be expected expected to be a higher type tomorrow, and so expected to take a
higher action tomorrow, leading to more favourable treatment by the other player. This
is the reputational incentive to take higher actions than would be myopically optimal.

Suppose that types are unlikely to change from one period to the next (an assumption)
and that each type�s action does not change much from a given period to the next (a
limit property as the length of the game tends to in�nity). What generates a Stackelberg

1The Stackelberg payo¤ is the payo¤ in the stage game to a player who can commit to any action,
while the other player best-responds. A Stackelberg action maximizes this payo¤.
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property is that by taking an action, the signaller signals that he is the type that preferred
to take this action, and will be expected to be the same type in the following stage, and
so to do (approximately) the same action in the next period. This holds only when the
signaller chooses an action that is taken with positive probability by some type; the set
of these such actions in the limit determines how the Stackelberg result is quali�ed.

Assume that the signaller is patient and that the receiver�s preferences are over actions
only and do not involve the signaller�s type - as in standard reputation models. Taking
the limit as the number of periods from the end of the game tends to in�nity, as types
become dense in some interval, and when type change becomes in�nitely unlikely, we get
the following reputation result: The lowest type takes his myopically optimal action. All
other types take the actions that give them the greatest Stackelberg payo¤, subject to
separating (by the lowest type�s Stackelberg payo¤) from the lowest type2. So low types
take the minimal action that separates them from the lowest type, while high types take
their Stackelberg actions. The limit result is a combination of a separation property, such
as is often seen in signalling models, with a Stackelberg property, often seen in reputation
models.

The signalling model is more tractable than standard reputation models tend to be,
generating a unique, simple and calculable solution under the re�nement. In particular,
the model remains solvable under general discount factors of both players. Standard
reputational models require the reputation-builder to have discount factor 1 or tending
to 1, and often myopic play by the other player, or at least a level of patience that
becomes in�nitely less than the reputation-builder�s. In the repeated signalling model,
the respondent�s discount factor has no e¤ect on the solution, and when the signaller has
discount factor other than 1, the result given above only requires Stackelberg payo¤s to
be replaced with simply de�ned "discounted Stackelberg" payo¤s.

The type of the signaller and actions of both players lie in intervals of real numbers,
with monotonicity properties that will be spelled out presently. This is a loss of generality
from the standard reputation model, which can work with very general stage games.
But it is a natural speci�cation for a large class of applied models. Examples include
developing reputations for product quality, with the signaller�s type being �rm quality,
monetary policy of a central bank, with type being toughness on in�ation, and work
incentives, with type being ability. As a model of work incentives it could be seen as
a development of Holmstrom�s model [15]. In that model the worker signals his ability,
but without knowing his own ability - which makes strategies simpler. Fudenberg and
Tirole [14] refer to this type of model as a "signal-jamming" model. A combination of
signal, the signaller�s action, and random noise is observed at each stage. In a particular
speci�cation of incentives, with work and ability being perfect substitutes, and with
normal distributions of noise, there is a Stackelberg result. A repeated signalling model
does the same type of thing with a more standard approach to signalling, and allowing
for more general speci�cations of payo¤s and information.

Mailath and Samuelson ([21]) have also studied reputational issues in terms of dy-

2That is to say, they take actions that make the lowest type not want to mimic them.
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namic signalling. In a two-type model they �nd that reputation e¤ects can be supported
with the high type separating from the low type. In common with the repeated signalling
model, the e¤ect is generated by separation from bad type(s) rather than pooling with
a "good" type. The importance of types being changeable over time is also emphasized.
There is no clear relation to Stackelberg actions and payo¤s: their interest is in qualita-
tively supporting reputational concerns and also seeing how reputation can be built up
and lost gradually.

From static to repeated signalling

Signalling games have been a fruitful area in pure and applied work, beginning with
Spence�s model of education and job-market signalling [28]. See Sobel [27] for a survey
of applications. In the canonical monotonic signalling model the signaller has a type,
which is private information, and takes an action in a space embedded in R or Rn. Types
are a subset (�nite or continuum) of some real interval, and higher types have more
of a preference for higher actions, a single-crossing condition. The respondent observes
the action, forms a belief about the type, and replies accordingly, treating higher types
more favourably - a preference given by external considerations. In Spence�s example,
types who �nd education easier are given a higher wage because they are expected to
do better work: this is not modelled but is the reason for the respondent�s preference.
In the repeated signalling model both players move simultaneously in the stage game3

and as described above, which allows the study of reputation, and there are reputational
reasons for higher types being treated more favourably. Beyond the usual assumptions
of monotonic signalling games there is currently an additive separability assumption:
the signaller�s stage-game payo¤ is separable between the respondent�s action and the
signaller�s type and action. This provides uniqueness of equilibrium in the stage game and
allows simple characterization of the solution and allows discounted Stackelberg payo¤s
to be de�ned simply.4

There are many perfect Bayesian equilibria of the one-shot signalling game, some
separating and some pooling, and the most used equilibrium of the signalling game is
the Riley equilibrium, which is minimally separating. That is to say no two types take
the same action with positive probability, and each type takes his most preferred action
given the requirement of separating from lower types (so that no lower type would want
to mimic him). In a �nitely repeated signalling game, applying this property at every
stage, starting with the last, gives what I call the iterated Riley equilibrium, in which
types separate minimally at each stage. This means that at every stage the current type
of the signaller is revealed. (Type is changeable but correlated over time, following a
Markov process). This equilibrium has a particularly simple form, with the signaller�s
actions depending only on his current type and how many periods he is from the end of
the game, and the respondent responding myopically (regardless of his actual discount

3Although this has not been formally shown, there will be no change to any results if the respondent
moves �rst.

4Work is in progress to relax this assumption.
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factor) to current expectations of play. To calculate the signaller�s strategy in a given
period, we only need to �nd the minimally separating equilibrium between his current
action and the respondent�s response in the next period. This response depends on the
signaller�s strategy in the next period and it is an inductive calculation.

From a theoretical angle, attempts were made to cut down the number of equilibria
with restrictions on beliefs o¤ the equilibrium path, some beliefs being considered more
reasonable than others. Particularly successful are the set of related re�nements that go
by the name "divinity", including D1, de�ned in Cho, Kreps [5].5 In this paper I consider
a re�nement, labelled D!, which is an extension of divinity to the repeated signalling
game. The spirit of the re�nement D! is this: sub-optimal actions by the signaller are
interpreted as over-con�dence, over-con�dence about the respondent�s response to these
actions. I de�ne the justifying beliefs of an action to be those beliefs about the respon-
dent�s immediate response that would justify the action over the equilibrium action. And
the criterion D! is that if one type has a smaller set of justifying beliefs for a particu-
lar action than another type, then the �rst type is ruled out, assuming that the second
type was given positive probability before the action was observed. Suppose, informally,
that larger belief-mistakes are in�nitely less likely than smaller ones, uniformly across
types. Then any type requiring a larger belief-mistake (overcon�dence) to justify an ac-
tion than another type must be assigned in�nitely less probability than this other type.
The criterion D! is a weakening of this condition.

Cho, Sobel [6] show that in monotonic signalling games the D1 criterion selects the
Riley equilibrium uniquely (assuming pooling at the highest action is ruled out). A
similar logic is used here to show that D! uniquely selects the iterated Riley equilibrium.
There are two steps. First pooling is eliminated. At any point in the game if two types
pool on the same action, it is shown that by taking a slightly higher action, the signaller
is considered to be at least the higher type, so payo¤s increase discontinuously on raising
the action from this point. Second, separating is shown to be minimal. If a type does
more takes a more costly action than necessary to separate from the preceding type then
changing the action slightly is shown not to a¤ect beliefs, so the original action cannot
be optimal.

When type-change from period to period becomes very unlikely I �nd limit properties
as the number of periods from the end of the game tends to in�nity, calculating a limit
map from types of the signaller to actions. When types become dense in an interval we
get the modi�ed Stackelberg result given above. This happens when the respondent has
preferences over actions of both players, and not over the type of the signaller, so that
signalling incentives derive entirely from reputational concerns. When the respondent has
preferences over actions and the signaller�s type, rewarding both high expected actions
and high types, I �nd that the limit map from types to actions is characterized by a
di¤erential equation. This is the same di¤erential equation as in the Riley equilibrium of

5Other criteria less connected to the current work include the intuitive criterion of Cho, Kreps [5],
which provides a unique solution when there are only two types, strategic stability [18], which is de�ned
on �nite action spaces, the weak condition of "undefeated equilibium" (Mailath, Okuno-Fujiwara, and
Postlewaite [20]), and evolutionary stability ([23]).
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the single-stage game when the signaller moves �rst, so is already a Stackelberg leader,
with a di¤erent starting point. Thus the limit combines commitment and pure type-
signalling motives, commitment motives arising from reputational considerations.

Contents

Chapter 2 de�nes the model and states its main assumptions. Chapter 3 de�nes perfect-
Bayesian equilibrium and the D! re�nement. I de�ne the iterated Riley solution in
chapter 4, and show how it results uniquely from the D! re�nement in chapter 5. In
chapter 6 limit properties are found as type change becomes very unlikely and as the
number of periods tends to in�nity. Limit properties of the reputation case are derived
and discussed in chapter 7, and limits of the general case in chapter 8. Chapter 9 proposes
further work.

1.2 Model

Actions, types and utilities

There are two players and k periods. In each period both players take actions simul-
taneously; actions are observable. The signaller takes actions from the set A � R,
A = [amin; amax]; the respondent takes actions from R � R, R = [rmin; rmax].

The respondent has no private information; he has a type in each period (a "period-
type") which determines both players�payo¤ functions in the stage game in that period.
The signaller in each period knows his current and previous period-types. Each period-
type lies in a �nite set T � R, T = f�0; :::�hg. Let the global type, the vector of
period-types, of the signaller be tk 2 T k; the signaller�s period-type in period i is then
ti. A sub-vector of types tn 2 T n describes period-types in periods 1 to n.

The signaller has the discounted utility function U1 =
P

i �
i
1u1 (ti; ai; ri) from out-

comes O = (T �A�R)k to R, with u1 a continuous function T �A�R! R and with
0 < �1 � 1.

The respondent has utility function U2 =
P

i �
i
2u2 (ti; ai; ri) : O ! R, with u2 a

continuous function T � A�R! R and with 0 < d2.

Assumptions on u2

Assumption 1
R
u2(:; r)d�ta is strictly quasi-concave in r for any probability measure

�ta on T � A.

The above integral is continuous by continuity of u2 and so has a maximum in r
for each probability measure �ta. The quasi-concavity assumption ensures that there
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is a unique maximum. Call this maximum r� (�ta), the myopic best response of the
respondent to the belief �ta.

De�nition 1 For any measure �ta on T � A, let r� (�ta) = argmax
R
u2(:; r)d�ta

Assumption 2 Im(r�) � (rmin; rmax)

Assumption 3 Increasing response to types or actions:

u2 is di¤erentiable in the third argument and (@=@r)u2 (t; a; r) is strictly increasing in
(t; a).

Here (t1; a1) < (t2; a2) i¤ t1 � t2 and a1 � a2 with at least one inequality strict.

Assumptions 2 and 3 imply the following fact, which is their only role in this paper:
�xing a map between types and actions, if the distribution of types increases in the sense
of �rst order stochastic dominance, then the myopic best response of the respondent will
increase.

Fact 1 If � : T ! A is a strictly increasing function, and f : T ! T � A by f(�) =
(�; �(�)), and if �t < �0t in the sense of �rst order stochastic dominance, then r

� (�ta) <
r� (�0ta), where �ta = �t � f�1 and �0ta = �0t � f�1.

Proof. r� (�ta) maximizes the quasi-concave function of r,
R
u2 (t; a; r) d(�t � f�1)(t; a),

so (@=@r)
R
u2 (t; a; r) d(�t�f�1)(t; a) =

R
(@=@r)u2 (t; a; r) d(�t�f�1)(t; a) = 0 at r� (�ta),

so
R
(@=@r)u2 (t; a; r) d(�

0
t � f�1)(t; a) > 0 at r� (�ta), but = 0 at r� (�ta), so we must have

r� (�ta) < r� (�0ta) by quasi-concavity of
R
u2 (t; a; r) d(�

0
t � f�1)(t; a).

Say that any function br : �(T �A)! R for which the above property holds satis�es
increasing response to types or actions.

Assumptions on u1

Assumption 4 Additive separability: u1(t; a; r) � va(t; a) + vr(r)

Assumption 5 vr is strictly increasing

The �rst monotonicity assumption for the signaller, assumption 5 requires that higher
actions by the respondent are preferred by the signaller. It is equivalent to u1(t; a; :) being
a strictly increasing function for each t; a.

Assumption 6 Single crossing: If a1 < a2 and t1 < t2 then va (t2; a2) � va (t2; a1) >
va (t1; a2)� va (t1; a1)

6



The second monotonicity assumption, what assumption 6 expresses is that higher
types of the signaller are more disposed to taking higher actions.

It follows from this assumption that if a1 < a2 and t1 < t2 then u1 (t1; a1; r1) �
u1 (t1; a2; r2) implies u1 (t2; a1; r1) < u1 (t2; a2; r2); and this is condition that will be used
in this paper

Assumption 7 va(t; a) is strictly quasi-concave in a for all t.

This is equivalent to u1(t; a; r) being strictly quasi-concave in a for all t and r. This
assumption will be used to give unique solutions to optimization problems by the signaller.
In particular, �xing r, there is a be a unique action for any type which maximizes va(t; a):
this is implied by quasi-concavity and continuity of va. We will call this action a�(t).

De�nition 2 a�(t) = argmaxa va(t; a)

Assumption 8 Undesirable amin and amax:

For each t 2 T , t > �0, va(t; a) is not maximized at amin.

For any r1; r2 2 Im(r�), t 2 T , va(t; a�(t)) + vr(r1) > va(t; amax) + vr(r2)

The undesirable amax assumption is that no change in the respondent�s action (within
the myopic best-response set Im(r�)) will compensate for taking the action amax over
a�(t).

It is important to eliminate the possibility of pooling at the highest action because
then my game structure in which types are revealed each period breaks down. Also,
without pooling there will be a simple map from types to actions in a given period,
independent of the current type distribution, while the type-action correspondence for a
pooled equilibrium depends on the type distribution.

The undesirable amin assumption is needed to ensure that the map from types to
actions is always strictly increasing, required to generate the limit reputation result.
If the respondent has a concern for type as well as actions then we do not need this
assumption as the map will be strictly increasing from the penultimate stage back. (It
is possible that a reworking of the limit results will eliminate the need for either of these
alternatives.)

Fact 2 If the above assumptions 4-8 on u1 are satis�ed by u1 = va(t; a)+ vr(r) then they
are satis�ed by uE = va(t; a) + �1vr(r) for 0 < �1 � 1.

7



Histories, strategies and beliefs

The histories after the ith period are Hi := (A�R)i. The whole space of histories up to

the last period is the disjoint union H :=
k�1
t
0
Hi.

The respondent observes past play, so his strategy in period i is a function of Hi�1.
His global strategy is a function of the space of histories H. Take this to be a behaviour
strategy, giving a mixed action in �(R) at every history: his stragegy is a function
s2 : H ! �(R) such that s2(:)(�) is a measurable function H ! R for any measurable
� � R. Throughout this paper �(X) for any measure space X denotes the space of
probability measures on X.

The signaller, in addition to observing past play, knows his current and previous

period-types. So de�ne: HTi := (A � R)i � T i+1; HT =
k�1
t
0
HTi. ("Histories with

types".) His strategy is a function s1 : HT ! �(A) satisfying: s1(:)(�) is a measurable
function HT ! R for any measurable � � A.

Since we are dealing with continuous action spaces for both players the measurability
assumptions above are needed to be able to de�ne the progress of the game given the
strategies. See the section below on the outcome of the game and the corresponding
de�nitions in the appendix to see why this is so.

The respondent at any history hi 2 Hi, i < k, has a belief �(hi) 2 �(T i+1) about
the signaller�s types up to that point.

There is an exogenously given distribution of types in which there is correlation
between types from one period to the next. This process will be assumed to be Markov.
This correlation will give the motive for the signaller to signal a higher type in a given
period: by signalling a higher type he will be thought to be a higher type in the next
period. A special case is when types are constant across periods. But we are particularly
interested in processes which have full support, so that given any type distribution in a
given period, the type distribution in the next period has full support. The equilibrium
re�nement that I will propose solves the game under this assumption.

The regeneration process is described by the function 	 : tiT i ! �(T ). If types
from periods 1 to i are described by ti 2 T i, 	(ti) describes the distribution of types in
period i+ 1.

Assumption 9 Monotonic Markovian type-change:

	(:) is a Markov process, generated by the function  : T ! �T and the initial
distribution 	(()).

 (t) is strictly increasing in t in the sense of �rst-order stochastic dominance.

Assumption 10 Type regeneration: 	(ti) has full support for any ti 2 T i.

8



The outcome of the game

De�ne an outcome of the game to be a vector of actions of each player and period-types
of the signaller, i.e. an element of O = (T �A�R)k, describing the entire progress of the
game. Once we have strategies s1, s2 and the type regeneration function 	 we can de�ne
from any point in the game hti the probability distribution of subsequent play and the
probability distribution of outcomes. Call the �rst distribution the continuation of the
game C+ (s1; s2) (hti) 2 �(T i � Ai �Ri) and the second distribution the completion of
the game C (s1; s2) (hti) 2 �

�
T k � Ak �Rk

�
.

Even though these are familiar notions in game theory, more care than usual needs
to be taken since we are dealing with continuous action spaces. Formal de�nitions of C
and C+ are given in the appendix. The measurability conditions on s1 and s2 are needed
here for C and C+ to be de�ned.

Perfect-Bayesian Nash equilibrium

We shall be examining perfect-Bayesian Nash equilibria of the game described above.
Although the concept is standard, I give a formal de�nition which respects the particular
construction of this model.

De�nition 3 (s1; s2; �) is a perfect-Bayesian Nash equilibrium if:

1. For each history with types hti, s1 maximizes
R
U1d[C (s1; s2) (hti)]

2. At any history hi, s2 maximizes:R R
U2d[C (s1; s2) (hi; t

i+1)]d[� (hi) (t
i+1)]

3. For any hi 2 Hi, � (hi) satis�es:

3.a) � (hi) respects Bayes�rule where applicable:

If � (hi) gives positive probability to some vector ti+1 2 T i+1 of period-types in the
�rst i + 1 periods, and s1 (hi; ti+1) gives positive probability to action a, then for any r,
�(hi; (a; r)) is the usual Bayesian update of � (hi).

3.b)� (hi) respects 	 between period i and period i+ 1:

� (hi) (fti+1g) = � (hi) (ftig � T ):	(ti) (ti+1)

The integral in 1. is expected utility for the signaller. The integral in 2. is the
expected utility of the respondent given that (hi; ti+1) is reached, integrated over beliefs
about ti+1.

Types with the same period-types up to period i but di¤erent future period-types
behave in the same way up to period i. Condition 3.b) means that even when a zero-
probability event is observed by the signaller, he should not doubt the regeneration
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process 	 but given his assessment of the period-types in periods 1 to i his assessment
of future period-types will be consistent with 	.

1.3 Equilibrium selection

The re�nement D!

The proposed re�nement is based on this motivation: out of equilibrium actions that are
sub-optimal for all types are considered to be mistakes made by a type in his perception
of the response to those actions.6 The type considered to be making the mistake a is
thought to become over-con�dent about the respondent�s immediate response to a and
that leads him to do a rather that his optimal equilibrium action. The set of beliefs
about responses to a that would cause type t to play a are called the (strictly/weakly)
justifying beliefs of a for t. Larger mistakes are considered in�nitely more improbable
than smaller mistakes, uniformly across types, leading to a type who would have had to
make a large error in his perception being considered in�nitely less likely than a type
who would have had to make a smaller error in order to take action a. The probability
of errors is itself in�nitely small, and no types make errors in equilibrium. This informal
argument supports the following re�nement D!: if the set of weakly justifying beliefs
for type t� is contained in the set of strictly justifying beliefs for type t��, and t�� was
considered possible (assigned probability > 0) before a was observed, then t� is given
posterior probability 0. The condition implies that beliefs have to move further from the
correct equilibrium beliefs for action a to be justi�ed for t� than for t��.

Justifying Beliefs

Given a perfect-Bayesian Nash equilibrium (s1; s2; �), de�ne at a history hn the justifying
beliefs of an action a for a player with tn+1 2 T n+1 as follows:

Let u� =
R
U1d[C (s1; s2) (hn; t

n+1)] be the expected utility of the optimal strategy s1
by the signaller.

Given an action a at history hn, the strategy of the respondent in the next period
is described by some function er : R ! �R giving the mixed response after the current
actions (a; r). If s02 is a strategy of the respondent, the corresponding function is the
function which takes r to s02(hn; (a; r)). The reason we describe the respondent�s next-
period strategy as a function is that he could potentially condition his next-period action

6It is also possible to de�ne a re�nement based on utility loss, as follows: if a type tn is assigned
positive probability at the beginning of a period and t0n is some other type and if t

0
n would lose more

utility from taking the action a than tn then t0n is assigned probability 0 after a is observed. Propositions
1 and 2 below still hold and the structure of all arguments can remain the same: additivite separability
makes these two re�nements work in a similar way. While this re�nement has the advantage of simplicity,
D! is potentially generalizable to the non-additive case and also does not rely on cardinal utility.
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on his current action and his current action could be mixed. er(:)(�) will be measurable
for measurable �. Now given such an er : R ! �R, de�ne the strategy s02(er) as follows:
s02(er) = s2 except at (hn; (a; r)) for all r, and s02(er)(hn; (a; r)) = er(r). This strategy by
the respondent is the same as the original one but changed in period n + 1 to respond
to (hn; (a; r)) with er(r) for any r. So it is changed in the next-period response to the
action a by the signaller. Now let �(a) be the set of strategies s01 of the signaller with
s01(hn; t

n+1) = a. Then u(er) = sups012�(a)
R
U1d[C (s

0
1; s

0
2(er)) (hn; tn+1)] is the maximum

utility of the signaller in response to s02, conditional on having to play a at the current
history.

De�nition 4 For each binary relation B2 f>;�;=g, JB (tn+1; hn; a) :=

fer : R! �R with er(:)(�) measurable for measurable �, such that u(er) B (u�)g
Call J> the strictly justifying beliefs, J� the weakly justifying beliefs, and J= the

barely justifying beliefs.

Note that an action a is optimal if the correct belief about the respondent�s response
given a -the equilibrium strategy - is a barely-justifying belief.

Given hn call the set fa : J> (tn; hn; a) 6= fg for some tng the justi�able actions. These
are the actions that are justi�ed for some type by some possibly erroneous belief about
the respondent�s response. Some actions may not be justi�ed by any belief, and the
respondent�s beliefs when confronted with these actions will not be speci�ed by the D!

criterion below.

De�nition of D!

De�nition 5 A perfect Bayesian equilibrium (s1; s2; �) satis�es D! if:

For any history hn = (hn�1; an; rn) and types tn1 , t
n
2 ,

if � (hn�1) assigns positive probability to tn2 ,

and if J� (tn1 ; hn�1; an) � J< (tn2 ; hn�1; an) 6= ;,

then � (hn) assigns probability 0 to tn1 .

1.4 The Iterated Riley solution

The Riley map

Consider the standard one-shot monotonic signalling game in which the signaller moves
�rst. Imagine that the signaller has utility uE(t; a; r) = va(t; a)+�1vr(r), and the respon-
dent response to the signaller�s perceived type is given by a stricly increasing function
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r00 : T ! R. The Riley equilibrium of this signalling game is the perfect Bayesian equilib-
rium in which types separate minimally. Separation implies that the lowest type �0 must
take his myopic optimal action a�(�0). Each subsequent type takes his myopic optimal
action, subject to separating from lower types. Given the monotonicity assumptions, it
is su¢ cient to require each type to separate from the previous type. De�ne RILEY (r00)
to be this equilibrium, specifying an action for each type. Given any strictly increasing
function r00 : T ! R, RILEY (r00) is de�ned inductively as follows:

De�nition 6 RILEY (r00) : T ! A

RILEY (r00) (�0) := a�(�0)

RILEY (r00) (�i) := argmaxa2Bi va (ti; a), where

Bi =
�
a 2 A : uE (�i�1; RILEY (r00) (�i�1) ; r00 (�i�1)) � uE (�i�1; a; r

00 (�i))
	

Assumption 5 ("undesirable amax") guarantees that the set of actions Bi for which a
lower type would not want to pretend to be the current type is non-empty. Existence
and uniqueness of the argmax above is guaranteed by single crossing and strict quasi-
concavity of uE. (As we saw earlier, uE must satisfy Assumptions 4-8 since u1 = va(t; a)+
vr(r) does.)

Each type�s action is strictly higher than the previous type�s by monotonicity (single
crossing and preference for higher responses). So by single crossing, if each lower type
does not strictly prefer take the subsequent type�s action, then any lower type does not
strictly prefer to take the action of a higher type. This is why in the function RILEY
above it was su¢ cient to require each type to separate himself from the previous type.

It turns out that the repeated signalling game can be solved by repeated use of
the RILEY function. If the signaller after his ith move is thought to be type t, the
respondent�s action in period i + 1 will be a function r00(t) of this t. If we only look at
actions of the signaller in period i and of the respondent in period i + 1 we have utility
for the signaller given by uE; this explains the use of the modi�ed utility function uE in
the de�nition above. Then given the response function r00, the signaller will take Riley
separating equilibrium actions RILEY (r00) in period i.

Note that the Riley equilibrium is de�ned without reference to any distribution of
types of the signaller. This fact is very important for analysis of the repeated game and
generates history-independence for the signaller.

The Iterated Riley solution

Under assumptions 1-9 we can now de�ne the "Iterated Riley equilibrium", a description
of play of both players on the equilibrium path. Assumption 10 (full support) will be
used later on to justify the Iterated Riley solution uniquely; it is not necessary to de�ne
it. In the Iterated Riley solution the signaller�s strategy is a function only of his current
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type and the stage of the game. His action is given by �1 : f0; :::k � 1g ! T ! A.
�1(j)(tk�j) will de�ne the action of type tk�j of the signaller in the (k � j)th period.

Let f(�) : T ! T � A, f(�)(�) = (�; �(�)), so that if � is a map from period-types
to actions, f(�) gives the type and action pair for any type.

�1 is de�ned inductively as follows:

De�nition 7 �1(0) = a�

Given �1(j), �1(j + 1) := RILEY
�
r00k�j

�
, where r00k�j(�) = r� ( (�) � f(�1(j))�1).

f(�1(j)) represents the map from types to type-action pairs in period k � j. Given
type � was believed to have been the signaller�s type in period k�j�1, the beliefs about
the type in period k � j will be  (�) and the belief about the type-action pair will be
 (�) � f(�1(j))�1. r00k�j(�) will be the myopic optimal action of the respondent in period
k � j, given that the signaller is thought to have been type � in period k � j � 1.

Assuming that �1(j) is a strictly increasing function, r00k�i is a strictly increasing
function by assumption 3 (increasing responses to types and actions) and assumption 9
(monotonic Markovian type change) and strictly increasing �1(j), allowingRILEY

�
r00k�j

�
to be de�ned, which gives a strictly increasing function �1(j + 1). This justi�es the de�-
nition.

The Iterated Riley solution can now be de�ned in terms of �1:

De�nition 8 s1; s2 are an Iterated Riley equilibrium if for histories on the equilibrium
path:

s1 ((a1; :::ai�1) ; (r1; :::ri�1) ; (t1; :::ti)) = [�1(k � i) (ti)], where [a] is the degenerate
probability measure placing all weight on a.

s2 ((a1; r1) ::: (ai; ri)) = r�( (�1(k � i)�1 (ai)) � f(�1(k � (i+ 1)))�1) for i � 1

s2(()) = r� (	(()) � f(�1(k � 1))�1)

To understand the nature of the Iterated Riley solution, consider �rst these conditions
on s1, and s2 given �1. The signaller�s strategy (on the equilibrium path) is described
very simply by �1: �1(j) gives the map from types to actions in the period k � j. It is
independent of previous play and only dependent on the period and the current period-
type. The respondent�s strategy has a more involved de�nition. In period i + 1, he
looks at the signaller�s last action, ai. Since we are on the equilibrium path this will
be in the image of �1(k � i). Since �1 is strictly increasing it is injective and so only
one type �1(k � i)�1 (ai) will ever take that action. Beliefs about the period-type in the
next period should be7 given by  (�1(k � i)�1 (ai)). Since �1(k � (i+ 1)) gives the map

7I have not speci�ed beliefs in the Iterated Riley solution, and they are mentioned here as an aid to
understand the de�nition.

13



from types to actions in the current period i + 1, the expected type-action pair will be
 (�1(k� i)�1 (ai)) � f(�1(k� (i+1))�1). The respondent�s action is the myopic response
r� to this. In the �rst period, the expected type distribution is 	(()) and the respondent�s
action is then r� (	(()) � f(�1(k � 1))�1).

Now consider the de�nition of �1. In the last period, subject to no signalling motives,
the signaller takes the myopic optimal action given by the function �1(0) = a�. If after
period i = k � j the signaller is believed to have period-i-type � , he can expect the
response r� ( (�) � f(�1(j))�1). There is a minimal separating equilibrium looking only
at actions in the current period and responses in the next, given by the RILEY map
applied to this response function and using utility uE with the response discounted by
the discount factor �1.

It is useful to specify a map F that gives �i+1 in terms of �i. Let the space of strictly
increasing functions from T to A be Inc(T;A).

De�nition 9 F : Inc(T;A)! Inc(T;A),

F (�) := RILEY (r00), where r00(�) = r� ( (�) � f(�)�1).

Then we have �1(i) = F ia�.

Note that the correspondence between the signaller�s type and his action in the period
j periods from the end is the same across games with a varying number of periods, all
other speci�cations constant.

1.5 The Iterated Riley equilibrium and the D!

condition

Here I will show the existence and uniqueness of the Iterated Riley equilibrium as a
perfect Bayesian-Nash equilibrium satisfying D!.

Supportability of the Iterated Riley solution

Proposition 1 Under assumptions 1 to 9, iterated Riley solution is supportable as a
perfect-Bayesian Nash equilibrium satisfying D!.

Proof. See appendix.

Note that the Assumption 10 (full support) is not necessary to support the Iterated
Riley solution as a perfect-Bayesian Nash equilibrium satisfying D!.

A particular Bayesian-Nash equilibrium is de�ned explicitly in the proof which satis-
�es the required properties. It has these properties:
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At any point in the game (not only on the equilibrium path but at all histories with
types) the signaller takes an action given by �1. At a history hi in which the signaller
has taken actions (a1; :::ai): respondent�s belief about the signaller�s period-i type is [�j]
if ai = �1(k � i)(�j). The respondent�s belief in any period is a monotonic function of
the previous action, and is always supported on a single type. Beliefs about the period-
type ti are unchanged after period i, on and o¤ the equilibrium path. Beliefs about the
period types after period i at history hi are deduced from the Markov process  . See the
section below on uniqueness for an explanation of why these beliefs satisfy D!. Given
these beliefs, the respondent then acts myopically based on his beliefs about the type
and action he can expect in the current period. This is because the action that he takes
has will have no e¤ect on the future course of the game.

Now suppose that separation is from previous types is always binding. Then beliefs
have a particularly simple form: if ai lies in [�1(k � i)(�j); �1(k � i)(�j+1)) beliefs about
the type are still [�j]: the respondent assumes it is the lower type making a mistake and
taking too high an action rather than a higher type taking too low an action. Below
�1(k � i)(�0) the type is believed to be [�0] and above �1(k � i)(�h) the type is believed
to be [�h].8

There will be other equilibria than the one checked that satisfy D!. But D! does
specify the equilibrium up to responses to unjusti�able actions. The signaller�s strategy
must be given by �1 for a D! equilibrium. The respondent must respond and form beliefs
as above after a justi�able actions; after an (out-of-equilibrium) unjusti�able action he
may form any beliefs and act accordingly.

Uniqueness

Proposition 2 Under Assumptions 1 to 10, in a perfect-Bayesian Nash equilibrium of
the model described in section 1 satisfying D!: The signaller�s strategy depends only on
the period and his type in that period via the function �1 de�ned above, by the equation
s1 ((a1; :::ai�1) ; (r1; :::ri�1) ; (t1; :::ti)) = [�1(k � i) (ti)].

The respondent�s strategy satis�es s2 ((a1; :::ai) ; (r1; :::ri)) = r�( (�1(k � i)�1 (ai)) �
f(�1(k � (i+ 1)))�1) whenever ai 2 Im(�1(k � i)�1).

And s2(()) = r� (	(()) � f(�1(k � 1))�1).

Proof. See Appendix.

Note that this equation for the signaller now holds at every history, not only on
the equilibrium path. The proposition implies an equilibrium satisfying D! must be an
Iterated Riley equilibrium.

8Cho, Sobel [6] claim that beliefs of this form always generate a D1 equilibrium of the single-stage
monotonic signalling game. This is not quite true: it is only true when separation from previous types
is a binding constraint in the Riley equilibrium.
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Two facts about D1 equilibria should be called to mind to understand how the Iterated
Riley solution is selected by the D! criterion. Firstly as discussed earlier the Riley
equilibrium selected is independent of the initial type distribution. A second and related
fact is that the beliefs of the respondent are categorical and regardless of the initial
distribution assign probability 1 to some type 9. The logic of D1 is strong enough to
outweigh any disparities in the probabilities of initial types: to express this in terms
of the intuitive understanding given above of the divinity criterion, a larger mistake is
in�nitely less likely uniformly across types than a smaller one, so if one type would require
a larger mistake to justify an observed action than another, then the latter is considered
in�nitely more probable, and so the �rst type is given probability 0 regardless of how
much more likely he was than the second type before the action was observed.

This same logic applies for D! in the repeated game. We will have at every stage
a single-stage signalling game and regardless of the history at any particular stage -
regardless of the current type-distribution ascribed to the signaller by the respondent -
there will be the same map from types to action given by the Riley equilibrium. And
while previous action by the signaller will alter the type-distribution expected in a given
period, beliefs by the respondent after the current action will be a function of that action
only and will be categorical in nature, ascribing probability 1 to a particular type.

The game is solved from the last period and the above logic applied at every stage.
Each action by the signaller in period i is paired with the respondent�s action in the
next period. In the last period there is no signalling incentive, and the signaller takes his
myopic optimal action a�. In period i for the signaller and period i+1 for the respondent,
given that the game has been solved for the remainder of the game (periods i+ 1 on for
the signaller and periods i + 2 on for the respondent) and generated the Iterated Riley
solution there, we can analyze the action in period i and response in period i + 1 in
isolation. This game will be monotonic because the respondent rewards the signaller for
signalling a higher type (see the de�nition of the Iterated Riley solution). The analysis
of this restricted game is like the analysis of the one-stage signalling game under D1.
Separation comes from the fact that if two players were to pool in equilibrium, by taking
slightly higher actions each could discontinuously increase the beliefs about him to beliefs
whose support has a minimum of at least the higher type. And minimal separation
comes from the fact that if a type were to take an action in equilibrium that is not his
myopic optimum given that he has to separate, then by moving to this myopic optimum
conditional on separation, he will (at least) maintain beliefs about him, and increase his
current period payo¤.

9For all important actions of the signaller: the "justi�able" ones in my terminology.

16



1.6 Limit properties of the Iterated Riley
equilibrium

First it is useful to note the continuity of the solution with respect to the various primi-
tives de�ning it.

Fact 3 The Iterated Riley solution �1(i) : T ! A, for each i, is continuous as a function
of va, vr, �,  , r�.

To see this, observe that the function RILEY (r00) : T ! A is continuous as a function
of uE and r00. F : Inc(T;A)! Inc(T;A) is then continuous when considered as a function
of va, vr, �,  . a�. So �1(i) = F ia� is continuous as a function of va, vr, �,  , r�.

Now let  0 be the degenerate type regeneration function, with  0(t) = [t]. Note that
the full support assumption was not used in the de�nition of the iterated Riley solution.
We have seen that if we have  tend to the degenerate function  0 in which types remain
the same with probability 1, the iterated Riley solution will tend to the Iterated Riley
solution with  =  0. Let us now consider the properties of the iterated Riley solution
with regeneration function  =  0, as the number of periods from the end i tends to
in�nity, for �xed va, vr, �, r�.

First it is useful to de�ne "discounted Stackelberg" utility. The undiscounted utility
of the signaller with period-type � in any period if he can and does commit to the action
a and is known to be type � is: va(�; a) + vr(r

�([(�; a)])). We can call this Stackelberg
utility. If the discount factor of the signaller is not 1 it will be more useful to consider
the "discounted Stackelberg" utility: vS(�1)(�; a) := va(�; a) + �1vr(r

�([(�; a)])). This is
the utility for type � of the action a taken in the current period and plus the discounted
utility of the best response in the next period to the type-action pair (�; a).

Given �1 and � , call the maximum value of this the discounted-Stackelberg payo¤
(which exists by continuity of all functions involved), and the unique a that maximizes
the expression (unique by the concavity assumption on v�r(a)) the discounted-Stackelberg
action aS(�1)(�).

Assumption 11 vS(�1)(�; a) is strictly quasi-concave in a for each � 2 T .

This assumption that discounted Stackelberg utility is strictly quasi-concave is impor-
tant to the limit analysis. It is satis�ed for example when va and vr are strictly concave
and r�([(�; a)]) is linear in a for each � . In a work incentives example where a is work
and r�([(�; a)]) is market wage this would be a natural speci�cation.

Proposition 3 �1(i) tends to a limit �1 as i!1.

�1 is characterized as follows:
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1. �1(�0) = a�(�0)

2. Let h be the highest solution for x of:

va(�j; x) + �1vr(r
�([(�j+1; x)])) = vS(�1) (�j;�1(�j)).

(There are one or two solutions.)

�1(�j+1) = max(h; a
�(�j+1))

Proof. See Appendix

The proof involves inductive application of a dynamical systems argument. I will
explain here some features of the process generating �1. Suppose that for a particular
type �j, �1(i)(�j) tends to a limit �1(�j) as i ! 1. If �1(i)(�j+1) also tends to a limit
�1(�j) it must satisfy �1(�j+1) = max(x; a�(�j+1)), for some x for which va(�j;�1(�j)) +
�vr(r

�([(�j;�1(�j))])) = va(�j; x) + �vr(r
�([(�j+1; x)])).

This is because �1(�j+1) is either eventually given by a binding constraint of separation
from the previous type, or by the myopic optimum a�(�j+1). The �rst is the "normal"
case; the second is a failure of signalling to have any e¤ect due to types that are too far
apart.

Now consider the equation in x. The �rst part va(�j;�1(�j))+�vr(r�([(�j;�1(�j))])) is
the converged period-utility of type �j. The second part
va(�j;�1(�j+1)) + �vr(r

�([(�j+1;�1(�j+1))])) is the converged utility of pretending to be
�1(�j+1). Assuming that the need to separate is a binding constraint, these two must
be equal. But even if we know that �1(i)(�j+1) converges we have not found what it
converges to yet because this equation may have more than one solution: it may have
one or two solutions. The lower solution lies below �1(�j) if the respondent has a direct
preference for rewarding higher types, and so in this case we can rule it out because the
limit map from types to actions must be weakly increasing. But in the reputation case
where the respondent does not care directly about the signaller�s type it is not so easy to
rule out the lower solution. It may be the case that both �1(�j) and some higher action
are solutions to the equation above. For a description of how this is resolved and the
higher solution is chosen, see the section on reputation below.

Note that the convergence is not monotonic: this has been con�rmed by numerical
computation of an example.

1.7 Reputation

Now make the assumption that the respondent does not care directly about the signaller�s
type, only about his action:

Assumption 12 u2(t; a; r) is a function of a and r only
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It follows that r�(�ta) only depends on the probability distribution over actions. De-
�ne v�r(a) := vr(r

�(�t � [a])), which is independent of �t.

Let the highest action that gives the same Stackelberg utility for type � as action a
be aS(�1)(�; a).

Corrolary 1 �1(i) tends to a limit �1 as i!1.

�1 is characterized as follows:

1. �1(�0) = a�(�0)

2. For each j, �1(�j+1) = max(aS(�1)(�j;�1(�j)); a�(�j+1))

This follows simply from proposition 3, noting that r�([(t; x)]) is independent of t and
so that h in proposition 3 is equal to aS(�1)(�j;�1(�j)). In words, if �1(�j) is weakly
above the discounted-Stackelberg action of type �j, then �1(�j+1) = �1(�j), assuming
this is above the myopic-optimal action a�(�j+1). Otherwise �1(�j+1) jumps up above
the discounted-Stackelberg action of type �j to aS(�1)(�j;�1(�j)).

Assume that separation is binding (as I show in the proof of proposition 4, this
will be true if types are close together). Let us continue the discussion of proposition
3 and examine why if �1(�j) is below the discounted-Stackelberg action, �1(�j+1) is
equal to aS(�1)(�j;�1(�j)) and not the lower �1(�j). Both are solutions of the equation
va(�j;�1(�j)) + �vr(r

�([(:;�1(�j))])) = va(�j;�1(�j+1)) + �vr(r
�([(:;�1(�j+1))])). There

are two facts that combine to give this result. Firstly at every stage �1(i) is strictly
monotonic: there is separation of types. (A separation that does not always occur in the
limit as we have seen.) Secondly �1(�j) is below the Stackelberg action of type �j (this
is the case we are considering): it follows that for type �j small increases in expectations
about his action are more valuable than small increases in his action are painful, and so
in order to be thought to be taking the action �1(�j) + x for small x, type �j would be
willing to increase his action to �1(�j) + y where y � x. This is the logic that generates
type �j+1�s action: what would type �j be willing to do in order to be thought of as taking
type �j+1�s action. So if �1(i)(�j) is close to �1(�j) and �1(i)(�j+1) � �1(i)(�j) is small,
then �1(i+ 1)(�j+1)� �1(i+ 1)(�j) must be larger. The �rst di¤erence is the increase in
expected action that type �j will gain in pretending to be type �j+1; the second is the
increase in action that is necessary. This means that �1(i)(�j) can never become close to
�1(i)(�j+1) and is pushed away from �1(�j).

Now we can see what happens when types become dense: the main reputation result
is for this case. Suppose that u1 and u2 are de�ned continuously over an interval T =
[�min; �max] and satisfy the relevant assumptions above. De�ne the function S as follows:

De�nition 10 S : T ! A

S(�1)(�) = max(aS(�1)(�min; a
�(�min)); aS(�1)(�))
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A

T

Figure 1.1: the limit map S(�1)

I.e. S(�1)(�) gives maximum discounted Stackelberg utility to type � over the set of
actions that give type �min at most the discounted Stackelberg utility of a�(�min). See the
diagram Fig 1. Proposition 4 asserts that as types become dense, the limit map from
actions to types �1will converge to S(�1), apart from the lowest type who must take the
action a�(�0).

Proposition 4 Given � > 0; we can �nd � > 0 such that for any �nite set T � T with
max� min� (fj� � � j; � 2 T; � 2 Tg) < �, the limit solution �1 satis�es

j�1(�)� S(�1)(�)j < � for min(T ) 6= � 2 T .

Proof. See appendix

My result is that as the number of periods from the end tends to in�nity the given limit
holds. The model studied is �nitely repeated and over games with di¤erent numbers of
periods but the same speci�cations otherwise play is determined by the number of periods
from the end. An implication is that for any levels of patience, as the number of periods
k !1, play in period p converges to the limit found. If the number of periods is large,
reputation will take a long time to die out.10

10"Reputation e¤ects" actually are strong up to the penultimate period. However the given limit
properties are only realized further back in the game.
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Discussion

A modi�ed Stackelberg property

The reputation result above combines a separation property for low types with a (dis-
counted) Stackelberg property and logic. The separation property is that types above
the lowest type must separate from the lowest type making him unwilling to move from
his myopic optimal action a�(�min) and pretend to be a high type, where this willing-
ness is evaluated with (discounted) Stackelberg utility. And types whose (discounted)
Stackelberg actions lie above this point take these actions. One can think of the actions
that are in Im(�) - actions that are taken in the limit - as the actions that the signaller
can commit to: by taking an action that is in (or more exactly close to something in)
this set far from the end of the game, he we be expected to take (close to) the same
action in the next period. Thought of in this way the reputation result is that the limit
� exists and Im(�) becomes dense in [aS(�1)(�min; a�(�min); aS(�1)(�h)] but has a gap in
(a�(�min); aS(�1)(�min; a

�(�min)) and these actions no-one can commit to. This results in
the lower types pooling at aS(�1)(�min; a�(�min)).

This result is distinguished from standard reputation models in that these models
will just generate a Stackelberg property for the normal type or types: the actions that a
normal type can e¤ectively commit to are those actions which get played by behavioural
types and these tend to be assumed to include the Stackelberg action of the normal type.

Depending on the context both parts of the curve S(�1)may be interesting, or only one
of the two, pooling or Stackelberg. If we think, following a line of thought that is found in
the standard reputation literature, that some of our types are "normal" (probable) and
others improbable, and that we can imagine a type that is so low that he would rather
take his myopically optimal action than commit to a Stackelberg action of a normal type,
and we give this low type some positive bur low probability, then our "normal" types
will take their Stackelberg actions.

In the lower part of the curve S(�1), types pool at a point determined by separation
from the lowest type. This action is higher than the actions that they would like to
commit to. But by taking an action even slightly lower than this action, they pay a
heavy cost: they are considered to be the lowest type. If they take at least the action
� = aS(�1)(�min; a

�(�min)), they will be expected to take at least this action in the next
period, while if they take an action less than � they will be expected to do a�(�min)
in the next period. This is a discontinuity that makes taking at least the action � very
important. It is appropriate to call � a reputational standard, a mark that it is important
to reach in order to prevent one�s reputation from being destroyed altogether - at least
for the next period which is as long as reputations last in this model.

This reputational standard, a novel consequence of the repeated signalling model,
can potentially be used to explain various situations in which there is a standard of
behaviour that can be thought of as a standard necessary to live up to in order maintain
a reputation. For example obedience to some social (legal or moral) or business norms
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can be understood as a requirement for establishing that one is not a bad (criminal
or untrustworthy or undependable) type. The point is that these norms are often not
continuous but discrete: either one complies with them or one does not.

Let me o¤er some potential examples in more detail. High actions by the signaller
could represent good behaviour by and the respondent could be society; low actions
of society could be imprisonment for protection of society, high actions the ability to
participate fully in society. Low types are criminal; high types are upstanding citizens.
The lowest type will commit crimes; higher types follow the "norm" of the society, which is
the particular standard of behaviour, determined endogenously � by the need to separate
from the most criminal type. Many people will follow this norm and do no more than
this: they follow it because they do not want to be considered the criminal type. And
there may be high types that do more both out of natural inclination and the rewards of
being thought of as especially trustworthy and good to deal with.11 Business norms may
be thought of in the same way, with the low type being the laziest or least trustworthy.
Relatively lazy types may for example prefer to work shorter hours than 9 to 5, and
would be willing to take cuts in pay to do this, but they do not because the reputation
cost of not coming up to the �xed standard is steep.

Technical comparison to other models of reputation

The repeated signalling model is fully calculable at all histories of the game. While this
is true of some standard reputation models ([19]) it is rare and usually even the actions of
the reputation-builder in equilibrium are often not fully speci�ed: limit results tend to be
in the form of lower bounds on payo¤s of the normal type rather than convergence of his
behaviour. By contrast the modi�ed Stackelberg property above speci�es the signaller�s
action in the limit.

The calculability of the model extends to arbitrary discount rates of both players.
The respondent�s discount factor has no e¤ect on the course of the game. The signaller�s
discount factor does and the reputation results are given in terms of �1. A simple modi�-
cation of Stackelberg payo¤s into "discounted Stackelberg payo¤s" is all that is required.
This generality is very unusual in the reputation literature, which invariably requires that
the patience of the reputation-builder goes to 1. Stackelberg results obtain when the re-
spondent is short-lived ([12]) and there exist limit results in the case when the uninformed
player�s patience tends to 1 but when the informed player�s becomes at the same time
in�nitely more patient than the uninformed ([11]): (�2; (1 � �1)=(1 � �2)) ! (1; 0). The
special case of strictly con�icting interests ([7]) is an exception, as is the reputational

11In contracts, Socrates, justice is of use. - Plato, The Republic

It may be more realistic to assume that in addition to treating a person favourably for being expected
to behave well, society will be well disposed to a person who is thought to be "good". The repeated
signalling model can still deal with this situation. We can still use the same mathematical de�nition of
the reputational standard and it will still be the action necessary to avoid being thought of as the worst
type. However there will no longer be pooling at this action in the limit.
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bargaining model of Abreu, Gul [1], in which both discount factors tending to 1 with
di¤erences in patience tending to a limit. In general, however, reputation results require
the informed player to become in�nitely patient and in�nitely more patient than the
uninformed player. When the opponent is long lived with a �xed discount factor player
may be able to establish reputations for complex strategies under certain conditions and
do better than the static Stackelberg payo¤ ([8]). This does happen in the repeated
signalling model because reputation is established along one dimension only.

Standard reputational models are often completely general in the stage games studied,
while the repeated signalling model analyzes only a class of games in which stage game
payo¤s are monotonic and additively separable. But within the class I de�ne the model
can be completely solved and the question of what happens for any levels of patience
of both players addressed, questions which are not addressed in the standard literature.
I �nd that a reputation can be established against a patient player, even by a player
that is less patient. And I �nd that a "discounted Stackelberg" result applies when the
informed player is not patient (subject to separation from the lost type). The discounted
Stackelberg action is a novelty and just as easy to calculate as the Stackelberg action
and can easily be applied to situations in which players are thought of as impatient. One
implication of the discounted Stackelberg result for high types is that a small reduction
in the discount factor from 1 has a second order e¤ect on (limit) payo¤s of the informed
player.

The way in which reputation is established is quite di¤erent in the repeated signalling
model from the standard approach to reputation. Reputation is a one-period property
of the repeated signalling model, with the expectation of the respondent being based on
the previous action of the signaller, and the signaller can gain or lose it immediately at
any time. This happens because it is easier, given the full support assumption, for a
type to change than to make a (larger) mistake. For a discussion of signalling without
type regeneration, in which this logic does not apply, see section 1.9. The property that
reputation can be gained or lost at any point is shared with reputational models with
imperfect observability but with much more sudden gains and losses. Without imperfect
observability, in standard reputation models, either reputation is lost immediately if at
all (revelation of the normal type) or the play from any point in the game tree may be
very unknown.

The nature of the types I consider to be an advantage of the repeated signalling model.
The commitment types of reputation models are often considered to be an unsatisfactory
element, out of place in a theory based on strategy and rationality. On the other hand it
has been argued12 as a genericity assumption they make models involving them at small
levels more reasonable than purely "rational" models without. My view is that including
behavioural types at small levels is an unobjectionable and valid method, but that the
order of the limits involved in reputational models restricts how small the probabilities
of behavioural types can be to be e¤ective. The results are found in general under a limit
as the informed player becomes in�nitely patient for a given probability of behavioural

12This argument is made I believe by Fudenberg; I will give a reference and exact quotation when I
have located the article.

23



types. If this probability is very small, the required patience may be very large indeed.
If we look at the set of discount factors which result in payo¤s a certain distance from
the Stackelberg (assuming a model that gives a Stackelberg result) as a function of the
probability p of behavioural types, we only know that this set contains (�(p); 1) for some
�(p), and this could tend to the empty set as p ! 0. For any speci�ed situation with a
given high level of patience we will need the probability of behavioural types to be high
enough to justify applying a reputation result to expect actions that are near Stackelberg.

The workings of the equilibrium di¤er from those in reputational models in that the
normal type in reputational models pools with commitment types while in the repeated
signalling model "normal types" separate from each other in each period.

Mailath and Samuelson [21] they have a model of reputation in which the lowest type�s
action is �xed and the higher type establishes a reputation by separating himself from
the lower type. They �nd that the higher type will take higher actions than he would
otherwise, which may be higher or lower than the Stackelberg action. This holds true in
this model with two types: here the lowest type�s action is e¤ectively �xed, although he
is not a behavioural type, and the higher type separates and may take an action that is
more or less than the Stackelberg action depending on the distance between the types.
But the most interesting results in the repeated signalling model come from having a
large number of types. While with two types separation from the lowest type determines
the answer: with more types this model gives both the logic of separation from the lowest
type (for low types) and Stackelberg actions (for high types).

1.8 The general case

Suppose now that u2(t; a; r) depends on all three arguments so that r�([t; a]) is a function
of both t and a. Consider for example the work-incentives model above. The observable
productivity a of the worker (signaller) could be measured by the market (respondent)
as quantity of writing, or some other other easy and imperfect measure. Suppose that t
is the ability of the worker, with more able workers being better able to produce more
writing. It is a reasonable assumption that a worker who produces a given amount of
writing has a value to the market that is an increasing function of his ability. The wage
r�([t; a]) paid will then be strictly increasing in both t and a.

Assumption 13 r�([(�; a)]) is continuously di¤erentiable in (�; a) with both partial deriv-
atives strictly positive. vr(r) and r�[(�; a)] are continuously di¤erentiable. va(�; a) is
di¤erentiable with respect to a, with derivative continuous in (�; a).

De�nition 11 G : T ! A

G(�1)(�min) := aS(�1)(�min; a
�(�min))

G(�1)
0(�):[ �

�a
va(�; a) + �1

�
�a
(vr � r�)([(�; a)])] + �1 ��� (vr � r

�)([(�; a)])
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The limit will now be given by G instead of S. G(�1) is di¤erentiable and lies above
the discounted Stackelberg curve aS(�1).

Proposition 5 Given � > 0; we can �nd � > 0 such that for any �nite set T � T with
max� min� (fj� � � j; � 2 T; � 2 Tg) < �, the limit solution �1 satis�es

j�1(�)�G(�1)(�)j < � for min(T ) 6= � 2 T .

Proof. See Appendix

Consider the one-stage signalling game with the same speci�cations with the signaller
moving �rst and utility given by uE. In the reputation case we get the discounted
Stackelberg action as the solution since the signaller is a Stackelberg leader and type-
inference has no signi�cance. In the general case the solution is given by H, say, where H
satis�es the di¤erential equationH 0(�):[ �

�a
va(�; a)+

�
�a
(vr�r�)([(�; a)])]+ �

��
(vr�r�)([(�; a)])

with initial condition H(�min) = aS(�1)(�). The di¤erential equation is the same as
the di¤erential equation in the limit above but the initial condition is the discounted
Stackelberg action of the lowest type rather than the higher aS(�1)(�min; a�(�min)).

The standard one-stage signalling game can be thought of as combining commitment
and pure type-signalling - commitment trivially because the respondent observes the
signaller�s action before moving and "pure" type-signalling because given an known action
the signaller would still want to be thought as being a higher type. The limit of the
repeated signalling game with simultaneous moves also combines commitment and pure
type-signalling. The two solutions satisfy the same di¤erential equation but the initial
condition (describing types close to the lowest) is higher in the repeated signalling game
because the lowest type takes his myopic optimal rather than his discounted Stackelberg
action. Thus apart from the lowest type there is more costly signalling in the repeated
game with simultaneous actions than in the one-stage game with the signaller moving
�rst.

1.9 Further work and extensions

The �xed type case

If there is no type-regeneration what will happen in the repeated signalling game? The
Iterated Riley solution can be de�ned in this case, but is no longer selected uniquely
by the equilibrium re�nement Dw. Moreover in an Iterated Riley solution for many
histories (o¤ the equilibrium path) the respondent will believe that the signaller�s type
has changed. If we were to require that the respondent�s beliefs always assign probability
0 to type-change, then the Iterated Riley solution is ruled out. (Here the di¤erence is the
di¤erence between having a type space T n with types staying the same with probability
1 and having a type space T . The space of Bayesian Nash equilibria is di¤erent because
the restrictions on beliefs after probability zero events are di¤erent.)
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The criterion Dw will be weak because it relies on full support at a given stage for
its strength: if a type has probability zero before period i and but has a larger set of
justifying beliefs for a given action than any other type, Dw does not specify what beliefs
will be after that action is observed. Another criterion would do better. One possibility
that I have partly analyzed is measuring for a given type and history the error at each
period of the types actions, combining these errors into a real-valued total error via some
norm, and specifying that the respondent�s beliefs about the signaller�s type after a given
history have support in the set of types with the least total error. I �nd that if there is a
"reasonable" solution in the sense that higher actions generate higher beliefs about the
type and a continuity property holds, then all signalling must happen in the �rst period:
that is to say, on the equilibrium path, myopic actions are taken except in the �rst period.
Equilibrium play is then independent of the norm and measure of error above. However
the existence and necessity of such an equilibrium have however not yet been shown.

Kaya [16] has a model of repeated signalling in which the signaller has a �xed type.
Rather than using any re�nement she calculates the "least cost" separating equilibrium,
the separating equilibrium where it exists that is most preferred by all types. Kaya �nds
that when types are ranked in the convexity of their payo¤ functions, there will be such
an equilibrium, and in this equilibrium signalling will be either spread out or all in the
�rst period depending on the direction of the convexity ranking. The signaller moves
�rst in the stage game and so the model does not study reputational issues.

Multi-dimensional A

If the action set A of the signaller is a product of intervals in Rn rather than R, it will
be necessary to �nd an assumption on va that gives a (uniquely) de�nable and strictly
increasing function RILEY (r00) for any strictly increasing r00 : T ! R. If this can be
found then propositions 1 and 2 go through with no changes. It will then be interesting
to see what the limit properties are. Preliminary work indicatest that if the methods can
be extended to Rn there will be a curve T ! A and the current Stackelberg result will
apply when restricted to this curve, but that the curve will be de�ned by a di¤erential
equation unrelated to any commitment property. In the one dimensional case it is the
necessity of separating from the previous type at every stage that determines the solution
and gives the reputation property. In more dimensions there will be a whole range of
actions at any stage that just separate from the previous type; the exact speci�cation of
the subsequent type�s utility on this set, which will give his Riley action, then becomes
signi�cant.

Two-way uncertainty, non-additive utility

Additive utility is a reasonable speci�cation for some situations but not others. Current
analysis indicates that what is needed is an assumption that gives a unique equilibrium
at each point in time in the actions of both players. When a good assumption is found
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the game is solveable by backward induction as before, with monotonicity and single
crossing being preserved at each stage. The history-independence property will no longer
hold.

Two way uncertainty in the repeated signalling model will require the action of each
player to be both dependent on his type and to be a reward for a higher expected type
or action of the other player. With additive separability for both players the model
will involve two-way type-signalling only. A potential model is reciprocation, with types
representing something like good-will and both players being made more generous by
their own and the other player�s revealed good will. Current work studies such a model,
although outside of a limited informational setting it turns out there are di¢ cult problems
with preserving monotonicity as the game is solved backwards.

Two-way uncertainty without the additivity assumption would open up a large class of
models, with the potential to study reputational incentives on both sides. Very interesting
two-way reputational models in have been studied in the context of bargaining ([1], [2]).
Applications of two-way signalling models include oligopoly and work incentives in teams.

A compact set of types

Ramey[25] solves the one-stage signalling game using D1 with any compact set of types
in R, generalizing Cho, Sobel [6]. The repeated signalling can be de�ned and extended
in the same way and propositions 1 and 2 (existence and uniqueness) will hold. It will
involve a more complex notation and an adapted version of the Riley equilibrium. The
arguments for the limit results will need a new approach, but it is possible that something
in the spirit of the current inductive proof will work. The bene�t of compact continuum
of types is that the limit should be exactly the function S and we should not need to take
a limit as types become dense. And a continuum of types will often be a more natural
speci�cation of a given repeated signalling situation, with a continuum being a natural
way to model types with more or less of a certain predisposition, and a continuum of
potential types being part of the limit reputation result (u1 and u2 being de�ned on the
real interval T of types). It is unlikely that this generalization will add new insights into
repeated signalling and reputation.

1.10 Appendix

De�nition 12 PHT!H : HT ! H projects from histories with types to histories in the
natural way.

PHT!tT
j
: HT ! tT j projects from histories with types to vectors of types in the

natural way.

P T
i

j : T i ! T for i � j projects to the jth period-type.
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De�nition 13 The completion of the game C (s1; s2) : HT ! �
�
Ak �Rk � T k

�
, given

strategies of each player, is de�ned as follows:

1. Let C (s1; s2) (hti)[
�
� �

�
Ak�j �Rk�j � T k�(j+1)

��
over measurable

sets � of (Aj �Rj � T j+1) be denoted �j(�).

�j for j 2 fi; :::k � 1g is de�ned inductively by:

a. �i([(a1; :::ai) ; (r1; :::ri) ; (t1; :::ti+1)]) = 1. I.e. the existing history happens with
probability 1 in the completion.

b. If �; �; 
 are measurable in A;R; T respectively,

�j+1[��(����
)] =
R
htj2� s1 (htj) (�):s2

�
PHT!Hhtj

�
(�):	

�
PHT!tT

j
htj

�
(
)d�j (htj).

This de�nes a probability measure �j+1 given �j.

2. Then over measurable sets � of
�
Ak�1 �Rk�1 � T k

�
, and for �; � are measurable

in A;R,

C (s1; s2) (hti)[�����] =
R
htk�12� s1 (htk�1) (�):s2

�
P (HT!H)htk�1

�
(�)d�k�1 (htk�1).

This de�nes the probability measure C (s1; s2) (hti).

The integrals above exist by the measurability assumptions on s1 and s2. They de�ne
measures on the appropriate product spaces.13 1. de�nes �j inductively from j = i to
j = k � 1. 2 de�nes the probability measure C (s1; s2) (hti) given �k�1.

De�nition 14 The continuation play C+ (s1; s2) of the game, given strategies of each
player, is de�ned as follows:

C+ (s1; s2) : HT ! t�(Ai �Ri � T i), with C+ (s1; s2) (htj) 2 �
�
Ak�j; Rk�j; T k�j

�
C+ (s1; s2) (hti) := C (s1; s2) (hti) �P�1, where P projects (A�R� T )k onto the last

k � i coordinates (A�R� T )k�i.

Proof. Proof of Proposition 1: Supportability of the iterated Riley solution
as a perfect Bayesian equilibrium satisfying D!

De�ne s1; s2; � as follows:

For any hti = ((a1; :::ai) ; (r1; :::ri) ; (t1; :::ti+1)), hi = ((a1; :::ai) ; (r1; :::ri)):

s1(hti) = [�1(k � (i+ 1)) (ti+1)].
13For uniqueness of the de�ned measure, note that we have de�ned the measure on all product sets,

which are a �-system generating the product �-algebra. For existence, we have de�ned a measure on
product sets. Extend additively to a measure on the class of �nite disjoint unions of product sets
(uniquely). Applying the monotone convergence theorem, this measure is countably additive on this
class, which is a ring of sets generating the product �-algebra, and so extends to a measure on the
product �-algebra by Caratheodory�s extension theorem.
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De�ne r00i (�) := r�( (�) � f(�1(k � (i+ 1)))�1).

De�ne ri(�; a) := inffr : uE(�; a; r) � uE(�; �1(k� (i+1)) (�) ; r00i (�))g. (The in�mum
is taken over the set R so that inf(;) = rmax.). ri(�; a) will be the minimum response in
the next period that would justify action a for type � .

For j � i, let �j(hi) = [sup(argmin� rj(�; aj))]. This de�nes beliefs over the type in
the �rst i periods. Beliefs about the full k-period type are generated from these beliefs
by  .

Note that ri(�; �1(k�(i+1))(�)) = r00i (�) trivially, while by the de�nition of the Riley
equilibrium, ri(�

0; �1(k� (i+1)) (�)) � r00i (�) with strict inequality for �
0 > � : any higher

type would strictly lose on moving to the action of a lower type. So if aj = �1(k� j) (�)
then �j(hi) = [� ].

Let s2(hi) = r00i (�i(hi)), player 2�s myopic best response response to the action ai in
period n given above beliefs.

Now I will show that (s1; s2; �) is a perfect Bayesian equilibrium. It follows that it is
an Iterated Riley equilibrium and so the proposition is proved.

Claim 1 (s1; s2; �) is a perfect Bayesian equilibrium

Optimality of s1

Let brj+1(ai) be player 2�s action in period j + 1 in response to player 1�s action aj in
period j: brj(a) := r00j (sup(argmin� rj(�; a))).

Player 1�s utility at history hti given player 2�s strategy above, when he takes strategy
s01 is

K1+�
i+1[vr(bri+1(ai)))]+�i+11 [va(ti+1; ai+1)+�ivr(bri+2(ai+1))]+:::+�k�11 [va(tk�1; ak�1)+

�ivr(brk(ak�1))]+�k1 [va(tk; ak)], integrated over C(s01; s2)(hti), whereK is a constant (utility
up to period i) independent of s01.

This expression equalsK2+�
i+1
1 [va(ti+1; ai+1)+�1vr(bri+2(ai+1))]+:::+�k�11 [va(tk�1; ak�1)+

�1vr(brk(ak�1))] + �k1 [va(tk; ak)], where K2 = K1 + �i+1[vr(bri+1(ai)))] is independent of s01.
I will show that aj = �1(k � j)(�) maximizes [va(�; aj) + �1vr(brj+1(aj))] for any

� . It follows from this that player 1�s strategy maximizes each component [va(tj; aj) +
�1vr(brj+1(aj))] of the expression above since it puts probability 1 on aj = �1(k � j)(tj).
And so it maximizes expected utility of player 1 after any history with types hti.

By construction of �1(k � j), brj+1 as the Riley equilibrium with utility va + �1vr,
aj = �1(k � j)(tj) maximizes [va(tj; aj) + �1vr(brj+1(aj))] over Im(�1(k � j)). (As shown
above, brj+1(�1(k�j)(�)) = r00j (�).) It needs to be shown that aj = �1(k�j)(tj)maximizes
the expression over all A.

Suppose that for type �m, action a = � gives a higher value of va(�m; a)+�1vr(brj+1(a))
than a = �1(k� j)(�m). Then this is also true for any type with a lower value of ri(�; a).
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So take without loss of generality �m = sup(argmin� rj(�; �)). Then bri(�) = r00i (�m) given
beliefs of player 2 speci�ed above.

We know that �1(k� j) � a�. If �1(k� j)(�m) � � then a�(�m) � �1(k� j)(�m) � �
and by quasi-concavity of va we must have decreasing va above a�(�m). So va(�1(k �
j)(�m)) � va(�). The actions �1(k � j)(�m) and � both generate the same response by
player 2 and so the former gives a (weakly) higher value of va(�m; :) + �1vr(brj+1(:)). This
contradicts our assumption, so we must have � < �1(k � j)(�m).

Now suppose that � < �1(k� j)(�k�1) < �1(k� j)(�k). Since �k prefers �1(k� j)(�k)
and the corresponding response to �1(k � j)(�k�1), and the single crossing condition
holds between � and �1(k � j)(�k�1), we must have rj(�k�1; �) < rj(�k; �) contradicting
�m = sup(argmin� rj(�; �)). So �k is the minimal type such that � < �1(k � j)(�k).

We can rule out that �1(k � j)(�k) = a�(�k) because if this were so moving below
a�(�k) to � and being thought of as the same type will hurt type �k:

So �1(k � j)(�k) > a�(�k), which implies by construction of the Riley equilibrium
that type �k�1 must exist (that �k 6= �0) and that �1(k � j)(�k) is optimal for type �k�1
(indi¤erence between own action and the next type�s).

So by single crossing, comparing �1(k � j)(�k) with �, we must have rj(�k�1; �) <
rj(�k; �), which again contradicts the de�nition of �k.

So s1 must be optimal.

Optimality of s2

It is su¢ cient for each action in the support of player 2�s strategy at any history to
be optimal given the rest of player 2�s strategy.

It is clear that player 2�s action at any history does not a¤ect any subsequent play
either of player 1 or of player 2.

Therefore the myopic best response is optimal.

Consistency of beliefs

1. Bayesian updating: If tk = (t1; :::tk) and �(hi)(tk) > 0, then we must have beliefs
assign probability 1 to type t1; :::ti and which are generated by  afterwards. If some type
the action ai+1 in period i+1 with positive probability then �1(k� i�1)(ti+1) = ai+1 for
a unique ti+1. On observing ai+1, player 2 assigns probability 1 to t1; :::ti+1 and beliefs
about future types are generated by  . This is the Bayesian update on the information
that the current period-type is ti+1.

2. � (hi) respects 	 after period i: by de�nition.

Therefore (s1; s2; �) is a perfect Bayesian equilibrium:

Claim 2 (s1; s2; �) satis�es D!.
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Suppose not. Then for some history hn = ((a1; :::an) ; (r1; :::rn)), with history hn�1 =
((a1; :::an�1) ; (r1; :::rn�1)) in the previous period, and for some tn� = (t

�
1; :::t

�
n) and t

n
�� =

(t��1 ; :::t
��
n ) in T

n, J� (tn� ; hn�1; an) � J< (tn��; hn�1; an) 6= ; and � (hn) assigns non-zero
probability to tn� .

Consider the justifying beliefs for the action an for type tn = (t1; :::tn) 2 ftn� ; tn��g at
history hn�1.

Let u�(tn) =
R
U1d[C (s1; s2) (hn�1; t

n)] be expected equilibrium utility for player 1 of
type tn at the beginning of period n.

Given er : R! �R (satisfying the measurability requirement), let s02(er) = s2 except at
(hn�1; (an; r)) for all r with s02(er)(hn�1; (an; r)) � er(r). Let �(an) be the set of strategies s01
of player 1 with s01(hn�1; t

n) = an. Then let u(tn)(er) = sups012�(an) R U1d[C (s01; s02(er)) (hn�1; tn)],
the maximum utility of player 1 in response to s02 conditional on having to play a at the
current history.

Let s01 = s1 except at (hn�1; tn) where s01(hn�1; t
n) = an.

Now since s02(er) = s2 from period n + 1 on, and player 2�s action in period n a¤ects
player 1�s utility additively, s01 is optimal within �(an) against s

0
2(er).

Then C (s1; s2) (hn�1; tn) and C (s01; s
0
2(er)) (hn�1; tn) di¤er only in the period n actions

by player 1, which are �1(k � n)(tn) and an respectively, and the period n+ 1 responses
by player 2, which are r00(tn) and er(s2(hn�1)) respectively.
So u(tn)(er) � u�(tn) = [�n1 va(tn; an) + �n+11 vr(er(s2(h)))] � [�n1 va(tn; s1 (hn�1; tn)) +

�n+11 vr(s2(hn�1; s1(hn�1; t
n); s2(hn�1)))], regarding s1 (hn�1; tn) and s2(hn�1) as elements

of A and R since they are degenerate probability measures.

Take er� 2 J= (tn��; hn�1; an), which is possible since J< (tn��; hn�1; an) 6= ;.
[va(t

��
n ; an)+�1vr(er�(s2(hn�1)))] = [va(t��n ; s1 (hn�1; t��n ))+�1vr(s2(hn�1; s1(hn�1; t��n ); s2(hn�1)))],

extending vr here to expected utility over probability measures.

So [va(t��n ; an) + �1vr(er�(s2(hn�1)))] = [va(t��n ; �1(k � (i+ 1)) (t��n )) + �1vr(r00i (t��n ))]
So uE(t��n ; an; er�(s2(hn�1))) = uE(t��n ; �1(k � (i+ 1)) (t��n ) ; r00i (t��n )).

Let �r 2 R s.t. vr(�r) = vr(er�(s2(hn�1))). �r exists uniquely by continuity and
monotonicity of vr.

Then uE(t��n ; an; �r) = uE(t��n ; �1(k � (i+ 1)) (t��n ) ; r00i (t��n )) so ri(t��n ; an) = �r.

Since � (hn) assigns non-zero probability to tn� , J
� (tn� ; hn�1; an) � J< (tn��; hn�1; an)

by assumption and so ri(t
�
n; an) � ri(t

��
n ; an).

So ri(t
�
n; an) � �r and

uE(t�n; an; �r) � uE(t�n; �1(k � (i+ 1)) (t�n) ; r00i (t�n))

uE(t�n; an; er�(s2(hn�1))) � uE(t�n; �1(k � (i+ 1)) (t�n) ; r00i (t�n))
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So er� 2 J� (tn� ; hn�1; an).
So er� is in J� (tn� ; hn�1; an) but not in J< (tn��; hn�1; an), contradicting our assumption.
QED

Proof. Proof of proposition 2 (Uniqueness)

The inductive step, proposition P (i), is de�ned as follow:

For all histories htj 2 HT j for j � i, i.e. from the (i + 1)th period on, player 1�s
strategy is described by �1(j), and this strategy is optimal against s2 even if player 2�s
strategy is altered from the equilibrium one in the (i+ 1)th period only.

It is trivial that in the last period player 1�s strategy is described by a�. So P (1) is
true.

Assume P (i).

Then for j � i, player 2�s action at history hj 2 Hj in period j + 1 when player 1�s

action in period j
�
P
Hj!A
j hj

�
is in the image of �j(k � j) is as in section II.2.ii.

This is because player 2 at the beginning of period j gave a positive probability to all
of player 1�s possible types in that period:

If the sub-history of hj at the beginning of period j is hj�1
�
= PHj!Hj�1hj

�
, 2�s beliefs

after observing hj�1 about the type of player 1 in period j�1 are � = � (hj�1)
�
P T

k

j�1

�
�1.

By the de�nition of perfect-Bayesian Nash equilibrium, � (hj�1) respects  after pe-
riod j � 1, so:

The beliefs about player 1�s j-type after observing hj�1 are � (hj�1)
�
P T

k

j

�
�1 =R

 (t)(:)d�, which has full support over T since  (t) does for each t.

Since only one type takes each action in Im (�j) (by P (i)), player 2 observing such
an action a in period j assigns probability 1 to the appropriate type (�j) �1(a) (as being
player 1�s j-type), and forms beliefs � as in section 1.4 about player 1�s type and action
in period j + 1.

Since by the assumption P (i) player 2�s actions have no e¤ect on player 1�s future
actions, player 2 acts myopically in each period after i, and so in period j + 1 takes the
myopic best response r�(�) to player 1�s expected type-action pair �.

Now consider a history hti�1, with type �1 at period i. Suppose that at history with
types hti�1 we replaced equilibrium strategy for player 1 by a 2 A, and at history with
types hti� (a; r; t) for any r; t replaced equilibrium strategy for 1 by �(r; t) for 2 by r̂(r).
Assume � is optimal. Then r̂ is a justifying belief for type �1 at history ti�1 if the utility
is now at least as great as it was before.

We can take � to be the strategy �i(i) because we know this is optimal by P (i). Now
the strategy of player 1 after period i is �xed, and player 2�s actions after period i+1 as
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a function of player 1�s type are �xed, independent of a and r̂.

Player 1 would then get a continuation utility as a function of a and r̂ given by
va (�1; a) + s2 (hi�1) [vr] + � (r̂(s2 (hi�1)) [vr]) + const1 = va (�1; a) + � (r̂(s2 (hi�1)) [vr]) +
const2.

So the utility just depends on the direct utility of a via va (�1; a) and the expectation
of the reward in the next period r̂(s2 (hi�1)) [vr] via the value of the reward vr.

We now have the level of simplicity of the two-period signalling game where player 1
moves �rst and player 2 responds.

No pooling:

Suppose at history hi�1 action �a is in the support of two types with period� i types
� and � 0, with � < � 0, where � 0 is maximal. Observing �a, player 2 forms beliefs � about
player 1�s i-period type that are strictly less than [� 0], resulting in a response �r in the
next period. The action �a is weakly justi�ed for types � , � 0 by the belief r̂0(r) = [�r] in
period i + 1. Consider player 2�s best response r00 to the belief [� 0] about 1�s period� i
type. Let r̂00(r) = [r00] in period i + 1. Since r00 > r0, r̂00 strictly justi�es �a for types � ,
� 0, so for small � 2 Rn, r̂00 strictly justi�es a00 = �a+ � for types � , � 0. We will 2�s actual
strategy in period i+1 as a response to a00 is going to be at least r̂00.

Suppose r̂000 weakly justi�es a00 for type � . Let r̂000(s2 (hi�1)) [vr] be V 000 and r̂0(s2 (hi�1)) [vr]
be V 0.

Then va(�; a00) + �V 000 � va (�; �a) + �V 0. Then by single-crossing va(� 0; a00) + �V 000 >
va (�

0; �a) + �V 0 since a00 > �a and � 0 > � . So r̂000 strictly justi�es a00 for type � 0.

So type � is assigned probability 0 by player 2 after observing a00, by criterion D!;
since any belief that would weakly justify his taking action a00 would strictly justify type
� 0.

Also note that if r̂ weakly justi�es action a00 for any type �� < � 0 then it must strictly
justify action a00 for type � 0, because type ��s utility in equilibrium is at least his utility
on taking action �a. So any type �� < � 0 is also assigned 0 probability. So player 2�s
belief is supported on ft 2 T : t � �g, so strictly justi�es type � 0, so the action �a could
not have been optimal for type � 0.

Minimal separation

If a current-type t(i)�s strategy involved taking an action that did not maximize
uE (t(i); a; r00(t(i))) subject to separating from lower types then he could change his action
to the action that does maximize this subject to separating from lower types and still
being perceived as at least type t(i), so can raise utility. (Expand)

The result then follows for period i, and by induction for all periods.

Proof. Proof of proposition 3 (Convergence of �1(i))
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The proof is by induction on the type number, applying dynamical systems arguments
for each type assuming the previous type�s action converges.

�1(i)(�0) = a�(�0) is constant, so tends to the limit a�(�0).

Suppose �1(i)(�j) tends to a limit � as i!1.

� is de�ned by:

1. �1(0) = a�

2. �1(i)(�0) = a�(�0)

3. Given �1(i+ 1)(�j), �1(i)(�j), �1(i)(�j+1), let h be the solution above a�(�j) of:

va(�j; �1(i+1)(�j))+�vr(r
�([(�j; �1(i)(�j))])) = va(�j; h)+�vr(r

�([(�j+1; �1(i)(�j+1))]))

Then �1(i+ 1)(�j+1) = max(fh; a�(�j+1)g).

Write the sequence �1(0)(�j); �1(1)(�j); ::: as x0; x1; :::. xj ! �.

Write the sequence �1(0)(�j+1); �1(1)(�j+1); ::: as y0; y1; :::.

Let A(x) := va(�j; x) and Bi(x) := va(�j; xi+1)+�vr(r
�([(�j; xi)]))��vr(r�([(�j+1; x)])).

A is de�ned on [a�(�j); amax] and is strictly decreasing and continuous on this set.

Then yi+1 = max(A�1Bi(yi); a�(�j+1)).

De�ne B1(x) := va(�j;�) + �vr(r
�([(�j;�)]))� �vr(r

�([(�j+1; x)])).

An eventual lower bound on the sequence yi+1.

Consider the function Fi = A�1Bi. (So that yi+1 = max(Fi(yi); a�(�j+1)).)

Given � and i 2 f0; 1; :::g, consider the set Si(�) = fx : Fi(x) � x + �g = fx :
Bi(x) � A(x+ �)g.

Si(�) = fx : va(�j; xi+1) + �vr(r
�([(�j; xi)])) � �vr(r

�([(�j+1; x)])) + va(�j; x+ �)g.

Since vr(r�([(�j+1; x)])) is concave by assumption and va(�j; x + �) is concave in x,
Si(�) is convex, i.e. an interval.14

De�ne S1(�) similarly in terms of B1 and we get S1(�) convex too.

(S1(�) = fx : va(�j;�) + �vr(r
�([(�j;�)])) � �vr(r

�([(�j+1; x)])) + va(�j; x+ �)g.)

So we have that for i 2 f0; 1; :::g [ f1g, Fi(x)� x is quasi-concave. We can see also
that since va(�j; x+�) is strictly quasi-concave, Fi(x)�x must be strictly quasi-concave.

Let �i be the value of x that maximizes Fi(x)� x. It follows from quasi-concavity of
Fi(x)� x that for x � y � �i, Fi(y)� Fi(x) � y � x.

Now consider S1(0). S1(0) contains �.

14These assumptions have been weakened in the main text and there is one point at which this proof
needs minor adjustments, to be added shortly.
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Let l1 = inf(S1(0)) 2 [�1;�] and h1 = sup(S1(0)) 2 [�;1).

Suppose that l1 < h1. I will show that in this case yi+1 is bounded away from l1
eventually.

De�ne li; hi similarly when Si(0) 6= fg.

Take n large enough so that for m � n :

1a. Sm(0) 6= fg

1b. kFm � F1k < �. (Uniform metric here as above.)

1c. j�m � �1j < �

Where � is chosen such that:

2a. 2� < �1 � l1.

2b. F1(�1 � �)� �1 > 0.

By condition 2b, if x � �1� �; F1(x) > �1 and so by condition 1b, Fi(x) > �1� �.
So max(Fm(x); a�(�j+1)) > �1 � �. This implies that if sequence yi ever leaves the set
(�1; �1 � �), it never returns.

Suppose the sequence yi remains inside (�1; �1 � �) for ever. Otherwise yi has
eventual lower bound �1 � �.

yi > xi is a general property of the iterated Riley solution.

We had earlier Fm(ym)� Fm(xm) � ym � xm for xm � ym � �m.

ym+1 � xm+1 = max(Fm(ym); a
�(�j+1)) � xm+1 � Fm(ym) � Fm(xm) � ym � xm for

xm � ym � �m.

The �rst inequality holds because max(Fm(ym); a�(�j+1)) � Fm(ym) and Fm(xm) �
xm+1.

�1 � � < �m for m � n.

So for m � n, ym � xm � � := yn � xn > 0

Since xm ! �, ym is eventually bounded below by � + �=2 > l1.

Conclusion 1 If l1 < h1; ym is bounded below eventually by a lower bound b strictly
above l1.

Now we can show that ym !M = max(h1; a
�(�j+1))

Case 1 Suppose l1 < h1.

Let Gi(x) := max(Fi(x); a�(�j+1)) for i 2 f0; 1; :::g [ f1g.
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F1 on the set [b; amax] has F1 > x belowM and F1 < x aboveM and no other �xed
points.

M is a global attractor and so the sequence de�ned by ym+1 = Gm(ym) converges to
M since Gm ! G1 and ym remains in (b; amax).

Case 2 Now suppose l1 = h1

Then l1 = h1 = � since � 2 S1(0).

Let M = max(h1; a
�(�j+1)) = max(�; a

�(�j+1)) as before.

On [�; amax] G has only one �xed point M , and above this G(x) < x.

Take � > 0. Let infx2[M+�;amax](x�G(x)) = �.

Choose n such that for m � n, kGm �G1k < �.

When ym �M + �, ym+1 = Gm(ym) � Gm(M + �) < G(M + �) + � �M + �

So if ym reaches the set (�1;M + �], it stays there.

And above this set, ym decreases by at least � each time. So ym remains in the set
(�1;M + �] eventually.

We also know that ym > xm ! �, and ym � a�(�j+1), so ym > �� � eventually .

And ym > a�(�j+1) always. So ym > M � � eventually.

Since � is arbitrary, ym converges to M .

QED

Proof. Proof of Proposition 4

� and � as in the statement.

On T , aS(�1)(�) > a�(�). Since both aS and a� are continuous and T compact, we
can take �1 such that aS(�1)(�) > a�(� 0) for j� 0 � � j < �1.

Take � � �1.

Claim 3 �(�) > a�(�) for � 2 T = f�0; :::�ng; � > �0.

By corollary (N), for j > 0, �1(�j) � aS(�1)(�j�1;�1(�j�1)) � aS(�1)(�j�1).

So �1(�j) � aS(�1)(�j�1) > a�(�j) since j�j � �j�1j < � � �1. This proves the claim.

So we know �1(�0) = a�(�0), and for each j, �1(�j+1) = aS(�1)(�j;�1(�j)).

aS(�1)(�j;�1(�j)) = �1(�j) when �1(�j) � aS(�1)(�j). So on f�j : aS(�1)(�j) �
aS(�1)(�0; a

�(�0))g, �1(�j) = aS(�1)(�0; a
�(�0)). Let the last such �j be ��.
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Take �2 < �=2 such that for aS(�1)(�)��2 � x � aS(�1)(�), aS(�1)(�; x) < aS(�1)(�)+
�=2. This is possible because as aS(�1)(�; aS(�1)(�)� �2) as a function of � is continuous,
is increasing in �2 and converges pointwise to aS(�1)(�) as �2 ! 0, so converges uniformly
to aS(�1)(�) as �2 ! 0.

Now take �2 such that for j� 0 � � j < �2, jaS(�1)(� 0)� aS(�1)(�)j < �2. This is possible
because aS(�1) is continuous and so uniformly continuous on T .

Suppose that aS(�1)(�j)� �2 � �1(�j) < aS(�1)(�j) + �=2. Assume that � < �1; �2;.

If �1(�j) � aS(�1)(�j), �1(�j+1) = aS(�1)(�j;�1(�j)) = �1(�j), so aS(�1)(�j+1)� �2 �
aS(�1)(�j) � �1(�j) = �1(�j+1) < aS(�1)(�j) + �=2 < aS(�1)(�j+1) + �=2.

If�1(�j) < aS(�1)(�j) and aS(�1)(�j+1)��2 < aS(�1)(�j) < �1(�j+1) = aS(�1)(�j;�1(�j)) <
aS(�1)(�j) + �=2 < aS(�1)(�j+1) + �=2.

So aS(�1)(�j+1)� �2 � �1(�j+1) < aS(�1)(�j+1) + �=2.

Let S 0(�) = max(aS(�1)(�0; a�(�0)); aS(�1)(�)).

It follows that j�1(�j)� S 0(�j)j < �=2 for j > 0.

Take �3 � �1; �2 small enough so that jaS(�1)(�; a�(�))� aS(�1)(�min; a
�(�min))j < �=2

for j� � �minj < �3. Then jS 0 � Sj < �=2.

So for � < �3, j�1(�j)� S(�j)j < �. QED

Proof. Proof of Proposition 5 (sketch)

1. The di¤erential equation is solvable and has a solution that lies strictly above the
discounted Stackelberg curve. Let the di¤erence be at least �.

Note that above � above the discounted Stackelberg curve �
�a
vS(�1) is bounded above

away from 0: �
�a
vS(�1)(�; a) � k < 0 for a � aS(�1)(�) + �.

2. Consider the process starting at �1(�0) = aS(�1)(�min; a
�(�min)) and generated by:

va(�j;�1(�j+1)) + �1vr(r
�([(�j+1;�1(�j+1))])) = vS(�1) (�j;�1(�j)).

This is equivalent to:

[vS(�j;�1(�j+1))�vS(�1) (�j;�1(�j))]+�1[vr(r�([(�j+1;�1(�j+1))]))�vr(r�([(�j;�1(�j+1))]))] =
0

3. Using the intermediate value theorem, write this as: (�1(�j+1)��1(�j)) ��avS(�j; �)+
�1(�j+1 � �j)

�
��
[vr(r

�([(�;�1(�j+1))]))], where � 2 [�1(�j);�1(�j+1)] and � 2 [�j; �j+1].

It follows that �1 above �0 has uniform Lipschitz constant K =
max( �

��
(vr(r�([:])))

k
,

assuming it remains � above the discounted Stackelberg curve:

4. Rewrite the equation above as:

�1(�j+1)��1(�j)
�j+1��j = �1

�
��
[vr(r�([(�;�1(�j+1))]))]

�
�a
vS(�j ;�)

2 Conv[�1
�
��
[vr(r�([(�;a)]))]
�
�a
vS(�;�)

]
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5. Now consider the solution to the di¤erential equation G:

G1(�j+1)�G1(�j)
�j+1��j 2 Conv[�1

�
��
[vr(r�([(�;a)]))]
�
�a
vS(�;�)

], where this is taken over (�; a) 2 [�j; �j+1] �
[�1(�j);�1(�j+1)].

6. The range of this convex hull tends to zero uniformly as the distance between types
tends to zero. Take any � > 0, then choose �2 > 0 such that when all types are within
�2 of each other, the convex hull above has range at most � < �

2(�max��min) .

Therefore (�1(�j)��1(�0))� (G(�j+1)�G(�0)) � 2�(�j � �0), as long as �1 remains
above � above the discounted Stackelberg curve:

7.Combining 3 and 6, the solution remains above � above the discounted Stackelberg
curve:

8. �1(�1) is arbitrarily close to aS(�1)(�min; a�(�min)) for �2 small enough, which is
arbitrarily close to G1(�1).

The result follows.
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Chapter 2

A Repeated Signalling Model of
Reciprocity

2.1 Introduction

Modelling reciprocation

There exist a variety of attempts to explain reciprocal behaviour and cooperation, in-
cluding standard repeated game theory, psychological games, and behavioural models.
The model of reciprocation given here involves several views on the nature of recipro-
cal interaction. First that in evaluating the generosity of actions, people will look for
the motives behind the action. It is not a model where actions inspire actions directly.
Second that more generous actions result from more generous dispositions. This is more
direct reasoning than a repeated games approach to repeated interactions, where any
ostensibly generous actions are the result of potentially complex strategies and reasoning
about future consequences. Third it takes a rational rather than behavioural approach,
supporting a simple idea about the workings of reciprocation in an expected utility model.

In the model more generous actions will encourage more generous responses, and this
is what supports more generosity than would exist otherwise, a process that requires
a dynamic model rather than a static one such Rabin�s [24]. Types represent intrinsic
generosity and players show generosity to each other in order to gain more favourable
treatment in the future. Players factor out this e¤ect and make correct deductions about
types.

The e¤ective generosity of each player is composed of his intrinsic generosity and his
deductions about the other�s generosity in the past. Types across time are assumed to
be independent, which represents people reacting to being treated surprisingly well or
badly: type is e¤ectively shown as how high up a player is in the probability distribution
over actions, where higher actions are more generous. (Another motivation for this could
be that a player is interested in whether the other was more or less generous than could
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be expected given what has happened in the game.) At any rate there is volatility in the
model which makes it appropriate for some observed situations and not others.

The model is a signalling model of reciprocation, with both parties signalling intrinsic
generosity to each other by taking kinder (higher) actions. A solution concept is proposed
for the game (dynamic Riley) which is well-de�ned and calculable, and a re�nement
proposed that selects it. The signalling incentives are always present and "cooperation"
will be observed with higher actions would exist without signalling concerns.

Modelling repeated signalling games

The paper adapts Roddie [26] to a situation with two signallers, with additive separability
in the utilities of both players. The important property that allows the tractable solution
of repeated signalling games is that single crossing and monotonicity can be preserved
through time. That allows us to de�ne select a simple dynamic version of the Riley
equilibrium, just as single crossing and monotonicity allow the static Riley equilibrium
to be de�ned and selected. It turns out that correlation between types gives potential
problems with monotonicity: by signalling a higher type today, player A may reduce the
signalling incentive for player B tomorrow (which is bad for A) because B may think
that with a higher type there is less need to signal to A. While conditions may be found
that allow monotonicity to be preserved, this paper takes the approach of assuming
independent types.

Several alternative approaches to repeated signalling are explored in this paper. Types
are either �nite or continuous, and the re�nement is designed to apply to either. Contin-
uous types has the potential to generate cleaner solutions. The game is not required to
be �nite, and Markov equilibria of the in�nite game are explored in addition to solutions
of the �nite game.

2.2 Framework

Two players, P1 and P2, play in a repeated game with k periods, where k 2 N [ f1g.
If k < 1, label the periods �k + 1 to 0. Players take actions aP1i , aP2i in period i
simultaneously at each stage. Actions api , p = P1, P2 lie in the set Ap = [apmin; a

p
max].

Higher actions are more favourable to the other player.

Types tpi are drawn independently from distributions �T p on T p with full support,
real intervals or �nite sets of reals. In the continuous case the distributions will (without
loss of generality) uniform over T P1 = T P2 = [0; 1]. Types exist from the period before
the initial play period, if an initial period exists.

Players have discount expected utility with discount factors �p. Payo¤s in the stage
game are Up(t

p
i ; t

�p
i�1; a

P1
i ; aP2i ) = vp(t

p
i ; t

�p
i�1; a

p
i ) + wp(a

�p
i ), where "�" permutes P1 and

P2.
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Assumption 1 vp and wp are continuously di¤erentiable

Assumption 2
R
vp(t

p
i ; :; a

p
i )d� for any measure � on T

�p and any tpi is strictly quasi-
concave in api .

Assumption 3 wp is strictly increasing

Assumption 4 Single crossing: if a00 > a0 and ((tp)00; (t�p)00) > ((tp)0; (t�p)0) then ,
vp((t

p)00; (t�p)00; a00)� vp((t
p)00; (t�p)00; a0) > vp((t

p)0; (t�p)0; a00)� vp((t
p)0; (t�p)0; a0)

Assumption 5 undesirable apmax : vp(t
p
i ; t

�p
i�1; a

p
max)+wp(a

�p
max) � vp(t

p
i ; t

�p
i�1; a

p)+wp(a
�p
min)

for some ap, for all tpi ; t
�p
i�1

Perfect Bayesian Nash equilibrium

Actions are observable, while only current and past types of self are observed. So strate-
gies and beliefs can condition on previous actions of both players and current and past
types of self. Strategies map into mixtures over actions, and satisfy a measurability re-
quirement that the probability of taking actions in any measurable set is a measurable
function of past actions and past and current types, as in [26]; this is needed to de�ne a
probabilistic outcome of the game from any point in the game.

Beliefs must always conform to Bayes�rule from any point in the game (o¤ or on the
equilibrium path) and always ascribe the same independent probability distributions �T p
to future types.

2.3 Riley equilibria

Static Riley equilibrium

Take the static signalling game where the signaller receives utility u(t; a;bt), where t 2 T is
actual type, a 2 A is message sent, and bt is type inferred by the respondent. Suppose that
u satis�es single crossing, monotonicity, strict quasi-concavity in a, and that the highest
action is not optimal even if beliefs are maximal at the highest action and minimal
elsewhere. Then the associated Riley equilibrium exists.

Suppose T is �nite, T = ft0; :::tng. Then the Riley equilibrium is given by:

<(u) : T ! A, <(u)(ti) = argmaxa u(ti; a; [ti]) over a s.t. u(tj; a; [ti]) � u(tj;<(u)(tj); [tj])
for 0 � j = i� 1

If T is a continuous interval [t0; th], then the Riley equilibrium is de�ned by the
di¤erential equation:
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<(u)(t0) = argmaxa u(t0; a; [t0])

<(u)0(t):u2(t;<(u)(t); [t]) + u3(t;<(u)(t); [t]) = 0, where u2 and u3 are partial deriva-
tives w.r.t the 2nd and 3rd arguments of u.

In our context we will de�ne <p to take T = T p, A = Ap.

Note that while the monotonicity of u for bt 2 �(T ) are important, in calculating <(u)
only degenerate distributions of bt are used.
Dynamic Riley equilibrium

In the dynamic version of the Riley equilibrium, both players take strategies that are
functions of current own type, the preceding (believed) type of the other and the number

of periods left in the game. So strategies are given by �pi (t
p
i ;
dt�pi�1), where i is the the

period number, tpi is current own type, and
dt�pi�1 is the belief about the other�s type in the

previous period.

Suppose that from periods n + 1 on, (in every history) strategies conform to �pi and

that �pi (t
p
i ;
dt�pi�1) is strictly increasing indt�pi�1. Suppose that from periods n+1 on (in every

history), type is revealed after moves are observed.

Then in period n, actions of player p and subsequent beliefs about his type have an
e¤ect only on actions in the next period: in periods n + 2 on, all actions are based on
types from periods t+ 1 on (since by the assumption types are revealed after moves are
observed, so type beliefs from periods n+2 on about types from periods n+1 on depend
on actual types from periods n + 1 on. And in the next period n + 1, player p�s action
is a function of his type in that period and p�s beliefs about player �p�s type in period
n, which is independent of the period-n action of player p and subsequent beliefs about
player p�s type. So in period n, actions of player p and subsequent beliefs about his type
a¤ect only the next period action of player �p.

Suppose in period n player p, with type tpn, believes player �p�s type last period wasdt�pn�1 and expects �p to take action bapn. If player p takes action apn and is believed to be
type btpn, then utility is R vp(tpn; t�pn�1; apn)ddt�pn�1(t�pn�1)+�p R wp(��pn+1(t�pn+1; btpn))d�T p(t�pn+1)+c,
where c is independent of apn and

btpn. This satis�es the requirements of single crossing (�rst
term), strict quasiconcavity in action (�rst term), monotonicity (second term increases
in btpn) and undesirable apmax, so we can apply the Riley function <p to de�ne:

�pn(t
p
n;
dt�pn�1) = <p(u)(tpn), where:

u(t; a;bt) := Z vp(t; t
�p
n�1; a)d

dt�pn�1(t�pn�1) + �p

Z
wp(�

�p
n+1(t

�p
n+1;bt))d�T p(t�pn+1)
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This de�nes �pn in terms of �
�p
n+1. Note that �

p
n(t

p
n;
dt�pn�1) will also be strictly increasing

in dt�pn�1. This is because increasing dt�pn�1 increases the preference of player p for higher
actions, a single crossing condition on u w.r.t. dt�pn�1, holding type t �xed (deriving from the
single crossing assumption on vp). This generates a strictly higher actions of each type1

in the Riley equilibrium <p(u). This is a simple exercise to show. In the discrete case,
by induction on the types, with preferences of each type being strictly more inclined to
higher actions the separation condition being always (strictly) stronger. In the continuous

case, if the action of any type for a higher dt�pn�1 ever equals the action for a lower dt�pn�1,
the gradient of <p(u) at that point must be higher.

This allows us to extend the dynamic Riley equilibrium backwards by one period
inde�nitely. A dynamic Riley equilibrium is de�ned to be an equilibrium in which the
relationships between periods above hold at every stage, with full revelation at every

stage and strategies given by �pi (t
p
i ;
dt�pi�1), strictly increasing in dt�pi�1. The behaviour of p

in period i will depend on the behaviour of �p in period i + 1, which depends on the
behaviour of p in period i+ 2, and so on.

Assuming that actions are optimal in the �nal period (if it exists), a Dynamic Riley
equilibrium must be a perfect Bayesian Nash equilibrium. Beliefs are updated correctly:
at every stage each current type takes a di¤erent action (since < is separating) and so
the true type is revealed (held with probability 1) after one of these actions, as assumed.
Given beliefs, each action is optimal because given future strategies, current incentives
are the static signalling incentives given above and <p gives an equilibrium of the static
signalling game so optimal actions when applied here.

Note that apart from the initial period if it exists, current beliefs of p about �p�s
previous type have support on a single point, so the structure of the game is given
by the simple object �pn(

p
n; [t

�p
n�1]), speci�ed only for degenerate beliefs [t

�p
n�1]. Then the

relationships simplify slightly to:

�pn(t
p
n; [t

�p
n�1]) = <p(u)(tpn), where:

u(t; a;bt) := vp(t; t
�p
n�1; a) + �p

Z
wp(�

�p
n+1(t

�p
n+1;bt))d�T p(t�pn+1)

Finite game: Iterated

In a �nite game dynamic Riley equilibrium behaviour in the last period last period
(0) is given by static optimization of vp(t

p
0; t

�p
�1; a

p
0), required by Perfect Bayesian Nash

equilibrium, giving �p0(t
p
0;
ct�p�1) as the strategy in the �nal period, strictly increasing inct�p�1. Previous periods are de�ned iteratively as above.

1Except possibly the lowest. Assume there are at least two types.
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Analytic limit properties have not yet been found for the iterated Riley equilibrium.
Non-persistence of types requires a di¤erent method from Roddie [26]. Work is in progress
to explore either dynamical systems arguments or contraction mapping methods that
might yield limit properties.

Nevertheless the model is calculable for a �nite game, and a computer program that
does so for the �nite type case can be simply a list of the above de�nitions.

In�nite game: Markov

In an in�nite game (in�nite in the future direction, in�nite or �nite in the past), a Markov
Riley equilibrium is a dynamic Riley equilibrium in which �pn is independent of n. Write
�pn = �p. This additional assumption may not in fact be necessary and it may be the case
that any dynamic Riley equilibrium with an in�nite horizon is a automatically a Markov
Riley equilibrium, but this has not been shown as yet. The question is connected with
limit arguments in the �nite game. Take the closed set of weakly increasing functions
(�P10 ; �P20 ). These generate an associated functions (�

P1
�1; �

P2
�1) by the process described

above, a continuous function generating a smaller closed set. Applying this process
repeatedly, if there exists a unique limit that is independent of play in the last period,
this set must in the limit shrink to a point (note that it is important that these sets are
closed to make this conclusion). This point itself will then be a Markov Riley equilibrium,
and any other point if it is a dynamic Riley equilibrium must be outside this set after a
�nite number of iterations and so cannot be supported in an in�nite horizon.

Strategies given by �, with �p(tpi ;
dt�pi�1) strictly increasing in dt�pi�1, are a Markov Ri-

ley equilibrium if the following holds for each player p, giving two symmetric relations
between P1 and P2:

�p(tp0; [t
�p
�1]) = <p(u)(t

p
0), where:

u(t; a;bt) := vp(t; t
�p
�1; a) + �p

Z
wp(�

�p(t�p1 ;bt))d�T p(t�p1 )
Claim 1 There exists a Markov Riley equilibrium

Proof. First consider the �nite type case. Consider the function F taking
(�pn+1(:; [:]); �

�p
n+1(:; [:])) to (�

p
n(:; [:]); �

�p
n (:; [:])) as described above. De�ned above on on

functions �pn+1 where �
p
n(t

p
n+1; [t

�p
n ]) is strictly increasing in [t

�p
n ], F can be extended to

functions that are weakly increasing in [t�pn ] which are a closed set by extending <(u) to
u(t; a;bt) only weakly increasing in bt2. This space of functions is compact because types
are �nite and action spaces are intervals. And F is continuous. So there exists a �xed
point by Brouwer�s �xed point theorem, which is a Markov Riley equilibrium.

2The function can be de�ned exactly in the original form. There may not be separation whenever u
is not strictly increasing in bt, so it would not be called a Riley equilibrium.
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Now consider a continuum and approximate both type spaces by �nite types, taking
probability measures on the �nite types that converge (weak topology) to the original
uniform distribution on the interval. The important fact is that the Riley eqilibrium
probability distribution - the distribution generated by<(u), converges to the distribution
generated in the continuous case when the the type space converges as above and u
converges (see immediately below). So the �nitely de�ned Riley equilibrium converges
to the Riley equilibrium de�ned by the di¤erential equation.

Convergence of u is in understood like this: u(t; a;bt) is de�ned for t in the continuum,
a in A, and bt in the �nite approximation. As a function of bt it is always weakly increasing.
So consider it as a function on the continuum, takin value at any point given by the sup
of values up to that point. Then we have u in the same space and de�ne convergence
as uniform convergence. So by taking limits of the Markov Riley equilibria in the �nite
case (by sequential compactness of the space of weakly increasing strategies �pn), with
corresponding limits of u de�ned above, so that the u given by the �nite case tends to
the u of the limit strategy ��p. Then by continuity of the Riley map we have that the
limit is a Markov Riley equilibrium.

Consider the continuous case with types drawn from a uniform distribution over [0; 1].

Then the di¤erential equation de�ning < gives:

(vp)a(t
p
0; t

�p
�1; �

p(tp0; [t
�p
�1]))

��p

�tp0
(tp0; [t

�p
�1]) + �p

�

�tp0
[

Z 1

0

wp(�
�p(t�p1 ; tp0))dt

�p
1 ] = 0

where (vp)a is the partial derivative of vp w.r.t. action.

We also have initial conditions �p(0; [t�p�1]) given by taking the myopic optimum of the
lowest type 0.

In the symmetric case where vp and wp are independent of p we can look for a
symmetric solution �P1 = �P2 = � and look to solve a single equation in �(x; y) with
boundary values �(0; y) given.

va(x; y; �(x; y))
��

�x
(x; y) + �p

�

�x
[

Z 1

0

w(�(y; x))dy] = 0

2.4 Re�nement and equilibrium selection

Re�nement

The re�nement D! in [26] deals with the case of a single signaller and �nite types. The
re�nement selects beliefs by ascribing in�nitely smaller probability to greater mistakes,
where these mistakes are measured by the beliefs needed to justify suboptimal actions.
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Beliefs are over the next-period response of the respondent and this re�nement is di¢ cult
to apply to a situation with two signallers since altering (in the mind of the signaller who
makes a mistake) the next-period play for either player should now change beliefs in
the following period, since the player with altered actions may not now be separating.
Instead the re�nement here makes a mistake about the type inferred from his action, and
supposes when he takes the suboptimal action that there will be a equilibrium from that
point with the wrong belief as an initial condition, where this equilibrium satis�es the
re�nement.

Like D!, additive separability between actions of both players in the utility functions
of both signallers make the re�nement equivalent to a cardinal utility loss criterion (a type
who loses more utility from a mistake is in�nitely less likely to have made it). While the
utility loss criterion has the important advantage of simplicity, belief-based re�nements
are potentially more generalizable into situations without additive separability. The
proofs given will work for either re�nement.

Suppose the game is �nite. Take a perfect Bayesian Nash equilibrium. Call the vector
of present and past types of p the type vector tp. Let equilibrium utility for type tp be
u(tp). At any history of actions, suppose that p makes an action ai, which may or may
not be in his equilibrium strategy, Alter the equilibrium in the future so that player �p�s
beliefs about player p�s i-type after ai is observed are etpi 2 �(T p), and so that there is a
perfect Bayesian Nash from that point satisfying the re�nement. Let the supremum over
all such equilibria give utility u(tp;etpi ). The justifying beliefs for a type tp to take action
ai are the set of etpi for which u(tp;etpi ) is greater than u(tp).
The re�nement is that if there are two disjoint intervals A and B containing types,

and the (non-empty) intersection of the weakly justifying beliefs of types in A contains
the union of the strictly justifying beliefs of types in B, then types in B are ruled out
after observing action ai.

After action ai, player p expected to come to his mind and use his equilibrium strategy
and beliefs, forming correct beliefs about the type he is thought to be. So player �p best-
responds to the original strategy of p given beliefs given by the re�nement.

In the in�nite horizon case, instead of assuming that there is a Bayesian Nash equilib-
rium satisfying the re�nement after coming to a wrong belief, it is assumed that players
use the same strategies �p(tpi ; t

�p
i�1).

Equilibrium selection

Proposition 1 Each re�nement, belief or utility-based, selects the iterated/Markov Riley
equilibrium uniquely in the �nite case out of perfect Bayesian equilibria, in the in�nite
horizon case perfect Bayesian Markov equilibria with strategies �pn(t

p
n; [t

�p
n�1]).

Proof. Appendix

46



2.5 Discussion

A model of reciprocation is presented in which players are more generous in order to
signal intrinsic good-will to the other to encourage a response. A method is given for
solving the game with �nite or continuous types and with a �nite or in�nite horizon, with
Markov strategies explored in the latter case. There is minimal separation of types of
each player at each stage, and this is selected by the re�nement, adapted from [26]. While
the iterated Riley equilibrium of the �nite game is tractable further work needs to be
done to show limit properties and to show uniqueness of the Markov Riley equilibrium.
The connections between the questions have been clear and they can now be addressed
from more than one angle.

If the model could allow correlation between types over time it could potentially give
it greater scope and then with the relaxing of additive separability allow generalizing to
various important situations of joint reputation. It may be that assumptions can be found
under which monotonicity is preserved through the game even with type correlation.

2.6 Appendix

Proof. Equilibrium selection:

i. Uniqueness

Consider the belief-based re�nement. At any history take an action api of player p and
consider adjusting beliefs as in the re�nement. In the �nite case, by induction assume
that strategies conform to the iterated Riley equilibrium in games of length one less
than the time remaining, and so in future periods as well as in the mistake-belief of the
re�nement. In the in�nite case we have Markov strategies. Either way when beliefs are
adjusted about player p�s type after taking action api only the opponent�s action in the
next period changes, which has an additive e¤ect on utility, and beliefs can be changed
continuously to give a range of utility changes su¢ cient to select the dynamic Riley
equilibrium. This is why the utility criterion is equivalent.

Suppose there is pooling at any stage. Then this must occur with an interval of
period-types with supremum s, because by single crossing types�actions must be weakly
increasing. (Given future play described by strategies of the form �pi ) Consider a slight
increase in action. And the belief mistakes/utility bonuses that would justify it. This is
a strictly decreasing below s but never an empty set below s. So the re�nement implies
that every closed interval of types below s is ruled out. So taking an action slightly above
the pool discontinuously improves beliefs and so utility. That implies separation.

For the �nite type case, to get the Riley equilibrium at each stage we also need to
show minimal separation. If a type �j is not maximizing utility subject to separating from
the preceding type, consider taking the maximizing action instead. This action is strictly
justi�ed by belief �j, while the beliefs that strictly justify the action for the preceding
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type do not include �j. So the set of beliefs that weakly justi�es the action for type �j
includes the set of beliefs that strictly justify the action for type �j�1, so by moving to
this action beliefs are at least preserved, so the original action was not optimal.

Since we have minimal separation and signalling incentives (assuming the future is as
described) are as discussed in the section 2.3, play in period i in terms of play in period
i+ 1 is given by the Riley map, as described in that section.

ii. Existence

That the Iterated/Markov Riley equilibrium is a perfect Bayesian Nash equilibrium
has already been explained in section 2.3. The proof that it satis�es the re�nement is a
minor variation on [6] and [26] and is omitted.
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Chapter 3

Mobility and redistribution with
non-linear taxes

3.1 Synopsis

Mobility between regions imposes a constraint on redistribute. The model in this paper
shows that if taxes are very general, this constraint is very strong. It is common in simple
models of taxation for taxes to be linear. Then they can be studied under democratic
policy choice, with both taxes and ability aligning along some line and a single-crossing
condition generating a median voter result. In this way linear taxes give a tractable
framework for political economic models. Epple and Romer [17] study redistribution and
mobility with linear taxes and conclude that some redistribution is possible, but limited
by strati�cation and the bene�t of attracting richer populations.

The model here weakens the restriction to linear taxes, allowing very general taxes,
non-linear taxes which can discriminate between residents and immigrants. It also weak-
ens policy choice assumptions: there is no assumption of democratic choice, only local
Pareto optimality. Pareto optimality, commonly used (for better or worse) as a norma-
tive principle when applied to policy choice, is used here as a relatively weak positive
assumption. With general taxes there is more competition than with a linear tax, since
it is possible to target particular classes of people, and local Pareto optimality is enough
to obtain this e¤ect.

In addition to studying mobility the model incorporates a choice of work by workers
and so can study the moral hazard problems of optimal taxation and mobility together.
Attention is given to the question of mobility but the results do show how to separate the
two issues. Mobility implies that regions will not have workers who would be better o¤
doing an e¢ cient amount of work and being fully compensated. Then the moral hazard
problem can be studied with this as an additional constraint.

The result that regions will not have workers who would be better o¤ doing an e¢ -
cient amount of work and being fully compensated should not come as a great surprise.
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However it needs to be shown coherently in a model, and modelling the e¤ect poses tech-
nical di¢ culties, largely related to multiplicity and general intractability of equilibrium
after regions have made tax schedule decisions. The problem of multiplicity of equilibria
is dealt with here by considering only changes in populations in which one region poaches
residents from one or more other regions. If no "poaching" is possible, the equilibrium is
considered stable.

3.2 Model

Several independent regions, labelled 1 to n, control their own tax policy. There is
mobility between regions and no region can prevent its residents from leaving, although
regions may restrict immigrants.

People are described by a characteristic a lying in a compact interval A, taken to rep-
resent ability. There is a measure � giving the distribution of characteristics in the whole
population, with �(A) being the total population. Population is taken as continuous so
non-integer values of � are meaningful.

Each person regardless of which region he resides in choose a level of productivity w
from a compact interval W . A resident of region i of type a who does w work earns gross
income I(w), where I is increasing. Total income in region i is Fi(!i) =

R
I(w)d!i(w)

where the measure !i describes work done by the population in region i. Preferences
4a of type a are over w and net income x and derive from a continuous utility function
U(a; w; x).

There are two stages. Population is initially distributed among regions according to
�i, giving a measure over A for each region i. First governments simultaneously set tax
schedules. They may have the ability to set quotas at the same time. Then people decide
whether to stay in their region or migrate, and at the same time how much to work.

Regional governments set tax schemes Ti : [n] �W ! R1 with �Ti upper semicon-
tinuous. Ti(j; w) is the tax paid by a person originally from region j who does work w.
Taxes are bounded. Taxes are allowed to discriminate between immigrants and residents.
Total government income is

R
Tid�i, where �i is the distribution of work and region of

origin in region i. Additionally governments posses independent resources ri > 0. The
role of the assumption is to rule out regions with zero population. When population is
very low, a region becomes very attractive. Taxes are redistributed equally as handouts
to residents who remain in the region, so the net income of resident i who remains in
region i and works w is Ii(w)� Ti(i; w) +

1
�i(fig�A)(

R
Tid�i + ri).

The precise way that taxes are determined - whether by bargaining, democratic vote
with full or partial su¤rage, or some other type of political process - is not modelled, but
it is assumed that the choices are locally Pareto optimal for the region. That is, given
expectations about other regions�choices, each region�s choice is locally Pareto optimal,

1Taxes are functions of work rather than income, but if I is one to one these are equivalent.
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in the sense that no other policy would be expected to strictly improve some residents�
utilities and weakly improve all residents�utilities.

Quotas for immigrants, if allowed, are described by qi(j), measures on W , with
qi(j)(S), S � W being the quota in region i for immigrants doing work in S from region
i. A quota is broken by measure x if there exists S � W such that x(S) > qi(j)(S). A
quota is �lled for work w 2 W when immigration from region is given by measure x if
for any � > 0, x+ 1w� breaks the quota.

Assumption 1 Utility is quasi-linear.

Assumption 2 Single crossing: If w1 < w2 and a1 < a2 and (w1; x1) 4a1 (w2; x2) then
(w1; x1) 4a2 (w2; x2)

Assumption 3 There are no point masses of ability

The assumption is used for in the following way:

Lemma 1 For any tax schedule in any region and for any population, there is a unique
work-choice equilibrium level of handouts, and handouts increase continuously with re-
sources ri.

Proof. By quasi-linearity, preferences over work are independent of handouts. By as-
sumption 2, the correspondence between ability and work is strictly increasing. So the
abilities for which the correspondence is many-valued has measure zero. (Since an in-
creasing function must have measure zero points of discontinuity.)

An e¢ ciency equilibrium is a tax schedule choice by each region, which given that
future play is optimal, is locally e¢ cient for each region. The results presented here have
to do with equilibria when population is stable - there is no movement. What generates
limits on the power to redistribute is the ability of regions to o¤er better deals to residents
of other regions who are having income redistributed away from them. We will call these
residents "discontent" (for want of a better word).

3.3 The movement phase

When tax schemes have been set people decide what region to be in and how much to
work. This phase can be described by a measureM over [n]� [n]�A�W with (i; j; a; w)
representing a person with ability a from region i moving to region j and doing work w.
In the absence of quotas the optimality condition is that there is not a positive measure
of people who would gain utility by changing their choice of region and/or work. With
quotas the optimality condition is that there is not a positive measure of people (i; j; a; w)
who would gain by changing to some choice (j0; w0) of region and work, where the quota
for w0 in region j0 is un�lled.
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Claim 1 Given any choice of tax schedules and quotas, there exists an subgame equilib-
rium in movement and work choice.

Proof. First approximate the ability set A by a �nite set AF and the initial distribution
of populations by �Fi , with support on A, and work by a �nite set W

F , approximating
taxes by the lowest set between the previous and the next point in W F .

Let DF be the set of feasible distributions over [n] � [n] � AF �W F (with correct
total population and satisfying quotas). D is a convex and compact set embedded in Rk
for some k.

Given an outcome d 2 DF there are hand-outs associated with any region of origin,
destination and work, and an optimal choice of destination and work exists for any person
with any ability for any region of origin.

So given dF 2 DF there is a non-empty set f(d) � DF giving optimal movement
and work choice given income functions above. The function f is upper semicontinuous
by continuity of hand-outs with population, taking hand-outs to be in�nite when the
population is zero.

So by Kakutani�s �xed point theorem there exists a �xed point fF . This is an equi-
librium of work and movement for the �nite approximation �Fi :

Now let �Fi tend to �i (weak topology), taking �ner and �ner sets A
F , and W F

tending to W . Take a limit of �xed points by sequential compactness of distributions
over [n]� [n]� A�W . This limit is an equilibrium of movement and work choice.

In�nite handouts when population is zero rules out equilibria with zero population
(assuming that all regions had positive population to start with).

3.4 De�nitions

De�nition 1 A person of ability a is content if his utility is at least maxw U(a; w; I(w)).

The notion of contributing (giving more in tax then is received in bene�ts) will be
useful to the arguments presented later. The di¤erence between contributing and be-
ing discontent arises because of the moral hazard problem in each region, with workers
potentially not doing an e¢ cient amount of work.

De�nition 2 A person doing work w is contributing if his net income is less than
I(w).

Lemma 2 If a person is contributing, he must be discontent.

The exploited residents may be poached by other regions:
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De�nition 3 Take a tax schedule decisions Tj of all regions, and optimal population
movement and work decisions M that involve no movement. A poaching by region i
from a set S with i =2 S is an adjustment Ti ! T 0i by region i and corresponding optimal
population movement and work decisions M 0 with the only movement being from S to i,
and the existing population in region i having Pareto-improved utility.

The results presented here consider "stable" equilibria, in which poaching is not pos-
sible.

De�nition 4 A stable e¢ ciency equilibrium is an equilibrium with no population move-
ment in which no region can poach from other regions.

Note that this is a stronger requirement than just requiring a subgame-perfect e¢ -
ciency equilibrium, since when region i changes its tax schedule from Ti to T 0i , after T

0
i

there may be multiple equilibria of population work and movement choice. The idea of
poaching is that there is no tax scheme T 0i which could be a successful poaching.

3.5 A weaker result

Proposition 1 In a stable e¢ ciency equilibrium with quotas, there exist at least two
regions in which all residents are content.

Proof. Suppose not. Then take a region i such that all other regions have some discon-
tent residents. Take one such resident of of region j 6= i, of ability a.

Let we = arg maxw U(a; w; I(w)). Set a new tax rate T 0i (j; w) = �K for w 6= we,
and T 0i (j; we) = �, where � > 0 but U(a; we; I(we)� �) is strictly greater than the original
utility of a in region j. This is possible because a is exploited. K is chosen to be large
enough to discourage all abilities from doing work other than we.

Now there is a set S of residents in region j that strictly prefers to move to region i
and do work we than remain in region j and do the current work, gaining utility more
than � > 0. � is chosen such that this set still includes a. Since U is continuous in a, the
utility of residents of j is continuous in a, and the utility of moving to region i and doing
we is also continuous in a, so an open set around a is in S, so S has positive measure.

Now take an arbitrary parametrization Sx, with Sx � S and �j(fjg � Sx) = x, and
Sx increasing, de�ned on some interval x 2 [0; �]. So Sx is an increasing set within S
with measure x in region j. Take � to make sure that Sx has measure less than S.

Consider the revenue available for distribution when Sx is removed. The change in
revenue is a combination of stopping bene�ts to Sx (a continuous change) and removing
tax revenue from Sx (again a continuous change, Lipschitz since taxes are bounded).
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This is continuous, with maxwI(w) so is lower semi-continuous from above. (It will
be continuous but that is not necessary to show.) So the level of hand-outs to residents
when Sx is removed are continuous in x.

1. Suppose that for some region j and for all x hand-outs are weakly increased. This
is true if non-contributing residents are being poached. Then take x small enough that
the increase in hand-outs is small enough that no-one�s utility in region j is increased
by more than � by the increase in hand-outs. Then poach from the single region j,
taking Sx, setting taxes as above and setting a quota x for work we and 0 for all other
work. Revenue available for existing residents of i is increased by �x, giving by lemma
1 a Pareto improvement for region i. Since members of Sx gained more than � utility
from the original utility, and after the poaching utility from remaining is increased by
less than a, it is still optimal for them to move to region j. And since hand-outs in region
j have increased, people remaining there still have no incentive to move to a third region.
All other incentives remain the same, so the poaching is an equilibrium of movement and
work choice.

2. Suppose instead that for each region j and for x > 0, handouts are reduced when
Sx is removed. This happens if contributing residents are being poached. Then for some
" > 0, values of x can be chosen for each other region such that hand-outs are reduced
by ", since handouts are lower semi-continuous from above. Poach from all other regions,
taking for the various values of x corresponding residents Sx, setting quotas to the values
of x for work we (which is dependent on region) and zero elsewhere. Revenue from
immigrants generates a Pareto improvement for existing residents (lemma 1).

The method is very roughly: if there are discontent non-contributors in a single region,
then poach them. If there are not, then poach from all regions in such a way as to reduce
bene�ts equally in all other regions. This is important because if bene�ts were reduced
more in region B than region C some residents of region B might then have an incentive
to move to region C. Not only does this upset the de�nition of poaching but it could
upset the equilibrium altogether that is Pareto improving for the poaching region: if
those residents move to region C and were not contributors in region A, bene�ts might
rise in region A, making it possibly no longer in the interest of the originally poached
residents to be poached. The following section will assume that non-contributors are
never attracted and disallow this sort of equilibrium breakdown, allowing for poachings
that are not equally from all regions and allowing a stronger result.

De�nition 5 A tax schedule Ti is ungenerous if Ti(j; :) � 0 for all j 6= i.

In order to guarantee the existence of a poaching that reduces bene�ts equally in all
other regions it was necessary to allow for quotas to restrict immigration. A criticism of
stable equilibrium with quotas is that population can in e¤ect be selected by the poaching
region: the composition of the types �lling the quota can be just right to preserve the
poaching equilibrium. However in the proof above the way in which the quota is �lled
(given by Sx) is arbitrary, and could potentially be taken to be those residents who
would gain the most from being in the quota, or some other plausible group. However
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the technical problem that quotas solve is relatively minor and they are not used in the
following result.

3.6 A stronger result

Proposition 2 In a stable e¢ ciency equilibrium in which all regions set ungenerous tax
schedules, all residents of all regions are content.

Proof. Suppose there are discontent residents in region j and let i 6= j.

Choose one discontent resident of region j a, and let we = arg maxw U(a; w; I(w)),
and choose � such that U(a; we; I(we)� �) is greater than the original utility.

Let T 0i (j; w) = mink 6=i Tk(j; w) � 0 for j 6= i be, except T 0i (j; we) = �.

If population moves from region j to i, there is still no incentive for a resident of
region j to choose some other region over region i, because j has lower tax schedules
for immigrants from i. Also there is still no incentive for a resident of region i to move
to any other region, since handouts have increased in region i since the tax schedule is
ungenerous.

It follows that we can �nd an equilibrium in which population moves from j to i, by
applying a Kakutani �xed point argument only considering the space of population moves
from j to i. Let this space beD0, a convex subset of distributions over [n]�[n]�AF�W F .
Consider the map from populations to handouts to populations after optimal movement
and work given the handouts. Because of the incentive considerations above, under this
map D0 maps into itself. Using �nite approximations as in the original argument for
existence of equilibrium, applying the Kakutani �xed point theorem, and taking limits,
we get a movement equilibrium d in D0.

In d it must be that some residents from j have move to region i and taken work
we. If not then handouts in region j must have strictly increased (since otherwise ability
a would prefer to move and work we). In that case all residents have a strict incentive
to stay in region j rather than take any work in region i other than we; otherwise with
original lower handouts ability b would have a strict incentive to move to region i and
do w0 6= we, but then ability b would have had a strict incentive to move to region k in
the original equilibrium, where T 0i (j; w

0) = Tk(j; w
0). So there is no movement, and so

handouts cannot have strictly increased.

So (T 0i ; d) is a poaching in which a positive measure immigrates from region j to
region i and does work we, adding to government revenue in region i and giving a Pareto
improvement.

Proposition 3 If regions set ungenerous tax schedules which in isolation make all resi-
dents (weakly/strictly) content, (a/ the unique) resulting population movement and work
choice involves no movement.
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Proof. No movement is an equilibrium because if any resident with ability a moves to
another region he will make less than maxw U(a; w; I(w)) while he is making weakly more
than this by remaining since he is content.

Now suppose all residents are strictly content. To see that the equilibrium is unique,
note that if a resident is strict content then he must be strictly non-contributing, so
removing a positive measure of strictly content residents strictly increases handouts in
that region, and if any immigrants join the region, since taxes are ungenerous handouts
increase further. So there is even less incentive to leave than before, and so there is no
equilibrium in which a positive measure of residents leaves a region.

3.7 Discussion

For all residents to be content, none can be contributing, so instead of redistribution, tax
policy concerns distribution of independent resources ri. Moreover not all distributions
of resources will be possible: there is a moral hazard problem and distributions favouring
lower levels of work (or equivalently income) will reduce the level of handouts, and may
make some residents discontent, even though they are not contributing. A mechanism-
designer government with given preferences must solve the moral hazard problem subject
to keeping all abilities content.

Problems of multiple equilibria are worked around by assuming that "poaching" can
be done successfully. An alternative approach that could be to assume that move-
ment/work equilibria vary continuously in response to tax schedule choice. A competitive
equilibrium or auction approach to buying citizens might encapsulate some results and
allow generalization of the model, but it would be hard to incorporate work incentives.
Replacing handouts with a public good, and having economies (income functions) that
adjust to the population distribution are important issues that await further exploration.
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