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Abstract 

Reasoning in Strategic and Non-Strategic Interactions 

Marzena Joanna Rostek 

2006 
 The first chapter introduces a model of preferences in which an individual compares 

uncertain alternatives through a quantile of the induced utility distributions. The choice rule of 

Quantile Maximization unifies maxmin and maxmax and generalizes them to any intermediate 

quantile. Taking preferences over acts as a primitive, we axiomatize Quantile Maximization in a 

Savage setting. We derive probability measure(s) representing subjective beliefs and a unique 

quantile that is maximized by the induced preferences over probability distributions. Importantly, 

the probability measure is unique for all levels of quantile strictly between 0 and 1. Our 

axiomatization provides a novel characterization of probabilistic sophistication. We also discuss 

applications in modeling individual, social and strategic choice, studying risk measures and 

robust economic policy design. 

 The second chapter develops identification conditions for Quantile Maximization for 

finite data sets. We first ask which actions will be observed if individuals are quantile maximizers 

and show that model predictions differ from several leading alternatives, including expected 

utility. We then investigate how much information can be inferred about the unobservables of the 

model from payoff structure and choices. When agents face known probabilities, e.g. in a lab, we 

show that one can construct decision problems that identify the quantile exactly by observing a 

single choice. When the beliefs about the likelihood of events cannot be observed a priori, we 

derive bounds that can be placed on the unobservable quantile and on the beliefs from the data. 

We illustrate how these conditions can be applied to strategic (multiple-agent) settings. 

 One of the most robust findings on experimental play in normal form games is that the 

observed outcomes are consistent with small finite levels of reasoning (typically 1-2). At the 

same time, the equilibrium notions in game theory imply that the set of outcomes must lie weakly 

within the rationalizable set, defined by the common knowledge of rationality and the game 

structure. To predict outcomes in such interactions, a model should thus explain why players 

optimally choose not to reason further. The received non-equilibrium models (e.g., k-level 

models), however, rely on bounded-rationality arguments. In the third chapter, we formulate a 

model that allows the separation of optimal reasoning levels from cognitive limitations. The 

implied set of outcomes is shown to be parameterized by the players’ endogenously derived 

actual levels of reasoning. 
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Chapter 1

Quantile Maximization in Decision Theory

1.1 Introduction

Consider an individual buying a product of uncertain quality on the Internet. Today,

many companies such as Amazon.com, MyTravelGuide.com, PCWorld.PriceGrabber.com,

and BizRate.com, employ on-line customer ratings that provide potential buyers with users’

different quality assessments. How should a buyer choose when only distributions of ranks

but not of absolute evaluations of the quality of the products are available?

Consider further a policy maker who sets policies while facing inherent uncertainty about

the economy fundamentals. Analysis according to a worst-case (precautionary) scenario is

commonplace in economic policy design. Compared to rules based on expectations, this

decision criterion has the important advantage in that it does not require any parametric

assumptions about utilities. Some critics, however, have raised a concern that basing policy

choices on the worst-case outcome gives too much importance to what may be very unlikely

outcomes (e.g., Svensson (2000]). Is it possible to design robust policies and accommodate

the two tenets that a policy should be precautionary but not entirely dependent on or

sensitive to unlikely and extreme outcomes?
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The Subjective Expected Utility and its variants may not be suitable in those contexts.

Their evaluations, and hence the resulting choices, are not only sensitive to outliers, but also

to marginal changes in any probability or payoff; they require not just ranks but cardinal

comparisons; and their policy implications crucially depend on the assumed specification of

agents’ utility functions. In short, they are not robust, and they rely on cardinality assump-

tions about utilities, which are in many settings inadequate or unnecessarily strong, though

they may still drive predictions. In economic theory, there are two famous decision crite-

ria, maxmin and maxmax (choosing an alternative with the highest minimal and maximal

outcome, respectively). These have ordinal properties and are robust to changes in distri-

butions, although not in their supports. Evaluations according to the worst- and best-case

scenarios are examples of their use in practice. Maxmin and maxmax have been popular

in games, bargaining, social choice, voting and other areas in economics. The preferences

they model are, however, very extreme. Surprisingly, there is no framework that captures

less-extreme choice behavior, preserving qualitative properties of maxmin and maxmax that

Expected Utility does not exhibit.

This paper notes that maxmin and -max can be viewed as maximizing, respectively, the

lowest and the highest quantile of beliefs distributions. Building on this idea, we model a

decision maker who, given her beliefs about events, maximizes a quantile of the induced

distributions. Thus the model unifies maxmin and maxmax, and generalizes them to any

intermediate quantile. Unlike in Expected Utility, in Quantile Maximization, the choices

are invariant to arbitrary transformations of payoffs. The rule can model agents who are

only able to rank outcomes in lotteries but not to assess by “how much” they prefer one over

another. Further, the optimal decisions remain robust to changes of distributions outside

of the quantile.

To our knowledge, the only reference to formal analysis of quantile maximization in

decision making is the work of Manski (1988). Advocating an ordinal-utility approach to

modelling choice under uncertainty, Manski examined risk preferences of an agent maximiz-
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ing a quantile of the distribution of utility (quantile utility model), and an agent maximizing

the probability that the realization will exceed some level (utility mass model). Although

largely ignored in choice theory literature, quantiles are present in many applied areas of

economics: Value-at-Risk, one of the most popular measures of risk in finance, is defined

as a quantile of the distribution of losses; in econometrics, quantiles are used in tech-

niques of robust estimation and quantile regression; they are also applied in measurement

(population-based poverty lines), as order statistics, etc. This paper formalizes the con-

cept of Quantile Maximization in choice-theoretic language and studies its implications for

decision making.

Results. We model an individual choosing between uncertain alternatives who evaluates

each alternative by the τ th-quantile of the induced distributions and selects the one with

the highest quantile payoff. Thus, under Quantile Maximization, a decision maker is char-

acterized by a given level of τ ∈ [0, 1] that we call an anticipation level ; subjective beliefs
over events π; and a rank order over outcomes. The central theoretical contributions of the

paper are axiomatization and characterization of probabilistic sophistication. We describe

the main results.

We provide an exact characterization of the model by jointly axiomatizing Quantile

Maximization and subjective probabilities in a Savage setting. That is, taking preferences

over acts (maps from states to outcomes) as a primitive, we find conditions that are necessary

and sufficient for those preferences to admit a quantile representation. We derive probability

measure(s) representing subjective beliefs, and a unique quantile that is maximized by the

induced preferences over probability distributions. As expected, utilities on outcomes are

ordinal, unique up to all strictly increasing transformations. An important insight delivered

by the axiomatization is that the probability measure is unique (and also convex-ranged

and finitely additive) for all levels of quantile strictly between 0 and 1. For the extreme τ ’s
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equal to 0 or 1, we derive a set of nonatomic measures which are not necessarily finitely

additive. This is intuitive: choices of 0- or 1-maximizers are consistent with any measure

that assigns strictly positive (and less than one) values to the same outcomes.

We characterize Quantile Maximization through five axioms. Compared to Savage’s

(1954), our set of conditions retains P1 (Ordering) and a slightly weaker version of P5

(Nondegeneracy). We drop all his remaining axioms, including P2 (the Sure-Thing Princi-

ple) and P3 (Eventwise Monotonicity). Savage’s P4 (Weak Comparative Probability) is in

fact implied by our axioms, but dispensing with P2 requires adding an additional condition

that ensures additivity of derived probability measures. This is achieved by the condition

that provides the likelihood judgement, induced from preferences over acts, with a weak-

order structure, which we call Comparative Probability (P4Q). Our central axiom that leads

to existence and uniqueness of τ is a new monotonicity condition. The key implication of

this axiom is that for any act, there exists an event, called a pivotal event, such that ex-

changing outcomes outside of this event in a way that preserves its rank does not affect

preferences over acts. Intuitively, the induced lottery preferences remain unaffected by ex-

changing parts of cumulative distributions below and above some quantile. We dub this

axiom Pivotal Monotonicity, P3Q. Finally, due to the ordinality property of the model, the

Archimedean axiom typically employed in a Savage setting, P6 (Small Event Continuity),

is too strong for our model, as it implies mixture continuity. We weaken it just enough

to retain its implications for nonatomicity of probability measures and to ensure that the

quantile is left-continuous (Event Continuity, P6Q).

While Pivotal Monotonicity seems suggestive about how the quantile may obtain through

comparing probability distributions (when probabilities are derived), it does not say that

the pivotal event is unique in an act or across acts. Nonetheless, the main challenge in

axiomatizing Quantile Maximization was to derive a probability-measure representation for

subjective beliefs. We could not directly use either Savage’s (1954) or other derivations in

the literature, since they rely on some form of mixture continuity and monotonicity which
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are not present in the model. A starting point in our construction is a definition of a like-

lihood relation over events induced by the preference relation over acts. According to the

commonly used definition by Ramsey (1931), event E is judged more likely than event F

if, for any pair of outcomes x and y, where x is strictly preferred to y, an individual strictly

prefers betting on x when E occurs than when F occurs. In our model, this likelihood rela-

tion generates only two equivalence classes: all events are judged either equally likely to the

null set or to the whole state space. (For example, think of a median maximizer comparing

events with probabilities 0.7 and 0.9.) Our approach is to define a new likelihood relation

complete only on a subset of “small” events. The relation embeds enough structure to allow

us to derive a probability measure on that subset. We then extend it to the set of all events.

In constructing the measure, it is essential that disjoint non-null subsets of the state space

can be strictly ranked. For the class of preferences leading to τ ∈ (0, 1), we show that this
holds. This is not possible for two extreme cases, yielding τ = 0 and τ = 1. As a result,

while for τ ∈ (0, 1) preferences over acts are not affected by exchanging outcomes on equally
likely events, for τ = 0 or τ = 1 they are invariant to swapping outcomes on any disjoint

non-null events. As hinted above, choices of 0- and 1-maximizers depend on, and hence

reveal, less structure in the primitive acts than do those of individuals with τ ∈ (0, 1). For
τ = 0 and τ = 1, we derive a set of probability measures.

The axiomatization contributes in two ways to the growing body of literature on prob-

abilistic sophistication initiated by Machina and Schmeidler (1992). To put our results in

perspective, the goal of this line of research is to understand when choices of a decision-

maker using some decision rule are consistent with her having beliefs that conform to a

unique probability measure. Motivated by an observation that Savage’s (1954) derivation

of subjective probabilities depends on axioms that lead to an expected-utility functional,

Machina and Schmeidler (1992) characterized an individual whose choice is based on proba-

bilistic beliefs, but does not necessarily comply with the expected utility hypothesis. Grant
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(1995) observed that Machina and Schmeidler’s definition and proof still restrict a class of

preferences by requiring that the induced lottery preferences satisfy continuity and mono-

tonicity properties: mixture continuity and monotonicity with respect to stochastic domi-

nance. Grant (1995) postulated that the notion of probabilistic sophistication as such should

be dissociated from extraneous properties of the induced lottery preferences, and hence of

the utility representation of preferences. Nevertheless, Grant’s (1995) derivation does use a

weaker continuity property (two-outcome mixture continuity). He concludes: “Ideally then,

it would be nice to characterize probabilistically sophisticated preferences without requiring

the induced risk preferences to exhibit any specific properties save perhaps some form of

continuity ...” (p.177). Our characterization of probabilistic sophistication achieves that. In

addition, only a weak notion of monotonicity of risk preferences is used: weak stochastic

dominance.

As an illustrative example, consider a median maximizer. Her choices violate all axioms

in Machina and Schmeidler, except P1 (Ordering), P4 (Weak Comparative Likelihood) and

P5 (Nondegeneracy) and all axioms in Grant (1995) except for P1 and P5’. Thus the median

maximizer would not be probabilistically sophisticated according to their characterizations.

Another related concern about the developments in probabilistic sophistication, which

has not been emphasized so far, is that they impose restrictions on the set of outcomes from

which acts are defined. Admittedly, the existence of subjective beliefs about events should

not depend on the properties of the set of outcomes. Our result neither assumes nor implies

any conditions on the outcome set. One advantage is that it can be used to characterize

beliefs of agents without well-defined utility functions. Our results are useful in clarifying

some customary interpretations in the literature on probabilistic beliefs.

Applications. Compared to the commonly used choice rules, for instance Expected Util-

ity, the Quantile Maximization model exhibits different theoretical properties (robustness,

ordinality, one-dimensional information about preferences) and therefore, it can complement
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them in applications. We discuss settings in which those properties are desirable (e.g., pol-

icy design). From the empirical perspective, the considerably weaker requirements for the

knowledge of utility functions and robustness can make the quantile decision rule a useful

tool in empirical applications. For example, Quantile Maximization allows a researcher to

study risk attitudes without needing first to characterize the concavity of utilities from data.

Related Literature. Maxmin models of choice have been developed by Roy (1952,

safety first rule), Milnor (1954), Rawls (1971, justice as fairness theory1), Maskin (1979),

Barbera and Jackson (1988), Cohen (1992, security level), Segal and Sobel (2002), and

others. Studies that formalize maxmax include Cohen (1992, potential level), Segal and

Sobel (2002) and Yildiz (2004, wishful thinking).

The idea of modeling preferences lying between maxmin and maxmax is not new. Hur-

wicz (1951) and Arrow and Hurwicz (1972) introduced the α-maxmin rule, defined as a

weighted average of the minimal and maximal outcomes. Unlike in our model, the α-

maxmin preferences depend just on the extremes, not on any intermediate realizations; are

not based on probability values; and do not preserve the ordinality property of maxmin

and maxmax. Other related models involve a combination of Expected Utility and maxmin

(Gilboa [1988], Jaffray [1988], Cohen [1992]) or, like neo-additive capacities by Chateauneuf,

Eichberger and Grant (2002), put a fixed weight on the extreme outcomes and apply Ex-

pected Utility for those in between. These concepts were intended to explain deviations

from Expected Utility, and they still rely on the expected-utility operator. As a result they

behave very differently than the original maxmin and maxmax.

For multiple priors, maxmin was axiomatized by Gilboa and Schmeidler (1989) in what

has come to be known as maxmin expected utility (MEU ), and for multiple utilities by

Maccheroni (2002). MEU can be thought of as formalizing Wald’s (1950) minimax crite-

1 It proposes that behind the veil of ignorance, individuals should choose to maximize wealth of the least
well-off.
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rion. α-maxmin rule was axiomatized by Ghirardato, Maccheroni, and Marinacci (2004)

for multiple priors (α-MEU ), and in a dual model by Ghirardato (2001).

Manski (1988, quantile utility model, utility mass model) and Börgers (1993, pure-

strategy dominance) are rare examples of ordinal concepts in economics. We should mention

that in the field of Artificial Intelligence, the ordinal approach to modeling choice has been

put forward as a research agenda over the past decade. The goal is to develop decision

rules that require less information about utilities and beliefs (qualitative decision theory),

and can be implemented by information systems, such as recommender systems. Some

of the decision criteria that have already been proposed can be interpreted as modeling

preferences lying between maxmin and maxmax. (See for example, Boutilier [1994], Dubois

et al. [2000], Dubois et al. [2002] and references therein.)

Recently, Chambers (2005) has studied properties of bounded measurable functions that

characterize quantile functions.

Although we have restricted attention to theoretical literature, similar concepts have

often appeared in policy or applied settings. We discuss them in the paper.

Structure of the paper. The paper proceeds as follows: Section 1.2 defines the deci-

sion criterion of Quantile Maximization and characterizes its properties. Section 1.3 states

our axioms, provides the main results: the representation theorem and a characterization

of probabilistic sophistication, and examines properties of risk preferences. Section 1.4

outlines the proofs for the two results. Section 1.5 relates the axiomatization and our char-

acterization of probabilistic sophistication to the literature. Section 2.2 presents the results

for identification with finite data. Section 7 discusses applications of the model. Finally,

Section 8 offers concluding remarks. All proofs, unless otherwise noted in the text, appear

in Appendices.
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1.2 The Quantile Maximization Model

In this section, we formally define Quantile Maximization, intuitively explain how quantile

maximizers make choices and describe the key properties of the decision rule.

1.2.1 Model

Let S = {..., s, ...} denote a set of states of the world, and let X = {..., x, y, ...} be an
arbitrary set of outcomes. An individual chooses among finite-outcome acts,2 maps from

states to outcomes. F = {..., f, g, ...} is the set of all such acts. The set of events E =
2S = {..., E, F, ...} is the set of all subsets of S. A collection {S, X , E , F} defines the
Savagean model of purely subjective uncertainty. An individual is characterized by a binary

relation over acts in F , which will be defined to be a preference relation and taken to be the
primitive of the model. As it will become clear in the sequel, it is convenient to work with

the strict binary relation Â. Indifference and weak preference will be defined as usual (here
and for all strict binary relations throughout): f ∼ g ⇔ f ¨ g and f ⊀ g, f % g ⇔ f Â g

or f ∼ g. Let Âx denote the preference relation over certain outcomes, X , obtained as a
restriction of Â to constant acts. We will say that an event E is null if for any two acts,

f, g which differ only on E, we have f ∼ g.

Define the set of simple (finite-outcome) probability distributions over outcomes (lot-

teries):

P0(X ) =
⎧⎨⎩P = (x1, p1, ..., xN , pN )

¯̄̄̄
¯̄ X
n=1,...,N

pn = 1, xn ∈ X , pn ≥ 0, n ∈ N++

⎫⎬⎭ . (1)

Finally, δx denotes the degenerate lottery P = (x, 1).

Let π stand for a probability measure on E and let u be a utility over outcomes u :
X → R. For each act, π induces a probability distribution over payoffs, referred to as a

2An act f is said to be finite-outcome if its outcome set f(S) = {f(s)|s ∈ S} is finite.
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lottery. For an act f , Πf denotes the induced cumulative probability distribution of utility

Πf (z) = π[s ∈ S|u(f(s)) ≤ z], z ∈ R. Then, for a fixed act f and τ ∈ (0, 1], the τ th quantile
of the random variable u(x) is defined as the smallest value z such that the probability that

a random variable will be less than z is not smaller than τ :

Qτ (Πf ) = inf{z ∈ R|π[u(f(s)) ≤ z]≥τ}, (2)

while for τ = 0, it is defined as

Q0(Πf ) = sup{z ∈ R|π[u(f(s)) ≤ z]≤0}. (3)

(Cf. Denneberg [1994].)

Definition 1 A decision maker is said to be a τ -quantile maximizer if there exists a unique

τ , a probability measure π on E and utility u over outcomes in X such that for all f, g ∈ F,

f Â g ⇔ Qτ (Πf ) > Qτ (Πg). (4)

By analogy with Expected Utility, where the mean is a single estimate of the induced distri-

bution, when choosing among lotteries, a τ -maximizer assesses the value of each lottery by

the τ th quantile realization. Put differently, she anticipates that the τ th quantile will be real-

ized. We will call τ an anticipation level. Notice that although in general a correspondence,

generically in payoffs the set of optimal choices is a singleton.

The model nests two choice rules famous in the literature of choice under risk, namely

maxmin and maxmax. Choosing according to maxmin, a decision maker will find the

minimal outcome in every act she is facing and select the one with the highest minimal

outcome:

f Â g ⇔ min
{x∈f(S)|π(x)>0}

u(x) > min
{x∈g(S)|π(x)>0}

u(x). (5)
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According to maxmax, she will pick the act with the highest maximal outcome:

f Â g ⇔ max
{x∈f(S)|π(x)>0}

u(x) > max
{x∈g(S)|π(x)>0}

u(x). (6)

Since the minimal outcome in the support of Πf is the lowest-quantile outcome and, simi-

larly, the maximand under maxmax is the highest-quantile outcome:

Q0(Πf ) = min
{x∈f(S)|π(x)>0}

u(x), Q1(Πf ) = min
{x∈f(S)|π(x)>0}

u(x), (7)

the maxmin and maxmax decision makers are, respectively, the 0- and 1-quantile maximiz-

ers. Quantile Maximization can therefore be viewed as a generalization of those extreme

choice rules to any intermediate level of quantile. While the main focus of the paper will be

on finite-outcome acts, in Example 1, we illustrate the relation between maxmin, maxmax

and Quantile Maximization using infinite-outcome acts.

Example 1 Consider an individual facing the two lotteries, induced by some acts f and

g, whose cdf’s are plotted in Figure 1.1. The 0-quantile maximizer would choose f , the 1-

quantile maximizer would be indifferent, and the median- (τ = 0.5) maximizer would prefer

g.

Figure 1.1 Distributions induced by acts in Example 1

 Pr(x)

Maxmin  τ =0

Maxmax  τ =1

X 

g

f

X

τ  =0.5
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Quantile Maximization is itself an extreme criterion in the sense that the choices result

from comparing a single quantile of the distribution. However, the optimal decisions depend

on the values of all probabilities and the ranking of all outcomes, while under maxmin and

-max they are based only on the support of distribution and on the minimal or maximal

outcomes. Consequently, the optimal decisions are not sensitive to outliers, or exclusively

based on the extreme outcomes, as they are in maxmin and maxmax.

1.2.2 Properties of the Quantile Maximization rule

In this section, we characterize the main properties of the Quantile Maximization choice

rule and contrast it with the Expected Utility approach. We begin with an example, which

also explains how τ -maximizers choose among finite-outcome lotteries, which will be the

main focus of the paper.

Example 2 An individual is choosing among acts f1, f2 and f3, represented by rows in

Matrix M1. Let her subjective beliefs about events E1 and E2, represented by columns, be

given by π and 1− π, and let u denote her utility function on outcomes. Each entry in the

matrix contains a payoff u(x).

Matrix M1

E1 E2

f1 11 1

f2 4 8

f3 10 3

Figure 1.2 Conditional cdf’s for acts in Matrix M1

1-π π π 1-π 1-π π

f1 1 11 f2 4 8 f3 3 10

Suppose that π = 1
3 and 1− π = 2

3 and the agent is a median (τ =
1
2) maximizer. In order

to find her optimal choice, we need to transform each conditional lottery induced by each
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act into a cdf (Figure 1.2). In this case, the decision maker would anticipate payoffs of 1,

8, and 3 from f1, f2 and f3, respectively. Therefore, she would choose f2.

Several important features of Quantile Maximization differentiate it from other choice

rules, for instance Subjective Expected Utility.

(1) Ordinality: The optimal decision is invariant to an arbitrary positive monotone

transformation of payoffs, because the outcomes affect the choice only through their ranking.

In Matrix M1, for any increasing function v, replacing all payoffs u(x) in all lotteries with

v(u(x)) leaves the choice intact.

(2) Robustness: The optimal choice is not affected if, for the fixed τ , the distribution of

any induced lottery is perturbed outside of the quantile in a way that preserves the ranking

of outcomes. For example, if a payoff of 4 is replaced by -1 or by k (k ≥ 1) payoffs lower
than 8 and jointly assigned probability 1

3 , f2 will still be optimal.

(3) One-dimensional information about preferences: Given the ranking of outcomes, τ

specifies the entire preference ordering over lotteries for any beliefs.

(4) Outcomes need not be objectively measurable: Risk preferences under Quantile Max-

imization are well defined even if the outcomes corresponding to payoffs {1, 3, 4, 8, 10,

and 11 } are replaced with not readily measurable restaurants, movies, political parties, or

{war, cold war, treaty, peace, union and cooperation}, and any outcome would be strictly

preferred to the one immediately preceding it. There need not be any other relation among

them.

In contrast, under Expected Utility, (1) the choices remain unaffected only by affine

transformations of Bernoulli utility over outcomes; (2) any marginal change in payoffs or

probabilities affects the value of a lottery; hence, it changes preferences in the sense of

changing an equivalence class; (3) specifying (concavity of) Bernoulli utility function is

needed to determine preferences over lotteries; and (4) outcomes must be measurable on an
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interval scale to analyze risk aversion.3

To elucidate where these qualitative differences come from, we consider a τ -quantile

maximizer evaluating a g i v en lottery or act. It is well known (see e.g. Koenker [2005, Ch.

1]) that this evaluation can be seen as minimizing the loss function (8), defined as a sum

of absolute deviations; the solution to this minimization problem is the τ th quantile of the

distribution Π, u(x∗). Evaluation (of a given lottery or act) through Expected Utility can

be similarly viewed as minimizing a squared symmetric loss function.

(1− τ)

u(x∗)Z
−∞

[u(x∗)− u(x)]dΠ(x) + τ

∞Z
u(x∗)

[u(x)− u(x∗)]dΠ(x). (8)

An asymmetric weighting function is depicted in Figure 1.3.

Figure 1.3 Weighting function for the loss function (8)

 

|u(x)-u(x*)| 

τ-1

τ

It is useful to think of the solution to minimizing (8) as the agent’s prediction or estimation

of the realization from the lottery. The lower τ is, the more the agent predicting a realization

3An interval scale assumes that the distance between adjacent points on the scale is equal. Section 3.5
provides more examples.
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of a lottery is concerned about underpredictions relative to overpredictions - hence, the more

she cares about the lower-tail outcomes relative to the higher-tail outcomes. The case when

the piecewise linear value function is symmetric corresponds to the median.4

That the quantile solves the minimization of absolute rather than quadratic loss function

makes it less affected by outliers. This property has been explored in econometrics in

robust estimation. Mean-based estimators, such as OLS, are very sensitive to large errors

and to asymmetric distributions, often met in practice. A popular alternative estimator,

which is more robust, is based on the median or quantile (Least Absolute Deviations, or

LAD, method; Koenker and Bassett [1978b]). Just as the mean estimator minimizes the

sum of squared errors, the quantile-based estimator minimizes a weighted sum of absolute

deviations.

To further examine which properties of the quantile have been appealing in practice,

we mention another famous example of Quantile Maximization being used by practitioners

(possibly supplemented by other information): Value-at-Risk (VaR). Given a confidence

level a ∈ (0, 1), VaR is the loss in market value that is exceeded with probability 1 − α,

which is the (1 − α)th quantile of the loss distribution. VaR was developed to provide a

single number that could aggregate the several components of risk to convey information

about the risk in a portfolio, could be easily calculated and conveniently interpreted, and

would focus attention on the so-called “normal market condition.” (See Duffie and Pan

[1997], Artzner et al. [1999], and VaR’s Web site: http://www.GloriaMundi.org.)

Practitioners find it a more attractive measure of risk than variance:

“Modern Portfolio Theory (“MPT”), as taught in business schools, tells us that

the risk in a portfolio can be proxied by the portfolio standard deviation, a

4 In addition, such formulation provides another way of showing that the optimal decision of a quantile
maximizer is not exclusively based on the extreme outcomes, but rather depends on the ranking of all
outcomes and the values of all probabilities, unlike in maxmin and maxmax.
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measure of spread in a distribution. That is, standard deviation is all you need

to know in order to (1) encapsulate all the information about risk that is relevant,

and (2) construct risk-based rules for optimal risk “management” decisions. [...]

standard deviation loses its appeal found in MPT. First, managers think of risk

in terms of dollars of loss, whereas standard deviation defines risk in terms of

deviations, either above or below expected return and is therefore not intuitive.

Second, in trading portfolios deviations of a given amount below expected return

do not occur with the same likelihood as deviations above, as a result of positions

in options and option-like instruments, whereas the use of standard deviation

for risk management assumes symmetry.” (Schachter [1997, p. 19])

In addition, standard deviation requires that the second moment of distribution be finite,

which is a problem, for example, in non-life insurance.5

1.3 Axiomatic foundations of Quantile Maximization

In this section, we derive restrictions on preferences implied by Quantile Maximization.

Specifically, the challenge is to formulate axioms on preferences over acts that are necessary

and sufficient for there to exist a unique number τ in [0, 1], probability measure(s) π rep-

5Although used long before, VaR became popular among trading institutions during the 1990s with the
influential report on derivatives practices of the Group of 30 in 1993, the RiskMetrics service launched by JP
Morgan in 1994 to promote the use of VaR, and the market risk capital requirements set for banks by the
Basel Committee on Banking Supervision 1995. Today, it is being advocated by the Federal Reserve Bank
and the Securities and Exchange Commission, the Bank for International Settlements, and it is a widespread
risk management tool in finance, banking and insurance.
Value-at-Risk is used in setting position limits for traders, in capital allocation, to incentivize traders

through risk-capital charges based in VaR not to take on excessive risk, and in adjusting the performance
of risk. It is used to compare risky activities in diverse markets, but the total risk of the firm can also be
broken down into "incremental" Value-at-Risk to uncover positions contributing most to total risk.
Clearly, VaR does not capture all relevant information about market risk. It does not say what the

largest losses could be. Nor does it measure "event" (e.g., market crash) risk, and for that reason it is
supplemented with stress tests. VaR is based on a particular forecast horizon, whereas a disadvantageous
economic environment may extend beyond that horizon. In addition, VaR models typically assume that the
portfolio under consideration is constant over the forecast horizon (there is ongoing research on dynamic
VaR, e.g. Rogachev [2002]). Another strong assumption is that the past data used to construct the VaR
estimate contains information useful in forecasting the distribution of losses.
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resenting beliefs, and utilities on outcomes u, all derived from preferences over acts, that

guide the behavior of a quantile maximizer.

1.3.1 Axioms

Consider the following five axioms on Â. The numbering is Savage’s, the names of his
axioms are adapted from Machina and Schmeidler (1992), and the superscript “Q” is added

to new axioms.

AXIOM P1 (ORDERING): The relation Â is a weak order.

This condition defines Â as a preference relation. To state the next axiom, for a fixed act

f ∈ F and event E such that f−1(x) = E for some x ∈ f(S), we define the unions of events
which by f are assigned outcomes strictly more and strictly less preferred to x, respectively:

Efx+ = {s ∈ S|f(s) Â x} (9)

Efx− = {s ∈ S|f(s) ≺ x} (10)

Note that since the acts are finite-ranged, every act induces a natural partition of the state

space which is the coarsest partition with respect to which it is measurable. The event E

is an element of such a partition. Let the function gx+ be any mapping gx+ : Efx+ → X
with gx+(s) % x, for all s ∈ Efx+ and similarly, let gx− be any map gx− : Efx− → X with

gx−(s) - x, for all s ∈ Efx−.

AXIOM P3Q (PIVOTAL MONOTONICITY): For any act f ∈ F , there exists a
non-null event Ef such that f−1(x) = Ef for some x ∈ f(S), and for any outcome y, and
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subacts gx+, gx−, gy+, and gy− :

⎡⎢⎢⎢⎢⎣
gx+ if Ef+

x if Ef

gx− if Ef−

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

gy+ if Ef+

y if Ef

gy− if Ef−

⎤⎥⎥⎥⎥⎦⇔ x % y. (11)

Before we explain the many roles this axiom serves, we first interpret the following important

implication: for an act f ∈ F , event E such that f−1(x) = E for some x ∈ f(S), and all
subacts gx+, gx−, gy+, and gy− define

fE =

⎡⎢⎢⎢⎢⎣
gx+ if Efx+

x if E

gx− if Efx−

⎤⎥⎥⎥⎥⎦ ; (12)

It follows from P3Q that for any act f ∈ F , there exists a non-null event Ef such that

f−1(x) = Ef for some x ∈ f(S) and
f ∼ fEf . (13)

The last condition states that for a given act, there exists an event, which will be called

a pivotal event, such that changing outcomes outside of that event in a (weakly) rank-

preserving way does not affect preferences over acts, a form of separability. Crucially, what

is fixed during this transformation are the events assigned to outcomes which in the original

act f are either strictly preferred or less preferred to x, the outcome on the pivotal event.

The requirement that the act f be constant for the pivotal event ensures that the conditions

(11) and (13) are non-trivial. (Otherwise, the state space could be taken as pivotal for any

act.) This axiom will be the key to guaranteeing the existence and uniqueness of a quantile

τ ∈ [0, 1]. Intuitively, it implies that the induced preferences over lotteries will not be
changed by replacing parts of the cumulative probability distributions below and above
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some quantile.

Moreover, as the name suggests, P3Q provides preferences over acts with an appropriate,

local notion of monotonicity. It states that replacing any outcome y on the pivotal event by

a (weakly) preferred outcome x always leads to a (weakly) preferred act. It is noteworthy

that it suffices that the preference is monotonic on the pivotal event only, since the axioms

jointly allow for extending the monotonicity to the whole state space.

In addition, together with other axioms, Pivotal Monotonicity will imply that the utility

over outcomes, u(x), is event independent. Informally, this ensures that how an outcome in

an act is assessed by a decision maker depends only on the likelihood of the event to which

the outcome is assigned, and not on the event itself. In a similar manner, P3Q will render

the property of being pivotal state-independent.

Finally, together with P1, P3Q gives rise to the “more likely than” judgment of events,

derived from preferences over acts.

AXIOM P4Q (COMPARATIVE PROBABILITY): For all pairs of disjoint events E

and F , outcomes x∗ Â x, and subacts g and h,

⎡⎢⎢⎢⎢⎣
x∗ if s ∈ E

x if s ∈ F

g if s /∈ E ∪ F

⎤⎥⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎢⎣

x∗ if s ∈ F

x if s ∈ E

g if s /∈ E ∪ F

⎤⎥⎥⎥⎥⎦⇒
⎡⎢⎢⎢⎢⎣

x∗ if s ∈ E

x if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

x∗ if s ∈ F

x if s ∈ E

h if s /∈ F ∪ F

⎤⎥⎥⎥⎥⎦ .
(14)

P4Q ensures that the likelihood relation over events, induced from preferences over acts, is

a weak order6 and it provides its representation with a finitely additive form. Notice that

6We note that the standard likelihood relation, defined below in (21), inherits the weak-order property
directly from P1 and P3Q. P4Q gives the weak-order structure to the likelihood relation used in this paper,
defined in Section 1.4. We further note that when P4Q is dispensed with, the derived represenations of
beliefs will be capacities.
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no events are required to be non-null.

AXIOM P5 (NONDEGENERACY): There exist acts f and g such that f Â g.

This is a standard non-triviality condition.7 By requiring that the individual not be indif-

ferent among all outcomes, P5 assures that both the preference relation and the derived

likelihood relation are well-defined (in particular, non-reflexive) weak orders. It also leads

to the uniqueness of a probability measure.

Before we state the final axiom, we identify an interesting class of preferences. It is

convenient to define the following two cases:

(L, “lowest”): For any act f ∈ F , the pivotal event assigns the least-preferred
outcome in {x ∈ X|x ∈ f(S)}.

(15)

(H, “highest”): For any act f ∈ F , the pivotal event assigns the most-preferred
outcome in {x ∈ X|x ∈ f(S)}.

(16)

Intuitively, these preferences will lead to τ = 0 and τ = 1, respectively.

Definition 2 A preference relation over acts F , Â, satisfying P3Q, is called extreme if
either L or H holds.

We define two continuity properties that will be used in the axiom.

7Strictly speaking, it is weaker than the commonly used P5 of Savage (see Appendix 1), but the two
conditions are equivalent in the presence of other axioms.
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(P6Q∗) Fix a pair of events E,F ∈ E . If for any pair of outcomes such that x Â y,

⎡⎢⎣ x if s /∈ E

y if s ∈ E

⎤⎥⎦ ≺
⎡⎢⎣ x if s /∈ F

y if s ∈ F

⎤⎥⎦ , (17)

then there exists a finite partition {G1, ...,GN} of S such that⎡⎢⎣ x if s /∈ E

y if s ∈ E

⎤⎥⎦ ≺
⎡⎢⎣ x if s /∈ F ∪Gn

y if s ∈ F ∪Gn

⎤⎥⎦ (18)

for all n = 1, ...,N .

(P6Q
∗
) Fix a pair of events E,F ∈ E . If for any pair of outcomes such that x Â y,

⎡⎢⎣ x if s ∈ E

y if s /∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s ∈ F

y if s /∈ F

⎤⎥⎦ , (19)

then there exists a finite partition {H1, ...,HM} of S such that⎡⎢⎣ x if s ∈ E

y if s /∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s ∈ F ∪Hm

y if s /∈ F ∪Hm

⎤⎥⎦ (20)

for all m = 1, ...,M .

AXIOM P6Q (EVENT CONTINUITY): For non-extreme preferences, the relation Â
satisfies P6Q∗ for all events in E and P6Q∗ for any event E in E and ∅. If H holds, Â
satisfies P6Q∗ , while if L holds, Â satisfies P6Q∗ .

For the non-extreme preferences, the main force of this Archimedean axiom comes from
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the implication that the state space is infinite. Furthermore, it ensures that the quantile

representation is left-continuous. Being formulated in terms of two-outcome acts, it has no

further implications for risk preferences (the restriction of the implied lottery preferences

to constant lotteries).

We close this section by remarking that the conditions (P6Q∗) and (P6Q
∗
) can be

interpreted in terms of likelihood relations. Although the definition of likelihood we adopt

differs from the commonly used one (see Section 1.4), the standard definition still appears

to reveal useful structure, which is employed in P6Q. Formally, as defined by Ramsey

(1931) and adopted by Savage (1954), the likelihood relation Â∗, a binary relation on E , is
implicitly defined by Savage’s P4 (Appendix 1), implied by our P1 and P4Q:

E Â∗ F if for all x Â y,

⎡⎢⎣ x if s ∈ E

y if s 6∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s ∈ F

y if s 6∈ F

⎤⎥⎦ . (21)

We also use the following definition, which maps the events whose likelihood is assessed

to the less preferred outcome:

E Â∗ F if for all x Â y,

⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ ≺
⎡⎢⎣ x if s 6∈ F

y if s ∈ F

⎤⎥⎦ . (22)

Given these definitions, (P6Q∗) and (P6Q
∗
) can be restated as follows:

(P6Q∗ , restated): Fix a pair of events E,F ∈ E . If E Â∗ F , then there exists a finite

partition {G1, ...,GN} of S such that E Â∗ F ∪Gn, for all n = 1, ..., N .

(P6Q
∗
, restated): Fix a pair of events E,F ∈ E . If E Â∗ F , then there exists a finite

partition {H1, ...,HM} of S such that E Â∗ F ∪Hm, for all m = 1, ...,M .
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In all cases leading to τ ∈ (0, 1), definition (22) is used. The reason for altering the

definition is that the commonly used definition (21) would yield right-continuity of the

quantile representation functional; we follow the convention in the literature and define

quantiles as left-continuous. The distinctive formulation of the condition in P6Q for the

subclass of extreme preferences is due to the fact that, in this case, P6Q
∗
fails. (Section 1.4

clarifies this point.)

1.3.2 Probabilistic sophistication

This section presents the first of two central theorems of the paper. The result identifies a

condition on preferences that satisfy axioms P1, P3Q, P4Q, P5, P6Q under which those

preferences are probabilistically sophisticated.

The meaning of probabilistic sophistication. We begin with clarifying the concept

of probabilistic sophistication. The discussion serves three purposes. First, it explicates

the conditions implicit in the properties in terms of which probabilistic sophistication is

defined. Second, the qualifications we make are important in results that state probabilis-

tic sophistication as an assumption.8 Finally, it motivates our definition of probabilistic

sophistication.

The original question asked by Machina and Schmeilder (1992) that stimulated research

on probabilistic sophistication was:

“What does it take for choice behavior that does not necessarily conform to the ex-

pected utility hypothesis to nonetheless be based on probabilistic beliefs [i.e., beliefs

that conform to a unique probability measure, M.R.]?” (p.747)

Although there is a consensus9 that derivation and hence definition of probabilistic so-

phistication should be independent from the conditions implying some specific properties of
8E.g. Grant (1995), Propositions 2.1 and 4.1; Propositions 3 and 4 in this paper.
9See e.g. Grant (1995), Epstein and Zhang (2001), Grant and Polak (2005), Chew and Sagi (2005).
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the utility representation functional, such as continuity or monotonicity, a formal definition

has been evolving. In the literature, the following conceptualizations o r interpretations of

probabilistic sophistication are customary:

(1)10 Fix a probability measure π on the set of events. Each act f ∈ F can be mapped

to a lottery in P0(X ) in a natural way, through the mapping f → π ◦f−1. A decision maker
is probabilistically sophisticated if she is indifferent between two acts that induce identical

probability distributions over outcomes. Formally,

¡
P = Q, π ◦ f−1 = P, π ◦ g−1 = Q

¢⇒ f ∼ g. (23)

(2)11 Define a preference relation over lotteries, %P , induced from the underlying pref-

erences over acts %:

If π ◦ f−1 = P, π ◦ g−1 = Q for some f, g ∈ F , then (f % g ⇒ P %P Q) . (24)

% is probabilistically sophisticated if there exists a unique measure π on the set of events,

inducing a relation %P over lotteries such that for all P,Q in P0(X ), and all f, g in F

¡
P %P Q, π ◦ f−1 = P, π ◦ g−1 = Q

¢⇒ f % g. (25)

The property (2) entails that the preferences over lotteries %P contain all and only the

information about the preferences over acts %. Thus preferences over acts % can be

recovered from the knowledge of π and lottery preferences %P alone.

It is important to note that both properties (1) and (2) entail that preferences and

10This interpretation (possibly different from the formal definition emloyed) is present in Epstein and Le
Breton (1993, p.8), Grant (1995, p. 163), Chew and Sagi (2005, p.2).
11Grant (1995, p. 162), Abdellaoui and Wakker (2005, pp. 18-19).
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utilities be state-independent. Moreover, although under some assumptions, (1) and (2)

are equivalent, in general (2) implies (1).12 On the other hand, if the model satisfies the

extra conditions implicit in definition (2), the interpretation of probabilistic sophistication

as informational equivalence between the content of % and %P given π provides a convenient

tool. (See Grant [1995], Grant and Polak [2005].)

The property (1) establishes a mapping between subsets of equivalence classes of F
under ∼ and lotteries in P0(X ). The property (2) sets up a bijection between equivalence
classes of F under ∼ and of P0(X ) under ∼P . Under definition of %P in (24), condition

(25) ensures that the map is one-to-one, while convex-rangedness of the measure π makes it

onto. Respectively, this means that the agent is indifferent between any pair of acts that are

mapped to indifferent lotteries, and that given the measure π, the preferences over lotteries

can usefully characterize preferences over acts.13

Motivated by those considerations, we adopt (1), with its implicit assumptions that are

satisfied in our model, to formally define probabilistic sophistication. The definition is free

from extraneous implications about preferences or measures as well as from requirements

for the utility functional, and helps answer the original question posed by Machina and

Schmeidler (1992).14

12To see that, consider the class of all preference relations over acts that imply existence of a u n i q u e
probability-measure representation of agent’s beliefs, π. (Below, we comment on this restriction.) What
(2) does and (1) does not require to be well defined is that the probability measure be convex-ranged not
just nonatomic so that the mapping from F to P0(X ) is onto. If the relation Â is a weak order and π is
convex-ranged, it is straightforward to show that (1) is equivalent to (2). This, however, imposes restrictions
on preferences over lotteries and measure which are not required in (1) a priori.
13We stress that separation of beliefs from risk preferences, one of the original motivations of Ramsey,

Anscombe and Aumann, and Savage, concerns yet another bijection. Namely, it concerns the bijection
between the set of equivalence classes of P0(X ) under ∼P and the equivalence set of X under ∼x, with
a slight abuse of notation. Again, this would require that risk preferences are beliefs-independent, which
is implied by state-independence. This implicit assumption is apparent in the following interpretation of
probabilistic sophistication: “beliefs affect choices only through their subjective likelihood.”
14Unlike in many papers, we chose not to incorporate the conditions that the measure be finitely additive

and convex-ranged or nonatomic in the definition of probabilistic sophistication. Whether they hold or not
depends on the structural properties of the primitives, which are not essential to uniqueness and hence to
probabilistic sophistication.
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Characterization. Theorem 1 derives subjective beliefs of individuals whose preferences

over acts satisfy P1, P3Q, P4Q, P5, P6Q.

Theorem 1 Suppose a preference relation Â over F satisfies the axioms P1, P3Q, P4Q,

P5, P6Q. Then,

(1) There exists a unique, finitely additive, convex-ranged probability measure π, with

respect to which the relation Â is probabilistically sophisticated if and only if it is not extreme.
(2) If the relation Â is extreme, there exists a set of capacities Π(E) on E such that the

conditions (23), and ((24),(25)) hold for any π̃ ∈ Π(E).

Our result gives more insight into the relation between the notion of probabilistic so-

phistication and properties (1) and (2). Theorem 1 demonstrates that conditions (23), and

((24), (25)) hold under both non-extreme and extreme preferences. Condition (1) is satis-

fied even if each act is evaluated through a different probability measure in Π(E). For (2),
although the choices of agents with extreme preferences are consistent with a s e t of beliefs,

Π(E), the knowledge of that set and their lottery preferences does enable us to recover the
agents’ entire preference relation over all acts, even with measures that are only nonatomic

and not convex-ranged. To see why, as we already hinted above, the extreme preferences will

lead to cases with τ = 0 (maxmin) and τ = 1 (maxmax). Roughly speaking, the choices of

those quantile-maximizers will not change as long as the probability measure assigns strictly

positive values to the same events. Any such measure will represent the same preferences.15

Consequently, individuals with extreme preferences would be probabilistically sophisti-

cated if the property (1) or (2) was adopted as a definition without the uniqueness require-

ment.

15Our proof of Theorem 1 characterizes some additional properties of the likelihood relation (and thus
the set of measures) for the extreme-preference agents: (1) their preferences can tell not only whether an
event is null (measure-zero) but also whether it differs from S on a non-null event, (2) they can rank nested
events. In Section 1.4, we explain at level of preferences what causes the differences in the properties of the
probability measures representing beliefs of individuals with non-extreme compared to extreme preferences.
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Discussion. In all of the literature, the concept of probabilistic sophistication involves a

unique probability measure. Uniqueness is also explicit in the question raised by Machina

and Schmeilder (1992), cited above. Clearly, by itself, uniqueness of the measure-theoretic

representation is not meaningful as a definition of probabilistic sophistication. (Take V (F ) =

W (f) +
R
π = W (f) + 1.) Nor is it the goal to merely represent (exogenous) relative like-

lihood of events by a probability measure. Rather, being a property of the preference

relation over acts, probabilistic sophistication is a choice-theoretic concept in that beliefs

only exist insofar as they are revealed in choice behavior. At the least, it is uniqueness

jointly with some other property that gives probabilistic sophistication empirical content

(e.g., conditions (23), or (24) and (25)). Theorem 1 suggests that an alternative definition

of probabilistic sophistication might be worth considering: under some conditions on the

relation %, there is a set of probability measures such that for a n y member of this set, the

property (1) or (2) holds. Any such measure would be consistent with the same preference

ordering on F .
Moreover, if the requirement of uniqueness is dropped, definition (2) above may accom-

modate state-dependent utilities (see Karni [1996], Karni and Schmeidler [1993]). The case

in which utilities are state-dependent provides another argument in favor of dispensing with

the uniqueness condition. As pointed out by Karni (1996), even if individuals act upon their

beliefs, and these beliefs can be represented by probabilities, they need not coincide with

the choice-theoretic beliefs derived within the Subjective Expected Utility model. This is

because, according to Savage’s theory, the definition of probabilities assumes that utility

functions are state-independent, and the derived probabilities and utilities are unique only

when derived jointly.

It seems that independence of tastes from states and beliefs should not be essential for

probabilistic sophistication, with or without the uniqueness restriction. This i s consistent

with the idea that under probabilistic sophistication the events are distinguished only by

their subjective probabilities. P3 (Eventwise Monotonicity: “tastes are independent from
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states and beliefs”) only enters into Savage’s derivation of a probability measure to show

that non-null events are judged more likely than is the empty set. In fact, this is exactly

how Chew and Sagi (2006) use their weakening of P3.

1.3.3 Representation theorem

This section presents the second main result of the paper: providing a complete characteri-

zation of a quantile maximizer. So far, no restriction has been imposed on the set X . What
is worth emphasizing is that, unlike in any other available representation of preferences over

acts, the necessity part in Theorem 1 (or, our axioms) does not imply any structure for X .
In the next theorem, we need to add the condition that X contains a countable Â-order
dense subset.16 This assumption is needed only for the existence of a utility function on

X , which is, in turn, needed for a numerical representation of Â .17

Theorem 2 Consider Â a preference relation over F. The following are equivalent:
(1) % satisfies the axioms P1, P3Q, P4Q, P5, P6Q,

(2) There exist:

(i) a number τ ∈ [0, 1],
(ii) probability measure(s) π from Theorem 1;

(iii) a utility function on X , u, which represents Âx, where u is unique up to

strictly increasing transformations;

such that the relation Â over acts can be represented by the preference functional

16Natural examples include X being finite, countably infinite, X = R.
17 In fact, without the additional assumption, the conditions in Theorem 1 give a non-numerical version

of both necessity and sufficiency parts of Theorem 2.
Given a probability measure on E, π, for a fixed act f , let Πτ

f ∈ X be the τ th-quantile of the cumulative
probability distribution Πf , where the outcomes in the domain of Πf are ordered by Âx. Let u be a utility
function that represents Âx. Then, u ◦Πτ

f ∈ R is a numerical representation of the quantile Πτ
f , Q

τ (Πf ).
Theorem 2 can now be restated with (2) replaced by: There exist (i) a number τ ∈ [0, 1] and (ii) probability

measure(s) π from Theorem 1 such that for any f, g ∈ F
Πτ
f Â Πτ

g ⇔ f Â g.
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V(f) : F → R given by

V(f) = Qτ (Πf ). (26)

The result states that the preferences of a quantile maximizer satisfy the axioms P1, P3Q,

P4Q, P5, P6Q, and conversely, an individual whose preferences conform to those axioms

can be viewed as a quantile maximizer according to definition 1. Thereby, given the utility

u, the choice mechanism is decomposed in two factors: an anticipation level, τ , which is

assured to be unique, and probability measure(s) π, unique for all τ ∈ (0, 1). Quantile
maximizers with τ = 0 or τ = 1 are not probabilistically sophisticated (as defined in (23)).

1.3.4 Properties of lottery preferences

Using Theorem 1, each act in F can be mapped to a lottery in P0(X ). Since the derived
measure is convex-ranged for non-extreme preferences, this mapping is onto. In this section,

we characterize the substitution, continuity and monotonicity properties of the induced

lottery preferences. We look for the properties of the relation ÂP on P0(X ) which are tight
in the sense that they are equivalent to some properties (axioms) on the relation Â on

F . Throughout, we delineate differences between Quantile Maximization and the natural
benchmark of Subjective Expected Utility. Savage’s (1954) axioms are listed in Appendix

2.

Relation to Savage’s (1954) axioms. The condition that Quantile Maximization lit-

erally shares with the Subjective Expected Utility is the purely structural axiom P1 (Or-

dering). Our set of axioms weakens the monotonicity (P3, Eventwise Monotonicity) and

continuity (P6, Small-Event Continuity) properties of preferences. We drop the Sure-Thing

Principle (P2), which results in a strengthening of the axiom leading to the derived likeli-

hood relation P4 (Weak Comparative Probability). We also use a slightly weaker version

of Nondegeneracy, P5. These axioms are relaxed just enough to incorporate conditions
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leading to the existence of a unique quantile.

Not surprisingly, P2 (the Sure-Thing Principle) is too strong for quantile maximiza-

tion.18 Similarly to P3 (Eventwise Monotonicity), P2 fails when a change in the common

subact affects how other outcomes rank in an act. Precisely, what fails is the quantification

“for all subacts.” Even though the implications of the original axioms P2 and P3 are very

different, after modifying the class of subacts allowed in P3, the amended P2 and P3 would

be implied and equivalent. Our new axiom, P3Q (Pivotal Monotonicity), weakens yet an-

other quantifier of P3: “for all events.” In the presence of other axioms, P2 still holds,

even after the second relaxation of quantifiers, but it has no independent implications. This

weakening of P2 does not, however, preserve the structure in preferences that was used

in the Subjective Expected Utility model to obtain additivity of the probability measure.

To recover additivity, we strengthen P4 (Weak Comparative Probability) to Comparative

Probability (P4Q).

The Archimedean axiom from Subjective Expected Utility theory, P6 (Small-Event

Continuity), does not hold under Quantile Maximization. To see why, fix τ = 1 and f Â g.

Then, taking x > max
n=1,...,N

{xn ∈ f(S)}, gives

f ≺

⎡⎢⎣ x if s ∈ En

g if s /∈ En

⎤⎥⎦ (27)

irrespective of how small En (and π(En)) is.19 The original P6 ensures both that no

consequence is infinitely desirable or undesirable, as well as that the derived probability

18For example, consider three equally likely events E1, E2 and E3. A median maximizer (τ = 0.5) prefers

act

⎡⎣ 3 if E1
2 if E2
0 if E3

⎤⎦ to act
⎡⎣ 4 if E1
1 if E2
0 if E3

⎤⎦, but she prefers
⎡⎣ 5 if E1
4 if E2
1 if E3

⎤⎦ to
⎡⎣ 5 if E1
3 if E2
2 if E3

⎤⎦.
19Analogous counter-examples can be constructed for any level of τ . We provide a sketch of the construc-

tion here, though the exact argument relies on results proved in the sequel. For an intermediate value of τ ,
τ ∈ (0, 1), take an act with the pivotal event Ef , f(Ef ) = x and such that π(Ef ∪Ef−) = τ . On a nonnull

subevent of Ef , Êf , replace x with z Â x to obtain the preference reversal f ≺
∙

z if s ∈ Êf

g(·) if s /∈ Êf

¸
.
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measure is nonatomic. Crucially, what τ -maximization violates is the former but not the

latter. Therefore, we can weaken the axiom P6 to P6Q (Event Continuity), which retains

only the continuity implications for probabilities.

(Lack of) continuity. Interestingly, the implied risk preferences will not be mixture

continuous,20 not even for 2-outcome lotteries.21 Mixture continuity is typically implied by

P6 (Small-Event Continuity), which is too strong for Quantile Maximization. Our P6Q

removes any continuous structure on mixture lotteries from risk preferences.

Substitution. Given that in the restricted class of subacts and events in P3Q, the impli-

cations of P2 and P3 are equivalent, it is especially interesting to ask what is the property

of the induced lottery preferences they jointly engender. Failure of P2 implies that the

induced lottery preferences need not obey the Independence Axiom. Since P3 also fails,

they need not exhibit the substitution axiom of Grant, Kajii and Polak (1992), the Axiom

of Degenerate Independence, ADI. We relegate the precise relation to Appendix 5A.

Monotonicity. Strong monotonicity with respect to first-order stochastic dominance22

need not hold under Quantile Maximization. (One way to show it is to use the result that

%P respectsADI if and only if it satisfies first-order stochastic dominance. See for example,
20V : P0(X) → R is said to be mixture continuous if for any lotteries P, Q and R in P0(X ), the sets

{λ ∈ [0, 1]| V (λP + (1− λ)Q) > V (R)} and {λ ∈ [0, 1]| V (R) > V (λP + (1− λ)P )} are open.
ÂP ismixture continuous if for all distributions P, Q and R in P0(X ), the sets {λ ∈ [0, 1]| λP+(1−λ)Q ÂP

R} and {λ ∈ [0, 1]| R ÂP λP + (1− λ)Q} are open.
21See Section 1.5.
22For an arbitrary outcome set X , given a complete preorder over outcomes %x, P = (x1, p1; ...;xN , pN )

weakly first order stochastically dominates (FOSD) Q = (y1, q1; ...; yM , qM ) with respect to %x ifX
{n|x%xxn}

pn ≤
X

{m|x%xxm}
qm for all x ∈ X (28)

and if in addition (28) holds with strict inequality for some y ∈ X , then P strictly FOSD Q with respect to
%x.
It is said that %P is monotonic with respect to first order stochastic dominance if P %P (ÂP )Q whenever

P weakly (strictly) stochastically dominates Q.
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Grant [1995].) To characterize the appropriate monotonicity property for the model, it is

useful to find the analogs of axioms P1-P6Q for the case of a known and unique probability

(risk). We only need to state the counterpart of Pivotal Monotonicity (P3Q), which we

call Rankwise Monotonicity.23 For a fixed lottery P ∈ P0(X ) and outcome x such that x
belongs to the support of lottery P , x ∈supp{P}, define

Px+ =
X

{n|xnÂP x}
pn, Px− =

X
{m|xm≺P x}

pm (29)

and letQx+ andQx− be any sublotteries on Px+ and Px− with supports such that supp{Qx+} %P

x and supp{Qx+} -P x, respectively.

AXIOMP3Q
P
(RANKWISE MONOTONICITY) For all simple lotteries P ∈ P0(X ),

there is an outcome x ∈supp{P} such that for any outcome y, and sublotteriesQx−, Qx+, Qy−, Qy+:

x %x y ⇔ (Qx−, Px−, ; x, px; Qx+, Px+) %P (Qy−, Px−; y, px; Qy+, Px+) . (30)

The intuition behind this axiom is similar to that of P3Q. By P1P and P5P denote

axioms of weak order and nondegeneracy (as defined by P1 and P5) for the binary relation

ÂP . For a given lottery P ∈ P0(X ) and utility on outcomes u, let Qτ (P ) be the τ th quantile

of the cumulative probability distribution corresponding to P .24 The following Corollary of

Theorem 2 axiomatizes Quantile Maximization under risk.

Corollary 1 A binary relation on the set of lotteries L satisfies P1P , P3QP
and P5P if

and only if there exists a number τ ∈ [0, 1] and a function u : X → R such that the relation

ÂP over simple probability distributions can be represented by the preference functional

23Cf. Ordinal Independence axiom in Jullien and Green (1988) and Irrelevance Axiom in Segal (1989).
24 In this section we do not constrain the quantile to be left- or right- continuous. Also, we assume that

X contains a countable Âx-dense subset.
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W : P0(X )→ R given by

W (P ) = Qτ (P ). (31)

where u is unique up to strictly increasing transformations.

It is straightforward to show that Rankwise Monotonicity implies that %P will respect

weak first-order stochastic dominance. Clearly, this is not a tight notion of monotonicity

in that it is not equivalent to P3Q
P
. (The weak first-order stochastic dominance gives

only a partial ordering of distributions, since it involves a simultaneous comparison of all

quantiles.) Rather, a local version of it which only compares quantiles is tight. (In Appendix

5A, we state and relate it precisely to axioms on acts.) Thus one could argue that the notion

of monotonicity we used in deriving probabilities is, in a sense, the weakest monotonicity

property. Even if two distributions P and Q coincide only at one point (at one quantile)

and P first-order stochastically dominates Q otherwise, it may still be that Q ∼P P .

We conclude with an interesting result that gives the model proposed in this paper a

broader perspective. Although by itself monotonicity with respect to first-order stochastic

dominance does not imply Quantile Maximization (again, without constraining the quantile

to be left- or right- continuous), it is equivalent to P3Q
P
if one also requires that the

following property of ordinal invariance holds: write each distribution R ∈ P0(X ) as a
tuple of ordered vectors of outcomes and probabilities (xR,pR); for any pair P,Q ∈ P0(X ),

(xP ,pP ) %P (xQ,pQ)⇔ (φ ◦ xP ,pP ) %P (φ ◦ xQ,pQ) (32)

for any mapping φ : X → X such that if x Âx y then φ ◦ x Âx φ ◦ y, where φ ◦xR is defined
element by element.

Proposition 1 The following sets of axioms are equivalent for a binary relation on the set

of lotteries L, ÂP :
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(1) P1P , P3Q
P
and P5P ,

(2) P1P , monotonicity with respect to FOSD, ordinal invariance, P5P .

The implication of Proposition 1 is twofold. First, it provides an equivalent characteri-

zation of our model in risk settings. Second, it justifies Quantile Maximization as a unique

ordinal choice rule (that is, a rule satisfying ordinal invariance).25

1.3.5 Risk attitudes

In applications, one is often interested in agents’ attitudes towards risk. Since under Quan-

tile Maximization the choices are consistent with any utility function over certain outcomes

provided only that it preserves their ordering, risk attitudes will not be characterized by

concavity of these functions. Still, one can use a model-free definition and ask how a quantile

maximizer chooses between a lottery P and the expected return from this lottery, x̄P :

P
Âe≺ x̄P =

Z
xPπ(x)dx. (33)

To take a specific example, consider a half-half bet between outcomes 1 and 3 versus a

certain outcome of 2. All τ -maximizers with τ ≤ 1
2 will strictly prefer the gamble’s average

face value of 2, while those with τ > 1
2 will choose to gamble. However, when probabilities

are modified to 1
3 on 1 and

2
3 on 3, all quantile maximizers with τ ∈ (13 ; 12 ] will switch. This

illustrates two more general features of the model:

Remark 1 Under definition (33):

(1) Quantile maximizers do not exhibit any global (that is, for all lotteries P ) risk

attitude, except in the extreme cases, τ = 0 (risk aversion) and τ = 1 (risk loving).

25To aid intuition, we note the relation to results in social choice literature, which our axiomatization
yields as a special case. Corollary 1 generalizes the model of rank-dictatorship (Gevers [1979]), also known
as positional dictatorship (Roberts [1980]), which predicts that the person with the kth level of wealth in
the society will be a dictator. The characterization for the original model, which obtains for the uniform
probability, also characterizes choice behavior based on ranking of outcome vectors (e.g., order statistics).
The risk version of our result can be usefully interpreted for c l a s s e s of citizens, ranked according to wealth.
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(2) For a given lottery, quantile maximizers with τ ≤ Pr(x ≤ x̄P ) are weakly more risk

averse.

Thus, definition (33) of risk aversion is not informative in an ordinal framework. Nonethe-

less, as suggested by the second remark, τ -maximizers do exhibit some attitude toward

risk.

Under Quantile Maximization, it is not the randomness/riskiness property of lottery

distributions but rather the relative (with respect to probabilities) ranking of outcomes that

affects the choice of an agent.26 To compare agent’s risk attitudes, we suggest two notions

for any fixed utility u, which parallel the concepts under Subjective Expected Utility and

have very simple and natural expressions in the Quantile Maximization model. They share

their properties with the quantile.27

The τ -certainty equivalent of P , CEτ (P ), is the amount of money for which a decision-

maker is indifferent between lottery P and CEτ (P ) with certainty.

Clearly, the τ -certainty equivalent is the quantile outcome,

CEτ (P ) = Qτ (P ). (34)

For any fixed amount of money, x ∈ R, Manski [1988] characterizes an agent’s risk pref-
erence through the amount that would make her indifferent between x and any distribution

26 It is useful to invoke the interpretation, suggested in (8), that a quantile maximizer evaluates each
lottery by a loss function defined as a weighted sum of absolute deviations. The lower the τ the more the
decision maker cares about the lower-tail outcomes relative to the higher-tail outcomes; in other words, the
more cautious she is. In the literature, the maxmin (τ = 0) and maxmax (τ = 1) behavior are informally
referred to as “cautiousness/pessimism” and “wishful thinking/optimism,” respectively. We formalize these
intuitions for the general quantile representation.
27We only define comparative measures of risk attitudes. It seems tempting to define an absolute attitude

towards risk by how an agent ranks a lottery and the median rather than the mean return; that is, to call
a decision maker cautious (incautious) if, for any lottery P ∈ P0(X ), the degenerate lottery that yields
Q0.5(P ) with certainty is strictly preferred (weakly less preferred) to P . Then, while it would not be true
that the higher the quantile, the more risk-loving an individual is in the sense of (33), it would be true that
she is less cautious. Under this definition, quantile τ itself would provide a natural measure of cautiousness.
It seems desirable to provide a formal justification for this approach.
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∈ P0(X ). He defines a risk premium as the value µP (x, τ) ∈ R, P ∈ P0(X ), that solves

u(x− µP (x, τ)) = Qτ (P ). (35)

Letting u(x) = x, we have that the unique and finite risk premium is µP (x, τ) = x−Qτ (P ).

The following characterization is straightforward and it is stated without proof.28

Claim 1

The following are equivalent:

(i) An individual 1 is more cautious than an individual 2.

(ii) CEτ1(P ) ≤ CEτ2(P ), for any P ∈ P0(X ).
(iii) µP (x, τ1) > µP (x, τ2) for any x and P ∈ P0(X ).
(iv) Whenever P ÂP1 x, then P ÂP2 x, for any P ∈ P0(X ) and x.

1.4 Sketch of the proof of Theorems 1 and 2

This section lays out in detail our axiomatization of Quantile Maximization (Theorems 1 and

2). Our task is to separate probability from preferences, possibly establishing probabilistic

sophistication, and a quantile from probability.

28 It is worth restating the properties of the quantile, now in the context of measuring cautiousness, to
contrast them with those of more traditional measures associated with definition (33). First, unlike risk
attitudes based on (33), cautiousness is preserved under strictly increasing transformations of utilities. As
a result, the quantile can rank both risk and risk attitude. Second, it is less sensitive to small-probability
outcomes than is risk aversion. While a risk averse expected-utility maximizer will choose the expected
return from a gamble irrespective of how small the probability of the loss is, a quantile maximizer may
strictly prefer the gamble. Third, in contrast to any comparative measure of risk aversion based on (33),
which only partially ranks utility functions, a complete and transitive ranking of attitudes can be given in
the quantile model. When distributions being compared are objective, global risk attitudes can be assessed
by means of a single observation.
An important attribute of the risk measures for quantile maximizers is that, unlike definition (33), they

do not require that outcomes be measured on an interval scale, which many economic and social variables
lack (such as choosing between two jobs or careers, grades A and C versus two B’s, receiving two job offers
on the same day or on two different days). Traditional measures of risk attitudes are simply not defined
when outcomes are not money or other objectively measurable quantities, or when accurate measurement
is difficult, or when outcomes involve more than monetary payoffs. Providing a measure of risk attitudes in
these contexts has been a challenge. For an extensive survey and discussion of the problems with responses
to scale problem, see O’Neill (2001).
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The proof proceeds as follows: The first step is to separate probabilities from preferences

over F , Â. Formally, it involves deriving the likelihood ranking revealed by the preference
relationÂ, and showing that it can be represented by a subjective probability measure π over
E . This part is the heart and central contribution of the proof. Further, we demonstrate
that there exists a unique number τ ∈ [0, 1] of the cumulative probability distribution
implied by π such that acts are indifferent if and only if they imply the same τ th- quantile

outcome. Next, we derive (a family of) utility functions over certain outcomes u and use

them to construct a functional that represents Â. Finally, we establish that our axioms on
the relation Â, sufficient for obtaining the representation, are also necessary.

Probability measures. The very idea of separation of subjective beliefs from preferences

is as old as theory of choice under uncertainty. (It has appeared in Ramsey [1931], Savage

[1954], Anscombe and Aumann [1963] and has been used in many different settings.) And

yet, we cannot directly use any of the available approaches, as we will now discuss. The

difficulty is threefold.

First, prior research has focused on axiomatizing expected- and non-expected-utility

functional forms, where the properties of risk preferences such as mixture continuity and

monotonicity were heavily used in deriving probabilities. (See also Sections 1.3.2 and 1.5.)

Under Quantile Maximization, risk preferences are not mixture continuous and only weakly

satisfy stochastic dominance.

Second, in this model the commonly used likelihood relationÂ∗, defined in (21), does not
discriminate between a significant subset of events from E . For instance, with π(E) = 0.4

and π(F ) = 0.6, a 0.3-maximizer would be indifferent between the acts f and g in (21).

In general, under τ -maximization, definition (21) would rank as equally likely any events

with probabilities either both smaller than τ or both greater than τ .29 For τ = 1 (τ = 0),

29Allowing for events E,F ∈ E to be compared either directly or through the likelihood ranking of their
complements (which already imposes some additivity) would still render "equally likely" all events with
probabilities π(E), π(F ) either both smaller than min{τ , 1 − τ}, or both greater than max{τ , 1 − τ}, or
both between min{τ , 1− τ} and max{τ , 1− τ}.
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likelihoods of no events both more likely than ∅ (less likely than S) will be ranked strictly
by (21). The following lemma demonstrates how coarse the relation Â∗ is: there are only
two equivalence classes of E under ∼∗.

Lemma 1 E Â∗ ∅⇔ E ∼∗ S, E ≺∗ S ⇔ E ∼∗ ∅.

Third, and related, for quantile maximizers definition (21) does not satisfy the set of ax-

ioms on the binary relation over events30 that are necessary and sufficient for the likelihood

relation to admit a unique probability-measure that (i) represents it and (ii) is convex-

ranged.31 These axioms are:

A1 ∅ 6Â∗ E.
A2 S Â∗ ∅.
A3 Â∗ is a weak order.
A4 (E ∩G = F ∩G = ∅)⇒ (E Â∗ F ⇔ E ∪G Â∗ F ∪G).
A5 P6Q

∗
.

What fails for all τ ∈ (0, 1) is axiom A4. For τ = 0, 1, it is vacuous under definition

(21). In addition, A5 fails for τ ∈ (0, 1], but this problem disappears when our P6Q is used
instead.

A5’ P6Q

It is important to recognize, however, that the major difficulty is not the failure of the

30 In Savage (1954), they are implied by the conditions on the binary relation over acts, P1-P6.
31Respectively, (i) E Â∗ F if π(E) > π(F ), for any E,F ∈ E, and (ii) for any E ∈ E, and any

ρ ∈ [0, 1], there is G ⊆ E : π(G) = ρ · π(E). While equivalent to nonatomicity for countably additive
measures, the property (ii) is stronger for finitely additive measures, which are derived here (see Bhaskara
Rao and Bhaskara Rao [1983], Ch. 5).
For the necessity and sufficiency argument, see, for example Kreps (1988), Theorem 8.10.
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axioms itself. Nor is it lack of fineness or tightness of the likelihood relation.32 Rather, the

structure from the relation over acts Â embedded in the relation over events defined in (21)
is not rich enough to capture differences in the likelihood of events.

Nonetheless, there is more structure in preferences over acts that reveals the likelihood

of events. We will proceed as follows. We will define a new binary relation on events, Â∗∗,
which although incomplete on E , will lead to a complete relation on the subset of “small”
events, E∗∗. We will show that the axiomsA1-A5’ hold on E∗∗. This will allow us to derive a
probability measure that represents a decision maker’s beliefs about the relative likelihoods

of events in E∗∗. Then, we will build up from E∗∗ to construct a likelihood relation which
will be complete and satisfy A1-A5’ on the whole set of events, E . This will enable us
to extend the measure on E∗∗ to E as well as to derive a unique quantile τ . As explained
below, in the cases leading to τ = 0, 1 there is not enough information in Â to permit all of
these steps.

The idea behind the new likelihood relation Â∗∗ is as follows. The events that can be
ranked as strictly more or less likely according to Â∗∗ are “small” in the sense that there
exists an event G in their common complement such that the unions E ∪G and F ∪G can

be strictly ranked by Â∗.

Definition 3 E Â∗∗ F if

(i) E ∼∗ F,
(ii) There is an event G such that (E ∪ F ) ∩G = ∅ and E ∪G Â∗ F ∪G.

(36)

Lemma 10 (Appendix 3A) shows that there cannot be any other event G0 for which

the ranking is reversed. Condition (i) plays a role in identifying a subset of events for

32Given definition of Â∗, a likelihood relation is fine if for all E Â∗ ∅, there is a finite partition of S,
{G1, ..., GN}, such that E Â∗ Gn, n = 1, ...,N ; it is tight if whenever E Â∗ F , there is an event H such that
E Â∗ F ∪H Â∗ F . Strictly speaking, given the failure of A4, finness and tightness cannot be assured (cf.
Proposition 8.9 in Kreps [1988]). Yet, our point is that the reason for it is not structural, but rather it lies
in weakness of the definition.
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which Â∗∗ (with ∼∗∗) will be complete, E∗∗ ⊂ E .33 The subset E∗∗ is defined to contain
all events for which there exists another event in that subset such that (i) and (ii) hold

simultaneously. Roughly speaking, it contains events whose probabilities will not be greater

than min{τ , 1− τ}.
Now comes an important property of the likelihood relation. In deriving the measure

representation, it is essential that disjoint non-null subsets of the state space can be strictly

ranked. This property does not hold if preferences are extreme. We show that in those cases,

a decision maker’s preferences over acts only depends on (and thus can only tell) whether

an event is null, or it is the state space, or nested in another event, up to differences on

null subevents. Formally, we establish the following invariance properties of extreme and

non-extreme preferences:

Lemma 2

A. If preferences over acts are not extreme, an individual is indifferent to exchanging

outcomes on events equally likely according to ∼∗∗.
B. If preferences over acts are extreme, a decision maker is indifferent to exchanging

outcomes on disjoint non-null events.

Therefore, when preferences are extreme, there cannot exist an event in the common

complement of any two disjoint non-null events so that they can be strictly ranked by ∼∗∗.
Thus, intuitively, while all τ -maximizers, τ ∈ [0, 1], can compare nested events, these are
the only events that can be strictly ranked by 0- and 1-maximizers. It is at this point that

the derivation for τ = 0 and τ = 1 departs from the general proof.

For extreme preferences, it is essential to combine strict likelihood judgments from Â∗

and Â∗. The reason is that in that case, it is the extended definition that makes it possible
to distinguish the likelihoods of ∅, S and of events E which differ from ∅ and S on a non-
33After excluding a subset of E × E including events that can be strictly ranked by Â∗, there remain two

subsets, events within each of which are ranked as ∼∗. Lemma 1 characterizes those sets as containing events
judged ∼∗ ∅ and ∼∗ S, respectively.
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null set. The combined judgment is captured through the following relation, demonstrated

to be consistent in Lemma 8 (Appendix 3A):

Definition 4

E Â∗∗ F if for any x Â y,

⎡⎢⎣ x if s /∈ E

y if s ∈ E

⎤⎥⎦ ≺
⎡⎢⎣ x if s /∈ F

y if s ∈ F

⎤⎥⎦ or

⎡⎢⎣ x if s ∈ F

y if s /∈ F

⎤⎥⎦ ≺
⎡⎢⎣ x if s ∈ E

y if s /∈ E

⎤⎥⎦ .
(37)

If preferences are not extreme, we prove that the axioms A1-A5’ hold on E∗∗, which
is then used to derive a unique, convex-ranged and finitely additive probability measure

π. Then a complete relation on E can be constructed from Â∗∗, which is done through N-
partitions, partitions of the state space S into N elements. This relation is used to extend

the measure π to all events in E . Thus all quantile maximizers with non-extreme preferences
are probabilistically sophisticated, as defined in (23).

Since the extreme preferences only distinguish between ∅, S and nested events, up to
differences on null subevents, any (normalized) measure that respects monotonicity will still

represent the same preferences. Therefore, in this case, the relation Â on F is consistent

with a set of measures which are nonatomic but not necessarily finitely additive.

Quantile. Having derived probability measures, we prove the existence and uniqueness

of a quantile τ ∈ [0, 1]. The following result, which relies on Lemma 2, provides the key
assertion:

Lemma 3

(i) Given the partition of S induced by act f ∈ F , there is a unique pivotal event.
(ii) Let acts f, g ∈ F be such that for any s, s0 ∈ S, f(s0) Â f(s)⇒ g(s0) % g(s). Then,

Ef∆Eg cannot be pivotal (Ef ∩Eg 6= ∅).
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Given the derived measures, we can use Lemma 2 to map the set of acts onto the set

of simple lotteries, P0(X ), through f → π ◦ f−1. Then, to establish the existence and
uniqueness of τ for the non-extreme preferences, we construct a sequence of equi-partitions

of S (finite partitions whose elements are equally likely) with 2N elements. In the (N +1)th

sequence, the pivotal event from the N th sequence (unique by Lemma 3) is partitioned

into 2 elements. Then, we obtain τ from (0, 1) by approximating it with probabilities of

the union of the pivotal event and events assigned to less-preferred outcomes. For the

extreme preferences, the set of derived probability measures is applied to N -partitions (not

equi-partitions) to yield τ = 0 or τ = 1.

Utilities. Given that Â is a weak order (P1), due to the ordinality property of the

quantile-maximization representation, the utility on outcomes, u, depends exclusively on

the properties of the set X . The assumption that X contains a countable Â-dense subset
(used only in the final step) can be used together with P1 (Â is a weak order) to apply

Debreu’s (1954) theorem and derive a real-valued utility on X . We note that construction
of V does not depend on the existence of the best and worst outcomes - again, the reason

being ordinality.

1.5 Related literature

In this section, we relate our results to the literature on probabilistic sophistication. We

first compare our axioms, derivation and properties of risk preferences with those in two

milestone developments: Machina and Schmeidler (1992), and Grant (1995). We then relate

our results to the recent and illuminating paper by Chew and Sagi (2006). All axioms are

listed in Appendix 1.

Machina and Schmeidler (1992, hereafter MS). Setting as their goal liberation of the

derivation of subjective probability in the Savage world from the Expected Utility hypoth-
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esis, MS drop P2 (the Sure-Thing Principle). However, dispensing with it removes more

than the Marschak-Samuelson independence property implying an expected-utility form

functional. As mentioned above, Savage used P2 also to obtain additivity of the probabil-

ity measure. MS strengthened P4 (Weak Comparative Probability, to Strong Comparative

Probability, P4∗), otherwise using Savage’s axioms.

Our class of preferences does not, however, satisfy P4∗,34 though in the presence of P1

and P3Q it does satisfy the original P4 of Savage. Strictly speaking, our new axiom P4Q

is weaker than P4∗. P4Q suffices to ensure additivity in our model.

Overall, our set of conditions shares with theirs only P1, and it weakens P3, P4∗, P5

and P6. The functional form in the representation theorem of MS is mixture continuous

and monotonic with respect to first-order stochastic dominance. While encompassing many

functional forms, those properties are crucially used in the derivation of probabilities. Our

proof does not rely on any form of mixture continuity, and monotonicity with respect to

stochastic dominance holds only weakly (i.e., strict first-order stochastic dominance implies

only weak preference over distributions).

MS essentially use Savage’s (1954) derivation of probability. Although, as mentioned,

in general P2 fails in their case, it does hold for two-outcome acts. Since all axioms of

Savage hold for such gambles, it follows from his theorem that there exists a unique, finitely

additive and convex-ranged probability measure. MS then use P4∗ to extend the measure

to the set of all acts.

Grant (1995). With a novel interpretation of probabilistic sophistication, Grant (1995)

obtains a derivation of probabilities without P2 and P3 (Eventwise Monotonicity). After

relaxing the latter condition, two-outcome gambles cannot be used to infer the relative like-

34The following example illustrates that for P4∗. Let τ = 1
3
, π(E) = 1

3
+ ε, π(F ) = 1

3
− ε, π(G) = 1

3
.

Then

⎡⎣ 2 if E
1 if F
5 if G

⎤⎦ Â
⎡⎣ 1 if E
2 if F
5if G

⎤⎦ but

⎡⎣ 2 if E
1 if F
0 if G

⎤⎦ ∼
⎡⎣ 1 if E
2 if F
0 if G

⎤⎦.

43



lihood of events. (The ranking of constant acts needs not agree with the conditional ranking

of two outcomes.) Still, with a modification of P3 to Conditional Upper or Lower Eventwise

Monotonicity (P3CU , P3CL), conditional preference between two outcomes can be used to

draw inference about the likelihood of events from the preference over conditional gambles

that involve these two outcomes. This identifies a set of acts on which the hypotheses of MS

(1992, Theorem 1) hold, which yields a probability-measure representation. This measure

is then extended through continuity of preferences (P6†) to the whole state space.

Our lottery preferences need not satisfy either of Grant’s (1995) two-outcome mixture

continuity35 or conditional monotonicity.

Chew and Sagi (2006, hereafter CS). The new approach taken recently by Chew and

Sagi (2006) is based on the notion of exchangeability. Two events are said to be exchangeable

if the individual is always indifferent to permuting her payoffs.

Definition 5 For any pair of disjoint events E,F ∈ E , E is exchangeable with F if for

any outcomes x, y ∈ X , and any act f ∈ F ,
⎡⎢⎢⎢⎢⎣

x if E

y if F

f if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎣

y if E

x if F

f if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ . (38)

The relation of exchangeable events is then used to define the comparability relation, %C .

Definition 6 For any events E, F ∈ E , E %C F whenever E\F contains a subevent G

that is exchangeable with F\E.
35V : P0(X)→ R is said to be mixture continuous for two-outcome sublotteries if for any pair of outcomes

x, y in X , any γ ∈ (0, 1], and any pair of lotteries P, Q, the sets {λ ∈ [0, 1]| V (γ(λδx+(1−λ)δy)+(1−γ)P ) >
V (Q)} and {λ ∈ [0, 1]| V (Q) > V (γ(λδx + (1− λ)δy) + (1− γ)P )} are open.
ÂP is mixture continuous for two-outcome sublotteries if for all pairs of outcomes x, y in X , all γ ∈ (0, 1],

and distributions P, Q in P0(X ), the sets {λ ∈ [0, 1]| γ(λδx + (1 − λ)δy) + (1 − γ)P ÂP Q} and {λ ∈
[0, 1]| Q ÂP γ(λδx + (1− λ)δy) + (1− γ)P} are open.
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Intuitively, exchangeability carries the meaning of “equal likelihood,” while comparability

conveys “greater likelihood.” CS find a set of axioms on those relations so that they lead to

a likelihood relation having a probability-measure representation.

CS’s Theorem 1 can also be used in our model. For non-extreme preferences, their

axioms A, C and N follow from P1, P3Q, P4Q, P5, and P6Q. This raises a more general

question of a comparison between the two approaches: exchangeability-based and direct like-

lihood (defining the strict likelihood relation from preferences, e.g., Machina and Schmeidler

[1992], Grant [1995], this paper). First, CS assume (in an axiom) that exchangeable events

exist. In the direct-likelihood method, it is established that some events are judged as

equally likely or exchangeable.36 Second, the link between the likelihood that CS construct

and preferences over acts is only through the definition of exchangeable events, a pre-notion

of “equally likely.” In particular, completeness of the comparability relation (pre-notion of

“more likely than”) is assumed. Transitivity is proved without any recourse to the strict

relation over acts, Â. By contrast, in the direct-likelihood method, the strict “more-likely-
than” relation is revealed by preferences over acts, from which it inherits its properties.

As CS point out, assuming, independently from preferences over acts, that the exchangea-

bility-based likelihood is well defined might not be warranted. (They illustrate this point

using the example of “Machina’s Mother” (Machina [1989].)37

1.6 Applications

“No theory exists to show that VaR is the appropriate measure upon which to build optimal

decision rules.” Schachter (1997, p. 19) As one application, our axiomatization provides

foundations to decision making based on Value-at-Risk. In addition, Proposition 2 shows

that regulatory policy decreasing the confidence level α (increasing τ) restricts the set of

36Step 4 in the proof of Theorem 1 in Machina and Schmeidler (1992), Claim 5a in Grant (1995), our
Lemma 2A.
37We conjecture that for a large class of models the exchangeability approach can be applied without loss

of generality. Rostek (2006) will address this problem in more detail.
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actions that can be taken by risk managers. This paper also suggests that VaR can serve

not only as a measure of risk but also (comparative) risk attitude.

In this section, we revisit the properties of the quantile choice rule and discuss how it

can provide an attractive alternative in applied work. We consider an ordinal approach to

modeling choice (Section 1.6.1) and an application to robust policy design (Section 1.6.2).

In a companion paper, we apply Quantile Maximization to strategic settings.

1.6.1 Qualitative decision theory

Virtually all existing models of choice under uncertainty (from Savage [1954] through Gilboa

and Schmeidler [1989] to recent developments in Ghirardato, Maccheroni and Marinacci

[2004], and Klibanoff, Marinacci and Mukerji [2005]) characterize preferences that imply

cardinal properties of utility functions over outcomes. In particular, their policy implica-

tions crucially depend on concavity of utilities. In many economic settings, however, the

assumptions behind cardinality may not be appropriate. We discuss three reasons.

(1) When preferences have a representation with cardinal properties, that agents act

as if they were able not only to rank certain alternatives (ordinally) but also to compare

differences in “pleasure” (cardinally) in a consistent way.38 This assumption is far from

innocuous in settings with little learning or experience opportunity, in which people do not

have sufficient information about all possible realizations or do not know their preferences

sufficiently well to be able to quantify them. The need to account for lack of cardinality

has become even more pronounced with recent changes in economic environments such as

markets with increasing availability of new goods and fast-changing technology. Another

38Put another way, cardinal properties of a utility function over outcomes (i.e., properties preserved
under positive affine transformations of utility), which is part of the representation of preferences over
acts or lotteries, correspond to some conditions on those preferences which require that individuals can
assess differences in outcomes on which those acts or lotteries are defined. Those differences are reflected
in differences in valuations. Let u be a utility function over outcomes, u : X → R, and let v be any
increasing linear function on R, v : R → R. Then for v = αu + β, α > 0, u(x)−u(y)

u(z)−u(w) =
v(x)−v(y)
v(z)−v(w) . We refer

to “cardinality” in this sense, as opposed to the meaning used in studying welfare implications. (See for
example Weymark [2005].)
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point is that economic applications often require a criterion which is objective in the sense

that it does not depend on individual preferences over outcomes, just on their ranking.39

(2) At the level of primitives, cardinality presumes that individuals behave as if they

could compare differences in outcomes on which the uncertain alternatives are defined.

Again, this is a strong condition for many goods and services. For example, it has become

more and more common for companies to provide potential buyers with on-line quality

assessments of their customers; thus a buyer only knows distributions of ranks but not of

absolute evaluations of the product quality. Further, sometimes information is naturally

or optimally given in the comparative rather than absolute form; e.g., when information

must be conveyed but restricting expert’s incentive to exaggerate in absolute statements is

desired.40

(3) In settings in which decisions are typically made once (e.g., tourism, choosing a

medical treatment), only a single realization of distribution will occur. Using an expectation-

based evaluation seems much less appealing than with repeated decisions, when there is some

compensation through averaging coming from repetition.41

To conclude, the cardinal properties of utilities (or, more precisely, conditions on prefer-

39For example, quality standards, expert recommendations, curve-based grading schemes, agency problems
(when a principal delegates a task with uncertain outcome to an agent, she aims to set a standard of
performance independent of the agent’s preferences over outcomes), etc.
40Rubinstein (1996) notes that comparative statements are relatively more common in natural language.

He justifies their optimality by formalizing their three properties: ability to indicate elements of the set,
e.g., by means of order, ability to accurately convey information, and easiness to communicate the content
to others.
Chakraborty and Harbaugh (2005) demonstrate that comparative cheap-talk statements can be credible

when absolute statements are not (e.g., a professor ranking students for a prospective employer; an analyst’s
claims about the likely returns to a stock might not be credible, but the statement that one stock is better
than another might be; a seller auctioning goods). In the context of multi-object auction, Chakraborty,
Gupta and Harbaugh (2002) show that a seller’s incentive to lie may be diminished or eliminated when only
comparative statements are allowed.
41A similar point was made by Roy (1952): "... an ordinary man has to consider the possible outcomes

of a given course of action on one occasion only and the average (or expected) outcome, if this conduct were
repeated a large number of times under similar conditions, is irrelevant (p. 431)" and "Is it reasonable that
real people have, or consider themselves to have, a precise knowledge of all possible outcomes of a given line of
action, together with their respective probabilities or potential surprise? Both introspection and observation
suggest that expectations are generally framed in a much more vague manner" (p. 432, emphasis original).
Recently, this argument was also raised in the artificial intelligence literature (e.g., Dubois et al. [2000],
Dubois et al. [2002]).
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ences captured by those properties) appear too demanding or unnecessarily strong in many

settings of interest for economists.

While ordinality under certainty is well understood, little attention has been devoted

to it under risk or uncertainty.42 In the Quantile Maximization model, the properties of

robustness, one-dimensional information about preferences and no need for measurability

requirement on outcomes are all a consequence of ordinality. It is thus interesting to ask

how rich the class of ordinal decision rules is. In Rostek (2006), we characterize all ordinal

choice rules in terms of conditions on preferences over acts. Specifically, we ask: What

are the necessary and sufficient conditions for a class of preferences to admit an ordinal

(appropriately defined) functional? Here, Proposition 1 gives one reason why Quantile

Maximization may be appealing as an ordinal model: it is a unique ordinal choice rule if

one also requires that a weak monotonicity property of first-order stochastic dominance

holds (assuming probabilistic sophistication).

1.6.2 Robust decision making

The need for robustness has been recognized in the burgeoning literature on robustifying

economic and policy design. Many studies have focussed on relaxing the assumption that

decision makers know or act as if they know the true probability distribution (e.g., Hansen

and Sargent [2004] applying the model by Gilboa and Schmeidler [1989], Klibanoff, Mari-

nacci and Mukerji [2005]). Another and less explored robustness test involves relaxing the

assumption that decision makers have cardinal (as well as ordinal) rankings of outcomes;

or, that cardinal, parametric assumptions about utilities affect decisions.

One prominent ordinal decision rule that is commonplace in policy design is choosing

42The ordinal rules studied in the latter context include maxmin, maxmax, pure-strategy dominance by
Börgers (1993) and, as we mentioned earlier, Manski (1988) argued for an ordinal approach to modeling
choice, suggesting quantile maxmization (quantile-utility model) and maximizing probability that the out-
come will be higher than some level (utility mass model).
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according to the “worst case scenario”. It is often justified by arguments supporting cautious

policy (e.g., the “worst-case scenario” rule by Environmental Protection Agency and the

Department of Justice; Precautionary Principle in the European Commission food and

agricultural biotechnology policy; Walsh [2004] in the context of monetary policy). Critics

have argued that such an extreme criterion may inhibit economic development (Gollier

[2001]), may delay innovations that are safe and effective, and, more generally, that it

gives too much importance to unlikely outcomes (e.g., Svensson [2000]).43 The quantile

representation studied in this paper can help address those concerns and complement best-

(and worst-)case scenario analysis.44

1.7 Concluding remarks

For some applications, it might be desirable to extend the model proposed in this paper

to more than one quantile. For example, a choice rule may depend on the “focal” worst-,

best- and typical- case scenarios; or, only a range of quantiles higher or lower than some

threshold may be of interest (e.g., an employer may be targeting candidates from a specific

range of quality; when purchasing a good, a buyer may care about a high- or low- range of

realizations of quality).

An important and natural direction to go would be to model quantile maximization

with multiple priors. One compelling motivation is given by the need to address robustness

concerns in modeling, complementary to those in Section 1.6.2. Under some assumptions on

the state space, for the 0th quantile, the framework would yield the multiple-prior maxmin

rule by Gilboa and Schmeidler (1989).45

43Warning against making worst-case estimates public, Viscusi (1997) reports that people give excessive
attention to the alarmist scenarios when facing a range of conflicting estimates.
44 In the policy context, distributional consequences of policies are of interest much beyond average statis-

tics. Quantiles have been used to assess social policies and treatment effects, to compare unemployment
duration and distributions of wages, etc. Their use in formal empirical studies has been spurred by Quantile
Regression (Koenker and Bassett [1978]), in which the classical least squares estimation of conditional mean
is replaced by estimation of conditional quantile functions (Chamberlain [1994], Buchinsky [1995], Koenker
and Hallock [2001] provide comprehensive surveys).
45 In the context of multiple priors, Svensson (2000) argues that "the worst possible model is on the
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In addition, the results in this paper suggest two interesting projects for future work. The

first concerns exploring the property of ordinality, as explained in Section 1.6.1. Second, by

thinking through the meaning of probabilistic sophistication in the context of the particular

class of ordinal preferences, this paper obtains new insights into probabilistic sophistication.

An interesting project is then to abstract from our particular representation and ask more

generally what the minimal requirements for probabilistic sophistication are.

boundary of feasible set of models, and hence depends crucially on the assumed feasible set of models. If
the worst possible model somehow ended up in the interior of the feasible set of models, one could perhaps
argue that the outcome is less sensitive to the assumptions about the feasible set of models" (p. 6-7).
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Chapter 2

Identification of Quantile Maximization with Finite Data Sets

2.1 Introduction

In Rostek (2006), we introduced a model of preferences in which a decision maker compares

uncertain alternatives through a quantile of utility distributions. For example, she might

be maximizing the median utility, as opposed to the mean utility, as she would if she were

an expected-utility maximizer. More generally, she might be comparing lotteries through

some other quantile that corresponds to any given number between 0 and 1.

Of primary interest in Rostek (2006) was uncovering complete testable implications of

Quantile Maximization. We provided a Savage-style representation theorem for quantile

maximizers in a decision-theoretic framework. Taking preferences over acts as a primitive,

we found conditions on these preferences under which there is an ordinally unique utility

index over outcomes, and a unique probability measure over the underlying state space,

such that the utility of an act is some quantile of the utility index. Thus, the axiomatiza-

tion established the following two results: first, it showed that the Quantile Maximization

generates non-trivial restrictions that have to be satisfied by observed behavior; second, it

provided the model with an identification result, “identification” understood as determining
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whether the model fundamentals (utilities u, probability measure π, and a number in [0, 1],

τ) compatible with the observed behavior are unique. Axiomatization uses the richest data

set by assuming that one can observe all choices in all decision problems. Hence, while being

an ultimate identification test for the model, axiomatization does not yield identification

conditions that can be readily used on small finite data sets in empirical work. Providing

such conditions is the goal of this paper.

Specifically, we investigate how much can be inferred about the unobservables of the

model from finitely many choices. To investigate the empirical content of the model, we

also compare, by means of examples, predictions of Quantile Maximization with those of

other models of choice.46 We model a decision problem as a matrix, in which a column

represents an event and a row is an uncertain alternative (act).47 If one can only observe

the event structure (represented by a matrix) and the selected row, but not individual beliefs

and τ , is it possible to test whether the players choose according to Quantile Maximization?

Assuming Quantile Maximization, in turn, is it possible to separate agents with different

risk attitudes as measured by τ?48

To investigate the first question, we further ask which actions will be observed if indi-

viduals are quantile maximizers and show that model predictions differ from several leading

alternatives, including expected utility. Suppose in a given decision problem we observe the

choice of a quantile maximizer with unknown anticipation level τ and unknown beliefs π.

We show that the sets of choices that are optimal for this agent for some beliefs (i.e., the

undominated choices) are weakly nested with respect to τ . That is, although all actions

46The answer to the question whether the Quantile Maximization hypothesis generates any testable pre-
dictions (i.e., restrictions that have to be satisfied by observables) is trivially positive. It is said that the
Quantile Maximization model is testable if there is a decision problem F such that (i) RF , defined in (44),
is nonempty (that is, the model is consistent), and (ii) F\RF is nonempty (that is, there are actions that
can refute the model). By the property of monotonicity, an agent will not choose an act with outcomes that
for all events are strictly less preferred to outcomes in some other act.
47A matrix-representation of decision problems is without loss of generality as long as alternatives involve

finitely many outcomes. Axiomatization in Chapter 1 considered such finite-outcome acts.
48 In the companion paper, we show that τ provides a comparative measure of risk attitude: the lower τ ,

the weakly more risk averse the agent is. Thus, τ ∈ (0, 1) represents intermediate risk attitudes between
maxmin (τ = 0) and maxmax (τ = 1), which are the least and the most risk averse, respectively.

52



that may be chosen by high-τ individuals may also be chosen for some beliefs by those

with lower τ , low-τ decision makers may choose actions that will never (for any beliefs) be

selected by high-τ agents. This property, which we call nestedness, turns out to be key to

most of the identification questions that we ask.

We next examine how much information about the unobservables of the model can be

identified from the data (payoff structure and choices). In many applications, beliefs are

part of the data set. For instance, they have been induced in a controlled environment like

a lab or given as probabilities in a decision problem. Therefore, we also study settings in

which beliefs are observed. When agents face known probabilities, we show that one can

identify the quantile exactly from observing a single choice. The task of inferring τ becomes

more involved if a researcher does not know the agent’s beliefs about the likelihood of events.

For that problem, we derive bounds that can be placed on the unobservable quantile and

on the beliefs from data. The results are constructive in that they suggest how a revealing

decision problem can be designed. We conclude by applying Quantile Maximization to

normal-form games to illustrate how the conditions derived for single-agent problems can

be used in strategic settings.

2.2 Set-up

Let S = {..., s, ...} denote a set of states of the world, and let X = {..., x, y, ...} be an
arbitrary set of outcomes. An individual chooses among finite-outcome acts,49 defined as

maps from states to outcomes. F = {..., f, g, ...} is the set of all such acts. The set of events
E = 2S = {..., E, F, ...} is the set of all subsets of S. An individual is characterized by a
preference relation over acts in F , with f ∼ g ⇔ f ¨ g and f ⊀ g, f % g ⇔ f Â g or f ∼ g.

Let π stand for a probability measure on E and let u be a utility over outcomes u :
X → R. For each act, π induces a probability distribution over payoffs, referred to as a

lottery. For an act f , Πf denotes the induced cumulative probability distribution of utility

49An act f is said to be finite-outcome if its outcome set f(S) = {f(s)|s ∈ S} is finite.
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Πf (z) = π[s ∈ S|u(f(s)) ≤ z], z ∈ R. Then, for a fixed act f and τ ∈ (0, 1], the τ th quantile
of the random variable u(x) is defined as the smallest value z such that the probability that

a random variable will be less than z is not smaller than τ :

Qτ (Πf ) = inf{z ∈ R|π[u(f(s)) ≤ z]≥τ}, (39)

while for τ = 0, it is defined as

Q0(Πf ) = sup{z ∈ R|π[u(f(s)) ≤ z]≤0}. (40)

The unobservables of the model are the anticipation level τ and beliefs π. We assume

that (with or without observable beliefs) a researcher can observe decision problems F ⊂ F
that consist of a finite number of acts, the ranking of outcomes to which those acts map,

and the optimal choices for every F , denoted by f∗. Thus, a pair {F, f∗} constitutes one
observation in a data set. Due to the ordinality property of the model, without loss of

generality, outcomes can be assumed to be monetary. Throughout, we assume that tastes

τ and beliefs π are constant over the set of N observations. We also assume probabilistic

sophistication, which we take to mean that the agent’s beliefs can be represented by a

unique finitely additive probability measure.

We use the following notation: Fix a decision problem F and utility function on outcomes

u. Define the sets of quantiles that may be associated with the optimal choice for some

beliefs π ∈ ∆(S), given τ ,

Q∗F (τ) = {z ∈ R|z = max
f∈F

Qτ (Πf ) for some π ∈ ∆(S)} (41)

and for some π and some τ ,

Q∗F =
[

τ∈[0,1]
Q∗F (τ). (42)
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Analogously to payoffs, we define the sets of optimal actions of a τ -maximizer given τ ,

RF (τ) = {f̃ ∈ F |f̃ = argmax
f∈F

Qτ (Πf ) for some π ∈ ∆(S)}, (43)

and for some τ and some π,

RF =
[

τ∈[0,1]
RF (τ), (44)

the last set being the set of actions undominated under Quantile Maximization in a decision

problem F .

2.3 Identification with finite data sets

We first present a result that significantly simplifies the testability and identification exercise

by characterizing the set of all actions that may be selected by any τ and any beliefs π,

RF . The proposition also reveals an important feature of the model.

Proposition 2 For any decision problem F , and any pair of anticipation levels τ , τ 0 ∈ [0, 1],

τ 0 > τ ⇒ RF (τ) ⊇ RF (τ
0). (45)

For any given decision problem, the sets of undominated actions are related by weak set

inclusion with respect to τ : although all actions that can be chosen by high-τ agents may

be chosen by low-τ agents for some beliefs, low-τ decision makers may choose actions that

will not be chosen by those with high τ for any beliefs.

By Proposition 2, in order to find the set of (weakly) undominated actions in the quantile

model, RF , one only needs to look for the set of undominated actions for the 0-quantile

maximizers, RF =
S

τ∈[0,1]
RF (τ) = RF (0). As a special case, we state the following useful

claim.

55



Claim 2 Let F̃ be a decision problem such that all acts are maps from two events E1 and

E2. Then Q∗
F̃
contains at most three payoffs

Q∗
F̃
= {z ∈ R|z = max

f∈F̃
u(xf1) or z = max

f∈F̃
u(xf2) or z = max

f∈F̃
min
k=1,2

u(xfk)}. (46)

Thus, to find the set of actions that may be optimal for any τ and π in a matrix with

two events, one only has to consider actions associated with the maximal payoff in each

column or the maxmin payoff of the decision problem.50

Next, we set Quantile Maximization against an alternative restriction on preferences:

Expected Utility. Let REU
F be the set of acts undominated under the Expected Utility

hypothesis in a decision problem F , REU
F = {f ∈ F |EUπ(f) ≥ EUπ(f

0) for all f 0 6= f and

some beliefs π ∈ ∆(S)}.

Example 3 Consider two decision problems that differ only in one act (f3). Elements of

sets Q∗M(0), M=M1, M2, are in bold; no other payoff may be anticipated in the optimal

choice for any τ and π. Using Claim 2, we observe that while acts f1 and f2 could be

optimal for some beliefs under both Quantile Maximization and Expected Utility, for no

beliefs could f3 be justified in M1 by the former or in M2 by the latter model. On the other

hand, f3 is in RM1 and in REU
M2.

Matrix M1

E1 E2

f1 11 1

f2 4 8

f3 10 3

f3∈ (RM1)
c ∩REU

M1

Matrix M2

E1 E2

f1 11 1

f2 4 8

f3 6 5

f3∈RM2∩
¡REU

M2

¢c

50For the general case of Ki×K−i matrices, at the two extremes, the maximal possible set QF (0) is equal
to the outcome set less the outcomes strictly less preferred to the maxmin outcome, while the minimal set
is achieved in matrices with comonotonic payoff structure.
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Hence the sets of actions that are undominated under Expected Utility and Quantile

Maximization are not related by direct set inclusion. They are not disjoint either; it is

easy to show that the set of actions that may be chosen by 1-quantile maximizers, RF (1),

consists of choices of expected-utility maximizers which are optimal to beliefs putting mass

one on one of the events.

We now examine whether it is possible to uniquely pin down (or, ideally, recover)51 τ

with finite data sets. We consider a problem in which beliefs are and are not known. After

providing identification results, we answer the following testability question: For a finite

data set {{Fn, f∗n}n=1,...,N}, can we recover the set of anticipation levels τ and beliefs π that
rationalize it under Quantile Maximization?

Identification under risk. Consider data with an objective probability distribution

over events. We are interested in two questions: (1) How much information can be inferred

about the quantile τ for a given data set? and (2) How rich a data set is needed to identify

the quantile τ? The answer to the former question will follow from the general conditions

developed for an uncertain environment. For the latter question, we demonstrate that there

is a decision problem with a continuum of lotteries that identifies τ exactly with a single

observation (N = 1). Consider an individual is choosing a lottery from the set depicted by

piecewise-linear distributions in Figure 2.1. The distributions are parameterized by kinks

that correspond to points in the unit interval [0, 1].

51 Identification requires that the unobserved model fundamentals consistent with observed behavior be
unique. Recoverability obtains if the argument for identification is also constructive.
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Figure 2.1 Recoverability of τ when beliefs are known
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The key feature of the test is that for a given τ , there is a unique distribution with

the cumulative probability at the kink outcome equal to τ such that all distributions with

lower or higher kink outcomes are strictly less preferred. Thus, when asked to select a

distribution, a decision maker will truthfully reveal her τ through her choice. Though

simple the observation is not without interest because it implies that the model is not

only identified under risk, but also that a constructive argument for identification can be

provided; that is, that preferences can be recovered.

Identification under uncertainty. We now turn to the more challenging problem

that involves inferring τ when beliefs are subjective and unobserved. We begin with the

smallest data set, one that contains a single payoff matrix and choice, {F, f∗}. Observe
that Proposition 2 implies that after observing some actions, it may be possible to bound

τ from above. We established such bounds as a function of the parameters of the decision

problem F (number of actions, number of events, and conditions on payoff structure) and

the observed choice, a∗. In deriving them, we take a decision problem as given, but the
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argument we provide indicates what conditions should hold for a revealing matrix.52 The

following example is suggestive about the source of the bite for identification in the model.

Example 4 For Matrix M2 in Example 3, we look for the optimal choices of a quantile

maximizer for any values of the unobservable τ and any π. Figure 2.3 presents the resulting

decision map.

Figure 2.2 Conditional cdf’s for acts in Matrix M2

1−π π π 1-π 1-π π

f1 1 11 f2 4 8 f3 5 6

Figure 2.3 Choice correspondence for Matrix M2
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For τ ≤ min{π, 1 − π}, the individual anticipates payoffs 1, 4 and 5 from acts f1, f2 and

f3, respectively. She will choose f3.

For τ > 1 − π, she anticipates payoff 11 from act f1. As this is the highest payoff in the

matrix, she will choose f1.

Finally, for π < τ ≤ 1− π, she anticipates payoffs 1, 8 and 5 from the respective acts, and

hence she will choose f2.

52That the conditions are derived for decision problems in the form of a matrix (in particular, for acts
with identical partitions of the state space) is without loss of generality. Any decision problem F can be
represented by a matrix by taking the coarsest common refinement of the (coarsest) partitions implied by
the acts in F .
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The following four properties of the correspondence in Figure 2.3 will be important for

identification:

1. For the same and fixed beliefs, quantile maximizers with different τ may choose different

actions.

2. Even if they choose the same action, they may select it anticipating different payoffs.

3. For some fixed τ , there are payoffs that will never (for any beliefs) be anticipated in

an optimal choice; e.g., for τ > 0.5, when f2 is chosen, 8 is anticipated, while when f3 is

chosen, 11 is anticipated; for no beliefs, will 5 be anticipated.

4. There are outcomes that will not be anticipated in the optimal choice for any τ and any

beliefs π (1, 4, 6).

We now establish a property of the model that, along with Proposition 2, will provide

the basis for inference. For a given decision problem F , different payoffs enter the set

of payoffs associated with optimal actions, Q∗F (0), for beliefs with different support. For

example, in Matrix 1 in Example 3, for beliefs putting mass one on one of the events, only

payoffs 11 or 8 can be anticipated in the optimal actions by any τ ∈ [0, 1]. For beliefs
with 2-event support, 4 enters the set Q∗M1(0), but it takes beliefs with cardinality 2 for

the payoff 4 to be anticipated under optimal choice.53 It turns out that this pattern is

a general characteristic of the model, proved inductively in Lemma 4: higher-cardinality

belief supports admit less-preferred payoffs in Q∗F (0).

For payoffs in Q∗F (0), we define c(x) as the minimal cardinality of beliefs support for

which u(x) ∈ Q∗F (0).

Lemma 4 Fix outcomes x, y ∈ f(S) and an act f ∈ F .

c(x) > c(y)⇒ u(x) < u(y). (47)

53Note that a version of this argument can be used to prove Claim 2.
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This sets up a correspondence between each payoff x in f(S) such that u(x) ∈ Q∗F (0)

and the minimal cardinality of beliefs support under which u(x) enters Q∗F (0).

With Lemma 4, the inference procedure for a given data set {F, f∗} can be summarized
in three steps.

Step 1: Verify whether the matrix enables any inference at all. A trivial example of

an uninformative matrix is one with comonotonic payoffs across choices; with payoff ranks

identical across events, the sets of choices that might be optimal for some beliefs, RF (τ),

coincide for all quantiles, RF (τ) = RF (1) for all τ ∈ [0, 1]. Identification requires a stronger
condition than excluding comonotonic payoff structures. A necessary condition for a matrix

to reveal any information about the quantile τ is that

c(x) > 1 for all x such that u(x) ∈ Q∗F (0), (48)

which boils down to the requirement that the payoffs with the same rank rf in the outcome

sets f(S), f ∈ F , cannot be associated with the same event.

Step 2: Find the set of outcomes that may be anticipated under optimal choice for any

τ and any π. By Proposition 2, this set is equal to Q∗F (0). Its complement in the outcomes

set of F can be ignored, because it contains outcomes that will not affect choices of any

τ -maximizer for any beliefs π she may hold. As a practical matter, Lemma 4 suggests that

Q∗F (0) can be found as a union of subsets of payoffs that enter Q
∗
F (0) for beliefs with a

different cardinality of support.

Step 3: For the observed choice f∗, apply Lemma 5 below to outcomes in {x ∈ f∗(S)|u(x) ∈
Q∗F (0)}.
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Lemma 5 shows how to place a bound on τ from data containing only a single matrix

and the choice of a decision-maker.

Lemma 5 Consider a data set {F, f∗}. For all τ > τ̄F (f
∗), where

τ̄F (f
∗) = max

xf∗∈{x∈f∗(S)|u(x)∈Q∗F (0)}

½
1

c(xf∗)

¾
, (49)

there is no belief π ∈ ∆(S) for which f∗ is optimal. For any τ ≤ τ̄F (f
∗), there exists a

belief for which f∗ is chosen.

The (proof of the) lemma also implies that after observing a choice of f∗ in F , it

is possible to make inferences about beliefs. Specifically, the choice may reveal not only

whether beliefs have full-support, or the support is of lower cardinality, but also reveal

the beliefs assigned to payoffs with ranks lower than the payoffs with the maximal rank in

{xf∗ ∈ f∗(S)|u(x) ∈ Q∗F (0)}. Corollary 2 formalizes these conditions.

Corollary 2 In a data set {F, f∗},

(i) |supp{π}| ≥ minxf∗∈{x∈f∗(S)|u(x)∈Q∗F (0)}{c(xf∗)},

(ii)
P⎧⎨⎩l∈N++

¯̄̄̄
¯̄l≤ max
{xf∗,l∈f∗(S)|u(x)∈Q∗F (0)}

rf∗ (xf∗,l)

⎫⎬⎭
πl ≥ τ̄F (f

∗).

We illustrate Lemma 5 and Corollary 2 in an example.

Example 5 Suppose a decision maker chose f3 in Matrix M3, where elements of the set
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Q∗M3(0) are in bold.

Matrix M3

E1 E2 E3

f1 1 6 9

f2 8 2 6

f3 7 4 3

f4 6 5 2

Using Lemma 5, we can conclude that under the Quantile Maximization hypothesis, τ

of the decision maker is not greater than 1
3 . Corollary 2 further implies that the agent holds

full-support beliefs.

We conclude with a few implications of the derived bounds.

Remark 2 1. Among all matrices with K events, the maximal τ̂ such that all τ -maximizers

with τ ≤ τ̂ may (for some beliefs) choose an act not justified by the Expected Utility hypoth-

esis is equal to 1− 1
K .

2. Let λ be a uniform measure on beliefs that an agent may hold, ∆(S). The decision
makers with τ close to a multiple of 1K are more likely (with respect to λ) to compare payoffs

across rather than within ranks54; e.g., in Figure 2.3, Example 4, quantile maximizers with

τ close to 0.5 are more likely to compare payoffs across ranks (when π < τ ≤ 1 − π or

1− π < τ ≤ π) than are individuals with τ close to 0 or 1.

The conditions we provided until now can be derived using the smallest data set (one

matrix and choice). With a sequence of observed matrices and choices, one could apply the

derived conditions on beliefs to place a l ow e r bound on τ and to tighten the upper bound.

Furthermore, the results in this section offer testable conditions for finite amount of choice

behavior to be consistent with Quantile Maximization.

54One might be interested in implementing a desired action. From the conditions derived in this Section,
one could learn how to affect the optimal choice by redesigning a decision problem.
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2.4 Strategic implications of Quantile Maximization

In this section, we illustrate how the conditions derived for a single-agent setting can be used

in games. The application is of independent interest because Expected Utility dominates

decision-theoretic foundations of games. Thus, we suggest how the differing properties of

Quantile Maximization may contribute to modeling strategic interactions.

First, it is common in economic life that interactions are not anonymous; the players

often know their opponents’ attitudes toward risk. To capture this in the Expected Utility

framework, the knowledge of concavity of the entire Bernoulli utility function must be

assumed. In Quantile Maximization, information about risk attitude (alternatively, level of

optimism-pessimism) is embedded in the single parameter τ . Second, in many games such

as those involving one-shot interactions, it seems more plausible to assume that the players

know each other’s risk attitude than that they know each other’s beliefs. (See also part (3)

in the previous section.)

We now exploit the implications of players having (some) beliefs and knowing each

other’s anticipation levels, τ , and payoff ranking. We show that taking this view, identify-

ing restrictions on choice behavior under Quantile Maximization that come from (possibly

different orders of) knowledge of τ without imposing any conditions on beliefs, can increase

the predictive power of the decision-making model in games.

Suppose we let I quantile maximizers interact strategically in a game defined as

Γ = {I, {Fi}i=1,...,I , {τ i}i=1,...,I}. Define the rationalizable set for Quantile Maximiza-
tion.

Definition 7 Fix a vector τ = (τ1, ..., τ I). Set R0Γ,i(τ i)≡Fi, i = 1, ..., I, and for n ∈ N++
recursively define

Rn
Γ,i(τ i) = {fi ∈ Rn−1

Γ,i (τ i)|∃πi ∈ ∆(×j 6=i Rn−1
Γ,j (τ j)) : fi ∈ argmax

f̃∈Fi
Qτ i(Πf̃ )}. (50)
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The τ i-rationalizable set for player i is the limit set

R∞Γ,i(τ i) = ∩n∈NRn
Γ,i(τ i) (51)

and τ -rationalizable set for the game Γ is equal to R∞Γ (τ ) = ∩i∈I R∞Γ,i(τ i).55

Remark 3

1. The common knowledge assumption implicit in the definition of τ -rationalizability is

considerably weaker than in an expectation-based model. Specifically, for R∞Γ , the knowledge
of utility functions is not required, only that of the pure-strategy preference ranking is. When

τ is fixed, the sets R∞Γ (τ ) are defined by the common knowledge of (i) quantile-maximization
rationality, (ii) outcome ranking and (iii) τ .

2. Fix a game Γ. Proposition 2 and monotonicity of the relation defined in (50) imply

that for quantile maximizers with different τ ’s, the rationalizable sets are weakly nested with

respect to τ :

R∞Γ (1) ⊆ ... ⊆ R∞Γ (τ) ⊆ ... ⊆ R∞Γ (0). (52)

It follows that RΓ(0) is the rationalizable set under Quantile Maximization.

Consequently, the rationalizable set can be partitioned into subsets parameterized in τ .

Example 6 illustrates this point.

Example 6 Consider a two-player symmetric game in Matrix M4. Applying Lemma 5,

one can conclude that if quantile maximizers with τ > 0.5 play this game, then the outcome

of such an interaction will occur in the subset {f11 , f12 } × {f21 , f22}. Conversely, knowing
the outcomes, can one characterize players’ risk attitudes (τ ’s) from the sole observation

of the outcomes? If outcome {f13 , f23 } is observed, for example, then under the Quantile
Maximization hypothesis, one can conclude that τ of the players must be weakly less than

55Notice that the formulation of the iterative procedure ensures that the anticipated payoffs are in the
limit set.
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0.5.

Matrix M4

f21 f22 f23

f11 5,5 0,3 6,2

f12 3,0 7,7 0,2

f13 2,6 2,0 2,2

We further note that although our axiomatization in Rostek [2006] gives foundations for

a fixed τ , the framework of Quantile Maximization can naturally incorporate dependence

of choice rules on a particular subset of actions (through τ). Examples of applications

include modeling effects of experience, framing (e.g., a player might be more cautious when

playing less experienced actions, or when considering deviations). In an analogous manner,

event-dependence can be allowed in studying the impact of context.
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Chapter 3

Uncertainty about Rationality

3.1 Motivation

What is the impact of how people perceive the rationality of others on equilibrium out-

comes? The very notion of equilibrium used in economics implicitly assumes that the im-

pact is none: Equilibrium outcomes are always weakly within the rationalizable set, where

rationality is common knowledge. The weakest equilibrium notion that captures the impli-

cations of players rationality and the game structure was identified by Brandenburger and

Dekel (1987); they showed that a slight strengthening of subjective correlated equilibrium

(Aumann [1974]), a posteriori equilibrium, attains the rationalizable set of outcomes.56

At the same time, a large body of experimental research on play in normal-form games

finds that outcomes systematically occur outside of the rationalizable set in a given game

(Stahl and Wilson [1994, 1995]; Nagel [1995]; Ho, Camerer, and Weigelt [1998]; Goree and

Holt [2001]; Costa-Gomes, Crawford, and Broseta [2001]; Bosch-Domènech et al. [2002];

Camerer, Ho, and Chong [2004]; Costa-Gomes and Crawford [2006]; and Crawford and

56Recently, Dekel, Fudenberg and Morris (2006) proved that an analogous equivalence holds in incomplete-
information settings.
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Iriberri [2006a]). Moreover, invoking the standard recursive characterization of the ratio-

nalizable set (Pearce [1984]), players’ actions are typically consistent57 with only 1-2 rounds

of deletion of dominated strategies. In that sense, the observed play is heterogenous (as

opposed to requiring consistency with infinitely many rounds for all players), and the re-

sulting outcomes occur far from that maximal equilibrium prediction. Whether or not the

iterative description of reasoning is adequate, these findings are important in that they

question the ability of equilibrium tools to explain outcomes in at least a range of strategic

settings. The starting point of our analysis then is an observation that in order to predict

outcomes in such interactions, a model should explain why players o p t ima l l y choose

non-rationalizable actions. For example, a common explanation of the (non-rationalizable)

outcomes in guessing (“beauty contest”) games is that the players perform a small number

of iterations because they believe others will do so too and not because the players are not

able to reason further or that they believe others are not able to reason as well. Unlike the

standard game-theoretical analysis, there the players are actually better off not completing

the infinite regress of deletion, given that their opponents do not complete it. And yet, such

an explanation does not have a clear foundation in the models to date, because optimal-

ity and cognitive abilities are confounded. Providing both decision-theoretic and learning

foundations is the objective of this paper.

A remark qualifying the settings for which our analysis is intended is in order here. The

classic examples of games that involve explicit iterative reasoning are dominance-solvable

games, such as the guessing games mentioned above or traveler’s dilemma. More generally,

this paper is concerned with interactions that are strategic and yet involve little or no

opportunity to learn either through experimenting or from the environment; thus, not

even the so-called “steady-state” concepts based on (implicit or explicit) learning would

be appropriate.58 The need for providing foundations for such games, examples of which

57The evidence is in fact stronger than mere consistency of outcomes with levels of iterations, as many of
these studies back up the choice observations with data on the subjects’ information searches.
58Self-confirming equilibirum by Fudenberg and Levine (1993), subjective equilibirum by Kalai and Lehrer
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include one-shot interactions (e.g. court cases, business negotiations, auctions, military

actions), has often been acknowledged (Kalai and Lehrer [1995, p. 127], Rubinstein and

Wolinsky [1994, p. 299], Goree and Holt [2001, p. 1419], among others).

Before we describe our model and relate it to previous developments, we will make

precise the sense through which we will refer to the notion of equilibrium as “standard” as

well as the relation between equilibrium and rationalizability.

Equilibrium versus rationalizability. To make our point, it suffices to abstract

away the specific requirements of different solution concepts and focus instead on the mildest

restriction on beliefs implicit in any “equilibrium” concept, as commonly understood. In

geometric terms, the condition stipulates that players’ joint best-response set coincides

with the support of joint beliefs about the strategies of others. We will call the condition a

weak closure property, to distinguish it from a stronger and more common condition: The

joint distribution of players’ beliefs exactly coinciding with the joint distribution of players’

strategies (strong closure; holds, e.g., in Nash Equilibrium). Since that fixed-point property

of the best-response mapping implies that there can be no action in the support not justified

by some conjecture, the best response set cannot lie outside of the rationalizable subset of

a game.

Alternatively, in epistemic terms, one could apply the results of Brandenburger and

Dekel (1987) and Zambrano (2005) to show that, when equipped with epistemic language,

first, the above condition entails that players (mutually) know the support of others’ con-

jectures; and, second, that (together with a mutual knowledge of rationality and payoffs)

the mutual knowledge of supports is precisely the epistemic condition characterizing ra-

tionalizable subsets of a game. Thus, even though the sufficient epistemic conditions for

an equilibrium need not require common knowledge of rationality, behavior that is non-

(1993, 1995), conjectural equilibrium by Battigalli (1987), in Gilli (1987), Battigalli-Guaitoli (1988) and
Rubinstein-Wolinsky (1994).
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rationalizable (consistent with less than infinite rounds of elimination of strictly dominated

strategies) is not an admissible equilibrium behavior. It follows then that in equilibrium,

players must be certain (believe with probability one) that their opponents are rational.

Therefore, in order to account for the finite levels of reasoning in the data, one has

to relax the condition that beliefs supports are equal to the joint best-response set. For

games with more than two players, this relaxation will further remove the requirement that

beliefs supports are identical across players (on the same domains). It is worth noticing that

moving away from “equilibrium” has already proved successful in accounting for the winner’s

curse in common-value auctions, overbidding in independent-private-value auctions, trade

in textbook no-trade settings, and other commonly observed phenomena (Eyster and Rabin

[2005, cursed equilibrium], Jehiel and Koessler [2006, analogy-based expectations], Battigali

and Siniscalci [2003, k-rationalizability], Crawford and Iriberri [2006b, k-level model]).59

We next argue, however, that in previous studies, relaxing the weak closure property was

achieved by essentially assuming bounded rationality rather than by providing an optimality

argument.60

Received literature. Numerous models have been advanced to explain the observed

outcomes. We will introduce ours by comparing it to the most closely related, structural

approach,61 which has also been the most popular in empirical studies. It assumes that

individuals perform only k (as opposed to ∞) steps of reasoning, where each step corre-
59Likewise, evolutionary dynamics does support eliminating strictly dominated strategies. Hofbauer and

Sandholm (2006) show that any evolutionary dynamic that satisfies three mild requirements (continuity,
positive correlation, and innovation) does not eliminate strictly dominated strategies in all games. The class
of dynamics they consider includes not only well-known dynamics from the evolutionary literature, but also
slight modifications of the dynamics under which elimination is known to occur.
60Relaxing strong closure has been advocated by the learning ("steady-state") literature cited above.

The common idea, shared by the present paper, is that in equilibrium the players’ beliefs should not be
contradicted, even if those beliefs could possibly be incorrect. Unlike the conditions we propose, however,
the "steady-state" concepts require that the distributions of beliefs match those of actions at terminal nodes
(the distributions need not match otherwise). Hence, these concepts have no bite in one-shot games, and
they cannot account for evidence on normal-form games, which is the focus of our paper.
61 (Unstructured) implications of relaxing common knowledge of rationality have been analyzed in Börgers

(1993), Mukerji (1997), Blume, Brandenburger and Dekel (1991).
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sponds to one round of deletion of strictly dominated strategies (k-level models proposed

by Stahl and Wilson [1994, 1995] and Nagel [1995]).62 This approach presupposes that

each k-step thinker conjectures all others to reason to exactly k− 1 steps with certainty. In
their Cognitive Hierarchy model, Camerer, Ho and Chong (2004) allowed player uncertainty

about her opponents’ depth of reasoning k: A k-thinker assumes others’ levels of reasoning

are distributed from 0 to k − 1. Their model is the closest to ours and the connection is
important since the Cognitive Hierarchy performs at least as well as several alternatives do

in explaining data.

In either approach, consistency between the observed outcomes and the conjectures can

be viewed as modeled through the following two conditions:

(i) each player maximizes her expected utility given her beliefs (optimization),

(ii) the observed outcome is in the support of the players’ joint conjectures (no ex post

surprise).

Both approaches, however, place additional exogenous restrictions on beliefs:

(1) To justify finite depth levels, k <∞, they assume that a k-player knows the actual
(conditional) distribution of {0, 1, ..., k − 1} (in the Cognitive Hierarchy model) or believes
that all other players perform k−1 steps (in the k-level model). This assumption is arguably
strong, given the intended departure from equilibrium. In addition:

• The consistency requirement on beliefs does not admit the case where a k-player might
be aware that others perform k or more steps. Symmetric levels (k, k) can be justified only

if both players are boundedly rational at k, which in the Cognitive Hierarchy implies that

the players think of others as at-most-(k− 1) thinkers, or as exactly (k− 1)-thinkers in the
k-level model.

• More importantly, if repeated play were allowed, it is not clear how updating beliefs
would look, given the extra condition on beliefs. In either approach, beliefs are anchored in

62The 0-level players are typically assumed to choose at random. Our specification will allow for all
possible distributions.
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the fixed conjectured depths of others. In the k-level model, these conjectures are simply

set at the opponents’ action subset, corresponding to the (k − 1)th level; in the Cognitive
Hierarchy, they are equal to rescaled actual frequencies of reasoning types, truncated up to

k − 1 for a k-player. Repeated interactions would thus not naturally yield learning.
(2) Relatedly, as in the first generation of iterative cognitive models, in the Cognitive

Hierarchy players’ actual levels of reasoning are exogenously fixed with respect to the pre-

determined beliefs.

Consequently, predictions are observationally equivalent whether these levels are deter-

mined by players’ cognitive limitations or players find it optimal not to reason further.63

In that sense, the proposed explanation of why players do not reason further essentially

involves limited cognitive abilities instead of optimality to stop at small finite levels. The

latter is a common and intuitive explanation informally given for the outcomes in guess-

ing games. Nevertheless, such an explanation does not appear consistent with the existing

models. Providing both decision-theoretic and learning foundations is the goal of this pa-

per. We would like to view our model as providing an optimality argument for Camerer,

Ho and Chong’s (2004) framework and the earlier iterative models, which can be viewed

as specialized versions of our model. We will then suggestively call our model an Optimal

Cognitive Hierachy.

63 In addition, if objectivity of distribution were taken seriously, then bounded rationality of players would
be necessary to justify finite depth levels, k <∞. To see that , consider a 2-player one-shot game (e.g., the
"beauty contest"). In the Cognitive Hierarchy model:
• Asymmetric levels (k, k+ l) can be justified only if the k-player is boundedly rational at k. In particular,

the model does not admit that she might find it optimal not to reason further even though she would be
able to do so. This feature of the model is due to the requirement that the distribution of cognitive types is
objectively known.
• Not only is the k-player’s choice constrained by bounded rationality at k, but also in the (k, k + l) case

both players must think of each other as boundedly rational. Again, the model does not allow the players to
believe that their opponent does not find it optimal to stop. This inconsistency will not arise if it is assumed
that the players only mutually know the types distribution, but do not know that others know.
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Model. In this paper, the apparent bounded reasoning will be optimal, in a sense made

precise next, and endogenous with respect to players’ uncertainty about the rationality of

others, as captured by their conjectures. Specifically, we propose that each player holds

a conjecture about the level of rationality of her opponents and responds optimally given

her conjecture. To distinguish between her subjective assessment of others’ optimal k and

her possibly limited cognitive abilities, we also explicitly account for her maximal depth

of reasoning. Even if no player is boundedly rational, that player still might (optimally)

choose to reason up to small finite levels. This is because the player might conjecture that

others will not reason further (cf. guessing games). A formal optimality argument for the

observed behavior and the separation of optimality from limited cognitive ability are the

key novel features of our model. The discussion above suggests how separating optimality

and cognitive limitations qualitatively affects predictions.

Consistency between the observed outcomes and the conjectures is modelled through

the conditions that we identified as common to both k-level models and the Cognitive

Hierarchy: (i) each player optimizes given her beliefs and (ii) the observed outcome is in

the support of the joint conjectures of players. But now, players’ beliefs must be consistent

with their own cognitive abilities and conjectured levels of others, which in turn must be

not be contradicted by the observed outcomes. That second consistency condition crucially

differs from fixing the levels of conjectures in k-level models or fixing distributions in the

Cognitive Hierarchy.

Conceptually, our conditions are different from the commonly used “equilibrium” con-

ditions in that they are imposed prior-to-play and post-play, respectively. That is, instead

of requiring optimality of s t r a t e g i e s g i v e n s t r a t e g i e s of o t h e r s (as in “equi-

librium”), leaving cognitive constraints aside, we require optimality of s t r a t e g i e s and

o u t c ome s g i v e n c o n j e c t u r e s about k. The change is meant as an alternative to the

standard inter-play64 view of modeling non-cooperative behavior, which forces consistency

64The names, "prior-to-play," "intra-play" and "post-play," are intended as evocative of the three stages
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of the distributions of beliefs and actions.

Results. We derive and characterize the maximal set of outcomes determined by (1)

and (2). Only to facilitate comparisons with the k-level and the Cognitive Hierarchy mod-

els, we treat players as effectively certain about their opponents’ reasoning depths. This

allows us to focus on the smallest among the maximal (given k) sets of outcomes that can

be implemented with players who reason at most up to k.65 Our central result shows equiv-

alence of the set to a counterpart of the rationalizable set whose size can be parameterized

by the actual levels of reasoning that the players use. In other words, uncertainty about

rationality shapes the set of outcomes.

We show that if a player conjectures that the maximal depth of reasoning reached by

others is k, she will reason min{k+1, ka} levels. In the language of iterative reasoning, each
k-step thinker in our model conjectures that others reason up to a t mo s t k levels. While

the Cognitive Hierarchy model by Camerer, Ho and Chong (2004) makes a similar predic-

tion, in their model “each player a s s ume s that his strategy is the most sophisticated”

(p. 861; emph. MR). We allow for a different mechanism: the finite depths {ki}i∈I arise
because the players are not willing to reason further subject to their cognitive abilities. Due

to the distinction between optimality and reasoning ability in our model, the derived levels

of k actually used, and hence also the predicted outcome sets, are generically different than

those in the Cognitive Hierarchy.

Freeing players’ conjectures about the depth of reasoning of others and tying these

conjectures to the observed outcomes instead allows us to ask further what happens to

the predicted set of outcomes when players interact repeatedly and (Bayes-)update their

in a strategic interaction that are separated by the act of choosing a strategy and the outcome realization.
These stages should not be taken for ex ante, interim and ex post stages, which refer to the revelation of
private information. For an argument on how powerful the "prior-to-play" view is epistemically, see Barelli
(2006).
65The set-prediction allows for tightening of the customary interpretation of players as having models of

their oponent’s behavior: A model involves a single-parameter (depth of reasoning) rather than a measure
over actions.
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beliefs. We find sufficient conditions under which the outcome set converges and show that it

converges to the set achieved by the Cognitive Hierarchy (if kai < kcij for each i, j ∈ I, i 6= j).

3.2 Characterization result

This section derives a precise relation between the optimal depth of reasoning used by the

players and the resulting outcome set. Consider a normal-form game in which I is the set of
players I = {1, ..., I}, Ai is a finite set of actions of player i and Ui :

Q
i∈I

Ai → R is her (von

Neumann Morgenstern) utility function. We now introduce a language to talk about depths

of reasoning: We will distinguish between a player’s reasoning abilities, her conjectured

depths of reasoning actually used by other players, her own actual beliefs consistent with

her cognitive ability as well as the conjectured levels of others.

Let kci. = (kci,1, ..., k
c
i,i−1, k

c
i,i+1, ..., k

c
i,I) be a vector of player i’s conjectures about the

actual levels of rationality that the other players (are able or willing to) use. Define

kc.i = maxj 6=i{kcj,i}. If kai is the level of i’s cognitive ability, then the actual level of rea-
soning she uses given her conjectures kci. and ability kai will be denoted by ki. This

is where her own reasoning ability might be binding. Formally, the game is defined by

Γ = {I, {Ai}i∈I , {Ui}i∈I , {kai ,kci.}i∈I}.
For a set A−i, ∆(A−i) is the set of probability measures on A−i. We can now iteratively

define the set of actions of player i remaining after ki rounds of deletion of strict never-best

responses. For each i ∈ I, let R0i = Ai and for ki ≥ 1, ki ∈ N,

Rki
i (Γ) =

n
ai ∈ Ai|ai is a b.r. to some λi ∈ ∆

³
Rki−1−i (Γ)

´o
. (53)

Call Rki
i (Γ) a kthi -order rationalizable set of player i’s actions. An action profile a =

(a1, ..., aI) is said to be kthi -order rationalizable if each ai is kthi -order rationalizable and

k = (k1, ..., kI). Let Rk(Γ) = ×i∈IRki
i (Γ). Analogous definitions hold for payoffs (see

Section 3.3).
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The support of players’ beliefs λi : A−i → ∆(A−i) depends on i’s conjectured reasoning
levels of others kci. and her reasoning ability k

a
i , for which ki is a sufficient statistic. Formally,

we will say that player i’s beliefs λi are consistent with her actual level of reasoning ki if

supp{λi} ⊆ Rki−i(Γ). Hereafter, we assume that beliefs λi are admissible in that sense and

write λi(ki) ∈ ∆(A−i).
We need to include information structure into the description of the game. Thus, let

Ω be a finite state space, λi : Ω → ∆(Ω) - player i’s probability measure on Ω66, and

Hi - her partition of Ω. The states in Ω include payoff but not action information (cf.

Aumann [1987]). Unless stated otherwise, best responses will be meant to be interim, that

is, after the players learned their private information.67 A strategy of player i is then an

Hi -measurable mapping si : Ω→ Ai.

We close the model by specifying the consistency conditions that define optimal cognitive

behavior.

Definition 8 A strategy-belief profile (f∗,λ∗(k)) is optimal cognitive in Γ if, for each i ∈ I
and for each ω ∈ Ω,

(i)
P

a−i∈A−i λi(ki)[{ω0 : f−i(ω0) = a−i}|Hi(ω)]Ui(f(ω)i,a−i) ≥P
a−i∈A−i λi(ki)[{ω0 : f−i(ω0) = a−i}|Hi(ω)]Ui(ai,a−i), ∀ai ∈ Ai;

(ii) λ∗i (ki)[f∗−i(ω
0) = a∗−i|Hi(ω)] > 0.

(54)

The conditions can be interpreted, respectively, as “no unilateral incentive to deviate,”

or “maximization,” and “no ex post surprise.” In particular, the equilibrium outcomes might

be affected by players’ beliefs over non-equilibrium actions. Condition (ii) guarantees that
66For the discussion when (if at all) it is legitimate to call this probability measure a ”prior”, see Aumann

(1998), Gul (1998), and Dekel and Gul (1997).
67This is for convenience. In Section 3.3 we show that the results hold if analysis is carried at the ex ante

stage.
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these beliefs are never falsified. We are interested in characterizing the smallest of the

maximal (given k) set of optimal cognitive outcomes of the game Γ, which we call optimal

cognitive hierarchy of Γ, OCH(Γ,k).

Remark 4 In their characterization of subjective correlated equilibrium, Brandenburger

and Dekel (1987) rely on the equivalence of the following two conditions on a strategy profile

f(ω) = (f1(ω), ..., fI(ω)) to define a posteriori (interim subjective correlated) equilibrium:

for every state ω ∈ Ω,

X
ω0∈Ω

λi[{ω0}|Hi(ω)]Ui(fi(ω), f−i(ω0)) ≥ (55)X
ω0∈Ω

λi[{ω0}|Hi(ω)]Ui(ai, f−i(ω0)),∀ai ∈ Ai;

and, appealing to a change of the variable, for every state ω ∈ Ω,

X
a−i∈A−i

λi[{ω0 : f−i(ω0) = a−i}|Hi(ω)]Ui(ai, a−i) ≥X
a−i∈A−i

λi[{ω0 : f−i(ω0) = a−i}|Hi(ω)]Ui(ãi, a−i), ∀ãi ∈ Ai. (56)

Yet, the equivalence (in particular, the former definition) presupposes that, for every possible

state of the world that may occur, each player knows which actions will be taken by her op-

ponents for some of their beliefs. Knowing the range of the other players’ strategy functions

(knowledge of f−i is sufficient but not necessary) renders the equilibrium condition necessar-

ily consistent with common knowledge of rationality. This is an intuitive restatement of the

sufficient epistemic conditions for rationalizability (Zambrano [2005]). Thus, uncertainty

about whether other players use the full extent of infinite-step reasoning or certainty about

less-than-rationalizable level rationality of others is not allowed in equilibrium.

Let k̄i. = maxj 6=i{n̂i,j}, k̄.I = (k̄.1, ..., k̄.I), k̄I . = (k̄1., ..., k̄I.), ka = (ka1 , ..., k
a
I ) and

kI = (k1, ..., kI). Finally, define k∗ as max{kI , k̄.I} (a pairwise comparison). This is a
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vector of reasoning levels consistent with each player’s ability and perceptions of the others

as well as others’ perceptions of player i. The following result shows that the reasoning

levels k yield the set of outcomes of an optimal cognitive hierarchy consistent with and

equivalent to the k∗th-rationalizable set: Rk∗(Γ) = OCH(Γ,k).

Proposition 3 Fix a game Γ. The set of k∗th-rationalizable actions is equal to the set of

cognitively optimal actions in Γ, where for each i ∈ I, ki = min{kai , kci.}.68

The “Rk∗(Γ) ⊇ OCH(Γ,k)” direction shows that the optimal cognitive outcomes are
contained within the set of a size that is a function of the levels at which people reason.

The more interesting converse “Rk∗(Γ) ⊆ OCH(Γ,k)” demonstrates that the subset of Γ
whose size is determined by the players’ actual levels of reasoning is cognitively optimal.

The proof uses the familiar mediator construct in an amended canonical game. As

in the standard implementation literature, this version of the canonical game still allows

the mediator to recommend only a specific action to each player. Without assuming the

knowledge of the entire strategy function, the recommendation can nonetheless capture the

implications for outcomes being consistent with players’ perception of the level of rationality

of others. This result requires the mediator to know the vector k. We also consider a setting

where the mediator has no means to find out what k is. A new canonical game is proposed,

in which the mediator can recommend to each player a subset of his action space. Again,

more than R∞(Γ) can be implemented.

Proof:

Rk∗(Γ) ⊆ OCH(Γ,k) : The result is an application of the Revelation Principle.

68This will follow from optimality. Writing out, ki =
½

kai if kai = k̄ci
k̄ci. + 1 if k

a
i > k̄ci

. Unlike in the Cognitive

Hierarchy model, it is possible that kai = k̄ci . Notice that the "min" operator is consistent with the possibility
that a player realizes that others might reason further than his ability (ki = kai if k

a
i < k̄ci ); there is no such

distinction in the Cognitive Hierarchy, which assumes that kai > k̄ci .
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Let URk∗
denote the set of interim k∗th-rationalizable payoffs.

If the mediator knows the vector k∗: Fix a vector of k∗th-rationalizable payoffs u ∈
URk∗

.69 Assume that for each i ∈ I and each ai ∈ Rk∗i (Γ), there exists beliefs λi (ki) such
that ai is a best reply to λi (ki) (proved to be true in Step 2). Consider the following canoni-

cal game: The mediator randomly selects an action profile a ∈ ×i∈IRk∗i (Γ) and recommends
each player i to play ai in a (without revealing recommendations for other players). By

construction, the action recommended to player i is consistent with her cognitive ability, kai ,

as well as her perceptions about others’ actual levels, kci.+1. The definition also ensures that

the realized outcome will be consistent with interim beliefs: λ∗i (ki)[f∗−i(ω
0) = a∗−i|Hi(ω)] > 0.

That there exist such beliefs λ∗i (ki)0 ∈ ∆
³
Rki−1
−i

´
and a corresponding best-response action

a0i ∈ Rk
∗

i (Γ) for payoff u ∈ URk∗
follows form the fact that ui is a k∗th-rationalizable payoff

to i. Thus, If player i is recommended to play ai, then her conditional belief about the

mediator’s choice in Rki−1
−i (Γ) is λi (ki). For âi 6= ai choose λ̂i ∈ ∆

³
Rki−1
−i

´
such that âi is

a best reply. Hence, the condition (i) holds. By the definition of k∗, so does condition (ii)

hold, which implements ai as an optimal cognitive action.

If the mediator does not know k∗ (e.g. he cannot receive information from the players,

but he can only send it): The mediation procedure in which the mediator recommends a

particular action to each player can no longer be used. The problem would arise if the

mediator tried to recommend an action in Rǩi
i (Γ) to a player for whom ki > ǩi. Consider

an alternative communication mechanism in the canonical game:

Stage 1: The mediator randomly selects an outcome a in the game.

Stage 2: He recommends to each player what to play according to the following proce-

dure: Let kRi , i ∈ I, be the minimum level of reasoning that is consistent with rationalizable
play. If the randomly drawn profile in Stage 1 assigns a rationalizable action to player i,

69We will repeatedly use Pearce’s (1984) Proposition 1, which implies that the latter set is nonempty and
contains at least one pure strategy for each player, k ∈ NI+.
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ai ∈ RkRi , that action is recommended. If it is ǩthi -rationalizable but not rationalizable,

the mediator recommends i to play an action in the set {aRi , ǎi} , where aRi ∈ RnRi (again,

randomly selected) and ǎi ∈ Rǩi . In addition, he informs the player that the expected play

of her opponents can be described by a probability measure λ̌i ∈ ∆
³
Rǩi−1−i

´
, so that should

the player reason at a level not higher than ǩi and choose an action from {aRi , ǎi}, then her
best response would be ǎi.

With the set-recommendation, if ǩi > ki, player i will choose to play ǎi. The proof can

be completed in a manner analogous to the case when the mediator knows n.

Rk∗(Γ) ⊇ OCH(Γ) : Let players’ cognitive abilities and their conjectured levels of rea-
soning of other players be ka and kc, respectively. Given, ka and kc, fix a vector of interim

payoffs that corresponds to an optimal cognitive action profile f∗ ∈ OCH(Γ). Next, fix an
action profile a ∈ {a ∈ A|ai = fi(ω

0), i ∈ I, ω0 ∈ Ω}. Choose ω such that a = f∗(ω). Since
for each i, f∗i is an optimal cognitive choice for i, there are beliefs λi ∈ ∆(Rki

−i) for which ai

is a weak expected-payoff maximizer and these beliefs are consistent with i’s given level of

reasoning, ki. Hence, ai ∈ Rki
i (Γ). Using that f

∗
−i is optimal cognitive for players j 6= i, the

action ai is consistent with their conjectured reasoning level of i. That is, for each j 6= i,

λ∗j (kj)[f
∗
i (ω

0) = a∗i |Hj(ω)] > 0.

It follows that a∗i ∈ Rk̄.i
i (Γ). Hence, ai ∈ Rki

i (Γ) ∩Rk̄.i
i (Γ) = Rmax{ki,k̄.i}i (Γ) = Rk∗i

i (Γ) and

i’s optimal cognitive payoff given information Hi(ω) is k∗thi -order rationalizable and equal

to
P

a−i∈A−i λi(ki)[{ω0 : f−i(ω0) = a−i}|Hi(ω)]Ui(ai,a−i)¥.

Thus, a finite and less-than-rationalizable level of knowledge (certainty) of rationality

provides justification for equilibrium analysis. The result in Brandenburger and Dekel

(1987) obtains when there is common knowledge of rationality; then R∞(Γ) = OCH(Γ).
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3.3 Discussion

(1)Correlated vs. independent beliefs. One might argue that allowing for correlating

devices through correlating beliefs may not be suitable for lab settings, where the advantage

is precisely in the explicit control of any correlating devices. Correlation in beliefs does not,

however, drive the results. Assuming correlation away leads to the notion of independent

rationalizability.

Proposition 4 Fix a game Γ. The set of k∗th-rationalizable actions is equal to the set

of cognitively optimal actions taken under conditionally independent beliefs in Γ, where for

each i ∈ I, ki = min{kai , kci.}.70

(2) Robustness. Here, we ask whether the main result is robust to altering three

assumptions implicit in its formulation.

• Would the equivalence in Proposition 3, expressed for actions, hold when analyzed in
terms of payoffs?

•Would the equivalence result, stated for interim actions (and payoffs), hold for ex ante

actions (and payoffs)?

• Would the result, formulated for Bayesian rationality (subjective expected utility),
hold if other restrictions on rationality were adopted?

The answer to all three questions is positive. Specifically, the first assumption can be altered

if and only if the second can, which is a consequence of the convexity of sets of payoffs in

the Optimal Cognitive Hierarchy, OHC(Γ,k), and k-rationalizability, Rk. This property
will be important for characterizing the outcome set to which repeated play converges.

Proposition 5 Propositions 3 and 4 hold for actions as well as the sets of interim and ex

ante payoff vectors.
70Conditionally independent beliefs are understood as in Brandenburger and Dekel (1987). The proof is

analogous to the proof of the previous proposition and is omitted.
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The third question can be answered using the method proposed by Epstein (1997).

(3) Product-set predictions.

The derived optimally cognitive outcome (and strategy) sets and the considered beliefs

supports are product subsets of the strategy space. This feature would not change if beliefs

supports were instead defined on non-product subsets of the strategy space. Indeed, one

could show that for any fixed non-product beliefs support in a given game Γ, the maximal

OCH(Γ) set is equal to the OCH(Γ) set generated by beliefs whose product support is the
smallest common coarsening.

(4) Non-tight closeness under rational behavior. A notion of optimality close

to ours has been studied by Basu and Weibull (1991). They proposed to call a set closed

under rational behavior (curb) if the set contains all its best responses. Curb sets have

been applied by Rostek (2003) and Tercieux (2004). Since any game is trivially curb, the

applications only used tight curb sets, that is, sets that coincide with their best replies.

It is immediate from our discussion in Section 3.1, that tightness implies rationalizability

(Rostek [2003] gives a formal proof).

Remark 5 If a subset of the action space Ã ⊆ A is tight, then Ã is rationalizable.

So far, no tool has been proposed to model closure under rational behavior in a non-

trivial way without imposing the tightness property (and thereby leading to predictions

necessarily consistent with rationalizability). Given Proposition 3, the conditions studied

in this paper can be thought as defining such a tool.71

71 In practice, a more general notion of curb sets has been used: a set is (p1, ..., pI)-curb if when every
player believes with probability at least pi, i = 1, ..., I, that the opponents will choose an action from this
set, all her best responses are there. Observe that introducing p-belief does not alter the result that tight
p-curb sets are rationalizable. Our sets can be interpreted as pK(k)-curb, where k ∈ NI is the vector of
reasoning levels (optimally) used by the players, and K ∈ NI is the cardinality of the the action space in
belief supports. In particular, pK(K)-curb sets are p-curb.

82



(5) Learning: Suppose the players play the game repeatedly, Bayes-updating their

beliefs. We show that if the play is long enough, the outcome set converges to the one

defined by the players’ cognitive abilities, ka. The latter is the endogenous counterpart

of the Cognitive Hierarchy.72 If players are not boundedly rational, the play converges to

subjective correlated equilibria (or rationalizability). The next proposition offers a formal

statement. We first define a notion of closeness of distributions as follows: for a fixed ε > 0

and two probability distributions µ and λ on A, say that λ is ε-close to µ if for any subset

Ã in A,
¯̄̄
λ
³
Ã
´
− µ

³
Ã
´¯̄̄
≤ ε. If a strategy is optimally congitive for ε-close beliefs, we

say that it is ε-cognitively optimal. For every history of length t, beliefs {λs}s=1,...,t and
distributions of outcomes {µs}s=1,...,t induce a strategy profile fh.

Proposition 6 Fix Γ. Assume that for each player i ∈ I,
(i) a strategy fi is optimal given beliefs λi, initial conjectured reasoning levels kci. and

cognitive ability kai ;

(ii) λ∗it(ki)[f∗−i(ω0) = a∗−i] > 0, for every t.

Then, for any ε > 0, there is a T such that for all h > T , the players’ strategies fh are

ε-cognitive optimal relative to beliefs λt, with kcij = min{kai , kaj }, j 6= i.

Proof. Beliefs λ = {λt}t=1,...,T are measures over product subsets of the strategy subspace
A−i ∈ ×j 6=iAj , i ∈ I. Strategies {ft}t=1,...,T and beliefs λ = {λt}t=1,...,T induce a distribu-
tion on outcome subsets, µ = {µt}t=1,...,T ∈ {∆t (A−i) }t=1,...,T . Condition (ii) implies that
µ is absolutely continuous with respect to λ. The assertion is then implied by the theorem

in Blackwell and Dubins (1962).

72Because of the lack of a consistency condition that ties observed reasoning depths to players conjectures,
the Cognitive Hierarchy model as such, cannot be embedded in a consistent way in a dynamic game with
beliefs updating. This can be done by dropping some auxiliary assumptions (e.g., a priori precluding a player
to believe that others reason as far as she does herself) and introducing a consistency condition between the
conjectures about others’ depth of reasonign and the realized outcomes.
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Remark 6 (1) The result is stronger than stated. The convergence holds, regardless of

whether the players observe their opponents’ payoffs.73 Imperfect monitoring is thus allowed,

which might be of interest for applications without an explicit focus on depth of rationality.

(2) An interesting connection of the reasoning and dynamics presented here is

to subjective games by Kalai and Lehrer (1995). Our structural assumption that players hold

perceptions about others’ depth of reasoning can be re-cast as what they call “an environment

response function,” an exogenously given subjective belief about what outcomes will occur.

Our formulation is a set-theoretic extension of subjective games.

73Or, the static model need not have the literal interpretation regarding the depths of reasoning. It suffices
for all results that players reason about the set of actions that the oponents might take for some beliefs (or,
the range of f−i). In particular, the players need not reason about strategies per se. Consequently, if each
player i ∈ I reasons directly about action subsets, A−i, the prediction for a given game Γ can be found asT
i∈I

A−i ∩Rk(Γ).
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Appendix 1: Axioms of Savage (1954), Machina and Schmei-

dler (1992), Grant (1995), Chew and Sagi (2006)

We state the set of axioms developed by Savage (1954) that characterize Subjective Utility

Maximization.74

AXIOM P1 (ORDERING): The relation % is complete, transitive and reflexive.

AXIOM P2 (SURE-THING PRINCIPLE): For all events E and acts f, f∗, g, h,

⎡⎢⎣ f∗(s) if s ∈ E

g(s) if s 6∈ E

⎤⎥⎦ %
⎡⎢⎣ f(s) if s ∈ E

g(s) if s 6∈ E

⎤⎥⎦⇒
⎡⎢⎣ f∗(s) if s ∈ E

h(s) if s 6∈ E

⎤⎥⎦ %
⎡⎢⎣ f(s) if s ∈ E

h(s) if s 6∈ E

⎤⎥⎦ .
(57)

AXIOM P3 (EVENTWISE MONOTONICITY): For all outcomes x and y, non-null

events E and acts g, ⎡⎢⎣ x if E

g if Ec

⎤⎥⎦ %
⎡⎢⎣ y if E

g if Ec

⎤⎥⎦⇔ x % y. (58)

AXIOM P4 (WEAK COMPARATIVE PROBABILITY): For all events E, F and out-

comes x∗ Â x and y∗ Â y,

⎡⎢⎣ x∗ if E

x if Ec

⎤⎥⎦ %
⎡⎢⎣ x∗ if F

x if F c

⎤⎥⎦⇒
⎡⎢⎣ y∗ if E

y if Ec

⎤⎥⎦ %
⎡⎢⎣ y∗ if F

y if F c

⎤⎥⎦ . (59)

AXIOM P5 (NONDEGENERACY): There exist outcomes x and y such that x Â y.

AXIOM P6 (SMALL-EVENT CONTINUITY): For any acts f Â g and outcome x,

there exists a finite set of events {E1, ..., EN} forming a partition of S such that

f Â

⎡⎢⎣ x if En

g if Ec
n

⎤⎥⎦ and

⎡⎢⎣ x if Em

f if Ec
m

⎤⎥⎦ Â g (60)

74We present axioms for the setting with finite-outcome acts and therefore we omit P7 (which holds for
τ -maximization).
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for all m,n = 1, ..., N .

Machina and Schmeidler (1992) characterize probabilistically sophisticated preferences

of a non-expected utility maximizer by P1, P3, P4∗, P5, and P6, where

AXIOM P4∗ (STRONG COMPARATIVE PROBABILITY): For all pairs of outcomes

x∗ Â x , y∗ Â y, events E, F , E ∩ F 6= ∅, and acts g, h,
⎡⎢⎢⎢⎢⎣

x∗ if s ∈ E

x if s ∈ F

g if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

x∗ if s ∈ F

x if s ∈ E

g if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦⇒
⎡⎢⎢⎢⎢⎣

y∗ if s ∈ E

y if s ∈ F

h if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

y∗ if s ∈ F

y if s ∈ E

h if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦
(61)

Grant (1995) shows that conditions P1, P4CE, P5, P6†, and one of P3CU or P3CL

imply probabilistic sophistication, as defined in ((24) and (25)), where

AXIOM P3CU (CONDITIONAL UPPER EVENTWISE MONOTONICITY): For all

pairs of non-null, disjoint events E and F , all outcomes x and y, and all acts g,

⎛⎜⎝
⎡⎢⎣ x if E ∪ F

g if (E ∪ F )c

⎤⎥⎦ Â (%)
⎡⎢⎣ y if E ∪ F

g if (E ∪ F )c

⎤⎥⎦
⎞⎟⎠⇒

⎡⎢⎢⎢⎢⎣
x if E

y if F

g if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ Â (%)
⎡⎢⎣ y if E ∪ F

g if (E ∪ F )c

⎤⎥⎦ .
(62)

AXIOM P3CL (CONDITIONAL LOWER EVENTWISE MONOTONICITY): For all

pairs of non-null, disjoint events E and F , all outcomes x and y, and all acts g,

⎛⎜⎝
⎡⎢⎣ x if E ∪ F

g if (E ∪ F )c

⎤⎥⎦ Â (%)
⎡⎢⎣ y if E ∪ F

g if (E ∪ F )c

⎤⎥⎦
⎞⎟⎠⇒

⎡⎢⎣ x if E ∪ F
g if (E ∪ F )c

⎤⎥⎦ Â (%)
⎡⎢⎢⎢⎢⎣

x if E

y if F

g if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ .
(63)
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AXIOM P4CE (STRONG CONDITIONAL EQUIVALENT PROBABILITY): For all

pairs of disjoint events E and F , and outcomes w, x, y, and z, and acts g and h,

⎡⎢⎣ x if E ∪ F
g if (E ∪ F )c

⎤⎥⎦ Â
⎡⎢⎢⎢⎢⎣

x if E

y if F

g if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎣

y if E

x if F

g if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ Â
⎡⎢⎣ y if E ∪ F

g if (E ∪ F )c

⎤⎥⎦ (64)

implies ⎡⎢⎢⎢⎢⎣
w if E

z if F

h if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎣

z if E

w if F

h if (E ∪ F )c

⎤⎥⎥⎥⎥⎦ . (65)

AXIOM P6† (SMALL-EVENT CONTINUITY): For any acts f Â g and outcome x,

there exists a finite set of events {E1, ..., EN} forming a partition of S, such that for all
n = 1, ..., N , and all Fn ⊆ En,

f Â

⎡⎢⎣ x if s ∈ Fn

g if s /∈ Fn

⎤⎥⎦ and

⎡⎢⎣ x if s ∈ Fn

f if s /∈ Fn

⎤⎥⎦ Â g (66)

Chew and Sagi (2006) demonstrate that axioms P1, P5, N, C and A are equivalent to

there being a unique, solvable, and finitely additive agreeing75 probability measure, π, for

%C . In addition, π is either atomless or purely and uniformly atomic,76 any two events have

the same measure if and only if they are exchangeable, and the decision maker is indifferent

between any two acts that induce the same lottery with respect to π.

AXIOM N (EVENT NON-SATIATION): For any pairwise disjoint events E,F,G ∈ E,
if E is exchangeable with F and G is non-null, then no subevent of F is exchangeable with

75π is an agreeing probability measure for a likelihood relation %l if it is a probability measure over E and
for every A,B ∈ E , A %l B ⇔ π(A) ≥ π(B).
π is solvable if for every A,B ∈ E, if π(A) ≥ π(B) then there exists a subevent C ⊆ A with π(C) = π(B).
76π is purely and uniformly atomic if the union of all atoms has unit measure and all atoms have equal

measure.
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E ∪G.

AXIOM C (COMPLETENESS OF %C): Given any disjoint pair of events, one of the

two must contain a subevent exchangeable with the other.

AXIOM A (EVENT ARCHIMEDEAN PROPERTY): Any sequence of pairwise disjoint

and non-null events, {En}Nn=0 ⊆ E, such that En ≈ En+1 for every n = 0, ... is necessarily

finite.
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Appendix 2: Proof of Theorem 1

In part 2A, we establish several auxiliary results that will be frequently used in the main

part of the proof. Part 2B presents the proof for the non-extreme preferences (cf. defi-

nition 2). Although the general line of the proof is essentially the same for the extreme

preferences, the derived properties of the relation over acts are distinct and therefore the

representation results require that alternative arguments are employed. In order to high-

light the differences, we present the proof for the extreme preferences separately in part 2C.

Part 2D contains the proofs of Lemmas 2 and 3.

2A. Auxiliary results

The lemmas in this section serve to characterize the relations over events in E used in the
paper.77

Consider act f ∈ F such that for some disjoint events E and F , f−1(E) = x∗ and

f−1(F ) = x. Define gx∗+ as any mapping such that gx∗+(S) Â x∗, gx∗−,x+ as any mapping

such that x ≺ gx∗−,x+(S) ≺ x∗, and gx− as any mapping such that gx−(S) ≺ x.

Lemma 6 For all events E and F , all pairs of outcomes x∗ Â x and y∗ Â y, and all subacts

gx∗+, gx∗−,x+, gx−, hy∗+, hy∗−,y+, and hy−,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx∗+ if s ∈ G1

x∗ if s ∈ E

gx∗−,x+ if s ∈ G2

x if s ∈ F

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Â

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx∗+ if s ∈ G1

x∗ if s ∈ F

gx∗−,x+ if s ∈ G2

x if s ∈ E

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ E

hy∗−,y+ if s ∈ G2

y if s ∈ F

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Â

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ F

hy∗−,y+ if s ∈ G2

y if s ∈ E

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(67)

77P5’ ensures that the relations Â∗, Â∗, and Â∗∗ are nontrivial.
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Proof. Let x∗ Â x and y∗ Â y. Assume

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx∗+ if s ∈ G1

x∗ if s ∈ E

gx∗−,x+ if s ∈ G2

x if s ∈ F

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Â

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx∗+ if s ∈ G1

x∗ if s ∈ F

gx∗−,x+ if s ∈ G2

x if s ∈ E

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f 0. (68)

Then, the pivotal events for acts in (68) are E and G2, or G2 and E. Suppose

f 00 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ E

hy∗−,y+ if s ∈ G2

y if s ∈ F

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
¨

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ F

hy∗−,y+ if s ∈ G2

y if s ∈ E

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f 000. (69)

Consider the case when the acts f 00 and f 000 in (69) are indifferent. Then, the pivotal events

are G1 and G1, or E and F , or G2 and G2, F and E, or G3 and G3, respectively for f 00

and f 000. For the pair, E and F , using P3Q replace the outcome on the pivotal event in

f 000, F , with x∗, and the outcomes on G1, G2, E, and G3 with gx∗+, gx∗−,x+, x, and gx−

, respectively. Then, by P3Q, the new act is indifferent to x∗. Applying P3Q again to

act f 0 and using P1, a contradiction obtains. An analogous argument can be used for the

remaining pairs of pivotal events, which are possible when f 00 ∼ f 000 or when f 00 ≺ f 000.

One implication of Lemma 6 is that if event (E∪F )c is null in P4Q, then a strict (rather
than only a weak) implication can be assured.

Lemma 7 E Â∗ (Â∗)F ⇔ S ∼∗ (∼∗)E and F ∼∗ (∼∗)∅.

Proof. Since the arguments for %∗ and %∗ are very similar, we only prove the assertion
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for %∗. Let E Â∗ F , that is by (22) and P5,

f =

⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ ≺
⎡⎢⎣ x if s 6∈ F

y if s ∈ F

⎤⎥⎦ = g, x Â y. (70)

Then, it must be that event E is pivotal for act f and F c - for g. By P3Q,

f ∼ y ∼

⎡⎢⎣ x if s 6∈ S
y if s ∈ S

⎤⎥⎦ and g ∼ x ∼

⎡⎢⎣ x if s ∈ S
y if s 6∈ S

⎤⎥⎦ . (71)

The definition of %∗, P1 and P4Q yield S ∼∗ E and F ∼∗ ∅.
For the converse, assume S ∼∗ (∼∗)E, F ∼∗ (∼∗)∅. Using definition of Â∗ in (22) and

P5, for all x Â y ⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦
⎡⎢⎣ x if s 6∈ F

y if s ∈ F

⎤⎥⎦
o o⎡⎢⎣ x if s 6∈ S

y if s ∈ S

⎤⎥⎦
⎡⎢⎣ x if s ∈ S

y if s 6∈ S

⎤⎥⎦
o o
y ≺ x

(72)

Then, by P1, P4Q and (22), E Â∗ F , as desired.

Lemma 1 in Section 1.4 is a direct corollary:

Lemma 1 E Â∗ (Â∗)∅⇔ E ∼∗ (∼∗)S; E ≺∗ (≺∗)S ⇔ E ∼∗ (∼∗)∅.

Lemma 8 E Â∗ (Â∗)F ⇒ E ⊀∗ (⊀∗)F .

Proof. This follows by P4Q and Lemma 6.
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Lemma 9 If F ⊂ E, then F -∗ (-∗)E.

Proof. Let F ⊂ E and define H = E\F . Suppose F Â∗ E. Using definition of Â∗,⎡⎢⎢⎢⎢⎣
x if s 6∈ E

y if s ∈ H

y if s ∈ F

⎤⎥⎥⎥⎥⎦ ∼ (by P3Q)
⎡⎢⎣ x if s 6∈ F

y if s ∈ F

⎤⎥⎦ ≺
⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ =
⎡⎢⎢⎢⎢⎣

x if s 6∈ E

y if s ∈ H

y if s ∈ F

⎤⎥⎥⎥⎥⎦ . (73)

Contradiction to P1. An analogous construction can be used for the relation Â∗.

Lemma 10 If E ∼∗ F and there is a non-null event G ⊆ (E∪F )c such that E∪G Â∗ F∪G,
then there is no event G0 ⊆ (E ∪ F )c such that E ∪G0 ≺∗ F ∪G0.

Proof. The assertion follows by P4Q.

Lemma 11 If E ≺∗ (≺∗)S, then Ec is non-null.

Proof. Let E ≺∗ S and suppose Ec is null. Then,

⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ ∼ y, (74)

which contradicts E ≺∗ S, using P1, P4Q, P5, Lemma 6 and the definition of Â∗,⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s 6∈ S

y if s ∈ S

⎤⎥⎦ , for any x Â y. (75)

The argument for ≺∗ is analogous.
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2B. Proof of Theorem 1 for non-extreme preferences

Proof. Assume that preferences are not extreme (cf. definition 2).

The proof consists of a series of steps. Step 1 demonstrates that Â∗ and Â∗ are weak
orders. Step 2 characterizes the set of equivalence classes of E under ∼∗ and ∼∗. They
are used in Step 3 to derive a subset of E , E∗∗, on which a new and complete likelihood

relation is defined, Â∗∗. Step 4 verifies that axioms A1, A3, A4 and A5’ hold on E∗∗,
which is then employed in Step 5 to derive a unique, convex-ranged and finitely additive

probability-measure representation of Â∗∗ on E∗∗, π. Next, Step 6 constructs a likelihood
relation which is complete on the entire set of events, E , and shows that measure π extends
there. Finally, Step 7 establishes that Â is probabilistically sophisticated w.r.t. π. We

will repeatedly invoke Lemma 6 without mentioning; it assures that the likelihood relations

used in the axiomatization can be defined as revealed from preferences over acts.

Step 1 (Â∗ AND Â∗ ARE WEAK ORDERS):

1. We prove that Â∗ is a weak order. Asymmetry is implied by the definition of Â∗
(22), P1 and P5. To show negative transitivity, suppose E ¨∗ F and F ¨∗ G. Using x Â y

(P5), (22) and P4Q

⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ ⊀
⎡⎢⎣ x if s 6∈ F

y if s ∈ F

⎤⎥⎦ and

⎡⎢⎣ x if s 6∈ F

y if s ∈ F

⎤⎥⎦ ⊀
⎡⎢⎣ x if s 6∈ G

y if s ∈ G

⎤⎥⎦ . (76)

Then, P1 yields ⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ ⊀
⎡⎢⎣ x if s 6∈ G

y if s ∈ G

⎤⎥⎦ , (77)

hence E ¨∗ G. An analogous argument proves that Â∗ is a weak order.
2. S Â∗ ∅ and S Â∗ ∅. Suppose otherwise, then the definitions of Â and Â∗ lead to a

contradiction.
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Step 2 (CHARACTERIZATION OF EQUIVALENCE CLASSES OF E UNDER ∼∗
AND ∼∗):

1. Since Â∗ on E is a weak order, ∼∗ is an equivalence relation. By Lemma 7, there are
only two equivalence classes on E under ∼∗: E|∼∗∅ = {F ∈ E|F ∼∗ ∅} and E|∼∗S ={F ∈
E|F ∼∗ S}. Similarly, there are only two equivalence classes on E under ∼∗: E|∼∗∅ = {F ∈
E|F ∼∗ ∅} and E|∼∗S ={F ∈ E|F ∼∗ S}.

2. That the sets E|∼∗∅, E|∼∗S and E|∼∗∅, E|∼∗S are nondegenerate, follows from the

assumption of non-extreme preferences. (See Step 3.3.)

Step 3 (CONSTRUCTION OF E∗∗):
1. Define a binary relation over events, Â∗∗, as in Definition 3.
2. Define E∗∗ = {Ē ∈ E|Ē ≺∗ Ec}. Fix E ∈ E∗∗. Then, using P3Q, for any F ∈ E|∼∗∅

disjoint (w.l.o.g.) with E, there exists G ⊆ (E ∪F )c such that F ∪G Â∗ ∅. Hence, for any
E,F ∼ E∗∗, there exists G ⊆ (E ∪ F )c such that E ∪ G Â∗ F ∪ G or E ∪ G ≺∗ F ∪ G or

E ∪G ∼∗ F ∪G ∼∗ S.
3. To verify that the relation Â∗∗ is nondegenerate, observe that by the assumption

of non-extreme preferences, there is a non-null event F such that F c ∼∗ S and F is not

pivotal. If F Â∗ ∅, applying P6Q∗ to F and ∅, there is a non-null subevent of F , F̃ , such

that F̃ ∼∗ ∅ and F̃ ≺∗ F̃ c, where we used the assumption of non-extreme preferences and

P6Q
∗
.

Applying P6Q∗ to F̃ c and∅, and again using the assumption of non-extreme preferences,

yields an event H ∼∗ ∅, H ∩ F̃ = ∅ in F̃ c such that H ∪G Â∗ ∅ for some G ⊆ F̃ c.

4. We prove that either E∗∗ = E|∼∗∅ or E∗∗ = E|∼∗∅. Assume first that there exists
E ∈ E|∼∗∅ such that E ∼∗ Ec∼∗∅. We will show that F ∼∗ ∅. Consider an event
F ∈ E|∼∗∅. By the definitions of Â∗ and Â∗ and Lemma 1, F c Â∗ ∅. Using the definitions
of Â∗ and Â∗ again, F ≺∗ E and F ≺∗ Ec. Then, by Lemma 8, F -∗ E and F -∗ Ec.

94



Since Â∗ is a weak order (Step 1), it follows from Lemma 7 that F c Â∗ F ∼∗ ∅. Hence,
E∗∗ = E|∼∗∅.

If there is no E ∈ E|∼∗∅ for which E ∼∗ Ec∼∗∅, then E∗∗ = E|∼∗∅.

Step 4 (AXIOMS A1, A3, A4, A5’ HOLD ON E∗∗):
Let E,F,H ∈ E∗∗.

(A1) Consider E ∼∗ ∅. By an argument as in Lemma 9, there cannot exist an event G
such that

f =

⎡⎢⎣ x if s 6∈ E ∪G
y if s ∈ E ∪G

⎤⎥⎦ Â
⎡⎢⎣ x if s 6∈ G

y if s ∈ G

⎤⎥⎦ = g. (78)

Hence E 6≺∗∗ ∅. If E is null, then for all G

⎡⎢⎣ x if s 6∈ E ∪G
y if s ∈ E ∪G

⎤⎥⎦ ∼
⎡⎢⎣ x if s 6∈ G

y if s ∈ G

⎤⎥⎦ . (79)

Again, E 6≺∗∗ ∅.
(A3) That Â∗∗ is asymmetric is implied by Lemma 10. Condition (i) in negative transitivity
follows from the transitivity of ∼∗ (E,F,H ∈ E∗∗). To prove that condition (ii) holds,
suppose that there does not exist G non-null such that E ∪ G Â∗ F ∪ G and there does

not exist G non-null such that F ∪G Â∗ H ∪G. We need to show that for no G non-null,

E ∪G Â∗ H ∪G. Since for all G0 ⊆ F c ∩Hc

⎡⎢⎣ x if s 6∈ F ∪G0

y if s ∈ F ∪G0

⎤⎥⎦ %
⎡⎢⎣ x if s 6∈ H ∪G0

y if s ∈ H ∪G0

⎤⎥⎦ , (80)
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by P3Q, (80) holds for any G0 ⊆ Hc. Suppose that for some G00 ⊆ (E ∪ F )c

⎡⎢⎣ x if s 6∈ E ∪G00

y if s ∈ E ∪G00

⎤⎥⎦ Â
⎡⎢⎣ x if s 6∈ F ∪G00

y if s ∈ F ∪G00

⎤⎥⎦ . (81)

Then, by Lemma 10, for any G ⊆ (E ∪ F )c

⎡⎢⎣ x if s 6∈ E ∪G
y if s ∈ E ∪G

⎤⎥⎦ %
⎡⎢⎣ x if s 6∈ F ∪G

y if s ∈ F ∪G

⎤⎥⎦ . (82)

By P3Q, (82) is also satisfied for G ⊆ Ec. Suppose now that for all G00 ⊆ (E ∪ F )c

⎡⎢⎣ x if s 6∈ E ∪G00

y if s ∈ E ∪G00

⎤⎥⎦ ∼
⎡⎢⎣ x if s 6∈ F ∪G00

y if s ∈ F ∪G00

⎤⎥⎦ . (83)

Then, using the definition of E∗∗ and P3Q, there cannot exist G000 ⊆ Ec such that

⎡⎢⎣ x if s 6∈ E ∪G000

y if s ∈ E ∪G000

⎤⎥⎦ ≺
⎡⎢⎣ x if s 6∈ F ∪G000

y if s ∈ F ∪G000

⎤⎥⎦ . (84)

Using P1, it follows that there is no event G ⊆ Ec ∩Hc for which

⎡⎢⎣ x if s 6∈ E ∪G
y if s ∈ E ∪G

⎤⎥⎦ ≺
⎡⎢⎣ x if s 6∈ H ∪G

y if s ∈ H ∪G

⎤⎥⎦ . (85)

That is, there does not exist G ⊆ Ec ∩Hc such that E ∪G Â∗ H ∪G.
(A4) Assume (E ∩H = F ∩H = ∅) and x Â y (possible by P5).

(⇐) Suppose (i) E ∪H ∼∗ F ∪H and (ii) ∃G ⊆ (E ∪H)c ∩ (F ∪H)c : E ∪H ∪G Â∗
F ∪H ∪G. Since E,F ∈ E∗∗, by Step 1.1, E ∼∗ F ∼∗ ∅. Taking G0 = G∪H in (ii) directly

gives ∃G0 non-null: E ∪G0 Â∗ F ∪G0.
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(⇒) Suppose now that (i) E ∼∗ F and (ii) ∃G00 : E ∪ G00 Â∗ F ∪ G00. Given that

E ∪ H, F ∪ H ∈ E∗∗, by Step 1.1 we have E ∪ H ∼∗ F ∪ H. By Lemma 10, E ∪ H ∪
G000 %∗ F ∪H∪G000. Suppose for all G000 ⊆ (E∪H)c∩(F ∪H)c, E∪H∪G000 ∼∗ F ∪H∪G000;
then, a contradiction obtains, using part (⇐).
(A5’) Suppose E ∼∗ F and E∪G Â∗ F ∪G for some G. Applying P6Q∗ to the latter, there
exists a finite partition {H1, ...,HN} such that for all n = 1, ..., N , E ∪G Â∗ F ∪G ∪Hn.

Step 5 (DERIVATION OF π ON E∗∗):
The axioms A1, A3, A4, A5’ hold for all subsets of E∗∗. Therefore, there exists a

unique, finitely additive, convex-ranged (and hence also nonatomic) probability measure π

that represents Â∗∗ on E∗∗ (see, for example, Fishburn [1970, Ch.14]).

Step 6 (EXTENDING π TO E):
From relation Â∗∗ on E∗∗, we derive a binary relation Â∗∗∗ which is complete on E .
1. We show that all events in E\E∗∗ can be partitioned into finitely many events in E∗∗.

To this end, we find a partition of S, each element of which is in E∗∗. We consider the
cases E∗∗ = E|∼∗∅ and E∗∗ = E|∼∗∅ separately. First, assume that E∗∗ = E|∼∗∅ and consider
an event E ∈ E|∼∗S . By P6Q∗ , there exists an N -partition of S, {G1, ..., GN} such that
E Â∗ Gn, for all n = 1, ...,N . By Lemma 7, Gn ∼∗ ∅, for all n = 1, ..., N , and hence

GN
n ∈ E∗∗. Write E =

µ
mS
ñ=1

GN
ñ

¶
∪
µ
E\ S̃

n
GN
ñ

¶
. By construction, for all ñ = 1, ...,m,

GN
ñ ∈ E∗∗, while F\

S̃
n
GN
ñ ⊂ GN

m+1 and hence F\
S̃
n
GN
ñ ∈ E∗∗. Thus events in the set E\E∗∗

can be decomposed into events from the set E∗∗.
Next, assume that E∗∗ = E|∼∗∅. By P6Q∗ , the state space S can be partitioned into

finitely many events {H1, ...,HM} such that S Â∗ Hm (and hence, by Lemma 7, Hm ∈ E∗∗)
for every m = 1, ...,M . Using the argument as for E∗∗ = E|∼∗∅, each event in E|∼∗S can be
partitioned into finitely many events in E|∼∗∅.

2. Define a binary relation over events in E : E Â∗∗∗ F if there exists N -partitions of
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E and F such that for all n = 1, ...,N , En Â∗∗ Fn. Existence of such a partition follows
from convex-rangedness of π: Consider E,F /∈ E∗∗ and let {E1, ..., EN} and {F1, ..., FN} be
partitions of E and F , respectively, into elements in E∗∗. By convex-rangedness of π, those
partitions can be made equi-numbered and such that if

P
n=1,...,N

π(En) >
P

n=1,...,N
π(Fn), then

for each n = 1, ..., N , π(En) > π(Fn).

3. We show that the probability measure π can be uniquely extended to a finitely

additive and convex-ranged probability measure on the whole set E , as follows: for each
E ∈ E\E∗∗ and its finite partition {E1, ..., EN} let π̃ =

P
n=1,...,N

π(En).

Consider an eventE ∈ E\E∗∗ and its partitions {E1, ..., EN}, {F1, ..., FM}. Let {H1, ...,HL}
be the coarsest common refinement of those partitions. Uniqueness of summations fol-

lows immediately and since each event is finitely decomposed, π̃ is finitely additive on E .
To see that it is convex-ranged, for any ρ ∈ [0, 1], take ρ · π̃(E) = ρ · P

n=1,...,N
π(En) =P

n=1,...,N
ρ · π(En) =

P
n=1,...,N

π(Gn), where we used that for each n = 1, ..., N , there is a

Gn ⊆ En such that π(Gn) = ρ · π(En) .

This also shows that if there exists an N -partition of E and F such that for all n ≤ N :

En Â∗∗ Fn, then it cannot hold for any N 0-partition that for all n0 ≤ N 0 : En0 ≺∗∗ Fn0 .

Step 7 (Â IS PROBABILISTICALLY SOPHISTICATED W.R.T. π):

1. The proof of (23) is an application of the argument in Machina and Schmeidler (1992,

Theorem 1, Step 5). It suffices to show that the construction employed there can be used.

This follows from Lemma 2A.

2. Given that π is convex-ranged, for any P ∈ P0(X ), there exists an act f ∈ F such

that π ◦ f−1 = P . Therefore, using in addition that Â is a weak order, the stronger version
of probabilistic sophistication, (2), from Section 1.3.2 is also satisfied.
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2C. Proof of Theorem 1 for extreme preferences

Proof. Note: to aid in contrasting the arguments with those in the proof for the non-extreme

preferences, each step is numbered with the same number as its counterpart step in that proof.

Some steps are left out as no longer relevant.

Assume that preferences are extreme (definition 2).

Step 1:

As above.

Step 2:

1. Given that %∗∗ on E is a weak order, Lemma 7 defines three equivalence classes of E
under ∼∗∗: E|∼∗∗∅ = {F ∈ E|F ∼∗∗ ∅}, E|≺

∗∗SÂ∗∗∅ = {F ∈ E|S Â∗∗ F Â∗∗ ∅} and E|∼∗∗S ={F ∈
E|F ∼∗∗ S}.

2. We show that under (H), the equivalence classes E|∼∗∗∅ and E|∼∗∗S are degenerate in
that they contain events that differ from ∅ and S, respectively, only on a null subevent:

E|∼∗∗∅ = {E ∈ E|E is null} (86)

E|∼∗∗S = {F ∈ E|F = S\H, H null}.

Consider a non-null event E such that S\E is non-null (possible by P6Q∗ and Lemma

11). Then, given the assumption (H),

⎡⎢⎣ x if s 6∈ E

y if s ∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s 6∈ S

y if s ∈ S

⎤⎥⎦ and

⎡⎢⎣ x if s ∈ E

y if s 6∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s 6∈ S

y if s ∈ S

⎤⎥⎦ , x Â y. (87)

Using P4Q and definitions of Â∗ and Â∗, it follows accordingly that E ≺∗ S and E Â∗ ∅.
Thus by the definition of %∗∗, the equivalence classes ∅ ≺∗∗ E ≺∗∗ S and E|∼∗∗∅, E|∼∗∗S are as
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defined in (86). The proof for the case (L) is analogous.

4. By Lemma 2B, all non-null events are ranked as equally likely by ∼∗∗ and are thus
contained in E|≺∗∗SÂ∗∗∅ .

Step 3:

Under (H) or (L), the subset of events in E|≺∗∗SÂ∗∗∅ that can be compared through relation

Â∗∗ only contains nested events that differ on non-null subevents. For example, under (H),
consider two events E1, E2 ∈ E|≺

∗∗SÂ∗∗∅ such that E1 ⊂ E2 and E2\E1 is non-null. Then, by
Step 2, E1 ∼∗∗ E2 and for G = S\E2 :⎡⎢⎣ x if s 6∈ E1 ∪G

y if s ∈ E1 ∪G

⎤⎥⎦ Â
⎡⎢⎣ x if s 6∈ S

y if s ∈ S

⎤⎥⎦ =
⎡⎢⎣ x if s 6∈ E2 ∪G

y if s ∈ E2 ∪G

⎤⎥⎦ (88)

and hence by P4Q and definition of Â∗∗, E1 ≺∗ E2.
However, the strict relation cannot be extended to non-nested events that differ on a

non-null subset. What fails is condition (ii). This is because under (H) or (L), the events

that could satisfy (ii) can be strictly ranked by the relation Â∗∗ only with the events in E|∼∗∗S ,
and hence by Step 2 there cannot exist a non-null event in the common complement of the

non-nested events for which (ii) would hold. Therefore, the relation %∗∗ cannot rank events

as indifferent and therefore, the strict ranking cannot be extended to non-nested events. In

other words, there are no non-null events E such that E ≺∗∗ Ec.

Step 4: By Step 3, there are no events in E|≺∗∗SÂ∗∗∅ satisfying A4. The remaining axioms

hold.

Step 5:

1. Take an 2N -uniform partition of S. Let E ⊆ S and k
¯E
(2N) be the largest integer
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m ∈ N+ such that
mS

nl=1
EN
n -∗∗ E, where

mS
nl=1

EN
n is a union of any m elements of some

2N -partition of S. Let k̄E(2N) be the smallest integer m ∈ N+ such that
mS

nl=1
EN
n %∗∗ E.

Define

π(E) = sup

½
k
¯E
(2N)

2N

¯̄̄̄
N ∈ N+

¾
if inf

k̄E(2
N)

2N
= sup

k
¯E
(2N )

2N
(89)

π(E) ∈ lim
N

∙
inf
k̄E(2

N)

2N
, sup

k
¯E
(2N )

2N

¸
otherwise. (90)

By Lemma 2B, for each E ∈ E|≺∗∗SÂ∗∗∅, π(E) ∈ limN [
1
2N

, 2
N−1
2N

] = (0, 1). (89) gives π(∅) = 0,

π(S) = 1 and π(E) ≥ 0, for all E ⊆ S.
2. π is totally finitely additive: if

S
n=1,...,N

En = S, then, since k¯
S

n=1,...,N
En(2

N ) =k
¯S
(2N) =

2N ,

π

⎛⎝ [
n=1,...,N

En

⎞⎠ = 1. (91)

3. By (89), (90) and Step 2, E %∗∗ F ⇒ π(E) ≥ π(F ).

4. By Steps 1-4, any totally additive probability measure that

(i) satisfies π(∅) = 0, π(S) = 1;
(ii) assigns 0 < π(E) < 1 to E ∈ E|≺∗∗SÂ∗∗∅;

(iii) is monotonic by respecting non-null differences on nested events: if F ⊂ E and

E\F non-null, then, π(F ) < π(E);

represents %∗∗ under (H) or (L): E Â∗∗ F ⇔ π(E) > π(F ). Call the set of all measures

that represent %∗∗ under (H) Π(E)H , and under (L) Π(E)L.
5. Each measure π ∈ Π(E)H and π ∈ Π(E)L is nonatomic. We will prove this for (H).

Fix π ∈ Π(E)H and consider an event E ∈ E|≺∗∗SÂ∗∗∅. By Steps 2 and 5.1, 0 < π(E) and
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π(Ec) > 0. Using P5 construct acts

⎡⎢⎣ x if E

y if Ec

⎤⎥⎦ Â
⎡⎢⎣ x if ∅

y if S

⎤⎥⎦ , (92)

that is, using the definition of Â∗, Ec ≺∗ S. It follows by P6Q∗ that event E can be

partitioned into F and E\F such that Ec ∪ F ≺∗ S. Both F and E\F are necessarily

non-null, for otherwise Ec∪F ∼∗ S or Ec∪ (E\F ) ∼∗ S, a contradiction to P6Q∗ . By Step
3 and Step 5.5, π(E) > π(F ) and π(E) > π(E\F ). This completes the proof.78

Proof. Steps 6,7: Do not apply.

2D. Proofs of Lemmas 2 and 3

Lemma 2A. If preferences over acts are not extreme, an individual is indifferent to ex-

changing outcomes on events equally likely according to ∼∗∗.
Proof. Assume that preferences Â are not extreme. Let E,F ∈ E∗∗ be a pair of disjoint
events satisfying π(E) = π(F ). Using the definition of ∼∗∗,

E ∼∗∗ F if for any x Â y,

⎡⎢⎣ x if s 6∈ E ∪G
y if s ∈ E ∪G

⎤⎥⎦ ∼
⎡⎢⎣ x if s 6∈ F ∪G

y if s ∈ F ∪G

⎤⎥⎦ , for any G ⊆ (Ec∩F c).

(93)

78We sketch an argument to construct a nonatomic but not convex-range measure which satisfies all the
required properties, derived in Step 5. Consider a measure π̃ and assume that all the properties from Step
5 hold. Take two nested events E ⊃ F so that by Steps 3 and 5.4 π̃(E) > π̃(F ), and a sequence of strictly
nested subsets of E, all of which are strict supersets of F : {Hn}n∈N++ , F ⊂ H1 ⊂ H2 ⊂ ... ⊂ Hn ⊂ ... ⊂ E.

A measure π̃ that assigns π̃(Hn) = 0.3 · (π̃(E)− π̃(F )) · (0.5) 1n is clearly not convex-range.
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Consider two events E, F satisfying (93). Take acts

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hx+ if s ∈ H

x if s ∈ F

y if s ∈ E

hy− if s ∈ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and g =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hx+ if s ∈ H

x if s ∈ E

y if s ∈ F

hy− if s ∈ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (94)

If neither E nor F is pivotal, then the result follows by P3Q. Assume that E or F is

pivotal.79 Using P4Q, we have

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h+ if s ∈ H

x if s ∈ F

y if s ∈ E

h− if s ∈ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h+ if s ∈ H

x if s ∈ E

y if s ∈ F

h− if s ∈ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= g

(by P3Q) o o⎡⎢⎣ x if s ∈ F ∪H
y if s ∈ E ∪ I

⎤⎥⎦
⎡⎢⎣ x if s ∈ E ∪H

y if s ∈ F ∪ I

⎤⎥⎦
q q

(by (93))

⎡⎢⎣ x if s 6∈ E ∪ I
y if s ∈ E ∪ I

⎤⎥⎦ ∼

⎡⎢⎣ x if s 6∈ F ∪ I
y if s ∈ F ∪ I

⎤⎥⎦

(95)

Lemma 2B. If preferences over acts are extreme, an individual is indifferent to ex-

changing outcomes on disjoint non-null events.

Proof. Fix two non-null events E0 and F 0, E0 ∩ F 0 6= ∅ (disjointedness is w.l.o.g.) and

79Notice that we do not use here that the pivotal event is unique.
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assume (H). Consider the following acts

f =

⎡⎢⎢⎢⎢⎣
x if s ∈ F 0

y if s ∈ E0

hy− if s 6∈ E0 ∪ F 0

⎤⎥⎥⎥⎥⎦ and g =

⎡⎢⎢⎢⎢⎣
x if s ∈ E0

y if s ∈ F 0

hy− if s 6∈ E0 ∪ F 0

⎤⎥⎥⎥⎥⎦ , x ∼ y. (96)

By assumption, F 0 is pivotal in f and E0 in g. It follows that f ∼ g. The argument is

exactly analogous under (L), and therefore it is omitted.

Lemma 3

(i) Given the partition of S induced by act f ∈ F , there is a unique pivotal event.
(ii) Let acts f, g ∈ F be such that for any s, s0 ∈ S, f(s0) Â f(s)⇒ g(s0) % g(s). Then,

Ef∆Eg cannot be pivotal (Ef ∩Eg 6= ∅).
Proof. We prove the lemma in three steps: the property of being pivotal is (1) state-

independent; the pivotal event is (2) unique to an act; and it is (3) unique between acts

characterized in (ii). Having two non-indifferent outcomes suffices in each step of the proof.

(P5 guarantees that they exist.)

Step 1: We first state the key assertion, implied by Lemma 2A,B: the property of being

pivotal is state-independent.

For the next two steps, the nontrivial case involves non-extreme preferences, which we

assume for the remainder of the proof.

Step 2: (Part (i)) Suppose that disjoint events Ef and Ec
f are both pivotal to act f , and

map to non-indifferent outcomes (P5). Applying P3Q twice to f and using P1 yields a

contradiction:

x ∼

⎡⎢⎣ x if s ∈ Ec0
f

x if s ∈ Ef

⎤⎥⎦ ∼Pivotal E0f
⎡⎢⎣ x if s ∈ Ec

f

y if s ∈ Ef

⎤⎥⎦ ∼Pivotal Ef
⎡⎢⎣ y if s ∈ Ec

f

y if s ∈ Ef

⎤⎥⎦ ∼ y. (97)
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Step 3: (Part (ii)) Take any pair of acts f, g ∈ F . Consider the coarsest measurable
partitions induced by f and g, and take their coarsest common refinement. Using convex-

rangedness of measure, Lemma 2A, Step 2, and the construction analogous to the one

from Machina and Schmeidler (1992, Theorem 1, Step 5), any pair of acts f, g ∈ F can be

transformed, without affecting preferencesÂ, in a finite sequence of steps to be comonotonic;
that is to satisfy the following property: for all s, s0 ∈ S, f(s0) Â f(s)⇒ g(s0) % g(s).

Let Ef be pivotal for act f and Eg - for act g. Assume that pivotal events map into

indifferent outcomes (letting them be the same, x),

f =

⎡⎢⎢⎢⎢⎣
f+ if s ∈ Ef+

x if s ∈ Ef

f− if s ∈ Ef−

⎤⎥⎥⎥⎥⎦ , g =
⎡⎢⎢⎢⎢⎣

g+ if s ∈ Eg+

x if s ∈ Eg

g− if s ∈ Eg−

⎤⎥⎥⎥⎥⎦ . (98)

We need to show that Ef ∩Eg 6= ∅ and Ef∆Eg is not pivotal in any act.

By way of contradiction, suppose Ef ∩ Eg = ∅; specifically, assume Eg ⊂ Ef−. (An

analogous argument follows for Eg ⊂ Ef+.) Then, applying P3Q to Eg,

x =

⎡⎢⎢⎢⎢⎣
x if s ∈ Eg+

x if s ∈ Eg

x if s ∈ Eg−

⎤⎥⎥⎥⎥⎦ ∼ g Â

⎡⎢⎢⎢⎢⎣
x if s ∈ Ef+

x if s ∈ (Ef ∪Ef−)\(Eg ∪Eg−)

y if s ∈ Eg− ∪Eg

⎤⎥⎥⎥⎥⎦ . (99)

But by P3Q, act f is indifferent to the last act in (99). Then, applying P3Q to Ef , we

obtain f ∼ x, which, using P1, contradicts (99).

If the disjoint pivotal events Ef , Eg map into non-indifferent outcomes, respectively x

and y, x Â y, then by P1 and P3Q,

f ∼ x Â y ∼ g (100)
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and further (still for Eg ⊂ Ef−; if Eg ⊂ Ef+, then construct an act that maps Ef to y and

Eg to x),

f =

⎡⎢⎢⎢⎢⎣
f+ if s ∈ Ef+

x if s ∈ Ef

f− if s ∈ Ef−

⎤⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎣

x if s ∈ Ef+

x if s ∈ (Ef ∪Ef−)\(Eg ∪Eg−)

y if s ∈ Eg ∪Eg−

⎤⎥⎥⎥⎥⎦ (101)

g =

⎡⎢⎢⎢⎢⎣
g+ if s ∈ Eg+

y if s ∈ Eg

g− if s ∈ Eg−

⎤⎥⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎢⎣

x if s ∈ Eg+

y if s ∈ Eg

y if s ∈ Eg−

⎤⎥⎥⎥⎥⎦ . (102)

But the last acts in (101) and (102) are the same, which given (100) contradicts the

result established in Step 2). Hence Ef∆Eg cannot be pivotal and Ef ∩Eg 6= ∅.
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Appendix 3: Proof of Theorem 2

Proof. ((1) ⇒ (2))

Step 1 of the necessity part establishes the existence and uniqueness of a quantile τ .

Step 2 constructs a preference functional over acts that represents Â on F . Step 3 proves
that the quantile is left-continuous.

Step 1 (EXISTENCE AND UNIQUENESS OF τ):

Assume that preferences are not extreme.

1. We will use repeatedly that: if F Â∗∗∗ ∅,80 then for any N ∈ N++, there exists a
2N -partition of F , {F 2N1 , ..., F 2

N

2N
} such that F 2N1 ∼∗∗∗ ... ∼∗∗∗ F 2Nn ∼∗∗∗ ... ∼∗∗∗ F 2N2N (given

that the axioms A1 - A5’ hold on the set E , the argument in Fishburn [1970, Ch.14.2] can
be applied).81 Such a partition will be called a uniform 2N -partition of F .

2. Consider a sequence of 2N -uniform partitions. For a fixed N and x Â y (P5),

consider acts ⎡⎢⎢⎣ x if
S

l=n+1,...,2N
F 2

N

l

y if
S

l=1,...,n

F 2
N

l

⎤⎥⎥⎦ , n = 1, ..., 2N . (103)

By Lemma 3, for each n, only one of the subsets in an act
S

l=1,...,n

F 2
N

l and
S

l=n+1,...,2N
F 2

N

l

can be pivotal. Define event F 2
N

p =
S

l=1,...,np
F 2

N

l where np is such that

⎡⎢⎣ x if S
y if ∅

⎤⎥⎦ ∼ ... ∼

⎡⎢⎢⎢⎣
x if

Ã S
l=1,...,np−1

F 2
N

l

!c

y if
S

l=1,...,np−1
F 2

N

l

⎤⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎣

x if

Ã S
l=1,...,np

F 2
N

l

!c

y if
S

l=1,...,np
F 2

N

l

⎤⎥⎥⎥⎦ ∼ ... ∼

⎡⎢⎣ x if ∅

y if S

⎤⎥⎦ .
(104)

By construction, F 2
N

p is a pivotal event. Now, take the sequence of events, {F 2Np }N∈N++ .
By Lemma 3, the events F 2

N

p are nested and weakly decreasing. Define τ = limN→∞ π
³
F 2

N

p

´
=

80The relation Â∗∗∗ is defined in step 6.2 in the proof of Theorem 1.
81Step 7.2 could be used instead.
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T
N
π
³
F 2

N

p

´
.
n
π(F 2

N

p )
o
N∈N++

converges as a bounded monotonic sequence. Hence, τ exists

and is unique.

3. Fix τ from Step 1.2. Using the definition of ÂP , P1 and P3Q, it is straightforward

to show that acts that imply indifferent τ th outcomes x ∼ y are indifferent.

Now, assume that preferences are extreme.

4. Apply the reasoning from the proof for non-extreme preferences to uniformly bounded

N -partitions, generated by P6Q∗ for (H) and P6Q
∗
for (L).

Under (H): Fix any measure π ∈ Π(E)H and define τ ≡ limk→∞ π(GNk

p− ∪GNk

p ) = π(S) =
1, for any π ∈ Π(E)H , where GNk

p is the pivotal event in the collections of Nk-partitions

constructed as in (104) and

GNk

p− =
[

l=1,...,np

GNk

l . (105)

Under (L): Fix any measure π ∈ Π(E)L and define τ ≡ limk→∞(1− π(GNk

p+ ∪GNk

p )) =

1− π(S) = 0, for any π ∈ Π(E)L, where

GN0

p+ =
[

l=np+1,...,N0

GN0

l ; GNk

p+ = GNk−1
p+ ∪

⎛⎝ [
l=np+1,...,Nk

GNk

l

⎞⎠ . (106)

Step 2 (CONSTRUCTION OF REPRESENTATION FUNCTIONAL): Suppose Â sat-
isfies the axioms P1, P3Q, P4Q, P5, P6Q. Fix probability measure(s) π and a quantile

τ ∈ [0, 1] derived in Theorem 1. Using the derived probabilities, map each act f a proba-

bility distribution P ∈ P0(X ) through π ◦ f−1 = P . Let

Π−1f (τ) =

⎧⎪⎨⎪⎩ inf{x ∈ X|π[f(s) - x]≥τ} if τ ∈ (0, 1]
sup{x ∈ X|π[f(s) - x]≤0} if τ = 0

. (107)

For the non-extreme preferences, probabilistic sophistication (Step 7 of Theorem 1),

convex-rangedness of π and P1 imply that Â induces relation ÂP over probability distri-

108



butions in P0(X ), which is asymmetric and negatively transitive, and such that

¡
P %P Q, π ◦ f−1 = P, π ◦ g−1 = Q

¢⇔ f % g. (108)

Moreover, by Step 1, all acts in the set F(τ , x∗|π) = {f ∈ F|Π−1π (τ) ∼ x∗, x∗ ∈ f(S)} are
indifferent, and P %P Q⇔ f % g, π◦f−1 = P, π◦g−1 = Q, f ∈ F(τ , x∗|π), g ∈ F(τ , y∗|π)
for some x∗ % y∗.

For the extreme preferences, (108) holds for probability distributions induced by π ◦
f−1 = P , π ∈ Π(E) = Π(E)H ,Π(E)L, for some x, y and

µ
min

{x∈f(S)|π◦f−1(x)>0,π∈Π(E)}
{f(S)} = x %x min

{x∈f(S)|π◦g−1(x)>0,π∈Π(E)}
{g(S)} = y

¶
⇔ f % g.

(109)

By Step 1, all acts in the set F(τ , x∗|π ∈ Π(E)) = {f ∈ F|Π−1f (τ) ∼ x∗, x∗ ∈ f(S), for
all π ∈ Π(E)} are indifferent.

Hence given (108), Π−1f (τ) defines a preference functional that represents %:

f % g ⇔ P %P Q⇔ Π−1f (τ) %P Π
−1
g (τ). (110)

For the preference functional on F to be real-valued, it suffices to ensure that there exists

a real-valued utility function on certain outcomes, u : X → R, which is a representation for

Âx. Given that Â on X is a weak order (P1) and X contains a countable Â-order dense
subset, a standard argument (Debreu [1954]) delivers a real-valued utility function u(·) on
X unique up to a strictly increasing transformation. Let UO be the set of all such functions

u that represent Âx. For any u ∈ UO,

V(f) = V̂(P ) = u ◦Π−1f (τ) ≥ u ◦Π−1g (τ) = V̂(Q) = V(g) (111)
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Step 3 (LEFT-CONTINUITY OF QUANTILE REPRESENTATION):

1. Assume that preferences are not extreme. For {GNk

p− }k∈N++ and {GNk

p }k∈N++ as de-
fined in Step 7, take the sequence {π(GNk

p−∪GNk

p )}k∈N++ . Using Step 6, define the limit event
Ĝ as π(Ĝ) = π(limk→∞(GNk

p−∪GNk

p )) = limk→∞ π(GNk

p−∪GNk

p ) = limk→∞
³
π(GNk

p− ) + π(GNk

p )
´
=

limk→∞ π(GNk

p− )+limk→∞ π(GNk

p ) = π(limk→∞GNk

p− )+π(limk→∞GNk

p ). By P3Q, for a fixed

x Â y and acts ⎡⎢⎣ x if s /∈ GNk

p− ∪GNk

p

y if s ∈ GNk

p− ∪GNk

p

⎤⎥⎦ and

⎡⎢⎣ x if s ∈ S
y if s /∈ S

⎤⎥⎦ , (112)

for all k ∈ N++, GNk

p− ∪ GNk

p Â∗ ∅. Ĝ must belong to the sequence, that is Ĝ Â∗ ∅. For
otherwise, one can construct an act:

⎡⎢⎣ x if Ĝc

y if Ĝ

⎤⎥⎦ Â
⎡⎢⎢⎢⎢⎣

x if Ĝ ∪ {s}c

y if {s}
y if Ĝ

⎤⎥⎥⎥⎥⎦ . (113)

But then Ĝ ∪ {s} Â∗ Ĝ and there does not exist a finite N -partition of S such that for
all n = 1, ..., N, Ĝ∪ {s} Â∗ Ĝ∪Gn, a violation of P6Q∗ . Fix {S,X , E ,F ,Â} and τ ∈ [0, 1],
π (or Π(E)) from Theorem 1.

2. Assume that preferences are extreme.

Under (H): An argument from the Step 9 for τ ∈ (0, 1) can be employed.
Under (L): For a given act f , the 0th-quantile outcome is equal to the infimum of the

outcomes in the image of f that are mapped from non-null events.

((2) ⇒ (1)) Fix τ ∈ [0, 1] and π.

P1 (ORDERING) This holds, since there is a real-valued representation of Â.
P3Q (PIVOTAL MONOTONICITY)

(only if ) Suppose x % y, Ff,π(τ) = x, and Fg,π(τ) = y. Then, existence of the pivotal

event Ef such that f−1(x) = Ef for some x ∈ f(S), and [gx+ if Ef+;x if Ef ; gx− if Ef−] %
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[gy+ if Ef+; y if Ef ; gy− if Ef−] for any subacts gx+, gx−, gy+, and gy−, follows from τ -

FOSD.

(if ) Implied by τ -FOSD.

P4Q (COMPARATIVE PROBABILITY) Let x∗ Â x, and

⎡⎢⎢⎢⎢⎣
x∗ if s ∈ E

x if s ∈ F

g if s /∈ E ∪ F

⎤⎥⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎢⎣

x if s ∈ E

x∗ if s ∈ F

g if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦ . (114)

Define (E ∪ F )gx∗+ = {s ∈ S|g(s) Â x∗} and (E ∪ F )gx− = {s ∈ S|g(s) ≺ x}. Let

the function gx∗+ be any mapping gx∗+ : (E ∪ F )gx∗+ → X with gx∗+(s) % x∗, for all

s ∈ (E ∪ F )gx∗+ and let gx− be any map gx− : (E ∪ F )gx− → X with gx−(s) - x, for all

s ∈ (E∪F )gx−. τ -FOSD and implies that π((E∪F )gx−)+π(F ) < τ ≤ π((E∪F )gx−)+π(E).
Hence π(E) > π(F ). Given that, a similar argument forces

⎡⎢⎢⎢⎢⎣
y∗ if s ∈ E

y if s ∈ F

h if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

y if s ∈ E

y∗ if s ∈ F

h if s 6∈ E ∪ F

⎤⎥⎥⎥⎥⎦ . (115)

P5 (NONDEGENERACY) This follows, since the functional V : F → R is nonconstant.

P6Q (SMALL-EVENT CONTINUITY OF %l) Let τ ∈ (0, 1). Suppose that for any
x Â y, ⎡⎢⎣ x if s ∈ E

y if s 6∈ E

⎤⎥⎦ Â
⎡⎢⎣ x if s ∈ F

y if s 6∈ F

⎤⎥⎦ (116)

Using the definition of Â∗, E Â∗ F . Then, given the measure π, π(E) > π(F ). The

difference π(E) − π(F ) > 0 defines an event G such that π(G) ≡ π(E) − π(F ). Since

measure π is convex-ranged, we can partition set G into N events G1, ..., GN . By convex

rangedness, again, for a sufficiently large N we have that π(E) > π(F )+π(Gn), n = 1, ..., N .
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Using definition of Â∗, E Â∗ F ∪Gn, n = 1, ..., N .

An analogous argument can be used for the remaining cases.
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Appendix 4: Other results in Chapter 1

4A. Properties of lottery preferences (cont. from Section 3.4)

Substitution. Grant, Kajii and Polak (1992) introduced the following substitution axiom.

AXIOM OF DEGENERATE INDEPENDENCE (ADI): For all simple lotteries P ∈
P0(X ), outcomes x, y and α ∈ (0, 1),

x %x y ⇔ αδx + (1− α)P %P αδy + (1− α)P

This axiom states that moving a probability mass from one outcome to another is weakly

preferred (according to the induced lottery preferences) if and only if the second outcome

is preferred to the first. Quantile Maximization requires that this holds only for outcomes

on pivotal events. We call this condition Axiom of Pivotal Independence, API. For a fixed

lottery P ∈ P0(X ) and outcome x such that x ∈supp{P}, let

Px+ =
X

{n|xnÂP x}
pn, Px− =

X
{n|xn≺P x}

pn (117)

and letQx+ andQx− be any sublotteries on Px+ and Px− with supports such that supp{Qx+} %P

x and supp{Qx+} -P x, respectively.

AXIOM OF PIVOTAL INDEPENDENCE (API): For any simple lottery P ∈ P0(X ),
there is an outcome x ∈supp{P} such that for all outcomes x, y, and λ ∈ (0, 1], there exists
a γ ∈ [0, 1] such that,

x %x y ⇔ γ(1−λ)Qx−+λδx+(1−γ)(1−λ)Qx+ % γ(1−λ)Qy−+λδy+(1−γ)(1−λ)Qy+.

(118)

The following equivalence obtains.
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Proposition 7 If (i) Â is a weak order, and (ii) is probabilistically sophisticated with re-

spect to π, then

Â satisfies P3Q if and only if ÂP exhibits API. (119)

Proof. (API⇒P3Q) Fix an act f ∈ F and its pivotal event Ef such that f(Ef ) = x for

some x ∈ f(S) and for any outcomes x, y, and subacts gx+, gx−, gy+, gy− :
⎡⎢⎢⎢⎢⎣

gx+ Ef+

x if Ef

gx− if Ef−

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

gy+ Ef+

y if Ef

gy− if Ef−

⎤⎥⎥⎥⎥⎦⇔ x % y. (120)

Since the pivotal event Ef is non-null, i.e., π(Ef ) > 0. Probabilistic sophistication

implies condition (24). Given that Â is a weak order and π is convex-ranged, condition (25)
is also satisfied. Using these conditions,

x % y ⇔ δx %P δy (121)

f =

⎡⎢⎢⎢⎢⎣
gx+ Ef+

x if Ef

gx− if Ef−

⎤⎥⎥⎥⎥⎦ %
⎡⎢⎢⎢⎢⎣

gy+ Ef+

y if Ef

gy− if Ef−

⎤⎥⎥⎥⎥⎦ = f 0 ⇔ (122)

⇔
π ◦ f−1 %P π ◦ f 0−1

q q

π(Ef−)Gx− + π(Ef )δx + π(Ef+)Gx+ π(Ef−)Gy− + π(Ef )δy + π(Ef+)Gy+

Using API for γ(1− λ) = π(Ef−) completes the proof.

(P3Q ⇒API) Pick a simple lottery P = [Gx−, Px−, ..., x, px, Gx+, Px+]. By convex-

rangedness of π, there exist events Ef−, E and Ef+ such that π(Ef−) = Px−, π(E) = px
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and π(Ef+) = Px+. The assertion follows from (121) and (122).

Monotonicity. It is clear that API implies that %P satisfies weak first-order stochastic

dominance, and that the implication is one-way only. A natural notion of monotonicity un-

der Quantile Maximization is the following local version of first-order stochastic dominance:

Definition 9 Given a complete preorder over outcomes %x, P = (x1, p1; ...;xN , pN) τ -first-

order stochastically dominates (τ -FOSD) Q = (y1, q1; ...; yM , qM) with respect to %x if

FP (τ) Âx FQ(τ) (123)

where FR is the cumulative probability distribution corresponding to lottery R ∈ P0(X ).

%P is said to satisfy τ -first order stochastic dominance if P ÂP Q whenever P τ -FOSD

Q with respect to %x. It turns out that a strengthening of API yields equivalence with τ -

first-order stochastic dominance.

AXIOM OF PIVOTAL INDEPENDENCE (API’): For any simple lottery P ∈ P0(X ),
there is an outcome x ∈supp{P} such that for all outcomes x, y, and λ ∈ (0, 1], there exists
an interval [γ0, γ00) ⊆ [0, 1] such that for any γ ∈ [γ0, γ00),

x %x y ⇔ γ(1−λ)Qx−+λδx+(1−γ)(1−λ)Qx+ %P γ(1−λ)Qy−+λδy+(1−γ)(1−λ)Qy+.

(124)

Under the same assumptions as in Proposition 7, this property of risk preferences is

equivalent to Â satisfying P3Q and P6Q.

Proposition 8 If (i) Â is a weak order, and (ii) is probabilistically sophisticated with re-
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spect to π, then

Â satisfies P3Q, P6Q if and only if ÂP exhibits API’.

Proof. Analogous to the proof of Proposition 7.

4B. Other proofs

Proposition 1

Proof. ((2)⇒(1)) Using Debreu’s (1954) theorem to derive utility representation for out-

comes u, as in the proof of Theorem 2, we can assume without loss of generality that

X = R. Then monotonicity with respect to FOSD implies the following property: letting

xR be the ranked outcome vector of a lottery R ∈ P0(X ), for P,Q ∈ P0(X ) if xP ≥ xQ,
then xP %P xQ. Then, the proof of the assertion is an application of the result in Gevers

(1979), with the anonymity condition implied by monotonicity with respect to FOSD.

((1)⇒(2)) Since rankwise monotonicity implies that for each distribution P there is an

outcome xk such that for any Qx− and Qx+:

P ∼ (Qx−, Px−, ; x, px; Qx+, Px+) , (125)

in particular, P ∼ xk. Hence, it is straightforward that rankwise monotonicity implies

monotonicity with respect to FOSD. Ordinal Invariance can be proved applying an argument

analogous to the one used in the proof of Lemma 6.
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Appendix 5: Proofs of results in Chapter 2

Proposition 282

Proof. Fix utility over outcomes u. For a given decision problem F with K events, let

Q∗F (0, c) be the set of all payoffs that are anticipated under optimal choices for beliefs with

cardinality of support equal to c, c = 1, ...,K. Then,

Q∗F (0) =
[

c=1,...,K

Q∗F (0, c). (126)

The proof proceeds in two steps:

Step 1 (Lemma 12 below): We show that for a given cardinality c, if u(x) ∈ Q∗F (0, c)

for some τ 0 then u(x) ∈ Q∗F (0, c) for any τ < τ 0.

Step 2 (Lemma 4): We prove that the difference sets Q∗F (0, c)\Q∗F (0, c − 1) contain
outcomes with lower ranks than those in Q∗F (0, c− 1).

Lemma 12 Fix decision problem F , utility u and cardinality of beliefs c. If u(x) ∈ Q∗F (0, c)

for some τ 0 then u(x) ∈ Q∗F (0, c) for any τ < τ 0.

Proof. Throughout, we hold cardinality of beliefs π and π0 as given. Fix a decision problem

F , utility on outcomes u and act f ∈ F . For f ∈ RF (τ), define the set of83 anticipated

τ th-quantile payoff corresponding to the choice, f , optimal for some beliefs π̃,

Q∗F,f (τ , π̃) = {z ∈ R|z = Qτ (Π̃f ), f ∈ RF (τ)}. (127)

Let τ 0 > τ , fix f ∈ RF (τ
0) and consider x such that u(x) ∈ Q∗F,f (τ

0, π0) for some π0. We

will show that for any τ < τ 0, there exist beliefs π for which u(x) ∈ Q∗F,f (τ , π). We need

82 In fact, the result is stronger than stated: for the considered action the same payoffs can be anticipated
under τ 0 and τ .
83Generically in payoffs, Q∗F,f (τ , π̃) is a singleton.
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to prove that for the new beliefs π, the payoff u(x) is still anticipated for act f , and that f

remains optimal under π. Consider three cases: the rank of outcome x in act f , rf (x), is

equal to 1, K and k, 1 < k < K.

For rf (x) = 1, the result follows for the same vector of beliefs π = π0 (Q∗F,f (τ
0, π0) =

Q∗F,f (τ , π
0) and Q∗

F,f̂
(τ , π0) ≤ Q∗

F,f̂
(τ , π0), for all f̂ 6= f, f̂ ∈ F ).

For rf (x) = K, the assertion holds for πK = 1.

Finally, let rf (x) = k, 1 < k < K. First, notice that it is w.l.o.g. to restrict attention

to the following decomposition of the vector of ranked probabilities corresponding to an

act f given beliefs π0 : π0f = (π0f,k−, π
0
f,k,π

0
f,k+), where π

0
f,k− = (π0f,1, ..., π

0
f,k−1) and

π0f,k+ = (π
0
f,k+1, ..., π

0
f,K). Suppose ∆τ = τ 0 − τ is large enough so that Qτ (Π0f ) < Qτ 0(Π0f )

(otherwise, the result trivially holds for π0f ), that is

τ ≤
X

{π0l|π0l∈π0f,k−}
π0f,l < τ 0 ≤

X
{π0l|π0l∈π0f,k−}

π0f,l + π0f,k. (128)

For f to be optimal with the same payoff being anticipated under some new beliefs π

(u(x) ∈ Q∗F (τ , π)), π must satisfy

X
{πl|πf,l∈πf,k−}

πf,l < τ ≤
X

{πl|πf,l∈πf,k−}
πf,l + πf,k. (129)

Conditions (128) and (129) imply
P

{πl|πf,l∈πf,k−}
πf,l <

P
{π0l|π0f,l∈π0f,k−}

π0f,l. To obtain that, we

classify cases as summarized in Matrix M5. Fix τ < τ 0.
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Matrix M5

π0k− π0k π0k+

f k− k k+

k̂− k̂ 1

k̂+ k̂ 2

f̂ k̂ k̂− 3

k̂ k̂+ 4

k̂− k̂+ k̂ 5

k̂+ k̂− k̂ 6

Notes: W.l.o.g. the matrix restricts attention to generic outcomes. The first two rows contain act

f for beliefs π0. The bottom six rows correspond to cases for a given act f̂ 6= f and a new vector

of beliefs π. k̂= quantile (Qτ (Πf̂ )), k̂−=outcome strictly less preferred to quantile (x ∈ f̂(S) such

that x ≺ Qτ (Πf̂ )), k̂+=outcome strictly preferred to quantile (x ∈ f̂(S) such that x Â Qτ (Πf̂ )).

In cells left blank, the argument will not be affected for any rank of outcome. The cases not included

in the matrix are trivial.

Consider the signed vector difference

sign{πf̂ ,k−π0f̂ ,k} =

⎛⎜⎜⎜⎜⎜⎜⎝
sign

⎧⎨⎩ P
{πl|πf̂ ,l∈π f̂ ,k−}

πf̂ ,l −
P

{π0l|π0f̂ ,l∈π
0
f̂ ,k−

}
π0
f̂ ,l

⎫⎬⎭ , sign{πf̂ ,k − π0
f̂ ,k
},

sign

⎧⎨⎩ P
{πl|πf̂ ,l∈π f̂ ,k+}

πf̂ ,l −
P

{π0l|π0f̂ ,l∈π
0
f̂ ,k+

}
π0
f̂ ,l

⎫⎬⎭

⎞⎟⎟⎟⎟⎟⎟⎠ .

(130)

The possible values are: (−1, 1, 0), (1,−1, 0), (0, 1,−1), (1, 0,−1), (0,−1, 1), (−1, 0, 1).
In the cases 1, 2, 3 and 6 in Matrix M5, for the probability mass not to shift upward
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(Qτ 0(Π0
f̂
) ≥ Qτ (Πf̂ )), let

X
{π0l|π0l∈π0f,k−}

π0f,l −
X

{πl|πl∈πf,k−}
πf,l = ∆τ . (131)

Since the change in the vector π0 to π affects the vectors of ranked probabilities corre-

sponding to acts other than f , we need to show that f is optimal for π, which will follow if

Qτ (Π0
f̂
) ≥ Qτ (Πf̂ ), for any f̂ ∈ F such that f̂ 6= f . This obtains by taking, for a fixed act

f̂ 6= f ,

πk = π0k +∆τ . (132)

Then, (129) and (132), Qτ 0(Π0f ) = Qτ (Πf ) and sign{πf̂ ,k−π0f̂ ,k} becomes (−1, 1, 0), (0, 1,−1),
(1,−1, 0), (1, 0,−1), for the cases 1, 2, 3 and 6, respectively. With (131) and (132), in the
cases 4 and 5 sign{πf̂ ,k − π0

f̂ ,k
} takes values (0,−1, 1) and (−1, 0, 1), respectively. There,

to ensure Qτ 0(Π0
f̂
) ≥ Qτ (Πf̂ ), we set

X
{πl|πf,l∈πf,k+}

πf,l =
X

{π0l|π0f,l∈π0f,k+}
π0f,l +∆τ , (133)

X
{πl|πl∈πf,k−}

πf,l =
X

{π0l|π0l∈π0f,k−}
π0f,l −∆τ . (134)

Then, sign{πf̂ ,k − π0
f̂ ,k
} is (1,−1, 0) and (−1, 1, 0). Hence, for new belief vector π, f is the

optimal choice and Qτ (Πf ) = Qτ 0(Π0f ), as desired.

The argument is true for any f ∈ F and therefore

[
f

[
π

Q∗F,f (τ
0, π) = Q∗F (τ

0) ⊆ Q∗F (τ) =
[
f

[
π

Q∗F,f (τ , π). (135)

It is not difficult to show that the converse does not hold and we omit the proof.
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Lemma 4

Proof. We proceed by induction. Clearly, Q∗F (0, c− 1) ⊆ Q∗F (0, c) for any c = 2, ...,K, and

Q∗F (0, 1) is nonempty.

(c = 2) Pick any outcome x such that u(x) ∈ Q∗F (0, 1) for some act f (c(x) = 1). Fix

that act and consider y ∈ Q∗F (0, 2)\Q∗F (0, 1). Since y /∈ Q∗F (0, 1), for any pair of events,

there must exist an outcome w > y. (See Matrix M6.)

Matrix M6

· · · y · · · x
...

...

· · · w · · ·
...

...

It must be that y < x for some x ∈ f(S). Otherwise, if y = x for some x ∈ f(S) ∩Q∗F (0),
x 6= y, then y ∈ Q∗F (0, 1); and if y > x for some x ∈ f(S)∩Q∗F (0), x 6= y, then y /∈ Q∗F (0, 2).

Hence x > y.

(c > 2) Assume that for any d < c, Q∗F (0, d)\Q∗F (0, d− 1) contain outcomes with lower
ranks than those in Q∗F (0, d−1). Take an outcome x0 with u(x0) ∈ Q∗F (0, c−1)\Q∗F (0, c−2)
for some act f 0 (c(x0) = c − 1), and consider y0 with u(y0) ∈ Q∗F (0, c)\Q∗F (0, c − 1). For
any beliefs with the cardinality of support equal to d − 1, there is an outcome w0 such

that w0 > y0. It must be that y0 < x0 for some x0 ∈ f 0(S). By way of contradiction,
suppose x0 ≤ y0. An argument analogous as above (note that it does not depend on y and w

occurring in the same event) excludes x0 = y0. If x0 < y0 for some x0 ∈ f 0(S)∩Q∗F (0, c− 2),
x0 6= y0, then using the converse of the hypothesis, a contradiction obtains. We conclude

that x0 > y0. Using that by hypothesis outcomes in sets Q∗F (0, d), d < c − 2, have higher
ranks than those in Q∗F (0, d+ 1)\Q∗F (0, d), this proves the assertion.
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Lemma 5

Proof. Fix a data set with one observation, {F, f∗}. Consider an outcome x ∈ f∗(S) such
that u(x) ∈ Q∗F (0) with the minimal cardinality c(xf∗), as defined in Section 2.2, equal to

c ∈ N++ . Using Lemma 4, the maximal τ for which xf∗ may be anticipated is equal to

max
π∈∆(S): ΣK̄k=1πk=1

min{π1, ..., πc} = 1

c
. (136)

It follows that the maximal τ for which there exists a belief such that f∗ is chosen is equal

to

max
xf∗∈{x∈f∗(S)|u(x)∈Q∗F (0)}

½
1

c(xf∗)

¾
. (137)
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