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In the first chapter, I study optimal auction design in a private value setting where a
seller wants to sell a single object to one of several potential buyers who can each covertly
acquire information about their valuations prior to participation. A simple but robust
finding is that the buyers’ incentives to acquire information increase as the reserve price
moves toward the mean valuation. Thus, a seller who wants to encourage information
acquisition should set the reserve price closer to the mean valuation than the standard
reserve price in Myerson (1981). We present conditions under which the seller will pre-
fer that the buyers acquire more information, conditions under which standard auctions
with an adjusted reserve price are optimal, and conditions under which the buyers will
acquire socially excessive information in standard auctions. These results are obtained in
a general setting with rotation-ordered information structures and continuous information
acquisition.

In the second chapter, which is joint with Benny Moldovanu and Aner Sela, we study the
optimal design of organizations under the assumption that agents in a contest care about
their relative position. A judicious definition of status categories can be used by a principal
in order to influence the agents’ performance. We first consider a pure status case where
there are no tangible prizes. The top status category always contains a unique element.
For distributions of abilities that have an increasing failure rate (IFR), a proliferation of
status classes is optimal, while the optimal partition involves only two categories if the
distribution of abilities is sufficiently concave. Moreover, for IFR distributions, a coarse

partition with only two status categories achieves at least half of the output obtained in the



optimal partition with a proliferation of classes. Finally, we modify the model to allow for
status categories that are endogenously determined by monetary prizes of different sizes.
If status is solely derived from monetary rewards, we show that the optimal partition in
status classes contains only two categories.

In the third chapter, I evaluate the performance of split-award auctions, a popular
practice in which the seller divides one object (contract) into several units (subcontracts)
and each bidder can win at most one unit. I provide a justification for its prominence
by presenting a model in which split-award can increase revenue (or reduce procurement
cost) when bidders are asymmetric and entry is endogenous. I prove that split-award
auctions could increase revenue when bidders are asymmetric and entry is endogenous:
bidder asymmetry amplifies the importance of endogenous entry. This result highlights the
importance of the interaction between bidder asymmetry and endogenous entry in auction
design. Numerical simulation shows that the advantage of the split-award auction is more

prominent when bidders are more asymmetric and the entry cost is relatively higher.
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Chapter 1

Optimal Auctions with

Information Acquisition

1.1 Introduction

1.1.1 Overview

The mechanism design literature studies how a principal can design the rules of a game
to achieve certain objectives given that agents will play strategically and may hold private
information. A typical assumption in most of the existing literature is that the informa-
tion held by market participants is exogenous. In many real world situations, however,
the agents’ information is acquired rather than endowed. For example, when a firm files
bankruptcy under Chapter 7 and is offered for sale, potential buyers may not know how
much they are willing to pay, and assessing the value of the firm may be costly. More-
over, the selling mechanism proposed by the seller affects the buyers’ incentives to collect
information about the goods and services being traded. The purpose of this paper is to
study how the seller should design the selling mechanism when information acquisition is
endogenous.

Specifically, we consider a model where a seller wants to sell an indivisible object to
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one of several potential buyers (or bidders). Buyers’ valuations for the object are unknown
ex-ante to both parties, but prior to participation, buyers can privately acquire costly
information about their valuations. The buyers can improve the informativeness of their
signals, but with an increasing convex cost. The timing of the game is as follows: first,
the seller announces the selling mechanism; after observing the mechanism, buyers decide
how much information to acquire, and based on the acquired information buyers determine
whether to participate; each participating buyer then submits a report about their private
information to the seller; and the outcome is realized.

If the seller chooses a mechanism that encourages information acquisition, the efficiency
of allocation may increase because buyers with higher valuations will get the object more
often, but the buyers’ information rent is also higher. In contrast, if the seller chooses
a mechanism that discourages information acquisition, the rent left to the buyers will be
lower, but the allocation may be less efficient. The seller’s task is therefore to choose a
selling mechanism that balances these two forces. The optimal trade-off between surplus
extraction and incentives to acquire information is the focus of this paper.

In order to study this problem, we adopt Myerson’s (1981) symmetric independent
private values framework.! Myerson shows that, under some regularity conditions, standard
auctions with a reserve price are optimal if the buyers’ information is exogenous.? We
refer to the reserve price in Myerson’s optimal auctions as the standard reserve price.
If information is costly, however, the seller faces an additional constraint: the chosen
mechanism must provide the buyers with incentive to acquire the level of information that
she prefers.

A simple but robust finding of this paper is that a buyer’s incentive to acquire informa-
tion increases as the reserve price moves toward the mean valuation. To see this, consider

the simple setting with one buyer and binary information acquisition. The seller first posts

In a private value setting, a buyer’s valuation does not depend on the private information of his
opponents.

2In this paper, we use standard auctions to denote the four commonly used auction formats: first price
auctions, Vickery auctions, English auctions, and Dutch auctions.
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a price, and then the buyer decides whether to acquire information and whether to buy. If
the reserve price is very high or very low, new information is unlikely to change the buyer’s
purchasing decision. In contrast, if the reserve price is close to the mean valuation, new
information is valuable because it helps the buyer make the right decision: buy or not buy.
This observation remains valid in a general setting.

It follows naturally from this observation that the optimal reserve price will be closer
to the mean valuation than the standard reserve price if the seller wants to encourage
information acquisition. We present conditions under which the seller benefits from more
information, conditions under which standard auctions with an adjusted reserve price are
optimal among the class of selling mechanisms considered in Myerson (1981),% and con-
ditions under which bidders have socially excessive incentive to acquire information in
standard auctions.

This paper contributes to the mechanism design literature with endogenous informa-
tion acquisition and is complementary to the existing literature on optimal auctions with
information acquisition. Most of the existing literature assumes that the seller can con-
trol either the information sources or the timing of the information acquisition (centralized
information acquisition).* In contrast, information acquisition in our analysis is decentral-
ized: buyers can choose to acquire information prior to participation. The information
structure we study is quite general, and we allow buyers to choose the level of information
acquisition continuously.

To illustrate the model, we first study optimal auctions with a single bidder and the
Gaussian specification. Here the optimal selling mechanism is to post a (reserve) price.
The buyer’s true valuation is normally distributed, and is ex-ante unobservable to both

parties. The buyer, however, can acquire a noisy signal, which is the sum of the true

3There are selling mechanisms more general than those considered here. For example, we do not consider
sequential mechanisms, as in Cremer, Spiegel and Zheng (2003), and pre-play communication, as in Gerardi
and Yariv (2006).

“For example, Bergemann and Pesendorfer (2001), and Eso and Szentes (2006) assume the seller controls
the information sources. On the other hand, in Levin and Smith (1994), and Cremer, Spiegel and Zheng
(2003), the seller controls the timing of the information acquisition. See next subsection for a detailed
discussion.
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valuation and a normally distributed error. The buyer can increase the informativeness of
his signal by reducing the variance of the error, but with an increasing cost.

Because the buyer pays the information cost but may have to share the gain from
more information with the seller, the buyer and the seller may have conflicting interests
in information choice: the one preferred by the buyer may be excessive or insufficient
to the seller. Moreover, the buyer’s information choice is not observable to the seller.
Therefore, we can interpret it as a principle-agent problem in which the seller (principal)
sets a reserve price to align the buyer’s interest with her own. Taking into account the
buyer’s information decision, the ex-post optimal standard reserve price (or the monopoly
price in this case) is not optimal ex-ante to the seller.

Since the buyer always prefers a low reserve price, it may seem, at first glance, that a
lower reserve price always gives the buyer a higher incentive to gather information. This
intuition is wrong, however, because the buyer’s incentive to acquire information depends
on his relative gain from information acquisition rather than on his absolute payoff. Indeed,
as we pointed out earlier, the marginal value of information to the buyer increases as the
reserve price moves towards the mean valuation.

It turns out that the equilibrium reserve price is always adjusted downward compared to
the standard reserve price in this simple setting. The reason is the following. If the standard
reserve price is higher than the mean valuation, more information will benefit the seller
because more information increases the probability of trade. In order to induce the buyer
to acquire more information, the seller must adjust the standard reserve price downwards.
On the other hand, if the standard reserve price is lower than the mean valuation, more
information will hurt the seller because more information reduces the probability of trade.
Again, the seller will set the equilibrium reserve price lower than the standard reserve price,
but this time to induce the buyer to acquire less information.

To summarize, the simple one-bidder model has two main findings. First, the buyer’s
incentive to acquire information is higher when the reserve price is closer to the mean

valuation. Second, with endogenous information acquisition by the buyer, the seller will
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set the optimal reserve price lower than the standard reserve price. The analysis of the
general model is more subtle and complicated because the optimal selling mechanism no
longer admits the simple form of a posted price. But the first observation remains valid The
adjustment of reserve price, however, is not as simple as in the case with one bidder. With
sufficiently many bidders, the optimal reserve price is adjusted toward the mean valuation
compared to the standard reserve price.

In order to generalize the first result to general information structures, we need an
information order to rank the informativeness of different signals. Motivated by the obser-
vation that two commonly used information technologies, the Gaussian specification and
the “truth-or-noise” technology,® both generate a family of distributions that is rotation
ordered, we adopt the rotation order as our information order.® This order has an intu-
itive interpretation: more informative signals lead to more spread out distributions of the
buyers’ posterior estimates. We show that the marginal value of information to a buyer
increases when the reserve price moves toward the mean valuation if and only if the signals
are rotation ordered.

In order to generalize the second result, we need to characterize the solution of the
seller’s optimization problem with many bidders. Since bidders are ex-ante symmetric, we
focus, for tractability, on the symmetric equilibrium in which all bidders acquire the same
level of information.” In addition, for tractability, we replace the information acquisition
constraint with the first order condition of the buyers’ maximization problem — this is the
so-called first order approach in the principal-agent literature (Mirrlees (1999), Rogerson

(1985)).8

®The truth-or-noise technology was introduced into the literature by Lewis and Sappington (1994).
Under this specification, the signal sometimes perfectly reveals underlying value, but at other times is just
noise.

5The rotation order was recently introduced by Johnson and Myatt (2006) in order to model how
advertising, marketing and product design affect consumers’ valuations.

"The symmetry restriction is not needed in identifying the rule of adjusting researve price. But we need
this restriction to determine the sign of Lagrangian multiplier of the information acquisition constraint.
This is an important restriction. Although the function of information cost is assumed to be convex, we
cannot exclude the possibility that the seller might still become better off by implementing an asymmetric
equilibrium rather than a symmetric one.

8A condition, analogous to CDFC in Rogerson (1985), is shown to be sufficient for the first order
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For the general model, we first provide sufficient conditions under which the seller
benefits from a reduction of the marginal cost of information, i.e., the seller prefers more
information. In many cases, more information is beneficial to the seller as long as there are
sufficiently many buyers. The reason is that the seller’s revenue is related to the second
order statistic of buyers’ posterior estimates which, for a large number of buyers, increases
as buyers acquire more information and make the distribution of their posterior estimates
more spread out.

Second, applying Myerson’s (1981) technique, we show that the seller should set the
optimal reserve price between the mean valuation and the standard reserve price if she
benefits from more information acquired by the buyers. Otherwise, she should set the
optimal reserve price away from the mean valuation compared to the standard reserve
price. As shown in Appendix B, this simple rule for adjusting the reserve price is also
robust to an alternative specification in which the information acquisition is discrete.

Third, for the Gaussian specification and the truth-or-noise technology with sufficiently
many bidders, standard auctions with an adjusted reserve price are optimal. This result
implies revenue equivalence, and can be generalized to other information structures with
the property that the gain from information acquisition is higher for bidders with higher
posterior estimates.

Finally, the information efficiency of the standard auctions is investigated. We show
that the buyers’ incentives to acquire equilibrium are socially excessive when the reserve
price is lower than the mean valuation. The intuition is that when the reserve price is zero,
the equilibrium information choice coincides with the social optimum. As the reserve price
increases from zero to the mean valuation, the bidders’ incentives to acquire information

increase and exceed the social optimum.

approach to be valid when the support of buyers’ posterior estimates is invariant to buyers’ information
choices. This condition, however, does not hold for the two leading information technologies. Different
sufficient conditions are presented for these two information technologies in Appendix B.
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1.1.2 Related Literature

This paper is related to the growing literature on information and mechanism design. First
of all, our framework extends the principal-agent model with information acquisition to a
multi-agent setting. Our analysis is also related to studies on information acquisition in
given auction formats. Finally, this paper is close to the existing optimal auction litera-
ture where information acquisition is centralized. For a broad survey of the literature on
information and mechanism design, see Bergemann and Valimaki (2006a).

The first strand of literature related to this work studies information acquisition in the
principal-agent model. Cremer and Khalil (1992) and Cremer, Khalil, and Rochet (1998a,
1998b) introduce endogenous information acquisition into the Baron-Myerson (1982) regu-
lation model. They illustrate how the standard Baron-Myerson contract has to be adjusted
in order to give the agent incentives to acquire information.? Szalay (2005) extends their
framework to a setting with continuous information acquisition, and demonstrates that
their findings are robust. These models share with ours a similar information structure
and a focus on the interim participation constraint, but their models lack the strategic
interaction among bidders that we incorporate.

Another strand studies information acquisition in auctions. Matthews (1984) studies
information acquisition in a first price, common value auction, and investigates how the
seller’s revenue varies with the amount of information bidders acquire, and whether the
equilibrium price fully reveals bidders’ information. Persico (2000) shows that the incentive
to acquire information is stronger in the first price auction than in the second price auction
if bidders’ valuations are affiliated. Ye (2006) studies information acquisition in two-stage
auctions and shows that efficient entry is not guaranteed in the second stage. Compte
and Jehiel (2006) make the important observation that bidders have the option to acquire
information in the middle of dynamic auctions, and argue that ascending auctions or multi-

round auctions perform better than static sealed-bid auctions.'® In contrast, the current

9See also Lewis and Sappington (1993) for a principal-agent model with an ignorant agent.
90ther related papers include Tan (1992) and Arozamena and Cantillon (2004), who study investment
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paper studies the optimal mechanism that maximizes the seller’s revenue, rather than
studying the given auction formats.!!

A final related strand studies mechanism design problems where the seller controls
either the information sources or the timing of information acquisition. Since Milgrom
and Weber (1982), the seller’s disclosure policy in the affiliated value setting has been
extensively investigated. Recent studies in the independent private value setting, however,
are more closely related to this paper. The information order used in the present paper,
the rotation order, was first introduced by Johnson and Myatt (2006). They use it to show
that a firm’s profits are a U-shaped function of the dispersion of consumers’ valuations, so
a monopolist will pursue extreme positions, providing either a minimal or maximal amount
of information. Eso and Szentes (2006) study optimal auctions in a setting where the seller
controls the information sources. They show that the seller will fully reveal her information
and can extract all of the benefit from the released information.'? In these models, the
seller, rather than the buyers, makes the information decision.

Several papers study the optimal selling mechanism in a setting where buyers make
the information decision, but the seller controls the timing of the information acquisition.
These models (hereafter refer to as “entry models”) impose the ex-ante participation con-
straint, so the buyers’ information decision is essentially an entry decision. The optimal
selling mechanism typically consists of a participation fee followed by a second price auc-
tion with no reserve price, with the participation fee being equal to the bidders’ expected
rent from attending the auction. For example, Levin and Smith (1994) demonstrate that
a second price auction with no reserve price and no entry fee maximizes the seller’s rev-

enue.!3 Similarly, with an ex-ante participation constraint, Cremer, Spiegel and Zheng

incentives before auctions.

"Bergemann and Valimaki (2002) also study information acquisition and mechanism design, but their
focus is on efficient mechanisms.

2Bergemann and Pesendorfer (2001) characterize the optimal information structure in the optimal auc-
tions, while Ganuza and Penalva (2006) study the seller’s optimal disclosure policy when the information
is costly.

13Ye (2004) extends their results to the setting where bidders can learn additional information after costly
entry. Stegeman (1996) studies efficient auctions when the buyers’ private information are endowed but the
communication between the seller and buyers is costly.
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(2003) construct a sequential selling mechanism in which the seller charges a positive entry
fee and extracts the full surplus from buyers.

In contrast to these papers, information acquisition in the present paper is decentralized:
buyers make the information decision, and can acquire information prior to participation.
Thus, we impose the interim rather than the ex-ante participation constraint, which makes
our model different from and complementary to the existing literature.!* The relationship

between our model and the existing literature can be partially summarized in the following

table.
given auction formats mechanism design approach
centralized info acquisition optimal disclosure in auctions entry models
decentralized info acquisition info acquisition in auctions our model
Table 1.1 Relationship between our model and the existing literature

The remainder of the paper is organized as follows. Section 1.2 introduces the model,
Section 1.3 studies optimal auctions with a single bidder and the Gaussian specification,
Section 1.4 contains the analysis of optimal auctions with many bidders, and we conclude
in Section 1.5. All proofs are relegated to Appendix A, unless otherwise noted. Appendix

B contains discussions and extensions omitted in the text.

1.2 The Model

A seller wants to sell a single object to n ex-ante symmetric buyers (or bidders), indexed by
i €{1,2,...,n}.1> Both the seller and buyers are risk neutral. The buyers’ true valuations
{w; i =1,...,n}, unknown ex-ante, are independently drawn from a common distribution

F with support |[w,@]. F has a strict positive and differentiable density f. The mean

1 Cremer, Spiegel and Zheng (2006) also analyze optimal auctions where buyers can acquire information
prior to participation, but the seller, rather than the buyer, pays the information cost.
151t is straigthforward to extend the analysis to a multi-unit setting where each buyer has a unit demand.
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valuation p is defined as:

A buyer with valuation w; gets utility u; if he wins the object and pays t;:
Uy = Wy — ti.
The seller’s valuation for the object is normalized to be zero.

1.2.1 The Information Structure

Buyer i can acquire a costly signal s; about w;, with s; € [s,5] € R. Signals received
by different buyers are independent. Buyer i acquires information by choosing a joint
distribution of (s;,w;) from a family of joint distributions G, : R X [w, @] — [0, 1], indexed
by «; € [a,@]. Each fixed «; corresponds to a statistical experiment, and the signal with
higher «; is more informative in a sense to be defined later. We refer to the joint distribution
Go,, or simply «;, as the information structure. The cost of performing an experiment «;
is C' (o), which is assumed to be convex in «;. A buyer can conduct the experiment « at
no cost, so « is interpreted as the endowed signal.

Let Gy, (-|w;) denote the prior distribution of signal s; conditional on w;, and Gy, (+]s;)
denote the posterior distribution of w; conditional on s;. With a little abuse of notation,
Gq,; (wi) and Gy, (s;) are used to denote the marginal distributions of w; and s;, respectively.
They are defined in the usual way, that is, G, (w;) = Es, [Gq, (wilsi)] and Gy, (si) =
Ey, [Ga; (silw;)]. Consistency requires that Ga, (w;) = F (w;) for all a; and i. We use
Ga; (Si,wi) 5 Gy (lwi) s oy (418i) 5 Ga; (wi) and ga, (si) to denote the corresponding densities.

A buyer who observes a signal s; from experiment «; will update his prior belief on w;

according to Bayes’ rule:

_ oy (si|wi) f (wi)
Jy Gai (silwi) f (wi) dw

Jo; (Wilsi) =

21



Let v; (si, ;) denote buyer i’s revised estimate of w; after performing experiment «; and
observing s; :
)
v; (8i,05) = E [wilsi, o] = / Wiba; (Wilsi) dw;
w
To simplify notation, we use v; to denote v; (s;,;), and use v to denote the n-vector
(v1, ..., ) . Occasionally, we also write v as (v;,v_;), where v_; = (U1, ...0j—1, Vi1, e, Up,) -
We assume v; (s;, ;) is increasing in s;, that is, a higher signal leads to a higher pos-

terior estimate given the information choice. Let H,, denote the distribution of v; with

corresponding density h,,. Then

v; l(ajuai)
Hy, () = Pr{E |w;|s;, ;] <z} = / Ja; (i) dsi.

S

The upper limit of the integral, v;" Y(z,4), is well defined since v; (s, a;) is increasing in
si. That is, Ha, (z) is the probability that the buyer i’s posterior estimate v; is below z
given his information choice «;. The family of distributions {H,,} have the same mean
because

Es, [vi (i, 05)] = Bw; = p

For bidder 4, different information choices {«;} lead to different distributions {H,, } .
So choosing «; is equivalent to choosing an H,, from the family of distributions {H,,}. In

what follows, we will extensively work with the posterior estimate v; and its distribution

H,,.

1.2.2 Timing

The timing of the game is as follows: the seller first proposes a selling mechanism; then
given the mechanism, each buyer decides how much information to acquire; after the signals
are realized, each buyer decides whether to participate; each participating buyer submits
a report about his private information; and finally, an outcome, consisting of an allocation

of the object and payments, is realized. Figure 1.1 summarizes the timing of the game:
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seller announces buyer 4 buyer i observes s; and buyers report outcome
mechanism chooses «;  decides whether to participate private information realized

Figure 1.1 The timing of the game

The payoff structure, the timing of the game, the information structure {G,,} and

distribution F' are assumed to be common knowledge.

1.2.3 Mechanisms

In our setting, the buyer’s private information is two-dimensional: the information choice «;
and the realized signal s;. This suggests that the design problem here is multi-dimensional
and could potentially be very complicated. However, similar to Biais, Martimont and
Rochet (2002) and Szalay (2005), one single variable, the posterior estimate v; (e, s;),
completely captures the dependence of buyer i’s valuation on the two-dimensional infor-
mation. Furthermore, the seller cannot screen the two pieces of information separately. For
example, suppose there are two buyers, ¢ and j, with the same posterior estimate (v; = v;),
but o; > «;. If the seller wants to favor the buyer with «;, then buyer j can always report
to have ;. Therefore, the posterior estimate v; is the only variable that the seller can use
to screen different buyers.

Thus, we can invoke the Revelation Principle to focus on the direct revelation mecha-

nisms {¢;(v), t;(v) 1 :

g : |w,w]"—10,1],

t; [g,@]”—ﬂ&,

where ¢; (v) denotes the probability of winning the object for bidder ¢ when the vector of

report is v, and ¢; (v) denotes bidder i’s corresponding payment.
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Define

Qi (vi) = Ey_,qi(vi,v),

Ti(vi) = Ey ti(vi,v_).

Q; (v;) and T; (v;) are the expected probability of winning and the expected payment con-
ditional on v;, respectively. The interim utility of bidder ¢ who has a posterior estimate v;

and reports v} is

U; (Ui,’l);) = v;Q; (’U;) -1 (U;) ’

Define u; (v;) = U; (vi, v;) , the payoff of bidder i who has a posterior estimate v; and reports
truthfully.

A feasible mechanism has to satisfy the individual rationality constraint (IR):
wi (v;) = U; (vi,v;) >0, Yo € [w,d], (IR)
and the incentive compatibility constraint (IC):
Ui (vi,vi) > U; (vi,vg) , Yo, vl € |w,]. (IC)

With endogenous information acquisition, a feasible mechanism also has to satisfy the
information acquisition constraint (IA): no bidder has an incentive to deviate from the

equilibrium choice o :
aj € argmax By o [ui (vi (si,04))] = C (). (IA)

Note that E, o+ [u; (v (84, ;)] is bidder i’s expected payoff by choosing «; conditional on
other bidders choosing a;f, J # 4. The subscript o* ; is to emphasize that the expectation

depends on the information choices of i’s opponents.
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Since bidders are ex-ante symmetric, we focus on the symmetric equilibrium where

*

af = o* for all i. The seller chooses mechanism {g;(v),t;(v)};_; and a* to maximize her

expected sum of payment from all bidders,

n
s = Ev,a* Z T; (Uz) s
=1

subject to (IA), (IC), and (IR).

1.3 Optimal Auctions with One Bidder and Gaussian Spec-

ification

We start with a simple model with only one buyer. If the buyer’s information is exogenous,
Riley and Zeckhauser (1983) show that the optimal selling mechanism is to post a non-
negotiable price. With endogenous information, their logic still applies and a posted price
is optimal.'® Therefore, with a single buyer, designing the optimal auction is equivalent to
choosing a reserve price.

This section will focus on a special but important information structure: the Gaussian
specification. We first analyze the buyer’s information decision problem, and show that the
marginal value of information to the buyer increases as the reserve price moves toward the
mean valuation. Then we formulate the mechanism design problem as a principal-agent
problem and derive the seller’s optimal pricing strategy. We show that the equilibrium
reserve price is always lower than the standard reserve price. Finally, the informational

efficiency of the optimal auction is investigated.

16The one-bidder model is a special case of the general model we study later. As shown in the next
section, after incorporating the information acquisition constraint, the seller’s objective function will be
the Lagrangian specified in (1.11). If there is only one bidder, it reduces to a simple form similar to the
one analyzed in Riley and Zechhauser (1983). Therefore, their proof of the optimality of the posted price
mechanism still applies here.
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1.3.1 (Gaussian Specification

The buyer’s true valuations w; are drawn from a normal distribution with mean p and
precision 3 :

w; ~ N (p1,1/8).

Lowering 3 has the consequence that the prior distribution becomes more spread out,
yielding more potential gains from information acquisition.

The buyer can observe a costly signal s;:

§i = Wi + &,

where the additive error ¢; is independent of w;, and &; ~ N (0,1/a;). The higher the «;,
the more precise the signal is. Thus, we interpret «; as the informativeness (precision) of

buyer’s signal. «; is assumed to have two parts:

o =+ ;.

The first part, «, is the endowed signal precision; the incremental term ~; is the additional
precision obtained by investing in information acquisition. For illustration purposes, the

cost of information is assumed to be linear in the incremental precision. That is,

C(a;) =cy; =cla; —a),

where c¢ is the constant marginal cost of one additional unit of precision.
After observing a signal s; with precision «;, the buyer updates his belief of w;. By
the standard normal updating technique, the posterior valuation distribution conditional

on the signal s; will be normal:

wi|SiNN</B,u+aZSZ ) )

a+03 Ta+p
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It immediately follows that

[3 %_ O Ss
0 (51,00) = B (sl o) = 2L
(]

Thus, the distribution of posterior estimate v;, H,, (v;), is normal:

&7}

v; ~ N (/,L70'2 (Ozz)) s where o (az) = m

Note that the variance of v; is increasing in the information choice «;. So the distribution
H,, will be more spread out for a more precise signal. The following two graphs capture

the relationship between two distributions of the posterior estimate with different signals.

h e
Less
@
More
informative
More
informative
L >
M posterior estimate V; m posterior estimate V;

Figure 1.2. PDF and CDF of the posterior estimate with different signals

The left graph in Figure 1.2 shows that the density of the posterior estimate with a more
informative signal is more dispersed than the one with a less informative signal. The right
graph shows that the distribution with a less informative signal crosses the distribution
with a more informative one from below at the mean valuation. In fact, with some algebra,
we can show

OH,, (v;
vizu@a&@)§0. (1.1)

This property is critical to our analysis and will be used to motivate the rotation order
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used in the paper.

1.3.2 The Marginal Value of Information to the Buyer

Given the reserve price r, the buyer chooses a; to maximize his expected payoff:

max / (01— 1) b, (03) dvi — ¢ (0 — @)

%)

(67}

= max/oo (1 — Hq, (v3)) dv; — ¢ (i — @) .

The first order condition is

©0Hy, (vi) ,
—/T T.éid’l)z = C. (12)

The left hand side is the marginal value of information (MVI) to the buyer:

MVI = / Mdvi.
r 80@

Thus, in equilibrium the marginal value of information to the buyer is equal to the marginal
information cost.
The following proposition shows how the marginal value of information to the buyer

varies with respect to the reserve price.

Proposition 1.1 (Marginal Value of Information to the Buyer) The marginal value
of information to the buyer increases as the reserve price r moves toward the mean valua-

tion u, and achieves maximum at r = L.

This finding is crucial in understanding other results obtained in this paper. To un-
derstand it better, let us consider a discrete version of the marginal value of information.
Suppose there are two signals «; and o, with o) > «;. The buyer’s gain from having signal

o rather than o is

AV = / " (Hey (01) — Hoy (v)dv;. (1.3)
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Since the two distributions have the same mean, we have

. /OO (1= Hyy (01))dv; = /OO (1— Hy (v)) dos.

—00 —00

Therefore, we can also write the gain from more information as

AVI = /T (Ha; (Uz) — Hoc,- (Uﬂ)d?)z (1.4)

—00

The following two graphs illustrate the buyer’s gain from more information.'”

H, (M), Ha (M)

Less
informative

Ha (M), H,-(v)

Less
informative

More More
informative informative

m I posterior estimate r m posterior estimate Vv

Figure 1.3: Buyer’s gain from more information
Left (r > p): buyer’s gain from more information (shaded area) decreases as r increases

Right (r < p): buyer’s gain from more information (shaded area) increases as r increases

Given the reserve price r, the payoff of the buyer with signal «; is the area above the
distribution H,, but below one and to the right of reserve price r. When r > pu, the
buyer’s relative gain with signal o rather than «; is the shaded area in the left graph
(see also expression (1.3)). On the other hand, when r < p, according to expression (1.4),
the buyer’s gain from more information is the shaded area in the right graph. In both

cases, the shaded area expands as r moves toward p and achieves maximum at the mean

17T would like to thank Ben Polak for suggesting these two graphs.
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valuation.

Another important observation obtained from Figure 1.3 is that the buyer’s gain from
a more informative signal is always positive. Under mild conditions, the buyer’s expected
payoff is an increasing concave function of «;. Hence, the solution to the buyer’s maximiza-
tion problem will be unique, and the buyer’s information choice will be decreasing in the

information cost ¢ (see Proposition 1.3 below).

1.3.3 The Seller’s Pricing Decision

For the seller, she chooses r and equilibrium o to maximize her revenue. That is

max 7 (1 — Hyx (1))
r,o*

oo
s.t. @ af € argmax / (vi = 7) ha, (V) dv; — ¢ (o — @) .
(677 r

The buyer’s (agent) information choice is unobservable to the seller (principal), and the
seller sets r to align the buyer’s incentive to her own. Thus, we can interpret it as a
principal-agent problem. The standard way to solve this problem, the so-called first order
approach, is to assume that the second order condition of the agent’s maximization problem
is satisfied, and use the first order condition to replace the incentive constraint. We will
assume the second order condition is satisfied for now, and discuss it in detail at the end
of this subsection.

Then, we can replace the buyer’s optimization problem with the first order condition,

and rewrite the seller’s optimization problem as'®

max 7 (1 — Hyx (1))

r,a*

. o0 8Ha* (Ul) .
s.t. —/r Do dv; —c = 0. [A]

Let A be the Lagrangian multiplier for the constraint. We write the Lagrangian in a way

18T simplify notation, in what follows, we will use 2ax(vi) Ha%i(vl

. )
i) to denote 5 )|ai=a*~

30



such that a positive value of A means that the seller benefits from a reduction in the

information cost; in other words, the seller prefers a more informed buyer.

Lemma 1.1 For a fixed reserve price r, the seller’s revenue increases in o* if and only if

r > u, and the seller’s revenue decreases in o if and only if r < p.
% Y M

Proof. Immediate from the definition of the seller’s revenue and property (1.1) of the
Gaussian specification. m

The intuition for this result is straightforward by looking at Figure 1.3. Suppose the
buyer’s information choice increases from «; to o). If r > u (left figure), then more
information increases the probability of trade from (1 — Hq, (1)) to (1 — Hy (r)). More
information will therefore benefit the seller. In contrast, if » < p (right figure), more
information decreases the probability of trade from (1 — Hq, (r)) to (1 — Hy; (r)), so more
information will hurt the seller.

If we reinterpret our model as a monopoly pricing problem with a continuum of con-
sumers, then this result is similar to one of the main findings in Johnson and Myatt (2006).

To see this, we classify all markets into either niche markets or mass markets following

Bergemann and Valimaki (2006b), and Johnson and Myatt (2006):

Definition 1.1 (Niche Market and Mass Market) A market is said to be a niche

(mass) market if the monopoly price is higher (lower) than the mean valuation p.

Therefore, the lemma states that the seller would prefer a more informed buyer if she
is in a niche market. In contrast, the seller in a mass market will prefer a less informed
buyer. This result immediately leads to the key insight in Johnson and Myatt (2006):
if information is free, then a seller in the niche (mass) market will provide the maximal
(minimal) amount information to consumers to maintain its niche (mass) position.

Before stating our results about the optimal reserve price, we need to define a bench-

mark: the standard reserve price when information is endowed rather than acquired.
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Definition 1.2 (Standard Reserve Price) The standard reserve price r, is the optimal

reserve price when the buyer’s signal o is exogenous. That is

1—Hy (ra)

o (70) =0.

rq € argmaxr (1 — Hy (1)) = 1o —
T

In particular, we will denote 7, as the standard reserve price when no additional in-
formation (other than the endowed signal «) is acquired, and denote g as the standard
reserve price when the buyer can observe his true valuation for free. Since normal distri-
butions have an increasing hazard rate, r, is uniquely defined for each H,. The seller’s

optimal pricing rule can thus be stated as follows:

Proposition 1.2 (Optimal Reserve Price) For a fized 3, there exists a [i such that

T < Tror < p if pw>Q

Therefore, the optimal reserve price r* with endogenous information is always (weakly)

lower than the standard reserve price rqx.

In order to understand the seller’s optimal pricing strategy, we can decompose the effect

of a price increase on the seller’s profits in three parts:

dﬂ-s _ * * * *aHa* (7‘*) oa*
T = = L o ) he (O |7 50 5 |
A B
C

First, the seller’s profits increase given that a trade is made (term A). Second, for a fixed
information choice, a price increase will reduce the probability of trade (term B). Third,
with endogenous information acquisition, a price increase will affect the buyer’s incentive
to acquire information, thereby the probability of trade (term C'). The first two terms

are standard, while the last one is specific to the setting with endogenous information
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acquisition. If 7* > u, then an increase in r* will discourage information acquisition. That
is,
oa*
— < 0.
or
In addition, by (1.1), for r* > pu,
OHyx (1)

< 0.
oa*

Therefore, term C' is negative and the probability of trade decreases. Thus, the seller has
less incentive to increase price compared to the case of exogenous information. As a result,
r* < ro+. On the other hand, if r* < u, then a price increase will encourage information
acquisition, leading to

OHy» (1*) oa*

0 d 0.
R M

Again, term C' is negative and the seller is less willing to charge a high price compared to
the case of exogenous information. Thus, r* < ry«. Finally, if r* = u, a marginal increase
in price does not affect buyer’s incentive to acquire information. So r* = r,«.

We conclude this subsection by presenting sufficient conditions for the second order
condition of the buyer’s maximization problem to be satisfied. Under these conditions,
the first order approach is valid and the buyer’s expected payoff is globally concave in the

information choice ¢;.

Proposition 1.3 (Validity of the First Order Approach) Ifr € [u— 20 (a),p+ 20 (a)]

and o« > (B,the second order condition of the buyer’s maximization problem is satisfied.

These conditions are stronger than necessary and are not very restrictive. Note that
more than 95% of the normal density is within two standard deviations of the mean. Thus,
the first condition is to ensure that the probability of trade under r will be higher than
2.5% but lower than 97.5%. In other words, the reserve price r is neither extremely high
nor extremely low ensuring that the probability of trade is neither close to 1 nor close to

0. The second condition o > f3 is to ensure oy > 3 for all a;.'° It requires that signals be

19Under this condition, the equilibrium information level is away from zero. Therefore, we can avoid the
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informative relative to the prior.

1.3.4 Informational Efficiency

In this subsection, we will investigate the informational efficiency of the single-bidder auc-
tion with a reserve price r. Since there is only one bidder, the individual cost of information
is the same as the social cost of information. Thus, if the marginal value of information to a
buyer in an auction is higher than the social marginal value of information, the equilibrium
information acquisition will be socially excessive.

Recall that, at information level «;, the marginal value of information to the buyer is

MVI (a;) = / aHg;{fvl)dvz (1.5)

From the social point of view, the social planner chooses «; to solve the following maxi-

mization problem
o
max / (1 = Hq, (vi)) dvi — ¢ (i — @) .
0

Qg

At information level oy, the marginal value of information to the social planner is

0H,, (v;)
FB A i
MVIT? () = /0 o dv;. (1.6)

Therefore, with the Gaussian specification, the difference between the individual and

the social marginal value of information is

Aa;) = MVIFB () — MVI (a3)

B / 2N\ C(r=p?
= zm Oéz+ﬁ ( 0_2) eXp( 202 ))

This proves the following result:

non-concavity of the value of information identified in Radner and Stiglitz (1984).
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Proposition 1.4 (Informational Efficiency) If r < (>)2u, information acquisition in

auctions with a reserve price r is socially excessive (insufficient).

Note that when r = 0, the individual incentive to acquire information coincides with the
social optimum. As r increases, the buyer’s incentive to acquire information first increases
then decreases after r exceeds . For Gaussian specification, the individual incentive to
acquire information coincides with the social optimum again when r = 2u. Therefore,
auctions with a single bidder and r € (0,2u) lead to over-provision of information, while

auctions with r > 2u lead to under-provision of information.

1.4 Optimal Auctions with Many Bidders

The single-bidder model is simple because the strategic interaction among bidders is absent
and because the Gaussian specification is special. This section studies the optimal auctions
with many bidders and general information structures, and show that most of the insights
from the previous section carry through as long as different signals are rotation ordered,
a notion we will introduce below. Specifically, we show that: 1) A bidder’s incentive to
acquire information increases as the reserve price moves toward the mean valuation; 2) In
the optimal auction, the seller who wants to encourage information acquisition sets the
reserve price closer to the mean valuation than the standard reserve price; 3) Under some
conditions, standard auctions with an adjusted reserve price are optimal; 4) The bidders’s
incentive to acquire information is socially excessive in standard auctions with a reserve
price lower than the mean valuation.

One insight that cannot be carried over from the one-bidder case, however, concerns
the seller’s information preferences. If there are sufficiently many bidders, the seller will
encourage information acquisition — even when the standard reserve price is lower than
the mean valuation. We show that, in many cases, the seller will prefer that bidders acquire

more information, as long as the number of bidders is large.
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1.4.1 Information Order

In order to analyze a model with general information structures, we need an information
order to compare the informativeness of different signals. As we showed before, the relevant
variable for screening is the posterior estimate v;, and there is one-to-one mapping between
the information choice o; and the distribution H,, of v;. Thus, we would like to have an
information order that directly ranks H,,. The rotation order, recently introduced by

Johnson and Myatt (2006), meets this requirement.

Definition 1.3 (Rotation Order) The family of distributions {H,,} is rotation-ordered

if, for every «y, there exists a rotation point v;[i, such that

v 2 v} & W <0. (1.7)

Two distributions ordered in terms of rotation cross only once: the distribution with
lower «; crosses the distribution with higher «; from below. As shown below, the rotation
order implies second order stochastic dominance. However, the reverse is not true, because
two distributions ordered in terms of second order stochastic dominance can cross each

other more than once.

Lemma 1.2 (Rotation Order Implies Second Order Stochastic Dominance) Ifa
family of distributions {Hy, } is rotation-ordered and they all have the same mean, then they

are also ordered in terms of second order stochastic dominance.

Proof. See Theorem 2.A.17 in Shaked and Shanthikumar (1994). m

Following Blackwell (1951, 1953), we say that one signal is more informative than the
other if a decision-maker can achieve a higher expected utility when basing a decision on the
realization of the more informative signal. We extend Blackwell’s information criterion to
our multi-agent setting by applying his criterion to each bidder while fixing other bidders’

information choices.
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Proposition 1.5 Suppose that {H,,} is rotation-ordered and o), > of. Then under any
mechanism {q; (v),t; (v)} that is incentive compatible, bidder i achieves a higher expected

payoff with signal o than signal o .

The above result is intuitive. Because the bidder ¢’s interim payoff u (v;) is convex in
v; under any incentive compatible mechanism (Rochet (1987)), and because H,; second
order stochastic dominates Ha;/ (by Lemma 1.2), the bidder i’s expected payoff is higher
under the more risky prospect H, . Therefore, if {H,} is rotation-ordered and a; > oy,
then signal o is indeed more informative than signal o because o/, corresponds to a higher

expected payoff for bidder 3.

1.4.2 Characterization of the Optimal Auctions

After introducing the rotation order, we are now ready to characterize the optimal auctions.
Since the posterior estimate is the only relevant variable that the seller can contract on,
by the Revelation Principle, we can restrict attention to the direct revelation mechanisms.
The seller’s optimization problem is to choose a menu (g; (v;, v—;),t; (vi,v—;)) and a vector
of information choices (aj, a3, ..., o)) to maximize her revenue subject to (IC) (IR) and
(IA) constraints. We focus on the symmetric equilibrium with of = --- = o, = a*. Before
formally stating the seller’s optimization problem, we first need to reformulate the three
constraints.

It is well-known (Myerson (1981) and Rochet (1987)) that the incentive compatibility

constraint (IC) is equivalent to the following two conditions:

w; (v;) = w; (W) + /vi Q; () dx, (1.8)

and

Q; (v;) is nondecreasing in v;. (1.9)

With equation (1.8), we can write the individual rationality constraint (IR) simply as
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u; (w) > 0.
The information acquisition constraint (IA) requires that a* be each bidder’s best

response given that other bidders choose o*. That is, for all 7,

of € argmaxE,_, o {/ i [1 — Hy, (vi)] gi (vi,v—) dv; = C (0%)} .

w
Lay

As before, the subscript a* of the expectation operator is to remind the readers that the
expectation depends on the information choice a* of bidder i’s opponents. The subscript
; in the lower and upper limits (w,,,Wa,) is to emphasize the fact that the support of the
posterior estimate may depend on the information choice «;. The first order condition is

OHy (v;) 1
Oa*  hax (v4)

—Eyar ¢ (vi,v_;)| — C' (a*) = 0. (1.10)

If the first order approach is valid, we can replace bidder ¢’s optimization problem by (1.10).
This approach is valid if the second order condition is satisfied, which we will assume for
now, and discuss later in detail. In principle, there is a system of n first order conditions:
one for each bidder. The restriction to the symmetric equilibrium helps us reduce the
system of first order conditions to a single equation (1.10).2°

Replacing the incentive constraint by equation (1.8) and (1.9), and replacing the (IA)
constraint by (1.10), we can transform the seller’s optimization problem from the allocation-

transfer space into the allocation-utility space. That is,

qiu(w) o =1

29A sufficient condition for the existence of a symmetric equilibrium is that there exists a o™ satisfying
both the first order condition and the second order condition of the buyer’s maximization problem. If
we assume lima—q C' (o) = 0, and lima—5C’ (o) = k (where £ is a large positive number), then there
must exist a o satisfies the first order condition (1.10). If the cost function is sufficiently convex, that is,
C" () is sufficient large, then the second order condition is satisfied (See Appendix B for more detail). A
quadradic cost function C (a) = ko (o — a)® with large ko meets all the requirements.
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subject to

0 <gq (vi,v—) <1 Z:qZ v, v—;) < 1, (Regularity)
Qi (v;) is nondecreasmg in v;, (Monotonicity)
u; (w) >0, (IR)
OHy (v;) 1 ,
Eyar |— i \Vi, V—i) | — *)=0.
o |22 )] - €0 =0 (1A)

It is easy to see that the (IR) constraint must be binding. For now we can ignore the
regularity constraint and the monotonicity constraint and verify them later. Then the only
remaining constraint is the (IA) constraint. Let A denote the Lagrangian multiplier for the

(TA) constraint, and write the Lagrangian for the seller’s maximization problem as

LBy [<U ! ;Lf?;i()vi) - iaHg;f”i) ha*l(vi)> 6 (05, v Z)} CAC (@), (L11)

i=1
Then a positive A implies that the seller’s revenue increases as the marginal cost of infor-
mation decreases. The virtual surplus function J* (v;) can be defined as

1= Hor (0;)  AOHa (v) 1

FOIEEE T ) T n et e ()

(1.12)

In order to characterize the optimal solution to the seller’s optimization problem, we

make the following assumptions:

Assumption 1.1 (Rotation Order) The family of distributions of the posterior esti-

mate, {He,}, is rotation ordered and the rotation point is p for all «;.
Assumption 1.2 (Monotonicity)

OH,, (v;) 1
8041- hai (UZ)

is nondecreasing in v; for all o; and v; € [gai,wai] .
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Assumption 1.3 (Regularity)

1-— Hal. (Uz)
hOéi (UZ)

V; — s nondecreasing in v; for all o; and v; € [ﬂawwai] .

Assumption 1.1 assumes that the signals are rotation ordered and the rotation point ’U;Z
is p for all ;. The assumption U«SZ = p is not critical, but it greatly eases our presentation.
We will discuss it later. Assumption 1.2 is stronger than the rotation order assumption,
and it says that the expected gain from more information is higher for the buyers with
higher v;.2! Finally, Assumption 1.3 is a regularity assumption.

Both the rotation order assumption and the regularity assumption are mild assump-
tions. The monotonicity assumption is relatively more restrictive, but two commonly used
information technologies in the literature, the Gaussian specification and the truth-or-noise

technology, satisfy all three assumptions.

Definition 1.4 (Truth-or-noise Technology) The buyers’ true valuations {w;} are in-
dependently drawn from a distribution F, and F has an increasing hazard rate. Buyer i
can acquire a costly signal s; about w;. With probability o; € [, 1], the signal s; perfectly
matches the true valuation w;, and with probability 1 —«y;, s; is a noise independently drawn

from F.

Under the truth-or-noise specification, the signal s; sometimes perfectly reveals buyer

i’s valuation w;, but is noise otherwise.

Lemma 1.3 (All Assumptions Hold for the Two Leading Examples) Both the Gaus-
stan specification and the truth-or-noise technology generate a family of distributions {H,, }

that satisfies Assumptions 1.1, 1.2, and 1.5.

2Indeed, the monotonicity assumption, together with the mean-preserving property of our information
structures, implies rotation order. To see this, first note that M cannot always be positive or negative,
otherwise it will imply first order stochastic dominance which violates the fact that the family of distributions
BH(H (v4)

dav;

{Ha,} have the same mean. Therefore, if monotonicity assumption holds, must change sign from

positive to negative only once. That is, {Hq, } is rotation ordered.
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Note that Assumption 1.1 does not imply that the underlying distribution F' is sym-
metric. For example, for the truth-or-noise technology, the underlying distribution F' could
be convex or concave, but the rotation point is still u.

In the rest of this subsection, we first analyze the buyers’ information decision and
generalize Proposition 1.1. Then we investigate the seller’s information preferences, and
characterize the relationship between the optimal reserve price and the standard reserve
price to generalize Proposition 1.2. Finally, we present conditions under which standard
auctions with an adjusted reserve price are optimal.

Let r* denote the reserve price in the optimal auction. If bidder i is allocated the object

with positive probability, then his posterior estimate is at least *. That is,
qi (vi,v—;) > 0= v; > r*.

With reserve price r*, the marginal value of information to bidder ¢ under an incentive
compatible mechanism {¢; (v),¢; (v)} is

Wa aHoc- 7
MVI = _Ev_i,a* |:/ 71(0)612' (Ui, ’U_Z‘) dvi
r* aaz

Theorem 1.1 (Marginal Value of Information to a Bidder) The marginal value of
information to a bidder increases as r* moves toward the mean valuation if and only if

Assumption 1.1 is satisfied.

Theorem 1.1 generalizes Proposition 1.1 to a setting with many bidders and an infor-
mation structure that is rotation-ordered. Therefore, if a seller wants to induce buyers to
acquire more information, she should set a reserve price closer to the mean valuation.

But when will the seller want to encourage information acquisition? By definition, the
Lagrangian multiplier A for (IA) constraint is the seller’s marginal gain from a deduction
in marginal information cost. Therefore, the seller will encourage bidders to acquire more

information if A > 0. The following proposition provides sufficient conditions for A > 0.
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Lemma 1.4 The seller benefits from a reduction of marginal cost (A > 0), when either
one of the following two sets of conditions is satisfied:

(1) Assumptions 1.1, 1.2 and 1.3 hold and

(2) The Gaussian specification or the truth-or-noise technology, and large n.

The first condition implies r* > p which is sufficient for A > 0. Recall that, in the case
of one bidder, the seller prefers more information if * > y. An increase in the number of
bidders only strengthens the seller’s preference for more information. The second condition
should be contrasted with Lemma 1.1 in the case of one bidder. The strategic interaction
between buyers, which is absent in the one-bidder model, plays a crucial part here.?? As
shown by condition (2) in Lemma 1.4, as long as n is large, the seller will prefer that bidders
acquire more information regardless of whether the optimal reserve price is higher or lower
than the mean valuation. To see this, note that the seller’s revenue is determined by the
valuation of the marginal bidder (for example, the second highest bidder) and the reserve
price. With many bidders, the valuation of the marginal bidder will be higher than the
mean valuation. This valuation is likely to be higher when more information is acquired.
In the case with one bidder, however, a seller will prefer a more informed buyer only when
the optimal reserve price is higher than the mean valuation (niche market).

Remark. The next two theorems will characterize the optimal selling mechanism
contingent on the sign of the endogenous Lagrangian multiplier \. With Lemma 1.4, we can
always restate the theorems by replacing the condition A > 0 by the exogenous condition
(1) or (2). However, since both condition (1) and (2) are not necessary for A > 0, we state
our theorems in terms of A in order to be precise.

Now, we can present a simple rule for adjusting the reserve price in optimal auctions

22Tn the discrete information acquisition setting, an important consequence of the strategic interaction is
the possibility of the symmetric mixed strategy equilibrium. See Appendix B for an anlysis of the case of
the discrete information acquisition.
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with information acquisition:

Theorem 1.2 (Simple Rule for Adjusting the Reserve Price) Suppose Assumptions
1.1 and 1.3 hold. If X > 0, then the optimal reserve price r* is closer to the mean valuation

u than the standard reserve price rqox«. Specifically,

Pt <ror if Tar > p
rt=p if rer=p

Tor <1< if rox < p

If A <0, then r* < rox < .

Theorem 1.2 is conceptually a direct consequence of Theorem 1.1, and generalizes
Proposition 1.2. It characterizes the relationship between the optimal reserve price in
our setting and the standard reserve price in Myerson’s optimal auctions. If the seller
wants to encourage information acquisition, she has to set the optimal reserve price be-
tween the mean valuation and the standard reserve price because the bidders’ incentives
to acquire information are stronger when the reserve price is closer to the mean valuation.

This result is important in practice when the seller is concerned about bidders’ incen-
tives to acquire information. The reserve price is always the most important decision she
has to make other than choosing the auction format. Theorem 1.2 identifies a simple rule
to adjust the reserve price when endogenous information acquisition is important. The rule
is simple and robust in the sense that it holds also in the discrete information acquisition
specification (see Appendix B).

Furthermore, the empirical auction literature has attempted to evaluate the optimality
of a seller’s reserve price policy. Most of these studies assume exogenous information and
do not consider the bidders’ incentives to acquire information. They use observed bids
and the equilibrium bidding behavior to recover the distribution of bidders’ valuations,
and then compare the actual reserve price with the standard reserve price calculated from

the estimated distribution. Owur results indicate that, in situations where information
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acquisition is important, the standard reserve price may not be an appropriate benchmark
for comparison. The optimal reserve price in optimal auctions could be higher or lower
than the standard reserve price when information is endogenous.

The next result shows that under the stronger Assumption 1.2, standard auctions with

an appropriately chosen reserve price are optimal.

Theorem 1.3 (Optimal Auctions) Suppose Assumptions 1.1, 1.2 and 1.3 hold, and
A > 0. Then standard auctions with the reserve price r* adjusted according to Theorem 1.2

are optimal.

Assumption 1.2 is critical for the above theorem. It ensures that the bidders with higher
posterior estimate gain more from information acquisition. Therefore, if the allocation rule
assigns the object to the bidder with the highest posterior estimate (just as standard
auctions do), then bidders’ expected gain from information acquisition will be maximized,
and bidders will have a strong incentive to acquire information. But this is exactly what
the seller would like to see when A > 0 : an increase in information acquisition benefits
the seller. An immediate consequence of Theorem 1.3 is the revenue equivalence among
all standard auctions, because the allocation rule is the same across all standard auctions.
Furthermore, since the bidders’ expected gain from information acquisition is the same for
all standard auctions, the equilibrium amount of information acquired is the same across
standard auctions as well.

The restriction of symmetric equilibrium is important for the above result. If we allow
different bidders to acquire different levels of information in equilibrium, then the revenue
equivalence fails in general, and different auctions will induce different level of information
acquisition. Moreover, this result may not be generalized to discrete information acquisition
setting. With discrete information acquisition, in general, bidders will play mixed strategies
in equilibrium, which will introduce asymmetry into the interim stage when all bidders
have made their information decisions. Because the first price auction and the second

price auction are not equivalent when bidders are asymmetric, revenue equivalence fails.
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1.4.3 Informational Efficiency

Theorem 1.3 states that standard auctions with an adjusted reserve price are optimal under
some conditions. In this subsection we will therefore focus on the informational efficiency of
standard auctions to obtain a slightly more general results that apply to optimal auctions.

Since we restrict attention to the symmetric equilibrium in the optimal auctions, we
need a symmetric benchmark as well. Thus, we assume that the social optimal information

FB

choice P is the same for all bidders. That is, af? solves the following maximization

problem for all 7 :

of'B ¢ arg max / i (1—H, (v5)) dv; —nC () -
0

&%)

At information level «;, the marginal value of information to the social planner is

JWVJFB@%):-ﬂA/(”aHQ(”Oh@iI@Qdm. (1.13)

0 8O[Z
Recall that, at information level «;, the marginal value of information to the bidder ¢ is

MW@@:—/ —iQwﬂﬁWmmw (1.14)
r Oa; ¢

Since the social planner has to pay n times the individual information cost, we normalize
the social value of information by multiplying 1/n. The difference between the social and
individual gain from acquiring information is

" aHai (Ul)

H™ ™ (v;) dv;. 1.1
B, a;  (vi)dv (1.15)

Ammw:%mUMQM—MWﬁmz_/
n 0

By definition of rotation order, if r < p, A (a;,n) < 0. That is, information acquisition in

auctions with r < pu is socially excessive. Thus, we have proved the following result.

Proposition 1.6 (Informational Efficiency) Suppose Assumption 1.1 holds. There ex-
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ists & > 0 such that bidders have socially excessive incentives to acquire information in

standard auctions if and only if r < pu+ 9.

When r» = 0, the bidders’ incentive to acquire information coincides with the social
optimum, which can be easily seen from equation (1.15).2% As 7 increases, the buyers’
incentive to acquire information increases, reaches maximum at r = u, and declines after-
wards. Consequently, there exists a > 0, such that the individual incentive to acquire
information coincides with the social optimum when r = p + §. Therefore, the bidders’
incentive to acquire information is socially excessive when r € (0, 1+ 6). For the one-bidder

model with the Gaussian specification, § = u, as shown in Proposition 1.4.

1.4.4 Discussion

In our model, the rotation order ranks different information structures by comparing the
distributions of the posterior estimate. In contrast, most existing information orders (for
example, Lehmann (1988)) impose restrictions on the prior or posterior distributions of
underlying states and signals. One can show that a weaker version of Lehmann’s order,
the MIO-ND order in Athey and Levin (2001), generates a family of distributions {Hy, }
ordered in terms of second order stochastic dominance. The rotation order also implies
second order stochastic dominance, but second order stochastic dominance is not strong
enough for our analysis.

Assumption 1.1 restricts the rotation point to be the mean valuation. However, if
the rotation point is different from the mean valuation, our results (Theorem 1-3 and
Proposition 6-7) still hold as long as we replace p in the statements of the results by the
rotation point. If the rotation order assumption fails, so that two distributions of the
posterior estimate cross each other more than once, then some of our results (for instance,

Theorem 1) still hold locally around one of the crossing points.

23Note that the standard auctions with zero reserve price are efficient mechanisms. Bergemann and
Valimaki (2002) show that the individual incentives to acquire information coincide with the social optimum
for efficient mechanisms in the private value setting. Thus, information acquisition in standard auctions
with zero reserve price is also social optimal.
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The first order approach greatly simplifies our analysis and is valid if the second order
condition of the bidder’s maximization problem is satisfied. In Appendix B, we provides
several sets of sufficient conditions for this condition to hold. First, it is satisfied if the
cost function is sufficiently convex. Second, if the support of H,, is invariant with respect
to a;, then a condition analogous to the CDFC condition in the principal-agent literature
(Mirrlees (1999), Rogerson (1985)) is sufficient. Third, we present sufficient conditions for
the case of the Gaussian specification and the truth-or-noise technology, respectively. See
Appendix B for further discussion of these conditions.

As pointed by Bolton and Dewatripont (2005), however, the requirement that the
bidders’ first-order condition be necessary and sufficient is too strong. All we need is that
the replacement of the (IA) constraint by the first order condition can generate necessary
conditions for the seller’s original maximization problem. Thus, our analysis may remain
valid even when the second order condition of the bidders’ maximization problem fails.

In order to check whether our results are robust to alternative information specifica-
tions, we study discrete information acquisition in Appendix B. To ease comparison to
the existing literature, we assume that information acquisition is binary and focus on the
symmetric mixed strategy equilibrium. Under some technical assumptions, we show that
the simple rule for adjusting the reserve price still holds. This result can also partially
alleviate any concerns about the first order approach. With discrete information acquisi-
tion, however, standard auctions are no longer optimal because mixed strategy introduces
asymmetry into the post-information game: in the bidding stage, bidders are no longer
symmetric.

Finally, although our model focuses on the independent private value framework, it can
also be immediately applied to a setting with a common component. For example, suppose

buyer #’s true valuation ; has two components:

0; =wi +y.
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The first term w; represents the individual idiosyncratic valuation and is unknown ex-ante.
Buyer ¢ can acquire costly information about w;. The second term y is the common value
component, and both the buyers and the seller learn it for free.?* In this situation, all our
analysis still applies as the common component only shifts the distribution but does not

affect the buyers’ incentives.

1.5 Conclusion

The mechanism design literature studies how carefully designed mechanisms can be used
to elicit agents’ private information in order to achieve a desired goal. Most of the papers
in the literature, however, ignore the influence of the proposed mechanisms on agents’
incentives to gather information. In particular, with endogenous information acquisition,
the optimal selling mechanism should take into account the bidders’ information decision
as a response to the proposed mechanism. We show that under some conditions standard
auctions with a reserve price remain optimal but the reserve price has to be adjusted in
order to incorporate the buyers’ incentives to acquire information.

Relative to the existing literature, our model has three distinctive features. First, we
study the optimal mechanism that maximizes revenue in the presence of information acqui-
sition. This distinguishes our model from papers studying information acquisition in fixed
auction formats. Second, we study private and decentralized information acquisition, thus
differing from previous studies on the seller’s optimal disclosure policy and various entry
models. Finally, the information structure required for our results is more general than
most of the existing literature on mechanism design: we require only that the distributions

of the posterior estimate be rotation-ordered.

24For example, a firm typically has two types of assets: liquid and illiquid. All potentiall buyers of the
firm may value liquid assets in the same way, but they may value the illiquid assets differently. The value
of liquid assets can be easily learned from financial statements.
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1.6 Appendix A

Proof of Proposition 1.1: With some algebra, we can show that the partial derivative

of H,, (v;) with respect to informativeness, «;, is given by

OHo, (vi) _ (vi—p) (vi = p)* g’
dei = Wor exp (— 552 ) ag’ ot 5 (1.16)

Insert this into the expression of MVI, we have

_ [T imp) (vi — p)? 5 .
wr = [T Xp( 7 ) T+ )™

_ C(wi=w?
- zm\/ aHrﬁ / )exp< 20? )d”’
U ex ,u)
2\/27r a,+ﬂ P 202 '

Therefore, as r — pu, MV I increases.

Proof of Proposition 1.2: We can write the Lagrangian of the seller’s optimization

problem as follows:

L(r,a®) = r(1—=Hgu(r))+A (— /OO aHg;fvi)dvi — c)
1 3 r— )
= r(1—=Hy(r)+ A W a*3(£3+ﬂ)02exp<—( 205) )—c

The last equality follows by substituting in expression (1.16). The first order conditions

are

0L Hpe (%) = rhar (%) = A CARY (S Gy e IR
87’ - a* a* 2\/% ()[*3 (O[* +ﬂ) p 20_2 /j' =
oL L OH. () © PHo (v)

dar da* A <_ /r* Oa*? dvi | = 0. (1-18)
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The second order condition of the buyer’s maximization problem implies that

© 92 H o (v5)
- / “ o i<

In addition, from (1.16) we can show

Therefore, condition (1.18) implies that
e A2 0. (1.19)

Suppose ro« > . Then r* < ry«. To see this, suppose the opposite is true: r* > rg«.
Then r* > p and A > 0. Therefore, %—f\,«:,«* < 0. A contradiction to the optimality of r*.
Next we argue that r* cannot be less than p. Suppose r* < u for contradiction. Then A < 0
by (1.19). But r* < g and A < 0 imply %—f > 0, a contradiction. In sum, r* € [, r4+). The
other two cases can be proved analogously.

Therefore, we only need to prove that for a fixed 3, there exists a i such that r* > pu if
and only if i < . Note that the first order condition for the buyer’s maximization problem

is

1 N G Gy W
221 \| o (a + B)? P 202

With some algebra, we can show

>0 if r<p

Oa 0
a_ = 0 1f T = ,LL and

0
or -

orop ’

<0 if r>p

Note that we can also write the necessary first order condition the seller’s maximization
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problem as

drms 0H, (r*) 0a*
T:T*:l_Ha* *_*a* *) ok
dr’ (r") = 77har (%) =7 oa* or
Define
Ha* * *
T (T‘*,/L) =1- Ha* (7’*) — T*ha* (’I"*) — T*a&.ﬁ(?“)aac:‘ .
Then

O (r*,pu)  OHgx (r*) O* o Ohg (17%) O

O°Ha: (1) <8a*>2 ~

=0

LOH (r*) 9%a*

o da*  Or* da*  Or Da+? or* da*
and
ol (r*, ) OHy~ (r*) 0a* Ohg~ (%) 0o O?Hy (1) [ Oa*
FH . opp (1) —2 —r* _—
or* (") dar o | dar o | o or*
Therefore, if r* > pu
or (r*, ) L (r*, p)
0, and <0
o ’ or
Furthermore,
oL (r*,p) _ O (", p)
ou or
Therefore, for r* > u,
dr* arg*’“)
__Op
d/,L 81"(7,*7#) € (07 1)
ar
Furthermore, for r* = p,
or' (r*, ) T (r*, ) dr*
o 0, o < 0, an m 0

o1

2
>+r

or*ou

LOH (r*) 0%a*

oa*

or*ou



Note that r* (1) > p for p < 0. Therefore, there must exists a i such that

" () = i
dr

Moreover, because d—; € (0,1) for r* > u, and % = 0 for r* = p, p is unique and

p<per >y B

Proof of Proposition 1.3: The first order condition for the buyer’s optimization problem

is

—/ LHO” (Ui)dv,- —c=0.
r 80éi

The second order condition is

dv; < 0.

- /OO 02 H.,, (v)

2
Oa;

With some algebra, we can show

O?Hg, (v;)) 4o +38 (vi—p) B3 _M - a; + 8 Bj(‘_ 2
002 20, (e +B) 221 \ af (o + ) P 202 4oy + 38 oy Vi )

Therefore, we can rewrite the second order condition as

< (vi — ) (vi — p)’? a+B B L\,
/r Wor: exp (—202 ><1_4ai+3ﬁai(vz_u) >dvz>0.

By a change of variable with y = *~£, we can obtain

& 1
/ Yy exp (—2y2> (1 — kyz) dy > 0,

where

(&%)

(i +8) B

p_ w8 BB

T p
= _— = d = = —_
4041' + 3,3 (673 o 40@ -+ 357 an v g (7’ M) /
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The above inequality can be simplified into

_1.2 2 1
Substitute the expression of £ and z and we can obtain
dai + B o 2
— > (r— . 1.20

Now if r € [u— 20 (@), + 20 ()], then r € [u — 20, u + 20] because o () > o ()

for all a;. Therefore, a sufficient condition for (1.20) is

4ai+ﬂ%
o+ 3 B

> 402,

or equivalently,

3
o > Zﬁ

Since «; > « for all ¢, the second order condition is satisfied when o > 3. That is, the first

order approach is valid when
rep—20(a),pn+20 () and a > G.

Thus, we conclude the proof. B

Proof of Proposition 1.5: Under mechanism {g; (v;,v_;),t; (vi,v—;)}, a bidder’s ex-
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pected payoffs (information rent) with information structure o and o are, respectively®®

Eu (vi;ef) = E,_, {/w (1 —Hy (vi)) ¢ (vi, v—y) dv,»] ,

Eu (vi; oz;') = E,_, [ (1 — Ha;/ (vl)> qi (vi,v—;) dvi] )

Therefore,

_ /( ”IQZ.W%) (hay (01) — g (w0)) s (where Qs () = o i (,0-)]).

Since @; (z) is nondecreasing in x, f:” Q; () dx is convex. By Lemma 1.2 , H,, SOSD

H,y and have the same mean. Therefore, Eu (v;; ) — Eu (vi; o) > 0.0

Proof of Lemma 1.3: For the Gaussian specification, we know from the text that

v (x — p)? 2 %
Ha, (v;) = @) e where o? = Y
 (v) /—oo 2mo P < 202 voowheee (a; +8)p

Since H, is normal, it has an increasing hazard rate and the regularity assumption is

satisfied. Recall equation (1.16)

O (v) __(wimp) o (wi=p)? p’
da; 2var T\ 207 o (i +8)’

OHoy (vi) 1 B(vi—p)
aai hai (Ul) o 2042‘ (Oéz‘ + ﬂ) '

In addition,

251f the support of the posterior estimate varies with respect to signal informativeness, we need to redefine
the distribution as follows. Suppose under information structure a;, the support is [g ai,wai] . Then define
Ho, (vi) =0if v; € [w,w, ] and Ha, (v;) = 1 if v; € [Wa,, W] .
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It is easy to see that the other two assumptions are satisfied as well.
For the truth-or-noise technology, a buyer who observes a realization s; with precision

«; will revise his posterior estimate as follows:
v; (81, ) = E (wisi, ) = asi + (1 — ;) p.

The distribution and density of the posterior estimate are, respectively

Hy, (v) = F <v—<1—a>u) ey (0) = L (v—ﬂ—a)M) _

(074 (67

Simple calculations lead to

OHq, (vi) vi — (1 —aq) ) (n—vi)
o0, ! ( o o (121)
0H,, (v;) 1 v
80@ hai (’Ul) a (673 ’ (122)
vi—(1—ai)p
po ) 1S () 00
1 — Hy, (v;) Qi1 _F (vi*(lfai)u) ' '

Equation (1.21) shows that the family of distributions { H,, (-)} is rotation-ordered with
rotation point equal to . Equation (1.22) shows that

8Hai (Uz)

S i ()

is decreasing in v;. Finally, H,, (-) has an increasing hazard rate, because, by assumption,
the underlying distribution F () has an increasing hazard rate. Therefore, the family of dis-

tributions { H,, (-)} generated by the “truth-or-noise” technology satisfies all assumptions.

Proof of Theorem 1.1: Given mechanism {g¢,¢} and reserve price r*, buyer i chooses «;
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to maximize his expected payoff:

maxEy_, o { / S o (o) (o) dvg — C (ai)} .

(673 *

Therefore, the marginal value of information to buyer i is

Yoy Ha- 7
Mvi—— [ gy

Therefore,
O[MVI]  0Hg, (r7)
ors Oo;

Qiax (7). (1.24)

Sufficiency: if different signals are rotation-ordered, the above equation shows that
MV is increasing in r* if r* < p and is decreasing in 7* if * > u. In other words, MV'I
is increasing as 7* moves toward the mean valuation.

Necessity: suppose signals are not rotation-ordered, then two distributions must cross
at least twice. Without loss of generality, suppose one of crossing points is lower than pu.
Then we can find a r* < p such that

O0H,, (r*)

< 0.
8041'

Then by equation (1.24), MVI decreases as r* moves towards u. Therefore, the rotation

order is also necessary. ll

Proof of Lemma 1.4: Let o* denote the equilibrium information choice of bidders in the
symmetric equilibrium. We prove the lemma by establishing the following two claims.
Claim 1: The seller’s revenue in standard auctions with reserve price r is increasing in o*
if (1) > p; or (2) Gaussian specification or truth-or-noise information technology, and n
is large.

Proof: Let V), ,, denote the k-th order statistic from n random variables independently
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drawn from H,~. The seller’s payoff in standard auctions with reserve price r is:

Ts (Oé*, 7’) = rPr (Vn—l,n <r< Vn,n) +E [Vn—l,n‘vn—l,n > 7"] Pr (Vn—l,n > 7")

= r[Hp1n(r)—Hp,(r)] + / ) Vihn—1n (v;) dv;

— r[l— Hae ()4 / - [ nHoe ()" + (0= 1) o (0)"] .

Therefore,
ors (a*,r)
da* B
= —rnHpe (1) W - / - [n (n— 1) Ho (0)"2 — (n — 1) nHee (03)" dei
—i—[l—n—i—(n—l)]%u;f i
= —rnHpe ()™ ‘w —n(n—1) TW Hoe (00" 2[1 — Hor (v;)] dei.

Case 1: r > p. Since r > p and %@ < 0 for all v; > pu, % > 0.That is, seller’s

revenue is increasing in o*.
Case 2: By the analyis of case 1, we only need to prove the case where r < u. For

Gaussian specification, we have

OHa- (vi) _ Boi—p)

da*  2a* (a* + ) o (v

o7



Therefore,

ors (a*,r)
oa*

= —nrHy (r)"! ahga* (r) (n—1) / Hey- (v)" 2 [1 — Hye (07)] aHg;fwdvi
— n—1 ﬁ (’l“ — ) . Ha* Uz n ? [1 — Hq- (Uz)] B (Ui — ,u) ;) du;
= e ("7 g Gy gyl D F 1/ o (o* + ) P (v1)
s (= ) Hoe ()" o () 4 [(1= Has (00)) (0 = ) o (0)" ']

207 (a* + ) e < (01) = has (07) (vi — 1)) Har (03)" " duy
g (r = 1) Hae ()" e (1) (v — 522200)

Qa* (a* + 6) + fOO (Ui - 17ZHQ* (/Ul)) Ha* (Ui)n_l ha* ('Uz) d’Uz' - %,U (1 - Ha* (T)n)

r a* (v’b)

If r < 7y, then r — 1;}{"(;()7") < 0. Therefore, a sufficient condition for 8”3(2‘: ) S0 s

. 7 * . * i ;> .
/ (U’L h, . (’U,L) ) nHa ('UZ) ha ('Uz) d’UZ ,u

This condition says that the second order statistic n independent random variables drawn

from distribution H,~ (-) is higher than . When n is large, it holds in general.

Ifr>ra*,thenr—%‘l(*r({)>0.

ore(a®r) 8 = J) Hae (1) o U( e du
da* o 20* (a* 0o —H, (v, n
a (@ +B) | (U_thi(())Ha (0)" " has (vi) dvi — (1= Hoe (r)")

)

As n is large, the seller’s revenue with n bidders and reserve price p will be higher than .

Therefore, 87“’8(01 ) 5.

Similarly, for truth-or-noise technology, we have

OHux (vi) vy

Oa* ar (vi).
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Therefore,

ors (a*,r)
da*
— n—1 0Ha~ (1) . _ P An—271 _ ) OHq» (v5) )
= —nrHy (1) o n(n—1) i Hy~ (v;) [1— Hy (v;)] ot dv;
_ W * « . n—2 _ « . .
— nTHa* (T)n_l (T ,LL) ha* (T’) +n (n _ 1) HOL (UZ) [1 HOé (/U’L)] (U’L /‘L) ha* (vz) d'Ui

a* . a*

22 (0= ) Hoo (1) e (1) (r = 2525557

+2 [ (Uz‘ - %) Hee (v3)" ! hax (vi) dv; — m# (1= Hax (1))

1;}‘1‘1(’;()7") < 0. Thus, a sufficient condition for

v 1- HO&* (UZ) n—1
/w (UZ e (o) ) nHeas (0)" " ha (v;) dv; > 1

oms(a*,r)

o > 0is

If r <rgx, then r —

This condition holds as long as n is large.

If r > ro+, then r — 171H*7‘1(*T()T) > 0. Therefore,
* _ ,lLH n—1 h o l—Ha*(r) d .
ors (1) 1 n [} Ho- (1) o (1) (7 — = (r) i
oo | P (v — 50D Hoe (00)" e (o) dvg — p (1= Hoe (1))

Q*‘H

7 (e e

Again, as n is large, the seller’s revenue with n bidders and reserve price u is higher than

oms(a*,r)

1. So 5 > 0.

Claim 2: If the seller’s revenue is increasing in o in standard auctions with reserve price

r, then A > 0.
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Proof: Recall the seller’s maximization problem is

i {E 3 (s- e wena] e}

i=1
st 1 0<q; (vi,v_) <1 qu (vi,v—i) <1, (Regularity)
Qi (v;) is nondecreasmg in v;, (Monotonicity)
>0, (IR)
1
—Ey o qi (v, v z)] C' (o) = 0. (TIA)
[ a* (vi)

Note that the expectation term is independent of u (w), and u (w) is nonnegative, so the
seller must set u (w) = 0 to maximize revenue. Ignore the regularity constraint and mono-
tonicity constraint for the moment.

We adopt the same strategy of Rogerson (1985) by weakening the equality (IA) con-
straint to the following inequality constraint.

—Ev o 8Ha* (’UZ) 1
’ da*  ha (v

)Q’L ('Uz, @) -’ (Oé*) > 0.

With the inequality constraint, the corresponding Lagrangian multiplier § is always non-
negative. If we can show that § > 0 at the optimal solution of the relaxed program, then
the constraint is binding in equilibrium. Then, the optimal solution of relaxed program is
also an optimal solution of the original program, and A > 0.

Write the Lagrangian for the relaxed program as

L = EaiKU—l_hHo(‘(U)> gi (vi, v 0%5[—1@@ [Mg;f”i)h ! s (v, 1)}-0’(04*)]

i1 a* Ui) a* (Uz
= 1= Hy (vi)  §0Hs (vi) 1 .
Evar ; [(vz hor (v;) n  da*  ha (v;) % (Vi v=4) | = 0C" ()
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The necessary first order condition is

8{Ev,a* > {(vi—%)fh(m,vq)} }

_ oL _ o
0= da* +68[—Ev,a* {anggvi)}ﬁ(;l@%(Ui,U—i)} —C’(a*)] (1.25)

Since § > 0, Theorem 1.3 shows that a second price auction is optimal. Therefore, we can
restrict attention to second price auctions.

The first term in the big bracket of (1.25) is positive by the assumption of Claim 2. In
order to show § > 0, we need to show that the second term is negative. Note that in a

second price auction with reserve price r

B, [Mg;f”i) ha*l( 5o (vi,v_i)] ' (") = / 0 = Hae (00) Hoe ()" dvi—C' ().

(%

Thus,

5, [—Ev,a* [aHggfvi) ha*l(,ui)qi (vi, U—i)} - (a*)}

oo
“or 9* Hox (vi) n—1 O Hyx (War) 0o "o %
B _/r da*? Hor (03)" dvi + da*? dar ¢ ()
A
wa* w . 2
- / (W) (n —1) Hye (v;)" 2 dv;
B

Since o maximize a bidder’s expected payoff, the local second order condition of the
bidder’s maximization problem holds. As a result, term A is negative. Since term B is
also negative, the partial derivative is negative.

By condition (1.25), it immediately follows 6 > 0 at the optimal solution (a*, ¢*). The
relaxed program is the same as the original program, and the maximum of the relaxed
program can be achieved by the original program. So A = § > 0 if the seller’s revenue is
increasing in «; in the optimal auctions.

Note that a sufficient condition for ro« > p is 7o > p. To see this, by definition of r,
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and Assumption 1.3, ro > p implies

By Assumption 1.1,

H, (p) = Hy, (1) and hg () > hq, (1) for all o > a0

It follows that,

Finally, from Theorem 1.2, for A > 0, 7o« > u < r* > pu.

The Lemma now follows from the results of Claim 1 and Claim 2. W

Proof of Theorem 1.2: Recall the virtual surplus function is

1-— Ha* (’Ul) . éaHa* (’Uz) 1

POIEEE T ) T n et e ()

The optimal reserve price r* has to satisfy

qi (vi,v—i) > 0= v; > r",

and

r* < min {r: J* (v;) >0 for all v; > r}.
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The last condition says that the seller will sell the object as long as the marginal revenue
is nonnegative.

Case 1: A\ > 0 and ro+ > p. First we show r* < ry+. By definition of rqyx,

1-— Ha* (Uz>
ar — ————— = 0.
" hax (i)
Then for all v; > rox > p,
1— Hy~ (v; A OH gy~ (v; 1 AN OHy~ (v; 1
o) — o (v)  AOHoe (v)  AOHae (v) -

ha= (i) n  O0a*  hg (Vi) n  Oda*  hg (Vi)

The last inequality follows from the fact that {H,-} is rotation-ordered. Therefore, there
exists € > 0, such that

T (ra- — ) > 0.

Therefore, by (1.26), the optimal reserve price r* < rqx.

Next, we show r* > p. Suppose r* < p by contradiction. Then

1—Ho- (r")  AOHg-(r*) 1 - CAOH (r) 1
ha= (1) n  Oa*  hgx (%) n  Oa*  hgx (%)

The first inequality follows because r* < ry=, and the second inequality follows from the
rotation order. This contradicts the fact the J* (r*) > 0. Thus, we have shown p < 7% < 7y

Case 2: A > 0 and ro+ = p. Then for all v; > p,

1-— Ha* (UZ) . i@Ha* (UZ) 1 > _iaﬂa* (’U,L) 1

J* (v;) = vy — ha~ (i) n  0a*  hes(v;)) — n 0a*  her (v;) > 0.
Therefore, r* cannot be higher than p. On the other hand, for all v; < p
1- Ha* % Ha* % 1 Ha* 7 1
o) — (v1) _ AOH (v) - AOHo () .

ha+ (i) n  Oda*  hgx (v;) n  da*  hg (Vi)

Therefore, r* cannot be lower than u. Therefore, r* = r o« = pu.
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Case 3: A > 0 and ro+ < p. Note that for all v; < rqgx,

. 1-— Ha* (’Uz) _ i(‘)Ha* (Uz) 1 < _i 6Ha* (Uz) 1

J* i) = U; 0.
(vi) = v hax (i) n  da*  he(vi) T n da* har (v;) <
Therefore, r* > rqo+. Furthermore, for all v; > p,
1 — Hyx (v, A OH gy~ (v; 1 AN OHy+ (v; 1
T () = i — (vi)  AOHa (vi) 2_73 (vi) >0
ha+ (i) n  da*  hgx (v;) n  da*  hg (Vi)
Thus, 7* < . As a result, ro« <1 < .
Case 4: A\ < 0 and 7o+ < p. Note that for all v; € [rq=, y
1— Hy« (v A OH (v 1 AOHq+ (v; 1
o) o (v)  AOHae (v)  AOHu (v) .

ha= (i) n  da*  hes(v;)) — n 0a*  hex (v;)

In addition, r* cannot be higher than pu, otherwise A > 0. Therefore, r* < r » < p.
Since ro+ > p implies A > 0, the above four cases include all possible cases, and our

proof is complete.ll

Proof of Theorem 1.3: Under Assumption 1.2 and 1.3,

1= Hyx (v;) B i@Ha* (v;) 1
hax (v;) n  Oa*  hax (V)

J* (Uz) = Vg

is increasing in v;. In this case, we can define the reserve price as

r* =inf{r: J*(r) > 0}.

Therefore the optimal auctions will assign the object to the bidder with highest posterior

estimate provided his estimate is higher than r*. So standard auctions with reserve price

r* are optimal.ll
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1.7 Appendix B

1.7.1 Sufficient Conditions for Validity of the First Order Approach

Here we will provide several sets of sufficient conditions to ensure the validity of the first
order approach. Recall that bidder ¢ chooses «; to maximize his payoff given other bidders

choose o (j # i) . Bidder i’s payoff under mechanism {q, t} is,

() = By { / "l = Ha, (09)] g5 (v, 03) dvs — C (ai)} .

Loy

The first partial derivative is

omy ‘ |\ Ow, “ei OHg, (vi) oo
aOéi - Ev_i {_QZ (@aia U—z) 80[2' - /w Tai% (Uu'v—z) dvz - C (047,) )

g

and the second partial derivative is

0qi (W, v—i) (0w, \2 Pw,.  OHa;(w,, ow,,.
827“) ( ((;7[)2 ) ( 80&; ) + di (&Oéﬂ v_i) a2 - 8(21 al) qi (gai’ U_i) 80&; 1/
902 B OHo,; (Ba;) ow 5. 0%H (vi) —C ().
4 ) ) _ o . a; (Vi
! +7a§ai “2qi (Way, v—i) Do, T f;;’ e qi (v, v—;) dv;

The first order approach is valid if

0%y

2
Oa;

< 0. (1.27)

It is easy to see that the above condition holds if the cost function is sufficient convex.?%

If the support of the posterior estimate is independent of information choice «;, all
terms except the last one in the expectation is zero. Therefore, if the last term in the
expectation is positive, together with the convex cost function, the first order approach is
valid. A sufficient condition for the last term to be nonnegative is

82Hai (Ul)

o 2

> 0 for all v;. (1.28)
a;

26Persico (2000) makes such a assumption in his example of information acquisition.
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Condition (1.28) says the distribution of the posterior estimate is convex in the bidder’s
information choice. This condition is analogous to the CDFC (convexity of the distribution
function condition) in the principal-agent literature, which requires that the distribution
function of output be convex in the action the agent takes (Mirrlees 1999, Rogerson 1985).27

For a general information structure, it is difficult to verify whether condition (1.28) is
satisfied. For specific information technologies, however, we are able to provide sufficient

conditions to guarantee the validity of the first order approach.

Proposition 1.7 For the truth-or-noise technology, if C" (a;) o > f (@) (@ — p)? for all
«;, the second order condition is satisfied either (1) F(x) is convex, or (2) F(x) =

2% (b > 0) with support [0,1]. For the Gaussian specification, the second order condition

[ 3
aa(aé)—i_ﬂ)g) < 2@0// (OZZ) .

Proof: For the truth-or-noise technology,

is satisfied if, for all oy,

Jq; Wy V=i Ow,, . 2 0w, OHo,; (wa, Ow,,.
827rb - _E <8vi ) < 3(1;) + 4 (gai’ U—i) 8%21 - 85@ >Qi (gai’ 1)_1') 8ail
60{2 - Ui aHa Wa — 87a- W 82Ha. A

/ 2 ) gy @ 0 St 4 T g (0
O0Ho,; (Wa, _ | Owa; | OHoy(wa, Ow,, _
< B 8&- ) Qi (Wa,) Gt + agi >Qi (wo:) Za; _/w“i & Ha, (vi)
—C" () W, da;
(] k3
— @=)? A~ (— (p—w)® A @, 2
@50 @) - f@) 2220 (v, w OPH,, (o)
= — TQZ (’Ui, 'Ufi) d?]i
C" (o) Wa, a;

o —p)? Wa; 2 (v,
< f (w) M e (az) _ / MQZ (Ui77)—z’) dv;

27See also Jewitt (1988).
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If C" (o) i > f (@) (@ — p)?, then

2 Tai 92H. (v;
om —/ O o, (vl)Qi(vi)dvi

Ba? 80422

€

- [ { (o) b SOy DR } Os (0) do,

)

o Y s
- k[ {f’<sl-> i) +f<sz->2“,“)}Qimisﬁ(l—ai)u)dsi

If F () is convex, then

0? 2 (v

aaﬂ;zb T . (si — ) f(5:) Qi [aisi + (1 — o) p] ds;
< _Oi' wu( ) f (i) Qi (1 dsz—/ (si) Qi (1) ds;
= -20i [ - s s
= 0.

But the convexity of F'(-) is not necessary. Suppose F (z) = 2 (0 < b < 1) with support

[0,1], then

2, w s — )2 S —
o< - {f’(sﬁ“ 2 +f<si>M}@(aw(l—ai)u)czsi

Do . Py a»
- ; 01 {b(bfl)sb” (s — pu)? + 2bsP~1 (s—,u)}Qi (ais + (1 — o) ) ds
- - 01[<b+1>s+<1—b)u]bsb*(s—u)czi(aisﬂl—m)u)ds
< —;Qi(u)/ol((bJrl)SvL(l—b)u)bsb_z(s—u)ds
= Q) [ ds = Q) (-0 [ s s
= ;Qi(ﬂ) (1f:b)2
< 0

67



For the Gaussian specification, the second derivative is

9%y > 92H,, (v;) .,
92 ”—'{ T 92 & (vz,v—z)dvz}—c () -

7

With some algebra, we can obtain

OHo, (vi) _ Ao 36 (v — —p)° 1 G +8 B —p)?
oa? 2 (o + ) 2@ az+5 202 ( Ios 130 (v — p > .

So we can write the second derivative as

0 40;+38  (vi—p) 83 (vi— )?
%my o, {f—oo Sai(aith) 2v2r V @i(aith) eXp( )ql (v, v- )d“@} " (o)
_— = — Q5
0 2 00 2 (w;—p)® 3 vi—p)* '
% +Ev—i {f—oo 4ﬂa12 ( \/ﬁ) ag’(gi—l—ﬂ) exp (_( 20/;) ) 4 (v“ )d'l)z}

o {9 % (250 0 (-

— C// (O[z) .
oo B2 (vi—p)?
+Ev7¢ {f 00 fa (\/2*:; al(aﬁﬁ_ﬁ) exXp ( (v 202) ) qi (Uw )dvz}

By Proposition 1.5, bidders always prefer higher «;, which implies

(et

Thus, a sufficient condition for the second order condition is

o ﬁQ B (vi — ,U)g (v; — M)2 "o o
E{ il a @t D) Voo P (‘202 e

3 fe'e) L 3 L 2
i | e (< e < e,

A sufficient condition for the above inequality is,

ﬂs o _’u)g (vi _/1’)2 ) "oy
4@?(ai+ﬁ)/u Vome P <—202 dv; < C" ()&
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Note that if 5/a; is small, the above sufficient condition is easy to be satisfied. Therefore,
if o/ is sufficiently large, the second order condition is satisfied. W

For the truth-or-noise technology, the condition, C" (a;) a; > f (@) (@ — p)?, is to en-
sure that the relative gain from information acquisition is not too high so that bidders will
not pursue extreme information choice @. The convex distribution means that if bidders
acquire information they have better chance to get extreme values; the information acqui-
sition is productive. But the convexity of F is not necessary. For example, F (z) = z® may
not be convex but the second order condition is still satisfied.

For the Gaussian specification, if § is small and « is large relative to 3, then the second
order condition is satisfied. This is quite intuitive. Small 8 implies the prior distribution
is quite spread out, so the potential gain from information acquisition is high. If « is large

relative to 0, then signal will be informative, which again implies information acquisition

is profitable.

1.7.2 Discrete Information Acquisition

If the investment in information is lumpy, information acquisition may be discrete. A
study on discrete information acquisition can help check the robustness of our results and
partially relieve the concern about the first order approach. In order to be comparable to
the existing literature, information acquisition is assumed to be binary. If a buyer acquires
information, he observes his true valuation; otherwise, he does not know his type. We
will refer to bidders acquiring information as informed bidders, and bidders not acquiring
information as uninformed bidders. Since bidders are risk neutral, the expected valuation

of uninformed bidders is the mean valuation yp. That is

w; if Dbidder 7 becomes informed
V; =

w if  bidder ¢ stays uninformed

We focus on the symmetric equilibrium and the direct revelation mechanisms {¢; (v) ,¢; (v)}
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The timing is the same as before. The seller first announces the mechanism. Each bidder
chooses to become informed with probability p € [0,1]. The seller compares revenue under
different p’s, and chooses {¢; (v),t; (v)} to implement the optimal p.

If information cost ¢ is very low, then the optimal p = 1, and the standard Myerson
auction is optimal. However, if ¢ is very high, then the optimal p = 0, and the posted price
r = p is optimal. Thus, there exists a cost region ¢ € [c,¢| such that bidders play mixed
strategies with p € (0,1).2® We will focus on this case.

If the seller chooses to implement p, the resulting distribution of the bidders’ valuation
is

H (vi) = pF (vi) + (1 = p) - Liy;>py-

Because a fraction of (1 — p) bidders choose to stay uninformed with p as their expected
valuation, there is a mass point at the mean valuation.

Since {g; (v),t; (v)} is incentive compatible, we have

u(v;) =u(w) + /vi Qi (s)ds.

28With some algebra, one can actually identify the cost thresholds ¢ and €.
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The expected payment for bidder i is

Ey,; [T; (vi)]

— B 0@ () ~ule) - [ Qile)ds

= P/w [UiQi (vi) — /:i Qi (s) dS] f(vi) dvi + (1 —p) [MQz‘ () — /wu Qi (s) ds] —u(w)

w

Ix [ - 1_”)} Qi (ws) f () dvs + (1 — p) [uQi w-[ o ds] )

-7 f(w)
- [ [pvz P ) M Q) 7 (s (1 ) Qi )~ u)
_ " 1—pF<vz> o) o () do “v.fl—FU o) @ (v) dos

+(1 = p) pQi (p ) u(w)

= E@[J( )qZ(Uu z)]_u(g)’

where
v ey i <
J(vi) = w if vi=p -
I—F(Ui)

Vi — 55 if v;>p
Therefore, the seller’s revenue is
E [71-8] = ZE’U [J( )QZ (Uu Z)] —nu (Q) .

i=1

The information acquisition constraint in this setting is:
Er [u(v:)] = u(p) = ¢, ¥, € [0,

where the expectation is taken with respect to F'(-). We can calculate the payoff of both

informed and uninformed bidders and rewrite the information acquisition constraint as

@ 1—F(vi) o<y o ) des > e
/w |: f(’Uz) f(vz) QZ(Z)f(Z)dZZ .
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Again, the (IR) constraint is binding: u (w) = 0. With the reformulated (IC) and (IA)

constraints, we can rewrite the seller’s optimization problem as

maXZE (vi,v—4)]

st (1) : 0<gq (v, <1Z%m,1_1

(2) : Qi(v;) is nondecreasmg in v;
(3) : /[ “ 1W9ﬂQmmfmmW>a (1.29)
w f(vz) B

Let A denote the Lagrangian multiplier for the information acquisition constraint (1.29).

With some algebra, we can simplify the Lagrangian into

where the modified virtual surplus function

1—pF(v;) X F(vs)

Vi ™ Tpfli)  npf(u) if v <p
J(v;) = m if vy=p - (1.30)

L l—F(’Ui) A l—F(’Ui) . .
Vit Ty Tonprwy. V> K

One can show that as n is large, A > 0. That is, the seller’s revenue is higher when more
bidders become informed.
The following proposition shows that the optimal auction adjusts the reserve price

toward mean valuation to provide bidders with incentive to acquire information.

Proposition 1.8 If F' has an increasing hazard rate, ¢ € [c,¢|, and n is large, then the
optimal reserve price is adjusted toward the mean valuation . That is, (1) if r& > p, then
the optimal reserve price p < r* < rg; (2) if ra = p, then rv* = p; (8) if ra < u, then the

optimal reserve price rg < r* < p.
Proof: Given J* (+) is single-crossing zero, the optimal reserve price is the smallest r
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such that J* (r) > 0. Consider the case rg > p. Suppose 7* ¢ [u, 5] . Then either r* < p

or 7* > rg. If r* < p,
1—F(r") _AF(T‘*)
pf(r*)  npf ()

r* —

<0,
a contradiction to the assumption that J (r*) > 0. If r* > rg, notice that

1= F()  A1=F(a)
f(ra) n pf(ra)

> 0,

contradicting to the fact that r* is smallest r such that J* (r) > 0. The other two cases
can be proved analogously. ll
Proposition 1.8 shows that the simple rule for adjusting the reserve price is robust to

the discrete information acquisition specification.
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Chapter 2

Contests for Status

2.1 Introduction

One of the earliest designed society structures was that of Solon’s (ca. 638 BC - 558 BC)
timokratia, an oligarchy with a sliding scale of status determined by precisely defined ranges
of measured output (fruit, grain, oil, etc.). Solon divided the entire population of Attica
into four status classes,! and attached various, more or less tangible rights, to each class.
Higher classes had more rights but were also expected to contribute more to the state.
The kings and queens of feudal states awarded titles of nobility such as duke (or
duchess), marquis, earl, count, viscount, baron, baronet in return for special services to
the crown. Initially there was a strong link between such titles and tangible assets, such
as land and serfs, but this link weakened over time.?
Today’s large corporations (such as large banks) have, besides a single president, sev-

eral executive vice presidents, tens of senior vice-presidents, and several hundred “mere”

vice-presidents. The New York Metropolitan Museum of Art offers eight different donor cat-

!These were the Pentakosiomedimnoi, the Hippeis, the Zeugitai and the Thetes.

2Even today’s citizens of the United Kingdom are eligible for more than 50 orders and decorations,
awarded for special services to the “queen”. These are structured in a strict precedence system, and play
an important role in public life. The police currently investigates allegations that close associates of prime
minister Blair facilitated the award of honors in exchange for large monetary contributions to the Labor

party.
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egories® for corporate members (such as “Chairman’s Circle” for donations above $100,000,
“Director’s Clircle” for donations between $60,000 and $100,000, and so on) and 10 similar
categories for private members.

The common denominator to the above examples is that agents care about social sta-
tus, and that a self-interested principal is usually able to divert (or “manipulate” ) this
concern to an avenue that is beneficial to himself/herself. The general importance of status
concerns for explaining behavior has been long recognized by sociologists and economists.*
Recent happiness research shows how wage rank affects workers’ well-being,® and experi-
mental studies pointed out that social status may play a role also in market exchanges.%
Nevertheless, the literature focusing on the direct implications of status concerns for the
design of societies and organizations is relatively thin. William Goode (1979), a leading
sociologist, offers a broad study of “prestige” as an instrument of social control. He notes
that “individuals and groups give and withhold prestige and approval as a way of rewarding
or punishing others.”

In this paper we closely follow Goode’s perspective, and we study the optimal design
of organizations under the assumption that agents care about their relative position. We
show how a judicious definition of the number and size of status classes based on perfor-
mance rank can be used by a principal in order to maximize the agents’ output in a contest
situation. Our results offer both explanations for commonly observed phenomena (such as
having a unique individual at the top) and suggestions for the design of the level structure
in a hierarchy. As it will become clear below, major factors affecting the structure of the
optimal partition in status categories are: 1) the distribution of abilities in the population,
and 2) the relative weight of the monetary component in the determination of status. If out-

standing talent is relatively rare or if differences in wealth are crucial for status perceptions,

3See Amihai Glazer and Kai A. Konrad (1996) for some empirical evidence and a theoretical model that
focuses on conspicuous giving.

“See Max Weber (1978), James S. Coleman (1990), Thorstein Veblen (1934), James S. Duesenberry
(1949), Milton Friedman and Leonard J. Savage (1948), and Milton Friedman (1953) for some early contri-
butions. Robert H. Frank (1985) offers an entertaining account of some of the issues.

®See Corton Brown, Janathan Gardner, Andrew Oswald and Jian Qian (2004).

5See Sheryl Ball, Catherine Eckel, Philip J. Grossman and William Zame (2001).
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we find an optimal structure that distinguishes the top performer while lumping together
everyone else, irrespective of their performance. This insight yields a novel potential expla-
nation for the well-documented recent increase in the gap between CEO compensation and
the compensation of other workers (or even other executives) within the firm. In contrast,
if talent is relatively abundant and if status is not too tightly linked to wealth, we find an
optimal structure where status categories proliferate and where relatively small differences
in performance are rewarded with different status prizes. In those cases, status can serve
as a potent substitute for money in order to drive performance.”

The tournament literature has shown how prizes based on rank-orders of performance
can be effectively used to provide incentives (see Edward Lazear and Sherwin Rosen, 1981,
Jerry Green and Nancy Stokey, 1983, and Barry Nalebuff and Joseph Stiglitz, 1983).
Charles O’Reilly, Brian Main and Graef Crystal (1988) have emphasized the important
role of status in executive compensation, and Donald Hambrick and Albert Cannela (1993)
use relative standing as the main factor for explaining departures rates of executives of ac-
quired firms. Michael Bognanno (2001) studies the empirical relation between the number
of executive board members and the CEQ’s compensation in “corporate tournaments”.

Benny Moldovanu and Aner Sela (2001, 2006) developed a convenient contest model
that can easily accommodate several prizes of different size. Using their methodology, it is
a natural step to analyze the incentive effect of “status prizes,” and the interplay between
such prizes and tangible ones.

In our present model, several agents who are privately informed about their abilities
engage in a contest, and are then partitioned into status categories (or classes) according to
their performance. A status category consists of all contestants who have performances in
a specified quantile, e.g., the top status class may consist of the individual with the highest
output, the second class of individuals with the next three highest outputs, and so on...

Each individual cares about the number of contestants in classes above and below him. We

"For example, this seems to be the case in institutions devoted to scientific research and in many other
not-for-profit organizations.
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choose a convenient functional formulation that captures well the “zero-sum game” nature
of concerns for relative position: if an individual gets higher (lower) status, one or more
individuals must get lower (higher) status.

A designer (or principal) determines the number of status classes and their size in order
to maximize total output. Since the contest equilibrium only depends on the structure of
status classes, and not directly on the designer’s goal, our type of analysis can, in principle,
be performed for a variety of other goals.

We first analyze the “pure status” case where there are no other tangible prizes to
motivate the contestants. We then extend our model to investigate a setting where the
designer awards monetary prizes, and where status is purely derived from the differences in
monetary compensation, i.e., having a higher monetary prize per se implies higher status.®
These two models represent opposite extremes, and reality is often somewhere in the middle.
In most cases, we think that individuals in organizations are, at least partly, motivated by
status concerns, but that status is not solely derived from the monetary payoffs attached
to various activities.”

Since status is a “zero-sum game” it seems, at first glance, that shifts in the allocation
of status among agents should not affect total output. The missing factor in this argument
is the heterogeneity in abilities. Since higher ability will be, in equilibrium, associated with
higher performance, modifications of classes at different levels in the hierarchy may have
quite different effects. In particular, because the expected benefit associated with a move
upwards in the ranks (which is given by the expected increase in status minus the expected
cost of producing an output that is sufficient for the upward move) depends on the bounds
of the quantile defining the status class, a manipulation of these bounds affects behavior,
and hence total output.

Our results relate the structural features of the optimal partition in status categories

8See Arthur J. Robson (1992) for another model where status is defined by wealth.

9For example, Chaim Fershtmann and Yoram Weiss (1993) relate status to the length of the education
necessary for a specific occupation (their motto is Adam Smith’s nicely circular: “Honour makes a great
part of the reward of all honourable professions”).
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to properties of the distribution of abilities in the society:

1) We show that, for any distribution of abilities, the top category in any optimal
partition must contain a single agent.'® This agrees well with the ubiquitous structure of
many human (or animal) organizations and social structures, and brings to mind familiar
roles such as “queen”, “alpha-male”, “CEQ”, etc....

2) Given a partition in status classes, adding a new element to an arbitrary class
may, in fact, reduce output. But, we show that the adoption of a policy that resembles
“hiring at the lowest level” (see George Baker, Michael Gibbs, and Bengt Holmstrom, 1994)
always makes an increase in the number of (ex-ante symmetric) contestants beneficial to
the principal.

3) We then identify the main factors leading either to a proliferation of status classes
(where each individual is “in a class of his/her own”) or to coarse partitions where it is
optimal to have a wider range of performances bunched together in the same category. A
proliferation of status classes is optimal if the distribution of abilities has an increasing
failure (or hazard) rate. This finding points in the same direction as the well known
empirical fact that job titles do proliferate, but only in organizations with a relatively
professional work-force (see James N. Baron and William T. Bielby, 1986). In contrast, a
coarse partition with only two status classes (where all individuals except one belong to
the lower class) is optimal if the distribution of abilities is sufficiently concave.

4) If the distribution of abilities has an increasing failure rate, we show that the optimal
partition in the class of partitions with only two status categories achieves at least half the
performance of the overall optimal partition. Thus, whenever there are transaction costs
attached to finer partitions, the coarsest possible non-trivial partition may be ultimately
optimal.!! This is related to an argument made by Preston McAfee (2002) in the context
of “coarse matching” of two populations.

5) Finally, we introduce monetary prizes and consider status purely induced by these

0This is of course reminiscent of the optimal taxation literature, pioneered by Mirrlees (1971), which
has a unique tax rate for the wealthiest individual.
" Think about the Econometric society, say, which has two status classes: members and fellows.

82



prizes. In order to add realism, we assume that the designer is budget constrained, and
that agents can choose not to compete if the monetary prize is not enough to compensate
them for a potential low status. In this framework, we show that the optimal structure is
to have exactly two status classes: the top class consisting of the single most productive
agent, while the lower class containing all other agents that get paid just enough to keep
them in the contest. Since, as illustrated above, there are many real-life examples where
status classes proliferate, our results suggest that in those situations status cannot be solely
and entirely induced by monetary wealth.'?. In contrast, the growing gap between CEO
compensation and the compensation of other agents within the firm can be explained by
an increase in the status value conferred by the monetary component.

Technically, our results are obtained by combining insights derived from the general
analysis of contests with multiple prizes developed by Moldovanu and Sela (2001, 2006)
with a novel application of statistical results about stochastic monotonicity properties
of normalized spacings (i.e., differences) of order statistics (Richard Barlow and Frank
Proschan, 1966). For large and interesting classes of distribution functions it is possi-
ble to say, for example, whether normalized spacings become stochastically more (less)
compressed when we climb higher in the ability range, and we show that such features
determine the structure of the optimal partition in status classes.

While many authors put “status” directly into the utility function,'® the paper most
closely related to ours is Pradeep Dubey and John Geanakoplos (2005). These authors
study optimal grading of exams in situations where students care about relative ranks.
We have borrowed from that paper the present specification of utility functions. Our

determination of status categories based on relative effort rank corresponds to what Dubey

20n this topic see also Robert H. Frank (1999).

13Fershtman and Weiss (1993) construct a general equilibrium model where both status and wealth are
determined endogenously. In Gary S. Becker, Kevin M. Murphy and Ivan Werning’s (2005) model, status
is bought in a market. They assume that there are at least as many status classes as individuals and that
status is a complement to other consumption goods. Ed Hopkins and Tatiana Kornienko (2004) study
the effect of an exogenous change of income distribution in a model where agents care about their rank in
the distribution of consumption. Rick Harbaugh and Tatiana Kornienko (2001) draw a parallel between a
decision model that assumes a concern for local status and prospect theory.
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and Geanakoplos call in their respective context “grading on a curve”. There are many
substantial differences between their model, technique and results and ours. For their main
results, Dubey and Geanakoplos focus on absolute grading, assuming that there is complete
information, that students are either homogenous or have discrete types, that effort choice
is binary, and that the relation between effort and output is stochastic. Moreover, the
designer’s goal is to have all students choose the higher effort level out of the two possible
ones. Their main finding is that status-conscious students may be better motivated to
work hard by a professor who uses coarse grading (e.g., A,B,C,D rather than 100, 99,...).
This should be contrasted with our main result about the optimality of the finest partition
for a very large and ubiquitous class of distributions.

Another related paper is Rayo (2003). He analyzes the monopolistic design and pricing
of positional goods that consumers use to signal their types. A main result is that a
monopolist will restrict the variety of positional goods in order to extract surplus from
consumers. In his model, a consumer’s utility depends on the average type of consumers
paying the same price. Thus (as in our model), utility from being in a certain class is
manipulable by the designer. But, in Rayo’s model, utility depends on the characteristics
of consumers in the same class, whereas in our model utility depends on the number of
agents in superior and inferior classes. Moreover, in Rayo’s model there is a continuum of
consumers who interact only indirectly (through the influence of perceptions on utility) - it
is this feature which allows the usage of tools from the literature on monopolistic non-linear
pricing. In contrast, we have here a finite number of agents who directly and strategically
compete for a scarce resource (i.e., places in superior status classes) and therefore we need
to use tools from the literature on contest design/statistics. In spite of these differences,
several of Rayo’s results resemble ours: the highest possible type should never be pooled
with others; if a “virtual valuation function” is monotonic, full separation is optimal,
whereas some pooling (which corresponds to coarseness in our model) is optimal if this
condition is not satisfied.

Postlewaite (1998) presents an excellent discussion on the advantages/disadvantages
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of the “direct” modeling approach versus the one where a concern for relative ranking is
only implicit, or “instrumental” for other goals that are made explicit (see also Cole et al.,
1992). In a nutshell, Postelwaite’s argument against a direct approach is that, by adjusting
utility functions at will, one can explain every phenomenon. For our purposes, the debate
about the right way to model status concerns is only of secondary importance. Our main
focus is on the optimal design of status classes (from an incentive point of view) given that
agents care, for some direct or instrumental reason, about relative position. We view the
assumed utility function as a simplification, and we ask the reader to judge the outcome
by Hardy’s dictum whereby good science must, at least, provide some “decent” distance
between assumptions and results.

The rest of the paper is organized as follows: Section 2.2 presents the contest model
with status concerns, and some useful facts about order statistics. In Section 2.3 we
derive results that connect the form of the optimal partition in status categories to various
properties of the distribution of ability in the population. We first show that, by always
adding new entrants to the lowest status category, the designer can ensure that his payoff
is monotonically increasing in the number of contestants. Thus, potential contestants
need not be excluded from competing. We next show that the top status category in any
optimal partition must contain a unique element. For distribution of abilities that have an
increasing hazard rate, each status category in an optimal partition will contain a unique
element — thus, in this case a proliferation of status classes is optimal. We also show
that the optimal partition involves only two categories if the distribution of abilities is
sufficiently concave. Finally, we study the properties of optimal partitions with only two
status categories. In Section 2.4 we modify the model to allow for status categories that are
endogenously determined by monetary prizes of different sizes. If status is solely derived
from monetary rewards, we show that the optimal partition contains only two categories,
with the top category being a singleton. Section 2.5 concludes. Several proofs and examples

are relegated to an Appendix.

85



2.2 The Model

We consider a contest with n players where each player j makes an effort e;. For simplicity,
we postulate a deterministic relation between effort and output, and assume these to be
equal. Efforts are submitted simultaneously. An effort e; causes a cost denoted by e;/a;,
where a; > 0 is an ability parameter.

The ability (or type) of contestant j is private information to j. Abilities are drawn
independently of each other from the interval [0, 1] according to a distribution function F
that is common knowledge. We assume that F' has a continuous density f = dF > 0.

Contestants are ranked according to efforts. Let {(0,71], (r1, ro], ...(ri—1, 73], ..y, (Tk—1, 7]
} be a partition of the integers in the interval (0,n] in k& > 1 status categories, where
ri_1 < r;. Define also for convenience: ryo = 0 and r, = n. Given such a partition and the
ordered list of efforts, contestants are divided into the k categories: a player is included in
category 1, if his effort is between the r;_1-th and r;-th highest ones.

Each player cares about the number of players in categories both below and above him,

and we assume that the “pure status” prize of being in status category ¢ is given by
Vi =Ti—1 — (n — Ti).

Thus, a contestant is happier when he has more [less| people below [above] him. Note
this formulation well captures the zero-sum nature of status: for any partition in status

categories, the total value derived from status is given by :

k k

Z(Tz‘ — 1"1;1)211‘ = Z(TZ - 7“1',1)(7“1' +7ri1 — n) =0

i=1 =1

To summarize, the timing of the game is as follows: The designer chooses a partition
{r;}k_, and commits to it. Each contestant then gets privately informed about his/her
ability. The contestants simultaneously choose effort level according to their ability types.

Finally, agents are partitioned into different status categories according to their efforts and
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the chosen partition.

We assume that each player maximizes the value of the expected status prize minus
the expected effort cost, and that the designer maximizes the value of expected total effort
by adjusting the partition in status classes.

We use the following notation: 1) Ay, denotes k-th order statistic out of n independent
variables independently distributed according to F' (note that A, , is the highest order
statistic, and so on..); 2) F}, , denotes the distribution of Ay, ,, , and fj ,, denotes its density;
3) E(k,n) denotes the expected value of Ay ,,. (Note that E(n,n) is the expectation of the

maximum, or highest order statistic, and so on..)

2.3 The Optimal Partition in Status Categories

This section contains our main results about the structure of the optimal partition in status
categories. We focus on a symmetric equilibrium where all agents use the same, strictly
monotonic equilibrium effort function #. In such an equilibrium, the output rank of player
7 will be the same as his ability rank among the n contestants.

Let P;(a) be the probability of a player with ability a being ranked in category i,
i.e., her ability is between the r;-th and r;_1-th highest. These probabilities involve the
order statistics of the distribution of abilities in the population. Applying the revelation
principle, agent j with ability a chooses to behave as an agent with ability s to solve the
following optimization problem:

B (s)

a

k
mgxz P (s)[ri-1 — (n—ry)] —

In equilibrium, the above maximization problem must be solved by s = a. The calcu-

lation of equilibrium effort functions and total expected effort yields:

Theorem 2.1 Assume that contestants are partitioned in k status categories according to
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the family {Ti}f:(). Then, total expected effort in a symmetric equilibrium is given by

k—1

EX =S (rie1 — rim1)(n = 1) E(rin)
=1

Proof. See Appendix. m

Given the above result, we can now formulate the designer’s problem: she needs to
determine the number of contestants (m) and status categories (k), and the size of each
category (r;,i = 1,..,k — 1). Explicitly, we obtain the following discrete optimization prob-

lem:

k
max [Z(rH_l —ri—1)(m —r;)E(r;,m)]

-1
m,k,{ri}fzo i—1

subject to
)2 < m<n
ii)2 < k<m
)0 = ro<ri< .. <rg1<rp=m

2.3.1 The Optimal Number of Contestants

In many relevant situations, the number of agents will be exogenously determined by
various economic considerations within the group, and can therefore be considered fixed
for our purposes. But, it is also of interest to understand whether the designer has incentives
to restrict entry that directly stem from the status considerations.!* We determine here the
optimal number of contestants by analyzing the effect of changing the number of contestants
(i.e., by entry or hiring) on total expected effort. Given the zero-sum nature of status, the
answer is not clear-cut, and it depends on the designer’s reaction to entry (i.e., on how
the size and number of status categories change). The following example illustrates the

possibility that a wrong post-entry adjustment policy may cause total effort to actually go

M Taylor (1995) and Fullerton and McAfee (1999) provide models of research tournaments where restrict-
ing entry may be beneficial for the designer.
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down.

Example 2.2 Let F(x) = 21/ w > 1, and consider only partitions with two categories.

Total effort is given by

nl(w+r—1)!

En=n(n—r)E(r,n) =n(n—r) (r=1!(n+w)!

where v s the division point. If we add an additional contestant to the higher category

(that is, we do not change the value of r), we obtain for w high enough:

(w+r—1n! [(n+1)2n+1-7)
(r—1!(n+w)! (n+1+w)

E,.1—E,= —n(n—7)| <0

That is, for sufficiently high w, total effort decreases in the number of players.

We show below that a designer who optimally reacts to additional entry can always
ensure that total effort increases. In particular, in the proof, we identify a very simple
strategy (without the need of a complex re-optimization!) ensuring that total effort does
not decrease: faced with more contestants, the designer can just increase the size of the
lowest status category. For an intuition, consider for simplicity a partition with only two
status categories. Then the number of “status prizes” is equal to the number of contestants
in the top category, and each prize is worth n, the difference in payoffs between the high
and low categories. If another agent is added, the value of each status prize becomes
n + 1 , independently of which status category is expanded. But, if the expansion is in
the lower category, the number of status prizes remains fixed, while an expansion of the
higher category also leads to an increase in the number of prizes. Such an increase has an
adverse effect on the effort of high ability types, and this may offset the positive effect of
having higher prizes. Thus, only by expanding the lower category, the designer increases

the value of status prizes without simultaneously increasing their number.

Theorem 2.3 Total effort in an optimal partition increases in the number of contestants.
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Proof. See Appendix. m

2.3.2 The Optimal Partition

Given the above result, the designer has no incentives to restrict entry in the contest, and
we thus assume below that all n potential contestants are included.!®

Since the distribution of abilities determines the expected values of the various order
statistics appearing in the designer’s maximization problem, the optimal number of status
categories and the optimal size of each category generally depend on this distribution. Our

first main result identifies a robust and general feature that holds for any distribution:
Theorem 2.4 In any optimal partition, the top status category contains a unique element.

Proof. Suppose, by contradiction, that the k-th (top) category contains more than one
element. Then, divide this category into two sub-categories, and denote by 74 the dividing
point: rx_1 < rq < n. Using the formula in Theorem 2.1, the difference in expected effort

between the new and the old partitions is given by:

B _E® = (n—rp1)(n—rg)E(ra,n) — (n = ry_1)(n — ra) E(rg_1,m)

= (n—rg_1)(n—rq) [E(rg,n) — E(rg_1,n)] >0

The inequality follows since A, , stochastically dominates A, | ,. ®

Refining a top category that contains several elements does not affect the rewards going
to agents outside that category. The reward and effort of those agents in the (new) second
highest category is lower than before since these agents lose their top status. But, this loss
is more than offset by the effort increase coming from the highest ability types whose status

is increased by the refinement since they perceive more inferior agents after the change.

15See Section 4 where this result need not hold if the designer is budget constrained and if agents must
be monetarily compensated for low status.
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Optimal Fine Partitions

Our next main result identifies a condition on the distribution of abilities that allows us to
extend the above logic to all status categories, thus exhibiting an optimal partition that is
the finest possible. We use a statistic result about stochastic monotonicity of normalized
differences (also called spacings) of order statistics. We first need to remind the reader
some well-known concepts: The failure rate (or hazard rate) of a distribution F' is defined

by:

A distribution function F' has an increasing failure rate (IFR) if A(a) is increasing or,
equivalently, if log (1 — F'(a)) is concave. Analogously, F' has an decreasing failure rate
(DFR) if A (a) is decreasing, or, equivalently, if log (1 — F (a)) is convex.!®

Armed with these concepts, we can now state:

Lemma 2.1 (Barlow and Proschan, 1966) Assume that a distribution F with F(0) = 0
satisfies IFR (DFR). Then, (n—i+1)(A;, — Ai—1,) is stochastically decreasing (increas-

ing) in i for a fixed n.

In other words, up to a normalizing factor, the difference between the expected abilities
of consecutively ranked contestants is higher at the bottom than at the top if the distribu-
tion is IF'R, and the opposite holds for DF R distributions. An application of this result

yields now:

Theorem 2.5 Assume that F, the distribution of abilities, has an increasing failure rate.
Then, the optimal partition is the finest possible one: each status category contains a unique

element.

Proof. See Appendix. =

16\ ost well known distributions belong to these important and much studied categories. The relationships
between IFR, DF R, convexity and concavity of F' are as follows: Convexity implies IF'R , while DFR
implies concavity. The only distribution that is both concave and convex is the uniform, while the only
distribution that is both IF'R and DFR is the exponential.
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The intuition behind the above result is analogous to one appearing in models of mo-
nopolistic quality /quantity discrimination: in “regular” settings, where marginal revenue is
increasing in type (note that I F'R is a sufficient condition for this to happen !), the optimal
tariff allocates different qualities (here different status classes) to consumers with different
types. In particular, lumping (or pooling) together several types cannot be optimal.

Splitting status class j in two sub-classes has two effects: there is a loss of expected
effort stemming from the fact that several agents are now placed in the lower sub-class,
and there is a gain from agents that are now placed in the higher sub-class (again, classes
other than j are not affected by the split). The I FR condition ensures that the gain more
than offsets the loss. For illustration purposes, assume that a category j has size two, and
we refine it into two new categories, each with one element r; —ry = r4 —r;—1 = 1. This
change is advantageous if the difference of expected efforts after and before the change is

positive, i.e., if

(n—rqg+1)[E(rq,n) — E(rj—1,n)] — (n—(rq+ 1)+ 1) [E (rq+ 1,n) — E (rq,n)]

+[E(rg+1,n)— E(r4,n)] >0

The first line is positive, because the normalized difference between the expected abilities of
consecutively ranked contestants is higher at the bottom than at the top if the distribution

is IF'R, while the second line is positive because of usual stochastic dominance.!”

Optimal Coarse Partitions

If the TFR condition (which represents, in fact, a convexity requirement with respect to
the exponential distribution) is not satisfied, a coarse partition may be optimal. We now
show that a very coarse partition with only two categories is optimal for sufficiently concave
distributions. If there are only two categories, total effort is given by

Et(gt)al =n(n—r)E(r,n)

1"The argument also indicates that the IF R condition is not necessary for class proliferation.
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The intuition for the above expression is simple: this is a contest with (n — r1) equal prizes
(for all those in the higher category), and each prize is worth here n (the difference in
payoffs between the high and low categories). By Theorem 2.4, when looking for optimal
partitions, we can restrict attention to those where the top category consists of a unique
element. In this case 71 = n — 1, and total effort is given by

5®

ol = N (n—1,n)

In order to prove the result, we need to show that any other partition yields less effort

if the distribution of abilities is sufficiently concave. The proof uses the following Lemma:

Lemma 2.2 (Barlow and Porschan, 1966) Consider two distributions F and G such
that F(0) = G(0) = 0 , and such that G='F is convex on the support of F.'® Then

Erp(i,n)/Eq(i,n) is decreasing in i.

Proposition 2.1 Assume that the optimal partition of status categories under distribution
F consists only of two categories, and consider another distribution G such that G™'F
is conver on the support of F. Then the optimal partition under G also consists of two

categories.

Proof. See Appendix. =

If we can show that there exists a distribution function for which the optimal parti-
tion consists indeed of two categories, then the above result immediately implies that the
same will hold for all more concave distributions. The existence of such a distribution is
established in the Appendix.

The intuition for the optimality of very coarse partitions for sufficiently concave distri-
butions of ability is simple: most of the mass is then concentrated at the bottom and high
ability individuals are rare. Thus, many "mediocre” types are motivated by a high reward

(a unique high status prize) since they have a reasonable chance to get it. Moreover, the

8 This means that G is more concave than F.

93



rare high ability individual lacks sufficient competition, and is therefore best motivated by

a large reward.

2.3.3 How Good Are Partitions with Two Categories ?

In the above subsection we have identified conditions under which a partition with two
categories are optimal. Here we take a somewhat different perspective that is not based on
optimality: we show that, for the large and important class of I F'R distributions (for which
the optimal partition is the finest possible one), the designer can nevertheless achieve a
substantial share of the optimal performance with a simple partition in two categories.'®
Thus, if very fine partitions are for some reason costly, a designer may find it optimal to

choose the simplest non-trivial coarse partition. This seems to us a powerful argument in

favor of coarse partitions.

Proposition 2.2 Assume that F, the distribution of abilities, has an increasing failure
rate. Then, the optimal partition in the class of partitions with only two status categories

yields at least half the performance obtained by the overall optimal partition.

Proof. Recall that in the IFR case, the overall optimal partition is the finest possible one,
and hence has n status categories. Thus, total effort in the overall optimal partition is
given by :

n—1
E =23 (n—i)E(i.n)
=1

Total effort in the optimal partition with only two categories is given by

Et(gt)al = n(n - Z*)E(Z*a n)

9We were not able to find a direct technical relation between our result and McAfee’s (2002) paper on
complete information matching of two continuum of populations. In McAfee’s model the “optimal partition”
is always (i.e., irrespective of distribution) the finest possible — assortative matching, whereas we get the
optimality of the finest partition only under I F'R. His result requires I F'R on both distributions of abilities
and on their survival functions, whereas we require I F'R only on the distribution itself. Finally, his result
holds for the partition with two categories where the cutoff is at the mean of each population, whereas our
result holds for the optimal partition in the class of partitions with two categories.
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where ¢* € arg max;[n(n — i*)E(:*, n)]. This immediately yields: E(zt)al > %E(n)

t. total* u

The above approximation is rough, and the coarse partition with only two classes yields
for “well-behaved” distributions a much higher percentage of the optimal performance. For
example, Et(ft) al = %E&Ll for a uniform distribution of abilities.

Our final result in this section gives further information about the optimal partition

with two categories. Its proof is also based on Lemma 2.2 above.

Proposition 2.3 Let r* be the division point defining the optimal partition in two status
categories, i.e. the optimal number of contestants in the lower class. If the distribution of

abilities F' is convex (concave) then r* < (>) n/2.

Proof. Suppose that r* is the optimal division point. Then, total effort in the optimal
partition is higher than in any other partition. In particular, it is higher than total effort

in the partition where » = n — r*. This yields:

nn—r)YE({*,n) > nn—Mm—-r")]EMm-—-r"n)<

(n—r")E(r*,n) > r"En-r"n)<
E (r*,n) S E(n—r*n)

r* - n—r*

By taking one of the distributions to be uniform in Lemma 2.2, we obtain that, for
a fixed n, E(i,n)/i is decreasing (increasing) in ¢ if the distribution of abilities is convex
(concave). Then, for a convex F, the last inequality above can hold only if 7* < (n — r*),
which is equivalent to * < n/2. Analogously, if F' is concave, it must be the case that
r* > (n—7r*), which yields 7* > n/2. =

A simple corollary is, of course, that exactly half of the agents should be in the low

(high) category if abilities are uniformly distributed.
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2.4 Status Derived from Monetary Prizes

So far, we focus on the pure effect of status in contests: there are no other real prizes
to drive efforts. We now consider contests where status is being indirectly (and solely)
induced by the rank of monetary prizes in the respective hierarchy. Higher effort leads to
a (weakly) higher monetary prize, and, in addition, agents get positive utility proportional
to the number of agents that have lower monetary prizes, and negative utility proportional
to the number of agents that have higher monetary prizes.?’ In particular, we depart from
the zero-sum world presented above.

A set of k monetary prizes Vi > Vi1 > ... > Vi and a family of division points
{ri}fzo where 19 = 0 and rp, = n determines a partition with k£ categories: a contestant
ranked in the top category k (i.e., a contestant whose effort is among the top ry — rg_1)
receives a monetary prize of Vi, a contestant in the second highest category receives a prize
of Vi._1 < Vi, and so on till the lowest V7 < V5 < ... < V.

Thus, a player who is awarded the i-th highest monetary prize V; perceives in fact a

total prize (money + status) of :

vp =Vi+ 11— (n—ry).

In order to make the problem non-trivial, we add here two realistic assumptions: 1) The
contest designer is financially constrained: the total amount of monetary prizes cannot
exceed a given amount P. Otherwise, it is obvious that large enough monetary prizes can
always swamp any status effects. 2) We impose an individual rationality constraint: the
expected payoff of each contestant should be non-negative. Otherwise, contestants will
leave without competing (the outside option being normalized to zero).

By calculations similar to those performed for the case of pure status concerns, total

2°Dubey and Geanakoplos (2005) consider a status model where monetary prizes are awarded on the
basis of absolute performance.
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effort in a symmetric equilibrium is given by

k—1 k—1
Bl = (0 = 13)(ri = rie) B(rayn) + Y (n = 1) E(ri, n) Vit = Vi)
i=1 i=1
Therefore, the designer’s problem is as follows:
k—1 k—1
max  EX) = 3 (n—r)(rip — i) E(rion) + Y (n = 1) E(ri,n) (Vi — Vi)
kAriti Vit i=1 i=1
subject to : (1) 1<k<n
k
Z —Ti— 1 =P
i=1
B) izn-mn

4 Vi>Vii> oo 2V

Note that constraint (3) guarantees that the expected payoff of the lowest type, who does
not make any effort, is non-negative. By a standard monotonicity argument, all other types

will have positive expected payoffs.

Theorem 2.6 If P > n, (i.e., if the available budget is as least as large as the number
of contestants), the optimal solution to the designer’s problem has the following structure:
The designer induces a partition with two status categories such that the contestant with
the highest effort receives a monetary prize Vo = P — (n — 1),while all other contestants

receive a monetary prize V4 = 1. If P < n , it is optimal to restrict entry to the contest.

Proof. See Appendix. m

The intuition behind the optimality of the above described partition is as follows: Take a
partition with two categories and a singleton in the top category, and refine it, for example,
by dividing the low category in new “middle” and “low” categories. Then, the agents in
the new low category perceive a decline in status, and this decline must be compensated by
a higher monetary prize (in order to satisfy their individual rationality constraint). Since

status is derived from monetary prizes, the agents in the new middle category must obtain
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a monetary prize that is at least as large as that of the agents in the new low category.
Thus, via the budget constraint, the monetary prize of the agent in the top category must
go down — this decline necessarily induces a decline in the effort of high ability types.
Since the strongest effect of prizes is on high ability agents, the potential increase in effort
of middle ability agents is not enough to compensate for the decline at the top. This insight
is related to the optimality of a unique “first” prize in Moldovanu and Sela’s (2001) contest
model with linear cost functions and purely monetary prizes. That optimality naturally
translates here into a partition in two status classes, with a singleton in the top category.

Our previous result suggests that an upward shift in the relative weight of the monetary
part in determining status will lead to a larger gap between CEO compensation and the
compensation of the other agents in a firm.?! Frydman (2005) documents the relatively
recent dramatic increase in this gap in the US, and offers an explanation based on a shift

in the importance of general versus firm-specific skills.

2.5 Conclusion

We have studied a contest model where heterogeneous agents who care about relative
standing are ranked according to output, and are then partitioned into status categories.
Our main results describe the structure of the optimal partition into status classes from
the point of view of a designer who maximizes total output. The model explains ubig-
uitous phenomena such as a top status class that contains a unique individual, and the
proliferation of status classes in organizations where high-skilled individuals are not rare.
We also studied the interplay between pure status and monetary prizes.

As already mentioned in the introduction, in most real-life situations status is only
partly determined by measurable differences in monetary compensation. Social, cultural

and other economic considerations that may be connected to a concern for relative position

21For example, the average ratio of highest to fifth highest compensation in US firms jumped from about
2.8 in the middle of 20th century to 6.1 at the beginning of the 21th century. The increase in the ratio of
CEO compensation to average compensation in the firm is much more dramatic.
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in a future interaction are also important determinants. Modeling a specific situation
requires a simple combination of the two variants displayed here, and the corresponding
results will be driven by the relative strengths of the monetary versus the less tangible
parts.

Finally, note that, in principle, an analysis analogous to ours is possible for other agents’
utility functions, or for other designer’s goals. In particular, for given, fixed utility func-
tions, the equilibrium analysis is not affected by the designer’s goal which can be modified
according to the desired application. Thus, our model offers a convenient framework for

the study of the various implications of concerns for social status on organizational design.

2.6 Appendix

A few useful facts about order statistics:

It is well-known that:

Fin(s) = Z(?)F(S)j[l—F(S)}”*j

n!

ferl®) = G P T = FE

Let F*(s) ,i=1,2,...n denote the probability that a player’s type s ranks exactly i-th

highest among n random variables distributed according to F'. Then

(n—1)!

R ]

[F()I = F(s)]"™

Defining F}, ,—1 =0, and Fp,,—1 = 1, it is immediate that the relation between F; ,(s) and
Fr(s) is

Fi'(s) = Fi1n-1(8) — Fin-1(s)

Finally, let P;(s) be the probability of a player with type s being ranked in category i,
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i.e., her type is between the r;-th and 7;_1-th highest. Then:

Ti—Ti—1

Ps)= > F' () =Fpryn1(s) = Frn1(s)
7j=1

Proof of Theorem 2.1:
Proof. Let a partition with & categories be given by { (0, r1], (r1, r2], ...(ri=1, 7i]s .o, (re—1, 7] }.
Assuming a symmetric equilibrium in strictly increasing strategies,?? the optimization prob-

lem of a player with ability a is

[~ Fryn1(8)][~(n — r1)]
max {4+ SN [F o1 (s) = Frne1(s)] [ric — (n—14)]

+FTk717n—1(3)7“]€_1 — @

where the first term is the utility of being in the lowest category, the second term is the
utility of being in categories 2 till (k — 1), the third term is the utility of being in the
highest category, and the last term is the disutility of exerting effort 3 (s).

The solution of the resulting differential equation with boundary condition 5(0) = 0 is

“ k—1
B(a) = /0 x {frl,nl(ﬂf)(n —ry)+ [frioin—1(@) = frin—1(@)] (ric1 + 75 —n) + frkl,nl(l“)?“k—l} dx
=2
(2.1)

Thus, total effort is given by:

1
Eiora = n/o B(a)f(a)da (2.2)

The above integral can be calculated by inserting formula 2.1 in 2.2 and by integrating by

parts the constituent terms, who all have the form bfol Lo @ frm—1(z)dz] f(a)da where b

22Tt can be shown that there is a unique symmetric equilibrium.
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is a constant. Note that :

/01 { /0 ' xfr,n_l(@dx} f(a)da

= [F(a) /0 a;pfm_l(x)dx]l — /0 1F(cz)czf7«,n_1(cz>da

0
1
= /0 a [1 — F(a)] fr,n—l(a)da

= BE(r,n—1) - "B@r+1,n)
n

n—r
= E
—LE(r,n)

The last equality follows by a well known identity among order statistics (see David and
Nagaraja, 2003, page 44). Assembling all terms in equation 2.2, and recalling that ro = 0,

and rp = n finally yields:

(n —11)%E (r1,n)
ot =3+ S (ricy i —n) [(n—rim1)E (rim1,m) — (n — ) E(rs, )]

Fre—1(n —1p—1)E(rr—1,n)

k
= Z(ri_H —ri—1)(n—r)E(ri,n)
=1

Proof of Theorem 2.3:

Proof. Consider a partition {r;}¥_, for a given number of contestants m. Total effort is

given by
k—1
Eiota = (rig1 — ri—1)(m — r;) E(ri, m)
i=1
k—1
= Tz(m—ﬁ 7“1, +Z Tit1l — Ti— 1 —Ti)E(Tz',m)
1=2

Assume now that a designer faced with m + 1 contestants expands by one the size of
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the lowest status category: thus, consider the new partition {r!}¥_, where rj = 0,7] =
rm+Lry=ro+1,. 1 =11+ 1,7, =m+1

Total effort for this new partition is given by

kol

-1
Eiorar = (7";+1 - Tz{—l)(m +1- ré)E(ré, m+ 1)
1

.
Il

e
|
-

= (re+1)(m—r)E(ri+1,m+1)+ (rig1 —ric))(m —ri))E(ri + 1,m+1)

-
[|
I\

‘We obtain:

/
Etotal — Eiotal

e

-1
= m—r)E(ri+1,m+1)+ (riv1 —ric)(m — 7)) [E(ri + 1,m + 1) — E(r;,m)] >0
1

-.
Il

The last inequality holds since, for all 4, m, A; 41 m+1 stochastically dominates Ai,m.23 The
claim follows now by starting from an optimal partition for m contestants, and expanding
the size of the lowest category as above. Further eventual optimization of the partition
for m 4 1 contestants must weakly increase the total effort even further, thus yielding the

wished result. m

Proof of Theorem 2.5:
Proof. Suppose that, in an optimal partition with k categories, the j-th (1 < j <k)
category contains more than one element. Divide the j-th category into two sub-categories

and denote by 74 the dividing point, rj_1 < rq < r;. Letting E(0,n) = 0, the difference in

23See Shaked and Shanthikumar (1994) for more details.
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total effort between the new and the initial partition is given by:

(rj =rj-1)(n —ra)E(ra,n)
k+1 k
Et(otal) B Et(ot)al = _(rj - Td)(n - Tj—1>E (Tj_l, n)

—(ra —rj—1)(n —r;j)E(rj,n)

(rj—ra)[(n—rq) E(rg,n) — (n—rj_1) E(rj-1,n)]

L —(ra—rj-1)[(n —rj) E(rj,n) — (n —rq) E (rq,n)]

Let t =7; —rj_1, 7q =1rj—1 + 1. Then,

(k+1) (k)
Etotal - Etotal

(t=1)[(n—ra) E(ra,n) — (n— (ra — 1)) E(rj-1,n)]
—[(n=(rq+t—1)E(rg+t—1,n) — (n—rq) E (rq,n)]
t—1D[n—rq) E(rg,n)—(n—(rq—1))E(rq—1,n)]
—[(n=(rg+t—1)E(rg+t—1,n)—(n—(rq+t—2)) E(rg+t—2,n)]
= —[(n—=(rg+t—2)E(rg+t—2,n)—(n—(rq+t—3))E(rqg+t—3,n)]

—[(n—=(rg+1))E(rqg+1,n) — (n—rq) E(rq,n)]

Note that

(n—r)E(r,n)—(n—(r—1))E(r—1,n)

= (n—r+1)[E(r,n)—E(r—1n)]— E(r,n)

By Barlow and Proschan’s Lemma about I F'R distributions, and by the fact that —E (r,n)
is decreasing in 7, it immediately follows that [(n —r) E (r,n) — (n — (r — 1)) E (r — 1,n)]

is decreasing in r. Therefore g+ gk

total vota; > 0. This contradicts the assumption that

the initial partition was optimal. Therefore, each category in the optimal partition must

contain a unique element. m
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Proof of Proposition 2.1:
Proof. By Theorem 2.4 we can restrict the argument to partitions for which the top status
class contains a unique element. By Theorem 2.1, the total effort in a partition with &

status categories is given by

k—1
B = Y (rivs = ri1)(n = 1) E(ri,n)
i=1
k—2
= Z(T’I_A,_l —ri—1)(n—ri)E(ri,n) + (n —rr_2)E(n —1,n)
i=1
The optimal partition contains only two status classes iff Et(ozg al S t(ot) o forall 2 <k <n.

That is, the following claim must hold for all 2 < k£ < n and all admissible partition

sequences {r;}¥_, :

k—2
nE(n—1,n) > Z(Tiﬂ —ri—1)(n—r))E(ri,n) + (n —ry_2)E(n —1,n)
i=1
k—2
= rpoE(n—1,n)> Z Tit1 — Tie1)(n — i) E(ri,n)
i=1
k—2
E(r;,n
= a2 S i g (2.3
By Lemma 2.2 above, we know that Er(i,n)/Eg(i,n) is decreasing in i. This yields
Er(ri,n) S Er(n—1,n)
Eg(ri,n) — Eg(n—1,n)
which in turn implies
Ep(ri,n) < Eq(ri,n) (2.4)

Ep(n—1,n) = Eg(n—1,n)

Thus, if inequality (2.3) holds under F, it must also hold under G, and the desired result
follows. m

Existence of a distribution for which a partition with two categories is op-

timal:
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Proof. By the proof of Proposition 2.1, it is sufficient to show that there exists a dis-
tribution function for which condition (2.3) is satisfied. Consider F(z) = zw w > 1.

Then
nl(w+r—1)!
(r—1D!(n+ w)!

E(r,n) =

and
E(r,n) (n=2)!" (w+r—1)!

E(n—1,n) (r—1)!(w+n—2)!

(w+r—1)!

It can be easily verified that lim,, (=)

= 0. Therefore, for a sufficiently large w,
condition (2.3) is satisfied, and the result follows. m
Proof of Theorem 2.6

Proof. The designer’s problem is:

k-1 k—1
max Efft)al = (n—r)(riz1 —ri—1)E(ri,n) + Z(n — 1) E(ri,n)(Vig1 = V;)
k:{ri}i:p{vi}izl i=1 i=1
subject to : 1) 1<k<n
k
2) Y (ri—rii))Vi=P
i=1

Assume first that a given partition with k status categories is fixed. We derive the optimal
allocation of money prizes consistent with such a partition. Subsequently, we find the

optimal partition.

(k)
Note that %&f‘” < 0, and therefore Vi = n — r1. The maximization problem reduces
to:
k—1 k—1
max (n—ri)(rig1 — ri—1)E(ri,n) + Z(n —ri))E(ri,n)(Vigr — Vi)
itz i i=1
k
subject to Z(rl ri-)Vi =P
i=1
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Assuming that all the constraints Vi > .... > Vj = n — rq are binding, the Lagrangian is

k—1 k-1
L = ' (n —71i)(rig1 — ri—1) E(ri,n) + ' (n—ri)E(ri,n)(Viyr — Vi) —
=1 . . =1
ao(D (ri—rii)Vi—=P)+ Y oi(Vi— (n—11))
i1 i=1

The first order conditions are

dL
av;

[(n—ri—1)E (ric1,n) — (n—r)E (ry,n)] —ap(ri —ri—1) —a; =0, i=1,...,k

The solution of this problem is:

Vicr = ..=Vi=(n-—r);
Vv, = P—rp_1(n—ry)
n—="Tr-1
ag = FE(rp_1,n);
a = [(n—ri—)E(ri—1,n) — (n—r)E(ri,n)] —ap(r; —ri—1),i=1,..,k
Note that :
a; = [(n—ric1)E(rici,n) — (n—r)E (ri,n)] — ap(r; — ri—1)

< (ri—ri=1)(E(ri,n) — E(rg—1,n)) <0

That is, our assumption that all the constraints Vi1 > ... > Vi = n — r; are binding

(Vi > n—ry is not binding) was correct. Now, at the optimal solution, total effort is given

by
k-1

Et(ft)al = Z(n —713)(rig1 — ric1)E(ri,n) + E(rg—1,n)(P —n(n — 1))

i=1

For a partition with £ = 2 with division point , the above formula yields:

2
Et(ot)al = PE(Tiv n)
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k—1

which is maximized for ; = n — 1. Noting that Z(n — 1) (riz1 — ri—1) = n(n —r1), and
i=1

that for any k, rp_1 <n —1, we obtain that

£ _ p®

total total

k—1

= PE(n—1,n)— (Z(n = 713)(rit1 — ric1) E(ri,n) + E(ry—1,n)(P —n(n — T1))>
- k—1

= PlE(n—1,n) = E(rg-1,n)] = > _(n—7r)(riq1 —ri-1)[E(ri;n) — E(rg—1,n)] =2 0

1

.
I

Thus, a partition with two status categories where the top category contains a unique

element is optimal. m
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Chapter 3

Split-Award Auctions with Entry

3.1 Introduction

Split-award auctions (also known as second sourcing or multiple sourcing) refer to the
practice in which the seller divides one object (contract) into several units (subcontracts)
and each bidder can win at most one unit. Split-award auctions are popular in the
sale of public assets, defence procurement and industrial practice. In US FCC spectrum
auctions, the national market is divided into blocks and two licences are issued for each
blocks. In European 3G auctions, several licences to the market are sold to different firms.
In weapon procurement, two or more suppliers are awarded contracts if their bids are in
“competitive” range (e.g. 10%). Woodside and Vyas (1987) study the purchasing strategies
of six industrial firms and find that multiple sources are used for eight out of eighteen
industrial products. All the purchasing agents they interviewed preferred to purchase from
more than one source if possible, because “having more than one source is the cheapest
way of buying insurance. If one source fails, you can fall back on the other.” (p. 27).
Three arguments are commonly proposed in favor of split-award auctions. First, split-
award auctions can help cultivate healthy competition in the long run. The government
can set the number of winners to improve market structure of the particular industry. In

the procurement setting, split-award enables the buyer to introduce yardstick competition
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to discipline the suppliers and smooth unanticipated surges in input demand. Second,
split-award auction attract more bidders and enhance competition in bidding. Finally, it
can be used as an instrument to favor disadvantaged bidders and level the playing field.

Split-award auctions have two distinct features. On one hand, the split-award auction
is ex-post inefficient because the object is divided into several units and only one unit
goes to the bidder who value them most. On the other hand, it can attract entry. In the
split-award auction, the strong/advantageous bidder can win at most one unit, so several
units are set aside for disadvantaged bidders. Therefore, it favors disadvantaged bidders
and they will enter the auction more often. The combination of these two features is quite
attractive when the seller (or buyer in procurement auctions) wants to favor disadvantaged
bidders. For example, in FCC auctions, the Congress prefers to increasing the chance
of winning of minorities. In government procurement auctions, the government favors
domestic firms who might have higher costs than their foreign opponents. If all bidders are
treated symmetrically as in the standard auctions, preferred disadvantaged bidders have
low chance to win. However, if there are only one foreign firm and a bunch of domestic
firms, the government can divide the original single contract into two or more smaller
contracts, which will ensure that domestic firms win at least one contracts.!

These two features, however, have quite different implications for the seller’s revenue.
Allocation inefficiency hurts the seller’s revenue while the entry effect improves it. As men-
tioned above, split-award auctions provide insurance and promote long-run competition.
But an interesting question is: can it increase revenue in the short run? In other words,
when will the entry effect dominates the allocation inefficiency? We show that split-award
auctions could raise revenue or reduce procurement cost in the presence of both bidder

asymmetry and endogenous entry.

Various other instruments, such as bidding credits and set asides, are used in auction design to handicap
strong bidders and help disadvantaged parties. Both bidding credits and set asides are used in FCC auctions
to help minority bidders to win auctions (see Cramton (1997) for details). But these instruments have two
defects. First, bidders are treated aymmetrically, which may violate domestic law or international treaty
(e.g., WTO). Second, detailed information about bidder asymmetry is required for them to perform well,
which is unlikely in many situations. In contrast, split-award auctions treat bidders symmetrically and
information required is mild.
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The goal of this paper is to justify split-award auctions in terms of revenue and highlight
the importance of the interaction between asymmetry and entry in auction design. We want
to compare the two auction formats used to sell two unit of homogenous goods: (1) standard
second price auction: the highest bidder gets both units and pays the second highest bid;
and (2) split-award auction (a multi-unit uniform second price auction): the two highest
bidders each gets one unit and pays the highest losing bid. We show that the split-award is
always inferior to the standard auction either when bidders are asymmetric or when entry
is endogenous (but not both). When there is both bidder asymmetry and endogenous
entry, we show that the split-award could generate higher revenue than standard second
price auctions.

Although participation constraints are one of the two type of fundamental constraints
that the designer faces in the mechanism literature, it is largely missing when specific auc-
tion formats, such as sealed-bid or open bid auctions, are discussed. Results on auctions
with entry are quite limited (McAfee and McMillan, 1987a, 1987b, Levin and Smith, 1994,
Ye, 2004 among others). More importantly, bidders are usually asymmetric in applica-
tions. Incumbent firms or suppliers have information advantage or cost advantage over
new entrants or suppliers. A few recent studies on asymmetric auctions (Maskin and Riley
2000, and Krishna 2003) show that general insights gained from symmetric auctions (for
example, the celebrated revenue equivalence theorem) cannot carry through under asym-
metric setting. The interaction between bidder asymmetry and endogenous entry may have
important implications, which are the focus of the current paper.

The literature on split-award auctions starts from the share auction (Wilson, 1979) and
menu auction (Bernheim and Whinston,1987). In a study of the split-award auctions with
two bidders, Anton and Yao (1989, 1992) show the split-award auctions are desirable when
the technology is decreasing return to scale. Seshadri, Chatterjee and Lilien (1991) model
the procurement as a first price auction and examine the tradeoff of multiple sourcing
between low revenue and supply flexibility. The buyer chooses the number of winners to

minimize total costs. However, they don’t consider the entry issue and assume bidders are
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symmetric.

Perry and Sakovics (2003) study the split-award auction with entry. In their model, an
order is spit into two contracts which are auctioned off in two sequential auctions. They
assume entry is sequential and bidders are symmetric. The buyer chooses the relative size
of the two contracts to minimize purchasing costs. In contrast, this paper assumes entry
is simultaneous, bidders are asymmetric, and there is only one multi-unit auction. Athey,
Levin and Seira (2004) compare open-price versus first price auctions theoretically and
empirically with bidder asymmetry and endogenous entry. Gilbert and Klemperer (2000)
model rationing with an interpretation of second sourcing. Both papers emphasize the
interaction of bidder asymmetry and entry. Gilbert and Klemperer (2000) is closer to our
paper in spirit. We will discuss the difference between their paper and our paper later.

A few papers study how other instruments (such as bidding credits and a bid cap) can
help improve the seller’s revenue. These papers share the same theme with the current
paper that an ez post inefficient mechanism may turn out to be better for the seller ex ante.
Based on the insights from optimal auction design by Myerson (1981), McAfee and McMil-
lan (1989) analyze how bidding credit can help government reduce cost in procurement.
They show that the government can minimize its purchasing cost by providing bidding
credit to the weak bidders. Che and Gale (1998), Gavious, Moldovanu and Sela (2002)
study how the bid cap can be used as an instrument to handicap strong bidders to increase
the total lobby expenditure and total effort input respectively.?

The rest of the paper is arranged as follows. Section 3.2 sets up the model framework.
Section 3.3 studies two benchmarks: auctions without entry and symmetric auctions with
entry. In both benchmarks, the standard auction is always better than the split-award.
The main results of the paper is contained in section 3.4, where we study asymmetric
auctions with entry. We first define the type-symmetric equilibrium and show that it is

unique under mild restrictions. Our numerical results show that the split-award auction

2The difference is that, Che and Gale study a setting with complete information and asymmetric bidders,
while Gavious et al study a setting with incomplete information and symmetric bidders.
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outperforms the standard auction for a wide range of parameters. Section 3.5 discusses the

results and concludes the paper.

3.2 Model

A seller wants to sell a divisible object to N 4+ 1 potential bidders. The seller can either
divide the object into two units and restrict each bidder to win at most one unit, or sell
it as a single object. In principle, the seller could divide the object in an arbitrarily way.
For simplicity, we focus on 50-50 split: if the seller choose to split the object, the resulted
two units will be identical. There is no complementarity or substitutability between the
two units,® so bidders’ valuations for the units are additive.

There are two type of bidders: a group of weak bidders (¢ = 1,..,N) and a strong
bidder (S = N+1). The weak bidders’ valuations are independently drawn from a common
distribution with support [0, 1], that is, v; ~ F'(-). The strong bidder’s valuation is drawn
from distribution F(-)* (A > 1) with support [0, 1] . Therefore, the valuation distribution
of the strong bidder stochastically dominates the valuation distribution of weak bidders.*
Foralli=1,.., N, v; and vg are independent.

We consider the following two auction formats. The first format is the standard second
price auction: the highest bidder gets the two units and pays the second highest bid. The
other one is a split-award auction: a multi-unit uniform second price auction, In the split-
award auction, the two highest bidders each gets one unit and pays the highest losing bid.
We want to compare the revenue performance of the two auction formats with and without
the interaction of bidder asymmetry and endogenous entry.

The timing of the game is following. First, the seller announces the auction format and
commits to it. Next, potential bidders decide whether to incur a entry cost ¢ to gather

value information and enter the auction. By paying ¢, bidder ¢ learns his private value for

3The no-complementarity assumption between the two objects is crucial for our model, but the no-
substutability assumption can be dropped without affecting our results generated below

4This specific form of stochastic dominance is assumed to simplify the calculation in asymmetric auctions
with entry.
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the object, v; or vg, and submit a bid in the auction. If bidder 7 chooses not to incur cost c,
then he will stay out of the auction. Finally, bids are revealed and the winners are chosen.

Therefore, the bidders’ strategy can be characterized by two decision variables: entry
decision and bidding decision. Let D; (i =S, W) denote the bidders’ entry decision and
let b; (i = S, W) denote bidders’ bidding strategy once they enter. We will focus on the

type-symmetric equilibrium defined as follows.

Definition 3.1 A wvector (Dg, Dy ,bs,bw ) is a type-symmetric equilibrium if and only if
(1) the strong bidder uses strategy (Dg,bs), and weak bidders use strategy (Dw,bw);
(2) each bidder’s bidding strategy (bs or by ) maximizes their profits conditional on
entry;

(8) A bidder enters if and only if his expected profit from entry is higher than the cost

For the rest of the paper, we will argue that bidder asymmetry and entry are two
important considerations for mechanism design. Their interaction may reverse the revenue
ranking of the two auction formats we consider because the presence of strong bidders will
make the entry effect more prominent. In order to isolate the two effects (allocation and
entry) and highlight the importance of interaction of bidder asymmetry and endogenous
entry, we first consider two benchmarks: auctions without entry and symmetric auctions

with entry.

3.3 Benchmarks

In this section, we will study two benchmarks: one with asymmetric bidders and one with
endogenous entry. The goal of this section is to show the neither bidder asymmetry nor
endogenous entry alone can make split-award auctions superior to the standard second
price auctions. But as we show in the next section, split-award auctions may perform
better indeed when there is an interaction between bidder asymmetry and endogenous

entry.
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3.3.1 Auctions without Entry

The first benchmark considers the case where the number of bidders is fixed. So there is
allocation inefficiency but no entry effect in the split-award auction.

Let X @N+1) denote the i-th order statistic of the N+1 random variables, v1, v, ..., UN, UN+1-
Note that XVFTEN+D pepresents the highest order statistic. The following proposition

shows that it is never optimal for the seller to split the object.

Proposition 3.1 In auctions without entry, the standard second auction generates higher

revenue than the split-award auction.

Proof. In the standard second auction, all bidders bid their true valuations for the two
units. The highest bidder wins both units and pays the second highest bid. Therefore, the

seller’s revenue is®

8 -k [QX(N:N-H)} — 9F {X(N:N—l—l)} _

In the split-award auction, all bidders bid their true valuations for one unit, and the top
two bidders each wins one unit and pays the third highest bid. Thus, the seller’s revenue
is

s — 2K {X(N—“V“)] .

Since

E [X(N:N—H)} >E [X(N—I:N+1)] ,

we have TI1Z > 11°. m

Because the number of bidders is fixed, the seller gains nothing in the short run by
using the split-award auction. The allocation inefficiency hurts the seller’s revenue, so
the standard auction always outperforms split-award auction in (symmetric or asymmet-
ric) auctions without entry. Thus, if the seller wants to use split-award auction to favor

disadvantaged bidders or to gain long term benefits, she must sacrifice her revenue.

5The superscript “B” and “S” represent “bundle” and “split”, respectively.
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3.3.2 Symmetric Auctions with Entry

The second benchmark allows endogenous entry restricts bidders to be symmetric. Suppose
there are N potential ex ante symmetric bidders and their valuations {v1, ..., v, } are i.i.d.
draws from the same distribution F. The seller first announces the auction format m €
{B, S} that will be used to sell the object. And then bidders decide whether to incur an
entry cost ¢ and bid in the auction. If they enter then they will submit bids in the auction.
Let n denote the number of bidders who enter the auction and bid. Since bidders are
ex ante symmetric, we focus on symmetric mixed strategy equilibrium where all potential
bidders choose to incur the cost ¢ and enter the auction with some probability p.

Denote by E[r|n, m] each potential bidder’s ex ante expected gain from entering, paying
¢, learning n, and bidding according to the symmetric undominated strategy implied by m
and n. We assume that the entry cost c is moderate in the sense that it is profitable for
some but not all potential bidders to enter the auction, that is 0 < n* < N.As showed in
Levin and Smith (1994), E[r|n, m] is decreasing in n, so there are exists a unique integer,
n*, such that E[r|n*,m] > 0 > E[r|n* + 1, m]. Furthermore, there is a unique symmetric
equilibrium where all potential bidders enter the auction with the same probability. First,

we introduce a lemma proved in Levin and Smith (1994).5

Lemma 3.1 (Levin and Smith, 1994) The second price auction with zero entry fee and

zero reserve price generates optimal entry for the society and the seller.

Let X (™) denote the highest order statistic among the valuations of n active bidders.

When potential bidders enter the auction with probability p, the expected social surplus is
N
N .
> (n)p"(l —p)N " 2X ™) — pNe,

n=1

Denote pp the probability of entry in the standard second price auction, and pg the prob-

5See proposition 6 and 7 in Levin and Smith (1994).
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ability of entry in the split-award auction. Then above lemma implies that

N

pp € argmax [Z (ﬁf >p”<1 —p)N T 2X 0]~ pNe

Applying above results, we can show that standard auction is better when entry is endoge-

nous but bidders are symmetric.

Proposition 3.2 In symmetric second price auction with endogenous entry, the standard

second price auction dominates the split-award auction in terms of seller’s revenue.

Proof. Again, let X" X —11) and X ("=271) denote the first, second and third highest
order statistics among n valuations v;, ¢ = 1,...,n. In equilibrium, bidders are indifferent
between entering and not entering. Therefore, the expected gain from attending auction
is zero for all bidders. As a result, the seller’s revenue coincides with the social surplus.

According to Lemma 3.1,

N
N N .
(1 — npx (M) — pN
pBGargm3X[§ <n>p( p) " ] =pNec

n=1

Thus,
/N
B = n(]_ N-—n 2X(nn) o N
S (5 )bt =m0 e
Y (N
> ni] _ N-n 2X(nn) — poN
2 3 () Jrat—p9 X g
Y (N
> n]_ N-n X(nn) X(nflsn) — paN
I B e
= II°.
u

Hence, if bidders are symmetric, the standard auction is still better than the split-award

in terms of revenue. In addition, the social surplus is higher in the standard auction than in
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the split-award. Thus, with endogenous entry alone, the revenue of the split-award auction

is always lower than the standard second price auction.

3.3.3 Summary

To summarize, we have showed that the standard second price auction generates higher
revenue than the split-award auction when the interaction between bidder asymmetry and
endogenous entry is absent.

Proposition 3.1 shows that when entry is not an issue the standard second auction
is always better in generating seller’s revenue. Therefore, if the seller only cares about
revenue, then she should bundle the two units and sell them together. If entry is an
important concern but bidders are symmetric, then the standard auction is still better
in terms of revenue, as showed in proposition 3.2. The intuition is the following. In the
symmetric auctions with entry, the seller’s revenue is equivalent to social surplus. The
split-award auction indeed attracts more entry, but it is socially excessive because too
many bidders pay entry cost. Under private value setting, standard second price auction
generates the optimal entry, thereby the highest revenue. Thus, neither bidder asymmetry
or endogenous entry alone can justify the use of the split-award auctions in terms of seller’s

revenue. It is optimal for the seller to sell the object as a single piece.

The effects of splitting the object on the seller’s revenue can be summarized as follows:

Effects of Split-Award

Allocation Effect

Entry Effect

Gross Effect

Without Entry Negative / Negative
Symmetry & Entry Negative Positive Negative
Asymmetry & Entry Negative Positive ?

Table 3.1 Revenue effect of split-award

As we can see later, when there is an interaction between bidder asymmetry and endoge-

nous entry, the gross effect of split-award on seller’s revenue can be positive.
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3.4 Asymmetric Auctions with Entry

In the previous discussion, we already show that standard auctions outperform split-award
auctions in both benchmarks: auctions without entry and symmetric auctions with en-
try. This section will show that split-award auctions might perform better in asymmetric
auctions with entry with a range of parameters.

For simplicity, we assume there is only one strong bidder and N potential weak bidders.
The unit valuation of weak bidders v;(i = 1,...N) are independently drawn from the
distribution F'(-) with support [0, 1]. The strong bidder’s unit valuation vg is drawn from
FX(-) with support [0,1] and A > 1.

We first characterize the unique type-symmetric equilibrium under mild restrictions.
Then we use a numerical example to show that the split-award auction performs better
than the standard second price auctions for a wide range of parameters when there are

both bidder asymmetry and endogenous participation.

3.4.1 Existence and Uniqueness of the Type-Symmetric Equilibrium

We focus on type-symmetric equilibrium in which all weak bidders adopt the same mixed
strategy when they make their entry decision. Let ¢ denote the probability of entry of the
strong bidder, and p denote the probability of entry of weak bidders. Denote by n the
number of weak bidders who choose to enter. Finally, let 7wy (n, 1) denote a weak bidders’
expected payoff from attending the auction when the stronger bidder and n weak bidders
enter the auction, 7y (n,0) denote a weaker bidder’s payoff when the strong bidder stays

out, and wg (n) denote the strong bidder’s expected payoff when n weak bidders enter.

Proposition 3.3 Consider an asymmetric auction with one strong bidder and N potential
weak bidders. Denote by p, q the entry probability of the weak bidders and the strong bidder
respectively. If 0 < p < q < 1, then there is a unique type-symmetric equilibrium with

q=1.
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Proof. (1) Existence. Fix ¢ = 1, and a probability p such that weak bidders are indifferent
between entering and staying out.” All bidders bid their true value after entry. Then (p, q)
constitutes a type-symmetric equilibrium.

(2) Uniqueness. First notice that given ¢ = 1 there is a unique p such that E,, [ry(n, 1)]—
¢ = 0, because E,, [my(n,1)] is monotonically decreasing in p.

Second, if 0 < p < g < 1, then in the type-symmetric equilibrium, it must be ¢ = 1.
Suppose not, that is, ¢ < 1. Then in equilibrium, both the strong bidder and the weak

bidders earn expected payoff zero. That is,

E, [¢gmw(n,1) + (1 — ¢)mw(n,0)] — ¢ =0, and E, [rg(n)] —c = 0.

We want to show that these two equations cannot hold simultaneously, which means ¢ < 1
cannot be true in equilibrium.

Define

p(q) = En [rs (n)] = En [grw(n, 1) + (1 — ¢)mw (n, 0)]

Then

S}
=2

I
WE

3

N
(V)= sty = 3 (07 D)= amw 1)+ 0= (0,0

< i

0 n=1

3
I

=

I
hE

3

>p”(1 —p)Vr {ﬂ's(n, 1) — Nip [qmw (n,1) + (1 — ¢)mw (n, O)]} +(1- p)Nﬂs(O, 1).

I
—

n

Note that

dp(q) (N =1\ . —n
S dq _; (n— 1)P Y1 = p)N " [ (1, 0) — (2, 1)] > 0.

"Because as one can show, a weaker bidder’s expected payoff is decreasing in p. Therefore, there is a
unique p to make weak bidders to be indifferent between participation and staying out.
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In addition,

w(p)
N
= 3 (3 ) s ) = gt )+ (=Pt 01} + (1) Vas(0.1)
N
n=1
N-1 N
= <Nn— 1)]0"(1 —p)N_nﬂs(n’ 1) — Z (]:Z__ll>pn—1(1 —p)N_n+17Tw(TL, 0) + (1 —p)Nﬁs(O, 1)
n=1 n=1
N-1 N—1 N—1 N_1
- "1 =p) s (n,1) - H1 = p) Nt (t 4 1,0) + (1 — p)Nrs (0,1
n1<n>p p)" "rs(n, 1) t0<t>p p)" mw( )+ (1 —p)Nrs(0,1)
N-1
- )t =)V rs(n, 1) — mw(n +1,0)] + (1 — p)N [r5(0,1) — mw(1,0)]
(Nn 1) N s 1) v
n=1
> 0

The last inequality holds because wg(n,1) > mw(n + 1,0) and 7g(0,1) > 7y (1,0) by
stochastic dominance of bidders’ valuation distributions. Since 0 < p < ¢ < 1and ¢/'(-) > 0,
©(q) > ¢(p) > 0. Therefore, the two equations cannot hold simultaneously in equilibrium.
Hence, ¢ =1. m

The intuition of the proof is the following. If weak bidders are indifferent between
entry and staying out, the strong bidder must prefer to entering for sure, because his
valuation stochastically dominates the valuations of weak bidders. However, the restriction
0 < p < ¢ <1 isimportant for the uniqueness. If we allow weak bidders to enter more
frequently than the strong bidders, then alternative equilibrium is possible. For example,
suppose there one weak bidder and one strong bidder, and assume that it is profitable
for one bidder to enter only when the other stays out. Then the following entry strategy
could be an equilibrium: the weak bidder chooses to enter for sure, while the strong bidder

choose to stay out for sure.

124



3.4.2 Revenue Comparison: Numerical Results

Now we want to compare the performance of the two auction formats: the standard second
price auction and the split-award auction. Ideally, one would like to provide analytically a
range of parameters under which the split-award auction performs better. Unfortunately,
we are unable to do that. Instead, we provide some numerical results to illustrate that the
split-award auction does perform better for a wide range of parameters.

In order to calculate the seller’s revenue, we need to derive the distribution of order
statistics for bidders’ valuations. Pool the strong bidder’s valuation Vg and n weak bidders’
valuations (V1, ..., V,,) together, and denote the order statistic as X (\n+1)| x @nt1) - x (ntlm+1)
In addition, we denote by Z () z@n) - 7mn) the order statistic for the weak bidders’
valuations Vi, ..., V,,.Let G("™) (a:),G("_L”) and G(™27) are the cumulative distribution
of Z(mm)  g(n=lmn) = 7(n=2n) pespectively, and H (it fnntl) anq gn=1n+l) are the
distribution of X (+1nt1) = x(mntl) apnq X (—Lnt1) pegpectively. The (s and H's are
derived in the Appendix. Those distributions are extensively used in proving the following

two lemmas.

Lemma 3.2 In standard second price auction with one strong bidder and n weak bidders,

the seller’s expected revenue is
1
8 (n) =2 [1 - / {F(z)" +n[l — F(z)]F(z)*" }dz
0

The strong bidder’s expected profit is

125



Proof. See Appendix. m
Similarly, we can calculate the payoffs to the three parties for the split-award auction

with one strong bidder and n weak bidders.

Lemma 3.3 In split-award auction with one strong bidder and n weak bidders, the seller’s

expected revenue is
I°(n) =2 — /1 {QF(:U)" + 2nF(z)" Y1 — F(z)] + n(n — 1) F(z)*" 21 — F(l’)]Q} dx
0

The strong bidder’s expected profit is

FEach weak bidder’s expected profit is

w5 (n) = /0 {1+ 0= DF@'1 = F@)]} 1 - F@)]F(2)"de

Proof. See Appendix. m

Denote by pp the equilibrium probability of entry in the standard auction, and pg the
equilibrium probability of entry in the split-award auction. Then the indifference conditions
of both auctions pin down pp and pg, respectively:

N
N -1
Standard Auction : Z ( >p"B_1(1 —p)N "1l (n) —c=0

n—1
n=1

n—1

N
N -1
Split-Award Auction : Z < )pg_l(l —ps)N " (n) —e =0

n=1

From the equilibrium condition, we can solve the equilibrium entry probability pp and pg.
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With pp and pg, we can calculate the seller’s revenue in two auction formats:

N

EIP = 2(27)10%(1—193)]\[_”778(”)
EIl® = i(g)pg(l—ps)]\]"ﬂs(n)
n=2

Then we can compare seller’s revenue under different parameter profile (A, ¢, N) .

We cannot solve the equilibrium entry probability analytically, but we can use nu-
merical example to illustrate when the split-award auction may outperform the standard
second price auction. To simplify the numerical computation, we assume uniform valuation
distribution for the weaker bidders’ valuation, that is, F(z) = z, F(z)* = 2.

First, we investigate how the entry probability and the seller’s revenue vary with dif-
ferent level of entry cost ¢, holding the asymmetry level A\, the number of potential bidders

N.

standard second price auction | |
------- split-award auction

1.2}

o
©
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Entry Probability
o
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S
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Entry Cost

Figure 3.1: Entry probability and entry cost (N = 10, A = 3)
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Figure 3.2: Seller’s revenue and entry cost (N = 10, A = 3)

It is clear from above graphs that the split-award auction is better when entry cost is
higher. Moderately high entry cost means that bidders’ entry decision is not trivial. So
that the presence of a strong bidder has strong effect on the weak bidder’s incentive to
enter. As we can see from the right graph, the entry probability of the split-award auction
is systematically higher than the standard second price auction. From the left graph, for
the low entry cost, the entry induced by the split-award is excessive so the seller’s revenue
is lower. But when the entry cost is high, split-award did a pretty good job in attracting
weak bidder to increase competition in the auction. The pattern is robust to the number
of potential bidders N.

Next, we investigate how entry probability and seller’s revenue change with different

level of asymmetry A, holding entry cost and the number of potential bidders fixed.
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Figure 3.3: Entry probability and bidder asymmetry (N = 10, ¢ = 0.04)
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Figure 3.4: Seller’s revenue and bidder asymmetry (N = 10,c¢ = 0.04)

As we can see, the split-award auction is better when bidder asymmetry is strong. This
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is intuitive given our results on symmetric auctions with entry. When bidders are almost
symmetric, the standard second price auction is close to optimal. So bundling the two
unit together is optimal. On the other hand, if bidders are strongly asymmetric, then the
participation of the weak bidders will be a problem. In order to encourage them to enter,
the seller can use split-award to set aside one unit for them and thus induce them to enter
with higher probability.

To summarize, we show that neither bidder asymmetry or endogenous entry alone can
justify the use of split-award auction in terms of seller’s revenue. But the coexistence of bid-
der asymmetry and endogenous participation amplifies the positive entry effect on seller’s

revenue, which makes the split-award auction attractive for a broad range of parameters.

3.5 Conclusion and Discussion

Most of the existing literature impose two assumptions: bidder symmetry and a fixed num-
ber of bidders. But in reality, both assumptions are not realistic. This paper shows that the
interaction of asymmetry and entry has important implications in auction design. We show
without the interaction between asymmetry and entry, the standard second price auction
always generates higher revenue than the split-award auction. But when the interaction is
important, the reverse could be true.

Our paper is closely related to Gilbert and Klemperer (2000). In their paper, a mo-
nopolist commits a pricing policy to sell one object to two potential buyers. Each buyer
independently chooses whether to incur a seller-specific sunk investment ¢, success with
some probability. They publicly report whether the investment is successful. If successful,
the strong(weak) bidder has valuation vg (vy) and chooses whether to buy. They find that
committing a single price across all demand states and rationing when necessary can be
more profitable than the market-clearing price schedule. In their setting, rationing arises
when in three circumstances: first, the inefficiency caused by rationing is small, i.e., the

level of asymmetry is low; second, entry cost is high; and third, the weak bidder gains more
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from the rationing in high demand than a low price in low demand.

There are several important differences between their paper and ours. In our model, the
price is formed through the bidding process which depends on the bidders’ entry decision. In
contrast, in their model, the seller determines the price and because consumers’ valuation is
binary the seller’s pricing decision is quite simple. Moreover, when bidders are symmetric,
rationing is ex-post efficient in Gilbert and Klemperer (2000), but split-award is not efficient
in our setting. In addition, our model shows that rationing should not appear in the absence
of bidder asymmetry, but in their model, rationing arises with symmetric bidders. Finally,
in our model, higher level of asymmetry facilitates rationing while in their model, higher
level of asymmetry hinders rationing.

This paper, however, shows the desirability of the split-award auction only through
numerical examples. One important line of future research is to investigate whether the
optimal auction involves split-award, when both entry and bidder asymmetry are impor-

tant.

3.6 Appendix

Here we will review a few standard results for order statistics, and then provide proofs for

Lemma 3.2 and 3.3 in the text.

Distributions for Order Statistics

Recall that we use X+l x@ntl) - x(ntlntl) are the order statistics of pooled
valuations, (vg,v1,...,v,) and zn) z(2m) - z(nm) are order statistics for the weak bid-
ders’ valuations (v1, ..., vp).

Let G(™(x) denote the cumulative distribution of the first highest order statistic

Zm) then G™(x) = F(z)". For the second highest order statistic Z"~1™) we can
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derive its distribution G~ (z) as follows:

G(n—l:n)(w) _ Pr(Z(n—lzn) SCL‘)

= Pr(at least n — 1 of the v; are less than or equal to z)

n

= > ()rern-ror

j=n—1 J
— nF(2)" 'L - F@)] + F()"

= nF(z)" ! = (n—1)F(z)"
Let H™+1m+1)(z) denote the distribution for the order statistic X (**17+1)  then
H(n+1:n+1)(l‘) _ Pr(X(n+1:n+1) < ZL‘) _ F(:L,))\—I—n

The distribution of the second highest order statistic X (nn+1) jg quite involved. We know,
the event that X (™"+1) is less than or equal to z is the union of: (1) all vg and v;’s are
less than or equal to z; (2) vg is greater than x and all v;’s are less than or equal to x; (3)
vg is less than =, (n — 1) of the v;’s are less than or equal to =, and one of v;’s is greater

than x.

H(n:n—f—l)(x) _ Pr(X(n:n—‘rl) < .7})
= F@)M"+[1 - F@)F(z)"+n[l — F(z)]F(z)Mn1

= F(z)"+n[l — F(x)]F(z)Mn"1

Similarly, we can calculate the distribution of the third highest order statistic X ("—1n+1),

The event that X ®~17+1) is less than or equal to z is the union of: (1) all vg and v;’s are
less than or equal to x; (2) vg is less than x and all v;’s except one are less than or equal
to x; (3) vg is less than z, all v;’s except two are less than or equal to z;(4) vg is greater

than z, and all v;’s are less than x; (5) v is greater than x, all v;’s except one are less than
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or equal to x.That is,

H(n—l:n-i—l)(x) _ Pr{X(n—lzn—f—l) < iL'}
= P +nF (@)1 - F(z)] + ”(”2_ Y @21 - P)?
+F(2)"[1 = F(2)*] + nF(2)""'[1 = F(a))[1 - F(x)"]
n(n—1)

= F(z)"+nF(z)" 1 - F(z)] + F(x)" 721 — F(x)]?

2

Proof of Lemma 3.2:

The seller’s expected revenue is

HB(TZ) _ 2E[y(nn+l)] — 2/1 de(n:nJrl) (.CU)
0
1
= 2/ z[nF(z)" '+ n\+n—1DF@) M2 —n(\ 4+ n)F ()M f(2)da
0

1
— _ )" nll — T x)\nfl T
_ 2[1 /O{F<>+ L - F(@)]F2)™™}d

For the strong bidder, he pays the highest bid 2Z(™™ among the n weak bidders if he

wins. The distribution of Z(™™) conditional on the strong bidder’s winning is:

F(z]| 2™ < pg) = ul

Therefore, expected payment for strong bidder with valuation vg is,

1
F(vs)™

fovs F(z)"dx
Flvg)™

vs
B[z 20 < wg] = / enF (x)" ! f(z)dr = vs —
0

And the expected profit of the strong bidder is,

1
rs(n) = 2 /0 Flog)"{vs — B[Z0M | Z20m) < y ]3P (vs)*

1
— )M — l‘A.CL‘
— 2/0F<>[1 F(a)d
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For weak bidder ¢, its expected payment is % share of the difference between seller’s
revenue and the strong bidder’s expected payment. The ex-ante expected payment for the

strong bidder is

1
Elts|ln] = 2 / F(vs)"E(Z™™| () < vg)dF(vg)?
0

1
. /0 Fvs) vsdF(vs) — ms(n)

_ 2{ni/\ _ /OIF(x)”[l _ nj_/\F(x))‘]da;}

Then the expected payment for bidder 1 is,

Eltw|n] = %(HB(n) — E[ts|n])
1 . .
- % {1 - /0 [F@)" 4 nll = F@))F(e)*™ de — - +A +/0 Fa)"[l = —— /\F(:E))‘]dx}
' n
= 2 {n Jlr 5 71/0 F(z)"" 1 n(1 - F(z)) + WF(x)]dx}

His profit is equal to the expected value of the object conditional on winning minus his

expected payment. That is,

1 1
Tw(n) = % / 2P (2 dF (2)" — Bty |n] = % / naF (2L dF (z) — Efty|n]
0 0
1, [ nF(x)*n ! Lon n
= n{[ajm}o—/o )\+nF(:c))‘+ dx} — E[tw|n]

= /1 F(x)" "Y1 — F(x)]dz
0

This completes the proof. l
Proof of Lemma 3.3:

In the split-award auction, each bidder is restricted to buy only one unit. The two

highest bidders win the objects and pay the price of the third highest bid. The transaction
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(n—1:n+1)

price is the third highest order statistic Y ,which has distribution

n(n —1)

H(n_1:n+1)<l‘) _ F(I’)n + nF(:L‘)n_l[l — F(-T)] + 2

F(a)M" 21 = F(x)]”
Hence, the seller’s expected revenue is

1 1
HS(TL) _ 2E[y(n71:n+1)] _ 2/ wdH(nflszrl)(x) _ 2[1 - / H(n71:n+1)(x)dx]
0 0

= 92— /0 {2F(:C)n +2nF (2)" 1 — F(z)] +n(n — 1) F ()21 — F(x)]Q} "

Now consider the expected profits of the strong bidder. If the strong bidder wins, he
pays the second highest bid among the n weak bidders, that is Z(™~1)  The distribution
of Z("=1) conditional on the strong bidder’s winning is :

G(n—l:n) (x)

Flal2"™ < vs) = Frmmye

Then, the expected payment of the strong bidder with valuation vg is,

1 fOUS G(n—l:n) (I‘)dl’

vs
E Z(n—l:n) Z(n—l:n) < — / dG(n—l:n) — _
[ | — US] G (n—1n) (US) 0 v (x) vs G(n—1mn) (vs)

And the expected profit of the strong bidder is,

1
ﬂ_s(n) — / G(n—l:n) (US){US _ ]E[Z(n—lzn)|Z(n—1:n) < US]}dF(’Us)A

US G(nfl:n) (ZC)CZ.%
— G n—1:n) dF A
/ G(nflzn) (US) (US)

- [ vs) / Gt (g )dx]:— /OIF(US)AGW—L”)(US)CJUS

_ /G”ln )1 — F(z)\de
- /0 [P = (n - )F(@)"|[1 - F(z)de

Next, consider weak bidders. The total expected payment from bidder weakers is equal
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to the difference between seller’s revenue and strong bidder’s expected payment. The

ex-ante expected payment for the strong bidder is

1
E[tS’n] _ / G(n—l:n)(vS)E(Z(n—lzn)’Z(n—lzn) S’l)s)dF(vs))\
1
_ / G=1) (4 Nogd F (vg) — 15(n)
0

1
_ /)\xG(”_l’”)(x)F( Pl (a /G(” 1) ()1 — F(2)"|da
0

Then the expected payment from weak bidders is,

nE[tw |n]

= II°(n) — Elts|n]

_ 2[1—/01H(”_1:"+1)(x)d:v]—{/1)\;126'("_1:”)(:15) ()" LdF (x /G" L) ()1 (x)’\]dx}

0

Its profit is equal to the expected value of the object conditional on winning minus the

expected payment. That is,

1 1
nmw(n) = /0 a:dG(":")(x)—i—/O 2 F ()N G () — nEltw|n]
1 1 1
_ - 2)"dx - T Ay(n—1:n) 2dr — 2F(z A—1v(n—1:n) - z
1/0F()d+1/F()G (2)d /)\F() GO () dF ()

0

201 — / HO=En 4 (1) da] + / 1 AzG ) () F(2) T dF (2)
0

1
Gl ()1 — F(2)dz

Hn 1n+1 )d _/ nd.%’—/ Gn ln

1
{F@ L= F@)]+ (- DF@)" 21 - F<x>12} da

1 {1 T N O R F(:r)]} [l — F(z)]F(z)" 'dz.

2o

Il
B

|
3

= n

0
J
J
Thus, the proof is complete. B
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