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Abstract

Information is crucial for making decisions under uncertainty. This dissertation ex-
plores how information is designed or elicited by a principal aiming to implement a
certain objective.

Chapters 1 and 2 study information design in cases when there is no commitment
to reveal information. In Chapter 1, I analyze optimal evidence acquisition in a game of
voluntary disclosure. A sender seeks hard evidence to persuade a receiver to take a cer-
tain action, but there is uncertainty about whether evidence has been obtained. When
the probability of obtaining evidence is low, I show that the optimal evidence structure
is a binary certification: all it reveals is whether the state of the world is above or below
a certain threshold. When binary structures are optimal, higher uncertainty leads to
less pooling at the bottom because the sender uses binary certification to commit to
disclose evidence more often.

Chapter 2 (co-authored with Elliot Lipnowski and Doron Ravid) studies how cred-
ibility affects persuasion. A sender uses a weak institution to disseminate information
to persuade a receiver. Specifically, the weaker is the institution, the higher is the prob-
ability that its report reflects the sender’s agenda rather than the officially announced
protocol. We show that increasing this probability can benefit the receiver and can lead
to a discontinuous drop in the sender’s payoffs. To derive our results, we geometrically
characterize the sender’s highest equilibrium payoff, which is based on the concave
envelope of her capped value function.

Finally, Chapter 3 (co-authored with Franz Ostrizek) explores monopolistic screen-
ing with frame-dependent valuations. A principal designs an extensive-form decision
problem with frames at each stage. The optimal mechanism has a simple three-stage
structure and uses changes in framing (high-low-high) to induce dynamic inconsistency
and thereby reduce information rents. To achieve this, the principal offers unchosen

decoy contracts. Sophisticated consumers correctly anticipate that if they deviated,
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they would choose a decoy, which they want to avoid in the low frame. This allows the
principal to eliminate some incentive constraints. With naive consumers, the principal

can perfectly screen by cognitive type and extract full surplus from naifs.
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Chapter 1

Evidence Acquisition and Voluntary

Disclosure



1.1 Introduction

Hard evidence is often sought and disclosed by one party (sender) to persuade another
(receiver) to take a certain action. For example, pharmaceutical companies test new
drugs to get the approval from the US Food and Drug Administration, startups build and
test prototypes to secure financing, sellers apply for quality certification to persuade
consumers to buy products, etc. However, in many cases the receiver may be uncertain
about whether the sender has obtained the evidence. In the above examples, medical
test results may have been inconclusive, a prototype may have been prohibitively costly
to experiment with, and quality certification may have been delayed. In many such
cases, even if the sender has evidence, she may be able to pretend to be uninformed. In
other words, she can conceal unfavorable evidence by claiming ignorance. This creates
a trade-off for acquisition of evidence. Before evidence is obtained, the sender may
prefer the receiver to learn something about the state. But after she obtains it, it might
be in her best interest not to disclose it.

Consider the following example. An entrepreneur has a project of unknown quality.
She can seek verifiable information on its quality to persuade an investor to provide
financing. Before obtaining the evidence, she may prefer detailed information about
the quality to be released to the investor, regardless of its contents. This is the case if,
for example, evidence about moderately low quality allows the entrepreneur to secure
at least partial funding. But suppose that the disclosure is voluntary and the investor
is uncertain about whether the entrepreneur is informed. Then, if the entrepreneur
learns that the quality is low, she may prefer not to disclose the information and pretend
to be uninformed. This prevents the investor from learning details about low-quality
projects. Therefore, the entrepreneur must decide what information to seek taking into
account her future disclosure incentives. We show that this substantially affects which

information is sought in the first place.



In principle, when the state of the world is rich and the set of messages that can
be sent is large, one might expect to see complex communication between the agents.
In reality, however, senders often rely on verifiable information that is very coarse. In
many cases, it is as simple as a binary certification: a signal that reveals only whether
the state of the world is sufficiently good. For example, often sellers apply for certifi-
cations that test whether their products have high enough quality, job candidates take
professional exams with pass or fail grades, etc. This paper shows that the mere oppor-
tunity to conceal information as described above can lead in equilibrium to acquisition
of simple information structures such as binary certification.

To study these interactions, we consider a communication game between a sender
(she) and a receiver (he). The state of the world is continuous and unknown to both
players. The sender wants the receiver to take a certain action, but the receiver takes
the action only if his expectation of the state exceeds his privately known cutoff. The
sender publicly chooses what information to acquire, but there is an exogenous un-
certainty about whether she will obtain any evidence from this inquiry. If she obtains
the evidence, then she can voluntarily disclose it or pretend to not have obtained it.

Otherwise, she cannot prove that she is uninformed.

Result 1: High uncertainty leads to binary certification. Our first main result (The-
orem 1.1) shows that when there is a large enough probability that no evidence is ob-
tained, the optimal evidence structure acquired by the sender is a binary certification:
it reveals only whether the state is above or below a certain threshold. Otherwise, the
optimum is a two-sided censorship, which is similar to binary certification, but also
reveals intermediate states. Fig. 1.1 illustrates these two types of optimal evidence

structures.



FAIL PASS FAIL PASS

= ~ ~ ____Teveal®
0 set of states © 1 0 set of states © 1
(a) Binary certification (b) Two-sided censorship

Ficure 1.1: Two forms of optimal evidence structures.

To get some intuition why binary certification is optimal, note that it is an infor-
mation structure that assigns a single message (Pass) to the states above a threshold
and a single message (FaiL) to those below. In other words, the states are pooled at
the top and at the bottom of the distribution. We identify two distinct forces that drive
pooling of high and low states, and show that binary certification is optimal when the
interaction between them is non-trivial. First, pooling at the bottom happens because
the disclosure is voluntary. In our example because the entrepreneur cannot commit
to always disclose, if she learns that that the project’s quality is sufficiently low, she
will pretend pretend to not have obtained evidence. Second, pooling at the top arises
because of the sender’s uncertainty about the receiver’s cutoff for action. If the distri-
bution of cutoffs is single-peaked, there are increasing returns to disclosing more (less)
information about low (high) states. Therefore, in the absence of disclosure concerns,
the sender ex-ante prefers to reveal low states and pool high states.

To illustrate how these two forces can interact in a non-trivial way, consider the
optimal evidence structure for various values of the probability g of obtaining evidence.
First, suppose g is close to 1. In this case, the optimal evidence structure is a two-
sided censorship: it reveals whether the state is above an upper threshold and below
a lower threshold via pass and FAIL messages, respectively, and perfectly reveals the
intermediate states. The two forces driving pooling at the top and bottom in this case do
not interact. To see this, suppose that probability g slightly decreases. Then the receiver
becomes less skeptical when the sender claims ignorance. This, in turn, incentivizes the
sender to conceal more, and the lower pooling region becomes larger. But the incentive

to pool the states at the top is unaffected by that. In particular, the upper threshold
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stays constant at the level the sender would choose absent the voluntary disclosure
problem. In other words, there is “separability” between the two forces in the case of
two-sided censorship.

But now suppose that the probability g of obtaining evidence is low. In this case,
the two forces interact in a non-trivial way, and we show that this leads to binary
certification. Why does the sender choose to acquire so little information? Suppose
that the sender instead chose fully revealing evidence structure. Then if g is low, she
would often claim to be uninformed because the receiver is not too skeptical when
there is no disclosure. Overall, this leads to a large concealment at the bottom, which
hurts the sender’s ex-ante expected payoff. To mitigate this problem, she designs the
signal so that she then discloses more often. This is exactly what binary certification
achieves: when the threshold is relatively low, the pass message is assigned to the states
that would otherwise be concealed. So the sender end up disclosing more often, albeit
only a single message.

Fig. 1.2 illustrates the evidence structure acquired by the sender in equilibrium. For
each value of g on the vertical axes, it shows the optimal partition of the state space.
If the probability of obtaining evidence is low (g < ¢), there is a binary certification
threshold, such that states are pooled above and below this threshold. If the probability
of obtaining evidence is high (g > q), the states are pooled above the upper threshold,
pooled below the lower threshold, and fully revealed otherwise. As discussed above, the
interaction between the two forces driving pooling at the top and bottom is trivial under
two-sided censorship: upper threshold stays constant as the size of lower pooling region
changes. But at g = ¢ the interaction becomes non-trivial and the sender switches to
binary certification. Since she uses binary certification to commit to disclose more often,

the threshold for upper pooling region may drop discontinuously as g declines below

q.
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FiGURE 1.2: Optimal evidence structure for various levels of uncertainty.

Result 2: Pooling at the bottom is non-monotone. The second main result (The-
orem 1.2) shows that when there is binary certification, the certification standards
degrade as uncertainty increases. That is, the lower the probability g, the lower is the
threshold. This implies that the sender facing less skeptical receiver will choose a sig-
nal with less pooling at the bottom. At first, it might sound surprising as, for a fixed
evidence structure, lower skepticism incentivizes the sender to conceal more. Indeed,
due to a trivial interaction between the design and disclosure forces, it leads to more
pooling at the bottom. In contrast, when binary certification is optimal, this effect is
reversed. This further highlights the interaction between the design and disclosure
forces. The intuition is the following. The sender switches to a relatively low binary
certification threshold because it allows the sender to commit to disclose more often.
This allows to mitigate the problem of limited commitment due to voluntary disclosure.
As uncertainty increases, this problem becomes more severe and lower thresholds be-
come more effective. The non-monotonicity of the pooling at the bottom is evident in
Fig. 1.2: as g decreases, the pooling at the bottom grows, but then begins to shrink

once q declines below g¢.



Welfare. We also study the implications for players’ welfare. Notice that the higher
q is, the more skeptical the receiver is when the sender claims ignorance. This dis-
ciplines the sender to disclose more and, therefore, the conflict between the sender’s
ex-ante and interim preferences for disclosure is lower. Unsurprisingly, this implies that
the sender’s equilibrium value is increasing in her probability g of obtaining evidence.
As for the receiver, it follows from our equilibrium characterization that the informa-
tiveness of two-sided censorship is increasing in g in the Blackwell sense. However,
optimal binary-certification signals are not Blackwell-comparable for different values
of g, since higher g makes pass more informative and raIL less informative. But as
higher g means there is a smaller chance the sender is uninformed, we show that the
overall disclosed signal is Blackwell more informative. Thus, the receiver also benefits
from a higher probability that evidence is obtained.

The above analyses compare environments with different upper bounds on the in-
formation that the receiver can get. If g is very small, then the receiver learns very
little, regardless of the sender’s strategy. Therefore, the players’ payoffs are increasing
in g partly because higher g allows the sender to communicate more often. To isolate
this effect, we normalize the players’ payoffs by g and show that the normalized equi-
librium payoffs are also increasing. This means that there are two channels through
which the equilibrium payoffs are affected: higher probability of obtaining evidence

allows the sender to communicate not only more often, but also more efficiently.

Related literature. This paper is related to the literature on disclosure of verifiable in-
formation (for a survey, see Milgrom, 2008).1 The seminal works of Grossman (1981),
Milgrom (1981), and Milgrom and Roberts (1986) study disclosure under complete

provability, that is when the sender can prove any true claim. The key insight of those

1Coarseness of information is also a common feature in cheap-talk models (Crawford and Sobel,
1982) which study a different environment: the information is soft, it is given to the sender exogenously,
and the coarseness follows from partially aligned preferences of the players. In our model, information
is hard, acquired endogenously, and the sender has state-independent preferences. See Pei (2015) and
Argenziano, Severinov, and Squintani (2016) on information acquisition in a cheap-talk model.

7



papers is that complete provability implies “unraveling”, which leads to full informa-
tion revelation in equilibrium (for a recent generalization, see Hagenbach, Koessler,
and Perez-Richet, 2014).2

Our model is based on the approach of Dye (1985) and Jung and Kwon (1988),
in which evidence is obtained with some probability and there is partial provability:
if the sender is uninformed, she cannot prove it.> The main innovation compared to
this literature is that the evidence the sender obtains is chosen endogenously. Some re-
cent papers (Kartik, Lee, and Suen, 2017; Bertomeu, Cheynel, and Cianciaruso, 2018;
DeMarzo, Kremer, and Skrzypacz, 2019) endogenize the sender’s endowment of evi-
dence in Dye (1985) framework.4 Kartik, Lee, and Suen (2017) study a multi-sender
disclosure game, where senders can invest in higher probability of obtaining evidence,
while taking the evidence structure as given.

Bertomeu, Cheynel, and Cianciaruso (2018) study a closely related problem, in
which the firm is maximizing its expected valuation by choosing an asset measurement
system, subject to strategic withholding and disclosure costs. The firm makes an ad-
ditional interim investment decision with a convex cost, which leads to its objective
being convex in the market’s posterior mean. Their model with zero disclosure costs
can be mapped into a special case of our model, where the PDF of the receiver’s type is

increasing. In this case, it is optimal to acquire a fully-informative evidence structure

2Another common point of inquiry in this literature is informational efficiency of voluntary disclosure
compared to the receiver’s commitment outcome, see e.g. Glazer and Rubinstein (2004, 2006); Sher
(2011); Hart, Kremer, and Perry (2017); Ben-Porath, Dekel, and Lipman (2019).

30ther approaches in which unraveling fails include costly disclosure models of Jovanovic (1982) and
Verrecchia (1983) and multidimensional disclosure models of Shin (1994) and Dziuda (2011). Okuno-
Fujiwara, Postlewaite, and Suzumura (1990) provide sufficient conditions for unraveling in two-stage
games, where in the first stage players can disclose private information, and give examples in which
unraveling does not happen.

4In Matthews and Postlewaite (1985), the sender makes a binary evidence acquisition decision before
playing a voluntary disclosure game under complete provability. Gentzkow and Kamenica (2017) study
overt costly acquisition of evidence in a disclosure model where each type can perfectly self-certify and
show that one or more sender(s) disclose everything they acquire. Escudé (2019) provides an analogous
result in a single-sender setting with covert costless acquisition and partial verifiability.
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for any probability of obtaining evidence, and, therefore, the interaction between the
design and disclosure incentives plays no role.

In DeMarzo, Kremer, and Skrzypacz (2019), evidence acquisition is covert, that
is, the sender’s signal choice is observed only if she discloses its realization.> They
characterize the ex-ante incentive compatibility with a “minimum principle” and show
that it is sufficient for the sender to choose simple tests, equivalent to binary certifi-
cation. Interestingly, their result is driven by forces that are very different from ours.
More precisely, as their sender’s objective is linear, she is ex-ante indifferent between
all information structures and might as well choose a simple test that satisfies a “min-
imum principle”. In contrast, we provide conditions for binary certification to be the
unique optimum (up to outcome equivalence) in environments with the convex-concave
sender’s objective and acquisition is overt. Although some of our results will continue
to hold even if the choice of a signal was unobserved, in general, it is not clear what
would happen in the case of covert acquisition and non-trivial incentives for evidence
design.

This paper also contributes to the literature on Bayesian persuasion and information
design (for a survey, see Kamenica, 2019). In the special case of our model when the
sender is known to possess the evidence (g = 1), the unraveling argument applies, and
the optimal evidence acquisition problem becomes equivalent to the one of Bayesian
persuasion (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011). This prob-
lem in similar environments was studied by Alonso and Camara (2016b), Kolotilin,
Mylovanov, Zapechelnyuk, and Li (2017), Kolotilin (2018), and Dworczak and Martini
(2019). In particular, it follows from their analyses that upper censorship is optimal if
the receiver’s type distribution is unimodal. Information structures equivalent to our

binary certification and two-sided censorship also appear in Kolotilin (2018) in cases

5Ben-Porath, Dekel, and Lipman (2018) study a related voluntary disclosure problem, in which there
is an ex-ante covert choice between risky projects, which, in our setting, corresponds to a choice between
priors.
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when the distribution of the receiver’s type is not unimodal. There, binary certification
can be optimal because of a particular shape of the the receiver’s type distribution (e.g.
bimodal), rather than the interaction between the design and disclosure incentives.

A standard assumption in this literature is that the sender commits to a signal,
whose realization is directly observed by the receiver, while in our model it is voluntarily
disclosed by S. Some recent works (Felgenhauer, 2019; Nguyen and Tan, 2019) also
relax the assumption that the receiver observes signal realizations. In Felgenhauer
(2019), the sender designs experiments sequentially at a cost and can choose when
to stop experimenting and which outcomes to disclose. Nguyen and Tan (2019) study
a model of Bayesian persuasion with costly messages, where a special case of the cost
function corresponds to verifiable disclosure of hard evidence studied in this paper. The
difference is that their sender can choose not only a signal about the state, but also the
probability of obtaining evidence. In contrast, g is exogenous in our model. If it could

be chosen by the sender, she would set g =1 and obtain her full commitment payoff.

1.2 Model

Setup. There are two players: a sender (S, she) and a receiver (R, he). The state
of the world is 8 € ® = [0,1], unknown by both players, who share a prior py € A®,
which admits a full-support density and has a mean 6 := Eyy.¢ R has a private payoff
type w € Q = [0, 1], which is independent of 6 and distributed according to a continuous
distribution with CDF H and strictly quasi-concave PDF h with a peak at @ > 6.7 R

either acts (a = 1) or not (a = 0) and has a utility ug(a,0,w) = a(@ —w). That is, R

6Throughout the paper, A® denotes the set of all Borel probability measures on © and, for any u € A©,
Eu denotes the expectation [60du(6).

7The assumption @ > 0y can be interpreted as the conflict between the players’ preferences being
moderately large for a given H. If conflict is small (& < 6y) and H is close enough to be degenerate at @,
then the uninformative signal is optimal. For a fixed H, if the conflict is small, the uninformative signal
may not necessarily optimal.
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prefers to act if and only if his expectation of the state is at least as high as his type.
The sender always wants R to act and has a utility ugs(a,0,w) = a.

The timing of the game is as follows. First, S publicly chooses what evidence to
acquire at no cost. Formally, she commits to a signal 7: ® — AM, where M is a rich
enough set of messages.® Then, the nature draws the state 6 from p,, the message m
from 7(0), and the set of available messages M as follows. With probability g € (0,1],
M = {m, @}, which means S obtains a proof that the realized message is m and chooses
a message 1 € M, i.e. whether to disclose it or claim to not have obtained it. With
probability 1 - g, M = {&}, which means that she has not obtained any proof and must
send m = @.° Finally, R’s type w realizes, he observes 1 and =, updates his belief, and
chooses an action.

There exist a number of interpretations of this setting. First, as described above, w
can be interpreted as R’s private type. Second, the set of R’s private types Q can be
viewed as a population of receivers. In this interpretation, S persuades the public to
maximize the mass of those who choose to act. Third, one can consider a setting, in
which R does not have a private type, but the action space is continuous. For example,
suppose that R is matching the state (ug(a,0) = —(a—0)?) by taking a continuous action
(A=10,1]), and S has a state-independent utility function that is convex-concave in the
action (ug(a,0) = H(a)).'° Then such a model is strategically equivalent to the one we
study.

We analyze Perfect Bayesian Equilibria of the game. Without loss of generality,
messages can be labeled so that they represent the corresponding posterior means. For

example, in equilibrium, a message m € [0, 1] induces a posterior mean that equals m.

8In particular, the cardinality of M is assumed to be at least that of supp o = [0, 1].
9The restriction to a single ‘cheap-talk’ (i.e. always available) message 7 = @ is without loss of
generality here.
10Dworczak and Martini (2019) provide an example of a continuous-action game in which the sender’s

objective is convex-concave.
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Belief-based approach. Below we describe a framework that will be convenient for
analyzing the equilibria of the game. It relies on the representation of information
structures with convex functions, which has proven to be useful in information design
literature (Gentzkow and Kamenica, 2016; Kolotilin, 2018). Although it might not
seem as the most intuitive way of representing information, the investment into this
framework will pay off. In particular, we will show that the voluntary disclosure game
can be analyzed using the same approach. A unified treatment of all aspects of the
model will then allow to solve the optimal evidence acquisition problem.

To characterize the equilibria of the game, we adopt the so-called belief-based ap-
proach. First, we solve for R’s best response for a given posterior belief; then, we write
S’s payoff as an indirect utility function of R’s posterior. This allows to treat R as a pas-
sive player who forms beliefs and express equilibrium conditions in terms of S’s indirect
utility function.

Moreover, R’s best response depends on a posterior belief € A® only through the
mean ES: 11

a*(B):=1EP > w).

Therefore, it suffices to look at the posterior mean Ef € ©.
We can now express S’s interim payoff as an indirect utility function of the induced
posterior mean. If S induces a posterior belief f with mean 6 := ES, her interim (ex-

pected) payoff is

1 1
f us(a*(B),0,w)dH (w) :f I(ES > w)dH(w) = HEP) = HO).
0 0

So S’s indirect utility function is exactly H, which measures the mass of R’s types below

the induced posterior mean.

11The tie-breaking rule here is without loss of generality.
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Information structures as integral CDFs. Because only the posterior mean matters,
each signal 7 can be associated with the corresponding distribution over posterior
means u, € A®. We will identify a distribution over posterior means u € A® with
its integral CDF (ICDF), which is an increasing convex function I, defined as the an-

tiderivate of the CDF F),'2

Iu:R+_’R+,
0
0[5,
0

Clearly, knowing I,;, one can recover the CDF as the right derivative (I,,), = F.

To illustrate the approach, consider two extreme information structures: full in-
formation 7 and no information z. Since 7 fully reveals the state, all posteriors are
degenerate at the corresponding states, and the distribution over posterior means then

coincides with the prior

Hz = Ho-

Since 7 reveals no information, there is a unique posterior that is equal to the prior yy.
This means that the corresponding distribution over posterior means is degenerate at
the prior mean 6 = Eug

Ux = ;-

Denote the integral CDFs of uz and u, as 1 and I, respectively.

Fig. 1.3 below illustrates I and I for po ~24[0,1]. Since Mr =0 1 is degenerate at 6,
the ICDF is piece-wise linear I, (0) = (0 - 1)* :=max(6 - ,0), where the kink at 6y = 3
with slope 1 corresponds to the point mass. The ICDF of uz =14[0,1] is the integral of

. N . . . 2
a piece-wise linear function and is, therefore, quadratic: I40,1;(0) = % on [0,1].

12We omit the variable of integration whenever it is unambiguous, adopting the following notation:
Ji = I3 @, f7 fdh:= [7 f0dhix).
13



0 Euo =69 1
FIGURE 1.3: Integral CDFs of evidence structures, corresponding to full information I, no
information I, and partial information I, for uy ~ 10, 1].

To describe the space of all information structures using this approach, define the
informativeness order as follows. As is well known, 13 Blackwell informativeness order
over information structures translates into mean-preserving spreads over distribu-

tions of posterior means. Formally, the partial order »=\ps is defined as
l,L, =MPS l,l,” — (IH/ > I”II and [E/.l,, = [E[.t”) .

Now since any information structure 7 is more informative than x and less informa-
tive than 7, it follows that I > I, > I. Gentzkow and Kamenica (2016) and Kolotilin
(2018) show that the converse also holds: for any convex function I, such that I > I > I,
there exists an information structure 7 and a unique distribution over posterior means
p such that I = I,,u = us. Define the set of ICDFs of all distributions over posterior

means bounded between I and I as

T:={I:R; —R,|Iconvexand I >1>1I}.

13Rothschild and Stiglitz (1970) prove equivalence in the context of a risk averter’s preferences over
monetary lotteries and Leshno, Levy, and Spector (1997) provide a corrected proof of their result. Black-
well and Girshick (1954) prove a decision-theoretic equivalence result in the finite case.
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Note that the requirement that the mean must be preserved is satisfied for any I € Z,

since I(1) = I(1) and for any e A®
1 1
[E,u:f 0 dF,(0) = 1—[ Fy(0)d0 =1 1,(1).
0 0

Therefore, the informativeness ranking in 7 is represented with a simple point-wise
inequality, i.e. partial order >.

This approach allows us to treat all information structures in a unified way. In
particular, the signal chosen ex-ante by S and the distribution of R’s posterior means
(equivalently, evidence that is disclosed by S) can be both viewed as information struc-
tures and, therefore, can be represented with elements of Z. The approach of repre-
senting distributions over posterior means allows us to treat all information structures
in a unified way. First, S’s ex-ante choice of a signal corresponds to some distribution
over posterior means and, therefore, can be represented with an element of Z. Sec-
ond, what S’s discloses, in equilibrium, corresponds exactly to the distribution of R’s

posteriors, which is then also an element 7.

1.3 Analysis

We analyze the model by backward induction. First, we fix an arbitrary evidence struc-
ture and solve the voluntary disclosure subgame. Next, we compute S’s subgame (se-
quential) equilibrium value for a given evidence structure. Finally, we solve the optimal

evidence acquisition problem and discuss properties of the optima.
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1.3.1 Voluntary disclosure

In this section, we characterize equilibria of the voluntary disclosure subgame. That is,
we derive the equilibrium disclosure strategy and the distribution of R’s posteriors for
an arbitrary evidence structure I.

Recall that S’s indirect utility function coincides with the CDF H of R’s cutoffs distri-
bution and is, therefore, strictly increasing. It then follows that the equilibrium disclo-
sure strategy is a threshold rule: S discloses the evidence if and only if it is sufficiently

good.14

Lemma 1.1. For any acquired evidence structure I, in any sequential equilibrium of the
corresponding subgame, evidence is (not) disclosed if it induces a posterior mean above

(below) the disclosure threshold 0, ;, defined as

gl0g,) =1-q)0—0g),

In addition, this threshold 0 1 is decreasing in q and I (with respect to the informativeness

order >) and unique if and only if q # 1 or 1(8) >0 for 6 > 0.

Lemma 1.1 tells us that whatever evidence structure S chooses ex-ante, she discloses
only realizations that are “good enough”. Intuitively, if ¢ =1, then R is certain that S
has evidence and the standard unraveling argument of Grossman (1981) and Milgrom
(1981) applies. Since R knows S has evidence, R’s skepticism makes the highest type
want to separate from all types, and so on for lower types. This means that 0y ; = 0 for
any I.

But when g < 1, R’s skepticism is ‘muted’, which allows S to credibly conceal ev-

idence. To understand how the threshold H_q, 7 is constructed, suppose, first, that S

14An equivalent model of voluntary disclosure was analyzed in Dye (1985) and Jung and Kwon (1988)
for continuous distributions. Lemma 1.1 provides a unified treatment of general distributions, including
distributions with atoms, e.g. discrete. Such a generalization will be useful in our context, since I is
chosen endogenously at the ex-ante stage. Indeed, as can be seen from the equilibrium characterization
below (Theorem 1.1), the optimal evidence structure might be discrete.
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discloses any evidence she obtains. Then R’s posterior mean after seeing message &
is Oy. If I is not uninformative, then the worst evidence S might obtain is below 6,
which means S prefers to conceal it. By iterating this argument, we arrive at a fixed
point: if S uses the threshold strategy with 9% 1, then the corresponding distribution
of R’s posteriors is such that the evidence inducing éq, ; makes S indifferent between
disclosure and concealment. Note that 967, 7 is decreasing in g, which means that as

uncertainty grows, R’s skepticism weakens and leads to less disclosure, for a fixed I.

Transformation of Information. It will be useful to think about S’s strategic disclo-
sure of information as a garbling of the acquired information structure. In particular,
one can represent this garbling in terms of a mapping from S’s chosen evidence struc-
ture into the induced R’s distribution over posterior means. Since we identify evidence
structures with distributions over posterior means, both objects can be represented as
ICDFs. The following corollary characterizes the transformation of evidence structure

due to voluntary disclosure.

Corollary 1.1. For any acquired evidence structure I, there exists a unique subgame equi-
librium disclosed evidence structure. Moreover, it is given by the following voluntary

disclosure transformation

V.
D411,

I—[gl+(1-q)Gd-6)]",

where (-)* := max(-,0) and id denotes the identity function 6 — 6.

Notice that the subgame equilibrium disclosed evidence & 27/ Iis unique, even though
the subgame equilibrium disclosure strategy may be non-unique. This is true for any

I €7, even if there is an atom at éq, 1, the point of indifference between disclosure and
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concealment. The reason is that when S obtains evidence 967, 1, both disclosure and

non-disclosure lead to the same posterior mean and, consequently, the same 92{ I.

Benchmark: Mandatory disclosure. To understand the logic behind the voluntary
disclosure transformation, it will be useful to compare it to the case of mandatory
disclosure. That is, when S must reveal any evidence she obtains. In this case, with
probability g, she obtains and discloses evidence and, with the remaining probability,
she is uninformed and sends message @. Thus, the ICDF of R’s posterior means is a
convex combination of the chosen evidence structure I and the uninformative structure

1, given by

M.
967 T,
I—ql+(1-q)l

=qI+(1-q)Gd-0o)".

Fig. 1.4 illustrates the difference between the two transformations for a fixed I.
First, notice that QZ“{ I lies below 92(17‘4 I. Since > represents the Blackwell order on Z,
it means that @I is more informative than ;' I. This is because 2, I represents the
most information S can possibly disclose.

Moreover, the transformation of information from the acquired evidence I into the
disclosed evidence @g I can be seen as a two-stage garbling. First, the acquired ev-
idence structure I is exogenously garbled into the available evidence structure @fy I
because S obtains evidence only with probability . Second, it is garbled again into
the disclosed evidence structure 96‘7/ I, due to the strategic concealment of unfavorable
evidence.

Note that for g < 1 the mandatory disclosure transformation 934 I has a kink at 6,
corresponding to the mass 1 — g of uninformed sender types. This kink is due to the

fact that none of the informed type pools with the uninformed type under mandatory
18
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Dy I1=1ql+(1-q)Gd-00)]"
—==- M= ql+ (- q)d-69)*

1-¢g

(B —id)

FIGURE 1.4: Construction of the disclosure threshold éq' ; and the voluntary and mandatory
disclosure transformations 2, I and 2,I.
disclosure. Compare this to the voluntary disclosure transformation @L‘,’ . All types with
evidence above 6 disclose it, which is why & 27/ coincides with @g’f on [0y, 1]. In contrast
to mandatory disclosure, there is no mass point at 6y anymore, since the uninformed
will be pooled with the low types and the corresponding posterior mean will be lower.
This implies that @, I continues below 2,1 as a convex combination of I and id - 6.
This convex combination reaches zero exactly at 6_6,, 1, Which is where 9227/ I has a kink,

corresponding to the combined mass of uninformed and low evidence types.

1.3.2 Value of Evidence

Before turning to the optimal evidence acquisition problem, we characterize S’s value
from evidence structures.

Suppose that S induces an ICDF of R’s posterior means I. Given S’s interim value
function H, her S’s ex-ante payoff simply the expectation of H with respect to the
distribution corresponding to I. Equivalently, it can be written as fol HAI,, since the

right derivative I, corresponds to the CDF of R’s posterior means. It will be convenient
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to normalize the S’s payoff from no information to zero and define the value as

v:7T—R,

1
I-—»fo Hd(I, -I').
Integrating by parts twice, one can rewrite it as'>
1
v() :f (I-Ddh.
0

Such a (Riemann-Stieltjes) integral representation implies that the S’s value can be
visualized as the “area” between I and I weighted by the measure induced by h. Fig. 1.5
illustrates this idea. Since h is increasing (decreasing) on [0,®] ([@,1]), it induces a
positive (negative) measure on the corresponding interval. Thus, S’s value is composed
of the positive part f(;” (I-I)dh and the negative part fL;(I — I)dh. This implies, in
particular, that S benefits from more information at the bottom and less information at

the top.

FIGURE 1.5: v(I) as a sum of a positive and a negative part.

15A]l integrals are Riemann-Stieltjes. For any continuous g, we define fol gdh as the difference
Iy gdh— [, j gd(—h) of two Riemann-Stieltjes integrals with respect to strictly increasing functions.
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We can now characterize S’s expected payoff for any acquired evidence structure I.

Lemma 1.2. The sender’s value from acquisition of evidence structure I under mandatory
disclosure is given by

v(@)' D) = qu(D),

and that under voluntary disclosure is given by
v(@, D =qI) - Ly(D),
where L, is the concealment loss defined as

0.1 Oo 1-¢g
Lg(I) ::f Idh+f_ T(Qo—id)dh.
0

04,1

This result highlights the difference between voluntary and mandatory disclosure in
terms of the effect of uncertainty on the value from acquisition of evidence. For a fixed
I, higher uncertainty shifts the available evidence QZ[]]‘J I down towards the uninforma-
tive structure I. Since the value from I is normalized to zero and all available evidence
is disclosed under mandatory disclosure, g enters as a multiplier in the expression for
v(@)'D).

The same effect is retained under voluntary disclosure, but there is an additional
term L, due to strategic disclosure, which we call the concealment loss. As the uncer-
tainty increases, the disclosure threshold éq, ; increases as well. Since ex-ante S dislikes
less information at the bottom, she incurs the loss.

Fig. 1.6 illustrates the decomposition of S’s acquisition value. As Lemma 1.2 shows,
the shaded “area” v(@g I) in Fig. 1.6a must be equal to g times the shaded “area”

v(I) - Ly(I) in Fig. 1.6b.
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@y —id)
q

v(I) ~ Lg(I)

éq’[ 0o 1‘
(@ v(@, D (b) v(D) ~Ly(1)

FIGURE 1.6: Decomposition of the value of evidence

1.3.3 Optimal Evidence Acquisition

In this section, we endogenize the evidence structure as S’s ex-ante choice. She designs
the evidence structure strategically to mitigate the effect of voluntary disclosure.
Before we characterize the equilibrium evidence structure, it will be instructive to
look at the extreme case g =1, in which S always obtains evidence. Recall that under
g =1 there is unraveling: the receiver’s skepticism makes the sender always disclose.
In this case, the voluntary disclosure transformation leaves I unchanged, the acqui-
sition problem becomes equivalent to the problem of Bayesian persuasion. Kolotilin,
Mylovanov, Zapechelnyuk, and Li (2017) and Kolotilin (2018) study a similar model of
Bayesian persuasion with R’s private payoff type and show, in particular, that if the dis-
tribution of R types is unimodal, the optimal signal is an upper censorship: it perfectly
reveals all states below and pools all states above some threshold.'® The intuition be-
hind this result is the following. As discussed in the previous section, when the state is
low (high), more information benefits (hurts) S because S’s indirect utility function H
is convex-concave. It turns out that the optimal signal simply reveals (pools) all states

below (above) some threshold 67 € [0,®].

16Qptimality of upper censorship in slightly different settings also appears in Alonso and Camara
(2016b) and Dworczak and Martini (2019).
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Now consider the case of g < 1. It will be useful to define the following class of

information structures.!”

Definition 1.1. An evidence structure [ € Z is a (0;,0;) two-sided censorship if and

only if there exist 0 < 0; <0 <1, such that

max(T(0) +1 0)O-0),D, 0<6,
10)=:T1©)), 0 €100,

max(T(0y) +1 01O —05),D), 6> 0y,

In addition, call I
- a 6, upper censorship, if 6; =0,
- a 0; lower censorship, if 6, =1, and

- a 0 binary certification, if 9, =0, =0¢€(0,1).

1-6o

61 separation Hh

lower pooling upper pooling

FIGURE 1.7: Two-sided censorship.

In words, an evidence structure I is a two-sided censorship if it perfectly reveals all

states in [67,0}], pools states above 6, and pools states below ;. It can be interpreted

17Kolotilin (2018) introduces an equivalent class of information structures called interval revelation
mechanisms.
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as a grading system that assigns the pass grade to the states above the upper cutoff,
the rFaIL grade to the states below the lower cutoff, and has a number of intermediate
grades.

Consider some special cases. First, note that if 8; = 0 and 6}, = 1, both pooling in-
tervals are empty. This corresponds to the case of the fully informative structure I.
Second, if 8; = 65, € {0, 1}, then all states are pooled, which corresponds to the uninfor-
mative structure I. Next, if the lower pooling intervals is empty (6; = 0), then all states
below 0, are revealed, which corresponds to an upper censorship. Finally, if 0; = 65,
then the evidence structure reveals only whether the state is above or below 6; = 8;, and
produces exactly two messages (with probability 1). We call such an evidence structure
binary certification.

Before stating the main result, we discuss the multiplicity of equilibria that arises
in the model. Call two evidence structures disclosure-equivalent if they induce the
same disclosed evidence structure. Clearly, the corresponding equivalence classes are
given by pre-images of 95‘7/ . Fig. 1.8 illustrates the set of all evidence structures that
induce a given disclosed evidence J. Note that the set (QZ;’ )_1 Jis an “interval” [I,., [*] :=
{IeZ, I, <I<I*} of evidence structures that coincide on [éq, 1,11 and have the same
disclosure threshold. As the S’s value depends only on QZ;’ I, it follows that the set of
equilibrium evidence structures consists of such “intervals”. In other words, the sender
can always acquire more or less evidence about states below the disclosure threshold
éq, 1, without changing the outcome of the game.

Note that this implies the following “revelation principle”: for every equilibrium of
the game, there exists a “canonical” outcome-equivalent equilibrium, in which there
is a unique realization of a signal that is concealed by S. To ease the exposition of the
results, we will focus on equilibria of the latter type and define the notion of optimal

evidence structures as follows.
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0 I, 6.1, 00 1
FIGURE 1.8: An interval (@(‘; )_1 J =11, I*] of disclosure-equivalent evidence structures

corresponding to a disclosed evidence J.

Definition 1.2. An evidence structure I'* is called optimal, if it solves

* L v *
Vg = max v(Py D), )

and there is no I € Z, such that I* > I,I* # I and QZ},’I* = QZo‘I/f.
The following theorem provides characterization of optimal evidence structures.

Theorem 1.1. An optimal evidence structure exists. There exists q € [0,1), such that if
q < q, then any optimum is a binary certification. Moreover, if q > q, then the unique

optimum is the (6, 7,07) two-sided censorship.

.

This result shows that the optimal evidence structure depends on the probability
that evidence is obtained. Moreover, it shows that the interaction between the forces
that drive pooling at the top and bottom of the state distribution can take different
forms. When the uncertainty is low (g >q), the interaction between the two forces is
trivial and optimal evidence structure is a two-sided censorship of the state. The lower

threshold 0 o1 is not affected by the design of the evidence structure and coincides with

the disclosure threshold under fully-revealing evidence structure. Moreover, the upper
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threshold 67 is unaffected by voluntary disclosure: it stays constant and coincides with
the optimal upper threshold that the sender would use under g = 1.

However, when uncertainty is high (g < ¢q), the interaction between the two forces
becomes non-trivial and the sender adopts binary certification. Notice that voluntary
disclosure leads to pooling of low states. From the ex-ante perspective, this hurts the
sender because her interim payoff function is convex at the bottom. Therefore, she
would commit to reveal low states, but cannot because disclosure is voluntary. When
the g drops below g, it becomes optimal to design evidence structure in order to reduce
the ex-ante loss from non-disclosure of low states. This is achieved by binary certifica-
tion, as it allows to reduce the lower pooling interval by enlarging the upper pooling
interval.

The proof is given in Appendix A.1 and based on constructing a one-dimensional
optimization problem that is equivalent to (*). We present the main idea below. First,

Lemma 1.2 implies that the sender’s ex-ante problem can be written as
ME D —Ly(D).
max v(Z, 1) = qmax (v(D) - Ly (D)

Second, we show that any maximizer of v— L; must coincide with some upper
censorship on [éq, 1,11, generalizing a standard argument used in the extreme case of
g = 1. Intuitively, if g < 1, there is pooling at the bottom due to strategic disclosure.
Even though the pooling interval is determined endogenously, it follows from the geo-
metrical characterization of S’s value that any upper censorship that is an improvement
under g =1 will still be an improvement under g < 1. This allows to formulate the evi-

dence acquisition problem as a one-dimensional optimization problem

max v(lp) - Lq(Ie), (%)
0¢[0,1]
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where I is the 6 upper censorship. Then, the definition of an optimum implies that it
must be the 6, ; lower censorship of Iy. If 6 > 6, itis the (04 1,0) two-sided censorship,
otherwise, it is the 6 binary certification.

Next, we show that 6 — v(Ip) has a unique maximum and that 6 — L (Ip) is constant
on [éq, 1,1]. The threshold ¢ is identified as the lowest value of g, such that the loss
L4(Ip) does not affect the maximizer and thereby obtain the second part of the result.
Finally, we show that the marginal concealment loss is decreasing in g. This implies
that, for g < g, we have 6 < éq, 1, which implies that the optimum, given by the a1

lower censorship of Iy is a binary certification.

1.3.4 Degradation of Certification Standards

In this section, we study how optimal binary certification threshold depends on the
probability of obtaining evidence g. The role of a binary certification threshold is
twofold. First, it serves as a certification standard because only the states above it get
a passing grade. Second, it bounds the lower pooling region, determining the states
that are going to be concealed. This is in contrast to a two-sided censorship, when the
two pooling regions are controlled by different thresholds.

Note that when the optimum is a two-sided censorship, the lower pooling thresh-
old coincides with the disclosure threshold of the fully-revealing information structure
1. This, together with Lemma 1.1, implies that as g decreases, the pooling interval
becomes larger. As follows from a standard argument, as uncertainty increases, R be-
comes less skeptical when S claims to not have obtained any evidence. This incentivizes
S to conceal evidence, and, in equilibrium, leads to more pooling at the bottom.

But this argument valid for a fixed evidence structure no longer applies in the case of
binary certification because the two forces shaping the optimal evidence structure have
non-trivial interaction. This leads to the reversal of the effect of higher uncertainty. S is
strategically choosing a binary threshold that is below the disclosure threshold to mit-
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igate the effect of voluntary disclosure problem. With lower g this problem becomes
more severe and lower thresholds become more effective. Note that our decomposition
of S’s value implies that g affects the optimal choice of information only through the
concealment loss. But lower thresholds reduce the concealment loss more when un-
certainty is higher. This implies that the optimal binary certification threshold will is

increasing in g, as summarized by the following result.

Theorem 1.2. Let 6, and 6, be optimal binary certification thresholds for g1 and qs,
respectively. Then ¢, < g, implies 6, <0,.

Theorem 1.2 highlights that the interaction of the two forces that lead to pooling
at the top and bottom of state distribution becomes non-trivial when g drops below ¢.
Because S reduces the lower pooling interval to be able to credibly disclose more good
states, the effect of uncertainty on the lower pooling interval is reversed, compared
to the case of two-sided censorship. As can be seen in Fig. 1.2, the lower threshold is
non-monotone in .

The main idea of the proof is the following. Recall that the sender’s objective func-
tion is the difference between the value function v and the concealment loss L,, where
only L, depends on q. Since S’s problem can be represented as a one-dimensional
program (**), it is sufficient to show that the concealment loss satisfies strictly de-
creasing marginal differences property (Edlin and Shannon, 1998). That is, we show
that the marginal increase in the concealment loss from an increasing the threshold
is decreasing in g by using the integral representation of L, given in Lemma 1.2. As

the uncertainty decreases, the sender discloses more evidence at the bottom, so the

marginal concealment loss is lower.

Uniqueness. Note that neither of the above results establishes the uniqueness of the
optimum for g € (0, q). However, the strict comparative statics of Theorem 1.2 implies

uniqueness for almost all g. To see this, note that any selection from the optimal binary
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certification threshold correspondence must be strictly decreasing on g € (0,q). But
then this selection can have at most a countable set of points of discontinuity. Therefore,
the optima correspondence is single-valued almost everywhere. One can interpret this

result as establishing that uniqueness of the solution holds generically across g.
Corollary 1.2. The optimal evidence structure is unique for almost all g € (0,1].

More precisely, there exists a subset @ < (0,1] with a countable complement, such
that @ o (g,1] and for any g € @ there is a unique optimal evidence structure. Hence-
forth, denote the unique optimum as Ij; for g € @ and the unique optimal binary certi-
fication threshold as 6 for g € @n (0, q]. Note that Theorem 1.2 then implies that 67

is strictly increasing in g on @ N (0, q].

1.3.5 Voluntary vs Mandatory Disclosure

In this section, we compare optimal evidence acquisition under voluntary and manda-
tory disclosure. How does inability of S to commit to full disclosure affect optimal
evidence acquisition?

To answer this question, consider S’s problem under mandatory disclosure.
Lemma 1.2 allows to write it as

M _ _ *
nlleajxv(gq D= IEaquv(I) =quy.

But this implies that the optimum under mandatory disclosure is the same as under no

uncertainty, equivalently, when g = 1. Thus, the following proposition holds.

Proposition 1.1. For any q, the optimum under mandatory disclosure coincides with the

optimum under voluntary disclosure with q = 1.

The intuition is the following. Under mandatory disclosure, S does not always ob-

tain evidence. But when she does, it is necessarily fully revealed. Therefore, she can
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simply maximize her value conditional on obtaining evidence, which is equivalent to
solving the evidence acquisition problem under g = 1.

Note that Proposition 1.1 implies that (i) any optimal binary certification thresh-
old is strictly lower than the optimal upper censorship certification under mandatory
disclosure and (ii) the mandatory disclosure optimum is strictly more informative than
any voluntary disclosure optimum under g < 1. To see this, note that Theorem 1.1
implies that the optimum under mandatory disclosure is the 6] upper censorship I;.
Now consider any optimal 8-binary certification Iy. First, by Corollary 1.2, 6 must nec-
essarily be below 0. To see why Iy is a garbling of I}, consider the 6 upper censorship
Jo and note that I > Jy > Iy. In other words, Jg provides less information than I} be-
cause it pools more states at the top, and more information than Iy because it doesn’t
pool the states below 0. Finally, any optimal two-sided censorship is a garbling of I}

because it has the same upper threshold, but also has pooling at the bottom.

1.3.6 Welfare

How does the level of uncertainty affect the players welfare? In this section we show
that both players’ ex-ante expected equilibrium payoffs are strictly increasing in g. This
comparative statics result holds for the two players for distinct reasons. The mono-
tonicity of S’s payoff follows directly from the properties of the objective function in
her optimal acquisition problem. However, the monotonicity of R’s payoff follows from
the characterization of the optimal evidence structures.

Such welfare analyses compare environments with different probabilities of obtain-
ing evidence. This means that, for example, S’s equilibrium value increases in g partly
because she gets an opportunity to persuade R more often. Therefore, a sensible way
to compare welfare under different levels of uncertainty in the model is to compare
payoffs normalized by the probability of obtaining evidence, which we call normal-
ized value. We then strengthen the result by showing that the normalized payoffs of
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both players are also strictly increasing in g. In other words, there are two channels
through which higher g improves players’ welfare: communication happens more often
and more efficiently.

The normalized value can also be interpreted as the fraction of the value that is
achieved under mandatory disclosure. To see this, recall that S’s equilibrium value
under mandatory disclosure is given by qv;. Therefore, the normalized value is pro-

portional to the ratio

*

q
quy  maxez v(DYD)

v maxjey U(QZ;/I)

Next we provide detailed analysis of both players’ welfare.

Sender. First, consider S’s value v;‘,. An immediate observation is that whatever dis-
tribution of posterior beliefs S can induce in equilibrium under lower g, she can also
implement under higher g. Equivalently, the set @(‘; 7= {927/ I:1€7} of all evidence

structures that can be voluntary disclosed is monotone in g with respect to set inclusion.

*

Thus, S’s equilibrium value vy

is increasing in q.
The following proposition shows that not only S’s ex-ante value, but also S’s nor-

malized value is strictly increasing in q.

*

. 14 . . . .
and normalized value 7” are strictly increasing in q.

*

Proposition 1.2. Both S’s value v,

The proof is by inspection of the derivative. We apply Lemma 1.2 to rewrite S’s

normalized value as
=maxv(l) — Lq(I).
IeT

The Envelope Theorem implies that the sign of the derivative of the normalized
value is determined by the sign of the derivative of the concealment loss L,. To see
why L, is decreasing in g, note that, as g increases, R becomes more skeptical if S

claims to be uninformed as he is more certain that S obtains evidence. In equilibrium,
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this leads to a lower disclosure 0, ;. But this benefits S in expectation, since ex-ante

she prefers to disclose more information at the bottom.

Receiver. To define R’s ex-ante value function, note that the payoff of type w with
posterior mean 6 is given by (6 —w)*. Therefore, the aggregate interim payoff is /(6 —
w)" dH(w). Now define R’s ex-ante value function of induced distributions of posterior

means as

w:71—R,

I:I»—»f f 0 -w) " dH(w)d(I, - I')(6).
eJa
Note that the derivative of the inner integral with respect to 6 is given by

d 0

@(H—a)de(w) = fl](@ > w)dH(w) :f dH(w) = H(O).

0
Integrating by parts twice, rewrite R’s value function as
w(l) = f([—p dH.

Clearly, Blackwell Theorem implies that w is weakly increasing in I with respect to >.
But notice that w is also strictly increasing with respect to our strict informativeness
order >. Applying Lemma 1.2 to w, we obtain the following representation of R’s value

from an acquired evidence structure I:
w( g D) = q(w(I) ~ Ly(D).
Finally, define R’s equilibrium value as

w) = w(@y I7) = qw(I}) - Le(I})),
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for g € @, so that it is uniquely defined (by Corollary 1.2).

w*
q" ? In contrast to the S’s value v;‘;

How does ¢ affect w; and , the properties of wy
do not follow from properties of the objective function in an optimization problem. We,
therefore, need to analyze how the solution 927/ I; depends on g. What is, perhaps,

surprising is that the comparative statics of R’s welfare is similar to that of S, as the

following proposition shows.

*

.. , .. w . . .
Proposition 1.3. Both R’s value wy and conditional value q”’ are strictly increasing in q.

To get some intuition, consider, first, the case of low uncertainty (g > ¢q). As we
know from Theorem 1.1, the unique optimal evidence structure I is the @ q 7,07) two-
sided censorship. As g increases, less states are pooled at the bottom, which means

that /; is >-increasing in ¢. In addition, notice that 92{ is >-increasing in g and in [

(with respect to >). That is more acquired evidence and less uncertainty leads to more

*

disclosed evidence. Thus, QZ;/ 1 is >-increasing in g, and, therefore, so is wy

on (q,1].

Moreover, it is straightforward to check that &

Iy isin fact strictly >-increasing in q.

Now consider the case of high uncertainty (g € @n(0,q]). Theorem 1.2 implies
that the optimal binary certification threshold 6 strictly increases in g. Note that any
two different binary certification evidence structures are incomparable in the sense of
Blackwell, since a lower threshold provides more information about low states and less
information about high states. Moreover, if we consider two binary certifications with
relatively high thresholds, then even their disclosure transformations will be incom-
parable. However, on @ n (0,q], the disclosure transformation of the optimal binary
certifications is >-increasing in ¢, as can be clearly seen from Fig. 1.9a. This is for any
binary certification Iz, there is a disclosure-equivalent 6 upper censorship J, that is
>-increasing in q.

As we discussed above, ex-ante value increases in ¢ in part because lower uncer-

tainty provides more means for mutually beneficial information transmission between

S and R. Thus, one can be interested in the relative efficiency of information transmis-
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(a) The construction of a disclosure-equivalent (b) The effect of higher uncertainty on R’s

upper censorship J for a given I7. conditional value.

FIGURE 1.9: Decomposition of the value of evidence.
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sion, which we quantify with the conditional value —*. Fig. 1.9b illustrates the effect on
R’s conditional value from as uncertainty increases (q2 — ¢1). First, the middle straight
part of I;* rotates, which might potentially provide more value for the receiver about

low states. But since those states among those the sender conceals, the receiver suffers

from higher concealment loss, which erases all potential benefits.

1.4 Conclusion

This paper endogenizes evidence structures in a game of voluntary disclosure. The
main contribution is twofold. First, we show that a combination of design and dis-
closure incentives can lead to verifiable information taking a simple form of binary
certification. Second, we show that the non-trivial interaction between these two in-
centives leads to a reversal of the effect of uncertainty on the set of concealed states.
We also show that higher probability of obtaining evidence benefits both players, not
just because it allows the sender to communicate more often, but also because she does

so more efficiently.
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Chapter 2

Persuasion via Weak Institutions

joint with Elliot Lipnowski and Doron Ravid
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2.1 Introduction

Many institutions routinely collect and disseminate information. Although the collected
information is instrumental to its consumers, the goal of dissemination is often to per-
suade. Persuading one’s audience, however, requires the audience to believe what one
says. In other words, the institution must be credible, capable of delivering both good
and bad news. Delivering bad news might be especially difficult, requiring the insti-
tution to withstand pressure exerted by its superiors. The current paper studies how
an institution’s susceptibility to such pressures influences its persuasiveness and the
quality of the information it provides.

We study a persuasion game between a receiver (R, he) and a sender (S, she) who
cares only about R’s chosen action. The game begins with S publicly announcing an
official reporting protocol, which is a Blackwell experiment about the state. After the
announcement, S privately learns the state and whether her reporting protocol is cred-
ible. If credible, R observes a message drawn from the announced reporting protocol.
Otherwise, S can freely choose the message that R sees. R then takes an action, not
knowing the message’s origin. Given state 6, reporting is credible with probability y(0),
a probability that we interpret as the strength of S’s institution in said state.

As in the recent Bayesian persuasion literature (e.g., Kamenica and Gentzkow,
2011; Alonso and Camara, 2016a; Ely, 2017), we view S as a principal, capable of
steering R toward her preferred equilibrium. Our main result (Theorem 2.1) charac-
terizes S’s highest equilibrium payoff . The characterization is geometric and is based
on S’s value function, which specifies the highest value S can obtain from R responding
optimally to a given posterior belief. Under full credibility (y(0) = 1 for all ), our model
is equivalent to the one studied by Kamenica and Gentzkow (2011). As such, in this
case, S’s highest equilibrium value is given by the concave envelope of S’s value func-
tion. The value function’s quasiconcave envelope gives S’s highest value under cheap

talk (see Lipnowski and Ravid (2019)), and therefore S’s highest equilibrium value
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under no credibility (y(6) = 0 for all ). For intermediate credibility values, Theorem
2.1’s characterization combines the quasiconcave envelope of S’s value function and the
concave envelope of S’s capped value function, which captures S’s incentive constraints.

Using our characterization, we analyze how S’s and R’s values change with y(:). To
illustrate, consider a multinational firm (R) that can make a large investment (a = 1),
a small investment (a = %), or no investment (a = 0) in a small open economy. Profits
from each investment level depend on the state of the economy, 8, which can be good

(0 =1), or bad (6 = 0) with equal probability. In particular,?

ugr(a,0) = ab — %az.
Because the state of the world is binary, the firm’s beliefs can be identified with the
probability that the economy is good, u. Given the above preferences, no investment

is optimal when p < }l; a large investment is optimal when u > % ; and a small invest-

13
44

ment is optimal when € [, 2]. A local policymaker (S) wants to maximize the firm’s
investment, and receives a payoff of 0, 1, and 2 from no, small, and large investments,
respectively. To persuade the firm, the policymaker publicly commissions a report by
the central bank. Formally, a report is a Blackwell experiment producing a stochastic
investment recommendation conditional on the economy’s state.2 The reliability of this
recommendation is questionable, as it is produced by the announced experiment only
with probability x, independent of the state. With probability 1— x, the bank succumbs
to the policymaker’s pressure, producing the policymaker’s recommendation of choice.

Proposition 2.1 shows R is often better off with a less credible S. The proposition
applies to the above example. To see this, suppose first that the bank’s report is fully

credible, that is x = 1. In this case, the optimal report recommends either a large or a

small investment with equal ex-ante probability in a way that makes the firm just will-

1An alternative, behaviorally equivalent specification has ug(a,0) = —(a - 0)2.
2Restricting attention to such experiments in this example turns out to be without loss.
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ing to accept each recommendation. In other words, the firm’s posterior belief that the

13
471

state is good is uniformly distributed on {3, 3}, with the firm making a large investment
when its belief is %, and a small investment otherwise. In this case, the firm’s expected
utility is %. Consider now a weaker central bank, capable of resisting the policymaker’s
pressure with a lower probability of x = % Take any report that leads to an incentive-
compatible large investment recommendation with positive probability. Because the
policymaker gets to secretly influence the report with probability 1 - x = %, the report
produces a large investment recommendation with a probability of at least %, regardless
of the state. By Bayes’ rule, conditional on such a recommendation, the firm’s posterior
belief that the state is good is no greater than %. Note this upper bound can be achieved
only if the bank’s official report fully reveals the state. Hence, the report must gener-
ate a “no investment” recommendation whenever the economy is bad and reporting
is uninfluenced (which happens with probability %), and a “large investment” recom-
mendation otherwise. This policy is strictly better for the policymaker than conveying
no information (which yields a small investment with certainty), and so is the policy-
maker’s unique preferred equilibrium. Thus, when x = %, the firm’s expected utility is
é. In particular, the firm strictly benefits from a weaker central bank; that is, productive
mistrust occurs.

Our next result, Proposition 2.2, shows that small decreases in credibility lead to
large drops in the sender’s value for all interesting instances of our model. More pre-
cisely, we show such a collapse occurs at some full-support prior and some credibility
level if and only if S can benefit from persuasion. Such a collapse is clearly present in
our example: Given the preceding analysis, 2 is the lowest credibility level that allows
the bank to credibly recommend a large investment. For any x < %, the policymaker
can do no better than have the bank provide no information to the firm, giving the

policymaker a payoff of % Because % is the policymaker’s payoff when x = %, even an

infinitesimal decrease in credibility results in a discrete drop in the policymaker’s value.

38



One can construct examples in which S’s value collapses at full credibility. For
example, suppose the firm can make a very large investment, which yields a payoff of 10
to the policymaker, and is optimal if and only if the firm is certain the economy is good.
Under full credibility, the policymaker can obtain a payoff of 5 by revealing the state and
having the central bank recommend no investment when the economy is bad and a very
large investment when the economy is good. A very large investment recommendation,
however, is never credible for any x < 1. If it were, the policymaker would always send
it when influencing the bank’s report, regardless of the economy’s state, and so the
firm could never be completely certain that the economy’s state is good. As such, the
policymaker’s optimal equilibrium policy for any x € [%,1) remains as it was in the
unmodified example, giving her a payoff of %. Thus, even a tiny imperfection in the
central bank’s credibility causes the policymaker’s payoff to drop from 5 to %.

One may suspect the non-robustness of the full-credibility solution in the above
modified example is rather special. Proposition 2.3 confirms this suspicion. In partic-
ular, it shows S’s value can collapse at full credibility if and only if R does not give S
the benefit of the doubt; that is, to obtain her best feasible payoff, S must persuade R
that some state is impossible. This property is clearly violated in the above modified
example: The firm is willing to make a very large investment only if it assigns a zero
probability to the economy’s state being bad. Thus, although S’s value often collapses
due to small decreases in credibility, such collapses rarely occur at full credibility.

Section 2.5 abandons our general analysis in favor of a specific instance of public
persuasion, which enables us to assess the relative value of credibility in different states.
In this specification, S uses her weak institution to release a public report whose pur-
pose is to sway a population of receivers to take a favorable binary action. For example,
S may be a seller who markets her product by sending it to reviewers or a leader vying
for the support of her populace using state-owned media. Each receiver’s utility from

taking S’s favorite action is additively separable in the unknown state and his idiosyn-
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cratic type, which follows a well-behaved single-peaked distribution. We show (Claim
2.1) it is S-optimal for the official report to take an upper-censorship form, character-
ized by a threshold below which states are fully separated. States above this threshold
are pooled into a single message, which is always sent when S influences the report. We
also show that concentrating the credibility of S’s institution in low states uniformly in-
creases S’s payoffs across all type distributions (Claim 2.2). Hence, S especially prefers
her institution to be resistant to pressure in bad states.

To conclude our analysis, we allow S to design her institution at a cost. More pre-
cisely, we let S publicly choose the probability with which reporting is credible in each
state. S’s credibility choice is made in ignorance of the state, and comes at a cost that is
a continuous and increasing function of the institution’s average credibility. We explain
how to adjust our analysis to this setting, and observe that R may benefit from an in-
crease in S’s costs, echoing the productive-mistrust phenomenon of the fixed-credibility
model. By contrast, an infinitesimal increase in S’s costs never leads to a sizable de-
crease in S’s value, suggesting collapses in trust are a byproduct of rigid institutional
structures. Finally, we show that in the public-persuasion setting of Section 2.5, S al-
ways chooses an institution that is immune to influence in low states, and perfectly

amenable otherwise.

Related Literature. This paper contributes to the literature on strategic information
transmission. To place our work, consider two extreme benchmarks: full credibility
and no credibility. Our full-credibility case is the model used in the Bayesian per-
suasion literature (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011; Ka-
menica, 2019),3 which studies sender-receiver games in which a sender commits to an
information-transmission strategy. By contrast, our no-credibility case reduces to cheap

talk (Crawford and Sobel, 1982; Green and Stokey, 2007). In particular, we build on

3See also Aumann and Maschler (1966).
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Lipnowski and Ravid (2019), who use the belief-based approach to study cheap talk
under state-independent sender preferences.

Two recent papers (Min, 2018; Fréchette, Lizzeri, and Perego, 2019) study closely
related models. Fréchette, Lizzeri, and Perego (2019) test experimentally the connec-
tion between the informativeness of the sender’s communication and her credibility
in the binary-state, binary-action, independent-credibility version of our model. Min
(2018) looks at a generalization of the independent-credibility version of our model in
which the sender’s preferences can be state dependent. He shows the sender weakly
benefits from a higher commitment probability. Applying Blume, Board, and Kawa-
mura’s (2007) insights, Min (2018) also shows allowing the sender to commit with
positive probability strictly helps both players in Crawford and Sobel’s (1982) uniform-
quadratic example.

Our paper is related to the literature on cheap talk with lying costs. In Kartik (2009),
each message includes a reported state, and the cost of a message is measured via
the distance between the reported and true states; as the cost increases, the sender’s
strategy becomes (in some sense) more truthful. In Guo and Shmaya (2019a), each
communicated message is a distribution of states, and the sender faces a miscalibration
cost that increases in the distance between the message and its induced equilibrium
posterior belief. They obtain a surprising result: When costs are sufficiently large,
the sender attains her full-commitment payoff under any extensive-form rationalizable
play. Therefore, like our work, Guo and Shmaya’s (2019a) model bridges the cheap
talk and the Bayesian persuasion models.

Another related paper is Nguyen and Tan (2019). In Nguyen and Tan (2019), a
sender has the opportunity to privately change the publicly observed outcome of a pre-
viously announced experiment. Such a change comes at a cost that may depend on the

outcome. They find conditions under which the sender does not alter the experiment’s
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outcome in the sender-optimal equilibrium, and identify examples under which the
sender obtains her commitment payoff.

We also speak to the literature that studies Bayesian persuasion under additional
sender incentive constraints. In Salamanca (2019), a sender can use a mediator to de-
sign a communication protocol, but cannot commit to her own reporting strategy, and
therefore must satisfy truth-telling constraints. Best and Quigley (2017) and Math-
evet, Pearce, and Stacchetti (2019) both study a long-lived sender who interacts with
a sequence of short-lived receivers via cheap talk. Each shows how enriching the en-
vironment can restore the sender’s commitment value: in Best and Quigley (2017),
by coarsening receivers’ information via a review aggregator, and in Mathevet, Pearce,
and Stacchetti (2019), via a reputational concern for the sender. A number of papers
(Perez-Richet, 2014; Hedlund, 2017; Alonso and Camara, 2018) study persuasion by a
privately informed sender who might face exogenous constraints in her choice of signal.
Perez-Richet (2014) studies the information-design analogue of an informed-principal
(Myerson, 1983) problem. In Alonso and Camara (2018) and Hedlund (2017), the
sender is imperfectly informed. The former compares the value of expertise with the
uninformed case and shows that private information cannot be beneficial if the sender’s
private information is (sequentially) redundant relative to the set of available signals.
The latter shows that in a two-state model with state-independent preferences, the
sender’s behavior in any D1 equilibrium reveals either the sender’s private information
or the state. Perez-Richet and Skreta (2018) introduce the possibility of falsification
in the context of test design, where a sender can make each state produce the condi-
tional signal distribution associated with the other. Thus, their sender can manipulate
a Blackwell experiment’s input, whereas our sender manipulates the experiment’s out-
put.

Our productive-mistrust result relates to Ichihashi (2019), who analyzes the ef-

fect of bounding the informativeness of the sender’s experiment in the binary-action
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specialization of Kamenica and Gentzkow (2011). Ichihashi’s (2019) main result char-
acterizes the equilibrium outcome set as a function of said upper bound. He also shows
that, whereas such a bound often helps the receiver, the receiver is always harmed from
such a bound when the state is binary. By contrast, productive mistrust can occur with
any number of states.

The model we analyze in Section 2.5 concerns persuasion of a population, and
so relates thematically to the literature on persuasion with multiple receivers (e.g.,
Alonso and Camara, 2016a; Bardhi and Guo, 2018; Chan, Gupta, Li, and Wang, 2019).
Because our sender’s motive is separable across audience members, the model in that
section can be reinterpreted as communication to a single receiver who holds private
information. Consequently, it relates to work by Kolotilin (2018), Guo and Shmaya
(2019b), and Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), all of whom study
information design under full commitment. We contribute to this literature by studying
the effects of limited credibility.

Whereas our sender derives credibility through an institution, credibility can also
arise via hard evidence. The effect of evidence on communication has been the subject
of many studies (Glazer and Rubinstein, 2006; Sher, 2011; Hart, Kremer, and Perry,
2017; Ben-Porath, Dekel, and Lipman, 2019; Rappoport, 2017). Many such studies
share our assumption of sender state-independent preferences but focus on receiver-
(rather than sender-) optimal equilibria. The equivalence between such equilibria and
the receiver’s commitment outcome is a common point of inquiry.

Weak institutions often serve as a justification for examining mechanism design
under limited commitment (Bester and Strausz, 2001; Skreta, 2006; Deb and Said,
2015; Liu, Mierendorff, Shi, and Zhong, 2019). We complement this literature by
relaxing a principal’s commitment power in the control of information rather than of

mechanisms.
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2.2 A Weak Institution

There are two players: a sender (S, she) and a receiver (R, he). Whereas both players’
payoffs depend on R’s action, a € A, R’s payoff also depends on an unknown state, 0 € ©.
Thus, S and R have objectives ugs: A — R and ug: Ax® — R, respectively, and each aims
to maximize expected payoffs.

The game begins with S commissioning a report, ¢ : ® — AM, to be delivered by a
research institution. The state then realizes, and R receives a message m € M (with-
out observing 6). Given 0, S is credible with probability y(0), meaning m is drawn
according to the official reporting protocol, ¢(:|0). With probability 1 - y (@), S is not
credible, in which case S decides which message to send after privately observing 6.
Only S learns her credibility type, and she learns it only after announcing the official
reporting protocol.

We now introduce some notation, which we use throughout. For a compact metriz-
able space, Y, we denote by AY the set of all Borel probability measures over Y, en-
dowed with the weak* topology. If f:Y — R is bounded and measurable and { € AY,
define the measure f{ on Y via f{(Y):= [y fd{ for each Borel Y € Y. When the do-
main is not ambiguous, we use 1 and 0 to denote constant functions taking value 1 and
0, respectively.

We impose some technical restrictions on our model. Both A and © are compact
metrizable spaces with at least two elements, the objectives uz and ug are continuous,
and y : ® — [0,1] is measurable. We say the model is finite when referring to the
special case in which both A and © are finite. The state, 0, is assumed to follow some
full-support prior distribution py € A®, which is known to both players. Finally, we

assume the message space M is an uncountable compact metrizable space.*

4This richness condition enables our complete characterization of equilibrium outcomes (Lemma
A.3.1). If O is finite, our characterization of sender-optimal equilibrium values (Theorem 2.1) and our
applied propositions hold without change for all M such that |M| > 2|0|.
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We now define an equilibrium, which consists of four objects: S’s official reporting
protocol, ¢ : ® — AM, executed whenever S cannot influence reporting; the strategy
that S employs when not committed, o : ® — AM; R’s strategy, a : M — AA; and R’s
belief map, 7 : M — A®, assigning a posterior to each message. A y-equilibrium is an
official reporting policy announced by S, ¢, together with a perfect Bayesian equilib-
rium of the subgame following S’s announcement. Formally, a y-equilibrium is a tuple

(¢,0,a,m) of measurable maps such that

1. m: M — A@ is derived from p via Bayes’ rule, given message policy
xé+(1-x)o:0—AM,

whenever possible;
2. a(m) is supported on argmax, , o Ur (a,-) dr(-|m) for all m € M;

3. 0(0) is supported on argmax,,,c ;[ 4 usda(-|m) for all 6 € ©.

We view S as a principal capable of steering R toward her favorite y-equilibria. Because
such equilibria automatically satisfy S’s incentive constraints on choice of ¢, we omit

said constraints for the sake of brevity.

2.3 Persuasion with Partial Credibility

This section presents Theorem 2.1, which geometrically characterizes S’s optimal y-
equilibrium value. To prove the theorem, we adopt a belief-based approach by using R’s
ex-ante belief distribution, p € AA®, to summarize equilibrium communication. When
communication is sufficiently flexible, the sole restriction imposed on an induced belief
distribution is Bayes plausibility: R’s average posterior belief equals his prior belief;
that is, [youdp(u) = o. We refer to any such p as an information policy and denote

the set of all information policies by R (o).
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We represent each of S’s messages with the posterior belief it induces in equilibrium

and use S’s value correspondence,

V:AB=R

L— CO Ug (argmax ur(a,-) du),
acA

to account for R’s incentive constraints. In words, V(u) is the set of payoffs that S
can attain when R behaves optimally given posterior belief u. Note that (appealing to
Berge’s theorem) V is a Kakutani correspondence, that is, a nonempty-compact-convex-
valued, upper hemicontinuous correspondence. As such, S’s value function, v(u) :=
max V (), which identifies S’s highest continuation payoff from inducing posterior p, is
a well-defined, upper semicontinuous function.

When S is fully credible (y(-) = 1), only S’s official reporting protocol matters. Be-
cause S publicly commits to this rule at the beginning of the game, Bayes plausibility
is the only constraint imposed on equilibrium communication. Hence, R may as well
break ties in S’s favor, reducing the maximization of S’s equilibrium value to the max-
imization of v’s expected value across all information policies. Aumann and Maschler
(1995) and Kamenica and Gentzkow (2011) show the highest such value is given by
the pointwise lowest concave upper semicontinuous function that majorizes v.> This
function, which we denote by 7, is known as v’s concave envelope.

Under no credibility (y(-) = 0), the official reporting protocol plays no role, because
S always influences the report. Therefore, S’s messages must satisfy her incentive con-
straints, which take a very simple form due to S’s state-independent payoffs: All on-path
messages must give S the same continuation payoff. Lipnowski and Ravid (2019) show

the maximal value that S can attain subject to this constraint is given by v’s quasicon-

5In the case in which O is finite, the qualifier “upper semicontinuous” may be ommited in the defini-
tion of the (quasi)concave envelope. For instance, see Lipnowski and Ravid (2019), Corollary 4.
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cave envelope, which is the lowest quasiconcave upper semicontinuous function that
majorizes v. We denote this function by .

Theorem 2.1 shows that for intermediate y(-), S’s highest y-equilibrium value is
characterized by an object that combines the concave and quasiconcave envelopes. For

Y € A®, define

Upy 1 AO — R

p— min{o(y), v(w)}.

Theorem 2.1’s characterization is based on the concave envelope of v,y, which we
denote by 0,,. Figure 2.1 below visualizes the construction of 7,, in the binary-state

case.

(@ v (b) 0 (©) Oay

FIGURE 2.1: Quasiconcave envelope, concave envelope, and concave envelope with a cap.

With the relevant building blocks in hand, we now state our main result.

Theorem 2.1. A sender-optimal y-equilibrium exists and yields ex-ante sender payoff

vy (o) = e BT ) kony(B)+ (1 =k)D(y)
s.t. kB+ 1 —k)y= o, (R-BP)
(1-k)y = (1 - x)o. (x-BP)
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To understand Theorem 2.1, note that every y-equilibrium partitions the messages
R sees into two sets: the messages that are sometimes sent under influenced reporting,
M, (messages that are “good” for S), and the messages that are not, Mg (those that
are “bad” for S). Official reporting can send messages from either set. The theorem
follows from maximizing S’s expected payoffs from M, and Mg, holding R’s expected
posterior conditional on My and My fixed at y and S, respectively. As we explain below,
this maximization yields a value of ki, (8)+(1-k)0(y), where k is the probability that
the realized message is in Mg. All that remains is to maximize this value over the set
of feasible triplets, (8,7, k), which are constrained by Bayes plausibility in two ways,
corresponding to (R-BP) and (y-BP), respectively. First, the average posteriors must
be equal to the prior, yielding (R-BP). Second, the ex-ante probability that R sees
a message from M, and an event © occurs is at least the ex-ante probability that ©
occurs and reporting is influenced.

We now explain the characterization of S’s optimal values from M, and Mg, which is
based on the no-credibility and full-credibility cases, respectively. Because all messages
in M, are sent under influenced reporting, they must satisfy the same constraints as
in the no-credibility case. By Lipnowski and Ravid’s (2019) arguments, i/(y) is the
highest payoff that S can obtain from sending a message under these constraints. For
S to send such messages, though, S’s payoff from M, must be above her continuation
payoff from any message in Mp. This requirement restricts Mg in two ways: (1) It
caps S’s continuation payoff from any feasible posterior, and (2) it restricts the set of
feasible posteriors in Mp, precluding posteriors from which S must obtain too high
a continuation payoff. In the proof, we argue the second constraint is automatically
satisfied at the optimum. As such, one can apply the same arguments as in the full-
credibility case, but with v replaced by v,y. That S’s highest payoff from Mjy is given

by Day(B) follows.
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2.4 Varying Credibility

This section uses Theorem 2.1 to conduct general comparative statics in the model’s
finite version. First, we study how a decrease in S’s credibility affects R’s value. In par-
ticular we provide sufficient conditions for R to benefit from a less credible S. Second,
we show that small reductions in S’s credibility often lead to a large drop in S’s payoffs.
Finally, we note that these drops rarely occur at full credibility. In other words, the full

credibility value is robust to small decreases in S’s commitment power.

Productive Mistrust We now study how a decrease in S’s credibility impacts R’s value
and the informativeness of S’s equilibrium communication. In general, the less credible
the sender, the smaller the set of equilibrium information policies.® However, that the
set of equilibrium policies shrinks does not mean less information is transmitted in
S’s preferred equilibrium. Our introductory example is a case in point, showing that
lowering S’s credibility can result in a more informative equilibrium (a la Blackwell,
1953). Moreover, this additional information is used by R, who obtains a strictly higher
value when S’s credibility is lower. In what follows, we refer to this phenomenon as
productive mistrust, and provide sufficient conditions for it to occur.

Our key sufficient condition involves S’s optimal information policy under full cred-
ibility. Given prior y, an information policy p € R(u) is a show-or-best (SOB) policy if
it is supported on {0p}pee Uargmax, e supp oy V(). In words, p is an SOB policy if it
either shows the state to R, or brings R to a posterior that attains S’s best feasible value.
Say S is a two-faced SOB if, for every binary-support prior u € A®, every p € R(y) is
outperformed by an SOB policy p’ € R(u); that is, [iovdp < [y vdp'. Figure 2.2 de-
picts an example in which S is a two-faced SOB. Note that productive mistrust cannot

occur in this example. Indeed, one can show that, if S’s favorite equilibrium policy

6See Lemma A.3.1 in the appendix.
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changes as credibility declines, it must switch to no information. As such, R prefers a
more credible S.

Finally, say a model is generic if R is (i) not indifferent between any two actions at
any degenerate belief, and (ii) not indifferent between any three actions at any binary-

support belief.”

/ P@ =0,)

FiGuRrE 2.2: Sender is a two-faced SOB

Proposition 2.1 below shows that, in generic finite settings, S not being a two-
faced SOB is sufficient for productive mistrust to occur for some full-support prior.
Intuitively, S being an SOB means that a highly credible S has no bad information to
hide: under full credibility, S’s bad messages are maximally informative, subject to
keeping R’s posterior fixed following S’s good messages. S not being an SOB at some
prior means that S’s bad messages optimally hide some instrumental information. By
reducing S’s credibility just enough to make the full-credibility solution infeasible, one
can push S to reveal some of that information to R. In other words, S commits to
potentially revealing more-extreme bad information in order to preserve the credibility

of her good messages. Proposition 2.1 below formalizes this intuition.

7Given a fixed finite A and ©, genericity holds for (Lebesgue) almost every ug € R4*®. In particular, it

: / - / ug(a1,01)-ur(az,01) _, ur(az,01)-ur(as,01)

holds if .uR.(a,H) # up(d,0) for all dlSFln.Ct a,a’ € Aand all 0 € ®, and AT D) # T AR D)
for all distinct ay, a, as € A and all distinct 01,60, € ©.
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Proposition 2.1. Consider a finite and generic model in which S is not a two-faced SOB.
Then, a full-support prior and credibility functions y'(-) < x(-) exist such that every sender-
optimal y'-equilibrium is strictly better for R than every sender-optimal y-equilibrium.8
We should emphasize that Proposition 2.1’s conditions are not necessary. We pro-
vide a necessary and sufficient condition for productive mistrust to occur at a given
prior for the binary-state, finite-action case in the appendix. In particular, we weaken
the SOB condition by requiring only that S wants to withhold information at the lowest
credibility level at which she can beat her no-credibility payoff. We refer the reader to
Lemma A.3.2 in the appendix for precise details. We do not know an analogous tight

characterization of when productive mistrust occurs in the many-state model.

Collapse of Trust Theorem 2.1 immediately implies lowering S’s credibility can only
decrease her value.® Below we show this decrease is often discontinuous. In other
words, small decreases in S’s credibility often result in a large drop in S’s benefits from

communication.

Proposition 2.2. In a finite model, the following are equivalent:

(i) A collapse of trust never occurs: 10

lim v (uy) = vl (up)
PUOVZ 1ONKs Ho xHo

for every x(-) € [0,1]® and every full-support prior py.
(i) Commitment is of no value: vy = v,.

(iii) No conflict occurs: v(dg) = maxv(A®) for every 0 € ©O.

8Moreover, when |0| = 2, every sender-optimal y’-equilibrium is more Blackwell-informative than
every sender-optimal y-equilibrium.

91t also implies value increases have a continuous payoff effect: A sufficiently small increase in S’s
credibility never results in a large gain in S’s benefits from communication.

1oConvergence of y'(-) — x(-) is in the Euclidean topology on R®.
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Proposition 2.2 establishes that, in most finite examples, S’s value collapses discon-
tinuously when credibility decreases. In particular, such collapses are absent for all
priors if and only if S wants to tell R all that she knows, or if, equivalently, commitment

is immaterial to S.

Robustness of the Commitment Case Given the large and growing literature on
optimal persuasion with commitment, wondering whether the commitment solution is
robust to small decreases in S’s credibility is natural. The answer turns out to be almost
never. Thus, although small decreases in credibility often lead to a collapse in S’s value,

these collapses rarely occur at y(-) = 1.

Proposition 2.3. In a finite model, the following are equivalent:

(D) The full commitment value is robust: limy, 1 vy (o) = vy (po) for every full-support

Ho-

(ii) S gets the benefit of the doubt: Every 6 € © is in the support of some member of

argmax; . g V(1)

Proposition 2.3 shows that the full-credibility value is robust if and only if S can
persuade R to take her favorite action without ruling out any states. In other words,
robustness of the commitment solution is equivalent to S getting the benefit of the

doubt.

2.5 Persuading the Public

This section considers a single sender interested in persuading a population of receivers
to take a favorable action. For example, S could be a government of a small open econ-
omy trying to encourage foreigners to invest in the local market, a seller advertising
to entice consumers to buy her product, or a leader vying for the support of her popu-

lace. To persuade the receivers, S commissions a weak institution (e.g., a central bank,
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product reviewer company, or state-owned media outlet) to issue a public report. In
this section, we analyze the S-optimal report under partial credibility, and identify the
states at which credibility is most valuable for S.

We modify our model as follows. The report of S’s institution is now publicly re-
vealed to a unit mass of receivers. After observing the institution’s report, receivers
simultaneously take a binary action. Each receiver i cares only about his own action,
a; € A=1{0,1}. Receiver i’s payoff from a; is given by a;(0 — w;), where 6 € ©® = [0,1]
is the unknown state, distributed according to an atomless, full-support prior ug, and
w; € Ris receiver i’s type. The mass of receivers whose type is below w is given by H(w),
an absolutely continuous cumulative distribution function whose density h is contin-
uous, strictly quasiconcave, and strictly positive on (0,1). S’s objective is to maximize
the proportion of receivers taking action 1.

An equilibrium of the modified game is tuple, (¢,0,a,7), where {:© — AM, 0:0 —
AM, and 7 : M — A® respectively represent S’s official report, S’s strategy when not
committed, and the public’s belief mapping, as in the original game. We let a : M —
[0,1] represent the proportion of receivers taking action 1 conditional on the realized
message. Observe action 1 is optimal for receiver i if and only if w; < Eu, where
i € A® is the publicly held posterior about 6, and E maps beliefs to their associated
expectations.!! As such, given a posterior p, the proportion of receivers taking action 1
is given by H(Eu). Thus, a y-equilibrium is a tuple (¢,0, a, 7) where 7 is derived from
Uo via Bayes’ rule, a(-) = H(En(-)), and o () is supported on argmax;,eps a(m) for all 6.

Theorem 2.1 applies readily to the current setting. Because H(Ep) is the proportion
of the population taking action 1 given posterior u € A®, S’s continuation payoff from a
public message inducing p is v(u) := H(Ep). Taking v to be S’s value function, we can

directly apply Theorem 2.1 to the current game.

UThat is, Ep:= [0du(8) for all pe AO.
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Next, we use Theorem 2.1 to find S’s optimal y-equilibrium. We begin with the ex-
treme credibility levels. Suppose first S has no credibility; that is, y = 0. In this case, S’s
optimal value is given by the quasiconcave envelope of S’s value function evaluated at
the prior, 7(uo). Because an increasing transformation of an affine function is quasicon-
cave, v = Ho E = p. Hence, with no credibility, S cannot benefit from communication.

Suppose now that S has full credibility; that is, y = 1. In this case, S’s maximal
x-equilibrium value equals v’s maximal expected value across all information poli-
cies, p € R(up). Notice that a given information policy p yields an expected value of
[ H(-)du, where u= poE~! € A@ is the distribution of the population’s posterior mean.
As such, maximizing S’s value across all information policies is the same as maximiz-
ing the expectations of H(:) across all posterior mean distributions produced by some
information policy. Such posterior mean distributions are characterized via the notion
of mean-preserving spreads.!? Formally, we say y € A® is a mean-preserving spread

of i€ A®, denoted by u = i, if
0 0 . A
f 1[0,61d6 > f [1[0,01d6, VO € [0,1], with equality at 6 = 1. (MPS)
0 0

As is well known,3 p being a mean-preserving spread of u is both necessary and
sufficient for u to arise as the posterior mean distribution of some information policy.

Thus, S’s value under full credibility is given by

The solution to the above program is dictated by the shape of the CDF H. Because the
CDF’s density, h, is strictly quasiconcave, H is a convex-concave function over [0, 1].

Said differently, an w* € [0, 1] exists such that H is strictly convex on [0, w*], and strictly

12See Blackwell and Girshick (1954) and Rothschild and Stiglitz (1970).
13See Gentzkow and Kamenica (2016) and references therein.
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concave on [w*,1]. As noted by Kolotilin (2018) and Dworczak and Martini (2019),
when H is convex-concave, the above program can be solved via 6* upper censorship,
which we now formally define. Under full credibility, 8* upper censorship arises when-
ever S’s official report reveals (pools) all states below (above) 8*. Given such an official
reporting protocol, it is optimal for S to say the state is above 6* whenever she influ-
ences the report. Thus, we say (¢,0) is a 8*-upper-censorship pair if every 6 € © has

o(-18) =6, and

89 if0€(0,6%),
(16) =
61 ifOe(6*1].

Given a 6*-upper-censorship pair, we refer to the resulting posterior mean distribu-
tion, 14

Lio,0%)to + ol0”, 110, 016071,

as a 0" upper censorship of yy. That upper censorship solves the full-credibility prob-
lem has been discussed by the aforementioned papers under slightly different assump-
tions. Still, we provide an elementary proof in the appendix for completeness.

We find upper-censorship pairs are also optimal when credibility is partial, although
the reasoning is more delicate. One complication is that not every upper-censorship
pair induces a y-equilibrium. The reason is that under partial credibility, the posterior
mean following message 1 can be strictly below the posterior mean induced by other
messages, thereby violating S’s incentive constraints. To avoid such a violation, the

mean induced by message 1 must be above the upper-censorship cutoff, 8*, which is

14Recall our notational convention: For bounded measurable f:® — R, and p € A®, we let fu repre-
sent the measure defined via fu(®) = [ fdp.
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equivalent to15

f 0-0%)(1— Li0p- £ ©))dpto(0) > 0. (0°-10)

Observe that with intermediate credibility, ¢ the left-hand side of (8*-IC) is continuous
and strictly decreasing in 6%, strictly positive for 8* = 0, and strictly negative for 6* =
1.17 As such, (6*-IC) holds whenever 6* is below the unique upper-censorship cutoff
at which it holds with equality, a cutoff that we denote by 6,.

Another complication arising from partial credibility is that a 8*-upper-censorship
pair does not typically yield an upper censorship of g as its posterior mean distribution.
Instead, every *-upper-censorship pair with 6* < 6, turns out to yield a 6* upper

censorship of

fiy = 1[09%))(#0 +(1-xpo [0,91))591,

which is the posterior mean distribution induced by the 9X-upper-censorship pair.
Claim 2.1 below shows that upper censorship always yields an S optimal y-
equilibrium. Moreover, to find the optimal censorship cutoff, one can solve the

full-credibility problem with the modified prior fi,.

Claim 2.1. A 9* € [O,éx] exists such that the 0* upper censorship of fi,, denoted by
Iy,0+» Satisfies

vy (Ho) = D(fiy) :fH(-) dpy 0+
Moreover, the corresponding 6*-upper-censorship pair is an S-optimal y-equilibrium
that induces py g+ as its posterior mean distribution.

Using Claim 2.1, we can compare the value of credibility in different states. In-

deed, the claim makes it obvious that, regardless of the population’s type distribution,

15To see this equivalence, note that R’s posterior mean conditional on seeing message 1 from a 6*-
SO+ 1 x@)+1-x@)]duo _ [O11-1 g+ x(@)]dpo
s 1 x@+1-x@1dpo  —  [11-1;9%)x(@)1duo

upper-censorship pair equals
(6*-IC) holds.

16That is, if pofy =0}, ofy =1} < 1.

17Recall yy is assumed to be an atomless, full-support distribution over [0, 1].
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S prefers the credibility distribution y over ¥ whenever fi, is a mean-preserving spread

p y X X My p g Sp

of f1y. One can then show by construction that the converse is also true; that is, S prefers
fiyz. O then show by truction that th Isot that s, S prefi

x to ¥ for all population type distributions only if fi; is a mean-preserving spread of

fiy. We present this result in Claim 2.2 below.
Claim 2.2. vy (po) = v; (o) for all type distributions?® if and only if 1, = fi5.

The economic intuition behind the claim is that credibility is most valuable when
the conflict between S’s ex-ante and ex-post incentives is large. Indeed, it is useful to

notice that fi, = fi holds if and only if?®

6 (o
f f (x —1)duodd >0 for all 0 € [O,éf].
0 Jo

Thus, the claim shows a sense in which S prefers to have more credibility in low states.
Intuitively, low states are those which S benefits from revealing ex ante but would like
to hide ex post. The more credibility S has in those states, the less S’s ex-post incentives

interfere with his ex-ante payoffs, and so the higher is S’s value.

2.6 Investing in Credibility

In this section, we extend our model to endogenize S’s credibility y. Specifically, sup-
pose S can choose any measurable y : ® — [0,1] at a cost of ¢(ydpuo) prior to the
persuasion game, where c: [0,1] — Ry is continuous and strictly increasing. Then, S

chooses y to solve

- o)

18That is, for all H admitting a continuous, quasiconcave density.

v (po) = max

19To see the equivalence, one can verify that 6 € [0,0,] has fOA f,(0,0]1d6 = ff foe xduo = 0 — Epg, and
each f e [9_)(' 1] ha}s f(f fi,[0,01d0 = 0 — Epy — and similarly fqr %- Therefore, the ranking (MPS) holds
vacuously above 6 and reduces to the given equation below 0;.
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Clearly, S never invests in greater credibility than is necessary to induce her equilibrium
information. As such, S always chooses (y, k, 8,y) so that (y-BP) holds with equality.

Combining this observation with (R-BP) yields

f)(duo =kp(O) = k.
S’s problem therefore reduces to

o = kv 1-k)v(y)—c(k
v, (Ho) fiye Arg,alice[oyu Uny(B) + ( Yu(y) —c(k)

s.t. kf+1—-Kk)y=po.

We now discuss how our results change when credibility is endogenized as above.
We begin by revisiting productive mistrust. Similar to R’s ability to benefit from a
decrease in exogenous credibility, R can also benefit from an increase in S’s credibility
costs. Recall our introductory example, and suppose the cost function is given by c(k) =
%kz for some A > 0. For any A € [2,3), one can verify S has a unique optimal investment

choice, leading to equilibrium distribution of posteriors

N [ A [

It is straightforward that this equilibrium information structure is Blackwell-monotone

DN | =

6 1
1—2] (55% +

in A — higher A leads to a mean-preserving spread in posterior beliefs. Consequently,
R’s equilibrium payoff (; — 7;) is increasing in A.

Whereas reducing y in our main model often leads to a discontinuous drop in S’s
payoff (Proposition 2.2), a uniformly small increase in ¢ cannot. The reason is that the

set of feasible (8,7, k) in Theorem 2.1’s program is independent of the cost, and the
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cost enters S’s objective separably. Therefore,

lve ™ (o) — vz™ (o) < llc = Clloo-

Thus, in the endogenous-credibility model, small cost changes have small effects on S’s
value.

In our public-persuasion application (Section 2.5), we saw that optimal commu-
nication takes an upper-censorship form and S especially benefits from credibility in
low states. These observations, together with the observation that S never invests in
extraneous credibility, lead us to simple institutions when credibility is endogenous.
In particular, S’s optimal institution is fully immune to influence below a cutoff state,
fully susceptible above, and fully informative in its official report. See Appendix A.3.6

for the formal result.

2.7 Conclusion

This paper studies a sender who uses a weak institution to disseminate information
with the aim of persuading a receiver. An institution is weaker if it succumbs to external
pressures with higher probability. Specifically, the weaker the institution is, the higher
is the probability that its report reflects the sender’s agenda rather than the truth.
We analyze the value that the sender derives from communication through such an
institution, as well as the information that it provides to the receiver.

Our analysis shows an institution’s weakness reduces the sender’s value through
two channels: Restricting the kind of information the institution can disseminate, and
reducing the value that the sender can extract from said information. Together, these
channels lead to collapses of trust, whereby a slight decrease in an institution’s strength
yields a large drop in the sender’s value. Moreover, these channels often result in pro-

ductive mistrust, whereby the receiver benefits from the sender employing a weaker
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institution. Intuitively, to credibly communicate the information the sender wishes to
convey, a weaker institution must reveal information the sender would otherwise hide.
Through these effects, our model highlights the role that weak institutions play in per-
suasion.

Our model also allows us to analyze the value of an institution’s strength in different
states. As a demonstration, we study a public-persuasion setting where a single sender
attempts to persuade a population of receivers to take a favorable action. In this setting,
the sender commissions her institution to reveal bad states, but hides those states when
influencing the report. Accordingly, the sender prefers institutions that are immune to
pressure in bad states, where the conflict between her ex-post and ex-ante incentives

is largest.
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Chapter 3

Screening with Frames

joint with Franz Ostrizek
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3.1 Introduction

Ample evidence, casual empiricism and introspection suggest that framing effects are
common in choice.! In particular, the way a product is presented and the setting of
the sales interaction can have a strong impact on consumer valuations.2 Concordantly,
many firms go to great expenses to improve the presentation of their product in largely
non-informative and payoff-irrelevant ways through packaging, in-store presentation,
and the emotions invoked by the sales pitch.

Most of the literature focuses on framing in static decision situations. However,
many economic interactions including sales unfold in several stages. For instance, when
buying a car, a consumer is first exposed to a manufacturer’s marketing material, con-
templates his purchase decision at home, and is then affected by the way the product
is presented by the dealer. Even the sales pitch itself unfolds sequentially. As a result,
firms have the opportunity to frame the options offered to the consumers differently at
different stages of the decision and to use such changes of framing strategically. What
is the optimal structure of a sales interaction? In particular, is it always best to present a
product in the most favorable light? In general, how can a principal leverage the power
to affect agents’ preferences throughout a sequential interaction?

We investigate these questions by adding framing and extensive forms to a classic
screening problem. The interaction of framing and sequential mechanisms allows the
principal to exploit dynamic inconsistency to reduce information rents, whether con-

sumers are sophisticated or not. While a growing literature analyzes this possibility

1For example, decision makers overvalue the impact of certain product attributes if they vary strongly
in the choice set (see Bordalo, Gennaioli, and Shleifer, 2013, and references therein) and tend to be risk
averse in decisions framed as gains and risk seeking for losses (Tversky and Kahneman, 1981).

2Consumer decisions are affected by the framing of insurance coverage (Johnson, Hershey, Meszaros,
and Kunreuther, 1993), the description of a surcharge (Hardisty, Johnson, and Weber, 2010), whether
discounts are presented in relative or absolute terms (DelVecchio, Krishnan, and Smith, 2007), prices as
totals or on a per-diem basis (Gourville, 1998), and by background music (Areni and Kim, 1993; North,
Hargreaves, and McKendrick, 1997; North, Shilcock, and Hargreaves, 2003; North, Sheridan, and Areni,
2016). Large effects of framing on consumer valuation are also found in incentivized lab experiments
and across policy discontinuities (Bushong, King, Camerer, and Rangel, 2010; Schmitz and Ziebarth,
2017).
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assuming that the pattern of taste changes is given by the consumer’s preferences (e.g.
temptation or $8-6), in our model this pattern is endogenous. The monopolist induces
changing tastes by varying framing throughout the interaction. She designs not only
the contracts, but also the structure of the sequential decision problem along with a
frame at each stage.

Our main result characterizes the structure of an optimal extensive-form decision
problem (EDP) in a setting with quasi-linear single crossing utility and any finite num-
ber of types and frames under regularity conditions. The optimum is achieved in three
stages using two frames (Theorem 3.1). If the consumers are sophisticated, the optimal

EDP has the following key features:

1. Short Interaction. All types make at most three choices, and some types make

only one choice.

2. Natural Structure: approach—“cool-off"—close. First, the agent is presented with
a range of choices under a “hard sell” condition (highest valuation frame) and
either buys now or expresses interest in one of the contracts, but is given time
to consider. Then he is allowed to “cool-off” (second highest valuation frame)
and decides whether to continue or take the outside option. Finally, again in the
“hard sell” frame, he is presented with the contract he expressed interest in and
a range of decoy contracts designed to throw off agents that misrepresented their

type initially.

3. Gains from Framing vs. Rent Extraction. The principal can either “reveal” or “con-
ceal” each type. Therefore, she faces a trade-off between maximizing the valua-
tion by using only the highest frame (revealed types) and reducing information
rents by using frames in a high-low-high pattern to induce dynamic inconsistency

(concealed types).
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We illustrate these features and the main construction for sophisticated consumers

in the following example.

Example 3.1. There are two equally likely types 68! (low) and 6% (high) and two
frames, low and high. Preferences of type ' in frame f € {I, h} are represented by
u}(p, q) = H}q — p, where the marginal utility 9;} depends both on the type and the
current frame (see Fig. 3.1a). The monopolist principal (she) produces a good of qual-
ity g at cost %qz and maximizes profits.

If the principal offers a menu, this is a standard screening problem with an addi-
tional choice of a frame. It is easy to see that it is optimal to pick the high frame h
and offer contracts so that 6,11’5 participation constraint and 9]21’3 incentive compatibility
constraint bind, which yields a profit of 20.3

The principal can do better. Consider the allocation that would arise if the principal
could make types observable at the cost of always putting the low type in the low frame.
Then, she could implement the efficient full-extraction contract for 8}, ¢! = (9,3), and
62, ¢* = (36,6), obtaining a profit of Iexensive = 22.5 > 20. We show that this is indeed
possible in an EDP by varying the frames: h — [ — h.

To see how the principal achieves this, consider Fig. 3.1b. It is easy to check that
the low type prefers ¢! to any other contract in the EDP in both frames and therefore
proceeds through the tree to c'. What about the high type? Because c! is preferable
to ¢ for him in both frames, we need to show that such a deviation is infeasible in this
extensive form. To deviate to c!, at the root the high type needs to choose the contin-
uation problem leading to this contract. As he is sophisticated, he correctly anticipates
his future choices but cannot commit. That is, at the second stage he anticipates that
at the final stage he would pick the decoy d? (in the high frame). But according to

his taste at the second stage (in the low frame), the decoy is very unappealing, so he

3In particular, the optimal contracts are (p',q" = (8,2) and (p?, g°) = (32,6). Note that with these
functional forms, g' = G’f is efficient for frame f and the quality of type 2 is distorted downward com-

pared to the efficient quality for both frames.
64



FiGure 3.1: Example 3.1

(a) Payoff types. (b) The optimal extensive-form decision problem implementing c', c.

f=1|f=n
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"""" choices of 6!

- - - - choices of §?

(0,0)

f=ha (0,0)

.
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-
-
-

c'=(9,3) d?=(45,9) (0,0)

would choose the outside option. Hence, at the root the choice of the continuation
problem is effectively equivalent to the outside option, thus, making the deviation to
c! impossible.

By placing a decoy contract as a “tempting poison pill” in the extensive form, the
principal effectively removes the incentive compatibility constraint. Hence, the high
type doesn’t obtain any information rent as the low type is concealed. This comes at
the cost of adding an additional participation constraint, namely for the low type in
the low frame, who has to pass through the low frame on the path to his contract.
Consequently, the maximal surplus that can be extracted from the low type is lower
than in the static menu. There is a trade-off between concealing the contract intended
for the low type in the continuation problem and thereby eliminating information rents

and extracting surplus from this type. A

In general, the profit maximization problem is an optimization over the set of all
extensive-form decision problems. However, based on the structure of the optimal EDP
established in Theorem 3.1, we identify an equivalent simple optimization problem in
contract space (Theorem 3.2). The principal partitions the set of types into revealed

and concealed. This partition determines the participation and incentive constraints:
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Concealing a type eliminates incoming IC constraints at the cost of a tighter partici-
pation constraint. In contrast to the classic setting, it is never optimal to exclude any
type, as it is strictly better to sell a strictly positive quality to every type and conceal
some of them instead (Proposition 3.3).4

For the main sections, we assume that consumers are sophisticated. They correctly
anticipate their choices, but cannot commit to a course of action.> As the optimal sales
interaction has a simple 3-stage structure, correctly anticipating behavior in this exten-
sive form is relatively easy. Moreover, consumers are exposed to sales pitches on a daily
basis, they are experienced and understand the flow of the interaction. Sophistication
reflects the idea that consumers understand that they are more prone to choose pre-
mium option when under pressure from the salesperson (high frame), and (in a low
frame) avoid putting themselves in such situations that lead to excessive purchases. In
addition, sophistication serves as a benchmark, by making it difficult for the principal to
extract surplus. Even if consumers are fully strategically sophisticated and can opt out
of the sales interaction at any point, framing in extensive forms affects the sales inter-
action and its outcomes. Indeed, the principal turns consumers’ sophistication against
them.

We also consider naive consumers. They fail to anticipate that their tastes may
change and choose a continuation problem as if their choice from this problem would
be made according to their current tastes. For naive consumers, the principal can im-
plement the efficient quantities in the highest frame and extract all surplus with a
three-stage decision problem. She does so using decoy contracts in a bait-and-switch:

Naive consumers expect to choose a decoy option tailored to them and reveal their

4This is in line with Corollary 2 in Salant and Siegel (2018), which states that there is no exclusion
with two types, when the principal offers a framed menu under a participation constraint in a neutral
frame. A related result is in Eliaz and Spiegler (2006). They show that there is no exclusion when the
principal screens by the degree of sophistication. We show that no-exclusion holds when the principal
screens by payoff type.

5Sophistication is a common modeling choice in the domain of time preference following the seminal
work of Strotz (1955); Laibson (1997).
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type by choosing the continuation problem containing it at the root (bait), but end
up signing a different contract due to the preference reversals induced by a change of
frame (switch). When both naive and sophisticated consumers are present in arbitrary
proportions and this cognitive type is not observable to the firm, our results generalize
(Theorem 3.3)¢. The optimal extensive-form still has three stages and implements the
same contracts as if the cognitive type were observable. There are no cross-subsidies
from naive to sophisticated consumers.

Many jurisdictions mandate a right to return goods and cancel contracts, especially
when the sale happened under pressure (e.g. door to door). This gives consumers
the option to reconsider their purchase in a calm state of mind, unaffected by the
immediate presence of the salesperson. We analyze such regulation and find that,
while the principal can no longer use framing to exaggerate surplus, she can still use
the resulting dynamic inconsistency to fully eliminate the information rent of all types.
Sophisticated consumers do not require protection by a right to return if they can decide
to avoid the seller, e.g. by not visiting the store, but naive consumers would benefit even
in this case.

Beyond the setting of framing in screening problems, we view our results as steps to-
wards understanding the impact of behavioral choice patterns (both framing and choice
set dependence) when a principal (or mechanism designer) can offer extensive-form
decision problems in order to exploit the resulting violations of dynamic consistency
and demand for commitment. We return to this discussion in the conclusion.

We set up the model in Section 3.2. In Section 3.3, we show that the optimal
extensive-form decision problem is of a simple three-stage structure. We find a relaxed
problem in price-quality space that characterizes the optimal vector of contracts. In
Section 3.4, we construct the optimal extensive-form decision problem if some con-

sumers are naive about the effect of framing. We also consider the case when the

6Spiegler (2011) notes that the principal can costlessly screen by cognitive type in a setting without
taste heterogeneity.
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principal’s choice of extensive form is restricted to account for a participation decision
(e.g. aright to return the product) in an exogenous "neutral" frame. We conclude with

discussions. Proofs are collected in the Appendix.

Related Literature

A growing literature studies the manipulation of framing by firms. Piccione and
Spiegler (2012) and Spiegler (2014) focus on the impact of framing on the compara-
bility of different products. Salant and Siegel (2018) study screening when framing
affects the taste for quality, as in our setting. In this paper, the principal chooses
a framed menu, while we study the optimal design of an extensive-form decision
problem to exploit the dynamic inconsistency generated by choice with frames and
make predictions about the structure of interactions. In addition, our model makes
different predictions for the use of framing and efficiency in the setting where the two
are closely comparable:?7 Using extensive forms, it is always more profitable to use
framing (not only when it is sufficiently weak) and framing removes all distortions
created by second-degree price discrimination (not only some) in our setting.

Our article is also related to behavioral contract theory more generally (for a recent
survey, see Készegi 2014, for a textbook treatment, see Spiegler 2011), in particular
to screening problems with dynamically inconsistent agents (Eliaz and Spiegler, 2006,
2008; Esteban, Miyagawa, and Shum, 2007; Esteban and Miyagawa, 2006a,b; Zhang,
2012; Galperti, 2015; Heidhues and Készegi, 2010, 2017; Yu, 2018; Moser and Olea

de Souza e Silva, 2019).8 These papers consider situations when the taste changes

7That is, comparing their Section 3 with our Section 3.4.2, where we impose a right to return the
product in an exogenously given "neutral" frame. They also consider a model without returns but with
a "basic" product that has to be offered and an insurance problem in which the monopolist can highlight
one of the options, turning it into a reference point relative to which consumers experience regret.

8Eliaz and Spiegler (2006, 2008) screen dynamically inconsistent agents by their degree of sophis-
tication and optimistic agents by their degree of optimism, respectively. Esteban, Miyagawa, and Shum
(2007); Esteban and Miyagawa (2006a,b) study screening when agents are tempted to over- or un-
derconsume. Zhang (2012) studies screening by sophistication when consumption is habit inducing.
Galperti (2015) studies screening in the provision of commitment contracts to agents with private infor-
mation on their degree of time inconsistency, Heidhues and Készegi (2017) study selling credit contracts
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are given by the preferences of the agents (e.g. Gul and Pesendorfer (2001) or $-6)
and consequently design a 2-stage decision problem as induced by the natural time
structure of the problem. We study how a principal chooses the sequence of frames and
an extensive form of arbitrary (finite) length to induce dynamic inconsistency and we
show that a 3-stage mechanism is optimal.

Given the optimal sequence of frames, this mechanism employs techniques similar
to those in the literature. In particular, it involves off-path options that remain unchosen
by every type ("decoys"). In Esteban and Miyagawa (2006a) and Galperti (2015) such
decoys make deviations less attractive and are thus analogous to the decoy contracts
we introduce in the optimal extensive form for sophisticated agents. Heidhues and
Készegi (2010) show that credit contracts for partially sophisticated quasi-hyperbolic
discounters feature costly delay of the payment which the consumer fails to expect
when signing the credit contract. Immediate repayment is hence an unused option
analogous to the "bait" decoys we introduce to screen naive consumers.

Glazer and Rubinstein (2012, 2014) consider models where the principal designs
a procedure such that misrepresenting their type is beyond the boundedly rational
agents’ capabilities. While their decision problems are based on hypothetical questions
about the agent’s type, we show that it is possible to structure a choice problem with
framing to make it impossible to imitate certain types.

There is a large literature on endogenous context effects, e.g. through focusing the
attention of the decision maker on attributes that vary strongly or are exceptional within
the choice set (Bordalo, Gennaioli, and Shleifer, 2013; K6szegi and Szeidl, 2013). We
consider the case of framing through features of the choice situation, such as the sales
pitch or the presentation format. Thus, consumers in our model fit into the choice with

frames framework of Salant and Rubinstein (2008).

in this setting. Yu (2018) and Moser and Olea de Souza e Silva (2019) study optimal taxation problem,
where agents are also heterogeneous in the degree of present-bias.
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The presence of different frames and extensive forms places our screening setting
close to implementation. If we reinterpret our decision maker as a group of individuals
with common knowledge of their type but different tastes, one individual corresponding
to each frame, the principal applies implementation in backward induction (Herrero
and Srivastava, 1992). While they give abstract conditions for implementability in a
very general setting, we characterize the structure of the optimal decision problem for

our screening model and derive properties of the optimal contracts.

3.2 Screening with Frames and Extensive Forms

We build on the classic model of price discrimination (Mussa and Rosen, 1978; Maskin
and Riley, 1984), extending the framework in two ways. Instead of simple menus, firms
design an extensive-form decision problem. Furthermore, for every decision node the
firm picks a frame affecting the valuation of consumers. Our results are driven by the

interaction of both ingredients.

3.2.1 Contracts and Frames

The firm produces a good with a one-dimensional characteristic g > 0, interpreted as
quantity or quality. Throughout the exposition, we maintain the latter interpretation.
A contract c is a pair of a price p and a quality g, the space of contracts is C =R x R,.
There is a finite set of frames F with |F| > 2 and a finite type space ® endowed with
a full support prior u. Each type is a function 6 : F — R that maps frames into payoff
types, denoted as 0 = 6(f). For a given payoff type 0 the consumer is maximizing the

utility function

ug(p,q) = vo,(q) — p.
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where v:R x R, is a thrice differentiable function, that satisfies

ov ov 0%v 0%v v
> —>0,

— >0, — <0, ———>0.
aq 00 00q 04> 0q?a0

For convenience, we normalize Y0y, vy ;(0) = 0. Note that we assumed that utility is
quasi-linear in money and frames affect a consumer’s taste for quality. This is consistent
with framing effects on price perception, as long as these effects are multiplicatively
separable.

For a given vector of contracts ¢ = (cy)geo, We refer to the constraints

tg, (¢g) > 0, and ®)

g, (co) > ug, (cy) (IC)y)

as the participation constraint for 6 and the incentive compatibility constraint (IC) from
0 to 0’ in frame f.

First, we require a non-triviality condition.
Assumption 3.1 (Relevant Frames). For any f, f' € F there exists a type 6 € © such that
O #0p, ie. the two frames induce a different valuation for this type.

Second, we also assume additional structure on payoff types across frames in order

to ensure that the problem remains one-dimensional despite the addition of frames.

Assumption 3.2 (Comonotonic Environment). For any 6,0’ €0, f,f € F:
9f>6f/ :Glf>9}, and 9f>9}:>9f/>9},.

The first part of the assumption implies that frames can be ordered by their impact
on the valuation. There is a lowest frame, i.e. a frame inducing the lowest valuation
for every type and a highest frame, i.e. a frame inducing the highest valuation for

every type. The second part implies that types can also be ordered by their valuation
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independently of the frame. With slight abuse of notation, we denote the order on
frames and types using regular inequality signs.

In many cases, a frame has a similar impact on different consumer types. The
more effectively a seller emphasizes quality, for instance, the higher a consumer values
quality irrespective of their type. The first part of our assumption is satisfied as long as
the direction of the impact of a given frame is the same for all types. The second part
is satisfied as long as the size of the effect is not too different between types relative
to their initial difference in valuation. In particular, suppose there is a neutral frame
fn. The assumption is satisfied when the absolute impact of an enthusiastic frame
fe > fn is greater for high valuation consumers and the absolute impact of a pessimistic
frame f), < f;, is greater for low valuation consumers: The firm can amplify the initial
feelings of consumers and make all types more or less interested in quality, but it cannot
manipulate them to the degree that the order is reversed.

Assumption 3.2 precludes any frame from impacting the valuations of different
types in a different direction. For example, focusing a car buyers attention on emissions
may increase the valuation of a “green” car for some buyers while reducing the valuation
of all cars, including the “green” car, for others. Similarly, it rules out cases where
the order of types by their payoff parameter depends on the frame. For example, the
demand for health insurance coverage may be lower among smokers than nonsmokers
if they are not reminded about the long run effects of their habit, but is higher for
smokers than nonsmokers if the effects of smoking are made salient during the sale
of insurance. Together with Assumption 3.1, it also rules out that certain frames are

specific to certain types. We discuss how we can relax our assumptions in Section 3.3.5.

3.2.2 Extensive-Form Decision Problems

We model the sales interaction as an extensive-form decision problem (single-player
game), with a frame attached to each decision node. For example, the following sit-
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uation can be represented by a two-stage extensive-form decision problem. First, the
consumer contemplates whether to visit the store and then purchases a product in the
store. Perhaps, the consumer is initially affected by marketing materials (frame at the
root) and then the consumer is affected by the sales pitch in the store (frame at the
second stage).

We define extensive-form decision problems (EDPs) by induction. Call an extensive
decision problem with k stages a k-EDP. For any set S, let P(S) denote the set of all finite
subsets of S containing the outside option 0:= (0,0). The set of 1-EDPs is £ := P(C) x F,
that is, a 1-EDP e = (A4, f) is a pair of a finite menu A and a frame f. For each k > 1,
the set of k-EDPs is £ := ’P(U;C:_Olgl) x F,sothate=(E, f) € E¥isa pair of a finite set of

EDPs E and a frame f.° Finally, the set £ of all finite EDPs is given by
o0
:=J&~
k=1

In other words, an EDP is a finite tree with a frame assigned to each decision node.

Moreover, the outside option is available for consumers at each stage.

Choice from Extensive-Form Decision Problems The preferences of consumers are
represented by a utility function defined on the set of contracts. Therefore, the choice
of consumers with type 0 is well defined on the set £! of 1-EDPs which are simply
menus with frames. To define consumer choice for any EDP we assume that the con-
sumers are sophisticated. Presented with a choice between several decision problems,
the consumer correctly anticipates future choices, and chooses the continuation prob-
lem according to her current frame. The current self has no commitment power other

then the choice of a suitable continuation problem.

9Set £° = C to allow for terminal choices at all stages. Also, note that the choice of frame at each
stage is unrestricted. In particular, the frame at the root of an EDP does not place any constraints on
subsequent frames. We discuss the role of this assumption in Section 3.3.5.
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Formally, we define the sophisticated consumer’s choice in an EDP by induction.
Call 0: ® — C an outcome of a 1-EDP (A, f) € £! if 0(9) maximizes up, on A. Suppose
the consumer is facing a k-EDP (E, f) € £F. Choosing between continuation problems
in E, she anticipates her choice 0¢(0) € C for each e € E, but evaluates the contracts
{0°(0)}eer in the current frame f. Let X¢ be the set of outcomes of an EDP e € Ufz_olé' :
with ¢ = {0 — e},Ve € £Y. Then o is an outcome of (E, f) if there is a solution o° € X°¢

for every e € E, such that VO € ©

0(0) € argmax ug,(0°(0)).
{o¢(0):ecE}

3.2.3 The Firm’s Problem

The monopolist produces goods of quality g at convex cost x(g), that is twice-
differentiable and satisfies boundary conditions to ensure interior efficient quantities:
k(0)=0,«x">0,x">0and VO; R, véf (0) =«(0) > 0, limy—oo véf(q) -x'(g) <0.

Given a vector of contracts ¢ = (cy)geo = (Po, go)oco, the profit of the firm is given by

I(c):= ) o (po—x(gp)).
0e®

Finally, the firm designs an EDP to maximize profits

IT*:= max II(c). (GP)

eef,cexe

In analogy with the mechanism design literature, we say a vector of contracts c is
implemented by an EDP e if it has a solution o = ¢. We then call ¢ implementable. In

these terms, the principal maximizes profits over the set of implementable contracts.°

10Note that (GP) does not require ¢ to be the unique outcome of e. We only require partial implemen-
tation, as is customary in contract theory to ensure the compactness of the principal’s problem. It can be
shown that for any € > 0 the firm can design an EDP of the same structure with a unique outcome that
achieves IT* —e.
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We denote the efficient quality for a payoff parameter 6 by gy, with
U(gf(ﬁgf) = K'(ﬁef)-

The efficient quality is unique, positive and strictly increasing in the payoff parameter by
our assumptions on v and k. We denote the contract offering this quality and extracting

all surplus from the corresponding payoff type by ¢y, := (v@ (o), Go f).

3.3 Optimal Screening

Before we analyze the general problem (GP), we analyze two special cases. In both
cases, the problem collapses to a simple static screening problem.

Consider a simpler problem, where the firm can only choose a 1-EDP, i.e. a menu
and a frame. In this case, it is optimal to choose the highest frame & := maxF, max-
imizing consumer valuation. Alternatively, suppose there is only one frame: F = {h}.
Consequently, any EDP must use the same frame at every stage. The extensive-form
structure does not matter in this case: As consumers are perfectly rational and dy-
namically consistent, they pick the most preferred contract from the extensive form.
Hence, an extensive form is equivalent to an unstructured menu offering the same set
of contracts.

In both cases, the optimal menu corresponds to the solution of the classic monopo-

listic screening problem with the set of types {0;}gco. "

Observation 3.1. Let c* be the vector of contracts obtained by maximizing profits subject
to the participation constraint for the lowest type and all IC constraints, all in frame h.

Then the 1-EDP (0 U {c}gco, h) solves (GP) if

1. the firm is constrained to 1-EDPs, or

11This is in contrast to (Salant and Siegel, 2018), where there is an ex-post participation constraint in
an exogenously given frame, or a default option, i.e. a restricted menu choice problem for the principal.
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2. there is only one frame: F = {h}.

This shows that framing or extensive forms alone are not sufficient for our results.
Only both features together allow the principal to use different frames at different
stages of the decision and thereby generate violations of dynamic consistency that can

be exploited.

3.3.1 Optimal Structure of the Extensive Form

In this section, we show that the optimal EDP has a simple three-stage structure. To-
wards this result, let us define a class of EDPs which share these structural features.

Let h and [/ denote the highest and second highest frame:

h:=maxF,

[:=maxF\{h}.

For any standard EDP the set of types © is partitioned into two sets, as there are
two ways to present the contract associated to a given type: Contracts ¢y for revealed
types (0 € ©r) are presented at the root, while contracts for concealed types (6 € ©¢)
are presented in separate continuation problems eg. Then, the three stages are (see

Fig. 3.2):
1. Root: f = h; available choices: contracts cg for 8 € @ and EDPs ey for 6 € O¢.
2. Continuation problem: f = [; available choices: outside option and continue.
3. Terminal choice: f = h; available choices: ¢y and decoys dg, for 6’ > 0.

Formally, we have the following definition.
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Definition 3.1. An EDP e is a standard EDP for a vector of contracts c if there exists a

partition {O¢, O} of ®, and decoy contracts {dg,}gegcyggg, such that

e= ({99}9690 U{cotpeoy U {0}, h) where (3.1)

ep = ({({CQ,O} U {dg,}g/>9, h),()}, l), VO € Oc. (3.2)

The extensive form in Example 3.1 is a standard EDP. Type 6! is concealed — his
contract is available only after a continuation problem — while type 07 is revealed — his

contract is available immediately at the root.

FIGURE 3.2: A standard EDP for (cg1,...,cgs) with O = {#2,0%,0°} and O¢ = {9',0%).

f=h

Note that the notion of standard EDP is solely about the structure of the EDP. It
puts no restrictions on the decoy contracts and is silent about choice. In particular, a
standard EDP for ¢ may not implement c.'2

Standard EDPs are sufficient to achieve the optimum.

Theorem 3.1. If c is an optimal vector of contracts in (GP), then it is implemented by a

standard EDP.

12Whenever we state that a vector of contracts ¢ is implemented by a standard EDP, however, it is
understood that it is implemented by a standard EDP for c.
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Several observations follow from this result. First, the optimum can be achieved
in three stages for an arbitrary number of agent types, even though the principal has
arbitrarily complicated and long extensive forms at her disposal. As the number of
types increases, the structure and length of the decision problem stays the same, only
the number of available contracts increases. Furthermore, the optimal EDP has a simple
structure that we interpret as follows: At the beginning, the consumer is presented a
range of contracts {cg}gee While the salesperson focuses their attention on quality (high
frame). Some of those contracts (those intended for revealed types) can be signed
immediately, some others (those intended for concealed types) are only available after
an additional procedure that gives the consumer some time to consider, while sales
pressure is reduced (lower frame). This can be an explicit wait period, where the
consumer is asked to think about the contract and recontact the seller. Alternatively,
the change in frame could be achieved by a change in the salesperson or by acquiring a
confirmation that this type of offer is even available for the consumer. If the consumer
is still interested after this ordeal, she is presented with additional offers, the decoy
contracts. On path, these offers remain unchosen, the consumer chooses the contract
she initially intended to obtain.

Second, types are separated at the root. The principal does not use the extensive-
form structure to discover the type of a consumer piecemeal, it is an implementation
device to screen contracts against imitation.

Third, only the two highest frames are used. As we have seen in Observation 3.1,
the principal desires to put everyone in the highest frame if there is no extensive-form
structure. On the other hand, if every decision node uses the same frame, the extensive-
form structure is irrelevant for agents choice. Consequently, the principal uses at least
two frames in order to induce violations of dynamic consistency. As long as the principal
induces such violations, the decoys can be constructed irrespective of the number of or

cardinal differences between the frames used. Hence, two frames are sufficient for the
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principal to reap all potential gains from such violations. Finally, only the highest two

are used in the optimal EDP in order to maximize valuations.

3.3.2 Necessary and Sufficient Conditions for Implementation

In order to provide foundations for Theorem 3.1, we proceed in two steps. First, we
identify an upper bound on profits in any EDP by providing necessary conditions every
implementable vector of contracts has to satisfy. Then, returning to standard EDPs,
we provide sufficient conditions on a vector of contracts ensuring that it can be im-
plemented in this class. In particular, we explicitly construct decoy contracts and show

that the principal can thereby eliminate downward IC constraints into concealed types.

Necessary Conditions for Implementation by General EDPs

Consider an arbitrary EDP implementing a vector of contracts ¢ = (cyp)geo. Denote the
frame at the root by fr. Extending the notion of revealed and concealed types from
standard EDPs, for each type 6 there are two possibilities: If there exists a path from
the root to ¢y with all decision nodes set in fg, then 0 is called revealed. Alternatively,
if every path from the root to ¢y involves at least one fy # fr, then 6 is called con-
cealed. As usual, we will denote the sets of revealed and concealed types by ®z and
Oc, respectively.

First, consider participation constraints. If the path from the root to cy passes
through a node in frame f, then, since the outside option is always available, cy needs
to satisfy the corresponding participation constraint Pg . In particular, every contract
has to satisfy the constraint at the root PgR.

We now turn to incentive compatibility constraints. If 6 is revealed, ¢y can be
reached by any type from the root, as consumers are dynamically consistent when

the frame does not change along the path. Consequently, for any 6’, ¢y must not be an
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attractive deviation:
ug (cor) = ug. (cp) Vo' € 0. (Icglé,)
fr Ir

If 6 is concealed, there is a change of frame along the path to cy. This induces a
violation of dynamic consistency, which may make deviations into ¢y impossible. As we
are looking for necessary conditions, we impose no incoming IC constraint in this case.

So far, we identified a family of conditions indexed by (f, {fo}geo, ©c), such that a
vector of contracts is implementable only if it satisfies at least one of them. The follow-
ing proposition shows that without loss of generality, we can set fg = h and fy = [. This
is because the exact frame only matters for participation, while the change of frame
affects IC. Consequently, the contract must satisfy the least restrictive participation con-

straints, i.e. in the highest and second highest frame.

Proposition 3.1. If ¢ is implemented by an EDP, then it satisfies constraints {Pg}gegR,
{PLlgeoc, and {IC) }oeo 0co, for some partition {©¢, O} of ©.

The necessary conditions illustrate the trade-off between using framing to increase
consumer valuation and its use to reduce information rents. For revealed types, the par-
ticipation constraint needs to be satisfied only in the highest frame, the frame resulting
in the least restrictive constraint. This results in the greatest surplus. For concealed
types, the participation constraint needs to be satisfied in the second highest frame.
This reduces the surplus from the interaction. The principal is compensated for this

reduction through the removal of IC constraints into concealed types.

Sufficient Conditions for Implementation by Standard EDPs

To construct a standard EDP that implements a vector of contracts ¢, we proceed in
two steps. First, we need to determine the set of concealed types. Then, we construct

decoys for the continuation problems of these types. Clearly, type 6 can be concealed
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in a standard EDP only if ¢y satisfies the participation constraint P., since otherwise he
would prefer to opt out in the second stage.

If 0 is concealed, the principal can design decoys in order to make some deviations
into cg impossible. Whereas decoys cannot rule out all upward deviations, they can
rule out all downward deviations into cg. Consequently, a vector of contracts is imple-
mentable by a standard EDP even if it does not satisfy the downward IC constraints, as

long as the types that are attractive to imitate can be concealed.

Proposition 3.2. If c satisfies the constraints {Pg}gegR, {Pé}g(_:@c, {Icgg,}g<g/, and
{ICh, Yoco,0c0, for some partition {©¢,Or} of ©, then c is implemented by a standard

EDP.

As in Example 3.1, the principal constructs decoys to render downward deviations
into concealed types impossible in the extensive form. This construction is the central
step in our results and we therefore present it in the text. The construction ensures
that (ii) if 6 is concealed, no type 8’ > 6 can imitate 6. The decoys don’t interfere with
the choices of any type at the root, as they will not be chosen from the continuation

problem (i). In particular, 6 chooses the intended contract (iii).

Lemma 3.1 (Decoy Construction). For any 6 € ©, cy satisfies Pé if and only if there exist

decoys (dg/)g/>g, such that the corresponding eg in (3.2) has an outcome o that satisfies
() g(0') €f0,co} forall 0’ €O,
(ii) (@) =0 forall ' >80, and

(iii) o(0) = cp.

Construction. The construction of the decoys and the continuation problem ey is illus-

trated in Fig. 3.3. At the terminal stage, agents are presented with the choice between

the contract cg, the outside option and a set of decoys {dg,}g/>9, one for every type
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FicUrE 3.3: The construction of eg.
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greater than 6. Given a contract cg, the decoy dgl for the next largest type 0! is implic-

itly defined by the system

191 (0) = ug) (dy)). (3.3)

u% (cp) = ug;l (dg1) (3.4)
Then, decoy dgz for the next type 62 solves

g2 (0) = g (dyy). (3.5)

g2 (dy)) = uge (dgy) (3.6)

Proceeding by induction, we construct decoys for all 8’ > 6. Now we define an outcome
o as follows. The single-crossing property ensures that each type 68’ > 6 chooses their
corresponding (decoy) contract out of the menu {ce,dgl,...,dgm,O} in frame h. At the
root, 8 will choose its contract since it satisfies Pé and any 0’ > 0 will choose the outside
option. Finally, single crossing ensures that types 6’ < 0 prefer the outside option over

the decoys as well. We formally verify the construction in Appendix A.4.2. O
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3.3.3 Optimal Contracts

We show that the principal’s problem (GP) over the space of extensive forms is equiva-
lent to a two-step maximization problem based on the necessary conditions for imple-
mentation (Proposition 3.1). This relaxed problem characterizes the optimal vector of

contracts.

An Equivalent Problem in Price-Quality Space

Let us summarize the necessary condition in an optimization problem. Recall that these
conditions are indexed by the set of concealed types. This set is an additional choice

variable for the principal in the relaxed problem.

% = max max I1(c) (RP)
Oc<O (ch)geo

s.t. up,(cp) =0, YOeB®r:=0\0O¢ 29

ug,(cg) >0, VO€OC P))

ug), (co) > Ug, (co), VO€O,0'€Op (ICG,)

While it is not true that every vector of contracts satisfying the necessary conditions
is implementable, the solution of (RP) is implementable, as it satisfies the sufficient

conditions of Proposition 3.2.

Theorem 3.2. A pair (O¢,c) solves (RP) if and only if ¢ solves (GP). Moreover, such a
solution exits and ¢ can be implemented by a standard EDP with a set of concealed types

Oc.

In other words, the general problem (GP) attains the upper bound given by (RP)

m* =1k,
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and the necessary conditions together with optimality is sufficient for implementation,
even in the restricted class of standard EDPs.

Without the equivalent formulation, even verifying the existence of a solution to
(GP) can be troublesome. Theorem 3.2 shows that instead of a complex optimization
problem defined over extensive forms, the principal can solve well-behaved contract-
ing problems over a menu of price-quality pairs, one for each potential set of concealed
types and compare the attained values to find the optimum.!3 Once the principal found
the (RP) optimal concealed types and vector of contracts, it is easy to construct a stan-

dard EDP implementing it using Lemma 3.1.

No Shut-down

In the classic model of screening, it is sometimes optimal for the monopolist to exclude
low types by selling the outside option to them. In our model, this is never the case,

because concealing a type is always strictly better for the monopolist than excluding it.

Proposition 3.3. The optimal contract (pg, qg) for a type 0 satisfies 0 < q, < g0 < Go,,
where vg, (g@) - K(g@) :=vg,(qgp,) —x(qp,). In particular, every type of consumer buys pos-
itive quality.

Indeed, concealing a type can be interpreted as a soft form of shut-down. In order
to eliminate information rents, the principal reduces the revenue extracted from a type.
The key difference is that it can be achieved at a strictly positive quality, while extracting

revenue from this type.

Optimal Contracts for Concealed Types

For concealed types, we can provide an additional lower bound on quality in the opti-

mal contract. The contract for concealed types is subject to constraints in two frames:

13Indeed, a stronger result holds. The (RP) optimal contracts for any, even suboptimal, set of concealed
types is implementable. The problem can be further simplified by noting that only local IC - those into
the nearest revealed types - are binding. See Appendix A.4.2.
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a participation constraint in the lower frame [ and an IC constraint in the higher frame
h. Since concealed types cannot be imitated, there is no reason to distort their quality
downward below the efficient quality in the lower frame, gp,. It can be optimal, how-
ever, to increase the quality above this level in order to deliver rent more cost-effectively

in order to satisfy the IC constraint.

Proposition 3.4. Consider a concealed type 8 € ©¢. Then, the optimal quality is bounded
between the efficient quality in frame | and h: Gy, < qo < Gp,,. In particular, the optimal

contract is

Co;» if Mg < vg,,(Gp,) — vo,(Gp,),
(Po, q0) =\ (ve,(g™), %), if Ag € [va,(Go,) — vo,(da,), Ve, (Go,) — ve,(ds,)]

(ve,(Go,) — Do, Go,), if Do = ve,(Go,) — ve,(Gs,),

where q* solves vy, (™) — vg,(q™) = Ay, and Ag := argmaxgy..e, Ug, (Cor) denotes the rent
delivered to type 6 € ©¢, and c is the optimal contract.

If the required rent is low, only the participation constraint in the low frame binds
and the optimal contract is the efficient contract for the type in the low frame. As more
rent needs to be delivered in the high frame, it becomes optimal to increase the quality
of the product up to the efficient quality in the high frame.

The contract further illustrates the cost of concealing a type. From the perspective
of the high frame, a concealed type always receives at least the minimum rent vy, (gp,) —
Vg, (qp,), reducing the payoff of the principal. The cost of concealing a type is decreasing
in the information rent A. If it is sufficiently high (in the third regime of (3.4)), it is

costless to conceal the type.
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3.3.4 Optimal Concealed Types

One might conjecture that it is optimal for the principal to conceal low types and reveal
high types. Even though this does not hold in general, this statement has a grain of
truth: Revealing the highest type is always optimal. This is because types are concealed
in order to eliminate downward deviations into them, which is not a concern for the

highest type.

Observation 3.2. Suppose (©%,c*) solves (RP) and the highest type 0 = max® is con-
cealed, 0 € ©f. Then (O \6,¢*) also solves (RP).

In general, there are no other restrictions on the optimal set of concealed types, as
the following linear-quadratic three-type example illustrates. In Fig. 3.4 we plot the
regions of the probability simplex where particular sets of concealed types are optimal.
All four cases are realized for some probabilities. In addition, the restriction to mono-
tone virtual values that ensures monotonicity in the classic screening model doesn’t

rule out any configuration.

FIGURE 3.4: Optimal O for ! = (1,3),0% = (4,5),0° = (5,6).

{01}

H2
area with positive and

monotone virtual valuations

{01,0,}

H1

Loosely speaking, the concealed types are substitutes for the principal. Consider

two types 6 < 6'. By concealing 6, the principal reduces the rent 6’ obtains, increasing
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the costs of concealing 8’ (as it is more costly to conceal a type if it has a low information
rent; Proposition 3.4). In addition, a lower rent implies that concealing 6" has a lower
gain as well, as information rents compound. Simlarly, concealing 6’ reduces the benefit
of concealing §. This pattern of substitutability is reflected in Fig. 3.4 as the regions

Oc¢ = {01} and B¢ = {0,} touch.

Sufficiently Likely Types Are Revealed It is not profitable to conceal very likely
types, since the gain from the reduction of information rents for other types is out-

weighed by the loss of profits that can be extracted from them directly.

Proposition 3.5. For any type 0 there exists a probability threshold fig € (0,1), such that

for any ug € [fig, 1], an optimal set of revealed types contains 6.

This proposition suggests interpreting the contracts of revealed types as standard
options that are relevant for common types of consumers and available immediately in
the store, and the contracts for concealed types as specialty options relevant for rare

types of consumers and available only on order.

High 0, Favors Concealing The difference between the valuations in frames h and [
determines the cost of concealing. If we fix all types, but increase the [-frame valuation
of a concealed type, this cost is reduced and this type remains concealed.
Proposition 3.6. Let ©¢ be an optimal sets of concealed types for (O, ) and let 6 € Oc.
Define 0 such that 0; > 0,,0;, = 0;,. Then, for the set of types (©\{0}) U {0} there exists a
solution of the principal’s problem (RP) with the set of concealed types O¢ := (O¢\{0}) U{B}.
Fixing the highest valuation the principal can achieve for each type, the cost of
concealing is low if 6; is high. We can interpret this as a more precise control of the
principal over consumer valuations. With sufficient control, she will conceal all types

except for the highest.
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Proposition 3.7. Fix 65,,V60 € ©. There exists an € > 0 such that if 8, —0; < &,V0 € ©,

then ¢ = © \ max0.

3.3.5 Discussion

Commitment and Direct Mechanisms Consumers are sophisticated but lack com-
mitment. This is crucial, as the power of the principal to relax IC constraints by con-
cealing types relies on the resulting dynamic inconsistency. In particular, this implies
that our contracts cannot be implemented by a direct mechanism. Restricting to direct
mechanisms effectively gives commitment as single-stage interaction does not allow
for dynamic inconsistencies. As observed by Galperti (2015), with dynamically incon-
sistent agents, the revelation principle doesn’t apply directly. Instead, agents need to
resubmit their complete private information at every stage. In our setting, an indirect
mechanism is more convenient. Alternatively, one could construct an equivalent “quasi-
direct” mechanism in which a reported type is mapped to a menu of menus instead of
a contract.

The principal, by contrast, as the designer of the single-agent mechanism, has and

requires commitment. 14

Weakening the Comonotonicity Assumption Our assumptions can be relaxed at the

cost of transparency. Suppose (i) there exists a unique highest frame, i.e.

Jhe F{h} = ) argmax0;
0e® feF

14To see why, consider the terminal decision problem of a concealed type. Without commitment, the
principal would increase quality on the contracts of concealed types and thereby violate the participa-
tion constraint in the low frame in the previous stage. If consumers anticipate this, the extensive-form
decision problem unravels. Characterizing the outcome without commitment is beyond the scope of this
paper.
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and (ii) comonotonicity holds locally, i.e. for each

31(0) € argmaxO, such that Vo',
feF\h)

8;1 <6h - 9;(9) gel(g),

/ / /
Hh < Qh - 91(9) < 61(9) <9h.

Then our results generalize.'> In particular, it is sufficient that there is an unambigu-
ously highest and second highest frame. Note that we do not require the lowest type
to be sensitive to framing, as framing is only used to place decoys.

Moreover, if 6;4) = 0;,,V0 € O, then the principal achieves the first-best, IT* =
I1((Cyp)peo). This is because [(0) will be used to eliminate IC constraints, without
tightening participation constraints as 0;) = 0.

Consider the following example that violates Assumption 3.2, but satisfies the as-
sumption above. A product has n flaws and there are n types of consumers, such that for
type i flaw i is irrelevant. The sales person can either avoid discussing the flaws (high
frame), or focus the attention on one of them. Formally, denote the types 61,...,0" and

n+1 and frames by h, [1,...,1,, and suppose that

Vi,0,=6],
1

Vi, },0),>0] .

The principal can implement the first-best using a standard EDP with ®¢ = © and type-

specific low frame in the second stage.

Participation Constraint At Every Stage We assume that the agent can opt-out and

choose the outside option at every stage of the decision problem. This is crucial for

15The principal only uses the frames £, {{(0)}gco. Furthermore, suppose the set of concealed types is
Oc. As long as local comonotonicity holds for all concealed types, our results generalize.
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the trade-off between value exaggeration and rent extraction. A weaker restriction
would be to require the outside option to be available only somewhere in the decision
problem, for example at the root or in every terminal decision node. In this case, the
principal can achieve full extraction at the efficient quantities in the high frame for

some parameters.

Restriction on the Choice of Frames We assume that the principal is unrestricted
in the choice of frames and, in particular, that a change of framing is effective.’® One
might suppose that framing effects are instead partially “sticky”. That is, if the principal
is choosing f" after f, then the consumer’s payoff type will be af ¢+ (1—a)6 for some

a € (0.5,1]. Then our results generalize.

Random Mechanisms We restrict the principal to use a deterministic extensive-form
mechanism. One can show in examples that the principal can do strictly better by
randomizing within the standard mechanism. Randomization allows the principal to
smooth out the concealment of types. To see this, consider a situation with three types
where it is optimal to conceal only the intermediate type and the P'-constraint is bind-
ing in his contract. Then, the IC constraint from the highest to the intermediate type
is slack at the root, as the intermediate type is concealed and the highest type obtains
a strictly positive rent (from the IC to the lowest type). Consider a modification of
the mechanism where the intermediate type is concealed with probability 1-¢ and
revealed otherwise, obtaining the contract that is optimal ignoring the IC constraint of
the highest type. The uncertainty resolves after the agent makes his decision at the
root, but before the frame-change to [. In this mechanism, the highest type still strictly

prefers not to imitate the intermediate type at the root if € is sufficiently small. Further-

16This is in line with evidence showing that framing effects, such as gain-loss, are observed within-
subject (Tversky and Kahneman, 1981) and even among philosophers who claim to be familiar with
the notion of framing, to have a stable opinion about the answer to the manipulated question and were
encouraged to consider a different framing from the one presented (Schwitzgebel and Cushman, 2015).
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more, ex-ante profit is strictly greater as the “revealed” contract for the intermediate

type is more profitable than concealing him.

3.4 Extensions

3.4.1 Naivete

Naive consumers understand the structure of the extensive-form decision problem and
the choices available to them, but they fail to anticipate the effect of framing. Faced
with an EDP, they pick the continuation problem containing the contract they prefer
in their current frame.” They fail to take account of the fact that in this continuation

problem, they may be in a different frame and end up choosing a different contract.

Setup

Towards the definition of a naive outcome, let C(e) denote the set of contracts in an

EDP e. That is, letting C(e) = e for e€ £°, define

Cle):= | C(eh), for e=(E, .

e'eE

Now call sg: £ UE? — £ UEL a naive strategy for 0 if

S.9|50 =id
So(E,f)EEN(E,f)e&

C(sg(E, f)) nargmaxug, # <.
C(e)

17A related idea is projection bias. (Loewenstein, O’Donoghue, and Rabin, 2003). The main difference
is that our construction depends on the consumers’ ability to forecast their future actions, not tastes. In
this general sense, sophisticated consumers exhibit no projection bias, while naive consumers exhibit
complete projection bias.
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Put differently, when facing e = (E, f), a consumer identifies the f-optima in the set
of all contracts in e, C(e), and chooses a continuation problem containing an optimum.

We call v:© — C a naive outcome of an EDP e if there exists a naive strategy profile
s such that any type 0 arrives at v(6) by following sg, i.e. v(0) = (sg 00 sg)(e) for
ee EX. Let N¢ be the set of all naive outcomes to an EDP e.

We consider the case when there are both naive and sophisticated consumers and
the principal cannot observe their cognitive type. Let ® = ©sL10Oy be the disjoint union
of the set of sophisticated types ©g and the set of naive types @ . That is, we allow for
the existence of 0° € ©g and 6" € ® which differ only in their sophistication, but not

in their tastes conditional on any frame. Define the optimal profits similarly to (GP) as

IT* :=maxII(c) (3.7)
eef
s.t. cg € 2°(0),V0 € Og,

Cp € Ne(Q),VH E@N.

Optimal Structure and Contracts

We illustrate in an example how the principal can use decoys to screen when naive

types are present.

Example 3.2. Recall from Example 3.1 that there are two frames, {/, h}, and two payoff
types, {6',0%}. The key construction can be illustrated using three equally likely types,
two naive and one sophisticated. There is a naive version of both payoff types, and
a sophisticated high type, formally © = @5 Oy = {05} LU {0"},0"?}. In this setting,
the principal can sell the h-efficient quality to naive consumers and fully extract their
surplus. This creates no information rents for the sophisticated type — screening by
cognitive type is free. As a result, she can also implement the high-frame full-extraction
contract for 2. The optimal EDP is given in Fig. 3.5. It implements ¢! = (16,4),
c"? = (36,6), c*? = (36,6).
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FiGURE 3.5: The optimal extensive-form decision problem in Example 3.2.

f=h
f=1; f=1 c%? (0,0)
f=h/ (0,0) f=h p"?  (0,0)

¢ a2 (0,0 ¢ (0,0)

First, consider the sophisticated type. As in Example 3.1, the contract ¢ is more
attractive than the implemented c*?, but it is concealed using the decoy d*2.

Let’s turn to the naive types. The leftmost continuation problem is intended for
0™, Even though 0™ is concealed, the principal extracts full surplus in the high frame.
How is this possible? At the second stage in frame [, he indeed prefers the outside
option over c¢!. But, he wrongly believes that he will choose the outside option after
continuing. Hence, he continues and — back in frame h — chooses c"!.

In order to implement the contract for 87, the principal needs to use a decoy. At
the root, he strictly prefers ¢’*! to ¢"*2. In order to lure him into the middle continuation
problem, the principal introduces a decoy b". This decoy works differently from the
decoys used with sophisticated consumers.!8 It serves as bait and is the most preferred
contract out of the whole decision problem for 2. As a consequence, he continues
into the middle continuation problem. There, the switch happens: b"? is unattractive

from the perspective of the low frame and 6’* continues, expecting to pick the outside

18In this simple example, the two decoys, d*? = (40,8) and b"? = (40,8), coincide. This is the case
because they are designed to distract from the same option, c?, and there are no other contracts in the
decision problem. It doesn’t hold true in general, even if naive and sophisticated consumers share the
same payoff type.
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option in the continuation problem. Like 6”! he reconsiders at the terminal node and

ends up with ¢, A

This construction generalizes. The optimal EDP achieves the same outcome as if
the principal knows which consumers are naive and the types of the naive consumers.
Naive types don’t receive information rents, they obtain the full extraction contract
in the high frame. Sophisticated consumers obtain the optimal contract according to

Theorem 3.2.

Theorem 3.3. Let e an optimal EDP with the set of types ® and o and v be its firm-
preferred sophisticated and naive outcomes, respectively. Then there exists an EDP eg that
is optimal for the set of types @g with conditional prior and its firm-preferred sophisticated

outcome o, such that

0'(9):0'5(9), V9€@5

v(0) =3, VYOecOy.

The optimal extensive-form decision problem retains the simple three-stage struc-
ture, we only add a continuation problem for each naive type to the extensive form
described in Theorem 3.1. Consequently, the optimum can be achieved by a three-
stage EDP with |©| continuation choices at the root, similar to a standard EDP, but with
additional second-stage decoys.

The principal also uses decoy contracts for naive consumers, but their role is re-
versed: In the construction for sophisticated consumers, we placed decoys in continu-
ation problems to make sure that no other type wants to enter the continuation prob-
lem, as they correctly anticipate that they would choose the decoy. The construction
for naive consumers is a mirror image: Instead of decoys to repel imitators, we in-
troduce decoys in order to lure types into their corresponding continuation problems.

Agents wrongly believe that they will choose their respective decoy, which is the most
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attractive contract in the whole EDP for them in their current frame. Once types are
separated at the root of the decision problem, the dynamic inconsistency introduced by
changing frames allows the decision problem to reroute consumers from their decoy to

the intended contract.

Welfare Gains from Sophistication

Are consumers better off if they are sophisticated? Welfare statements in the presence
of framing are generally fraught with difficulty. Still, we can rank the contracts obtained
by sophisticated and naive agents from a consumer perspective without taking a stand
on the welfare-relevant frame.® In the following sense sophistication partially protects

consumers from exploitation through the use of framing.

Observation 3.3. For all types, the contract under sophistication is weakly preferred to

the contract under naivete from the perspective of every frame.2°

From an efficiency perspective, the two cases are not unambiguously ranked. For
naive consumers, the principal implements the efficient quality from the perspective
of the highest frame. Quality is lower for sophisticated consumers, an efficiency gain

from the perspective of all frames except the highest one.

Discussion: Partial Naivete

We can also extend our results to partial (magnitude) naivete. Denote the parameter
determining the intensity of naivete by a € [0,1], with @ = 0 representing full sophis-
tication. Suppose a consumer with current payoff type 0 anticipates a future choice
that will actually be made according to payoff type 6'. Let 8(0,6’,a) denote what he

currently perceives to be his future payoff type. Assume @ is increasing in the first

19The observation remains true if the choices in none of the frames are deemed welfare-relevant, as
long as the welfare-relevant payoff parameters are weakly smaller than those induced by the highest
frame.

20This can be interpreted as a weak improvement in the sense of Bernheim and Rangel (2009) if the
two contracts are not identical.
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two arguments and satisfies 0 0,0,a) =6 for all @. Under full sophistication we have
0(0,0',0) = @, under full naivete (6,6’,1) = 6. This structure ensures that predictions
satisfy comonotonicity (Assumption 3.2). Whenever a < 1, we can extend the sophisti-
cated construction by replacing 6! by 8(0%,0%,a) in (3.3) etc. Similarly, we can adjust
the naive construction by modifying the decoy construction whenever a > 0. In both
cases, moving away from the baseline case increases the level of quality required in the
decoys. If — contrary to what we assumed — providing very high quality decoys is not
entirely costless or quality is bounded, we expect to see the sophisticated construction

for agents with low a and the naive construction for individuals with high a.

3.4.2 Additional Participation Constraints and Cool-off Regulation

In many jurisdictions, regulation mandates a right to return a product for an extended
period of time after the purchase. The express purpose of such regulation is to allow
consumers to cool off and reconsider the purchase in a calm state of mind unaffected
by manipulation by the seller.2! Interestingly, such legislation typically only applies
to door-to-door sales and similar situations of high sales pressure to which consumers
did not decide to expose themselves. If consumers decide to enter a store or contact
a seller, they are not protected by the law. This suggests that legislators consider the
option to avoid the firm’s sales pressure entirely to be sufficient to protect consumers.
Our framework allows us to evaluate this intuition.

Consider a situation when consumers decide whether or not to go to the store in
the neutral frame. One can interpret this decision as an additional interim participa-
tion decision at the root. Alternatively, suppose that there is a regulation that allows

consumers to return a product if they wish to do so ex-post in the neutral frame (as

21E.g. directive 2011/83/EU: "the consumer should have the right of withdrawal because of the po-
tential surprise element and/or psychological pressure".
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in Salant and Siegel, 2018). One can interpret this decision as an additional ex-post
participation decision at every terminal decision stage.

Formally, denote the neutral frame by n € F, n < h.22 This is the frame the consumer
is in when unaffected by direct sales pressure by the firm.23 We call é := ({e, 0}, n) an
interim modification2* of e. Then e is an EDP with an interim participation constraint if it
is an interim modification of some EDP. To define an EDP with an ex-post participation
constraint, we define an ex-post-modification e of an EDP e recursively. First, for any
eec &Y let e:=¢é. Having defined an ex-post modification on gV j=0,...,k, for any
e=(E, f) € E¥*1, define its ex-post modification as e:= ({e/}oc, f)-

FIGURE 3.6: Interim and Ex-post Participation Constraints in Frame n

(b) The ex-post modification e (¢) The interim modification e
(a) An EDP e

f=h f=n

ffz/.\/[\o el o a/\o f-fZ'/“\"
A A /A

2 0 2 0

Sophisticated Consumers If consumers are sophisticated, both constraints are
equivalent and imply that if a contract is chosen by type 6, then it must satisfy the
additional participation constraint P;. The following observation shows that the firm
implements the efficient allocation associated with frame n and leaves no information

rent to consumers.

Observation 3.4. Suppose © = Og. Let e* and e* be optimal EDPs with interim and ex-

post participation constraints. Then their firm-preferred outcomes ¢ and g, respectively,

22[t {s immediate that additional participation decisions in frame h don’t change the result, as all
implemented contracts satisfy them.

230ne possible effect of marketing is influencing this neutral frame, but we won’t consider this margin.

24Here, the notion of interim modification is defined on £ U£°\ {0}. For simplicity, let 0:=0
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are such that

G0) =) =3Cp,.

This observation is immediate from Theorem 3.1. The principal can remove all in-
coming IC constraints at the cost of an additional participation constraint in a lower
frame. As such a constraint is introduced in any case with interim or ex-post par-
ticipation constraints in a neutral frame, the principal can conceal all types without
additional cost.2>

Both restrictions protect against overpurchases relative to the preferences in the
neutral frame, but cannot protect against the extraction of all information rents by
exploiting induced violations of dynamic consistency. If sophisticated consumers can
avoid the interaction with the firm, they indeed do not require additional protection
by a right to return. They correctly anticipate their future actions and hence — given a
choice — only interact with a seller, if the result will be acceptable to them from their

current frame of reference.

Naive Consumers With naive consumers, we now need to distinguish between an
interim choice to initiate the interaction and an ex-post right to return in the same
neutral frame. While a right to return is still effective, naive consumers cannot protect

themselves by avoiding the seller altogether.

Observation 3.5. Suppose ©® =0©y. Let é* and e* be optimal EDPs with interim and ex-

post participation constraints. Then their firm-preferred naive outcomes v and v satisfy

25Salant and Siegel (2018) show that the principal may not use framing when such a constraint is
added to the problem of designing a framed menu. In particular, the principal cannot necessarily extract
all rents without the use of an extensive form.
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VO €O,

Vo = /C\Hhr
!0 = an.

The intuition underlying the design of regulation does not apply for naive con-
sumers. They are overly optimistic about the outcome of their interaction with the
seller. As a result, the option to avoid the seller entirely is not sufficient to protect them
from over-purchasing. In the optimal EDP, all consumers regret the purchase from the
perspective of the neutral frame. A right to return even for in-store sales would offer

them additional protection.

3.5 Conclusion and Discussion

We analyze the effect of framing in a model of screening. The principal can frame
consumer decisions in several ways, affecting consumer valuations as expressed by
their choices. Such a setting naturally leads to extensive-form decision problems. The
firm uses framing not only to increase consumers valuations at the point of sale, but
mainly to induce dynamic inconsistency and thereby reduce information rents, despite
strategic sophistication of consumers. Our main result is that the optimal contracts
can be implemented by an extensive-form decision problem with only three stages and
two frames. At the initial interaction, only some contracts are immediately available,
others are only available after the consumers’ frame is lowered — which we interpret as
a cool-off period. Upon recall, the consumer is presented with an extended menu, but

chooses the expected option.26

26This simple structure also supports the assumption of sophistication. In the optimum, consumers
only need to grasp relatively short and intuitively understandable extensive forms.
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This simple extensive form allows the firm to eliminate information rents at the
cost of lower surplus and thereby achieve a payoff that is strictly larger than full surplus
extraction at all but the highest frame. Even if consumers are protected by a shop-entry
decision or right to return the product in an exogenously given neutral frame, they are
not protected against the full extraction of their information rents.

We also characterize the outcome with naive consumers. The structure of the opti-
mal extensive form and the contracts of sophisticated agents are robust to the presence
of naive types. Naive types can be screened without generating any additional infor-

mation rents.

Beyond Framing Throughout the analysis, we assumed that choice depends on ex-
ogenous factors of the presentation of the product that are chosen by the principal (i.e.
the frame), but satisfies the axioms of utility maximization given every frame. If fram-
ing affects choice through focusing the attention of consumers on certain attributes, for
example, we consider the case where these attributes are emphasized by the salesper-
son or the information material and assume that the properties of the choice set (such
as an attribute being widely dispersed) are not relevant. Our construction induces and
exploits a violation of dynamic consistency.

Such violations can also be caused by other factors, such as seasonal shifts in tastes
or context effects. Hence, our construction can in principle be extended to such a
setting. Consider, for example, the sale of a convertible. The current weather affects
the valuation consumers have for convertibles. It constitutes an exogenous frame that
cannot be manipulated directly by the principal. Analogously to Assumption 3.2, as-
sume that all consumer types have a higher valuation for convertibles if the weather is
nice (comonotonic frames). Furthermore, if one consumer type has a higher valuation
for quality convertibles than another when the sun is shining, this is still true when

it rains — albeit the valuation of both types is reduced (comonotonic types). Sophis-
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ticated consumers expect these shifts but consider tastes different from their current
ones as mistakes. In such a setting, one could ask which pattern of taste changes is re-
quired to achieve the optimum. Our results imply that a simple pattern of taste changes
(high-low-high) is sufficient.2”

We expect that similar ideas can be applied to a setting with endogenous frames,
e.g. the model of focusing (Készegi and Szeidl, 2013). There, a change of frame corre-
sponds to introducing an option to the choice set that directs the focus more towards
quality.28 There is an important caveat, however. Even if it is possible to extend our
construction into an analogous setting with endogenous frames, the resulting EDP may
not be optimal. While in our setting, the frames have to be fixed for every decision node
independently of the agent’s type, context effects depend on the choice set. The choice
set is generated by backward induction and hence type dependent. In effect, the frame
can be type dependent. Consequently, screening with choice-set dependent preferences

is a considerably richer setting and left for future research.

27In particular, the car dealer can find the optimal EDP using our results and implement it as follows.
The cars intended for revealed types can be bought immediately when the sun is shining. Cars for
concealed types need to be pre-ordered. The pre-order period is sufficiently long to contain a sustained
period of rain and the order can be canceled at any time. When the car is ready, it can be picked up
only when the sun is shining. The consumer is offered a range of (decoy) options at this point, which
are immediately available.

28This is possible by introducing a high quality-high price option that remains unchosen by every type
Készegi and Szeidl (2013) argue that products that are extremely bad on all attributes are typically not
taken into consideration. We don’t require such products, a high quality product that is too expensive
for every consumer type is sufficient.
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A.1 Appendix for Chapter 1: Proofs

Proof of Lemma 1.1 on page 16: Suppose that p is such that I, = I.

The threshold type must be indifferent between disclosing and not disclosing evi-

dence, which implies

5. - Q- @Eut qEu.04,NEL010 <04,1)
! 1-q+qFu00) '

By rearranging and integrating by parts in E, (010 < 04,7) = #,) 09"" 0dF,0) =0,
uiq,
1,041

Fa e obtain
uUq,1

(1~ G+ qFu(@q))0,1 = (1~ OEL+ qFu(@q 04,1~ G1u04,1)

qlu04) = (1—q)(Eu—04)).

Note that {;;:=1— 1_76’ (0p —id) is a continuous, differentiable, strictly increasing func-
tion. Moreover, ¢, ;(0) > 0 and ¢, ;(0p) < 0, with both inequalities strict if and only if
g #1 or infsuppu=0.

In addition, since ¢, ; is strictly increasing in g and increasing in I (with respect to

>), it follows that 6, is also strictly increasing in g and increasing in 1.
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Proof of Lemma 1.2 on page 21:

1
v(@, D :f (2, I-Ddh
0

0
:f 1(9‘/1 I)dh+f (9‘/1 1)dh+f (9‘/1 Ddh
0 04,1

0o 1

:fé (qI+(1—q)(id—90))dh+f6 (gI+(1—q)id-6o) — (id—6y))dh
N

qHO . 0 .

041

0o 71—
(—f_ —(Ho—id)dh+f rdh- fldh)
0 CI qu

q,1

9()1 q
_f ~— 90y -id)dh - f 1dh+f (I-Ddh
0g1 4 0

q,1

Il
{Q

Il
{Q

= q(v() - Ly(D)

]

We now establish the following lemma, which will be useful in proving the main

results.

Lemma A.1.1. Fix any q. For each optimal I*, there exists 0, such that I* coincides with
0 upper censorship Iy on [éq,pﬂ, 1]. Moreover, I* is disclosure-equivalent to Iy: @{‘{ I’ =

2, Ip.
Proof. Take any optimal I*. Consider two cases:

Case 1: Hq 7= ®. For any I € Z, we have

v ! 1-q
v(@ql):q ) I——(y—id)" —1I1|dh
Qq,l q
1
<0=q| (I-0-Ddh
0o
1 1-—
=q| (1—7q(90—id)+—1)dh

04,1
= (@ D)
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Note that since I is continuous and # is strictly negative on (9% 1,11, it follows that

the inequality strict if I # I. Letting 6 =0, yields I* = I = I,.

Case 2: 0 g1 <®. Apply Lemma A.3.4 to I" to construct 6, such that Iy — I is nonnega-
tive on [0,w] and nonpositive on [w,1]. Note that this implies that U(@X Ip) >
(@, I*). Suppose, by contradiction, that Iy # I* on (04,,1]. Then since h
is strictly increasing on [0,w] and strictly decreasing on [w, 1], which implies

(D, Ip) > v(D, I*), a violation optimality of I*.

Note that the image of 90‘7/ does not depend on values of an evidence structure below

the disclosure threshold, which gives the second part. m

Proof of Theorem 1.1 on page 25: First, note that an optimum exists since 7 is compact
and both v and 9;” are continuous.

Fix some g and suppose I* is an optimum for q. By Lemma A.1.1, there exists 0,
such that I'* is disclosure-equivalent to the 8 upper censorship Iy. Therefore, one can
reduce the sender’s problem to finding optimal values of 6, which allows to recover I'*
as the 0 q,I, lower censorship of Ip.

Formally, we have the following one-dimensional problem

max qu (9)’ (‘:':7':7':)
0€lo0,1]

where we define function

17: [0)1] X [0)1) _’R+)

0, p) — 04(0) = v(Ip) - Ly(Ip).

Note that 7, is continuous and, therefore, attains maximum on [0, 1].

The following lemmata establish useful properties of the objective function v,.
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Lemma A.1.2. There exists 0] € (0,@], such that ; is strictly increasing (decreasing)

below (above) 07.

Proof. We have

1(0) = v(Ip)
1
- f (g - Ddh
0
1
= fo Hd(Ip), — H(6o)

0
:fo HAI'+(1-T'0)H(y©)) - H®)),

where y(0) =E(uol0,1]) = %&g{l(g). The derivative of #; is given by

710)=1"0) (HO) - H(y®)) - h(y©0)(y6) - 0)).

Consider equation H(0) — H(x) — h(x)(x —60) = 0. Since H is strictly convex over [0,®]
and strictly concave over [@, 1], this equation has the unique solution in [®, 1], denote it
x(6). Thus, we have two continuous functions x and y, such that x is strictly decreasing
and y is strictly increasing. Let 6; := max{0 € [0,1] : x(0) > y(0)} and note that since
sign(x—y) =sign(#)), 7, is strictly increasing on [0,6;] and strictly decreasing on [0*,1].

Notice that 8] € (0, @], since 6 = yp < X € [®,1] and ® = x(®) < y(@) = E(uol[®,1]) >

0. [l

Lemma A.1.3. 7 has increasing marginal differences property in (6, q):(f;—a% > 0. More-

over, it is strict on (0,967,1) x (0, q] for any g € (0,1].
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Proof. Let E{, = min(I, 1‘7‘4(90 —id)). For any 1> q; > g» >0, we have

~/ ~/ d
U~ V= 35 (Lg,(Ip) — Ly, (Ip))

d90(

- il
do

qi e 1+
——(@g—id)" | dh
2 0n 0

9%19

Note that if 6 € (0,0 q,,1)» then the integrand is strictly positive, which gives the strict
condition.

A

We can establish the proof of Theorem 1.1. For any g € (0,1] denote the set of

solutions to the one-dimensional program (***) as

@2 ;= argmax 4(0).
0€[0,1]

Note that, by Berge’s Maximum Theorem, g — © is upper hemi-continuous.
Lemma A.1.3 allows to invoke Theorem 2.8.1 from Topkis (1998). This implies
that g — ©y is non-decreasing with respect to the strong set order (Veinott order).
Note that the implication of Lemma A.1.2 is twofold. First, it implies that ©] =
{07}. Second, since L, (lp) is constant in 6 on [H_qy 711, Lemma A.1.2 also implies that

;N [0 g, 11 €107} for any g € (0,1]. In words, if there is a solution above the disclosure
threshold, then it must be 6. Now define the threshold g as the the greatest lower

bound on the values of g at which 67 is the unique solution

G:=inf{ge[0,11: 0@, = {07}
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Note that if g =0, we are done, so assume g > 0.

Next, we show that g must be strictly below 1. Suppose, by contradiction, that g = 1.
Take any sequence {g,},lim;, . g, =1,g, € (0,1). Since @2‘7 N [éq,le, 1] € {07} for any g
and lim, .0y, 1, = 0 for any 0 € [0, 1], it follows that limsup 0;, < 04,1,, Which violates
upper hemi-continuity of g — .

It is left to show that, for every g < ¢, any optimum is a binary certification. By
upper hemi-continuity of g — 0, the set @)2 must contain some 62 <07.

The derivations in the proof of Lemma A.1.3 imply that

aqi_Lq(G;f/) < %Lq(ﬁf).
Thus, both 6] and 6, are optimal at g and the marginal reduction in the concealment
loss is strictly higher for 6}; than for 6] if g decreases. Therefore, there exists £ > 0,
such that 67 cannot be optimal for any g € (- ¢, 4. But then because g — 0y is non-
decreasing in the strong set order, it means that 6] is never optimal for g < g.

Finally, since O < 0,0 g.1] for any g < g, the optimal I is a lower censorship of the

upper censorship with a threshold below 6, ;, which is a binary certification.

q,1°
]

Proof of Theorem 1.2 on page 28: The result follows from the following lemma, which
that any selection from g — O is strictly increasing on [0, g]. Since there exist 9:_’ €
@2 N [O,éq, jl and g — éq, 7 is strictly decreasing, the lemma then implies that for any

qg<g,sup®: <0

q which means that the optimum is a binary certification.

q.1>

Lemma A.1.4. Any selection from q — Oy is strictly increasing on (g, 1).
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Proof. Notice that since ©7\{0;} < [0, 0 q,1) for q = g, if one makes the objective function

smaller on (@, 7,1], it will not change the set of maximizers. Define

a.I’

74(6), 0<0,;
04(0) = !

_ 2 -
ﬁq(H) - q(@ —qu) , 0> eq,f’

so that for g > g,

[0, éqj] Nnargmax v, (0) = [0, 9%1-] Nargmax 4(6).
0€l0,1] 0€[0,1]

Using Lemma A.1.3 and strict monotonicity of g — @, 7, we conclude that i satisfies

q.1>
strictly increasing marginal differences property in (6, q) and, therefore, Strict Mono-
tonicity Theorem 1 from Edlin and Shannon (1998) applies. Since 0 is never optimal

for any g >0, it implies that any selection from g — © is strictly increasing on (0, 41,

which gives the desired result.

A
O
Proof of Proposition 1.2 on page 31: We will show that UT;’ is strictly increasing in ¢,
which implies that vy is strictly increasing in g.
By Lemma 1.2, we have
Vg
— =maxv(I) — Lg(D).
q IeZ
Invoking the Envelope Theorem, we obtain
dve  dL,) 0o de! 0o 1
——q:— q ‘ = — —qdh :f —2(90—id)dh >0,
dg q dg =1 o dg 1=1; J0q19 I=1;
where the inequality holds for any optimal 7;. O
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*

Proof of Proposition 1.3 on page 33: We will show that % is strictly increasing in g,
which implies that wy, is strictly increasing in g.

It follows from the sender’s one-dimensional problem (***), given in the proof of
. w@gley) o
Theorem 1.1, that is is enough to show that T‘* is strictly increasing in g, where

Iy denotes the 6 upper censorship. We have

W(Q;/Ig;)
————=wp;) — Lq(lp;)
1
= f (Ip-— DAH
éq,lg* 7
q
0,1 6o 1
:f (Ip- —I)dH+f_ (Ip- —I)dH+[ (Ip- — DdH,
0 g = Y = 0, 4 =
a1 0
LU(@L‘; Ig*)
where all three terms are increasing in q. Then T" is strictly increasing, since

IGZ}'[(?,—,,I-.Ho] is >-increasing in g and [90”,60] c [667,16;, 1].
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A.2 Appendix for Chapter 2: Proof Exposition

This appendix provides exposition for the paper’s proofs. The exposition is not formally
necessary, and so a reader interested solely in our formal arguments may proceed di-
rectly to Appendix A.3.

We begin by explaining how to visualize Theorem 2.1’s program. Using this visual-
ization, we provide intuitions for Proposition 2.1, Proposition 2.2 and Proposition 2.3.

Finally, we elaborate on the main text’s exposition for Claim 2.1.

A.2.1 Visualizing Theorem 2.1

We now explain how to use Theorem 2.1 to graphically solve for S’s optimal equilibrium
value when O is binary, © = {#,,0,}. Consider Figure A.1, which visualizes constraints
(R-BP) and (y-BP) for the binary-state case. In this figure, the horizontal axis is the
mass on 60, and the vertical axis is the mass on 6,. Because py, 8, and y assign a
total probability of 1 to both states, each of them can be represented as a point on
the line connecting the two atomistic beliefs 6, and dy,. Every point underneath this
line represents the product (1 — k)y for some k and y. The drawn box represents the
constraints in Theorem 2.1’s program. By (y-BP), (1 — k)y must be pointwise larger
than [1-y(-)]uo, which is the box’s bottom-left corner. The box’s top-right corner, which
corresponds to the prior, must be pointwise larger than (1 — k)y by (R-BP).! In other
words, (1—k)y must lie within the drawn box. Once (1 - k)y is chosen, one can recover
y and f by finding the unique points on the line [§y,,0p,] that lie in the same direction
as (1-k)y and po— (1 - k)y, respectively.

Figure A.2 shows how to simultaneously visualize the constraint illustrated in Figure
A.1 and S’s value for the introduction’s example, where y is a constant x1. Such a

visualization enables us to solve for S’s optimal equilibrium value. To do so, we start by

1To see this requirement, rearrange (R-BP) to obtain that yg— (1 —k)y =k > 0.
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(a) Construction of y and g for a given (1 — k)y

y

)

2

1

Ho

(4o
o)

1

1

0

(b) y' is infeasible

Ho

(=0
g

1

1

0

FiGURE A.1: Constraints (R-BP) and (y-BP) and construction of y and g for a given (1 - k)y.

drawing 7, the quasiconcave envelope of S’s value function. For each feasible candidate

(1-k)y, we find the corresponding B, as in Figure A.1. To calculate S’s value from the

resulting (8,7, k), we simply find the value above p of the line connecting the points

(B, Uay(B)) and (y, 0(y)).

vy (o)

Dy (B) |

PO=1)

FIGURE A.2: An illustration of the solution to Theorem 2.1’s program for the example from
the introduction, with a constant credibility level between % and %.
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A.2.2 Exposition for Proposition 2.1

This section sketches the argument behind Proposition 2.1. The proposition builds on
the binary-state case. In this case, genericity implies # has a non-degenerate interval
of maximizers, and S not being an SOB implies 7 has a kink somewhere outside of this
interval. Fixing a prior near this interval, but toward the nearest kink, we then find the
lowest constant x € [0,1] such that S still obtains her full credibility value at y(-) = x1.
At this y(-), S’s favorite equilibrium information policy is unique and is supported on
the beliefs (y,8) that solve Theorem 2.1’s program. These beliefs are interior, and
U has a kink at . Although y remains optimal in Theorem 2.1’s program for any
additional small reduction in credibility, (y-BP) forces the optimal § to move away
from the prior. Relying on the set of beliefs being one-dimensional, we show the only
incentive-compatible way of attaining S’s new optimal value is to spread the original
pB between y and a further posterior that gives S an even lower continuation value
than under B. Hence, S provides R with more information. The reduction in S’s value
indicates a change in R’s optimal behavior. In other words, the additional information
is instrumental, strictly increasing R’s utility. Figure A.3 illustrates the argument using

our introductory example.

A.2.3 Exposition for Proposition 2.2

This section describes the proof of Proposition 2.2. Notice that two of the proposition’s
three implications are immediate. First, whenever no conflict occurs, S can reveal the
state in an incentive-compatible way while obtaining her first-best payoff (given R’s
incentives), meaning commitment is of no value; that is, (iii) implies (ii). Second, be-
cause S’s highest equilibrium value increases with her credibility, commitment having
no value means S’s best equilibrium value is constant (and, a fortiori, continuous) in

the credibility level; that is, (ii) implies (i).
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B |B Ko PO =1)

FIGURE A.3: An illustration of Proposition 2.1’s proof for two states. The argument begins by
identifying a y, as above. Given g, we find two constant y(-) > x'(-) as above, yielding the
constraints depicted by the light and dark boxes, respectively. Whereas y is optimal under
both credibility levels, f is optimal under y, whereas f’ is optimal under y’. One can then

deduce R is strictly better off under ' than under y.

To show that (i) implies (iii), we show that any failure of (iii) implies the failure of
(i). To do so, we fix a full-support prior yy at which # is minimized. Because conflict
occurs, v is nonconstant and thus takes values strictly greater than v(yg). By Theorem
2.1, one has that v; (o) > v(uo) if and only if some feasible triplet (8,7, k), with k< 1
exists such that #(y) > #(up). Using upper semicontinuity of 7, we show such a triplet is

feasible for a constant credibility y(-) = x1 if and only if x is weakly greater than some

strictly positive x*. We thus have that for all x < x*,
iy (o) = kD (o) + (1= k) 9(y) > 0(1o) = vy (o),

where the first inequality follows from po minimizing 7; that is, a collapse of trust

occurs. Figure A.4 below illustrates the argument in the context of our leading example.
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The figure depicts a prior that minimizes S’s payoff under no credibility. The depicted
constraint set is drawn for y* = x*1, the lowest constant credibility for which a (8,7, k)
satisfying both k <1 and o(y) > ¥(uo) is feasible. In other words, y*(-) is the lowest
constant credibility at which S’s value is strictly above v(ug). Therefore, v}.,(uo) >

vy, (po) for any x strictly below x*.

A

V(o) | - -8

/Mo PO =1)

V;*,E(,Uo)l:p‘

FIGURE A.4: An illustration of the Proposition 2.2’s proof in the context of the introduction’s
example. The proof starts with choosing a prior minimizing the payoff S obtains under no
credibility. We then identify x*, the lowest credibility level for which a (8,y, k) attaining a

value strictly above #(uy) is feasible at y* = x*1. By choice of x*, v}., (uo) > v}, (1) must hold
for any x = x* —e < x*; that is, S’s value collapses.

A.2.4 Exposition for Proposition 2.3

This section discusses the proof of Proposition 2.3 that is based on establishing a four-
way equivalence between (a) S getting the benefit of the doubt, (b) # being maximized
by a full-support prior y, (c) a full-support y existing such that 7, and ¥ agree over
all full-support prior(s), (d) robustness to limited credibility. That (a) is equivalent to
(b) follows from the arguments of Lipnowski and Ravid (2019). For the equivalence of

(b) and (c), note that in finite models ¥ and v,, are both continuous. Therefore, the
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two functions agree over all full-support priors if and only if they are equal, which is
equivalent to the cap on v,, being non-binding; that is, y maximizes 7. To see why
(c) is equivalent to (d), fix some full-support o, and consider two questions about
Theorem 2.1’s program. First, which beliefs can serve as y for y(-) < 1 large enough?2
Second, how do the optimal (k, §) for a given y change as y(-) goes to 1? Figure A.5
illustrates the answer to both questions for the two-state case. For the first question,
the answer is that y is feasible for some y(-) < 1 if and only if y has full support. For
the second question, one can show it is always optimal to choose (k, ) so as to make
(y-BP) bind while still satisfying (R-BP).3 Direct computation reveals that, as y(-) goes
to 1, every such (k, ) must converge to (1,ug). Combined, one obtains that, as y(-)
increases, S’s optimal value converges to maXyeint(ae) Uay (o). Thus, S’s value is robust
to limited credibility if and only if some full-support y exists for which 7,, = 7 for all

full-support priors; that is, (c) is equivalent to (d). The proposition follows.

A.2.5 Exposition for Claim 2.1

This section provides some intuition for Claim 2.1. Let us first explain why vy (1o) >
U(fly). As explained in the main text, U(fi,) = [ Hdu, ¢+, where p, g+ is a 0% upper
censorship of fy for some 6* € [0,1]. Because ﬂX’S support is in [O,éx], any 6 upper
censorship of 1, for a 6 above 0, is just fi, itself. Thus, assuming 6* is in [0,0,] is
without loss. Given such a 6%, one can induce the posterior mean distribution py g« in

a y-equilibrium (with the original prior yg) using a 8*-upper-censorship pair. As such,

2By y(-) < 1, we mean y(0) < 1 for all § € ©.
3To see why, for any feasible (k, 8,y), a (k/, 8') exists such that (k, 8/, y) is feasible, (y-BP) binds, and

k' > k. By (R-BP), ' = %ﬁ + (1 - %)y Because U,y is concave and Uny(y) = 0(y),
k,i/\/\y(ﬁ)"'(l—k,)l/(?’) K V/\}/(%ﬁ"‘( 12 )Y) (l_k,) v(y)
> kDpy (B) + (K" = k) Oy (v) + (1= K') 0(y) = kOny (B) + 1 = k) DY)
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(a) The set of feasible (1-k)y as y(-) — 1 (b) (k, B) converges to (1, uo)

)

2

B
B3
Ho . Ho

Ez ______________ 691 ’ ‘ : // I’ 661
0 1 0 1

FIGURE A.5: Robustness to limited credibility

S’s maximal y-equilibrium value is at least as high as the value generated by uy ¢«; that
is, vy (o) = [ Hdpy g+ = D(fLy).

We now sketch the reasoning behind v; (1o) < D(fiy). Suppose (B,7, k) solves The-
orem 2.1’s program. Because cheap talk is equivalent to no information (as explained
earlier in this section), one can attain #(y) with a single message that induces a poste-

rior mean of Ey. Therefore, v, (1) = H(Ey) A H(Eu), meaning Uny(f) is given by
Dry(B) = max f H(Ey) A H(-)dB.
B=p

Using optimality of (8,7, k), one can show the above program is solved by a 8 whose
support lies in [0, Ey]. As such, H’s expected value according to fi:= kf + (1 — k)& By
equals S’s maximal y-equilibrium value; that is, vy (uo) = J Hdji. Hence, a sufficient
condition for v; (1o) < U(fy) is that i < fi,. In other words, it suffices to establish that
(MPS) holds for fi, and fi for all 6. To establish (MPS) for 6 > Ey, we use two facts.
First, fi[0,0] = 1 > f1,/(0,60] holds for all 6 > Ey. And, second, both /i, and fi admit g as

a mean-preserving spread. As such, foé (110,01 - f1,[0,0]) dO decreases in 0 over [Ey, 1]
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and reaches a value of zero at § = 1. It follows that (MPS) holds for 1, and j for all
0 > Ey. To establish (MPS) for § < Ey, notice that fi[0,60] = kf[0,0] whenever 6 < Ey.

Therefore, if 6 < Ey,

0 0 0
fﬁ[o,e]dezkf 5[0,9]d0<kf B10,01d0
0 0 0

0 0 0
- fo (o — (1~ K)1)[0,6]d6 < fo Xi0[0,61d6 < fo 1,10,6]d6,

where the first inequality follows from f = B, the second equality from (R-BP), and the

second inequality from (y-BP).
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A.3 Appendix for Chapter 2: Proofs

We first introduce some convenient notation that we will use below. For a compact

metrizable space, Y, and f:Y — R bounded and measurable, let f(y):= [, fdy.

A.3.1 Toward the Proof of the Main Theorem

To present unified proofs, we adopt the notational convention that g =1 wherever it

appears.

Characterization of All Equilibrium Outcomes

En route to our characterization of the sender-preferred equilibrium outcomes, we

characterize the full range of equilibrium outcomes.

Definition A.3.1. (p,s,,s;) € AA® xR xR is a y-equilibrium outcome if there exists a
y-equilibrium (¢, 0, a,7) such that, letting P, := mf@) y&duy and P; := mf@(l -
x)o dug be the equilibrium distributions over M conditional on official and influenced
reporting, respectively, we have: p = [y (o) Po + [1 — x (o)1Pil o™, s = us( [y, adPy),

and Si = us(fMadPi).

The following lemma adopts a belief-based approach, directly characterizing y-

equilibrium outcomes of our game.

Lemma A.3.1. Fix (p, Sy, S;) € AA® x RxR. Then (p, so, s;) is a y-equilibrium outcome if

and only if there exists k € [0,1], b, g € AA® such that
() kb+(1-k)g=peR(uo);
(i) (1-K) [yordgW) = A= )uo;

(iii) gipeAO:s;e V(W =bipe AO: minV(u) < s} =1;
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() [1—xuo)] si+x(Ho)soe (L—Kk)si+ kfsupp(b) siAVdb.4

Proof. As M is an uncountable Polish space, Kuratowski’s theorem says M is isomorphic
(as a measurable space) to {0,1} x A®. We can therefore assume without loss that M =
{0,1} x A®.

First, suppose k € [0,1], g, b € AAO satisfy the four listed conditions. Let ¢ be a
measurable selector of s; A Vsupp ) With s, = (1 - ﬁ) Si+ ﬁ fsupp(b) ¢db.

Define D :=supp (p), f:= [youdb(u), and y:= [,ondg(u). Let measurable 14,1y :
© — AAO be signals that induce belief distribution g for prior y and belief distribution

b for prior B, respectively.5 That is, for every Borel ® < ©® and D < AO,

ﬁnb(ﬁ|')dﬁ:ﬁ#(@)db(ﬂ) and fAng(ﬁI-)deAu(@)dg(u).
® D (€] D

Take some Radon-Nikodym derivative (ff © — R,; changing it on a yy-null set, we
may assume that 0 < k ﬁ < 1since (1-k)y = (1 - x)o-
Next, define the sender’s influenced strategy and reporting protocol 0,¢:© — AM

by letting, for every Borel M < M,

U(Z/\/I\I-):

ng({ueD: (0, 1) € M} ’)
f(]\’ﬂ-)::[ 1- k9B ]ng({uel) o, ,u)EM}‘ )

xd
+E B, ({ueD: awedtt | ).

4Here, s; AV : A® = R is the correspondence with s; A V(u) = (—oo, s;1 N V(w); it is a Kakutani corre-
spondence (because V is) on the restricted domain supp (b). The integral is the (Aumann) integral of a
correspondence:

f siAnVdb= {f ¢db: ¢ is a measurable selector of s; A Vlsupp 1) }
supp (b) supp (b)

5These are the partially informative signals about 6 € © such that it is Bayes-consistent for the lis-
tener’s posterior belief to equal the message.
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Now, fix some fi € D and a € argmax_, 4 ur(a, i) with ug(@) < s;; we can then define a

receiver belief map as

T:M— AG®

u : mef0,1} x {u} for ue D
nm —

g :me¢{0,1} x D.

Finally, by Lipnowski and Ravid (2019, Lemma 2), there are some measurable

ap, ag :supp (p) — AA such that:®
* ap(p),ag(p) € argmaxgc 4 Ur(@, u) Vu € supp (p);
* us(ap(w) = ¢ Yuesupp (b), and us(ag(w)) = s; V€ supp (g).

From these, we can define a receiver strategy as

a:M—AA
ap(w) : m=1,p) forueD

m— < ag(uw) : m=(0,u) forueD

0z :me{0,1} x D.

We want to show that the tuple (¢,0,a,n) is a y-equilibrium resulting in outcome
(p, So, $i). It is immediate from the construction of (o, a, ) that sender incentive com-
patibility and receiver incentive compatibility hold, and that the expected sender payoff
is s; given influenced reporting.

Recall y¢:©® — AM is defined as the pointwise product, i.e. for every 6 € ® and

Borel M < M, we have ()(g‘)(]/\/_l\le) = X(H)&(M\IH); and similarly for (1 - y)o. To see that

6The cited lemma will exactly deliver @plsupp (b)) Aglsupp (g)- Then, as supp (p) < supp (b) Usupp (g),
we can extend both functions to the rest of their domains by making them agree on supp (p) \ [supp (b) N

supp (g)].
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the Bayesian property holds, observe that every Borel D € D satisfies

(- o+ xEl ({1} x D) = dﬂ Lyl

(1= o+ xE1 (10} x DIy = [ 1=+ x (1= £ 52 | me (D1

= (1-k§E ) ng(DD.

Now, take any Borel M < M and © €@, and let D, :={ue D: (z,u) € M} for z€ {0,1}.

Observe that

f@ fﬁn(@l-)d[(l—)((9))0+)((9)€](-|9)duo(f))
- f fA @1 dI(1 - (@) + yO)E1(10) dpto (0)
Mn[{0,1}x D]
- [ ( [+ )n(@l-)d[(l—7((9))0+X(9)€](-|9)dﬂo(0)
0 \J{1}xD, {0} x Dy
_ dg A dag A
- f@ a0 fD @)y + (1 kgl ©) fD @) dng

=k f f 1(©) dn () dp + f f 1(©) dng(p) dlpo — k)
0JD; ©JDy

dpo(0)

=k f f ©(®)dn,(wdp®) + (1 - k) f f ((©) dng (1) dy(©)
®JD; ©JDy

= kf f,u(@)du(@)dbﬂl—k)f f,u(@)d,u(@)db(u)
D, Jo Dy JO

=k : 1(©)db(w) + (1 - k) fD w(®©)dg(w

= kf@nb(D1|')dﬁ+(1—k)f@77g(D0|')dY

= fnb(Dn-)d[kﬁ]+ﬁng(Do|->d[uo—kﬁ1

= [ kgL noido+ [ (1=K ) ngDol dp
= f@[(l—x)o+x€] (Hm[{o,l}xD] \ ) duo

= f@ [(1—y)o + x&1(M]-) duo,

verifying the Bayesian property. So ({,0,a,n) is a y-equilibrium. Moreover, for any

Borel D < A, the equilibrium probability of the receiver posterior belief belonging to
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D is exactly (specializing the above algebra to D; = Dy = D and © = ©)

f@[(l—x)aw&]({o,uxf)|-)du0:kff)ldbﬂl—k)fﬁldg:p(ﬁ).

Finally, the expected sender payoff conditional on reporting not being influenced—

note the conditional distribution ﬁ Lo € A®—is given by:

f@ fMus(a(m)) d¢(ml)d [ 5 o
- f@ (1—’5%)fm us (a0, ) dng(ul-)+§§—£fm us (a1, w) dnb(ul-)] d[ﬁﬂo]
= s+ f@

k k
[l_m]Si+mfmf®¢(u)du(9)db(u)

(1-k)—[1-x (ko] k f
= S;+ ¢db
X (ko) x (ko) supp (b)

= SO)

_5i+f d(w dnb(ule)] dpo)
supp (b)

as required.

Conversely, suppose (¢,0,a, ) is a y-equilibrium resulting in outcome (p, s,, s;). Let

G::foduo andP::f[X§+(1—)()a]dp0€AM
) o)

denote the probability measures over messages induced by non-committed behavior
and by average sender behavior, respectively.

Let M*:={me M: ug(a(m)) =s;} and k:=1-P(M"*). Sender incentive compatibil-
ity (which implies that o(M*|-) =1) tells us that k € [0, ¥ (uo)]. Let G:= 2z P(-n M*) if
k < 1; and let G := G otherwise. Let B:= %[P—(l—k)G] if k>0; and let B := fgfduo oth-

erwise. Both G and B are in AM because (1-k)G < P. Let g:=Gon ! and b:= Bon™!,

123



both in AA®. By construction, kb+ (1-k)g = Pon~! = p € R(ug). Moreover,

(1—k)f udg(m:f nd[(l—k)GJ:f adP > (1- y)uo,
AG® M M*

where the last inequality follows from the Bayesian property of x, together with the
fact that o almost surely sends a message from M* on the path of play.

Next, for any m € M sender incentive compatibility tells us that ug(a(m)) < s;, and
receiver incentive compatibility tells us that a(m) € V(r(m)). If follows directly that
giVasi}=biminV < s;} =1.

Now viewing m, @ as random variables on the probability space (M, P), define the
conditional expectation ¢ := Ep[us(a)|r] : M — R. By Doob-Dynkin, there is a measur-
able function ¢ : A® — R such that ¢pom =p_5¢. . As ug(a(m)) € s; A V(m) for every
m € M, and the correspondence s; A V is compact- and convex-valued, it must be that
Po €Eg-ae. Si AV (m). Therefore, ¢ €p_a. si A V. Modifying ¢ on a b-null set, we may
assume without loss that ¢ is a measurable selector of s; A V.

Observe now that G(M*) = G(M*) =1 and

f d)db:f (bOdB:f [EB[uS(a)Iﬂ]dB:f uso adB.
supp (b) M M M

Therefore,

_ P-[1-x ()G _ P—[1—x(uo)lG _ kB+(1-k)G—[1-x(uo)lG
S"_fMuSOnd—X —fM usond—x(uo) —fMuSond o)

_ k k 1k Ve . _k
_fMusond[(l As)e+ B =1 _X(ﬂo))s’+_X<ﬂo>fsupp(b)¢db’

as required. m
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Proof of Theorem 2.1

Proof. By Lemma A.3.1, the supremum sender value over all y-equilibrium outcomes

is

vy (o) := sup {x(uo)so +1 —X(IJO)]SI'}
b,geAAO, ke[0,1], so,5;€R
st kb+(1-Rge Ry, 10 [ udg > -y

giVasit=biminV <s;} =1,

k k
soe(l——)si+—f s;AVdb.
X (ko) x (o) supp (b)

Given any feasible (b, g, k, s,, s;) in the above program, replacing the associated mea-
surable selector of s; A Vsupp ) With the weakly higher function s; A vlsupp (), and raising

__k ). 4k , ; ; iacti
So to (1 x(uo)) Si + ) fsupp(b) s; A vdb, will weakly raise the objectives and preserve

all constraints. Therefore,

ey 1= (- po)lsi}
b,geAA®, ke[0,1], s;eR X (ko)

* _ __k ). k .
vy (o) = sup {x(uo) [(1 X(ﬂo))sl + fsupp(b) sinvdb
s.t. kb +(1-k)g € R(Ho), (l—k)fmudg(,u) 2 (1 =)o,
giVasit=biminV ;1 =1,

= sup {(1—k)s,-+k

Si A vdb}
b,geAA®, ke[0,1], s;eR

supp (b)
s.t. kb+ (1 -k)geR(uo), (l—k)fmudg(,u) = (1= x) Mo,

giVasit=biminV s} =1.

Given any feasible (b, g, k, s;) in the latter program, replacing (g, s;) with any (g*, s;)
such that [,oudg* (W) = [youdg(w), g1V 357} =1, and s7 > s; will preserve all con-

straints and weakly raise the objective. Moreover, Lipnowski and Ravid (2019, Lemma
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1 and Theorem 2) tell us that any y € A® has

max si=0(y),
8ER(y),si€R: g{Vasit=1

where v is the quasiconcave envelope of v.” Therefore,

v (o) = sup {a-wom + kf o(y) A vdb}
beAAO, yeAO, ke[0,1] AG®

s.t. kfm,udb(u) FA=R)y = o, 1=Ky = (1o,

biminV < v(y)} =1.

Claim: If b € AA®, y € A®, and k € [0,1] satisfy k [youdb(w) + (1 —k)y = o and (1 -
k)y > (1 — y)uo, then there exists (b*,y*, k*) feasible in the above programs? such that
L=k +k* [A,o 0@ ) Avdb* = (1 -k)0(y) + k o U(y) A vdb.

To prove the claim, let f:= [,oudb(u), and consider three exhaustive cases.

Case 1: v(y) < v(po).

In this case, (b*,y", k") := (8, to,0) will work.
Case 2: v(ug) < 0(y) < v(p).

In this case, Lipnowski and Ravid (2019, Lemma 3) delivers some B* € co{p, 1o}
such that V(B*) > i(y). But then po € co{f*,y}. As ¥ is quasiconcave, (ug) >
min{(f"), 0(y)} = min{v (), 0()} = o(y).

Therefore, (b*,y*, k™) := (6, to,0) will again work.

Case 3: v(f) < (y).

In this case, our aim is to show that there exists a b* € AA® such that:
* b*eR(P) and biminV < v(y)} =1;

o [io V) Avdb* = [0 D(y) A vdb.

’Note that, g{V 3 s;} = 1 implies s; € Nyesupp(g) V(1) because V' is upper hemicontinuous.
8That is, (b*,y", k*) satisfy the same constraints, and further have b*{minV < o(y)} = 1.
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Given such a measure, (b*,7, k) will be as required. We explicitly construct such a b*.

Let D :=supp (b), and define the measurable function,

A:D—[0,1]

1 v <o)
B ~ ~ ~

inf{Ae[0,1]: v(A1-AN)y+Au) > d(y)} : otherwise.
Lipnowski and Ravid (2019, Lemma 3) tells us that #(y) € V([1 — A(u)ly + A(u)w) for
every p € D for which v(u) > v(y). This implies that min V([1 - A(w)]y + A(pw)p) < (y)
for every ue D.

There must some number € > 0 such that A > € uniformly, because v is upper semi-

continuous and #(y) > v(f); and so % : D — [1,00) is bounded. Moreover, by construc-
tion, A(u) <1 only for ue D with v(u) > v(y).

Now, define b* € AA® via

o~ -1 1 R
p D)= Lap f . b, ¥ Borel D A6,
) (fAG A ) AG® }L(H) [1-A(W) o+ A (W) pueD (,U) ore

Direct computation shows that [,o udb* (1) = [o udb(w), i.e. b* € R(B). Moreover,

by construction, min V([1-A(w)]y+A(uw)w) < v(y) Yu e D. All that remains, then, is the
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value comparison.

U %db)f 50y) A vdb* - b]
A® A®

_ fm ﬁmﬁ(y)/\v([l—MM)]NO‘*'/l(IJ)H)_(fAG/_lldb)’7(7/)/\”(“) db(u)
- fAG) % B 1db) v o<y + P Lowso) | db(p)
_ fw %_ % ) {o(y) = 10(y) — vy <o} db(p)

(W)
=0+ Ldap- L) _ 1y< 5 db
fA@ (j;@ A 1 | M — v yw<og dbp)

‘[{ueAG} V(W <I) (f@%db— 1) [v(y) = v(wldb(w)

_ (f %db)f [5(y) — v db
A® {ueA®: v(W<(Y)}

20,

proving the claim.

In light of the claim, the optimal value is

v} (o) = sup fa-kom+ kf b(y) A vdb}
beAAO, yeAO, ke[0,1] AG®

stk fA _pdb(2) + (1= Ky = o, (1=K)y > (1= Do,

= sup {(1 - k)o(y) +k sup o(y) A vdb}
B,yeA®, kel0,1] beR(B)JAO

s.t. kB+(1-K)y=po 1—Ky>1-x)Ho,

= sup {(1 —koy) + kﬁAy(ﬁ)}
B,yeA®, ke[0,1]

S.t. kB+Q—-k)y=po, A=Kky=Q-yx)o-

Finally, observe that the supremum is in fact a maximum because the constraint set is

a compact subset of (A®)? x [0,1] and the objective upper semicontinuous. m
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Consequences of Lemma A.3.1 and Theorem 2.1

Corollary A.3.1. As x ranges over [0, 1], the set of x1-equilibrium outcomes (p, o, S;) at

prior g is a compact-valued, upper hemicontinuous correspondence of (Lo, X).

Proof. Let Y be the graph of V and Y be the graph of [min V, max ug(A)], both compact
because V is a Kakutani correspondence.
Let X be the set of all (g, p, g, b, X, k, 5o, ;) € (A®) x (AA®)3 x [0,1]? x [co us(A)]? such

that:

kb+(1-k)g=p;

(1-x) [y ordg(W) + x [y ndb(w) = to;

(1= k) [youdgw) > (1 - x)uo;

g®05, € A(Yg) and b® b, € A(Yp);

k [y ominVdb < (k—x)s; + xS0 < k [yg5i Avdb.

As an intersection of compact sets, X is itself compact. By Lemma A.3.1, the equilibrium
outcome correspondence has a graph which is a projection of X, and so is itself compact.

Therefore, it is compact-valued and upper hemicontinuous. O

Corollary A.3.2. For any g € A®, the map

0,1] = R

X = Uy (Ho)

is weakly increasing and right-continuous.

Proof. That it is weakly increasing is immediate from Theorem 2.1, given that increas-
ing credibility expands the constraint set. That it is upper semicontinuous (and so,

since nondecreasing, it is right-continuous) follows directly from Corollary A.3.1. [
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Corollary A.3.3. For any x € (0,1], the map vy, : A® — R is upper semicontinuous.

Proof. This is immediate from Corollary A.3.1. O

A.3.2 Productive Mistrust: Proofs

Toward verifying our sufficient conditions for productive mistrust to occur, we first
study in some depth the possibility of productive mistrust in the binary-state world.
We then leverage that analysis to study the same in many-state environments.

To this end, it useful to introduce a more detailed language for our key SOB condi-
tion. Given a prior u € A®, say S is an SOB at u if every p € R(u) is outperformed by

an SOB policy p’ € R(u).

Productive Mistrust with Binary States

Given binary states, finitely many actions, and a full-support prior u,, we know that
the quasiconcave envelope function 7 : A® — R is upper semicontinuous, weakly qua-
siconcave, and piecewise constant. Therefore, if yg ¢ argmax,cng U(1), there is then a
unique u; = u+(uo) closest to py with the property that v(u+) > v(u), and a unique
0 = 0(up) € ©® with g € co{u+(ug),d¢}. In this case, for the rest of the subsection, we
identify A® = [0, 1] by identifying v € A® with 1 —v(0(u)).°

Lemma A.3.2. Given finite A, binary ©, and a full-support prior py € A®, the following

are equivalent:

1. There exist credibility levels y' < x such that, for every S-optimal y-equilibrium out-
come (p,s) and S-optimal y'-equilibrium outcome (p',s"), the policy p' is strictly

more Blackwell-informative than p.

2. up ¢ argmax D(u), and there exists u- € [0, uol such that v(u-) >

LEA®: u full-support
v(0) + &= [v(ps) = v(0)].

9S0, under this normalization, 0 =60 < gy < .
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Moreover, in this case, every S-optimal y'-equilibrium outcome gives the receiver a strictly

higher payoff than any S-optimal y-equilibrium.

Proof. First, suppose (2) fails. There are three ways it could fail:
(a) With o € argmax o U(1);
(b) With po € argmax;,c ng: 4 full-support V(1) \ AI8MAX, ;e ng U(11);
(c) With o ¢ argmax e 4 full-support ¥ (1);

In case (a) or (b), pick some S-optimal 0-equilibrium information policy py. For any
X €[0,1), we know (pyg, 7(up)) is a S-optimal 0-equilibrium outcome; and in case (a) it
is also a S-optimal 1-equilibrium outcome.

For case (a), there is nothing left to show.

For case (b), we need only consider the case of y = 1. In case (b), that 7 is
weakly quasiconcave implies it is monotonic. So uy =1, and 7 : [0,1] — R is nonde-
creasing with ¥y, 1) = ¥(uo) < #(1). As vy is the concave envelope of 7, it must be
that the support of any S-optimal 1-equilibrium information policy is contained in
[0, minfu € [0,1]: v(w) = v(uo))}] U{l}, so that (1) fails as well.

In case (c), failure of (2) tells us v(u) < v(0) + “% [v(u+)— v(O)], Yu € [0,upl. As

Ulio,us) < U(lo), it follows that

vl =, max {kDy () + (1~ K)o}

s.t. kB+(1—ky=po, A—Kk)(y,1-y) =1 —X) (1o, 1 — o)

- 1-k)o
e o £V O+ 0= 000)]

st kO+(1-k)y=po, 1=Ky, 1-) =1 - (Ko, 1 - ko)

= max {(1-£2)vo)+ ot}

s.t. %(1—7/) > (1-3%)(1— o).
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In particular, defining y(X) to be the largest argmax in the above optimization problem,

it follows that

_(y_m B
Pz = ( - Y(—%) o+ 0y

is a S-optimal X1-equilibrium information policy for any X € [0, 1], so that (1) does not

hold.

Conversely, suppose (2) holds.
The function v:[0,1] — R is upper semicontinuous and piecewise constant, which

implies that its concave envelope v; is piecewise affine. We may then define
p’ :=minfu € [0,y : vy is affine over [y, o}

That (2) holds tells us that u* € (0, ug). It is then without loss to take py_ = u*.

There are thus beliefs p_,u, € [0,1] such that: 0 < p_ < g < py; vy is affine on
[u-,p+] and on no larger interval; and vy is strictly increasing on [0, u.]. It follows
that Uy, = vy on [0, u,]. By definition of u; = p (uo), we know that v is constant on
(1o, 1+). That is, (appealing to Lipnowski and Ravid (2019, Theorem 2)) v, is constant
on [uo, t+). Then, since vy strictly decreases there, it must be that vy > vg on (o, i+).

Let x € [0, 1] be the smallest credibility level such that v, (1o) = vy (1o), which exists
by Corollary A.3.2. That vy (uo) < vy (to) implies y > 0. That u, has full support, which
follows from (2), implies that x < 1.1°

Consider now the following claim.

Claim: Given x' € [0, x], suppose that

(BY', k) € argmax g, pepo,s{ koar () + 1= D5}

s.t. kB+1—ky=po, A=k)(y,1-y) =1 -x") (o, 1— o),

10Tn particular, this follows from the hypothesis that there exists some full-support belief at which o
takes a strictly higher value than v(uy). This implies x < 1 by the same argument employed to prove
Proposition 2.3.

132



for a value strictly higher than v(ug). Then:
* Y =p+and f'< p-.

* If W e R(B) and ¢' € R(y') are such that p' = k'h’ + (1 - k')¢' is the information

policy of a S-optimal x'1-equilibrium, then h'[0,u_] = ¢'{u.} =1.

We now prove the claim.
If ' > u,, then let k" € (0, k") be the unique solution to k""" + (1 — k" us = po. As

(1-K")(ps, 1= py) = (A —x") (o, 1 — o) and
K" Oy, (B + (L= K" 0 (us) = K" Oy (B) + L= K 0(y) > K Dy (B) + (L= KN 5 (Y),

the feasible solution (f', u+, k") would strictly outperform (8,y’, k'). So optimality im-
plies y' < ps.

Notice that 7—as a weakly quasiconcave function which is nondecreasing and non-
constant over [, 4+]—is nondecreasing over [0, u.]. Moreover, limu Jus V() = Do) <
(u4). Therefore, if y' < u,, it would follow that k'v,, (8)+1 -k 0 (y') < D(y") < #(po).
Given the hypothesis that (8',y’, k') strictly outperforms o(uy), it follows that y' = u..

One direct implication is that

(B',K') € argmax g jyc(q 112 {KOu, (B) + (1~ kymaxv(0, .1}

5.t kB+(1—kpsr=po, Q=K1 —py) =1 -x)A - po).

Let us now see why we cannot have ' € (u_, ). As U,,, is affine on [y, p_],
replacing such (K, ') with (k, u—) which satisfies ku_ + (1 — k)u+ = po necessarily has
(1—k) (4, 1—p4) > (1—x") (1o, 1 — o). This would contradict minimality of x. Therefore,

p'<p-.
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We now prove the second bullet. First, every p <y satisfies v(u) < vy (1) < vy (u4) =
v(uy). This implies that 6, is the unique ¢ € R(u,) with infv(supp ¢) > v(u,). There-
fore, ' =6,,.

Second, the measure h' € R(f’) can be expressed as h’' = (1 —y)hy +yhg for hy €
A[0,u-1, hg € A(u-,1], and y € [0,1). Notice that (u_, v(u-)) is an extreme point of the
subgraph of vy, and therefore an extreme point of the subgraph of v,,,. Taking the
unique 7 € [0,y] such that i := (1 -P)h; +76,,_ € R(B), it follows that [, Day, dh >
Jio.1) Pap, A1, strictly so if ¥ <y. But ¥ <y necessarily if y > 0, since o, pdhgr(w) > u-.
Optimality of 4’ then implies that y =0, i.e. h’[0,u_] = 1. This completes the proof of

the claim.

With the claim in hand, we can now prove the proposition. Letting k* € (0,1) be
the solution to k*u_ + (1 — k*)u+ = o, the claim implies that (u_, u4, k*) is the unique

solution to

kv 1-kv
(ﬁ’%r]geelfcoyl]s{ Uny(B) + ( )v(y)}

s.t. kB+(Q—-k)y=po, A=k)(y,1—-7) =1 —x)(to, 1 — o),

and that p* =k*6,_+(1-k*)d,, is the uniquely S-optimal x1-equilibrium information
policy. Moreover, the minimality property defining x implies that (1 - k*)(1 —p4) =
(1-x)(1 — o).

Given x’ < x sufficiently close to x, one can verify directly that (§', u, k') is feasible,
where

Ki=1-120-k" and B':= L [uo— (1 - K)ps].

As Upy, is a continuous function, it follows that v;,l(uo) /" v3; (o) as x' / x. In partic-

ular, v7,, (to) > v§ (o) for x' < x sufficiently close to x. Fix such a x'.
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Let p’ be any S-optimal x’1-equilibrium information policy. Appealing to the claim,
it must be that there exists some h' € R(f') N A[0, u_] such that p’ € co{h’,6,,}. There-
fore, p' is weakly more Blackwell-informative than p*. Finally, as (1 —k*)(1 — ) =
(1-x)(1—up) and x’ < x, feasibility of p’ tells us that p’ # p*. Therefore (the Blackwell
order being antisymmetric), p’ is strictly more informative than p*, proving (1).

Having shown that (2) implies (1), all that remains is to show that the receiver’s
optimal payoff is strictly higher given p’ than given p*. To that end, fix sender-preferred
receiver best responses a- and a; to u_ and pu, respectively. As the receiver’s optimal
value given p* is attainable using only actions {a_, a.}, and the same value is feasible
given only information p’ and using only actions {a_, a.}, it suffices to show that there
are beliefs in the support of p’ to which neither of {a_, a,} is a receiver best response.

But, at every u € [0, u-) satisfies

v(w < (W) < 0(p-) =min{o(u-), v(u+)};

that is, max ug (argmax . 4 ug(a, 1)) < min{ug(a-), us(a)}. The result follows. O

The following Lemma is the specialization of Proposition 2.1 to the binary-state
world. In addition to being a special case of the proposition, it will also be an important

lemma for proving the more general result.

Lemma A.3.3. Suppose |©| =2, the model is finite and generic, a full-support belief u €
A® exists such that the sender is not an SOB at p. Then there exists a full-support prior
and credibility levels y' < y such that every S-optimal y'-equilibrium is both strictly better

for R and more Blackwell-informative than every S-optimal y-equilibrium.

Proof. First, notice that the genericity assumption delivers full-support y', such that
V(u) = {maxv (A®)}.
Name our binary-state space {0,1} and identify A® = [0, 1] in the obvious way. The

function v: [0,1] — R is piecewise constant, which implies that its concave envelope vy
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is piecewise affine. That is, there exist n € N and {u’ 4, such that 0= W< g<ut=1

and vy is affine for every i € {1,..., n}. Taking n to be minimal, we can assume

=1
that u° < --- < u" and the slope of Uy i1 i 18 strictly decreasing in i. Therefore, there
exist iy, i1 € {0,..., 7} such that i € {io, io + 1} and argmax,,co ,; V(1) = [u, u?1]. That the
sender is not an SOB at u implies that iy > 1 or i} < n—1. Without loss of generality,
say ip > 1. Now let p_:= p~! and p, := pb.

Finally, that V(u) = {max v (A®)}, and V is (by Berge’s theorem) upper hemicontin-

uous implies argmax,ce: , full-support (H) = argmax,c g v(1). Therefore, considering

any prior of the form g = ;. —e€ for sufficiently small € > 0, Lemma A.3.2 applies. [J

Productive Mistrust with Many States: Proof of Proposition 2.1

Given Lemma A.3.3, we need only prove the proposition for the case of |®| > 2, which
we do below. The proof intuition is as follows. Using the binary-state logic, one can
always obtain a binary-support prior uJ° and constant credibility levels y' < y such that
R strictly prefers every S-optimal y’-equilibrium to every S-optimal y-equilibrium. We
then find an interior direction through which to approach ug°, while keeping S’s optimal
equilibrium value under both credibility levels continuous. Genericity ensures that
such a direction exists despite 7 being discontinuous. The continuity in S’s value from
the identified direction then ensures upper hemicontinuity of S’s optimal equilibrium
policy set; that is, the limit of every sequence of S-optimal equilibrium policies from said
direction must also be optimal under yg°. Now, if the proposition were false, one could
construct a convergent sequence of S-optimal equilibrium policies from said direction
for each credibility level, {pf, p%,}@o, such that R would weakly prefer p¥ to p¥. As
R’s payoffs are continuous, R being weakly better off under y than under y’ along the
sequences would imply the same at the sequences’ limits. Notice, though, that such

limits must be S-optimal for the prior yg° by the choice of direction, meaning that

136



productive mistrust fails at y(°; that is, we have a contradiction. Below, we proceed

with the formal proof.

Proof. Let ©, := {01,605} and u := maxv(A®;), and define the receiver value function
Vg 1 AAG — R via vR(p) := [yoMaXaea Ur(a, 1) dp(p).

Appealing to Lemma A.3.3, there is some ug® € A® with support ©; and credibility
levels y” < x’ such that every S-optimal y”-equilibrium is strictly better for R than every
S-optimal y’-equilibrium.

Consider the following claim.

Claim: There exists a sequence {y('} of full-support priors converging to pg° such that
lim nlilgo v; (L) = v; (o) for y e {x', 1.

Before proving the claim, let us argue that it implies the proposition. Given the claim,
assume for contradiction that: for every n € N, prior yj admits some S-optimal y'-
equilibrium and y"-equilibrium, ¥}, = (p;,, s}, $,,,) and V5, = (p,, 8!, $5,,), respectively,
such that vg(p}) > vr(p)). Dropping to a subsequence if necessary, we may assume by
compactness that (¥},), and (¥}), converge (in AA® x R x R) to some ¥’ = (p', s}, 5,)
and ¥ = (p", s}, s;) respectively. By Corollary A.3.1, for every credibility level y, the set
of y-equilibria is an upper hemicontinuous correspondence of the prior. Therefore, P’
and ¥" are y'- and y"-equilibria, respectively, at prior ug°. Continuity of vy (by Berge’s
theorem) then implies that vg(p’) > vg(p”). Finally, by the claim, it must be that ¥’
and W are S-optimal y’- and y"-equilibria, respectively, contradicting the definition of
pe’. Therefore, there is some n € N for which the full-support prior pg is as required
for the proposition.

So all that remains is to prove the claim. To do this, we construct the desired

sequence.
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First, the proof of Lemma A.3.3 delivers some y*° € A® such that 7(y*°) = u and, for
both y € {x/, x"}, some (B,y, k) € A® x {y*°} x [0, 1] solves the program in Theorem 2.1 at
prior pg°.

Let us now show that there exists a closed convex set D < A® which contains y*,
has nonempty interior, and satisfies ©|p = u. Indeed, for any n € N, let B,, € A® be
the closed ball (say with respect to the Euclidean metric) of radius % around u’, and
let D, := co[{y™}UBy]. As vlpe, < u and constant functions are quasiconcave, Lip-
nowski and Ravid (2019, Theorem 2) tells us #|pe, < u as well. As V is upper hemi-
continuous, the hypothesis on p’ ensures that 7|, > v|g, = u for sufficiently large
n € N; quasiconcavity then tells us ¥|p, > u. Assume now, for a contradiction, that
every n € N has 7|p, ﬁ u. That is, there is some A, € [0,1] and y), € B, such that
(1= A+ Anp,) > u. Dropping to a subsequence, we get a strictly increasing se-

quence (ng)‘;o of natural numbers such that (since [0, 1] is compact and 7(A®) is finite)

Ay =2 A€ 10,1] and 7 ((1— Ay )+ Ang My, ) = @ for some number 7 € (1,00) and every
¢ €N. As ¥ is upper semicontinuous, this would imply that 7 ((1-VDu+Ay') > @ > u,
contradicting the definition of u. Therefore, some D € {DW};‘i1 is as desired. In what
follows, let y; € D be some interior element with full support.

Now, for each n € N, define ! := 21 % + Ly;. We will show that the sequence
(ug)5~,—a sequence of full-support priors converging to ug°—is as desired. To that
end, fix y € {’, 1"} and some (B, k) € A® x [0, 1] such that (8,y°, k) solves the program
in Theorem 2.1 at prior ug°. Then, for any n €N, let:
= oo € 0.1,

Yni= 1—€)y>*+€ny1 €D,

kn:=21kel0,k).
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Given these definitions,

(1—kn)yn=+In—(n—1Dkly,
=n-(n-Dk-1y>+7}
=2la-ky®+1iy
> T (- pg+ 571 > (L= Yug, and

knB+ A —kn)yn="22kp+221-k)y™+1y

n—1,,00

= UG+ = -
Therefore, (B,yn, kn) is y-feasible at prior uf}. As a result,

U; (Hg) = kn ﬁ/\y,, (B)+ 1A =kn)0(yn)
= knUry(B) + (1 —kp)0(y) (since v(y,) = u)

= kay(B) + (L= K) DY) = vy ().

This proves the claim, and so too the proposition. O

A.3.3 Collapse of Trust: Proof of Proposition 2.2

Proof. Two of three implications are easy given Corollary A.3.2. First, if there is no con-
flict, then Lipnowski and Ravid (2019, Lemma 1) tells us that there is a 0-equilibrium
with full information that generates sender value maxv(A®) > vy; in particular, vy =

vy. Second, if vy = vy, then vy

y is constant in y, ruling out a collapse of trust. Below

we show that any conflict whatsoever implies a collapse of trust.

Suppose there is conflict; that is, mingeg v(d9) < maxv(A®). Taking a positive
affine transformation of ug, we may assume without loss that min v(A®) = 0 and (since
v(A®) € us(A) is finite) min[v(A®)\{0}] = 1. The set D := argmingepe v (1) = v (—00,1)

is then open and nonempty. We can then consider some full-support prior ygy € D. For
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any scalar x € [0, 1], let
I'® :={(B,7,k) € AO x (AO\ D) x [0,1]: kB+(1—k)y = po, (1-k)y>(1-D)o},

and K(X) be its projection onto its last coordinate. As the correspondence I' is upper
hemicontinuous and decreasing (with respect to set containment), K inherits the same
properties. Next, notice that K(1) 31 (as v is nonconstant by hypothesis, so that A® #
D) and K(0) = @ (as ug € D). Therefore, x := min{X € [0,1] : K(X) # &} exists and
belongs to (0,1].

Given any scalar x’ € [0,x), it must be that K(x') = @. That is, if 8,y € A® and
k€[0,1] with kf+ (1 -k)y = po and (1 -k)y > (1 — X)uo, then y € D. By Theorem 2.1,
then, v;,l(uo) =v(up) =0.

There is, however, some k € K(x). By Theorem 2.1 and the definition of T', there is
therefore a x1-equilibrium generating ex-ante sender payoff of at least k-0+(1—-k)-1=
(1-k) > (1 -x). If x<1, a collapse of trust occurs at credibility level x.

The only remaining case is the case that x = 1. In this case, there is some € € (0,1)

and p € A®\ D such that ey < po. Then

Ui (o) Zev(w) +(1 _6)1}(;101_:?1) Se.

So again, a collapse of trust occurs at credibility level x. O

A.3.4 Robustness: Proof of Proposition 2.3

Proof. By Lipnowski and Ravid (2019, Lemma 1 and Theorem 2), S gets the benefit
of the doubt (i.e. every 6 € © is in the support of some member of argmax;,crg V(1)) if

and only if there is some full-support y € A® such that 7(y) = maxv(A®).
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First, given a full-support prior pgy, suppose y € A® is full-support with #(y) =

~

max v(A®). It follows 1mmed1ate1y that Uy, = 0= v7.

Ho{6}
Y{B}

HolO
Y{H}

Let rp := mingeg € (0,00) and r; := maxgeg —ar € [rg,00). Then Theorem 2.1

tells us that, for y € [”r—lro, 1) , letting x := mingcg x(0) € [%, 1):

v > sup  {kuj+a-bup)
BeAO, ke[0,1]

S.t. kf+Q—-ky=po, Q=ky=1-x)to

- s o (=52 s

st. =)o <A-ky<po

> gup {fvi (452 v 0 o)

st. 1-x)rn<(1-k) <

- o ) -

st. 1-=-x)r=010-k)

= [1—(1—5)7’1] l/ik (%) +(1—£)r1U(Y).

But notice that vy, being a concave function on a finite-dimensional space, is contin-

uous on the interior of its domain. Therefore, v [2=U"21Y) _ 1*(110) as y — 1,11 im-
: » Vi |\ 1=a-on 1 Ho) as ¥ >

plying liminfy ~ vy (to) > vy (o). Finally, monotonicity of y — vy (to) implies vy (po) —

vy ((o) as y — 1. That is, persuasion is robust to limited commitment.

Conversely, suppose that S does not get the benefit of the doubt (which of course
implies v is non-constant). Taking an affine transformation of ug, we may assume
without loss that max v(A®) =1 and (since v(AB) < ug(A) is finite) max[7(A®)\{1}] = 0.

Consider any full-support prior py. We will now prove a slightly stronger robustness

result, that vy (o) 7 vy (o) as y — 1 even if we restrict attention to imperfect credibility

11Note that O is finite, so that y(-) — 1 is equivalent to x — 1.
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which is independent of the state. To that end, take any constant y € [0,1). For any
B,y € A®, ke0,1] with kf+ (1 —k)y =po and (1-k)y > (1 — x)uo, that S does not get
the benefit of the doubt implies (say by Lipnowski and Ravid (2019, Theorem 1)) that
U(y) <0, and therefore that kv, (8) + (1 - k)v(y) < 0. Theorem 2.1 then implies that
vy (o) < 0.

Fix some full-support p; € A® and some y € A® with v(y) = 1. For any € € (0,1), the

prior . :=(1—¢€)y+ep; has full support and satisfies

vy (te) = (L—€)v(y) +ev(y) = (1—€) +e-minv(AB).

For sufficiently small €, then, vy (u.) > 0. Persuasion is therefore not robust to limited

commitment at prior y. O
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A.3.5 Persuading the Public: Proofs from Section 2.5
Mathematical preliminaries

In this subsection, we document some notations and basic properties that are useful for
the present case of © = [0, 1], with the sender’s value depending only on the receiver’s
posterior expectation of the state. This environment is studied by Gentzkow and Ka-
menica (2016) and others. Throughout the subsection, let 8 := Eug be the prior mean;
let

Z:={I:Ry =Ry : I convex, I1(0) =0, I|[;, affine};

let I' denote the right-hand-side derivative of I for any I € Z; and let
I(D:={TeZ: 'M)=TW), ID)=1M), I< I}

forany Ie€Z.

Fact A.1. Let M be the set of finite, positive, countably additive Borel measures on ©.

1. For any n € M, the function I, : Ry — R, given by 0 — foén[O,H] df is a member
of 7.

2. For any I €7, the function I’ is the CDF of some 1 € M such that I, = I.

3. Any 1€ M has total mass I} (1) and, if n € A®, has barycenter 1 - I;;(1).

The proof of the above fact is immediate, invoking the fundamental theorem of

calculus for the second point and integration by parts for the third.

Fact A.2. Given y, i € A®, the following are equivalent:
1. fi=poE~! for some p e R(w).
2. u is a mean-preserving spread of .

3. I;eZy).
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That the last two points are equivalent is immediate from the definition of a mean-
preserving spread. Equivalence between these conditions and the first is as described

in Gentzkow and Kamenica (2016). To apply their results, given u € A®, notice that:

* A convex function I: [0,1] — R with I(0) < I,,(0) and I(0) > (0 — Ep), for every

0 € [0,1] extends (by letting it take slope 1 on [1,00)) to a member of Z(I,,).

* Every element I € Z(I,) has, for each 6 € [0,1],
1 ~ ~
I10)- (0 —-Ep) :f [1-1'(0)]1do >0,
0
so that I(0) > (0 —Eu)+ = max{l,(1) - IL(I)(l -0), 0}.

Characterizing S-optimal equilibrium

Lemma A.3.4. Suppose 1€ Z, 1€ Z(I), and w € [0,1]. Then there exist 0* € [0,w], 0** €

[w,1] and I* € Z(I) such that:
e [*=1o0n[0,0%], Iis affine on [0*,0**], and I*,(H) =1on [0%%1];
* [*—1 is nonnegative on [0,w] and nonpositive on [w, 1].

The proof of the lemma is constructive. While tedious to formally verify that the
construction is as desired, it is intuitive to picture. We illustrate in Figure A.6. Given the
curves I and I, we wish to construct the curve I* € Z(I). In order to ensure that I* has
the required level and slope at 6 = 1, we will construct it to lie above the tangent line
0 — 0 -0, of I at 1. Now, consider positively sloped lines through the point (w, I(w)).
Convexity of I ensures that some such line lies everywhere below the graph of I, whence
continuity delivers such a line of shallowest slope. This line is necessarily tangent to
I somewhere to the left of w: this point will be our 8*. The same line intersects the

tangent line 6 — 6 — 0, to the right of w: this will be our 8**. Finally, we construct I* to
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coincide with upper bound function I to the left of 6*, the 8* tangent line on [0*,0**],

and the 1 tangent line 6 — 0 — 6 to the right of 6**.

A

—1
—1

0 //(,/ 9* ,’90 w 6** 1

FIGURE A.6: Construction of (0*,0**,I*) in Lemma A.3.4

Proof. Let A:={A€[0,I'(w)]: I(w)-Aw—-0) < I(O) for all O € [0,w]}. The set A is closed
because I is continuous, and it contains I’ (w) because I is convex and below I. So let
A:=minA.

Let us now show that there is some 8* € [0, w] such that I(w)—A(w—60*) = I(*). First,
if 1 =0, then 0 < I(w) < I(0) = 0; and so 68* =0 is as desired. Focus now on the case that

A > 0. The compact subset {I(0)—[I(w) —A(w—0)]: 0 <0 < w} of R, attains a minimum,
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which we wish to show is zero. If the minimum were ¢ > 0, then max{A —¢,0} € A too,
a contradiction to A = min A. So 0 is in the set as desired.

Construct now the function

I*:R+_’R+
1) 1 0<0<0*
00— I(w) - AMw-0) c0*<0<w

max{l(w)+ A0 -w), I(1)-T'1)A-6)} : w<h.

The definition of 6* ensures I*(0*) is well-defined. That I is convex implies I(w) +
AMw—w) > I1(1)— (1-w)I'(1), which in particular ensures that I(w) is well-defined. That
I is convex and A < I'(w) implies max{l(w) + A(1 —w) < I(1) - I'(1)(1-1). So there is
some 0** € [w, 1] such that I*(0) is equal to I(w) + (0 — w) for 6 € [w,0**] and equal to

I)-I'(1)(1-06) for 8 € [0**,00). This verifies the first bullet.

It remains to verify that I* — I is nonpositive on [w, 1] and nonnegative on [0, w], and
that I* € Z(I).

To see that I* — I is nonpositive above w, consider any 6 € [w, 1] and use convexity
of I. Specifically, first observe that I(0) > I(1)-I'(1)(1—0) = I(1) — (1 -0)I'(1). Next,
that A < I'(w) implies 1(0) > I(w) + A(0 — w). So I(0) > I*(A). Moreover, I*=1=T1on
[1,00), so the ranking holds everywhere above w.

It is immediate that I* — I is nonnegative on [0,0*], so we turn to showing it is
nonnegative on (0*,w] too; focus on the nontrivial case with 0* < w. That I* < I on
(0*,w] by definition of A implies A = I'(0*). Assume then, for a contradiction, that some
0 (0, w] has I() > I*(0). Then

10)-16%) _ I"(O)-10*) _
o > —o-pr ~ =M
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But then, I being convex, I(w) > () +A(w—0) > I*(0) +A(w—0) = I(w), a contradiction.

Thus I* — I is nonnegative on [0,0*] as desired.

All that remains is to show that I* € Z(I). Letting I: R, — R, be given by I1(0) :=
max{I(1) - I'(1)(1-6), 0}, we need to check that I < I* < I and I is convex.

On [0,0*], we have I* =T > I. On [0*,w], we have shown that I* > I > I, and we
know I* < I by the definition of 1. On [w,o0), we have shown that I* <1< I, and we
have I* > I by definition. So I < I'* < I globally.

Finally, we verify convexity. Because the two affine functions coincide at 6** >
0*, we know that I*(0) = max{I(w) + A0 —w), I1) -1 -0)I'(1)} for O € [60*,00). A
maximum of two affine functions, I*|jp+ ~, is convex. Moreover, I*| g+ iS convex.
Globally convexity then follows if I* is subdifferentiable at 8*. But A is a subdifferential
of I > I* at 8*, and the two functions coincide at 8*. It is therefore a subdifferential

for I'* at the same, as required. O

Lemma A.3.5. Suppose H:© — R has H(-) = H(©0) + [\’ h(0)db for some h of bounded

variation. Then, for any I,T€ T such that I(1) - 1(1) = I'(1) - T'(1) = 0, we have

1 1 1
[H(O)T’(O)+[ de’] - [H(O)I’(0)+f I:Idl’] :f (I-Ddh.
0 0 0
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Proof.

1 1
[H(O)T’(O)+f ﬁdf]—[ﬁ(O)I'(0)+f Hd[’]
0 0

1
= HO)(T-D'(0) +f HAdT-1'
0

1
HO)T-D'0)+[(T- I)’FI](I)—fO (I-0n'dA

1
- f (I-D'O)h@®)do
0

1
—[(f_mz];+f (- ndh
0

1
f (T- 1 dh.
0

]

We now complete our elementary proof that upper censorship is an optimal persua-
sion rule for convex-concave objectives. Recall, for 8* € [0,1] and u € A®, a 8* upper
censorship of u is

1[0’9*)/14-[.1,[6*,1]5 1 A®

€
w17 Jioe 10 dn®)

if u[@*,1]1> 0, and simply p if u[0*,1]1 =0.

Lemma A.3.6. Suppose H : ® — R is continuous, and w € [0,1] is such that H is
(strictly) convex on [0,w] and (strictly) concave on [w,1]. Then, if {1 € A® has no atoms
< maxsupp (f1), some (every) solution to maxXuepe: u<a | Hdu is a 0* upper censorship
of i for some 8* € [0,w]. Moreover, this 8* upper censorship puts probability 1 on

[0,0%]U [w, 1].

Proof. Let u be a solution to the given program. Taking I:= I and I := I,,, note that
the conditions of Lemma A.3.4 are satisfied. Let I* € Z, 8* € [0,w], and 6** € [w, 1] be

as delivered by Lemma A.3.4 and p* € A® be such that I* = I;+. Then, by Lemma A.3.5
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(letting h:= H),

1 1 1
f Hdu*—f Hdu=HO)I* —1)’(0)+f HdI* -1’
0 0 0

w 1
:f (I*—I)dfz+f (I-T1*)d(-h).
0 w

As h is (strictly) increasing on [0,w) and (strictly) decreasing on [w, 1], it follows from
the definition of I* that fj Adu* > [, Hdy, (strictly so, given continuity of I* — I,
unless I =I*). Optimality of u then tells us that u* is optimal (and equal to p).

By construction, u*[0,0] = 1[0,0] for every 6 € [0,6%), and (since, by hypothesis,
0"} =0 if @(@*,1] > 0) we have |[0*,1] nsupp (u*)| = 1. But these properties—which
will clearly also be satisfied by a 8* upper censorship of fi—characterize a unique dis-
tribution of any given mean. Therefore, u* is a * upper censorship of fi.

Finally, the “moreover” point follows from 6** > w, as guaranteed by Lemma A.3.4.

]

Lemma A.3.7. There is a unique é)c € [0,1] such that?2 foé YMUol0,0]1d6 is

>0-6y for0e(0,0,)

<0-0y forOe@y1].

Moreover; éx > 0y and, if credibility is imperfect, éx <1

Proof. Let @(0) := (0—6,) —foé ¥1ol0,0]1d6 = foé (1 - x10l0,01) A9 -0, for O € ®. Clearly, ¢
is continuous and strictly increasing. Next, observe that ¢(8)) = — foeo X o0l0,601d6 <0,

and

1
p(1)=(1-06o) _fo X1ol0,01d0 = 11, (1) = Ly (1) = Ta—y) o (1) 20,

2[ntegration by parts shows that this definition of éx is equivalent to that in Equation 6*-IC.
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with the last inequality being strict if yuo # po. The result then follows from the inter-

mediate value theorem. ]

In what follows, recall the mean distribution fi, as defined in Section 2.5.

Lemma A.3.8. For any 6 € [0, 1], we have

I, ) = 0<0,
Ip)( 0) = maX{IX[JO 0), 6 -0} =

0-0, :6>0,.

Moreover, Efi, = 0.

Proof. That I, coincides with Iy, on [0,6,] and has derivative 1 on (6,,1] follows
directly from the definition of ji,. Noting that I, (0,) = 0, — 0y by Lemma A.3.7, it
follows that 1p,(0) =000 for 0 e [97(, 1].

Next, recall that I,,,(0) — (0 — 0o) is nonnegative for 0 € [0, éx] and nonpositive for
0 € [9,(, 1] by Lemma A.3.7. Consequently, I, () = max{ly,,(6), 6 — 6o} for every 6 €
[0,1].

Finally, Efiy =1~ Ip, (1) = 6. O]
We now prove Claim 2.1.

Proof. First, we show that D(j1,) = MaXg- o4, ] J Hdpy g+, and that the maximum on the
RHS is attained. By Lemma A.3.6, there is some 6 € [0, 1] such that D(i,) = [ Hdp, e-.
As fiy[0,0,] =1, we have p, g = Hyd, for every 0 € [0, 1]; so we may without loss take

0* < 0,. Furthermore, since

fHd”Xﬂ* =V(ily) =max | Hdu > fHd“Xﬂ
H= [y

for every 6 € [O,éx], the maximum is attained.
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Next, given 6* € [0, 91], we exhibit an equilibrium in which S communicates via a 6*-
upper-censorship pair, and observe that this induces S value [ Hdpy, ¢-—in particular

showing [Hdpy ¢+ < vy (to). To that end, define the belief map 7 : M — A® via

0, :mel0,0%
n(m) =

Y  : otherwise,

[(1-x1j0,6%)] 0

where ¥ = =00

(with y := 6y if yuel0,60") =1). Then let R behavior be given
by a := Ho Eon. The Bayesian property is now straightforward, and the R incentive
condition holds by construction. To verify that this is a y-equilibrium, then, we need
only check that S behavior is optimal under influenced reporting. As the set of interim
own-payoffs S can induce with some message is {H(6): 0 €[0,0*) or 6 = Ey}, and H is
strictly increasing on [0, 1], it remains to show that Ey > 6*. This holds vacuously if
y =61, so focus on the alternative case in which f, [9*,97(] > 0. In this case,

il60°,0,0 (Ey-07) = [

 (6-6"d3, 0
0%,0,]

- —f 0% —0)dfi (0)
[0%,1]
= f @* -0 diiy (0) - (0" —6p) (by Lemma A.3.8)
[0,0%)
= [6" -0y 10,01]Y" —f . (FDz10,61d6 - (0" -6

[0,0
= [0—0] + I, (0%) — (6" —6p)

> 0 by Lemma A.3.8.

S incentive-compatibility follows. To show this equilibrium generates the required pay-

off, it suffices to show that the induced distribution u of posterior means is equal to
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Ky0+- For any 6 € [0,0%), notice that

0
110,6) = fo it = iy10,6) = 11.6-10,6).

Moreover, [[0*,1] nsupp (u)| =1 = |[0%,1] nsupp (uy9+)|. Equality then follows from

equality of their means (Lemma A.3.8).

Finally, we show that vy (uo) < U(f1y). To that end, let (§,y,k) solve the program
of Theorem 2.1 - and, without loss, say f = yo if k =0. Let w := w* A Ey, and see
that H(Ey) A H is continuous, convex on [0,w], and concave on [w,1]. Therefore, by
Lemma A.3.6, there is some 0* € [0,w] such that the 8* upper censorship of f be-

longs to argmax;_, [ H(Ey) A Hdp. Let A:= Bl0,6%) € [0,1], n:= 248 ¢ p@, 7=

(1-k)y+(1-N)kn

=ik € AG®, and E = M € A®.13 Two observations will enable us to bound S

payoffs across all equilibria. First, as a monotone transformation of an affine functional,
v = HoE is quasiconcave, implying © = v. Second, Lemma A.3.6 tells us En > w, so

that H(Ey) A H is concave on co{EYy, En}. Now, observe that

v; (ko) = kUny(B)+ (1 = K) D (y)

= kf H(Ey) A Hd 11964+ (1= A5 k] + (1 - k) H(EY)

=k [A] HdB+ 1 —-A)H(Ey) A HEn) | + (1 - k)H(Ey) A H(EY)
<kA f HdB+ (1 - kA)H(Ey) A HEY)

< f HA[kAB+ (1 - AKk)dE5]

< D(kAB+(1-Ak)S57).

1*In case any of the described objects is defined by an expression with a zero denominator, we define
it as follows: n:=6;if A=1,7:=6; if Ak=1, and B:=9p if 1 =0.
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Letting fi:= kAB + (1 — Ak)6 7, the payoff ranking (and so too the claim) will follow if
we show that fI < fi,. As (appealing to Lemma A.3.8) Ejfi, = 0y = Efi, it suffices to show
that I < I, .

For 6 € [0, Ey), we have §£7[0,0] = 0. Therefore, over the interval [0, EY], we have
In=1Dyp+ A= AK) oy = Lygp < Tip = Tuo = La-kyy < Ty = Ta-ppo = Tyuo-

Now, as I5(1) = 1-0 and (since EY > 0) we have I’ﬁl(Em) =1, we know I5(0) = 60, for
0 € [EY,1]. In particular, we learn that I;(0) < max{I,,,(0),0—0o} for 0 € [0, EY]U[EY, 1].

Lemma A.3.8 then tells us that Iz < I, ]

Comparative Statics

Now, we prove Claim 2.2. In fact, because the proof applies without change, we prove a
slightly stronger result, providing comparative statics results in the credibility function
and the prior, holding the prior mean fixed. Specifically, given two pairs of parameters
(1o, x) and {fig, ¥) such that Epg = Efip = 6y, we show that vy (uo) = v)i; (fip) if and only
if @y = Ay

Proof. Appealing to Claim 2.1 and Lemma A.3.5,

vy (o) — vy (o) = D(f1y) — U(fiy)

1 1
= max [H(O)I’(0)+f HdI’]— max [H(O)i’(0)+f Hdi’]
1€T(Iy) 0 feI(Iﬁi) 0

1 1
= max | HdAI'- max | HdI'
IEI(I’]X) 0 IEI(IﬁQZ) 0

1 1
= max Idh—- max Idh.
IEI([I]X) 0 IEI([ﬁ)_C) 0

7. 1 17
Let I, := I, and I, := I . We now need to show that maxyez(1,) fo Idh > maxzey s, Jy [dh

for every continuous, strictly quasiconcave h: [0,1] — R if and only if I, > I..
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First, if I, < I, then Z(I,) € Z(I.), delivering the payoff ranking.
Conversely, suppose I, % I.. Then, elements of Z being continuous, there are some

01,0, € © such that 0; <0, and I, > I, on (01,0,). If h is increasing, then

1 1
v;;(uo)—v;(uo):f I*dh—ff* dh:f (I, - L) dh.
0 0

As (I, — I,) is strictly positive over (6;,60), globally bounded, and globally continu-
ous, there is € > 0 small enough that (e oy 9912 +ef912) [1.(0) - 1..(0)] d > 0. It is then
straightforward to construct a shock distribution whose continuous density & satisfies
1 0,0,)00,,1) = €¢ and h'l(g, 9, = ¢ for some ¢ > 0. Such a shock distribution witnesses a

failure of vy (o) = v}; (fo).

A.3.6 Proofs from Section 2.6: Investing in Credibility

In this section, we prove the following formal claim concerning the public persuasion

application with costly endogenous credibility.

Claim A.1. There exists an optimal credibility choice. Moreover, any optimal choice
(along with S-optimal equilibrium) is a cutoff credibility choice, and entails full reve-

lation by the official reporting protocol.
Toward the proof, we first establish the following lemma.

Lemma A.3.9. For any non-cutoff credibility choice (i.e. any y such that there is no
0" €[0,1] with y = 19,9+) Mo-a.s.), there is some cutoff credibility choice that yields S a

strictly higher best equilibrium payoff net of costs.

Proof. Consider any credibility choice y not of the desired form. In particular, this
implies that y is not yp-a.s. equal to 1, so that yuy(©) < 1.
As g is atomless, there is some 6* € [0,1) such that p[0,0%) = yuo(®). That

10,0%) Mo # X Mo but the two have the same total measure implies that supp [(1 — x) to]
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I

intersects [0,0%). For each 0. € [0,0%], define the function ng, := L vHo -

0.6:)H0
R, — R. By construction, its right-hand-side derivative at any 6 is given by
M. (0) = foe (110,6,) — x)duo. In particular, this implies (since yuo strictly first-order
stochastically dominates 1jo¢+)) that 1;,, is globally nonnegative, weakly quasiconcave
with peak at 6%, and not globally zero. In particular, g+ (0) = 0 yields ng- > 0 and
€:= %ng*(e*) > 0. Now, with the prior being atomless and 7ny- continuous, there is
some 6, € [0,0%) close enough to 8" to ensure that g, (0.) > € and po(6.,0%] <e. Let
n:= ne. -

As 7’ is weakly quasiconcave on [0,1] (with peak at 6,), we have infn’[0,1] =

min{n’(0),n'(1)} = min{0,n’(1)}. But

0. 1
n'(l)ZfO 1d,uo—fo x dpo = 1ol0,0.] = 1ol0,0%] > —e,

so that 1],|[(),1] = —€.
Let us now observe that 7 is nonnegative over [0,1]. First, any 0 € [0,6.] has n(0) =

ng+(0) > 0. Next, any 6 € [0, 1] has
9 ~ ~
n@) =nO.) +f n'(0)d0 > e+ (1-0.)(—€) =0, >0.
0.

So Iy, o = Iy, globally. Lemma A.3.8 then implies that f, , = fiy. Finally,
Claim 2.2 tells us that v;‘[og )(,uo) > v;(“ (to). Meanwhile, the cost of credibility 1(o,), is

strictly below that of credibility y. O
Now, we prove Claim A.1

Proof. Consider any credibility choice y and accompanying y-equilibrium. Lemma
A.3.9 shows that y is a cutoff credibility choice with cutoff 0, € [0,1], or can be re-
placed with one for a strict improvement to the objective. Our analysis of public per-

suasion says that the y-equilibrium entails influenced 6* upper censorship for some
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cutoff 0* € [0,1], or can be replaced with it for a strict improvement to the objective.
Our main-text observation on the endogenous credibility problem (that no gratuitous
credibility should be purchased) tells us that 6, < 6%, or else 0, can be lowered to 0*
for a strict gain to the objective. But then, since y|j, 1) =0, it is purely a normalization
toset 0* =0.,.

The above observations tell us that we may as well restrict to the case that there
is some cutoff 8* € [0,1] such that S invests in cutoff credibility choice with cutoff 6%,
official reporting always reveals the state, and influenced reporting reveals itself but
provides no further information.

Thus, S solves (where the argument for H on the right is taken to be 1 when 6* = 1)

' o 0dpo©
max Hdpo—c(10l0,0)) + H| =———|.
G*E[O,I]fo Ho=¢ ol ) ( Hol0*, 1]
This program is continuous with compact domain, so that an optimum exists. O
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A.4 Appendix for Chapter 3: Proofs

A.4.1 Preliminaries

Whenever types are enumerated by subscript i, we use notation u’, := u,:. For each

=
0 }, let >} and (sometimes) >9} denote the corresponding preference relation. For any
EDP e, let C(e) denote the set of all contracts, available in e. Formally, for e = (A, f) € £ 1
C(e) := A and, recursively, for e = (E, f) € £, C(e) := UpepC(e).

First, note that the consumer’s preferences exhibit the single-crossing property,

which is established in the following

Lemma A.4.1 (Single-crossing property). For any two payoff types 0,0 € R, such that

0 >0, and contracts x,y € C, such that q¥ > q*, we have

ug(y) < ug(x) = up(y) < ug(x),

ug(y) 2 ug(x) = ug(y) = ug(x).

Proof. Take any x,y € C, such that g¥ > g” and ug(y) — ug(x) > 0. Note that the increas-

ing differences property (vg, > 0) imply that

ug(y) — ug(x) = v0,y) - v@,x) + p* - p*
J’avé
=| ——(@dq+p’-p*
fxaq qaq+p’ —p
y an ] ) .
:fx %(CIHfQ voq0,q)d0 |dg+p’ —p

> v9(y) — vg(x) + p¥ - p*
= ug(y) — ug(x) = 0.
The proof of the first implication is analogous. m

Second, we prove the following result that ensures existence of optimal EDP.
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Lemma A.4.2. For any prices p > p > 0 and payoff types 0 >0 P there exist g > 0, such

that

ug (p,q) = up (P, q)-

Or, equivalently, the function q — véf,(q) —vg f(q) is unbounded.

Proof. Take any 0 >0, and set ¢(q) := Ug,, (@) —vg f(q). Note that ¢ is thrice differen-
tiable and strictly increasing. Our assumption (f;nge > 0 implies that ¢ is strictly convex
as

éf’ lik Vg
ey — 1) o _
¢ (q) = ng,(q) UQf(CI) b 94700

(¢)d6 > 0.

Now, take any ¢ > 0, and note that ¢ is weakly greater than its positively-sloped affine
support function at g, which is unbounded.

Finally, since ¢ is unbounded, for any prices p > p > 0, there exists g > 0, such that

P-p=¢@)=vy, ()~ vy (q) < ug (p,q) =ty (P, .

O
Lemma A.4.3. The efficient quality for payoff type 0 defined as
qo, := argmax vy, (q) —k(q)
q=0
exists, is unique and increasing in 0.
Proof. Define the surplus function {p, : R, — R as
Co,(q):=vg,(q) —x(q) (A.1)
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and note that it is continuous, twice differentiable and satisfies

{,(0)=0 (A.2)
(gf 0)>0 (A.3)
Jlim ¢y () <0 (A.4)
{ gf >0, (A.5)

.
—0(95 Q(ZGf 'oo (A.6)

Properties (A.3) and (A.4) together with the Mean Value Theorem ensure that there

exists a unique global efficient quantify g, defined as
Céf(ﬁef) =0< Véf(flef) = K/(ﬁaf)-
Note that (A.5) implies
sgn((’gf(q)) =sgn(go, — 4)- (A.7)

In addition, (A.6) implies that gy ; is increasing in 0. ]

A.4.2 Proofs

Proof of Observation 3.1 on page 75: First, consider a 1-EDP: By the usual arguments,
the revenue maximal menu satisfies monotonicity, participation at the bottom and local
downward IC constraints, the latter two with equality. Conversely, these constraints
jointly imply the full set of constraints. We index types in an increasing order, i.e.
O =1{0,...,0,} with 0; <60;,;. Suppose towards a contradiction that the revenue under

frame f < h is maximal with an optimal menu {(p;, gi)}ieq1,...n;- Consider the menu
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p;=pi+A
Al = U(B;l,ql) - U(Hjle, 6]1)

Ai = Ap-1+ 00}, 0 - v}, 4) = [v©}, i)~ v} qi-)

This menu still satisfies monotonicity, participation at the bottom and the local down-

ward IC constraints are still binding, as

v(O0}, q) - p; = vOF, qi) + v©0), 41) — vOF, 4i) — pi = A
= U(G}, gi-1) +v0},q:) - U(Q}, qi) — pi-1—A;
= U(G},Qi—l) —pi-1— A1+ V(H;l;qi—l) - V(Q}, qi-1)
= v(0},qi-1) — pi-1 — Ai1

=v(0)},qi-1) - p}_,

Hence all other IC and P are satisfied by the usual arguments. Note that A; > 0 by
single crossing, hence expected revenue is strictly (weakly if all types pool at g = 0, but
this is never optimal) higher under the modified contract in the higher frame.

The claim for F = {h} follows from the following: VO € ©,Ve € gk 3e) =
argmaxg, g, by induction on k. The base k = 1 is by definition. Take any

e=(E, h) € EF*!, ¢ is an outcome to e iff

o(0) € argmax ug, (O'j (0)) with ol e Zej (0) = argmaxug, .
O Clel)

Therefore, o is an outcome to e if and only if

o) e argmax g, = argmaxuyg,
Ul AT8MAXe iy Us), C(e)
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Hence ¢’ := (C(e), h) is outcome equivalent to e and the optimal EDP is equivalent to

the optimal menu. ]

The proof of Theorem 3.1 relies on many arguments that are required for the proofs
of the following results as well. To avoid repetition, we prove Theorem 3.2 and Theo-

rem 3.2 together.

Proof of Proposition 3.1 on page 80: The necessity of the constraints for a given set of
frames fg,{fp}gcoc is derived in the main text. In particular, we saw that the incentive
compatibility constraints are determined by the frames used on the path to the contract
of the imitated type, not the imitating type and frames used on the path to ¢y cannot
eliminate the IC constraints from 6’ to 6 for any 6’,0 € ©

To prove the proposition, it remains to show that we can assume that fz = h and
fo =1 for all concealed types. Suppose fr # h. But then we can set O = 0. As all
contracts satisfy the participation constraint in fr < h, they satisfy the participation
constraint in /. As there are no incentive compatibility constraints with 8}, = ©, all
constraints associated to this set of hidden types are satisfied. Suppose instead that
fr = hbut for some type 8’ € ©¢ we have fy # I. But then the participation constraint for

for = 1 is satisfied and hence the set of contracts is feasible in the relaxed problem. [J

Before we proceed, we prove a more detailed decoy construction lemma.

Lemma A.4.4. For any ordered vector of types (6 );?:0 and contract x, there exists a

sequence of decoys D(x, (Bf);?zo = (dj);?zl, such that Vj > 1,Yk # j, we have
1. q;i > q;i_l (decoy quantities are increasing),
2. dj~"dj,
3. dj k? x and d; %? dy (67 chooses d;),

4. x=d; (6° chooses x),
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5 0= j dj (decoys are undesirable in I).

Proof. Let dy = x for brevity. We construct the decoys d; = (pj, q;) recursively.’# For

iefl,...,n}, pick

di ~4i 0 (A.8)
l
d; ~o! di—1 (A.9)
or equivalently
v(0],q:)— pi =0

v(0:,q) - pi=vO,qi-1) — pi-i

Existence of such a d; follows from Lemma A.4.2. To verify this construction, we pro-

ceed through a series of claims.

Claim A.2. Decoy quantities are increasing: ¢q; > q;-1.

Proof of Claim A.2: By the two defining relations

v(6%, g = p;i

v(0},q)—pi=v0),qi-1) - pi-
Hence

U(ei ) ql) - U(Hi! ql) = V(Hi ) qi—l) - U(Gll-_l, qi—l) > U(H;:l! qi—l) - U(H;.! qi—l)

14The present proof can be extended to the case without ordered types (but maintaining ordered
frames).
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and g; > ¢;_ is established as it is implied by single crossing from

0} 0}
| va@.q0d0> | " v00,q-d0

l 1

This also shows that all (p, g) are positive, as q; = qo = qx-

Claim A.3. The decoy intended for type 6; is chosen by this type: d; € argmax , dj.

h
Proof of Claim A.3: We will show that for all j we have d; &02 d;. First, suppose j < i.
Then for all k € [, i] we have

dy. ~gk dr-1

and ¢y > qy—1. This implies

dy 7ok di—1
h

and by since 9;; > HZ

dy. 70! d-1

The desired result follows by transitivity.

Second, suppose j > i. Again for all k€ [i, j],

dic ~pr de-1
and gy > qy-,. But then
dy <ol dy—1
for every decoy since 0 ;l >0 Z The desired result again follows by transitivity. A
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Proof of Lemma 3.1 on page 81: A continuation problem for type 6 € ® with contract
cg satisfying all three properties is given by eg = ({0, ({0, cg} U {dy'}g'>9, h)}, 1), where the
contracts {dp'}g'>¢ are constructed in Lemma A.4.4 as (dg)g>p := D(cp, (0")g'>p)-

By construction, type 6 chooses cg from the terminal problem and since ¢y satisfies
the participation constraint in the low frame, ¢y € 2% (6). For higher types, the terminal
decision problem resolves to the menu {dy,0} and by construction the outside option is
weakly preferred in the low frame. Having established (ii) and (iii), it remains to show
(). Consider a type 6’ < 0. In the terminal decision problem, we have dj =4, d; and
qi = qo, hence by single crossing dj >0, d;, which establishes that a lower type never

chooses any of the decoys. O

Proof of Proposition 3.2 on page 81: Suppose that c¢ satisfies {Pg}gE@R, {Pé}gegc,
{Icgg,}9<9/, {Icge,}geg,glegR for some partition {@¢,Or} of ©. Then let ey for each

0 € ©¢ be constructed as in Lemma 3.1 and consider a standard EDP

e = ({ee}ee(ac U{colpeoy U {0}, h)

Notice that from Lemma 3.1 it follows for each 8 € O that there exist an outcome o?

of ey, such that

a?©) €10, ¢y}, ¥0' €O,
a?©®)=0,v0'>0,

a? @) = cp.

Now let o be such that () = cy. To show that o is an outcome of e*, notice that

constraints {Icge,}gegygfeg}? and {Pg}gegR imply that V6 € O,

0(0) = cg € argmax uy, .
{cglprcop
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Similarly, constraints {Icge,}9<gr and {Pg}gegR imply that V6 € ©,

0(0) = cp € argmaxuy, .
{C@/}gg@/

Therefore, o satisfies

o(0) e argmax ug,,,
(0% ey Uicelgreoy,

which means that it is an outcome of e*. O]

Proof of Theorem 3.1 on page 77 and Theorem 3.2 on page 83: Let (cg)peco,Oc be a so-
lution to the relaxed problem and e* a standard EDP with decoys for all 6 € ©¢ con-
structed as in Lemma A.4.4 and Lemma 3.1. We need to show that e* implements
(co)oco-

First, note that X¢ is rectangular, i.e. if 0,0’ € ¢ with 0(0) # ¢'(0) and 0 (0") # 0’ (0'),
there exists a ¢* € 2¢ with 0* = 0 except o*(0) =0’ (0').

It follows from the IC constraints that there is no strictly profitable deviation into
contracts of revealed types, i.e. ¢ @) n {Cé}grE@R\g # @ implies that cg € ¥¢ (0). From
Lemma 3.1, it follows that type 6 cannot deviate downwards into concealed types and
that no decoys are chosen, i.e. ¢ (0) c {cor}o\io'<p167co.}- It remains to show that there
are no strictly profitable upwards deviations in e* to complete the proof, establishing
co € 2¢ (0) for all (cp)peo.

As the proof relies on properties of the solution to (RP), we start by simplifying the
relaxed problem. Define

1n(0) := max{0' € Orl0' <0}

the closest revealed type below a given type 6, and

x(0) :=min {0’ € Ox|0' > 0}
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the closest revealed type above a given type 8. We now define the doubly relaxed
problem, where we remove all but the downward IC constraints into the closest revealed

type and the upwards IC constraints into the next largest revealed type.

max max —x(qgp) (A.10)
mmax {(pgv%)}eg@g@ue (o —x(q0))

S.t. vg, (go) —po =0 VOeOBg
vg,(qe) —pop =0 VO€EOC
ve, (d0) — Po = Vo, (dn@e)) — Pney VO€O (A.11)

vo, (qo) — po = Vg, (qy@) —Pye) VYO€O (A.12)

We have the following

Lemma A.4.5. The solution to the doubly relaxed problem satisfies R-monotonicity
0,0/ €0, 0>0" = qy > qy (A.13)

and solves the relaxed problem.

Proof. Consider 6 € Og, n:=1(0) <6. Then 0 = y(n) and we have

ve, (ge) — Po = Vo, (qn) — Py

v(Nn, qy) — Py = v(Mn, go) — po

and hence

VHh(qe) - V(Tlh,q.9) 2 VHh(qn) - V(T’hy qn)

0, 0,
f U@(L‘,C[@)df}f Ug(t,qn)dt
n

h Mh
which implies gy > ¢, establishing R-monotonicity by transitivity.
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Then, we need to show that all IC are implied by the local IC. Let us proceed by

h

00’ constraint 6

induction on the number of types in O between the source of the IC
and it’s target 0'. If there are no revealed types between, then 6’ = (0) (resp. x(6)) and
we are done. Suppose that all constraints with up to n intermediate revealed types are

implied and let 6 > €', 6’ € © with n+ 1 intermediate revealed types. The argument

for 8’ > 0 is identical. Then

Vo, (g9) — Po = Vo, (qn©)) — Py©)
= (va,, (@n©) = v01O) 1, dneo))) + v0O) 1, dne)) — Prio)
> (ve, (Gn) = VMO n, dno))) + v1(O) 1, Gor) — Por
> (vo,, (o) = v (O), Go)) + v O) 1, Go') — Py

= vy, (qe') — por

where we used the local IC, the induction hypothesis and monotonicity. Hence all

constraints of (RP) are implied and hence satisfied at the solution to (DRP). A

Lemma A.4.6. In the optimal contract of the relaxed problem the IC from any revealed

type 0 to the closest lower revealed type 1n(6) is active.

Proof. As the relaxed problem and the doubly relaxed problem are equivalent, it is
sufficient to show that local downward IC between revealed types are active in the
doubly relaxed problem. Suppose towards a contradiction that one of them is not active,
say from type 6 to n(f). Suppose we increase the price in the contract of all revealed
types greater than 0 including 6 by some € > 0. Note that this change doesn’t affect
any constraints between the affected types. Furthermore, 6 isn’t the lowest revealed
type, hence the participation constraint of all revealed type is implied by the IC and
not active since IC-6 — 1(0)) isn’t active. As we can pick epsilon sufficiently small, this
IC is still slack and we strictly increased revenue, contradiction the optimality of the

initial contract. A
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Lemma A.4.7. In the optimal contract of the relaxed problem, qg < g, for all 0 € ©.

Proof. As the relaxed problem and the doubly relaxed problem are equivalent, we can
work on the doubly relaxed problem. The result follows from Proposition 3.4 for con-
cealed types. Suppose towards a contradiction that this property is violated for some
subset of revealed types. Pick the smallest revealed type for which this is the case and
denote it as 6. Note that g,(0) < gy,@), < go, and denote the rent given to type 0 as
A:=v(O", gy@)) — Py (This is the correct expression, because the local downward IC
is active by the above Lemma.) Consider the set of contracts where we replaced the
initial contract for type 0 by (gp,, ve,(Gs,) — A). As 0 receives the same utility in both
contracts, no participation constraint is violated and all IC from « are still satisfied.
The upward IC n(6) — 6 is still satisfied as it is implied by R-monotonicity (which is
maintained) and the corresponding downward IC. Consider any higher type imitating
0. The amended contract gives the same utility to 0 at a lower quality, hence it gives
a strictly lower deviation payoff to higher types. In particular, all IC are satisfied. The
revised contract is also more profitable for the principal as the most profitable way to
transfer rent to type 0 in frame h is using quality gy, . Hence, the initial set of contracts

wasn’t optimal. A

Now we can show that there are no profitable feasible upward deviations in e*. We
proceed by induction. Order the types such that {9!,...,0"} = ©, 6% < 0'*!. Clearly,
the highest type has no feasible upward deviations. Suppose all upward deviations are
either infeasible or unprofitable for types 6’ into types 6/ for j > i > m. We need to show
that the required upward IC constraints out of type 6 are satisfied. We will proceed
case by case, in addition showing that the upward IC from concealed to revealed types

are always slack:

~

1. Deviations into a concealed type with rent Ayi < 1)(6;'1,21\9;-1 ) — v(@",q% ): Then the

participation constraint of type 0’ is binding at the intermediate stage in frame
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l. But by single crossing
Coi ~gi 0 = Cpi <o 0, (A.14)

an imitation is infeasible.

~ ~

2. Deviations into a concealed type with rent Agi > v(@:, 6/0;'1 )—v(6, qu ): Note that in
this case gy = a% and this rent has to be the result of a possible deviation that is
discouraged by a constraint of the problem and hence by the induction hypothesis
this is a downward deviation into a revealed type. Hence Ay = v(H;'l, qy) — py for
some 1 < 0', n € Og. But then the upward deviation isn’t profitable unless the

deviation into 7 is profitable, since g, < g, < §,i = g and by single crossing
h
Cy ~o! Coi = Cy >9}rln Cyi (A.15)

so all we have to show is that deviations into revealed types are not profitable. If
1< 0™, this is achieved already by the maintained IC constraints, if 6" € Op, it is
by the upward IC. The case we need to consider are deviations from concealed

types upwards into revealed types.

3. Deviations from a concealed into a revealed type: Consider a concealed type 6™
with a profitable upwards deviation into a revealed type. As the set of types
is finite, there has to exist a lowest revealed type into which 6™ has a strictly
profitable deviation. Furthermore, since we impose downward incentive compat-
ibility constraints, this lowest target type has to be greater than 6. We will show
that such a lower bound cannot exist, hence there can be no profitable upward

deviation.

Suppose such a lower bound exists, § = min{f € Orl0;"qg — ps > 0} ggm — pgm}.
But then, consider type n(f). A deviation into this type is also strictly profitable
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since cp() ~g, o and by R-monotonicity ¢y < g, but then by single crossing
Cn) = Cg >gm Com, contradicting the minimality of §. Hence there can be no

strictly profitable upward deviation.

And we established that there can be no upward deviation by type 6. By induction, no
type prefers any attainable contract offered to higher types in e* and hence we found an

EDP that attains the upper bound to the solution of (GP) and therefore (RP)=(GP). [J

Proof of Proposition 3.3 on page 84: Let ¢ = (cp)g = ((pg, gp))9 be an optimal vector of
contracts implemented by some EDP. By Theorem 3.1, we can construct a standard EDP
e with that implements it. Let ©¢ and O be the sets of revealed and concealed types
in e. If 0 € O, the statement follows from Proposition 3.4. We proved that gy < gp,
as Lemma A.4.7. Therefore there is only one case left to consider. Assume that 6 € O
and towards a contradiction that gy < q, where 4, satisfies (p, (z@ ) ={p,(gp,). Denote
the rent in this contract by A := vy, (gs) — pe.

We will construct a vector of contracts with strictly higher revenue. Starting from
the old EDP, we now conceal type 6 and set the contract (gg,, pg, —A). Using the surplus

function (g defined in (A.1), note that since gy < gp

(o, (q0) < {o,(gp,)

and consequently

po —«(qp) < Ps, — A —x(qe,)

and the principal receives weakly higher profit in the modified contract.
Clearly, this contract satisfies the participation constraint in frame [ and delivers

rent greater than A to type 6 in the high frame, hence there is no deviation by this
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type. There is no downward deviation into this contract since the type is concealed.
Furthermore, we don’t have to worry about upward deviations. The optimal concealed
contract — which is strictly better for profit — is never subject to them and we will
establish that even a sub-optimal concealed contract delivers an improvement in profits.

Hence the original vector was not optimal, a contradiction. O

Proof of Proposition 3.4 on page 85: Note that there are no IC constraints into a type
0 € ©¢. Hence we can separate the principals problem and solve for the optimal contract

of 6 in (RP). The contract given to type 6 solves

max p —«(q)
(p,q)

s.t. vg,(q)—p =0

vo, (@) —p=A

Dropping the second constraint, the optimal contract is ¢p,, which delivers rent

ve, (Go,) — Vo,(Gs,), hence the second constraint is satisfied if

A< [ve,(Gs,) — ve,(Gp,)] - (A.16)

Similarly, note that the optimal contract dropping the first constraint is (vg, (Gs,) — A, Go,,),
which gives utility vy, (gs,) — ve, (gs,) + A in the low frame. Hence the first constraint

is satisfied if

A > v, (qo,) — vo,(qg,)- (A.17)

171



In the intermediate case, both constraints are binding,

vg,(q*)=p

Ve, (q™) — vg,(q™) = A

and the optimal contract is (vp, (¢*), ¢*). Note that g* € (gp,, Go,) by single crossing. [

Proof of Proposition 3.5 on page 87: Take any type 6 € ©. For each u, consider (RP)
with the constraint 6 € ©¢ (0 € Or) and denote the corresponding optimal value by

Hg, i (Hg_ “). Next, using the surplus function (g ; defined in (A.1), we can bound those

values as
Mg, > KoCo, (s)) (A.18)
165, < koS, (Go,) + Y Hore @o) < polo, (@) + (1~ 1), (@3, ), (A.19)

0'#0
where 0 := max{®\ }.

Note that Lemma A.4.3 implies that

o, (Go,) > (o, (Ga,) > Co,(dp,), (A.20)

and define

o ¢g,(da,)
Ho: C0,(Go,) —Co,(Go)) + 5, (G5,)

€(0,1).
Finally, combining (A.18), (A.19) and (A.20) yields

Mg, —T0¢.,, > 1olo, @o,) — koo, (do,) — (O — uo)lg, (@g,)
= o |0, (Go,) —Co,(Go,) + {5, (d5,) | — (5, (d5,)
= 0.
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Therefore, for any yy € [fig, 1], it is optimal to reveal 6.15

]

Proof of Proposition 3.6 on page 87: It is easy to see that the optimal contract and set
of concealed types before the change of valuations is still feasible after the change.
Hence I1g < H%. If 6 is concealed in the optimum, we are done. Suppose that instead
it is not concealed. Then, since 0; is the only difference to the initial problem and
doesn’t affect the constraints unless @ is concealed, the optimal contract under © is
feasible under ® and H(’g < IIg. Hence, the original vector of contracts is still optimal,

establishing the claim. O

Proof of Proposition 3.7 on page 87: Consider the profit from concealing all types ex-
cept the highest, Ilc(e) := Xy Mo Ve, (Go,) + g vg-h(Zig-h), where we consider the 6; as a
function of e. It is easy to see that gy, — gp, as 0; — 0. By continuity of v, IIc(e) —
I1((Cy,,)ge0)-

Suppose that in the optimum 6 < 0 is revealed. Then gy > qo > 0 by Proposi-
tion 3.3 and py < vg,(qe). But then, by the incentive compatibility constraint of 0,
I <I1((Cy,)oc0) — 14 (g, (q0) — ve,(qp)) < I1((Cp, )eeo). Hence, there exists an €4 > 0 such
that I1¢(e) > I for € < €g, so it cannot have been optimal to reveal 6 for sufficiently small

€. The result follows by taking the maximum over {ey:0 € ® \ 0} ]

Proof of Theorem 3.3 on page 94: Let ey denote an EDP constructed for sophisticated
types in Theorem 3.1. Order naive types Oy = {0',...,0™} with 6% < 0'*1. We will
construct an optimal EDP for the mixed case inductively.

Starting from ey = (Ep, h), we add one continuation problem at the root for every

naive type,

n+1

U Ei k. (A.21)
i=0

€n+1 =

15This bound is typically not tight, as we introduced slack in (A.19).
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To define E;, let the most preferred alternative in e;_; for type 6 be x; := argmaxc . ) Ui -
- h

During the construction, we ensure that
1. no sophisticated type prefers to continue to Ej,
2. no naive type 6/ with j < i prefers to continue to E;, and
3. type 6’ indeed proceeds to E; and chooses 69;1 eventually.

If we ensure this during our construction, all sophisticated types choose as in e, and
all naive types choose their efficient contract 892 and we establish the theorem.

Let £ = {({({N0, (@3] Josoc00, 0 1) ({Egz, (@) gr201:07c05 01, ), 0}, 1)}

We now have to specify N; and the decoys and verify 1-3 above. First, use the

mapping from Lemma A.4.4 to set N; :=D(x, 0;_1,0Y) so that

N ~g1 x; (A.22)
h

qn; 2 qx; (A.23)

Nj %9; 0 (A.24)

Second, define the decoys as

(A% Dgrspigrcos = DWN;, (07,037)),

(dig,)9,>9i:9,€®S = D(/C\Q;/l! (61’ G);Ql)),

where @g‘gi is a vector of types in Og that are strictly greater than 6’. By construction,
every sophisticated type 0 > 0 prefers the outside option to the contract chosen from
the continuation problems. Hence they have no incentive to enter. Furthermore, all
contracts are, by construction, worse in frame [ than the outside option for all types 6 <

6!, hence lower sophisticated types have no incentive to enter. Hence, we established

1.
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By construction, E; contains a most preferred option for 6!, hence continuing into
E; is part of a naive outcome for . At the subsequent decision node, the decision
problem containing N; is as attractive as the outside option: By the construction of

0’ 0’
the decoys, N; k% dN,i and gy, < qdjgvfi and hence N; ¢9;‘ dN,i' But N; 40;- 0. As the
decision problem containing ¢,; also contains the outside option, continuing to this
h
. . ~ o'
menu is part of a naive outcome. From the menu ({CBZ’{di Yors0i-0rcoq 0 h), the DM
chooses ¢,: by the construction of the decoys. This establishes 3.
h
To see 2, note that all decoys have higher quality than N; and ¢, , respectively, and
h
are less preferred according to 9;1. Hence, they are less preferred by lower naive types
9]]1 by single crossing. Furthermore, Cy: is not attractive to lower naive types, as it is
h

worse than the outside option. It remains to check whether N; is attractive. But note
that N; ~p! Xi and gy, > qy, imply N; < o/ x; for all j <i. By the induction hypothesis,

Nj = o i; argmaxe e, ) Uyi =pi Xi 7 2 N;. Consequently, N; is not attractive to lower naive

0,70)
types, and there is a naive outcome where types 6/ <8’ choose E Iz

Clearly, the contract implemented for naive types is optimal given the participation
constraint in the high frame any implemented contract needs to satisfy. Furthermore,
suppose there is an EDP implementing contracts for sophisticated types that are not im-
plemented by an optimal EDP in Theorem 3.1. Then the contracts don’t solve (RP), so
we can find a strictly better set of contracts and use the above construction. Hence ev-
ery optimal EDP in (3.7) satisfies Theorem 3.3. From that, the decomposition theorem
is immediate.

If there is an ex-post participation constraint, any naive outcome needs to satisfy
v(0) *=p, 0. The revenue maximal vector of contracts satisfying these constraints is
(Co,)ocoy- It is immediate from the proof of Theorem 3.3 that this set of contracts can
be implemented using an analogous construction.

The outside option trivially satisfies the participation constraint n every frame, so

continuing at the root is always part of a valid naive strategy in the interim modifica-
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tion of any extensive-form decision problem. Hence, N¢ < N¢, which establishes the

observation. ]

Proof of Observation 3.3 on page 95: Let us denote the contract for type 6 in the so-
phisticated problem as ¢, and note that the contract in the naive problem is ¢p,. Note
that ¢, =g, 0 ~ Gy, and g, < go,. Hence by single crossing c; ¢, Cy,, strictly for f # h

if Cg # Cp,,- ]

Proof of Observation 3.4 on page 97: To implement the vector of contracts (Cp,)gco,
the principal can simply conceal all types using neutral frame n.

Notice that (Cp,)gco satisfies all the constraints of (RP) for O = &,0¢ = ©. There-
fore, by Theorem 3.2, there exists a standard EDP e* that implements it. Notice that
since the contract ¢y, for type 0 satisfy Py, the interim and ex-post modifications é&*

and e* also implement (Cp,)pco- ]

Proof of Observation 3.5 on page 98: First, consider the ex-post modification. To im-
plement (Cp,)geo, the principal can the same construction as in Theorem 3.3, but with
n. Notice that because any contract that is implemented with ex-post participation
constraints must satisfy those constraints, the principal cannot do better.

Second, consider the interim modification. Suppose that the optimal EDP without
the modification is e* and notice that e* implements (Cp,)pco. Now consider its interim
modification é*. Since naive consumers think they would get a better option than 0,
they would proceed to e*. Therefore, there exists a naive solution v to é*, such that

Vg = Cp,, for all 6. O
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