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Abstract 

This dissertation aims at characterizing the real consequences of informational frictions 

in financial markets through several applications. The first chapter highlights a dynamic 

feedback loop in learning that arises between financial markets and real investment that helps 

explain how financial crises can contribute to slow recoveries. The second chapter investigates 

feedback effects from learning in commodity markets to understand the role of financial market 

speculation in the commodity boom and bust cycles of the late 2000’s. The third chapter explores 

the role of informational frictions in housing markets to rationalize the hump-shaped pattern in 

price volatility observed across supply elasticity in the recent US housing cycle. 
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Introduction

In the presence of informational frictions, centralized asset markets act as platforms to

aggregate the private information of economic agents, and financial prices serve as useful

signals about the underlying strength of the real economy. Through this learning channel,

noise in financial prices can feed into the real decisions of firms and households, and, by

distorting these decisions, feed back into the financial prices that anchor on them. The central

research objective of this dissertation is to understand how learning from financial prices

impacts real activity. The first chapter examines how learning in financial markets affects

broad macroeconomic growth, while the second focuses on feedback effects from learning in

commodity markets, and the third on the interaction between learning and supply elasticity

in housing markets.

The first chapter is motivated by the lingering effects of the recent recession and finan-

cial crisis on the US economy. The model that the chapter develops highlights a dynamic

feedback loop in learning that arises between financial markets and real investment that

helps to explain how financial crises can contribute to slow recoveries. This occurs because

both real and financial signals flatten as a recession deepens after a negative liquidity shock

drives down asset prices, making it more diffi cult for economic agents to act on signs of the

recovery. The analysis further highlights that informational frictions give rise to asset return

predictability with business-cycle variation and lower welfare by affecting both aggregate

growth and cross-sectional inequality. In addition, the welfare analysis illustrates a poten-

tial role for policy intervention through several experiments that arises because economic

agents do not internalize that their real investment and financial trading decisions impact

the provision of public information.

Motivated by the large inflow of financial capital into commodity futures markets in
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the early 2000’s, and the run-up in oil prices in the first half of 2008, the second chapter

of the dissertation investigates feedback effects from learning in commodity markets. The

informational role of commodity prices gives rise to a channel for futures market speculation

to influence spot prices, challenging the conventional wisdom that futures markets are just

a shadow of spot markets. This channel also helps clarify how a bubble in commodity

markets can persist without a buildup in inventory, since informational frictions can cause

real consumers of oil to have a nonnegative price elasticity of demand. A version of this

chapter, which is joint work with Wei Xiong, is forthcoming in the Journal of Finance.

Finally, the third chapter develops a model to explore the interaction between informa-

tional frictions and supply elasticity in housing markets. Since housing prices are driven

entirely by demand shocks in perfectly inelastic markets, and by supply shocks in perfectly

elastic markets, distortions to housing prices and demand from learning occur at interme-

diate supply elasticities. This mechanism helps rationalize the puzzling observations from

the recent housing US cycle that counties with intermediate supply elasticities experienced

the most dramatic price booms and busts. An extension of the baseline model introduces

migrants into the neighborhood to help explain the hump-shaped variability found in the

cross-section of investment home purchases.

This dissertation aims to contribute to our growing understanding of the real effects of

financial markets in the presence of informational frictions. While many have examined

the feedback effects from real investment to financial markets or from financial markets

to real investment in the presence of informational frictions, there is relatively little work

that examines the dynamic consequences for real activity when there is feedback in both

directions. The first chapter helps to fill this gap. The second chapter adds to the ongoing

debate about the effects of the financialization of commodities by introducing a mechanism

for financial speculation in commodity markets to distort the real decisions of production

firm and, through this informational channel, commodity spot prices. The third chapter
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documents several new empirical features of the recent US housing cycle that cannot be

explained by conventional theories of how supply elasticity impacts housing markets, and

provides a mechanism based on learning to reconcile these facts. In addition, the dissertation

develops new tractable locally linear and log-linear equilibrium frameworks for studying

informational frictions with real effects that may be fruitful in future research.
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Chapter 1

A Model of Growth and Informational Frictions

1.1. Introduction

In this paper, I introduce a tractable, dynamic framework for studying the feedback

loop in learning that occurs between financial markets and firm managers when financial

markets aggregate investor private information about the productivity of real investment.

Through this informational channel, financial market prices are more important for learning

than real activity at the trough of business cycles, and are most informative as signals about

investment productivity during downturns and recoveries. My analysis establishes a link

between recessions with financial origins and slow recoveries by illustrating how financial

crises during downturns can delay recoveries by distorting firm manager expectations, which

depresses real investment and feeds back into the incentives for financial market participants

to trade on their private information.

Two observations motivate my investigation. The first is that market prices aggregate

the private information of investors about macroeconomic and financial conditions, and that

firms, in making their real decisions, respond to this useful information.1 Since the mid-

1980’s, however, the rapid growth of the market-based financial system (Pozsar et al 2012),

especially from 2002-2007 (Philippon (2008)), has increased financial opacity, as interme-

diaries extended credit and diversified risk through securitization and the OTC derivatives

1See, for instance, Luo (2005), Chen, Goldstein, and Jiang (2007) and Bakke and Whited (2010). For
evidence that firms learn from their own profit realizations, the other key signal in our model, see, for
instance, Moyen and Platikanov (2013).
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markets that arose in the wake of LTCM.2 This heightened opacity has made it diffi cult for

economic agents and policymakers to assess not only the depth of financial distress once a

bust occurs, but also its distribution across the financial sector. This was particularly rele-

vant in the recent recession, as regulators scrambled to map out the cross-party linkages of

the unregulated financial system in late 2008 (FCIC 2011). As a result, market prices have

become noisier signals about the strength of the economy, and economic actors, both real

and financial, face more severe informational frictions.

That asset prices contain useful information about the macroeconomy has been well-

documented in the literature.3 Both during and in the aftermath of the financial crisis,

many viewed the dramatic fall in asset prices as a signal that the US economy was entering a

recession potentially as deep as the Great Depression.4 When the stock market bottomed out

in March 2009, in fact, the Michigan Survey of Consumers "fear of a prolonged depression"

question had its lowest score since the 1991 recession.

The second observation is that recessions with financial origins appear to be deeper and

have slower recoveries. A salient feature of the recent US experience, for instance, is the

anemic economic recovery compared to previous cycles, especially in GDP, lending, and

productivity (Haltmaier (2012), Reifschneider et al (2013)). As highlighted in a speech by

former Federal Reserve Chairman, Ben Bernanke, this weak growth in productivity following

the 2007 to 2009 recession represents "a puzzle whose resolution is important for shaping

expectations about longer-term growth" (Bernanke (2014)). While there is growing evidence

that financial crises lead to deeper recessions, however, it is less clear if, and how, they

2Former FRBNY President and Treasury Secretary Timothy Geitner, in fact, made it part of his agenda
before the financial crisis to move the OTC derivatives market onto exchanges to increase transparency.

3For stock prices, for instance, see Fama (1981), Barro (1990), and Beaudry and Portier (2006), while
for credit spreads, see Gertler and Lown (1999), Gilchrist, Yankov, and Zakrasjek (2009), Gilchrist and
Zakrajsek (2012), and Ng and Wright (2013), and for a wide cross-section of asset classes, see Stock and
Watson (2003) and Andreu, Ghysels, and Kourtellos (2013).

4For evidence regarding the fall in the stock market, see, for instance, Robert Barro’s March 2009 WSJ
Article "What Are the Odds of a Depression?" that accompanies Barro and Ursúa (2009), and Gerald
Dwyer’s September 2009 article, "Stock Prices in the Financial Crisis" from FRB Atlanta’s Notes from the
Vault.
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also slow recoveries.5 My model provides a framework for addressing conceptual questions

about business cycles and uncertainty that explicitly incorporates a financial sector, and

can also help explain why financial shocks have asymmetric impacts over the business cycle

(Aizenman et al (2012)).6 The uncertainty I consider here that distorts investment arises

from learning, and is therefore different from that in Bloom (2009), which focuses on shocks

to firm fundamental volatility. It is also different from the policy uncertainty featured in

Fernández-Villaverde et al (2013), which is over future corporate tax policies, and in Baker,

Bloom, and Davis (2013).

Informational frictions can lead firms to voluntarily withdraw from investment because

of weak expectations about the state of the economy, rather than from uncertainty itself,

a phenomenon which can help explain several stylized facts. First, the FRB Senior Loan

Offi cer Survey cites weak credit demand as a reason for the low level of C&I loans until

the end of 2010. Second, since the recession, firms have been increasing the cash on their

balance sheets and saving their income as retained earnings rather than investing (Baily

and Bosworth (2013), Sanchez and Yurgadul (2013), Kliesen (2013)).7 Third, firms appear

reluctant to fill vacancies, as studies such as Daly et al (2012) and Leduc and Liu (2013) find

a potential shift in the Beveridge Curve after the recent recession, which reflects a higher

vacancy rate compared to the unemployment rate, while Davis, Faberman, and Haltiwanger

(2013) document a fall in recruiting intensity. Though, for simplicity, my model will only

involve capital, the same forces depressing real investment would also depress labor market

demand in a more general framework. This evidence suggests that the slow recovery may, at

5While studies like Reinhart and Rogoff (2009a,b, 2011), Ng and Wright (2013), and Jorda, Schularick and
Taylor (2013), for instance, argue that financial crises result in slower recoveries, others such as Haltmaier
(2012) and Stock and Watson (2012) find little difference, and those such as Bloom (2009), Muir (2014), and
Bordo and Haubrich (2012) predict faster upswings following financial crises.

6For instance, while the S&L crisis and the bursting of the housing bubble accompanied recessions that
had slow recoveries, the collapse of Long-Term Capital Management (LTCM) in 1998, arguably an event that
almost led to the meltdown of the whole financial system, had no significant impact on the real economy.

7Pinkowitz, Stulz, and Williamson (2013) provide evidence that this increase in cash holdings is driven by
perceived low investment opportunities by firms, since it is concentrated among the highly profitable firms
in their sample.
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least in part, be driven by firms choosing to delay investment because of a persistent poor

economic outlook.

To study the implications of learning in the presence of informational frictions for financial

market trading and real activity, I integrate the classic information aggregation framework

of Grossman and Stiglitz (1980) and Hellwig (1980) into a standard, general equilibrium

macroeconomic model in continuous-time. This setting allows me not only to examine the

dynamic, real consequences of informational frictions when there is a feedback loop between

real activity and financial markets, but also to depart from the CARA-normal and risk-

neutral-normal frameworks, which are less desirable for addressing macroeconomic questions,

and to study agents with log utility without the need for approximation. Both tasks have

posed a well-known and substantial challenge in the information aggregation literature, and

separate strands have developed to examine feedback in each direction. A finance literature,

including Albagi (2010), Goldstein, Ozdenoren, and Yuan (2013), and Subrahmanyam and

Titman (2013), examines how asset prices impact real activity through the learning channel,

while a macroeconomic literature, including Angeletos, Lorenzoni, and Pavan (2012), inves-

tigates how real investment decisions are distorted by the ability to manipulate asset prices

in the presence of informational frictions. I am able to make progress by appealing to the

local linearity inherent in working in continuous-time, as well as to a standard assumption

about the information structure of households and a convenient functional form for firm real

investment.

The model presented herein features a continuum of non-overlapping generations of house-

holds that trade riskless debt and claims to the assets of firms in centralized financial mar-

kets. Households here represent the hedge funds, financial analysts, intermediaries, and

other investors that participate in financial markets. Households each possess a private sig-

nal regarding the underlying strength of the economy when they trade, and are subject to

preference shocks that reflect their private liquidity needs. Asset prices in my economy ag-
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gregate the private information of agents, and liquidity shocks represent a source of noise

that prevents them from being fully revealing to both households and firms. To avoid both

the infinite regress problem of Townsend (1983) and a time-varying correlation between the

wealth of households and the persistence of their beliefs, I follow Allen, Morris, and Shin

(2006), Bacchetta and van Wincoop (2008), and Straub and Ulbricht (2013) and assume

that, though households in each generation pass along their wealth to their children, they do

not pass along their private information. This assumption of investor myopia is necessary to

maintain tractability in learning by helping me avoid these two issues.

Perfectly competitive, identical firms in my economy produce output and are run by

managers who use financial prices, which aggregate private information dispersed among

households, and real signals from production to form their expectations about the under-

lying state of the economy when making investment decisions. This introduces a channel

for liquidity shocks from financial markets to feed into real activity by distorting the ex-

pectations of firm managers, since the impact of financial shocks on prices cannot be fully

disentangled from fundamental trading. By affecting the returns on their securities and the

informativeness of real economic signals through their investment choices, firms, in turn, im-

pact the incentives of investors to trade on their private information to take advantage of the

uncertain economic environment. This can lead to an adverse feedback loop that exacerbates

real shocks to the economy during downturns that can deepen and lengthen recessions.

With these ingredients, I derive a tractable, linear noisy rational expectations equilibrium

that offers several insights about learning from real and financial signals over the business

cycle when there is this feedback loop. First, time-varying second moments are important for

macroeconomic dynamics even without the real-options "wait-and-see" channel of Bernanke

(1983) and Bloom (2009) for investment. In most environments with learning and asym-

metric information, the conditional variance of beliefs is either constant or deterministically

converging toward a (possibly trivial) limit. In my setting, this conditional variance varies

8



stochastically with the level of investment, and this gives rise to countercyclical uncertainty

in the economy. The second insight is that, while real signals about the macroeconomy are

procyclical in their informativeness in learning, similar to the mechanism in Van Nieuwer-

burgh and Veldkamp (2006), financial signals are strongest during downturns and recoveries.

This feature arises because households have dispersed information and trade more aggres-

sively against each other when there is uncertainty about the state of the economy, and this

increase in trading leads more of their private information to be incorporated into prices.

The strength of the financial signal trades off the return to investment with the level of un-

certainty in the economy, and these two quantities are negatively correlated over the business

cycle. Finally, nonlinearity in investment slows recoveries since the informativeness of real

and financial signals is tied to real investment. As investment falls, both real and financial

signals weaken, which leads uncertainty to remain high and persistent until investment re-

covers. Real signals flatten because firms are less active, and financial signals flatten because

the value of household private information anchors on the return to real investment.

I next offer an explanation of the slow US recovery in the context of my mechanism as

stemming from confusion in financial price signals brought about by the financial crisis. This

confusion led real investment to fall further during the recession and real and financial signals

to flatten, which made it more diffi cult for agents to act on the recovery. I characterize welfare

in the economy and identify a role for policy in improving the provision of public information

about current economic conditions, since investors and firms do not fully internalize the

benefit of the information that their activities produce.

Lastly, I turn to some of the empirical implications of my framework. I illustrate how

informational frictions give rise to an informational component in risk premia. This com-

ponent has predictive power for future returns and real activity, which varies with the level

of uncertainty and investment in the economy. It also gives rise to business cycle varation

in asset turnover based on informational trading. I then conclude by discussing how taking
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advantage of the business cycle behavior of financial market signals can help macroeconomic

forecasting, as well as conceptual issues that informational frictions raise for identifying

structural shocks originating from financial markets.

1.2. Related Literature

I view my amplification mechanism from feedback in learning as playing a contributing

role in transmitting financial shocks to the real US economy to bring about deeper recessions

and anemic recoveries, and frame it as being complementary to other channels highlighted in

the macroeconomics literature linking recessions and financial crises. My paper is also part

of several literatures on asymmetric information and the real consequences of asset prices. I

discuss my relation to each of these literatures in turn.

Most such studies focus on the balance sheet and/or collateral channels for financial crises

to amplify real shocks and depress real activity. He and Krishnamurthy (2012), for instance,

explores the quantitative impact of the balance sheet channel for constrained intermediaries,

while Mian and Sufi (2012) examines empirically how the deleveraging of household balance

sheets can prolong recessions through debt overhang. A slow recovery explained purely by

intermediary balance sheet impairment, for instance, is diffi cult to reconcile with the quick

recapitalization of banks by early 2009 because of the TARP and SCAP programs. An

explanation based purely on credit constraints confronts the empirical challenges that C&I

loan terms had, on average, loosened to around 2005 levels by mid-2011, according to the

FRB Senior Loan Offi cer Survey, and that corporate bond markets continued to function

both during and after the recession.8

The channel I highlight is also distinct from those in other models of financial opacity,

such as Gorton and Ordoñez (2012), Dang, Gorton, and Holmström (2013), and Hanson and

Sunderam (2013). These studies tend to focus on the time-inconsistency in the design of

8According to sifma statistics, for example, US Corporate Bond and ABS issuance, for instance, actually
climbed in 2009.
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informationally-insensitive securities that are deployed as collateral in lending agreements.

Through a similar mechanism, Moreira and Savov (2013) attempt to explain the slow US

recovery in the context of neglected risk and the fragility of the shadow banking system. A

similar literature, which includes Kobayashi and Nutahara (2007), Kobayashi, Nakajima, and

Inaba (2012), and Gunn and Johri (2013), explores the impact of news shocks on business

cycles in the presence of financial market imperfections, such as collateral constraints or

costly state verification.

My work is related to the literature on dynamic models of asymmetric information, such

as Foster and Viswanathan (1996), He and Wang (1995), and Allen, Morris and Shin (2006),

which do not have real sectors and feature static economic environments where the asset’s

fundamental is fixed. Foster and Viswanathan (1996) models strategic, dynamic trading

between investors with private information and a market maker in a static informational

environment, while He and Wang (1995) examines the impact on trading volume when

investors trade on public signals and dynamic private information in the presence of persistent

noise supply shocks. Allen, Morris, and Shin (2006) and Bacchetta and van Wincoop (2006,

2008) investigate the role of higher-order expectations introduced by dispersed information

in the determination of asset prices, and Nimark (2012) extends these implications to the

term structure of interest rates. Albagi, Hellwig, and Tsyvinski (2013) rationalizes the

credit spread puzzle with dynamic dispersed information and the nonlinear payoff profile of

debt, and neither has a real sector nor long-lived incomplete information about the firm’s

fundamentals. My study focuses on the impact on asset prices and real activity when agents

learn not only from endogenous information in prices generated by dispersed information,

but also from the endogenous information in the return process governing the asset’s time-

varying fundamentals. To my knowledge, my work is also one of the first studies to study

the long-run implications of a dynamic model of asymmetric information.

While my work exploits the local linearity of continuous-time and a non-overlapping gen-
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erational informational structure for investors to help maintain tractability, the literature

has developed other settings of information aggregation that deliver tractable equilibria out-

side of the CARA-Normal paradigm. Albagi, Hellwig, and Tsyvinski (2012), for instance,

construct an equilibrium with log-concavity and an unboundedness assumption on the dis-

tribution of private signals that delivers a suffi cient statistic for the market price as the

private signal of the marginal trader. Goldstein, Ozdenoren, and Yuan (2013) and Albagi,

Hellwig, and Tsyvinski (2012, 2014) employ risk-neutral agents with normally-distributed

asset fundamentals and position limits to deliver tractable nonlinear equilibria in a static set-

ting. Other papers like Sockin and Xiong (2014a,b) develop analytic log-linear equilibria in

a static setting by exploiting Cobb-Douglas utility with fundamentals that have log-normal

distributions. Straub and Ulbricht (2013) makes use of a conjugate prior framework with one

period-lived, risk-neutral agents to maintain tractability in learning in a dynamic setting.

My work also contributes to the literature on informational frictions and the macroecon-

omy, which include Greenwood and Jovanovic (1990), Woodford (2003), Van Nieuwerburgh

and Veldkamp (2006), Lorenzoni (2009), Kurlat (2013), Angeletos and La’O (2013), Blan-

chard, L’Huillier, and Lorenzoni (2013), Straub and Ulbricht (2013), Hassan and Mertens

(2014a,b), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2014), and David, Hopenhayn,

and Venkateswaran (2014).9 Only Straub and Ulbricht (2013), Hassan andMertens (2014a,b),

and David, Hopenhayn, and Venkateswaran (2014) consider the real consequences of informa-

tional frictions with centralized asset market trading to aggregate information. Informational

frictions are, however, static in Hassan and Mertens (2014a,b), because of the assumption of

perfect consumption insurance across agents, and in David, Hopenhayn, and Venkateswaran

(2014), who focus on resource misallocation across firms from imperfect information, because

firms observe their fundamentals after revenue is realized each period.10 Straub and Ulbricht

9There is also a large literature on quantifying the impact of news shocks, which stresses the informa-
tional asymmetry between private agents and the econometrician, as well as situations in which agents have
incomplete information. For a survey of this literature, see Beaudry and Portier (2013).
10In my setting, firms face more severe information frictions than in Hassan and Mertens (2014) and David,
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(2013) explore the feedback loop between learning and the collateral channel, which destroys

information during busts when agents become financially constrained because of a decline

in the value of collateral with an exogenous, but hidden fundamental.11 My focus instead

is on the adverse feedback between asset prices and real investment that arises through the

persistent distortion of the beliefs that govern real investment. In contrast to models like

Albagi (2010), Kurlat (2013), and Straub and Ulbricht (2013), my learning mechanism does

not arise because of financial frictions, but only informational frictions, which implies, for

instance, that relieving credit conditions for firms will do little in my setting to improve

economic conditions.

Finally, my paper also relates to the growing literature on the real effects of asset prices,

which includes Bray (1981), Subrahmanyam and Titman (2001), Albagi (2010), Tinn (2010),

Goldstein, Ozdenoren, and Yuan (2011, 2013), Angeletos, Lorenzoni, and Pavan (2012), Or-

doñez (2012), Albagi, Hellwig, and Tsyvinski (2014), Sockin and Xiong (2014), and Gao,

Sockin, and Xiong (2014).12 Goldstein, Ozdenoren, and Yuan (2013) explores the coordi-

nation motive among financial investors when stock prices inform real investment decisions,

while Albagi (2010) examines the distortion to real investment that occurs when financial

market participants face funding constraints. Angeletos, Lorenzoni, and Pavan (2012) in-

vestigates the distortion to real investment and financial prices in a sequential game when

entrepreneurs make investment decisions before claims are sold to the market to rational-

ize the dot com bubble. Albagi, Hellwig, and Tsyvinski (2014) highlights the ineffi ciency

that asymmetric information introduces into real investment when existing shareholders ex-

tract informational rent by making investment decisions before selling shares to imperfectly-

informed capital markets. Tinn (2010) features a similar setup to Angeletos, Lorenzoni,

Hopenhayn, and Venkateswaran (2014) because they neither observe private signals nor the past history of
the realized fundamental. As a result, learning occurs more slowly and uncertainty about the fundamental
fluctuates endogenously over time.
11In a similar spirit, a working paper version of Kurlat (2013) illustrates how adverse selection in asset

markets can lead to countercylical uncertainty when there is incomplete information.
12See Bond, Edmans, and Goldstein (2012) for a survey of this literature.
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and Pavan (2012) of perfectly informed entrepreneurs selling to investors who observe a

noisy public signal, where uncertainty is short-lived and again entrepreneurs have superior

information to market participants. My dynamic model features feedback both from real

investment to the beliefs and trading incentives of financial market participants, as in Tinn

(2010), Angeletos, Lorenzoni, and Pavan (2012), Ordoñez (2012), and Albagi, Hellwig, and

Tsyvinski (2014), and from financial markets back to real investment, as in Albagi (2010),

Goldstein, Ozdenoren, and Yuan (2013), and Sockin and Xiong (2014) for firms, and Gao,

Sockin and Xiong (2014) for home buyers. In contrast to these studies, my focus is on the

dynamic consequences for real activity of learning from endogenous real and financial signals.

1.3. A Model of Informational Frictions

1.3.1. The Environment

I consider an infinite-horizon production economy in continuous-time on a probability

triple (Ω,F,P) equipped with a filtration Ft. There are three fundamental shocks in the

economy
{
Zθ
t , Z

ξ
t , Z

k
t

}
which are standard independent Weiner processes. To focus on the

impact of informational frictions in financial markets on real activity, I turn off the conven-

tional channels for financial markets to feed back to real activity through financial frictions

in borrowing and lending.

There are perfectly competitive, identical firms in the economy that manage capital Kt

for households with which they produce output Yt according to

Yt = aKt,

for a > 0. Firm managers are able to grow capital according to

dKt

Kt

= (Itθt − δ) dt+ σkdZ
k
t , (1)
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where It is investment per unit of assets, θt is the productivity of real investment in installing

new capital, similar to the investment-specific technology shock of Greenwood, Hercowitz,

and Krusell (1997, 2000), δ is depreciation, and Zk
t is a Total Factor Productivity (TFP)

shock to existing capital. Importantly, the productivity of real investment θt is unobservable

to firm managers and all other economic agents in the economy.13 It evolves according to an

Ornstein-Uhlenbeck process

dθt = λ
(
θ̄ − θt

)
dt+ σθdZ

θ
t , (2)

which has the known solution, found by applying Itô’s Lemma to eλtθt and integrating from

0 to t,

θt = θ0e
−λt + θ̄

(
1− e−λt

)
+

∫ t

0

σθe
λ(s−t)dZθ

s . (3)

The OU process is the continuous-time analogue of an AR(1) process in discrete-time and

has a mean-reverting drift and iid shocks.14

Households consume the output from firms and invest in two assets in the economy:

claims to the cash flows of the assets of firms which have price qt and in (locally) riskless

debt, which is an inside asset, with instantaneous interest rate rt. Importantly, both assets

are traded in centralized asset markets, so that prices are observable to both households and

firm managers when forming their expectations about θt.

1.3.2. Households

There is a continuum I = [0, 1] of risk-averse households that are part of a non-overlapping

generational structure with wealth wt (i) that invest in firm claims and riskless debt. Each

13Kogan and Papanikolaou (2013) consider a setting where agents are trying to learn about the growth
opportunities of firms and know the investment-specific technology shock.
14Theoretically, it is possible for θt to take negative values, similar to dividends in Wang (1993) and

Campbell and Kyle (1993), though one can choose parameter values so that this occurs with negligible
probability. Since beliefs over θt must be absolutely continuous with respect to the true distribution, such
restrictions would apply to the posterior for θt as well.
That θt can potentially be negative may reflect that the scale of a firm can be suboptimally large during

economic contractions, and that firms would strongly benefit from consolidating their businesses and shedding
assets.
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household invests a fraction xt (i) of its wealth wt (i) in firm claims, which are perfectly

divisible, and 1− xt (i) in riskless debt. I index time for households as t, t+ ∆t, t+ 2∆t and

consider the continuous-time limit when∆t is of the order dt. Households have log utility over

flow consumption log ct (i) and subjective discount rate ρ over the bequest utility vt+∆t (i)

they leave to future generations. I work with bequest utility instead of a preference over

final wealth, as in He and Krishnamurthy (2012), to derive several asset pricing relationships

relevant to the problem of firms. All prices, however, are ultimately pinned down by market

clearing and not these relationships. Since households have log utility, and are therefore

myopic, their optimal policies for consumption and investment, as well as the pricing kernel

implied by their marginal utilities, will be the same regardless of whether they are part of a

non-overlapping generational structure or long-lived.15

Households are subject to a random, private preference shock at each instant, which

represents a liquidity shock and is the outcome of a Poisson random variable Nt (i) with

intensity π ∈ (0, 1) , where lt (i) = ∆Nt (i) is an indicator variable that the household has

been hit. If hit by the preference shock, a household must take a fixed position in asset

markets by divesting a fraction ξt of its wealth invested in firm claims and moving it into

riskless bonds. Only those households hit by the shock observe its size ξt. The size of the

shock may be correlated with investment productivity θt, and follows the law of motion

dξt = ασξdZ
θ
t +
√

1− α2σξdZ
ξ
t ,

where α ∈ (−1, 1) represents this correlation. The innovation Zξ
t represents the pure liquidity

shock to ξt. Later, when I consider the impact of financial crises in my economy, a financial

crisis will be a large positive realization of this common liquidity shock. This allows me

to focus on the informational effect of one feature of financial crises: asset firesales that
15From Gennotte (1986), general homothetic preferences with incomplete information introduce a negative

dynamic hedging term in addition to agents’myopic demand. Brown and Jennings (1989) provides a numer-
ical analysis of the impact on investor trading that this additional hedging term introduces with dispersed
information.
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depress financial prices. Other important features of financial crises, such as credit rationing

and balance sheet impairment, would exacerbate the impact of financial crises through my

channel.

Households are part of a continuum, and therefore exactly a fraction π will receive the

liquidity shock at time t. Since those hit by the shock take a fixed position in asset markets,

they do not trade on their superior information about its magnitude. Furthermore, because

households are atomistic and, as such, do not view their preference shock as having any

impact on the aggregate dynamics of market prices, those hit by the shock do not have an

incentive to sell the private information of its magnitude to other households.

An unrealistic feature of the liquidity shock ξt is that it is not bounded between zero and

one, and can also be negative. This implies that a household hit by the preference shock

may be induced to take a positive position in the risky asset or a levered short position.

Since ξt represents the noise in financial market prices that prevents them from being fully

revealing about investment productivity θt, it is necessary that ξt have Gaussian innovations

for tractability in learning, and therefore it cannot be restricted to the interval [0, 1] . Given

that the prices and investment will not depend on the wealth distribution of households

in equilibrium, the redistributional consequences of the liquidity shocks are not significant

for my results. In all discussions of welfare, I focus on the redistributional consequences of

informational frictions by comparing welfare in my economy to one in which households and

firms have perfect information.

Households in my economy have private information about its unobserved strength θt.

At each date t, household i receives news about θt through a private signal st (i)

st (i) = θt + σsZ
s
t (i) ,

where Zs
t (i) is a standard N (0, 1) random variable that represents household i′s idio-

syncratic signal noise that is independent across (i, t) and independent from Zθ
t and Zξ

t
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∀ (t, i) .16 Households are part of a continuum and, as such, there is no aggregate risk from

their idiosyncratic signal noise in the sense that the sum of the noise converges to zero in

the L2 − norm.17 Households at t = 0 have a common Gaussian prior θ0 ∼ N
(
θ̂0,Σ0

)
.

To simplify my analysis, and to focus on the feedback between the real sector and financial

markets from learning, I assume that, while parents in a generation pass along their wealth

to their children within a household, they do not pass along their private information, which

includes their own private signal, the size of the liquidity shock if they were hit by it, and their

initial wealth. As discussed in the introduction, models of information aggregation even in

static settings are very diffi cult to solve, and I make this common, simplifying assumption so

that learning by households and firmmanagers remains tractable. This lets me avoid both the

infinite regress problem of Townsend (1983), where market prices partially reveal a moving-

average representation of the investment productivity θt, and a time-varying correlation

between the persistence of wealth of households and the persistence of their private beliefs.18

In addition to making learning intractable, it would also render the equilibrium no longer

Markovian.

This assumption about the information structure, however, is not material for the main

qualitative insights of my analysis. Relaxing it would introduce an additional component

to the riskless rate that reflects that optimistic households tend to be wealthier during

booms and poorer during recessions, similar to Detemple and Murphy (1994), Xiong and

Yan (2010), and Cao (2011) for heterogeneous beliefs. This effect, however, is not likely to

be significant given the nature of the equilibrium. The low uncertainty at business cycle

peaks mitigates wealth inequality at peaks and during busts because households hold similar

beliefs about investment productivity. This dampens the increased interest rate volatility

16One can model this Gaussian process, for instance, as a time-change Wiener process.
17Since convergence of stochastic objects in continuous-time is in the L2 − norm, there is little reason to

think about convegence in an a.s. sense. There do, however, exist Fubini extensions of the Lebesgue measure
for the index of agents such that the convergence is a.s. See, for instance, Sun and Zhang (2009).
18Nimark (2012) instead takes the approach of having traders with long-lived private information but

static wealth to break the time-varying correlation between trader wealth and private beliefs.
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that the interaction between wealth and beliefs would normally introduce.

In addition to their private signal st (i) , all households in a generation observe the history

of firm asset growth in the economy logKt, investment It, the price of firm claims qt, and the

riskless rate rt.19 While private information is known by an individual, and would have to

be remembered and passed along to progeny, historical public information is kept in public

records and is readily available. Let the common knowledge, or public, filtration F ct be the

minimal sigma-algebra generated by these public signals.

Households form rational expectations about the underlying state θt by Bayes’Rule given

their information set F it = F ct ∨ {wt (i) , st (i)} , which is the public filtration F ct augmented

with the household’s current private wealth and signal. One can interpret the information

structure of my economy as all households entering the current period with a common, time-

varying prior based on the full history of public information F ct , and then each updates

its prior based on its private signal st (i) . Define θ̂t (i) = E [θt | F it ] to be the conditional

expectation of θt of household i, where E [· | F it ] is the conditional expectations operator

with respect to the information set F it .

Households in each generation choose their consumption and investment to maximize

their utility and their utility bequest to future generations vt+∆t (i) , according to

0 = sup
ct(i),xt(i)

{
ρ∆t log ct (i) + (1− ρ∆t)E

[
vt+∆t (i) | F it

]
− vt (i)

}
, (4)

subject to the law of motion of their wealth wt (i) derived below. All households have the

same initial wealth w0. The optimization problem is solved under household i′s filtration F it

which incorporates household i′s private beliefs about investment productivity θt.

1.3.3. Firms

I keep the model of firms as simple as possible. There is a continuum of perfectly

19Since output is related to asset growth by yt = aKt, observing asset growth is the same as observing
output.
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competitive, identical firms in the economy who issue claims to households. Firms issue

equity claims to households and are run by managers who have two responsibilities: to

oversee the firm’s operations and to invest ItKt to grow the firm’s assets Kt according to

equation (1). Firms must maintain a minimal level of investment I such that It ≥ I. This

prevents the signals about investment productivity θt in the economy from fully flattening,

since, if I = 0, then neither firms nor households care about the productivity of investment.

The choice of functional form for the capital accumulation equation (1) makes transparent

the impact of firm beliefs on real investment and uncertainty in the economy, as well as shuts

down any variation in the second moment of firm capital accumulation because of investment

to turn off the real-options "wait-and-see" channel of Bernanke (1983) featured in Bloom

(2009). While this law of motion will mechanically give rise to a stark relationship between

asset growth and the signal strength of real investment, similar to the choice of the production

function of firms in Van Nieuwerburgh and Veldkamp (2006), as well as between investment

and the Sharpe ratio of the return on firm claims, the interaction between investment and

the level of uncertainty in determining the behavior of the market price, which is the focus of

my analysis, will be an equilibrium outcome. The insights about the relationships explored

here will hold more generally as long as firms care about the current, hidden state of the

economy when they invest, and that there is more information from real signals when real

activity is high.20

Firm managers invest It to maximize the value to shareholders of its claims. Firms face

frictions in adjusting their level of investment, and can only imperfectly control it by choosing

effort gt so that It evolves according to

dIt = gtItdt,

20One may notice that learning from capital accumulation would be strong during recessions as well as
expansions if real investment became largely negative, and firms, on aggregate, rapidly disinvested. Since
aggregate US private nonresidential fixed investment historically has been nonnegative, I abstract from this
artifact of the specification of the capital accumulation process.
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with gt ≥ 0 if It = I. Thus I is a reflecting boundary for It. Managers incur a linear cost 1
ρ
gt

for this adjustment per unit of current investment ItKt, which is rebated back to the firm as

a subsidy τ t. The cost is meant to slow the adjustment of real investment and captures that

real investment, in practice, is sluggish. As will be shown, if firms could choose the level of

investment It directly, then It would have a well-defined solution between I and a because

the value of their claims qt is pinned down by household risk aversion, and is decreasing

in It. With this slow adjustment, firms will have this same optimal It that they are slowly

trying to adjust to by varying gt, and therefore the policies with and without the technical

restrictions are qualitatively similar. Since my comparisons for the dynamics of the economy

will be relative to a perfect-information benchmark, relative business cycle asymmetries will

not be driven by this assumption.

Households that hold firm claims receive a payment Dt of the residual cash flow from

operations and investment

Dt =

(
a− It −

1

ρ
gtIt + τ t

)
Kt,

Firms finance their investment ItKt from their cash flow from operations, the shortfall of

which is made up by households through the sale of additional claims. Since financial markets

are frictionless, they do not need to hold cash reserves.

For simplicity, managers do not have access to the private information of households and

choose investment using only public information. While, in reality, firms are likely to have

private information about the idiosyncratic component of their businesses or industries,

they still have imperfect knowledge of general macroeconomic trends.21 For managers to

have access only to public information, they cannot observe the pricing kernels of their

investors or their investors’ownership stakes in the firm. If they did, then managers would

21My mechanism is robust to managers having private information as long as they do not have superior
information to households, in which case they would not need to learn from prices. See, for instance, David,
Hopenhayn, and Venkateswaran (2014) for a setting in which firms also observe noisy private signals about
their fundamentals.
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know the identity of the marginal buyer of its firm’s claims, which would allow it to infer

information about investment productivity θt. Given that managers make use of only public

information, their investment strategies must be measurable with respect to the common

knowledge filtration F ct .

I assume that firm managers attempt to maximize shareholder value for their investors

who are not hit by the preference shock ξt. The logic behind this choice is that households

who trade because of the preference shock are trading for reasons unrelated to the return on

firm claims, reasons for which they are happy to take whatever position the shock demands

regardless of managers’ investment policies, and therefore it is unclear that maximizing

shareholder value is the appropriate objective for them. Though managers must choose

their investment policies from "behind the veil", since they do not know the composition of

their shareholders, their policies in equilibrium will be robust to this uncertainty.

Let Λt be the pricing kernel of its shareholders not hit by the preference shock and Et

the value of firm claims. Firm managers then solve the optimization problem

E0 = sup
{gt}s≥0

E

[∫ ∞
0

Λs

Λ0

Dsds | F c0
]
, (5)

subject to the transversality condition

lim
T→∞

E [ΛTET | F c0 ] = 0.

Since firms are perfectly competitive and atomistic, they take the pricing kernel of their

shareholders as given. Though I restrict my attention to firm equity claims, it is worth men-

tioning that, since households have superior information compared to firms about general

macroeconomic trends, firms could find it optimal to issue additional securities in this econ-

omy in order to have more signals from which to learn about the underlying state θt. Such

a richer setting would introduce additional complexity, since instruments like risky debt are

likely to have nonlinear payoffs, without adding much additional insight.
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1.3.4. Market Clearing

Household i takes the net position firm claims xt (i)wt (i) −qtkt (i) , where qtkt (i) is its

initial holdings. Aggregating over all households then imposes the market clearing condition

for the market for firm claims∫ 1

0

(xt (i)wt (i)− qtkt (i)) di =

∫ 1

0

xt (i)wt (i) di− qtKt = 0,

where Kt =
∫ 1

0
kt (i) di is the total assets of the firm at time t. Market clearing in the market

for riskless debt additionally imposes that∫ 1

0

(1− xt (i))wt (i) di = 0.

Figure 1 in the Appendix illustrates the structure of the model. I search for a recursive

competitive noisy rational expectations equilibrium.

1.3.5. Recursive Competitive Noisy Rational Expectations Equilibrium

Let ω be a state vector of publicly observable objects. A recursive competitive equilibrium

for the economy is a list of policy functions c
(
w (i) , θ̂ (i) , ω

)
, x
(
w (i) , θ̂ (i) , ω

)
, y (j, ω) ,

and i (ω) , value functions v
(
w (i) , θ̂ (i) , ω

)
and E (ω) , and a list of prices {q (ω) , r (ω)}

with q (ω) ≥ 0 such that

• Household Optimization: For every ω and i, given prices {q (ω) , r (ω)} ,

c
(
w (i) , θ̂ (i) , l (i) , ω

)
, and x

(
w (i) , θ̂ (i) , l (i) , ω

)
solve each household’s problem (4)

and deliver value v
(
w (i) , θ̂ (i) , ω

)
• Firm Manager Optimization: For every ω, given prices {q (ω) , r (ω)} , g (ω) solves the

firm manager’s problem (5) and delivers value E (ω)
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• Market Clearing: The markets for output, firm claims, and riskless debt clear

:

∫ 1

0

c
(
w (i) , θ̂ (i) , l (i) , ω

)
di+ I (ω)K = aK (output) (6)

:

∫ 1

0

x
(
w (i) , θ̂ (i) , l (i) , ω

)
w (i) di = qK (firm claims market) (7)

:

∫ 1

0

(
1− x

(
w (i) , θ̂ (i) , l (i) , ω

))
w (i) di = 0 (riskless debt market) ,(8)

• Consistency: w (i) follows its law of motion ∀ i ∈ [0, 1] , household i forms its expecta-

tion about θ based on its information set F i and firm managers form their expectation

about θ based on their information set F c according to Bayes’Rule

and the transversality conditions are satisfied.

1.4. The Equilibrium

I first state the main proposition of the section and then build up to this proposition in

a sequence of key steps.

PROPOSITION 1.1: There exists a (locally) linear noisy rational expectations equilibrium

in which the riskless return r is given by

r =
a

a− I ρ− δ −
σ2
k

1− π + I
Σ

Σ + σ2
s

(
θ − θ̂c

)
− πσ2

k

1− πξ,

when I > I, and each household’s investment in firm equity x (i) can be decomposed into

x (i) = xc + xi

(
θ̂ (i)− θ̂c

)
,

where

xc =
a
a−I ρ− r − δ

σ2
k

,

xi =
I

σ2
k

.
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When I = I and g = 0, then r is instead given by

r = ρ− δ − σ2
k

1− π + Iθ̂
c

+ I
Σ

Σ + σ2
s

(
θ − θ̂c

)
− πσ2

k

1− πξ,

and xc is given by

xc =
ρ+ Iθ̂

c − r − δ
σ2
k

.

Similar to He and Wang (1995), individual households take a position in firm claims

that can be decomposed into a component common to all households xc (ω) and a term that

reflects their informational advantage based on their private information xi (ω)
(
θ̂ (i)− θ̂c

)
.

This informational advantage term reflects disagreement among households about the Sharpe

Ratio of investing in firm claims. In contrast to He and Wang (1995), and other models

of dispersed information like Foster and Viswanathan (1996) and Allen, Morris, and Shin

(2006), the intensity with which households trade on their private information is influenced

by real factors in the economy. Though private information is static, since the private

information of households is short-lived because of the generational structure and because

the signal-to-noise ratio of the private signals st (i) is constant, the intensity with which

households trade on their private information is now dynamic because the environment in

which they trade is time-varying.

As is common in general equilibrium models of production, such as Cox, Ingersoll, and

Ross (1985), interest rates adjust until all wealth is invested in firm assets. Focusing on the

interaction between financial markets and real investment necessitates the adoption of such

a setting that has this feature. In models of heterogeneous beliefs, such as Detemple and

Murphy (1994) and Xiong and Yan (2010), the riskless rate r, which is the price at which

relative pessimists are willing to offer leverage to relative optimists to hold all firm claims

in equilibrium, reflects the disagreement among households about investment productivity

θt. In my setting, it serves to aggregate their private information. This riskless rate falls

during recessions to raise the expected excess return to firm claims, and shift down the
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level of optimism of the marginal buyer so that enough households purchase claims for asset

markets to clear. Similarly, it rises during booms to shift up the level of optimism of the

marginal buyer to curb the high demand of households for claims because of limited supply.

The market clearing condition for riskless debt effectively pins down the risk premium on

firm claims required for asset markets to clear. As such, one can view market risk premium,

whether it be the equity premium or a credit spread, as being the relevant market rate that

aggregates information. Alternatively, one could interpret the interest rate in my stylized

setting as being a composite market rate that arises from the trading of a well-diversified

portfolio of securities. In the empirical discussion, I focus on the excess return to firm claims,

or the spread between the return to firm claims and this riskless interest rate, to try to avoid

taking a stance on which market rates have informative content.

The first step toward solving the equilibrium is to solve for the consumption and portfolio

choice of household i given its information set F i. In what follows, I anticipate that the price

of firm claims q will be a continuous, nonnegative function of finite total variation with

respect to the level of investment I. Since q will have zero continuous quadratic variation,

one has by a trivial application of Itô’s Lemma that dq
q

= ∂Iq
q
dI.

I now derive the law of motion of the wealth of household i w (i) . Applying Itô’s Lemma

to K, the wealth of household i w (i) then evolves according to

dw (i) = (rw (i)− c (i)) dt+ x (i)w (i)

(
(a− I)Kdt+Kdq + qdK

qK
− rdt

)
,

which can be expanded to yield

dw (i) = (rw (i)− c (i)) dt+ x (i)w (i)

(
a− I
q
− r
)
dt+ x (i)w (i)

(
dq

q
+
dK

K

)
, (9)

and is irrespective of the measure. The variance term for dK
K
is irrespective of the measure

because of diffusion invariance. Intuitively, it is easier to estimate variances than means of

processes, so that even if two households disagreed on the drift of a process, they cannot
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disagree on its variance. The dividend a − I reflects the dividend after the rebate for the

adjustment cost.

To make progress in solving household i′s problem, I analyze each household’s prob-

lem (4) in the limit as ∆t↘ dt. Since uncertainty over θt represents a compound lottery for

households over the uncertainty in the change in θt, I can separate their filtering from their op-

timization problem and treat θ̂t (i) = E [θt | F it ] with variance Σt (i) = E
[(
θt − θ̂t (i)

)
| F it

]
as θt in their optimization problem.

Given that households have log preferences over consumption, and that liquidity shocks

are proportional to wealth, households will optimally consume a fixed fraction of their wealth

at each date t. Furthermore, when they are unconstrained in investment, they will also choose

a myopic portfolio in the sense that it maximizes the Sharpe Ratio of their investment and

ignores market incompleteness. This is summarized in the following proposition.

PROPOSITION 1.2: The household’s value function takes the form v
(
w (i) , θ̂ (i) , l (i) , h

)
=

1
ρ

logw (i) + f
(
θ̂ (i) , l (i) , h

)
, where ht is a vector of general equilibrium objects. Further-

more, the household’s optimal consumption and portfolio choice take the form

c (i) = ρw (i) ,

x (i) =

{
a−I
q

+
∂Iq

q
Ig+Iθ̂(i)−r−δ
σ2k

l (i) = 0

−ξ l (i) = 1
.

Furthermore, define Λt (i) = e−ρt 1
wt(i)

to be the pricing kernel of household i that is not hit

by a liquidity shock. Then the riskless rate and risky firm claims satisfy ∀ i

r = − 1

dt
E

[
dΛ (i)

Λ (i)
| F i

]
,

0 =
a− I
q

dt+ E

[
d (Λ (i) qK)

Λ (i) qK
| F i

]
.

An immediate observation is that, similar to Detemple (1986), a separation principle

applies in my noisy rational expectations equilibrium: the optimal consumption and invest-

ment policies are chosen independent of the learning process. Intuitively, since households
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are fully rational and update their beliefs with Bayesian learning, I can separate the filtering

problem faced by households from their consumption choices and portfolio optimization.

Given the optimal choice of consumption c (i) = ρw (i) from the proposition, it follows

that the law of motion of w (i) can be written as

dw (i)

w (i)
= (r − ρ) dt+ x (i)

(
a− I
q

dt+
∂Iq

q
Igdt+

dK

K
− rdt

)
, (10)

which is also irrespective of the measure because of diffusion invariance.

From the market clearing conditions for the market for firm equity and riskless inside

debt (7) and (8), the price of firm securities is given by

W = qK. (11)

Equation (11) states that, in equilibrium, the total wealth in the economy W is equal to the

total value of firm assets qK. Substituting c (i) = ρw (i) and equation (11) into the market

clearing condition for output (6), it follows that

q =
a− I
ρ

, (12)

from which follows that a−I
q

= ρ, and the household, in equilibrium, receives a constant

dividend yield from firm claims.

I now derive the conditional beliefs of households and firms about θt with respect to the

common knowledge filtration F c and their private information sets F i. The public signals

that households have available for forming their expectations are logK, q, I, and r. Since firm

managers only have access to public information, it must be the case that firm investment

I ∈ F c. Consequently, there is no additional information contained in I, or q given equation

(12), once households have formed their beliefs. I can then generate the public filtration F c

with these two public signals F c = σ
(
{logKu, ru}u≤t

)
.

Given the results of the main proposition, Proposition 1.1, let me now conjecture that

the riskless rate r takes the form

r = r0 + rθ (I,Σ)
(
θ − θ̂c

)
+ rξξ, (13)
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where rθ (I,Σ) ∈ F c since (I,Σ) ∈ F c. I assume that |rξ|−1 > 0 and that rθ (I,Σ) is uniformly

bounded and nonvanishing a.s. Given equation (13), one can construct the public signal S

S =
r − r0 + rθ (I,Σ) θ̂

c

rξ
= Rθ (I,Σ) θ + ξ. (14)

Comparing equation (14) with the expression for the riskless rate r in Proposition 1.1, it

follows that Rθ = −1−π
π

I
σ2k

Σ
Σ+σ2s

. Assuming that Rθ is a process of finite total variation,

applying Itô’s Lemma to S, S follows the law of motion

dS =

(
∂ΣRθ

dΣ

dt
+ ∂IRθIg

)
θdt+Rθλ

(
θ̄ − θ

)
dt+ (Rθσθ + ασξ) dZ

θ +
√

1− α2σξdZ
ξ.

Given these arguments, I can construct the vector of public signals ζ =
[

logK S
]′
whose

history, along with initial household wealth w0 and firm assets K0, generate the information

set F c. Assuming that households using only the history of the public signals have a normal

prior about θt, then after observing the two conditionally normal signals ζt their optimal

updating rule for their beliefs about θt is linear, and their posterior belief about θt will

also be conditionally normal. In continuous-time, these updating rules characterize the

laws of motion for the conditional expectation and variance of these beliefs, θ̂
c

= E [θ | F c]

and Σ = E

[(
θ − θ̂c

)2

| F c
]
, respectively. In addition, ζ contains θ̂

c
, Σ, and the level of

investment I, which are all publicly observable, though we supress these arguments from

the vector for simplicity since they do not contain new information about θt. Households

then update these public estimates with their normally distributed private signals following

another linear updating rule, and I have the following result.

PROPOSITION 1.3: The conditional belief of households using only public information

is Gaussian with conditional expectation θ̂
c

= E [θ | F c] and conditional variance Σ =

E

[(
θ − θ̂c

)2

| F c
]
∈
[
0,

σ2θ
2λ

]
that follow the laws of motion

dθ̂
c

= λ
(
θ̄ − θ̂c

)
dt+ σθ̂k (I,Σ) dZ̃k + σθ̂r

(
I, θ̂

c
,Σ
)
dZ̃r,
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where

σθ̂k (I,Σ) = I
Σ

σk
,

σθ̂r

(
I, θ̂

c
,Σ
)

=
Rθσ

2
θ + ασξσθ +Rθ

(
σ2s

Σ+σ2s

dΣ
dt

+ gΣ− λΣ
)

√
(Rθσθ + ασξ)

2 + (1− α2)σ2
ξ

,

and
dΣ

dt
= − B

2A
± 1

2A

√
2B + 4A

(
σ2
θ − 2λΣ− I2

Σ2

σ2
k

)
− 1

with

A =

(
Rθ

σ2s
Σ+σ2s

)2

(Rθσθ + ασξ)
2 + (1− α2)σ2

ξ

,

B = 1 + 2Rθ
σ2
s

Σ + σ2
s

Rθσ
2
θ + ασξσθ +Rθ (g − λ) Σ

(Rθσθ + ασξ)
2 + (1− α2)σ2

ξ

,

and

dZ̃k =
1

σk

(
d logK +

(
1

2
σ2
k + δ − Iθ̂c

)
dt

)
,

dZ̃r =
1√

(Rθσθ + ασξ)
2 + (1− α2)σ2

ξ

(
dS −Rθ

(
σ2
s

Σ + σ2
s

1

Σ

dΣ

dt
+ g

)
θ̂
c
dt−Rθλ

(
θ̄ − θ̂c

)
dt

)
,

is a vector of standard Wiener processes with respect to F c.

The conditional expectation of θt of household i of generation t θ̂ (i) = E [θ | F i] and

the conditional variance Σ (i) = E

[(
θ − θ̂ (i)

)2

| F i
]
are related to the average household

estimates θ̂
c
and Σ by

θ̂ (i) = θ̂
c

+
Σ

Σ + σ2
s

(
s (i)− θ̂c

)
,

Σ (i) =
σ2
s

Σ + σ2
s

Σ.

The public or common knowledge belief θ̂
c
is derived from the endogenous public signals

logK and r, while each household’s private belief θ̂ (i) is a linear combination of this public

belief and their private signal. This public belief θ̂
c
is an important state variable because
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it survives the aggregation of the beliefs of households, and because it is the forecast of firm

managers. Similar to the Kalman Filter in discrete-time, the loadings on the normalized

innovations dZ̃k and dZ̃r formed from the real investment and market signals, σθ̂k and σθ̂r,

respectively, represent the Kalman Gains of the public signals. Changes in the first moment

of public beliefs θ̂
c
are a linear combination of a term capturing the deterministic mean-

reversion of investment productivity, λ
(
θ̄ − θ̂c

)
dt, and a stochastic component related to

the news from the innovations to the public signals, σθ̂k (I,Σ) dZ̃k + σθ̂r

(
I, θ̂

c
,Σ
)
dZ̃r. The

law of motion of the second moment of public beliefs Σ, in contrast, is (locally) deterministic

and is the continuous-time analogue of the Ricatti equation for the Kalman filter, yet it is

stochastic unconditionally.

An important feature of the optimal filter is that the conditional variance of public beliefs

Σ is time-varying over the business cycle, and fluctuates endogenously according to its law of

motion given in Proposition 1.3, which depends on its current value, the perceived investment

productivity θ̂
c
, and the level of investment by firms I. The stochastic time-variation in Σ

is in contrast to dynamic models of asymmetric information like Wang (1993) that focus on

the steady-state solution for the conditional variance of beliefs to which the economy tends

deterministically. In this setting, Σ influences the quantity of private information households

have, and how they trade on it in financial markets. As a result of shutting down the "wait

and see" channel of Bloom (2009) for uncertainty to feed into firm investment behavior,

firm investment decisions are indirectly influenced by Σ purely through how it affects the

informativeness of the financial signal. Since Σ is time-varying, it is part of the state vector,

along with I and θ̂
c
, that summarizes the current state of the economy.

Learning from the endogenous market signal r that aggregates households’private in-

formation leads to either zero or two solutions for the (locally) deterministic change in the

conditional variance dΣ
dt
, which can result in nonexistence and multiple solutions.22 With

22Nonexistence can occur because learning from market prices leads to the simultaneous determination of
the change in the conditional variance dΣ

dt and the strength of the market signal σθ̂r. There are situations
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two solutions, households and firms can coordinate around either solution for the change in

Σ, one which leads them to learn about investment productivity θt faster, and one in which

they learn more slowly. In all the numerical applications, I follow the convention of selecting

the larger root when two real solutions to dΣ
dt
exist, since the smaller, more negative root

tends to lead households and firms to learn about θt extremely quickly.

In addition to their private signals, households learn about the underlying strength of

the economy θ from the growth of firm assets logK, whose informativeness (signal-to-noise

ratio) is increasing in the level of firm investment I, and from the riskless rate, whose

informativeness Rθ (I,Σ) is also influenced by I. This link from the investment choices of

firms to the learning process of households represents one part of the feedback loop between

real activity and asset markets that I wish to highlight. The ability of real investment

decisions to distort investor expectations is similar to the channel explored in Angeletos,

Lorenzoni, and Pavan (2012) to rationalize the tech bubble of the early 2000’s.

I now turn to the problem faced by firm managers. Given that firm managers only have

access to public information, their conditional expectation of θ when making their investment

decision g is θ̂
c
. Furthermore, since the price of firm claims is pinned down by market clearing

q = a−I
ρ
, it must be the case that the optimal choice of g under the pricing kernel of investors

confirms this price.

PROPOSITION 1.4: The value of firm claims is given by E = qK, and the optimal level

of investment is given by

g = ρ
(
qθ̂

c − 1
)
1

{
I > I ∪ θ̂

c ≥ ρ

a− I

}
. (15)

From the functional form of the optimal investment policy, it is apparent that I = I and

when the real signal and the natural mean-reversion of θt are so strong that the conditional variance Σ falls
too precipitously, as measured by dΣ

dt , for σθ̂r, which depends on
dΣ
dt , to be suffi cient to justify the fall in Σ.

This result is reminiscent of the finding of Futia (1981) that price formation in a linear rational expectations
framework can exhibit nonexistence pathologies.
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I = a are reflecting boundaries, since when I = a, then q = 0 and g < 0. As a result, the

price of firm claims can never be negative. Similarly, when I = I and θ̂
c ≤ ρ

a−I , then dI = 0

and investment stays at I until g becomes positive. Since I has finite variation, its sample

paths are continuous in time, and I will approach its two boundaries continuously.

To see how investment in my setting compares to one in which I allow firms to freely

choose I, it is easy to see that the FOCs for the firm’s problem would then be

−1 + qθ̂
c ≤ 0,

with equality when θ̂
c ≥ ρ

a−I since q = a−I
ρ
, from which it follows that Iopt = I +

(
a− ρ

θ̂
c − I

)
1
{
θ̂
c ≥ ρ

a−I

}
. Since firms choose bang-bang policies, the price of capital q adjusts to make

them indifferent to the optimal level of investment Iopt. Notice that when I = a − ρ

θ̂
c when

I can only be slowly adjusted, then I = Iopt and g = 0. If I were above its optimal value

I > Iopt, then g > 0, and similarly g < 0 when I is below its optimal value I < Iopt. Thus g

tries to adjust I toward the optimal level the firm would choose if I could be chosen freely.

This is the sense in which investment is sluggish.

Given the solution to the optimal investment strategy of firms, q has the interpretation

of being Tobin’s q. Investment by firms aims to equate the perceived productivity of real

investment θ̂
c
to 1/q, the book-to-market value of its assets. Thus informational frictions

distort real investment by creating a misperception about the value of its assets. This

highlights a key difference between my channel for firm beliefs to distort real activity and

that of Straub and Ulbricht (2013). In their setting, entrepreneurs are never confused about

the optimal level of production, but rather about the value of the collateral they must

pledge to workers because of financial frictions. In my setting, firms optimally choose a level

of production that is distorted because of their beliefs about investment productivity. Also,

in contrast to models of uncertainty like Bloom (2009), investment in my economy declines

because of shocks to the first moment of productivity rather than from shocks to the second

moment through a "real-options" channel.
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Learning by firm managers introduces a channel through which the first moment of beliefs

about investment productivity θ̂
c
influences the second moment Σ. From Proposition 1.3,

the change in uncertainty Σ dΣ
dt
depends on the change in investment g, which is a function

of firm manager beliefs θ̂
c
. Thus the filtering equations for θ̂

c
and Σ are coupled because

there is feedback from second moments to first moments, which is a natural feature of the

optimal nonlinear filter, and from first moments to second moments, because learning by

firm managers determines their investment decisions, which influences the informativeness

of the two public signals.

Since household trading behavior impacts the riskless rate r, from which both households

and firms learn, the riskless rate acts as a channel for liquidity shocks in financial markets

to feed into real investment decisions by influencing manager expectations. This mechanism

for asset prices to distort firm investment is similar to Goldstein, Ordozen, and Yuan (2013).

Along with the impact of investment decisions on household learning discussed above, these

two forces characterize the feedback loop in learning between financial markets and real

activity.

To derive the functional form for the riskless rate r, I must aggregate the wealth-weighted

private expectations of all households, which will reveal the current true θt and the signal

noise of households. Given that the private beliefs of each household are uncorrelated with

their wealth share because households do not pass along their private information to later

generations, the Law of Large Numbers will cause the aggregation of idiosyncratic signal

noise to vanish. Let Dt be the set of households hit by the liquidity shock at time t. Let

W =
∫ 1

0
w (i) di be the total wealth of all households. Then I obtain the following result.

PROPOSITION 1.5: Aggregating the wealth-weighted deviation in the conditional expec-

tation θ of household i θ̂ (i) from the common knowledge expectation θ̂
c
yields a.s.∫

Dc

w (i)

W

(
θ̂ (i)− θ̂c

)
di−

∫
D

w (i)

W
ξdi = (1− π)

Σ

Σ + σ2
s

(
θ − θ̂c

)
− πξ,
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and the convergence ∀ t is in the L2 − norm.

By aggregating the beliefs of individual households, the riskless rate r will depend on

θ̂
c
and θ through the productivity of investment θ revealed by the households’private sig-

nals. An important caveat to this result is that it relies on households being symmetrically

informed. If, instead, households had different signal precisions σs (i) , then the wealth dis-

tribution of households would matter for prices.23 Given this aggregation result, the noisy

rational expectations equilibrium and the riskless rate r then satisfy the main theorem of

the section. Thus it follows that the state vector ω for the economy is ω =
[
θ, ξ, θ̂

c
, I,Σ

]
.

While the intensity with which households trade on their private information is procycli-

cal, since xi (ω) is monotonically increasing in the investment by firms I, the information

content in the market price is monotonically increasing in uncertainty about θ, measured

by Σ, because market prices aggregate the private information of households to partially

reveal θ. These two forces interact so that asset prices will be strongest during downturns

and recoveries, in the sense that the variation in θ̂
c
driven by the market signal is largest

when I and Σ are in an intermediate range. To see this, Figure 2 in the Appendix plots,

as a numerical example, the loading of the market signal σθ̂r
(
I, θ̂

c
,Σ
)
on beliefs for a fixed

level of perceived investment productivity θ̂
c
for a set of parameters listed in the Appendix.

The figure reveals that the variation from the market signal is increasing in the level of

investment by firms, and increasing in uncertainty about investment productivity Σ, though

for other parameter values it can be non-monotonic. Furthermore, since a decline in the per-

ceived investment productivity θ̂
c
lowers investment, and also leads to greater uncertainty,

it follows that σθ̂r
(
I, θ̂

c
,Σ
)
can be increasing or decreasing in θ̂

c
depending on I and Σ.

These observations illustrate that more of the variation in the beliefs in households and firm

managers is driven by the market signal when I and Σ are in an intermediate range. As

23Asymptotically, however, one would expect households with superior information to eventually drive out
the less well-informed households. This would lead to a degenerate wealth distribution in which wealth once
again does not matter.
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Σ → 0, the market price contains little information about θ at peaks, since Rθ → 0, and

households do not react strongly to it.

This last point merits some emphasis. While it is well-appreciated that risk premia in

financial markets are countercyclical, it is less appreciated that the strength of asset prices

as a signal of economic strength also exhibits business cycle asymmetries. This asymmetry

arises because the incentives for investors to trade on their private information anchors on

both the level of real investment and uncertainty in the economy.

1.5. The Impact of Feedback in Learning

To assess the impact of feedback in learning, I first derive the equilibrium in two bench-

mark economies, one with perfect information and one in which only households have perfect

information, as helpful anchors for my analysis. The first benchmark gives us insight into

how the economy behaves in the absence of any informational frictions, while the second

will help to clarify the role that dispersed information among households plays in influencing

the business cycle behavior of the market signal. I then explain the slow US recovery in the

context of this feedback loop.

1.5.1. Two Benchmarks

Suppose that θ (t) is observable to all households and firm managers. Then all house-

holds will allocate identical fractions of their portfolios to risky projects and the riskless

asset. In this benchmark setting, it is suffi cient to solve the equilibrium for the aggregate

state variables, since the wealth of households will only differ in their history of preference

shocks. The following proposition summarizes the recursive competitive equilibrium that the

recursive noisy rational expectations equilibrium tends to, in the aggregate, as informational

frictions vanish for all agents.
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PROPOSITION 1.6: When θ is observable to all households and firm managers, a) the

price of firm equity is given by

q =
a− I
ρ

,

b) the riskless return r satisfies

r =
a

a− I ρ− δ −
σ2
k

1− π −
πσ2

k

1− πξ,

when I > I, c) optimal consumption and investment in firm equity by households who are

not hit by the liquidity shock satisfy

c (i) = ρw (i) ,

x (i) =

a−I
q
− I

a−I g + Iθ − r − δ
σ2
k

,

and d) optimal investment by managers is given by

g = ρ (qθ − 1)1

{
I > I ∪ θ ≥ ρ

a− I

}
.

The equilibrium with perfect information appears similar to the one with informational

frictions, except that the riskless rate no longer reflects the wedge between the beliefs of

agents and the true underlying strength of the economy θ because households and firm man-

agers are now perfectly informed. The economy is isomorphic to one with a representative

agent household who owns and manages all assets in the economy, and chooses the riskless

rate so that it invests all its resources in assets given its preference shock. In this setting,

there is no role for noise from preference shocks ξ to transmit to real investment decisions

because manager do not learn from prices. Financial market activity has no consequence for

the business cycle at all.

The second benchmark provides an intermediate case between the informational frictions

economy of the previous section and the perfect-information benchmark. Though households

behave identically when they have perfect information, there is still feedback from financial
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market noise ξ to real investment decisions because managers still must learn about θ from

market prices. The behavior of this economy is summarized in the next proposition.

PROPOSITION 1.7: When θ is observable to all households, a) the price of firm equity is

given by

q =
a− I
ρ

,

b) the riskless return r satisfies

r =
a

a− I ρ− δ −
σ2
k

1− π + I
(
θ − θ̂c

)
− πσ2

k

1− πξ,

c) optimal consumption and investment in firm equity by households who are not hit by

the liquidity shock satisfy

c (i) = ρw (i) ,

x (i) =

a−I
q
− I

a−I g + Iθ − r − δ
σ2
k

,

and d) optimal investment by managers is given by

g = ρ
(
qθ̂

c − 1
)
1

{
I > I ∪ θ̂

c ≥ ρ

a− I

}
.

Furthermore, beliefs, prices, and optimal policies in the economy with informational

frictions approach their representative agent benchmark values as σs ↘ 0.

In this intermediate case, firm managers must still learn from both the growth of firm

assets and market prices. Noise from market prices from preference shocks ξ can potentially

feed back into firm manager learning, and therefore their investment decisions, yet there

is an important distinction from the NREE equilibrium. Since households have perfect

information, the level of uncertainty in the economy Σ does not affect their trading behavior,

and consequently it has a smaller role in determining the influence and strength of the market

signal. This can be seen from the difference in the loadings on the tracking error θ − θ̂c in
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the expressions for r in Propositions 1.6 and 1.7. In the NREE economy, the signal-to-

noise ratio Rθ = −1−π
π

I
σ2k

Σ
Σ+σ2s

, while in this representative agent setting Rθ = −1−π
π

It
σ2k
.

This implies that the market signal in the representative agent setting mimics much of the

cyclical behavior of the real investment signal (though it is not redundant because the noise

in the two signals are conditionally independent of each other). The market signal S =

1−π
πσ2k

(
r − a

a−I ρ+
σ2k

1−π + Iθ̂
c
)
for households and firm managers then has the law of motion

dS = Rθ (g − λ) θdt+ (Rθσθ + ασξ) dZ
θ +
√

1− α2σξdZ
ξ,

where Rθ is increasing in I and unrelated to uncertainty Σ. The market signal is, conse-

quently, strongest during booms when uncertainty Σ = E

[(
θ − θ̂c

)2

| F c
]
is low.

This setting consequently highlights the importance of dispersed information for the

mechanism of the NREE economy: aggregation of dispersed information gives the market

signal much of its countercyclical behavior because the quantity of private information Σ

matters for how households trade on their private information. There is a dramatic differ-

ence, then, in the predictions of how an economy with a representative household behaves

compared to an economy with households with heterogeneous information.

One could also consider a benchmark with a representative household that receives a

noisy private signal instead of having perfect information. In this benchmark, the conditional

variance of public beliefs Σ would be important for the information content of the market

signal, and the market signal would exhibit more countercyclical behavior. Since the noise in

the household’s private signal would not vanish from market prices, however, it is less clear

how the informativeness of the market signal would change over the cycle, since the noise in

the price from the household’s private signal would also increase as Σ increased.

1.5.2. Explaining the Slow US Recovery

My analysis highlights a potential channel by which recessions with financial origins can

have deeper recessions and slower recoveries, and can help explain how the financial crisis
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of late 2008 may have contributed to the anemic US recovery. Economic agents rely more

on price signals for helpful guidance about the state of the economy as the economy enters

a downturn. Financial crises during downturns distort these price signals and, as a result

of severe informational frictions, investors and firms interpret part of the collapse in asset

prices as a signal of severe economic weakness. This further depresses real activity, causing

both real and financial signals to flatten, which increases uncertainty and causes it to remain

elevated. This makes it harder for private agents to act on signs of a recovery. Despite

evidence of economic improvement, and a rebounding of financial markets, the heightened

level of uncertainty makes it diffi cult for a recovery to gain traction and stifles growth.

To illustrate this story, Figure 3 depicts the impact of a unit dZξ shock (a one stan-

dard deviation negative liquidity shock) to financial prices in the economy during a boom(
θ̂
c
, I,Σ

)
= (.3, .1, 10−6) and during a bust

(
θ̂
c
, I,Σ

)
= (.2, .04, 10−5) .24 As a result of

informational frictions, the recession is deeper in this numerical experiment compared to

the perfect-information benchmark, and the recovery is also more gradual. In contrast, a

one standard deviation negative financial shock during a boom has a much more attenuated

impact on growth, which can help explain why financial events like the LTCM crisis had

little effect on the real economy. Key to this result is that uncertainty is time-varying, with

a law of motion given in Proposition 1.3, and countercyclical. When uncertainty is higher,

noise in financial prices that is interpreted as bad news perpetuates low investment. This,

in turn, perpetuates high uncertainty and allows the distortion to beliefs from the noise in

financial prices to persistent.

My analysis consequently identifies a potential benefit of unconventional monetary policy

in the presence of informational frictions. By buying treasury and mortgage-backed securities

through Quantitative Easing (QE), the US government provided financing for investors to

purchase assets from riskier asset classes, such as equities and speculative-grade debt. This

24Since time is continuous, we feed the quarterly negative shock to the model as one large innovation at
time 0 equal to one fourth the annual variance of the financial shock.
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injection of capital may have lessened the noise that constrained investors introduced into

financial prices during the financial crisis that distorted the expectations of private agents

about the strength of the US economy. In continuing QE in its various forms of QE1-QE3

until late 2014, however, the buoying of financial markets may have later added noise to

financial prices that confused agents about the strength of the US recovery. The April 2011

WSJ article "Is the Market Overvalued?", for instance, discusses how market participants

and economists like Robert Shiller could not disentangle signs of strong corporate profitability

from the effects of QE behind the high valuations in the stock market.

1.6. Welfare

I now turn to the welfare implications of my analysis. The economy with informational

frictions may be constrained ineffi cient because households and firms do not fully internalize

the benefit of the public information they produce by trading in asset markets and engaging

in real investment. As emphasized in Greenwald and Stiglitz (1986), economies with incom-

plete markets and incomplete information are generically not constrained Pareto effi cient,

and there is a role for welfare-improving policies. In this spirit, I consider several thought

experiments that augment the provision of public information in the economy to highlight

this potential externality.

I begin this section by characterizing ex-ante welfare in the economy. I adopt a utilitar-

ian weighting scheme to aggregate utility across the heterogeneous households, normalizing

welfare to initial household consumption to remove the level effect of initial conditions. This

helps me construct a measure of welfare in the economy that has a stationary distribution

conducive to conducting thought experiments. Since the noise in financial prices stems from

the preference shocks of households, the analysis avoids the issue of characterizing welfare in

the presence of exogenous "noise traders" discussed in Wang (1994). Informational frictions

impact welfare through two channels: a distortion to real investment and household trading,
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and a cost that comes from the inequality in household wealth that arises because of the

dispersion of private beliefs. This is summarized in the following proposition.

PROPOSITION 1.8: Ex-ante utilitarian welfare in the economy with informational frictions

is given by

U =
1

ρ
E

[∫ ∞
0

e−ρt
(

ρ

a− It
+ θt − θ̂

c

t

)
Itdt | F0

]
︸ ︷︷ ︸

Efficiency of Real Investment

−1− π
2ρ

(
σs
σk

)2

E

[∫ ∞
0

e−ρt
(

ItΣt

Σt + σ2
s

)2

dt | F0

]
︸ ︷︷ ︸

Cross−Sectional Inequality

− δ

ρ2
− 1

2ρ2

(
σ2
k +

πσ2
k

1− π (1 + ξ0)2

)
− 1

2ρ3

πσ2
k

1− πσ
2
ξ .

Under this welfare criterion, there exists a representative household in the economy who

holds all claims to firm assets and whose wealth w evolves according to

dw

w
=

(
ρI

a− I − δ + I
(
θ − θ̂c

)
− 1

2

(
πσ2

k

1− π (1 + ξ)2 + (1− π)

(
I

σk

Σ

Σ + σ2
s

σs

)2
))

dt+σkdZ
k.

From Proposition 1.7, the representative household under this welfare criterion is different

from a representative household who holds all firm claims since the criterion reflects the

inequality in wealth that arises because of informational frictions and liquidity shocks. This

distinction is absent from representative agent models and comes from the aggregation of

flow utility log c (i) rather than consumption c (i) in the utilitarian welfare function. The

effects of the distortion show up as a tax on the representative household, and consequently

one can think of the transfer of wealth from liquidity shocks and the presence of informational

frictions as imposing a tax on the economy. This tax vanishes when households have identical

beliefs, which occurs in the limiting cases when σs ↘ 0, σs ↗∞, or Σ ≡ 0.

Having derived ex-ante utilitarian welfare to understand the forces that impinge on house-

hold utility, I construct a measure of expected welfare using only public information once

the economy has reached its stationary distribution, and initial conditions no longer matter,
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as a sensible measure for conducting my thought experiments. To target household and

firm investing behavior, I introduce a proportional position cost τ r on household trading

and a linear subsidy on firm real investment τ I . I construct these instruments so that the

extracted revenue is returned to households as lump-sum transfers that households view as

being proportional to their wealth. The position cost lets me manipulate households’trading

decisions while the real investment subsidy lets me manipulate firms’investment decisions.

Solving for household’s optimal investment in the presence of the position cost, it is

straightforward to see from Proposition 1.2 that household i invests a fraction x (i)

x (i) =

a−I
q

+ ∂Iq
q
Ig + Iθ̂ (i)− r − δ

(1− τ r)σ2
k

,

of its wealth in firm claims when not hit by the liquidity shock. Households that are hit by

the preference shock continue to take a fixed position −ξ proportional to their wealth in the

risky asset, regardless of the position cost. Then, by similar arguments to those in Section

IV, one can arrive at the form for the riskless rate r when investment is unconstrained

r =
a

a− I ρ− δ + I
Σ

Σ + σ2
s

(
θ − θ̂c

)
− (1− τ r) σ2

k

1− π (1 + πξ) ,

from which follows that

x (i) =
1

1− π +
π

1− πξ +
1

1− τ r
I

σ2
k

Σ

Σ + σ2
s

σsZ
s (i) .

The position cost has the counterintuitive property that it induces households to take larger

positions in the risky asset based on their private information. This happens because house-

holds in continuous-time can rebalance their portfolios instantaneously to take a large enough

position to offset the impact of the cost. Since the collateral is returned lump-sum, however,

the cost introduces a distortion to household wealth. A higher position cost τ r increases the

amount of public information in the price by inducing households to trade more on their

private information without affecting the position taken by households hit by the liquidity

shock, but it also introduces more wealth inequality. There is then a tradeoff for welfare in

increasing τ r.
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It is also straightforward to see from Proposition 1.4 that the real investment subsidy

induces the firm to choose a growth rate for real investment g

g =
(

(a− I) θ̂
c −
(
1− τ I

)
ρ
)
1{

I>I∪θ̂c≥ (1−τI)ρ
a−I

}.
With these instruments in place, I now search for the probability law of the economy once

it has reached its stationary distribution p
(
θ̂
c
,Σ, I

)
, if it exists. I derive the Kolmogorov

Forward Equation (KFE), or transport equation, which summarizes the (instantaneous)

transition of the probability law of the economy pt
(
θ̂
c
,Σ, I

)
and characterize the conditions

under which ∂tpt
(
θ̂
c
,Σ, I

)
= 0. This reduces to solving the appropriate boundary value

problem for a second-order elliptic partial differential equation, summarized in the following

proposition.

PROPOSITION 1.9: The stationary distribution of the economy p
(
θ̂
c
,Σ, I

)
satisfies the

Kolmogorov Forward Equation

0 = −∂θ̂c
{
pλ
(
θ̄ − θ̂c

)}
− ∂I

{
pI
(

(a− I) θ̂
c −
(
1− τ I

)
ρ
)}
1{

I>I∪θ̂c≥ (1−τI)ρ
a−I

} − ∂Σ

{
p
dΣ

dt

}
+

1

2
∂θ̂cθ̂c

{
p
(
σ2
θ̂k

+ σ2
θ̂r

)}
,

with boundary conditions given in the Appendix.

The KFE that defines the stationary distribution is a conservation of mass law that has

an intuitive interpretation. It states that the sum of the flows of probability through a cube

in the
(
θ̂
c
,Σ, I

)
space must be zero for the probability mass of the cube to be conserved over

time. The stochastic component of θ̂
c
introduces a second-order term in the KFE related to

its volatility since the high variability of Wiener processes has a first-order effect on the law

of motion of θ̂
c
.25 In the case where σs ↗ ∞ and α = 0, the economy is analogous to that

25To find the stationary distribution numerically, I follow the trick of rewriting the KFE in Proposition
1.9 as Dg∗p = 0, where Dg∗ is the adjoint of the infinitesimal generator Dg defined in the proof of the
proposition. Discretizing the state space

(
θ̂
c
,Σ, I

)
into a Nθ̂ ×NΣ×NI grid, one can stack the Nθ̂ ·NΣ ·NI
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of Van Nieuwerburgh and Veldkamp (2006) in which only a real investment signal provides

information.

Given the KFE, I now construct my welfare measure. Let U c
p be utilitarian welfare in the

economy, normalized to initial wealth, and Ep [·] be the expectation operator with respect

to the stationary distribution. Then I have the following corollary.

COROLLARY 1: Expected utilitarian welfare under the stationary distribution U c
p with

position cost and real investment subsidy τ r and τ I , respectively, is given by

U c
p =

1

ρ
Ep

[
I0

a− I0

]
− 1− π

2ρ2

(
σs
σk

)2

Ep

[(
I0

1− τ r
Σ0

Σ0 + σ2
s

)2
]

− 1

2ρ2

1− π
πσ2

k

Ep

[(
I0

1− τ r
Σ0

Σ0 + σ2
s

)2

Σ0

]
− δ

ρ2

− 1

2ρ2

σ2
k

1− π

(
1 +

1

ρ
πσ2

ξ

)
.

The first two pieces again relate to the effi ciency of real investment and cross-sectional

inequality among households, while the third reflects uncertainty over the current size of

the liquidity shock. The direct contributions to welfare from uncertainty about investment

productivity Σ0 are unambiguously negative, and it is unlikely that informational frictions

can improve real investment effi ciency since firms can only be distorted away from the level

linear equations for Dg∗p = 0 to construct the matrix equation

A′p = 0Nθ̂·NΣ·NI×1,

where p = vec (p) and A is the
(
Nθ̂ ·NΣ ·NI

)
×
(
Nθ̂ ·NΣ ·NI

)
square matrix that approximates the derivative

operator Dg constructed with the "upwind" method. Here A′ denotes the transpose of A. Since the matrix
equation defines the stationary distribution for a Markov chain with transition matrix A′, it follows by the
Frobenius-Perron Theorem for nonnegative compact operators that A′ has a unique largest eigenvalue (in
absolute value), called the principal eigenvalue, and an associated strictly positive eigenvector φ unique up
to a scaling factor. Since A is singular, it is convenient to replace one row i of A′ with Aij = δij and the
ith entry of the zero vector with 1. This allows me to update to the stationary distribution in one step after
defining A.
In practice, I find it convenient to populate the matrix A imposing that θ̂

c
has reflecting boundaries on

both sides, and then set the boundaries suffi ciently far into the tails of the distribution that the choice is
insensitive to my results.
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of investment they would choose with perfect-information. Welfare is about 1.9% lower

compared to the perfect-information benchmark, and modestly about .5% higher than in the

economy analogous to that of Van Nieuwerburgh and Veldkamp (2006) where households do

not aggregate private information in financial markets. This modest gain reflects the tradeoff

between the increased informativeness of public signals and the cross-sectional inequality

induced by households trading on their heterogeneous private information.

To highlight the presence of information externalities in the economy, I conduct several

illustrative thought experiments varying the position cost and real investment subsidy. I

report the gain in welfare in consumption equivalent λ in the tradition of Lucas (1987).26

τ r .05 .1 .15
100× λ 0.128 0.266 0.411

Table 1: Transaction Cost Experiment

From Table 1, the position cost improves welfare in the economy with informational

frictions. The intuition for this is that the gain in informational provision by having house-

holds take larger positions, is larger than the cost of generating more inequality by having

households trade more on their heterogeneous private information.27 Since better public

information lowers the average level of uncertainty in the economy, however, this mitigates

the rise in inequality.

26Formally, the consumption equivalent λ for an alternative level of the transaction tax or real investment
subsidy that raises welfare from Ũ cp to U

c
p is defined as the fractional increase in the consumption of all

households under the baseline level that delivers the same gain.
For log utility, λ satisfies

U cp =
1

ρ
Ep
[∫ 1

0

log ((1 + λ) c̃ (i)) di

]
for Ũ cp = 1

ρE
p
[∫ 1

0
log c̃ (i) di

]
, from which follows that

λ = exp
(
ρ
(
U cp − Ũ cp

))
− 1.

27An important caveat is that the experiment understates the extent to which heterogeneous information
generates wealth inequality because household private information is short-lived, and therefore there is no
persistence in positions. With long-lived private information, the net benefit is likely to be more modest.
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To see if subsidizing real investment improves welfare by improving the informational

content of public information, I give firms a proportional investment subsidy τ I whenever

investment is at least one standard deviation below its unconditional mean in the stationary

distribution. This has the interpretation of being a countercyclical real investment subsidy.

To capture the welfare impact of the subsidy through the informational channel, I modify the

experiment by subtracting out expected welfare under the perfect-information benchmark

Uperf
p , since the subsidy will mechanically impact welfare by raising the average level of

investment in the economy. It is easy to derive the analogous KFE for the perfect-information

benchmark economy

−∂θ
{
pλ
(
θ̄ − θ

)}
− ∂I {pI ((a− I) θ − (1− τ c) ρ)}1{I>I∪θ≥ (1−τc)ρ

a−I } +
1

2
σ2
θ∂θθp = 0,

which has similar boundary conditions. Subtracting out the expected welfare under the

perfect-information benchmark captures the incremental benefit of the subsidy from miti-

gating informational frictions.

τ I .05 .10 .15
100× λ 1.875 3.709 5.502

Table 2: Investment Subsidy Experiment

Table 2 reveals that the real investment subsidy also improves welfare. Since the subsidy

increases real investment, which increases the average position households take in asset mar-

kets, it also has a similar effect to implementing a position cost. Real investment subsidies,

therefore, improve the provision of public information by increasing the informativeness of

both real and financial signals, which might, in part, explain why the gains from this exper-

iment are larger than for the position cost.

These two thought experiments are meant to illustrate that there is a role for welfare-

improving policies that address an information externality that arises because of decentral-

ization. If instead of continuums, there were only one trader or one firm in the economy,
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such an agent would internalize its impact on the formation of the endogenous public signals

when choosing its investment policies. While also likely to be present in static settings of

incomplete information, this externality has a dynamic dimension because households and

firms learn from signals formed ineffi ciently because of decentralization in the past. Though

Greenwald and Stiglitz (1986) demonstrate that there often exist welfare-improving policy

for economies with incomplete information and incomplete markets, their analysis is silent

as to what form these policies take, and whether there is an optimal policy. These thought

experiments motivate a more systematic analysis of policy interventions to address such in-

formation externalities within an optimal policy framework, which is beyond the scope of

my analysis.

1.7. Empirical Implications

In this section, I explore several empirical implications of my framework that build off

the observation that financial prices provide useful signals about the state of the economy,

and that the strength of these signals is strongest during downturns and recoveries. I first

discuss the asset pricing implications of my analysis, and then turn to conceptual issues my

framework implies for empirical analysis and other empirical implications.

1.7.1. Implications for Asset Pricing

In this section, I characterize the business cycle implications of macroeconomic uncer-

tainty in financial markets for asset risk premia and asset turnover. My analysis illustrates

that, in the presence of informational frictions, there is an additional component to asset

risk premia and asset turnover that reflects uncertainty about the state of the economy. This

informational piece appears because households have heterogeneous private information and

the degree to which they have heterogeneous beliefs increases as uncertainty rises about in-

vestment productivity. Furthermore, it gives asset returns predictive power for future returns
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and macroeconomic growth. The strength of this predictive power, however, varies over the

business cycle, and I show that this variation is related to the behavior of asset turnover

from informational trading.

1.7.1.1 Risk Premia

When the true state of the economy is known, then from Proposition 1.6 firms pay a risk

premium on their claims

RPperf = ρ− I

a− I g + Iθ − δ − r =
σ2
k

1− π +
πσ2

k

1− πξ︸ ︷︷ ︸
variance and liquidity risk

,

which compensates households for variance risk and liquidity shocks. From Proposition 1.1,

however, in the presence of informational frictions this risk premium includes an additional

piece

RPNREE =
σ2
k

1− π +
πσ2

k

1− πξ︸ ︷︷ ︸
variance and liquidity risk

+
I

1 + Σ/σ2
s

(
θ − θ̂c

)
︸ ︷︷ ︸
informational risk

.

that compensates investors for informational risk. This piece arises because households over-

react to liquidity and capital quality shocks, and underreact to news about real investment

productivity, driving a wedge between θ and θ̂
c
. Similar to the risky asset demand of each

household xi from Proposition 1.1, the price of informational risk I is increasing in the level

of investment by firms, while the quantity of informational risk 1
1+Σ/σ2s

(
θ − θ̂c

)
is increasing

in the "average" pessimism of economic agents θ − θ̂
c
and the level of informational fric-

tions σs through the relative precision of public-to-private information Σ/σ2
s. Consequently,

investors earn risk compensation not only because of financial shocks and variance risk, but

also because of distorted beliefs.

Similar to the speculative risk premium in Nimark (2012), this additional informational

piece is, by construction, orthogonal to all public information, sinceE
[

I
1+Σ/σ2s

(
θ − θ̂c

)
| F c

]
=

0. Unlike the conditional mean, however, the conditional variance of this informational piece
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CV = E

[(
I

1+Σ/σ2s

)2 (
θ − θ̂c

)2

| F c
]

=
(

I
1+Σ/σ2s

)2

Σ is, in principle, measurable by the

econometrician. This conditional variance is increasing in investment I and can be hump-

shaped in the conditional variance of beliefs Σ (since dCV
dΣ

=
(

σ2s
1+Σ/σ2s

)2
σ2s−Σ
σ2s+Σ

). Consequently,

this informational risk premium contributes most to the time-variation in risk premia when

I is suffi ciently large and Σ is in an intermediate range.

To see how this informational component of risk premia affects the predictive power of

asset prices for output, Yt = aKt, I integrate equation (1) from t to s ≥ t to find that output

growth log Ys
Yt
is given by

log
Ys
Yt

=

∫ s

t

Iuθudu+ σk
(
Zk
s − Zk

t

)
.

Using only public information, the covariance between output growth and expected excess

returns in asset prices is

Cov

[
log

Ys
Yt
, RPNREEt | F ct

]
=

It
1 + Σt/σ2

s

Cov

[∫ s

t

Iuθudu, θt − θ̂
c

t | F ct
]

+
πσ2

k

1− πCov
[∫ s

t

Iuθudu, ξt | F ct
]
.

Since the riskless rate rt is observable, rt ∈ F ct , I substitute for
πσ2k
1−πξt with rt from Proposition

1.1 to find

Cov

[
log

Ys
Yt
, RPNREEt | F ct

]
= ItCov

[∫ s

t

Iuθudu, θt − θ̂
c

t | F ct
]
.

To turn offany mechanical correlation between expected excess returns and output growth, I

consider the case where investment productivity shocks and liquidity shocks are uncorrelated

α = 0. In the absence of informational frictions, then, the covariance between risk premia

and output growth is zero, since there is no misperception among firms or investors about

θt, so θ̂
c

t ≡ θt.

In the presence of informational frictions, however, this covariance is nonzero. Informa-

tional frictions introduce a short-run positive correlation between output growth and current
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risk premia since the true future investment productivity θu u ≥ t and investment are pos-

itively correlated at short-horizons with the true current level of investment productivity

θt.
28 At longer horizon, the correlation weakens because of the mean-reversion in investment

productivity θt and the potential fall in investment as it approaches its upper bound a. Since

uncertainty Σt is countercyclical in my economy, the covariance also weakens around the

peaks of business cycles, contributing to the countercyclical properties of asset price pre-

dictability for output growth. Similar insights hold for the relationship between expected

returns and the growth in real investment.29

Substituting with rt from Proposition 1.1, and recognizing that ξs and θt − θ̂
c

t are corre-

lated only insofar as θt − θ̂
c

t is correlated with ξt, I also find that

Cov

[∫ s

t

RPNREEudu,RPNREEt | F ct
]

= ItCov

[∫ s

t

Iu
1 + Σu/σ2

s

(
θu − θ̂

c

u

)
du, θt − θ̂

c

t | F ct
]

+
I2
t Σ2

t

Σt + σ2
s

(s− t) ,

from which follows that Cov
[∫ s
t
RPNREEudu,RPNREEt | F ct

]
is positive. The correlation

weakens at longer horizons because θt and θ̂
c

t are mean-reverting.

Though there is this persistence in returns, households do not trade to eliminate this pre-

dictability. By the Law of Total Covariance, I can manipulateCov
[∫ s
t
RPNREEudu,RPNREEt | F ct

]
to arrive at

E

[
Cov

[∫ s

t

RPNREEudu,RPNREEt | F it
]
| F ct

]
= Cov

[∫ s

t

RPNREEudu,RPNREEt | F ct
]

−Cov
[
E

[∫ s

t

RPNREEudu | F it
]
, E
[
RPNREEt | F it

]
| F ct

]
,

28That future investment Iu and θt are positively correlated when investment is not close to its upper
bound follows since the growth of investment Iu is increasing θ̂

c

u from Proposition 1.4, and θ̂
c

u = θu + εu for
some εu such that E [εu | Fcu] = 0, since θ̂

c

u is an unbiased estimator of θu.
29My focus in this section is on conditional covariances. It is less clear that the signs and strengths of

these covariances also hold unconditionally, since for random variables X,Y, and Z, by the Law of Total
Covariance

Cov [X,Y ] = E (Cov [X,Y | Z]) + Cov [E (X | Z) , E (Y | Z)] .

This implies that empirical tests would ideally focus on these conditional relationships.
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from which it is apparent that the "average" perceived covariance of expected returns by

household i Cov
[∫ s
t
RPNREEudu,RPNREEt | F it

]
differs from the "average" covariance of

expected returns Cov
[∫ s
t
RPNREEudu,RPNREEt | F ct

]
because of heterogeneous information.

Consequently, households differ not only in their beliefs about expected returns, but also in

their beliefs about the persistence of returns, which gives them incentive to trade without

eliminating the predictability found with only public information.

This exercise illustrates that, in the presence of informational frictions, asset risk premia

inherently contain an informational component that reflects uncertainty over current macro-

economic conditions above and beyond the correlation between real and financial shocks

(since ξ may, in practice, be correlated with θ). Such a positive relationship between returns

and future real activity, which arises because of the underreaction of investors to changes in

the prospects of firms, is consistent, for instance, with the findings of Barro (1990), Fama

(1990), and Schwert (1990). Moreover, this additional informational component exhibits

countercyclical behavior, since uncertainty about investment productivity is countercycli-

cal in the economy, and larger when financial markets are dysfunctional (larger, negative

ξ shocks which depress θ̂
c
). This may help explain why studies such as Stock and Watson

(2003) and Ng and Wright (2013) find that the predictive power of asset prices for macroeco-

nomic outcomes is somewhat episodic over business cycles, since the informational content

of asset prices displays business cycle variation.

In addition to providing a measure of market liquidity ξ, which is documented, for in-

stance, in Gilchrist, Yankov, and Zakrajsek (2009), market risk measures reflect the average

expectations of market participants about the strength of the economy. This provides a

strong empirical prediction that asset returns have predictive power for future returns and

macroeconomic aggregates that varies with the business cycle, which is strongest during

downturns and recoveries, and motivates more tests of asset pricing predictability that take

this explicitly into account. Henkel, Martin, and Nardari (2011) and Dangl and Halling

52



(2012), for instance, provide evidence of business cycle asymmetries in stock market return

predictability.

Given the risk premia from the firm’s perspective RPNREE, one can construct the risk

premium demanded by an individual household to hold firm claims

RPNREE (i) = RPNREE +
I

1 + Σ/σ2
s

(
θ̂
c − θ̂ (i)

)
.

Since RPNREE (i) is increasing in the pessimism of household i, lower θ̂ (i) relative to the

average θ̂
c
, it follows that more pessimistic households demand higher compensation to hold

firm claims, and for suffi cient pessimism instead sit on their capital by investing it in the

riskless asset. This pattern is consistent with the tightening of lending standards seen in

the FRB Senior Loan Offi cer Survey during the recent recession and recovery. In support

of this prediction, the survey respondents often cited a poor economic outlook, along with

bank competition, as a key factor in shaping their lending standards.

1.7.1.2 Asset Turnover

Though trading volume and asset turnover have been studied extensively in the literature,

relatively little attention has been given to their business cycle properties.30 Sarolli (2013)

and DeJong and Espino (2011), for instance, provide evidence of business cycle variation in

turnover. My analysis aims to help understand how differential information influences asset

turnover over the business cycle and provides new empirical predictions.

To explore these issues, I derive a measure V on asset turnover (trading volume / shares

outstanding) from informational trading at any given instant in the economy. To do so, I

recognize that households that trade because of preference shocks with take an aggregate

position -πξW in firm claims, and that households that trade for informational and market-

making reasons each invest a fraction of their wealth

x (i) =
1

1− π +
π

1− πξ +
I

σ2
k

Σ

Σ + σ2
s

σsZ
s (i) ,

30See Lo and Wang (2009) for a survey of this literature.
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and take an aggregate position (1 + πξ)W. Intuitively, informational and market-making

households take the offsetting position against liquidity traders plus a directional bet on the

prospects of the economy based on the noise in their private signals. I thus construct a

pseudo liquidity trader that takes a position −πξW each period, and pseudo informational

and market-making traders of mass 1− π that start with wealth W and always receive the

same signal noise Zs (i) .

This construction of pseudo traders is meant to mitigate the trading that arises because

of preference shocks and the OLG structure of households, which mechanically leads to large

changes in individual trader positions. I do not view the simplification as material for my

results since I are abstracting from changes in positions that occur because of preference

shocks and large changes in beliefs because of the myopic nature of households, which are

both static effects over the business cycle.

The informational and market-making traders each enter the market with a position

XI = x (i)W and will trade to have a position

dXI = W
I

σ2
k

Σσs
Σ + σ2

s

(
g +

σ2
s

Σ + σ2
s

1

Σ

dΣ

dt

)
Zs (i) dt+ x (i)W

(
Iθ − δ − I

a− I g
)
dt

+
π

1− πWσξdZ
ξ + x (i)WσkdZ

k.

Following the insights of Xiong and Yan (2010), I aggregate the local volatility of these

position changes and normalize by the price / share of firm claims q as a measure of trading

volume31

1

dt
E
[
v | q,W, θ̂c, I,Σ

]
=

(
W

q

)2 ∫ 1

0

((
π

1− πσξ
)2

+ (x (i)σk)
2

)
di.

Substituting for x (i) and applying the weak LLN, I arrive at

1

dt
E
[
v | q,W, θ̂c, I,Σ

]
= K2

(
π2

1− πσ
2
ξ +

(1 + πξ)2

1− π σ2
k + (1− π)

(
I

σk

Σ

Σ + σ2
s

σs

)2
)
.

31Xiong and Yan (2010) motivates this measure by recognizing that the absolute value of realized position
changes over small intervals is finite and increasing, on average, in the volatility of the position change.
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From Section IV,W = qK, and thereforeK = W/q is the total number of shares outstanding

for firm claims. From Section IV, W = qK is the total market capitalization of firms, and

therefore K = W/q is the total number of shares outstanding for firm claims.

When σs ↗∞, and there is no private information, then this expression reduces to

1

dt
E
[
v∗ | q,W, θ̂c, I,Σ

]
= K2

(
π2

1− πσ
2
ξ +

(1 + πξ)2

1− π σ2
k

)
,

which represents the level of pseudo trading volume not driven by information. Thus the dif-

ference 1
dt
E
[
v | W, θ̂c, I,Σ

]
− 1

dt
E
[
v∗ | q,W, θ̂c, I,Σ

]
normalized by total shares outstanding

K delivers me my measure of share turnover from informational trading

V = (1− π)

(
I

σk

Σ

Σ + σ2
s

σs

)2

.

When there is no asymmetric information among households, either σs ↘ 0, and households

all know the hidden investment productivity θ, σs ↗∞, and all households are equally naíve,

or Σ ↘ 0, and there is no uncertainty about θ, then V ↘ ′, and there is no informational

trading. Intuitively, households trade when they have heterogeneous information on which

to speculate against each other.

Asset turnover V from informational trading is increasing in both real investment I

and the level of uncertainty Σ. Similar to Xiong and Yan (2010), this measure of turnover is

increasing in the disagreement among investors, as measured by Σ, since Σ (i) is increasing in

Σ. Li and Li (2014) provide evidence that belief dispersion about macroeconomic conditions

positively correlates with stock market turnover. Asset turnover from informational trading

is, consequently, strongest when real investment and uncertainty are in an intermediate range.

This pattern helps us understand why market prices are most informative about investment

productivity during downturns and recoveries, which is when a negative financial shock can

be particularly devastating. Market prices have their highest information content during

these parts of the business cycle because they are when households are trading intensely on

their private information, and asset markets have high turnover.
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1.7.2. Implications for Econometric Models

My analysis has several conceptual implications for empirical models that I now explore in

this section. Building offthe discussion in the previous section of the business cycle properties

of risk premia in financial markets that arises because of learning, my analysis motivates

econometricians to take advantage of this behavior for macroeconomic forecasting. Since real

signals are procyclical, and those of financial markets are strongest during downturns and

recoveries, a weighting scheme that weighs financial market data more heavily around troughs

and real data near peaks is likely to be fruitful. My analysis also stresses the importance

of including measures of uncertainty as forecasting variables because of the information

aggregation channel in financial markets, yet cautions that uncertainty is itself endogenous

and driven by fluctuations in both the real economy and financial markets.

A second econometric issue my model highlights occurs when the econometrician tries

to disentangle the channels by which financial market dysfunction propagates to the real

economy in the presence of informational frictions using structural vector autoregressions

(SVARs) or factor models.32 Since a financial market shock impacts expectations about

the real economy through learning from prices, it is, in part, perceived as a negative shock

to real economic fundamentals. Specifically, the riskless rate in my economy is the sum of

real investment productivity θt and the aggregate market liquidity shock ξt. In the presence

of informational frictions, however, firms decompose θt and ξt instead into their perceived

counterparts, θ̂
c

t and ξ̂
c

t , respectively. For them to react to the financial market shock, it

must be the case that this decomposition results in θ̂
c

t < θt and ξ̂
c

t < ξt, and thus the shock

propagates to the real economy by depressing firm expectations about θt. This highlights an

invertibility issue that arises when firms learn from prices when making real decisions that

prevents the econometrician from finding an orthonormal rotation that can recover the true
32There are abundant similarities in recovering structural shocks from reduced-form VARs and from factor

models, since factor innovations estimated by principal components are unique only up to orthonormal
rotations of the SO (n) group.
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historical decomposition of structural financial market shocks from reduced-form VAR or

factor model innovations.3334

Finally, a third implication of learning from financial markets over the business cycle is

that shocks to uncertainty are inherently entangled with shocks to financial markets. As

illustrated in Section V, prices that measure financial distress, such as market risk premia

and credit spreads, can contain an informational component in the presence of informa-

tional frictions that reflects uncertainty about current economic conditions. Since private

agents learn from prices, adverse financial shocks will affect the conditional variance of their

expectations, as can be seen in Proposition 1.3 in Section IV, and consequently will also

propagate through the economy as uncertainty shocks back to prices. This makes it diffi cult

to separate structural shocks stemming from financial market dislocation from innovations

to uncertainty because of learning, and relates to the use of prices as external instruments in

disentangling these structural shocks from reduced-form VAR and factor model innovations.

Such a channel, for example, can help explain the high correlation between the recovered

financial distress and uncertainty shocks found in Stock and Watson (2012).35

1.7.3. Other Emprical Implications

Several additional empirical predictions of the impact of feedback in learning merit men-

tion. First, since uncertainty in my framework is countercyclical and downturns stem from

real shocks to investment productivity, my model is consistent with the observations of Naka-

33This invertibility issue is different from the one that arises because private agents and the econometrician
have nested information sets, as explored, for instance, in Hansen and Sargent (1991) and Leeper, Walker, and
Yang (2013). There is a large literature on dealing with news shocks when agents have superior information
to the economerician. See, for instance, Beaudry and Portier (2006), Fujiwara, Hirose, and Shintani (2011),
and Schmitt-Grohé and Uribe (2012).
34Sockin and Xiong (2014) make a similar point about trying to disentangle supply and demand shocks in

commodity markets in the presence of informational frictions.
35Stock and Watson (2012) use innovations to the VIX and the poliicy news uncertainty index of Baker,

Bloom, and Davis (2013) as instruments for uncertainty shocks. The VIX, as a measure of market volatility,
has a direct analogue with prices in my economy. Innovations to the policy uncertainty index have a
correlation of about 0.2 with the forecast dispersion of the Survey of Professional Forecasters, which can be
viewed as a noisy analogue of uncertainty in my economy.
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mura et al (2012) that, unconditionally, first moment shocks are negatively correlated with

movements in uncertainty.

Second, while not the central focus of my analysis, another implication of asymmetric

learning over the business cycle with dispersed information is that my model predicts coun-

tercyclical dispersion in wealth across households, a feature consistent with evidence from

the latest recession.36 This arises because informational frictions are most severe at the

trough, where agents have incentive to trade on their private information, whereas, at the

peak, uncertainty about the underlying strength of the economy Σ is low and households

coordinate around the common knowledge belief θ̂
c
(since Σ/σ2

s is small).

Finally, my model features asset prices as a coordination mechanism among firms in

making their investment decisions. My model, therefore, offers an additional information

channel through which learning by individual firms can give rise to the strong comove-

ment in macroeconomic aggregates documented in Christiano and Fitzgerald (1998), and

since heavily exploited through factor model analysis in the macroeconometric literature.

This channel is distinct from the information externality channel informally discussed in

Christiano and Fitzgerald (1998), as well as the mechanism of strategic complementarity

in common information that arises because of costly sector-specific information acquisition

featured in Veldkamp and Wolfers (2007).

1.8. Conclusion

In this paper, I develop a dynamic model of information aggregation in financial markets

in a macroeconomic setting where both financial investors and firm managers learn about the

productivity of investment from market prices. My dynamic framework features a feedback

loop between investor trading behavior and firm real investment decisions by which noise in

36Since the noise in household private signals is unbiased, the wealth distribution is a mean-preserving
spread of the wealth of an agent who has perfect-information. The wealth of this perfectly-informed pseudo-
agent will, in general, not be the same as the wealth of the representative household in either benchmark
because heterogeneous information impacts both investment decisions and the risk premia on firm claims.
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financial prices can feed into real investment through learning by firm managers, and then

feed back into financial prices through the impact of learning and investment on the trading

incentives of market participants. This feedback loop highlights a possible amplification

mechanism through which the financial crisis of 2008 contributed to the deep recession and

anemic recovery in the US by distorting firm expectations about the strength of the US

economy.

While the strength of signals from real activity is procyclical, that of financial signals

is strongest during downturns and recoveries. This occurs because the value of private

information that financial investors have increases with uncertainty about real investment

productivity, which is countercyclical, and more information is aggregated into prices as

investors start to trade against each other on their private information. As a result, financial

signals are strongest when real investment and uncertainty are in an intermediate range.

I then explore the welfare and empirical implications of my model. Informational frictions

introduce a role for policy to provide guidance to economic agents about the current state

of the economy. As an empirical prediction of my model, informational frictions also give

rise to an informational component in asset risk premia that has predictive power for future

returns and real activity. This predictive power is greatest during downturns and recoveries

when asset turnover from informational trading is highest. Finally, informational frictions

make it diffi cult to disentangle the effects of financial and uncertainty shocks in the data,

and confound attempts to recover historical structural shocks stemming from the financial

crisis of 2008.
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1.A: Proofs of Propositions

Proof of Proposition 1.2:

Households solve the optimization problem (4) subject to equation (9). In a recursive

competitive equilibrium, all equilibrium objects are functions of the state of the economy from

the household’s perspective
(
w (i) , θ̂ (i) , ξ (i) , h

)
, where h is a list of general equilibrium

objects including logK and r.37 By the Martingale Representation Theorem for L2 processes,

all these objects will be continuous Itô-semimartingales with respect to the smallest filtration

on which they are measurable to the household. The Wiener processes to which they are

adapted, which will be common to all households, are absolutely continuous with respect to

the true processes for real investment productivity θ, household liquidity shocks ξ, and the

aggregate diffusion for K.

Taking the limit of problem (4) as ∆t ↘ dt, assuming v is twice differentiable in its

arguments, I can differentiate v and take expectations to find

ρv = sup
{c,x}

log c+ ∂wv
1

dt
E
[
dw (i) | F i

]
+

1

2
∂wwv

1

dt
d
〈
w (i) | F it

〉
+

1

dt
∂tv, (A-1)

subject to the law of motion of w (i) (9), and 〈· | F it 〉 indicates quadratic variation under
the measure F it . The ∂tv term is meant to capture the additional dependence of the drift

of the household’s bequest utility v on the vector of general equilibrium objects h that

the household takes as given. Equation (A-1) is the usual Hamilton-Jacobi-Bellman (HJB)

equation for optimal control. Necessity and suffi ciency of the FOCs for the optimal controls

{c, x} follows from the concavity of their programs.

Before deriving the FOCs of the HJB equation (A-1) for households, it is useful to

first recognize that all Wiener processes Z̃ξ
t (i) and Z̃k

t (i) will be uncorrelated under each

household i′s measure since the true processes are uncorrelated and the change of measure

under Girsanov’s Theorem is equivalent to a change in drift.

Suppressing arguments for the bequest utility v, the FOCs of the HJB equation (A-1)

37Since the household treats prices as exogenous, the price of firm claims q and the riskless rate r are
additional states for the household. This, however, only affects their optimal consumption and portfolio
choices, in which they do not see the dependence of these prices on the Markov states.
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are given by

c (i) :
1

c (i)
− ∂wv ≤ 0 (= if c > 0) ,

x (i) : 0 = w (i) ∂wv

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
+ x (i)w (i)2 ∂wwvσ

2
k

+w (i) ∂whvd
〈
Z̃k (i) , h | F i

〉
,

when household i is not hit by the liquidity shock l (i) = 0, from which follows that

x (i) = −
∂wv

(
a−I
q

+ ∂Iq
q
Ig + Iθ̂ (i)− r − δ

)
w (i) ∂wwvσ2

k

−
∂whvd

〈
Z̃k (i) , h | F i

〉
w (i) ∂wwvσ2

k

.

While objects in h like r all have Itô-semimartingale representations by the Martingale

Representation Theorem, I do not expand out the quadratic covariation expressions for

brevity.

Given that households have log utility, I conjecture that v
(
w (i) , θ̂ (i) , l (i) , h

)
= A logw (i)+

f
(
θ̂ (i) , l (i) , h

)
. This conjecture implies that

c (i) =
w (i)

A
,

x (i) =

{
a−I
q

+
∂Iq

q
Ig+Iθ̂(i)−r−δ
σ2k

l (i) = 0

−ξ l (i) = 1
.

Substituting this conjecture and the controls into the maximized HJB equation

ρv = log c+ ∂wv

(
x (i)

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
w (i) + rw (i)− c (i)

)
+

1

2
∂wwvx (i)2w (i)2 σ2

k + ∂tf
(
θ̂ (i) , l (i) , h

)
,

where ∂tf
(
θ̂ (i) , l (i) , h

)
is shorthand for remaining terms in the HJB equation, it follows

that A = 1
ρ
, c (i) = ρw (i) , and that f

(
θ̂ (i) , l (i) , h

)
implicitly satisfies

ρf
(
θ̂ (i) , l (i) , h

)
= log ρ+

1

ρ

(
r − ρ+ x (i)

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
− 1

2
x (i)2 σ2

k

)
+∂tf

(
θ̂ (i) , l (i) , h

)
,

which confirms the conjecture since x (i) does not depend on w (i) .

When the household is hit by the liquidity shock, l (i) = 1, then x (i) = −ξ. Direct
verification of the value function v

(
w (i) , θ̂ (i) , l (i) , h

)
= A logw (i) + f

(
θ̂ (i) , l (i) , h

)
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in the maximized HJB equation again confirms the conjectured functional form and that

c (i) = ρw (i) .

Recognizing that v
(
w (i) , θ̂ (i) , l (i) , h

)
= A logw (i) + f

(
θ̂ (i) , h

)
, the envelope con-

dition for the maximized HJB equation (A-1) evaluated at the optimal controls takes the

form

ρ∂wv = ∂wwv

(
x (i)w (i)

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
+ rw (i)− c (i)

)
+

1

2
∂wwwvx (i)2w (i)2 σ2

k + ∂wwvx (i)2w (i)σ2
k

+∂wv

(
x (i)

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
+ r

)
.

Applying Itô’s Lemma directly to ∂wv, one also has that

d (∂wv) = ∂wwv

(
x (i)w (i)

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
+ rw (i)− c (i)

)
dt

+
1

2
∂wwwvx (i)2w (i)2 σ2

k + ∂wwvx (i)w (i)σkdZ̃
k.

Taking expectations and substituting the envelope condition, it follows that

1

dt
E

[
d (∂wv)

∂wv
| F i

]
= ρ− r − x (i)

(
a− I
q

+
∂Iq

q
Ig + Iθ̂ (i)− r − δ

)
− ∂wwv

∂wv
x (i)2w (i)σ2

k.

Given ∂wv = 1
w
, the solution for x (i) when the household is not hit by the liquidity shock,

and defining Λt (i) = e−ρt 1
wt(i)

to be the pricing kernel of household i, it follows that

r = − 1

dt
E

[
dΛ (i)

Λ (i)
| F i

]
. (A.2)

From Λt (i) = e−ρt 1
wt(i)

, the optimal choice of x (i) , and equation (A.2), it follows that

a− I
q

dt+ E

[
dΛ (i)

Λ (i)
+
d (qK)

qK
| F i

]
= x (i)σ2

kdt. = −Cov
[
d (qK)

qK
,
dΛ (i)

Λ (i)
| F i

]
,

from which one arrives at

a− I
qK

Kdt+ E

[
d (Λ (i) qK)

Λ (i) qK
| F i

]
= 0,

for household i not hit by the liquidity shock, which completes the proof.

Proof of Proposition 1.3:
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Define R̄θ (ζt) = Rθ (It,Σt) , and ḡt (ζt) = gt. Given ζt, one can express the law of motion

of the vector of public signals as

dζt = A0 (ζt) dt+

[
It

∂ΣR̄θ (ζt)
dΣt
dt

+ ∂IR̄θ (ζt) Itḡt (ζt)− λR̄θ (ζt)

]
θtdt

+b̄t (ζt) dZ
θ
t + B̄t (ζt) dZt,

where Zt =
[
Zk
t , Z

ξ
t

]′
and

A0 (ζt) =

[
−δ − 1

2
σ2
k

R̄θ (ζt)λθ̄

]
b̄t (ζt) =

[
0

R̄θ (ζt)σθ + ασξ

]
,

B̄t (ζt) =

[
σk 0

0
√

1− α2σξ

]
,

with R̄θ (ζt) uniformly bounded and R̄θ (ζt) > 0 ∀ ζt. By Theorem 7.17 of Lipster and

Shiryaev (1977), then one can construct the vector of standard Wiener processes Z̃ =(
Z̃t,F ct

)
where Z̃t =

[
Z̃k
t , Z̃

r
t

]′
admits the representation

Z̃t =

∫ t

0

[
b̄t (ζt) b̄t (ζt)

′ + B̄s (ζs) B̄s (ζs)
′]−1/2 ×(

dζs − A0 (ζt) dt−
[

It
∂ΣR̄θ (ζt)

dΣt
dt

+ ∂IR̄θ (ζt) Itḡt (ζt)− λR̄θ (ζt)

]
θ̂
c

tdt

)
,

where θ̂
c

t = E [θt | F ct ] is the conditional expectation of θt w.r.t. F ct . That Z̃ are standard

Wiener processes can be verified directly from Levy’s three properties that uniquely identify

Wiener processes. That Z̃ is a martingale generator for F ct follows since Z̃ generates K and

r trivially, from which the other objects of F ct can be generated, and Lemma 4.9 guarantees
the existence of a representation for the driver (which possibly depends on the unobservable

θt) in the Martingale Representation Theorem (Theorem 5.8) that is measurable w.r.t ζt
P−a.s.
Given that θt has the representation

θt =

∫ t

0

λ
(
θ̄ − θs

)
ds+

∫ t

0

σθdZ
θ
s ,

it follows from similar arguments that lead to the proof of Theorem 12.7 that θ̂
c

t has the

representation

θ̂
c

t =

∫ t

0

(
d

〈
S
Q
, σθZ

θ

〉
s

+ Cov

[
θs,

[
Is

∂ΣR̄θ (ζt)
dΣt
dt

+ ∂IR̄θ (ζt) Isḡt (ζt)− λR̄θ (ζt)

]
θs | F cs

]′)
×

[
b̄t (ζt) b̄t (ζt)

′ + B̄s (ζs) B̄s (ζs)
′]−1/2

dZ̃s +

∫ t

0

λ
(
θ̄ − θ̂cs

)
ds, (A.3)
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where d
〈
ξ, Zθ

〉
t
is the quadratic covariation of ξt and Z

θ
t . It is easy to see thatCov [θs, θs | F cs ] =

V ar [θs | F cs ] = Σs. The covariance matrix in equation (A.3) is given by

b̄t (ζt) b̄t (ζt)
′ + B̄s (ζs) B̄s (ζs)

′ =

[
σ2
k 0

0
(
R̄θ (ζt)σθ + ασξ

)2
+ (1− α2)σ2

ξ

]
,

from which follows that

[
b̄t (ζt) b̄t (ζt)

′ + B̄s (ζs) B̄s (ζs)
′]−1/2

=

[ 1
σk

0

0 1√
(R̄θ(ζt)σθ+ασξ)

2
+(1−α2)σ2ξ

]

Thus it follows that θ̂
c

t follows the law of motion

dθ̂
c

t =
R̄θ (ζt)σ

2
θ + ασξσθ +

(
∂ΣR̄θ (ζt)

dΣt
dt

+ ∂IR̄θ (ζt) Itḡt (ζt)− λR̄θ (ζt)
)

Σt√(
R̄θ (ζt)σθ + ασξ

)2
+ (1− α2)σ2

ξ

dZ̃r
t

+It
Σt

σk
dZ̃k

t + λ
(
θ̄ − θ̂ct

)
dt.

Given the common Gaussian prior of households N
(
θ̂
c

0,Σ0

)
, establishing the conditional

Gaussianity of the posterior θt | F ct can be done through similar arguments to those made
in Chapter 11 of Lipster and Shiryaev (1977) with the appropriate regularity conditions.

Similar to the arguments of Theorem 12.7, one can the also establish that the conditional

variance of beliefs Σt = V ar [θt | F ct ] follows the deterministic law of motion

dΣt

dt
= σ2

θ −
(
R̄θ (ζt)σ

2
θ + ασξσθ +

(
∂ΣR̄θ (ζt)

dΣt
dt

+ ∂IR̄θ (ζt) Itḡt (ζt)− λR̄θ (ζt)
)

Σt

)2(
R̄θ (ζt)σθ + ασξ

)2
+ (1− α2)σ2

ξ

−2λΣt − I2
t

Σ2
t

σ2
k

, (A.4)

which is a second-order polynomial in dΣt
dt
, from which follows from equation (A.4) that

dΣt

dt
= − B (ζt)

2A (ζt)
± 1

2A (ζt)

√
2B (ζt)− 4A (ζt)

(
2λΣt − σ2

θ + I2
t

Σ2
t

σ2
k

)
− 1,

where

A (ζt) =

(
∂ΣR̄θ (ζt) Σt

)2(
R̄θ (ζt)σθ + ασξ

)2
+ (1− α2)σ2

ξ

,

B (ζt) = 1 + 2∂ΣR̄θ (ζt) Σt

R̄θ (ζt)σ
2
θ + ασξσθ +

(
∂IR̄θ (ζt) Itḡt (ζt)− λR̄θ (ζt)

)
Σt(

R̄θ (ζt)σθ + ασξ
)2

+ (1− α2)σ2
ξ

.

Substituting Rθ = −1−π
π

I
σ2k

Σ
Σ+σ2s

into the above expressions delivers the laws of motion stated

in the proposition.
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The conditional variance of beliefs Σ is trivially bounded from below by 0. To find the

upper bound, consider the case when all public signals are completely uninformative ∀ t,
then Σ follows the law of motion

dΣ

dt
= σ2

θ − 2λΣt,

which has the steady-state solution Σt =
σ2θ
2λ
. Since any informativeness of the public signals

reduces the conditional variance of beliefs, Σt ≤ σ2θ
2λ
.

To find the relationship between θ̂
c

t and θ̂
c

t (i) for households, I make use of the Law of

Iterated Expectations to write

θ̂
c

t (i) = E
[
θt | F it

]
= E [θct | st (i)] ,

where θct = θt | F ct . Consider the common knowledge estimate θ̂
c

t , one I can arrive at the

estimate of household i θ̂t (i) by updating F ct with household i’s private signal st (i) . Since

both the average household estimate θ̂
c

t and the signal st (i) are jointly Gaussian, which

is apparent from the linearity of the Kalman Filter in the data {ζs, θs}s≤t , the process of
updating the conditional mean is an exercise in the updating of two sets of Gaussian random

variables. It then follows that

θ̂t (i) = θ̂
c

t + Cov [θt, st (i) | F ct ]V ar [st (i) | F ct ]
−1 (st (i)− E [st (i) | F ct ])

= θ̂
c

t +
Σt

Σt + σ2
s

(
st (i)− θ̂ct

)
.

Similarly, the conditional variance of household i′s estimate of θ is

Σt (i) = Σt − Cov [θt, st (i) | F ct ]V ar [st (i) | F ct ]
−1Cov [θt, st (i) | F ct ]

= Σt −
Σ2
t

Σt + σ2
s

=
σ2
s

Σt + σ2
s

Σt.

Proof of Proposition 1.4:

To find the optimal level of investment I, let me conjecture that E = E (t,K, I) . Then,

by the Feyman-Kac Theorem and Λt
Λ0
, Et > 0, the function E that solves each manager’s

problem (5) must solve the necessary condition

0 ≥ sup
gt

(
a− It − 1

ρ
gtIt + τ t

)
Kt

Et
dt+ E

[
d (ΛtEt)

E [Λt | F ct ]Et
| F ct

]
,
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which can be rewritten as

0 ≥ sup
gt

(
a− It − 1

ρ
gtIt + τ t

)
Kt

Et
dt+E

[
dEt
Et
| F ct

]
+
E [dΛt | F ct ]
E [Λt | F ct ]

+
d 〈Λt, Et | F ct 〉
E [Λt | F ct ]Et

. (A.6)

By Proposition 1.2, the pricing kernel of investor j Λt (j) satisfies 1
dt
E
[
dΛt(j)
Λt(j)

| F j
]

= −rt.

Thus, by the Law of Iterated Expectations, E
[
dΛt
Λt
| F c

]
= −rt, regardless of the distribution

of ownership among households. Then, applying Itô’s Lemma to E, equation (A.6) becomes

0 ≥ sup
gt

a− It
Et

Kt −
It
ρ
gtKt + τ tKt +

∂KEt
Et

(
Itθ̂

c

t − δ
)
Kt +

1

2

∂KKEt
Et

σ2
kK

2
t + ∂tEt

−rt +
1

dt

d 〈Λt, Et | F ct 〉
E [Λt | F ct ]Et

, (A.7)

where 1
dt

d〈Λt,Et | Fct 〉
ΛtEt

is the risk premium on firm claims. Since firms are perfectly competitive,

they do not recognize, in equilibrium, that their actions affect the riskless rate rt or the pricing

kernel of shareholders Λt.

Firm effort gt is chosen by the firm to achieve its optimal level of investment. Since

equation (A.7) is (locally) riskless and linear in investment It, firm managers are effective

risk-neutral and it follows that it must be the case that gt satisfies

−1 + ∂KEtθ̂
c

t −
1

ρ
gt = 0, (A.8)

or else there is a riskless gain to changing g if the marginal return to investment for firm

value is positive or negative. By market clearing, the value of firm claims must be such that

Et = qtKt, where qt = a−It
ρ
. To see that Et = qtKt satisfies the maximized form of equation

(A.6), recall from Proposition 1.2 that Et = qtKt satisfies at the optimal It

Λt (i)
a− It
Et

Ktdt+ E

[
d (Λt (i)Et)

Et
| F it

]
= 0.

Let ut (i) be the share of the firm owned by household i that has not experienced a preference

shock, such that Λt =
∫
ut (i) Λt (i) di. Assuming that the firm equal weights the pricing

kernels of investing households Λt =
∫
ut (i) Λt (i) di =

∫
e−ρtut (i) 1

wt(i)
di, then it follows, by

linearity and the finiteness of Λt, that

1

dt

d 〈Λt, Et | F ct 〉
E [Λt | F ct ]Et

=

∫
ut (i)

1

dt

d
〈

1
wt(i)

, Kt | F ct
〉

KtE
[∫

ut (i) 1
wt(j)

dj | F ct
]di = −σ2

k

∫
ut (i)E

[
xt(i)
wt(i)

| F ct
]
di

E
[∫

ut (i) 1
wt(j)

dj | F ct
] .
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Given the optimal position of investing households from Proposition 1.2, and that wt (i) is

independent of θ̂ (i) because of the generational structure of the economy, it follows that

− 1

dt

d 〈Λt, Et | F ct 〉
E [Λt | F ct ]Et

=
at − It
qt

− It
a− It

gt + Itθ̂
c

t − rt − δ.

Thus by direct integration, the linearity of the expectation and covariance operators, and

the Law of Iterated Expectations, it follows that

a− It
Et

Kt +
1

dt
E

[
dEt
Et
| F ct

]
+

1

dt

E [dΛt | F ct ]
E [Λt | F ct ]

+
1

dt

d 〈Λt, Et | F ct 〉
E [Λt | F ct ]Et

= 0.

Therefore, if Et satisfies each household’s Euler equation, then Et = qtKt solves each man-

ager’s problem.

Thus from equation (A.8), it follows that

g = ρ
(
qθ̂

c − 1
)
1

{
I > I ∪ θ̂

c ≥ ρ

a− I

}
.

Proof of Proposition 1.5:

By the second part of Proposition 1.3∫
Dct

wt (i)

Wt

(
θ̂t (i)− θ̂ct

)
di =

Σt

Σt + σ2
s

(
θt − θ̂

c

t

)∫
Dct

wt (i)

Wt

di+
Σt

Σt + σ2
s

∫
Dct

wt (i)

Wt

Zs
t (i) di.

(A.5)

Let me define the integral Xt

Xt =

∫ 1

0

ψt (i) dZs
t (i) di.

where ψt (i) = wt(i)
Wt

> 0 is now a weight function, with ψt (i) ∈ (0, 1) on a set of full measure,

whose integral is bounded on any set of positive measure and is 1 over the set i ∈ [0, 1] .

Importantly, since the law of motion of the price of firm equity q and the riskless rate r

by conjecture do not depend on the wealth share or signal noise of any one household, the

only difference in the wealth shares of households at time t are the histories of the fraction

of wealth invested in firm equity {xu (i)}u≤t , which differ across households only because of
differences in signal noise. Therefore, conditional on the initial wealth share of households

and the history of the fundamentals Gt = σ
(
{θu, Ku, ξu}u≤t ∨ w0

)
, the weights ψi (t) are

independent across households.
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First, I establish that Xt converges to its cross-sectional expectation E [Xt | Gt] in the
L2 − norm. As an aside, I do not require convergence a.s. and rely on a weaker notion of
convergence because of the issues discussed in Judd (1985).

Similar to Uhlig (1996), one can discretize the integral across i into a Riemann sum

Σ (t, ϕ) with a partition ϕ with 0 = i0 < ...ij < ...im = 1 and midpoints φj ∈ [ij−1, ij] ,

j ∈ {1, ...,m}

Σ (t, ϕ) =
m∑
j=1

ψt
(
φj
)
Zs
t

(
φj
)

(ij − ij−1) .

Conditional on Gt, E [Xt | Gt] is a constant, and one recognizes by Chebychev’s Inequality
that

E
[
(Σ (t, ϕ)− E [Xt | Gt])2 | Gt

]
= E

( m∑
j=1

(
ψt
(
φj
)
Zs
t

(
φj
)
− E [Xt | Gt]

)
(ij − ij−1)

)2

| Gt


= E

{
m∑
j=1

E
[(
ψt
(
φj
)
Zs
t

(
φj
)
− E [Xt | Gt]

)2 | Gt
]

(ij − ij−1)2

}

≤
m∑
j=1

(ij − ij−1)2

≤ ε (ϕ) ,

where ε (ϕ) = maxj (ij − ij−1) . As ε (ϕ)↘ 0, the above integral converges to the L2 distance

between Σ (t, ϕ) and E [Xt | Gt] on the LHS and 0 on the RHS.

Therefore

lim
ε(ϕ)↘0

E
[
(Σ (t, ϕ)− E [Xt | Gt])2 | Gt

]
= 0.

By Dominated Convergence and Slusky’s Theorem

lim
ε(ϕ)↘0

E
[
(Σ (t, ϕ)− E [Xt | Gt])2 | Gt

]
= E

[
(Xt − E [Xt | Gt])2 | Gt

]
.

Therefore

E
[
(Xt − E [Xt | Gt])2 | Gt

]
= 0,

which does not depend on the wealth share or signal noise of any individual household

because E [Xt | Gt] = g (ω̃t) for some ω̃t ∈ Gt.
Since the choice of partition ϕ was arbitrary, the convergence result did not depend

on my choice of partition, and therefore Xt and its convergence to g (ω̃t) in L2 are well-

defined. Furthermore, since convergence is in L2, the integral is g (ω̃t) a.s. and I can choose
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a modification of the process, if need be, under which it is always 0.38 Given that this

convergence is ex-post the realized sample path of the aggregate state variables Gt, this
convergence also holds unconditionally.

Recognizing that E
[
Z̄ (i) | Gt

]
= 0, it follows that

g (ω̃t) =
Σt

Σt + σ2
s

E [ψt (i)Zs
t (i) | Gt] =

Σt

Σt + σ2
s

E [ψt (i) | Gt]E [Zs
t (i) | Gt] = 0,

since ψt (i) is independent of Zs
t (i) ∀ i and E [Zs

t (i) | Gt] = 0. Similarly, I can apply a weak

LLN to
∫ 1

0
wt(i)
Wt

di, which holds on subintervals of [0, 1] a.s., to arrive at

Wt = E [wt (i) | Gt] ,∫
Dct

wt (i)

Wt

di = 1− π,∫
Dt

wt (i)

Wt

di = π.

Thus equation (A.5) becomes∫
Dct

wt (i)

Wt

(
θ̂t (i)− θ̂ct

)
di−

∫
Dt

wt (i)

Wt

ξtdi = (1− π)
Σt

Σt + σ2
s

(
θt − θ̂

c

t

)
− πξt.

Proof of Proposition 1.1:

Substituting q = a−I
ρ
, optimal household demand for firm claims x (i) from Proposition

1.2, and optimal firm investment g from Proposition 1.4 into the market clearing condition

for the market for riskless debt (8), and imposingW > 0 and Proposition 1.5, one has, when

I > I, that

r =
a

a− I ρ− δ + I
Σ

Σ + σ2
s

(
θ − θ̂c

)
− 1 + πξ

1− π σ
2
k,

and therefore, matching this with the conjectured representation equation (13), it follows

that

r0 =
a

a− I ρ− δ − I
Σ

Σ + σ2
s

θ̂
c − 1

1− πσ
2
k,

rθ = I
Σ

Σ + σ2
s

,

rξ = − π

1− πσ
2
k,

38Though the convergence implies that the variance of Xt is zero over time, Xt can deviate from its
expected value on a negligible subset of times.
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which confirms the conjecture. Given optimal firm equity demand x (i) from Proposition

1.2, it follows that x (i) can be decomposed as

x (i) = xc + xi

(
θ̂ (i)− θ̂c

)
where

xc =
a
a−I ρ− r − δ

σ2
k

,

xi =
I

σ2
k

.

When I = I and g = 0, then r is instead given by

r = ρ− δ + Iθ̂ + I
Σ

Σ + σ2
s

(
θ − θ̂c

)
− 1 + πξ

1− π σ
2
k,

and xc is insteady

xc =
ρ+ Iθ̂ − r

σ2
k

.

Proof of Proposition 1.6:

When θ, then optimal investment I and the firm equity price q are given by equations

(12) and (15)

q =
a− I
ρ

and

g = ρ (qθ − 1) .

Since all households are now perfectly informed, it follows that the only heterogeneity among

them is whether they are hit by liquidity shocks. Following the arguments of Proposition

1.2, their optimal policies are

c (i) = ρw (i) ,

x (i) =

a−I
q
− I

a−I g + Iθ − r − δ
σ2
k

.

By the market clearing condition for riskless debt (8), it follows that

r =
a

a− I ρ− δ −
1 + πξ

1− π σ
2
k.

Proof of Proposition 1.7:
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When households are perfectly informed about θ, they consume a fixed fraction of their

wealth and follow identical investment strategies

c (i) = ρw (i) ,

x (i) =

a−I
q
− I

a−I g + Iθ − r − δ
σ2
k

,

when not hit by the preference shock. Since managers still learn from prices, it follows that

the optimal g still satisfies

g = ρ
(
qθ̂

c − 1
)
.

It follows by market clearing condition for riskless debt (8) that the riskless rate satisfies

r =
a

a− I ρ− δ + I
(
θ − θ̂c

)
− 1 + πξ

1− π σ
2
k.

As σs ↘ 0, from the law of motion of θ̂
c
and θ̂ (i) from Proposition 1.3, it follows that

Σ (i)↘ 0 while

dΣt

dt
→ σ2

θ − 2λΣ− I2 Σ2

σ2
k

− (ασξσθ +Rθσ
2
θ +Rθ (g − λ) Σt)

2

(Rθσθ + ασξ)
2 + (1− α2)σ2

ξ

where Rθ, the loading of the riskless rate r on the household expectational error θ − θ̂
c

converges to

Rθ → −
1− π
π

I

σ2
k

.

Thus it follows that Σ does not converge to 0 as σs ↘ 0, reflecting the uncertainty that firm

managers still face about θ from observing only logK and r, and g does not converge to its

perfect-information benchmark value.

Since θ̂
c → θ, θ̂ (i) → θ, it follows that the investment strategy of households x (i)

converges to

x (i) =

a−I
q
− I

a−I g + Iθ − r − δ
σ2
k

,

from which it follows that the riskless rate r approaches its representative agent benchmark

value. Thus beliefs, prices, and optimal policies in the economy with informational frictions

approach their representative agent benchmark values as σs ↘ 0.

Proof of Proposition 1.8:
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From Proposition 1.1, it follows that each household’s demand for the risky asset when

not hit by the liquidity shock can be rewritten as

x (i) =
1 + πξ

1− π +
I

σ2
k

Σt

Σt + σ2
s

σsZ
s (i) . (A.11)

Substituting my expressions for q and g into the law of motion of household wealth wt (i)

equation (9), it follows by Itô’s Lemma that

d logw (i) = (1− x (i)) (r − ρ) dt+x (i)

((
ρI

a− I − δ + I
(
θ − θ̂c

))
dt+ σkdZ

k

)
−1

2
x (i)2 σ2

kdt,

Substituting for x (i) with equation (A.11) and aggregate across households, one then has

that ∫ 1

0

d logw (i) di =

(
ρI

a− I − δ + I
(
θ − θ̂c

))
dt+ σkdZ

k

−1

2

(
πσ2

kξ
2 + σ2

k

(1 + πξ)2

1− π + (1− π)

(
I

σk

Σ

Σ + σ2
s

σs

)2
)
dt.(A.12)

With equation (A.12), one can then express aggregate flow utility
∫ 1

0
log cs (i) di = log ρ +

logw0 +
∫ 1

0

∫ s
0
d logwu (i) dudi as∫ 1

0

log ct (i) di =

∫ t

0

(
ρIs
a− Is

− δ + Is

(
θs − θ̂

c

s

))
ds+ σkZ

k
t + log ρ+ logw0

−1

2

∫ t

0

(
σ2
k +

πσ2
k

1− π (1 + ξs)
2 + (1− π)

(
Is
σk

Σs

Σs + σ2
s

σs

)2
)
ds.

It follows then that utilitarian welfare at time 0 U = E
[∫∞

0
e−ρt

∫ 1

0
log ct(i)

c0(i)
didt | F0

]
in the

economy under the physical measure P defined on F0 is given by

U = E

[∫ ∞
0

e−ρt
[∫ t

0

(
ρIs
a− Is

− δ + Is

(
θs − θ̂

c

s

))
ds

]
dt | F0

]
+ E

[∫ ∞
0

e−ρtσkZ
k
t dt | F0

]
−1

2
E

[∫ ∞
0

e−ρt

[∫ t

0

(
σ2
k +

πσ2
k

1− π (1 + ξs)
2 + (1− π)

(
Is
σk

Σs

Σs + σ2
s

σs

)2
)
ds

]
dt | F0

]
.

Taking expectations under P , it follows that

U = E

[∫ ∞
0

e−ρt

[∫ t

0

(
ρIs
a− Is

− δ + Is

(
θs − θ̂

c

s

)
− 1− π

2

(
Is
σk

Σs

Σs + σ2
s

σs

)2
)
ds

]
dt | F0

]

−1

2

(
σ2
k +

πσ2
k

1− π (1 + ξ0)2

)
E

[∫ ∞
0

e−ρ(s−t)tdt | F0

]
−1

4

πσ2
k

1− πσ
2
ξE

[∫ ∞
0

e−ρ(s−t)t2dt | F0

]
.
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Recognizing that
∫∞

0
e−ρττdτ = 1

ρ2
and

∫∞
0
e−ρττ 2dτ = 2

ρ3
, one arrives at

U = E

[∫ ∞
0

e−ρt
∫ t

0

(
ρ

a− Is
+ θs − θ̂

c

s

)
Isdsdt | F0

]
− 1

2ρ2

(
σ2
k +

πσ2
k

1− π (1 + ξ0)2

)
−1− π

2

(
σs
σk

)2

E

[∫ ∞
0

e−ρt
∫ t

0

(
IsΣs

Σs + σ2
s

)2

dsdt | F0

]

− δ

ρ2
− 1

2ρ3

πσ2
k

1− πσ
2
ξ . (A.13)

By stacking the terms in the two double integrals in equation (A.13), I can rewrite them to

arrive at

U =
1

ρ
E

[∫ ∞
0

e−ρt
(

ρ

a− It
+ θt − θ̂

c

t

)
Itdt | F0

]
−1− π

2ρ

(
σs
σk

)2

E

[∫ ∞
0

e−ρt
(

ItΣt

Σt + σ2
s

)2

dt | F0

]

− δ

ρ2
− 1

2ρ2

(
σ2
k +

πσ2
k

1− π (1 + ξ0)2

)
− 1

2ρ3

πσ2
k

1− πσ
2
ξ .

Defining w such that d logw =
∫ 1

0
d logw (i) di, from equation (A.12) and Itô’s Lemma it

follows that w has the law of motion

dw

w
=

(
ρI

a− I − δ + I
(
θ − θ̂c

)
− 1

2

(
πσ2

k

1− π (1 + ξ)2 + (1− π)

(
I

σk

Σ

Σ + σ2
s

σs

)2
))

dt+σkdZ
k.

(A.14)

Thus I can think of the economy as having a representative household who holds all firm

claims in the economy and whose wealth evolves according to the law of motion (A.14).

Proof of Proposition 1.9:

To find the law of motion of the probability law of the economy pt
(
θ̂
c
,Σ, I

)
, I find

the probability law implied by households and firms whose optimization is consistent with

their HJB equations. This is commonly referred to as the Kolmogorov Forward Equa-

tion. To find this, I recognize that, under the optimal control for the change in investment

g
(
θ̂
c

s,Σs, Is

)
s≥0

, Dgf = 0 where Dg is the infinitesimal generator that satisfies

Dgf = ∂θ̂cfλ
(
θ̄ − θ̂c

)
+ ∂Σf

dΣ

dt
+ ∂IfI

(
(a− I) θ̂

c −
(
1− τ I

)
ρ
)
1{

I>I∪θ̂c≥ (1−τI)ρ
a−I

}

+
1

2
∂θ̂cθ̂cf

(
σ2
θ̂k

+ σ2
θ̂r

)
,
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where σθ̂k and σθ̂r are given in Proposition 1.3 appropriately modified for the position cost

τ r.

Let z
(
θ̂
c
,Σ, I

)
∈ C∞0

(
R×

[
0,

σ2θ
2λ

]
× [I, a]

)
be an arbitrarily, infinitely differentiable test

function with compact support. ThenE
[
z
(
θ̂
c

t ,Σt, It

)]
=
∫
z
(
θ̂
c
,Σ, I

)
pt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI

can be written as

E
[
z
(
θ̂
c

t ,Σt, It

)]
= E

[∫ t

0

dz
(
θ̂
c

s,Σs, Is

)]
= E

[∫ t

0

Dgz
(
θ̂
c

s,Σs, Is

)
ds

]
=

∫ ∫ t

0

Dgz
(
θ̂
c
,Σ, I

)
pt

(
θ̂
c
,Σ, I

)
dθ̂dΣdI.

Differentiating w.r.t t, one finds that∫
z
(
θ̂
c
,Σ, I

)
∂tpt

(
θ̂
c
,Σ, I

)
dθ̂dΣdI =

∫
Dgz

(
θ̂
c
,Σ, I

)
pt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI.

Since z has compact support, I can perform integration by parts to arrive at∫
z
(
θ̂
c
,Σ, I

)
∂tpt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI =

∫
z
(
θ̂
c
,Σ, I

)
Dg∗pt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI,

whereDg∗ is the adjoint ofDg and is the time-homogeneous infinitesimal generator associated
with the Koopman operator. Assuming ∂tpt

(
θ̂
c
,Σ, I

)
− Dg∗pt

(
θ̂
c
,Σ, I

)
is continuous, it

follows, since z is arbitrary, that

∂tpt

(
θ̂
c
,Σ, I

)
= Dg∗pt

(
θ̂
c
,Σ, I

)
, (A.9)

Importantly, Dg∗ is a (uniformly) elliptic operator that has divergence form. When pt has
reached its stationary distribution p, where p = limt↗∞ pt, it follows that ∂tpt = 0. Thus

equation (A.9) is a second-order parabolic equation and can can be rewritten when pt has

reached its stationary distribution, suppressing arguments, as

0 = −∂θ̂c
{
pλ
(
θ̄ − θ̂c

)}
− ∂I

{
pI
(

(a− I) θ̂
c −
(
1− τ I

)
ρ
)}
1{

I>I∪θ̂c≥ (1−τI)ρ
a−I

} − ∂Σ

{
p
dΣ

dt

}
+

1

2
∂θ̂cθ̂c

{
p
(
σ2
θ̂k

+ σ2
θ̂r

)}
, (A.10)

which is the expression given in the proposition.

That pt
(
θ̂
c
,Σ, I

)
will satisfy the conservation of mass law

∫
pt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI = 1,

where the integral is understood to be taken over the entire space R×
[
0,

σ2θ
2λ

]
× [I, a] , gives
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rise to my spatial boundary conditions. Notice that I can rewrite equation (A.10) as

∇ · S
(
θ̂
c
,Σ, I

)
= 0,

where

S
(
θ̂
c
,Σ, I

)
=


S θ̂

c
(
θ̂
c
,Σ, I

)
SΣ
(
θ̂
c
,Σ, I

)
SI
(
θ̂
c
,Σ, I

)
 =


λ
(
θ̄ − θ̂c

)
p
(
θ̂
c
,Σ, I

)
− 1

2
∂θ̂c
{(
σ2
θ̂k

+ σ2
θ̂r

)
p
(
θ̂
c
,Σ, I

)}
dΣ
dt
p
(
θ̂
c
,Σ, I

)(
(a− I) θ̂

c −
(
1− τ I

)
ρ
)
Ip
(
θ̂
c
,Σ, I

)
1{

I>I∪θ̂c≥ (1−τI)ρ
a−I

}

 .
Here S

(
θ̂
c
,Σ, I

)
is the "probability flux" representing the flow or flux of particles through

the point
(
θ̂
c
,Σ, I

)
. Consequently, a reflecting boundary condition will ultimately impose

that the flux through boundary points must be zero.

For θ̂
c
, which have unbounded support, one has that for ε > 0 arbitrary that

lim
θ̂
c↗∞

(
θ̂
c
)2(1+ε)

p
(
θ̂
c
,Σ, I

)
= 0 ∀ I,

while for Σ = 0, one has that ∂Σp
(
θ̂
c
,
σ2θ
2λ
, I
)

= 0, since σ2θ
2λ
is a reflecting boundary, and

limΣ↘0 p
(
θ̂
c
,Σ, I

)
= 0, since arbitrarily small precision becomes arbitrarily unlikely given

that new unobservable innovations to θt occur at each instant.

Integrating this expression over the entire space, imposing that
∫
∂tpt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI =

∂t
∫
pt

(
θ̂
c
,Σ, I

)
dθ̂

c
dΣdI = 0, applying the Divergence Theorem, it follows that the appro-

priate "reflecting" boundary condition for I is n̂I=I · S
(
θ̂
c
,Σ, I

)
= n̂I=a · S

(
θ̂
c
,Σ, a

)
=

0 ∀
(
θ̂
c
,Σ
)
, where n̂I=i is the unit (outward) normal vector perpendicular to the I = i

boundary. The intuition for these two boundary conditions is that the probability flux, or

flow, through the two walls I = I and I = a must be zero for probability mass not to leak

out through them.

Proof of Corollary 1.1:

Let U c be ex-ante utilitarian welfare under the common knowledge filtration. Then U c

satisfies

U c = E

[∫ ∞
0

e−ρt
∫ 1

0

log ct (i) didt | F c0
]

= E

[
E

[∫ ∞
0

e−ρt
∫ 1

0

log ct (i) didt | F0

]
| F c0

]
= E [U | F c0 ] ,
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from which follows from the expression for U from 1.9, and since θ̂
c

t ∼ N (0,Σ) , that the

above reduces by the LIE to

U c = E

[∫ ∞
0

e−ρt
It

a− It
dt | F c0

]
− 1− π

2ρ

(
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s

)2
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]

− 1

2ρ2

1− π
πσ2

k

(
I0

1− τ r
Σ0

Σ0 + σ2
s

)2

Σ0 −
1

2ρ2

(
σ2
k +

πσ2
k

1− π (1 + E [ξ0 | F c0 ])2

)
− δ

ρ2
− 1

2ρ3

πσ2
k

1− πσ
2
ξ , (A.12)

since
(
r, θ̂

c
, ξ̂
c
)
∈ F c ⊆ F , from the expression for the riskless rate r in Proposition 1.1, and

it follows

ξ − ξ̂c =
1− π
πσ2

k

I

1− τ r
Σ

Σ + σ2
s

(
θ − θ̂c

)
,

and therefore

E
[
(ξ0 − E [ξ0 | F c0 ])2 | F c0

]
=

(
1− π
πσ2

k

I0

1− τ r
Σ0

Σ0 + σ2
s

)2

Σ0,

Assume now that the economy is initialized from the stationary distribution p
(
θ̂
c
, I,Σ

)
and that the stationary distribution is bounded p

(
θ̂
c
, I,Σ

)
∈ L∞

(
R,
[
0,

σ2θ
2λ

]
, [I, a]

)
. Let

U c
p be the expected welfare in economy under the stationary distribution, and E

p [·] be the
expectation operator w.r.t. the stationary distribution. Then the first expectation, when

taken w.r.t. the stationary distribution, can be rewritten as

Ep

[∫ ∞
0

e−ρt
It

a− It
dt

]
=

∫ ∞
0

e−ρt
∫
Pt

I0

a− I0

p
(
θ̂
c

0,Σ0, I0

)
dθ̂dΣdIdt

=

∫ ∞
0

e−ρt
∫

I0

a− I0

P ∗t p
(
θ̂
c

0,Σ0, I0

)
dθ̂dΣdIdt, (A.13)

where Pt = etD
g
is the Ruelle-Frobenius-Perron operator and P ∗t = etD

g∗
is its adjoint, often

called the Koopman operator. P ∗t is defined such that, for a bounded, Borel measurable

function f and measure ν
〈
Ptf, ν

〉
=
∫
R×R+×R+ Ptfdν =

〈
f, P ∗t ν

〉
. Probabilistically,

P ∗t corresponds to time-reversal and acts on measures, whereas Pt acts on functions. By

construction, since Dg∗p = 0,

etD
g∗
p
(
θ̂
c

0,Σ0, I0

)
= p

(
θ̂
c

0,Σ0, I0

)
,

and therefore equation (A.13) simplies to

Ep

[∫ ∞
0

e−ρt
ρ

a− It
Itdt

]
=

1

ρ
Ep

[
I0

a− I0

]
.
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A similar result obtains for the second expectation, under the assumption that Σ is essentially

bounded. Since Σ ≤ σ2θ
2λ
from Proposition 1.3, this assumption is justified for σθ finite and

λ > 0. It follows from these results, Ep [ξ0] = 0, and equation (A.12), that U c
p takes the form

U c
p =

1

ρ
Ep

[
I0

a− I0

]
− 1− π

2ρ2

(
σs
σk

)2

Ep

[(
I0

1− τ r
Σ0

Σ0 + σ2
s

)2
]

− 1

2ρ2

1− π
πσ2

k

Ep

[(
I0

1− τ r
Σ0

Σ0 + σ2
s

)2

Σ0

]

− δ

ρ2
− 1

2ρ2

σ2
k

1− π

(
1 +

1

ρ
πσ2

ξ

)
.
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1.C: Figures and Tables

Figure 1.1: Structure of the Model
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In the numerical experiments that follow, I treat one time unit (t.u) as a year. I set the

subjective discount rate ρ to be .02 and depreciation δ to be .10. I choose a to be .2 so that

the maximum level of investment I in my model is three standard deviations above its mean

of the ratio of US private nonresidential fixed investment to real GDP since 1973. Given the

stylized structure of my model, I choose reasonable values for the remaining parameters.

I set the mean-reversion and standard deviation of investment productivity shocks, λ

and σθ, respectively, to both be .02. I set the long-run mean θ̄ to be .3. I set the standard

deviations of capital and financial shocks to be the same σk = σξ = .05 so that the exogenous

noise in both the real and financial signals are the same. I set the standard deviation of

private information σs to .03 and the fraction of households hit by the preference shock π

to .4. Finally, to shut off any mechanical learning from market prices, I set the correlation

between investment productivity and financial shocks α to zero.

Figure 1.2: Loading on Market Signal for Fixed Perceived Investment
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Figure 1.3: Impulse Response of the Economy to a One Standard Deviation

Negative Financial Shock in a Boom (Panel 1) and a Bust (Panel 2) (Output is

normalized to 1 at time 0).
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Chapter 2

Informational Frictions and Commodity Markets39

2.1. Introduction

In the aftermath of the dramatic boom and bust cycle of commodity prices in 2007 to

2008, there has been renewed interest among academics and policy makers regarding the

drivers of commodity price fluctuations. In particular, whether fundamental demand and

supply shocks are suffi cient to explain the observed price cycles and whether speculation in

commodity futures markets exacerbated these cycles are subjects of debate. In this debate,

it is common for academic and policy studies to treat different types of shocks (such as

supply, demand, and financial market shocks) as observable to market participants.40 In

doing so, however, these studies ignore a key aspect of commodity markets, namely, severe

informational frictions faced by market participants. The markets for major commodities,

such as crude oil and copper, have become globalized in recent decades, with supply and

demand now stemming from across the world. This globalization exposes market participants

to heightened informational frictions regarding the global supply, demand, and inventory of

these commodities.

The economics literature has developed an elegant theoretical framework to analyze how

trading in centralized asset markets facilitates both information aggregation among market

participants and helps them overcome the informational frictions they face (e.g., Grossman

and Stiglitz (1980) and Hellwig (1980)). This framework, however, crucially relies on the

combination of constant absolute risk aversion (CARA) utility functions for agents and

Gaussian distributions for asset prices to ensure a tractable linear equilibrium, and thus one

cannot readily adopt this framework to analyze commodity markets, in which both CARA

utility and Gaussian distributions are unrealistic. It is challenging to analyze information

39A version of this chapter, which is joint work with Wei Xiong at Princeton University, is forthcoming
the Journal of Finance.
40See a recent review by Cheng and Xiong (2014).
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aggregation in settings without the tractable linear equilibrium. This technical challenge

is common in analyzing how asset prices affect real activity, such as firm investment and

central bank policies, through an informational channel.41

In this paper, we aim to confront this challenge by developing a tractable model to

analyze how informational frictions affect commodity markets. Our model integrates the

standard framework of asset market trading with asymmetric information into an interna-

tional macro setting (e.g., Obstfeld and Rogoff (1996) and Angeletos and La’O (2013)).

In this global economy, a continuum of specialized goods producers whose production has

complementarity– which emerges from their need to trade produced goods with each other–

demand a key commodity, such as copper, as a common production input. Through trading

the commodity, the goods producers aggregate dispersed information regarding unobservable

global economic strength, which ultimately determines their commodity demand.

Our main model focuses on a centralized spot market through which the goods producers

acquire the commodity from a group of suppliers, who are subject to an unobservable supply

shock. The supply shock prevents the commodity price from perfectly aggregating the goods

producers’ information with respect to the strength of the global economy. Nevertheless,

the commodity price provides a useful signal to guide the producers’production decisions

and commodity demand. Despite the nonlinearity in the producers’production decisions,

we derive a unique log-linear equilibrium in closed form. In this equilibrium, each producer’s

commodity demand is a log-linear function of its private signal and the commodity price,

while the commodity price is a log-linear function of global economic strength and the

supply shock. This tractable log-linear equilibrium builds on a combination of Cobb-Douglas

utility functions for households, log-normal distributions for commodity prices, and a key

aggregation property: the aggregate demand of a continuum of producers remains log-linear

as a result of the Law of Large Numbers. We also extend the model to incorporate a futures

market to further characterize the role of futures market trading.

It is common for empirical studies of commodity markets to rely on conventional wisdom

generated from settings without any informational frictions (i.e., agents directly observing

both supply and demand shocks). According to such wisdom, 1) a higher price leads to

lower commodity demand as a result of the standard cost effect, 2) a positive supply shock

reduces the commodity price, which in turn stimulates greater commodity demand, and 3)

41See a recent review by Bond, Edmans, and Goldstein (2012).
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the futures price of the commodity simply tracks the spot price, and trading in the futures

market does not affect either commodity demand or the spot price.

Our model allows us to contrast the effects of informational frictions with this conven-

tional wisdom. First, through its informational role, a higher commodity price signals a

stronger global economy and motivates each goods producer to produce more goods. This

leads to greater demand for the commodity as an input, which offsets the usual cost effect.

The complementarity in production among goods producers magnifies this informational ef-

fect through their incentives to coordinate production decisions. Under certain conditions,

our model shows that the informational effect can dominate the cost effect and lead to a

positive price elasticity of producers’demand for the commodity.

Second, our model illustrates a feedback effect of supply shocks. In the presence of

informational frictions, supply shocks also act as informational noise, which prevents the

commodity price from fully revealing the strength of the global economy. As goods pro-

ducers partially attribute the lower commodity price caused by a positive supply shock to

a weak global economy, this inference induces them to reduce their commodity demand.

This feedback effect thus further amplifies the negative price impact of the supply shock and

undermines its impact on commodity demand.

Third, futures markets serve as a useful platform, in addition to spot markets, for ag-

gregating information regarding demand and supply of commodities. As futures markets

attract a different group of participants from spot markets, the futures price is not simply a

shadow of the spot price, and instead may have its own informational effects on commodity

demand and the spot price.

Based on these results, our analysis offers important implications for the empirical analy-

sis of commodity markets. In estimating the effects of supply and demand shocks in com-

modity markets, it is common for the empirical literature to adopt structural models that

ignore informational frictions by simply assuming that agents can directly observe both de-

mand and supply shocks. As highlighted by our analysis, this common practice is likely

to understate the effect of supply shocks and overstate the effect of demand shocks. Our

model provides the basic ingredients for expanding these structural models to account for

how commodity prices impact agents’expectations.

Our analysis also cautions against a commonly used empirical strategy based on com-

modity inventory to detect speculative effects (e.g., Kilian and Murphy (2014), Juvenal and
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Petrella (2012), and Knittel and Pindyck (2013)). This strategy is premised on the widely

held argument that if speculators distort the price of a commodity upward, consumers will

find the commodity too expensive and thus reduce consumption, causing inventory of the

commodity to spike. By assuming that consumers are able to recognize the commodity price

distortion, this argument again ignores realistic informational frictions faced by consumers,

which are particularly relevant in times of great economic uncertainty. In contrast, our model

shows that informational frictions may cause consumers to react to the distorted price by in-

creasing rather than decreasing their consumption. In this light, the lack of any pronounced

oil inventory spike before the peak of oil prices in July 2008, as highlighted by the recent

empirical literature, cannot be taken as evidence to reject the presence of any speculative

effect during the period.

Finally, by systematically illustrating that prices of key industrial commodities can serve

as price signals for the strength of the global economy and that informational noise in com-

modity prices can feed back to commodity demand and spot prices,42 our analysis provides

a coherent argument for how the large inflow of investment capital to commodity futures

markets during the 2000s might have amplified the boom and bust of commodity prices in

2007 to 2008. By interfering with the price signals, informational noise from the investment

flow may have temporarily led market participants to increase their commodity demand de-

spite a weakening global economy. This confusion helped sustain the commodity price boom

until information arrived later to correct their expectations, which then caused commodity

prices to collapse.

Our paper contributes to the emerging literature that analyzes the causes of the commod-

ity market cycle of the 2000s, for example Hamilton (2009), Stoll and Whaley (2010), Tang

and Xiong (2012), Singleton (2014), Cheng, Kirilenko, and Xiong (2012), Hamilton and Wu

(2012), Kilian and Murphy (2014), and Henderson, Pearson, and Wang (2012). The mech-

anism illustrated by our model echoes Singleton (2014), who emphasizes the importance of

accounting for agents’expectations to explain this commodity market cycle. In particular,

our analysis highlights the weakness common in empirical studies on the effects of supply

42Consistent with this notion, in explaining the decision of the European Central Bank (ECB) to raise
its key interest rate in March 2008 on the eve of the worst economic recession since the Great Depression,
ECB policy reports cite high prices of oil and other commodities as a key factor, suggesting the significant
influence of commodity prices on the expectation of central bankers. Furthermore, Hu and Xiong (2013)
provide evidence that in recent years, stock prices across East Asian economies have displayed significant and
positive reactions to overnight futures price changes of a set of commodities traded in the U.S., suggesting
that people across the world regard commodity futures prices as barometers of the global economy.
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and demand shocks and speculation in commodity markets of assuming that different types

of shocks are publicly observable to market participants.

Our model complements the recent macro literature that analyzes the role of informa-

tional frictions on economic growth. Lorenzoni (2009) shows that by influencing agents’

expectations, noise in public news can generate sizable aggregate volatility. Angeletos and

La’O (2013) focus on endogenous economic fluctuations that result from the lack of central-

ized communication channels to coordinate the expectations of different households. Our

model adopts the setting of Angeletos and La’O (2013) to model goods market equilibrium

and derive endogenous complementarity in goods producers’production decisions. We ana-

lyze information aggregation through centralized commodity trading, which is absent from

their model, and the feedback effects of the commodity price.

The literature has long recognized that trading in financial markets aggregates informa-

tion and the resulting prices can feed back to real activity (e.g., Bray (1981) and Subrah-

manyam and Titman (2001)). Furthermore, recent literature points out that such feedback

effects can be particularly strong in the presence of strategic complementarity in agents’

actions. Morris and Shin (2002) show that in such a setting, noise in public information

has an amplified effect on agents’actions and thus on equilibrium outcomes. In our model,

commodity prices serve such a role in feeding back noise to goods producers’production

decisions. Similar feedback effects are also modeled in several other contexts, such as from

stock prices to firm capital investment decisions and from exchange rates to policy choices

of central banks (e.g., Ozdenoren and Yuan (2008), Angeletos, Lorenzoni, and Pavan (2010),

and Goldstein, Ozdenoren, and Yuan (2011, 2013)). The log-linear equilibrium derived in

our model accommodates the nonlinearity induced by goods producers’production decisions

and, at the same time, is tractable for the analysis of feedback effects of commodity prices.

This tractable log-linear equilibrium can be adapted by future studies to analyze feedback

effects in settings outside commodity markets.43

The paper is organized as follows. We first present the model setting in Section I and

derive the equilibrium in Section II. Section III analyzes the effects of informational frictions.

43It is also worth noting that our setting is different from existing settings adopted by the literature to
analyze real consequences of asset prices. For example, Goldstein, Ozdenoren, and Yuan (2013) develop
a model to analyze stock market trading with asymmetric information and the feedback effect from the
equilibrium stock price to firm investment. The equilibrium derived in their model is also nonlinear. They
ensure tractability by imposing a set of assumptions, including that each trader is risk-neutral and faces upper
and lower position limits and that noisy stock supply follows a rigid functional form involving the cumulative
standard normal distribution function. Our setting does not require these nonstandard assumptions.
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Section IV provides a brief summary of a model extension to include a futures market. We

discuss the implications of our analysis in Section V and conclude the paper in Section VI.

We provide all the technical proofs in the Appendix and provide a separate online appendix

to provide the details of the model extension summarized in Section IV.44

2.2. Model Setting

In this section we develop a baseline model with two dates t = 1, 2 to analyze the effects

of informational frictions on the market equilibrium related to a commodity. One can think

of this commodity as crude oil or copper, which is used across the world as a key production

input. We model a continuum of islands of total mass one. Each island produces a single

good, which can be either consumed at “home”or traded for another good produced “away”

by another island. A key feature of the baseline model is that the commodity market is not

only a place for market participants to trade the commodity but also a platform to aggregate

private information about the strength of the global economy, which ultimately determines

the global demand for the commodity.

Table I summarizes the timeline of the model. There are three types of agents: house-

holds on the islands, goods producers on the islands, and a group of commodity suppliers.

The goods producers trade the commodity with commodity suppliers at t = 1 and use the

commodity to produce goods at t = 2. Their produced goods are distributed to the house-

holds on their respective islands at t = 2. The households then trade their goods with each

other and consume.

Table 1.1 Time Line of the Model

t=1 t=2

spot market goods market

Households trade/consume goods

Producers

observe signals

acquire commodity

produce goods

Com Suppliers
observe supply shock

supply commodity

44The Internet Appendix is available in the online version of the article on the Journal of Finance website.
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2.2.1 Island Households

Each island has a representative household. Following Angeletos and La’O (2013), we

assume a particular structure for goods trading between households on different islands. Each

island is randomly paired with another island at t = 2. The households on the two islands

trade their goods with each other and consume both goods produced by the islands. For a

pair of matched islands, we assume that the preference of the households on these islands

over the consumption bundle (Ci, C
∗
i ) , where Ci represents consumption of the “home”good

while C∗i consumption of the “away”good, is determined by a utility function U (Ci, C
∗
i ).

The utility function increases in both Ci and C∗i . This utility function specifies all “away”

goods as perfect substitutes, so that the utility of the household on each island does not

depend on the matched trading partner. The households on the two islands thus trade their

goods to maximize the utility of each. We assume that the utility function of the island

households takes the Cobb-Douglas form

U (Ci, C
∗
i ) =

(
Ci

1− η

)1−η (
C∗i
η

)η
(16)

where η ∈ [0, 1] measures the utility weight of the away good. A greater η means that each

island values more of the away good and thus relies more on trading its good with other

islands. Thus, η eventually determines the degree of complementarity in the islands’goods

production.

2.2.2. Goods Producers

Each island has a locally owned representative firm to organize its goods production. We

refer to each firm as a producer. Production requires use of the commodity as an input.

To focus on the commodity market equilibrium, we exclude other inputs such as labor from

production. Each island has the following decreasing-returns-to-scale production function:45

Yi = AXφ
i , (17)

where Yi is the output produced by island i and Xi is the commodity input. Parameter

φ ∈ (0, 1] measures the degree to which the production function exhibits decreasing returns

45One can also specify a Cobb-Douglas production function with both commodity and labor as inputs.
The model remains tractable although the formulas become more complex and harder to interpret.
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to scale. When φ = 1, the production function has constant returns to scale. The variable A

is the common productivity shared by all islands. For simplicity, we assume that each island’s

productivity does not have an idiosyncratic component. This simplification is innocuous for

our qualitative analysis of how information frictions affect commodity demand.

For an individual goods producer, A has a dual role– it determines its own output as

well as other producers’output. To the extent that demand for the producer’s good depends

on other producers’output, A represents the strength of the global economy. We assume

that A is a random variable, which becomes observable only when the producers complete

their production at t = 2. This is the key informational friction in our setting. We assume

that A has a lognormal distribution,

logA v N
(
ā, τ−1

A

)
,

where ā is the mean of logA and τ−1
A is its variance. At t = 1, the goods producer on each

island observes a private signal about logA,

si = logA+ εi,

where εi v N (0, τ−1
s ) is random noise independent of logA and independent of noise in

other producers’signals, and τ s is the precision of the signal. The signal allows the producer

to form its expectation of the strength of the global economy and determine its production

decision and commodity demand. The commodity market serves to aggregate the private

signals dispersed among the producers. As each producer’s private signal is noisy, the publicly

observed commodity price also serves as a useful price signal to form its expectation.

At t = 1, the producer on island imaximizes its expected profit by choosing its commodity

input Xi,

max
Xi

E [PiYi | Ii]− PXXi, (18)

where Pi is the price of the good produced by the island. The producer’s information set

Ii = {si, PX} includes its private signal si and the commodity price PX . The goods price Pi,
which one can interpret as the terms of trade, is determined at t = 2 based on the matched

trade with another island.

2.2.3. Commodity Suppliers

We assume there is a group of commodity suppliers who face a convex labor cost

k

1 + k
e−ξ/k (XS)

1+k
k
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in supplying the commodity, where XS is the quantity supplied, k ∈ (0, 1) is a constant

parameter, and ξ represents random noise in the supply. As a key source of information

frictions in our model, we assume that ξ is observable to the suppliers themselves but not

by other market participants. We assume that from the perspective of goods producers,

ξ has Gaussian distribution N
(
ξ, τ−1

ξ

)
, where ξ is its mean and τ−1

ξ as its variance. The

mean captures the part that is predictable to goods producers, while the variance represents

uncertainty in supply that is outside goods producers’expectations.

Based on the above, given a spot price PX , suppliers face the following optimization

problem:

max
XS

PXXS −
k

1 + k
e−ξ/k (XS)

1+k
k . (19)

It is easy to determine from (19) that the suppliers’optimal supply curve is

XS = eξP k
X , (20)

where ξ is uncertainty in the commodity supply and k the price elasticity.

2.2.4. Joint Equilibrium of Different Markets

Our model features the joint equilibrium of a number of markets: the goods markets be-

tween each pair of matched islands and the market for the commodity. Equilibrium requires

clearing of each of these markets:

• At t = 2, for each pair of randomly matched islands {i, j}, the households of these
islands trade their produced goods and clear the market for each good,

Ci + C∗j = AXφ
i ,

C∗i + Cj = AXφ
j .

• At t = 1, in the commodity market, the goods producers’aggregate demand equals

the supply, ∫ ∞
−∞

Xi (si, PX) dΦ (εi) = XS (PX) ,

where each producer’s commodity demand Xi (si, PX) depends on its private signal si

and the commodity price PX . The demand from producers is integrated over the noise

εi in their private signals.
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2.3 The Equilibrium

2.3.1. Goods Market Equilibrium

We begin our analysis of the equilibrium with the goods markets at t = 2. For a pair

of randomly matched islands, i and j, the representative household of island i possesses Yi

units of the good produced by the island while the representative household of island j holds

Yj units of the other good.46 They trade the two goods with each other to maximize the

utility function of each given in (16). The following proposition, which resembles a similar

proposition in Angeletos and La’O (2013), describes the goods market equilibrium between

these two islands.

PROPOSITION 2.1: For a pair of randomly matched islands, i and j, their representative

households’optimal consumption of the two goods is

Ci = (1− η)Yi, C
∗
i = ηYj, Cj = (1− η)Yj, C

∗
j = ηYi.

The price of the good produced by island i is

Pi =

(
Yj
Yi

)η
. (21)

As a direct implication of the Cobb-Douglas utility function, each household divides its

consumption between the home and away goods with fractions 1 − η and η, respectively.

When η = 1/2, the household consumes the two types of goods equally. The price of each

good is determined by the relative output of the two matched islands.47 One island’s good

is more valuable when the other island produces more. This feature is standard in the

international macroeconomics literature (e.g., Obstfeld and Rogoff (1996)) and implies that

each goods producer needs to take into account the production decisions of producers of

other goods.48

46Here we treat a representative household as representing different agents holding stakes in an island’s
goods production, such as workers, managers, suppliers of inputs, etc. We agnostically group their preferences
for the produced goods of their own island and other islands into the preferences of the representative
household.
47The goods price Pi given in (21) is the price of good i normalized by the price of good j produced by

the other matched island.
48Decentralized goods market trading is not essential to our analysis. This feature allows us to conveniently

capture endogenous complementarity in goods producers’production decisions with tractability. Alterna-
tively, one can adopt centralized goods markets and let island households consume goods produced by all
producers. See Angeletos and La’O (2009) for such a setting. We expect our key insight to carry over to
this alternative setting.
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2.3.2. Production Decision and Commodity Demand

By substituting the production function in (17) into (18), which gives the expected profit

of the goods producer on island i, we obtain the following objective:

max
Xi

E
[
APiX

φ
i

∣∣∣ si, PX]− PXXi.

In a competitive goods market, the producer will produce to the level that marginal revenue

equals marginal cost:

φE [APi| si, PX ]Xφ−1
i = PX .

By substituting in Pi from Proposition 1, we obtain

Xi =

φE
[
AXφη

j

∣∣∣ si, PX]
PX


1/(1−φ(1−η))

, (22)

which depends on the producer’s expectation E
[
AXφη

j

∣∣∣ si, PX] regarding the product of
global productivity A and the production decision Xφη

j of its randomly matched trading

partner, island j. This expression demonstrates the complementarity in the producers’pro-

duction decisions. A larger η makes the complementarity stronger as the island households

engage more in trading the produced goods with each other and the price of each good

depends more on the output of other goods.

The commodity price PX is a source of information for the producer to form its ex-

pectation of E
[
AXφη

j

∣∣∣ si, PX], which serves as a channel for the commodity price to feed
back into each producer’s commodity demand. The presence of complementarity strength-

ens this feedback effect relative to standard models of asset market trading with asymmetric

information.

2.3.3. Commodity Market Equilibrium

By clearing the aggregate demand of goods producers with the supply of suppliers, we

derive the commodity market equilibrium. As is common in settings with real investment,

equation (22) shows that each producer’s commodity demand is a nonlinear function of

the price. Despite the nonlinearity, we manage to derive a tractable and unique log-linear

equilibrium in closed form. The following proposition summarizes the commodity price and

each producer’s commodity demand in this equilibrium.

91



PROPOSITION 2.2: At t = 1, the commodity market has a unique log-linear equilibrium:

1) The commodity price is a log-linear function of logA and ξ,

logPX = hA logA+ hξξ + h0, (23)

with the coeffi cients hA and hξ given by

hA = −(1− φ) b+ (1− φ (1− η)) τ−1
s τ ξb

3

1 + k (1− φ)
> 0, (24)

hξ = −1− φ+ (1− φ (1− η)) τ−1
s τ ξb

2

1 + k (1− φ)
< 0, (25)

where b < 0 is given in equation (A.19) and h0 in equation (A.20). 2) The commodity

purchased by goods producer i is a log-linear function of its private signal si and logPX ,

logXi = lssi + lP logPX + l0, (26)

with the coeffi cients ls and lP given by

ls = −b > 0, lP = k + h−1
ξ , (27)

and l0 by equation (A.21).

Proposition 2.2 shows that each producer’s commodity demand is a log-linear function of

its private signal and the commodity price, while the commodity price logPX aggregates the

producers’dispersed private information to partially reveal the global productivity logA.

The commodity price does not depend on any producer’s signal noise as a result of the

aggregation across a large number of producers with independent noise. This feature is

similar to Hellwig (1980). The commodity price also depends on the supply shock ξ, which

serves the same role as noise trading in the standard models of asset market trading with

asymmetric information.

It is well known that asset market equilibria with asymmetric information are often

intractable due to the diffi culty in analyzing each agent’s learning from the equilibrium as-

set price and in aggregating different agents’asset demands. Existing literature commonly

adopts the setting of Grossman and Stiglitz (1980) and Hellwig (1980), which features CARA

utility for agents and Gaussian distributions for asset fundamentals and noise trading. This

setting ensures a linear equilibrium in which the asset price is a linear function of asset

fundamental and noise trading, while each agent’s asset demand is a linear function of the
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price and its own signal. One cannot directly adopt this setting, however, to analyze infor-

mational feedback effects of asset prices to real activity, such as firm investment and central

bank policies, which typically involve asset fundamentals with non-Gaussian distributions

and agents with non-CARA utility.

Our model presents a tractable setting to analyze real consequences of asset prices.

Despite the commodity price and each producer’s commodity demand both having non-

Gaussian distributions, the log-linear equilibrium derived in Proposition 2.2 maintains simi-

lar tractability as the linear equilibrium derived by Grossman and Stiglitz (1980) and Hellwig

(1980). A key feature contributing to this tractability is that the producers’aggregate de-

mand remains log-normal as a result of the Law of Large Numbers.

2.4 Effects of Informational Frictions

2.4.1. Perfect-Information Benchmark

To facilitate our analysis of the effects of informational frictions, we first establish a

benchmark without any informational friction. Suppose that the global fundamental A and

commodity supply shock ξ are both observable by all market participants. Then the goods

producers can choose their optimal production decisions without any noise interference. The

following proposition characterizes this benchmark.

PROPOSITION 2.3: When both A and ξ are observed by all market participants, there is a

unique equilibrium. In this equilibrium, 1) the goods producers share an identical commodity

demand curve, Xi = Xj =
(
φA
PX

) 1
1−φ

, ∀i and j, and 2) the commodity price is given by

logPX =
1

1 + k (1− φ)
logA− 1− φ

1 + k (1− φ)
ξ +

1

1 + k (1− φ)
log φ,

while the goods producers’aggregate commodity demand is given by

logXS =
k

1 + k (1− φ)
logA+

1

1 + k (1− φ)
ξ +

k

1 + k (1− φ)
log φ.

In the absence of any informational frictions, the benchmark features a unique equi-

librium despite the complementarity in the goods producers’production decisions because

competition between goods producers leads to a downward-sloping demand curve for the
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commodity. This demand curve intersects the suppliers’ upward-sloping supply curve at

the unique commodity price PX given in the proposition. As a result, the complementar-

ity between goods producers does not lead to multiple equilibria in which goods producers

coordinate on certain high or low demand levels.

Proposition 3 derives the equilibrium commodity price and aggregate demand. Intu-

itively, the global fundamental logA increases both the commodity price and aggregate

demand, while the supply shock ξ reduces the commodity price but increases aggregate

demand.

The following proposition compares the equilibrium derived in Proposition 2.2 with the

perfect-information benchmark.

PROPOSITION 2.4: In the presence of informational frictions, the commodity price co-

effi cients with the global fundamental hA > 0 and the commodity supply shock hξ < 0, as

derived in Proposition 2.2, are both lower than their corresponding values in the perfect-

information benchmark, and converge to these values as τ s →∞.

In the presence of informational frictions, the commodity price deviates from that in

the perfect-information benchmark, with the supply shock having a greater price impact

(i.e., hξ being more negative) and the global fundamental having a smaller impact (i.e., hA

being less positive). Through these price impacts, informational frictions eventually affect

goods producers’production decisions and island households’goods consumption, which we

analyze step-by-step below.

2.4.2. Price Informativeness

In the presence of informational frictions, the equilibrium commodity price logPX =

hA logA + hξξ + h0 serves as a public signal of the global fundamental logA. This price

signal is contaminated by the presence of the supply noise ξ. The informativeness of the

price signal is determined by the ratio of the contributions to the price variance of logA and

ξ:

π =
h2
A/τA
h2
ξ/τ ξ

.

The following proposition characterizes how the price informativeness measure π depends on

several key model parameters: τ s, τ ξ, and η.
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PROPOSITION 2.5: π is monotonically increasing in τ s and τ ξ, and is decreasing in η.

As τ s increases, each goods producer’s private signal becomes more precise. The commod-

ity price aggregates the goods producers’signals through their demand for the commodity

and therefore becomes more informative. The parameter τ ξ measures the amount of noise

in the supply shock. As τ ξ increases, there is less noise from the supply side interfering with

the commodity price reflecting logA. Thus, the price also becomes more informative.

The effect of η is more subtle. As η increases, there is greater complementarity in each

goods producer’s production decision. Consistent with the insight of Morris and Shin (2002),

such complementarity induces each producer to put greater weight on the publicly observed

price signal and lesser weight on its own private signal, which makes the equilibrium price

less informative.

2.4.3. Price Elasticity

The coeffi cient lP , derived in (27), measures the price elasticity of each goods producer’s

commodity demand. The standard cost effect suggests that a higher price leads to a lower

demand. The producer’s optimal production decision in equation (22), however, also indi-

cates a second effect through the term in the numerator– a higher price signals a stronger

global economy and greater production by other producers. This informational effect mo-

tivates each producer to increase its production and thus demand more of the commodity.

The price elasticity lP nets these two offsetting effects. The following proposition shows that

under certain necessary and suffi cient conditions, the informational effect dominates the cost

effect and leads to a positive lP .

PROPOSITION 2.6: Two necessary and suffi cient conditions ensure that lP > 0: first,

τ ξ/τA > 4k−1
(
1− φ+ k−1

)
,

and, second, parameter η is within the range

1− 1

φ
+
kτ ξτ s
4φτ 2

A

(1− ρ)2 < η < 1− 1

φ
+
kτ ξτ s
4φτ 2

A

(1 + ρ)2 ,

where ρ = τ
1/2
A τ

−1/2
ξ

√
τ ξ/τA − 4k−1 (1− φ+ k−1).

For the informational effect to be suffi ciently strong, the commodity price has to be

suffi ciently informative. The conditions in Proposition 6 reflect this observation. First, the
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supply noise needs to be suffi ciently small (i.e., τ ξ suffi ciently large relative to τA) so that

the price can be suffi ciently informative. Second, η needs to be within an intermediate

range, which results from two offsetting forces. On the one hand, a larger η implies greater

complementarity in producers’production decisions and thus each producer cares more about

other producers’production decisions and assigns greater weight to the public price signal

in its own decision making. On the other hand, a larger η also implies a less informative

price signal (Proposition 2.5), which motivates each producer to be less responsive to the

price. Netting out these two forces dictates that η needs to be in an intermediate range for

lP > 0.49

This second condition implies that when η = 0, lP < 0. Therefore, in the absence of

production complementarity, the price elasticity is always negative, that is, the cost effect

always dominates the informational effect.

2.4.4. Feedback Effect on Demand

In the perfect-information benchmark (Proposition 2.3), the supply shock ξ decreases the

commodity price and increases the aggregate demand through the standard cost effect. In

the presence of informational frictions, however, the supply shock, by distorting the price

signal, has a more subtle effect on commodity demand.

By substituting equation (23) into (26), the commodity demand of producer i is

logXi = lssi + lPhA logA+ lPhξξ + lPh0 + l0.

The producers’aggregate commodity demand is then

log

[∫ ∞
−∞

Xi (si, PX) dΦ (εi)

]
= lPhξξ + (ls + lPhA) logA+ l0 + lPh0 +

1

2
l2sτ
−1
s .

Note that hξ < 0 (Proposition 2.2) and the sign of lP is undetermined (Proposition 2.6).

Thus, the effect of ξ on the aggregate demand is also undetermined.

Under the conditions given in Proposition 6, an increase in ξ decreases the aggregate

demand, which is the opposite of the perfect-information benchmark. This effect arises

through the informational channel. As ξ rises, the commodity price falls. Since goods

49Upward-sloping demand for an asset may also arise from other mechanisms even in the absence of
informational frictions highlighted in our model, such as income effects, complementarity in production, and
complementarity in information production (e.g., Hellwig, Kohls, and Veldkamp (2012)).
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producers cannot differentiate a price decrease caused by ξ from one caused by a weaker

global economy, they partially attribute the reduced price to a weaker economy. This,

in turn, motivates them to cut their commodity demand. Under the conditions given in

Proposition 6, this informational effect is suffi ciently strong to dominate the effect of a lower

cost to acquire the commodity, leading to a lower aggregate commodity demand.

Furthermore, through its informational effect on aggregate demand, ξ can further push

down the commodity price in addition to its price effect in the perfect-information bench-

mark. This explains why hξ is more negative in this economy than in the benchmark (Propo-

sition 2.4): informational frictions amplify the negative price impact of ξ.50

2.4.5. Social Welfare

By distorting the commodity price and aggregate demand, informational frictions distort

producers’production decisions and households’goods consumption. We now evaluate the

unconditional expected social welfare at time 1:

W = E

[∫ 1

0

(
Ci

1− η

)1−η (
C∗i
η

)η
di

]
− E

[
k

1 + k
e−ξ/kX

1+k
k

S

]
,

which contains two parts. The first part comes from aggregating the expected utility from

goods consumption of all island households, and the second part comes from the commodity

suppliers’cost of supplying labor.

The next proposition proves that informational frictions reduce the expected social wel-

fare relative to the perfect-information benchmark.

PROPOSITION 2.7: In the presence of informational frictions, the expected social welfare

is strictly lower than that in the perfect-information benchmark.

50One can also evaluate this informational feedback effect of the supply noise by comparing the equilibrium
commodity price relative to another benchmark case, in which each goods producer makes his production
decision based only on his private signal si without conditioning it on the commodity price PX . In this
benchmark, the commodity price logPX is also a log-linear function of logA and ξ. Interestingly, despite the
presence of informational frictions, the price coeffi cient on ξ is − 1−φ

1+k(1−φ) , which is the same as that derived
in Proposition 3 for the perfect-information benchmark. This outcome establishes the informational feedback
mechanism as the driver for hξ to be more negative than that in the perfect-information benchmark.
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2.5 A Model Extension

Stimulated by the large inflow of investment capital to commodity futures markets in

recent years, there is an ongoing debate about whether speculation in futures markets might

have affected commodity prices.51 In this debate, an influential argument posits that as

the trading of financial traders in futures markets does not directly affect the supply and

demand of physical commodities, there is no need to worry about them affecting commodity

prices. This argument ignores the informational role of futures prices. In practice, the lower

cost of trading futures contracts compared with trading physical commodities encourages

greater participation and facilitates aggregation of dispersed information among market par-

ticipants.52 To reduce this confusion, we extend our model to incorporate a futures market.

For the sake of brevity, we briefly summarize the extended model and the key result in this

section and relegate a more detailed model description and analysis Appendix 2.B.

2.5.1. Model Setting

The objective of this extension is not to provide a general model of information aggrega-

tion with both spot and futures markets. Instead, we use a specific yet realistic setting to

highlight the conceptual point that informational noise introduced by futures market trading

can feed back to commodity demand and spot prices.

We introduce a new date t = 0 before the two dates t = 1 and 2 in the main model,

and a centralized futures market at t = 0 for delivery of the commodity at t = 1. All agents

can take positions in the futures market at t = 0, and can choose to revise or unwind their

positions before delivery at t = 1. The ability to unwind positions before delivery reduces

transaction costs and makes futures market trading appealing in practice.

We maintain all of the agents in the main model - island households, goods producers,

and commodity suppliers - and add a group of financial traders. These financial traders take

51Since the mid-2000s, commodity futures has become a new asset class for portfolio investors such as
pension funds and endowments, which regularly allocate a fraction of their portfolios to investing in com-
modity futures and swap contracts. As a result, capital on the order of hundreds of billions of dollars flowed
to the long side of commodity futures markets. This process is also called the financialization of commodity
markets (e.g., Cheng and Xiong (2014)).
52Roll (1984) systematically analyzes the futures market of orange juice in effi ciently aggregating informa-

tion about weather in Central Florida, which produces more than 98% of the U.S. orange output. Garbade
and Silber (1983) provide evidence that futures markets play a more important role in information discovery
than cash markets for a set of commodities.
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a position in the futures market at t = 0 and then unwind this position at t = 1 without

taking delivery. We assume that there is no spot market trading at t = 0. A spot market

naturally emerges at t = 1 through commodity delivery for the futures market.

Table 1.2. Time Line of the Extended Model

t=0 t=1 t=2

futures market spot market goods market

Households trade/consume goods

Producers
observe signals

long futures

take delivery

produce goods

Com Suppliers short futures
observe supply shock

deliver commodity

Fin Traders long/short futures unwind position

Table 1.2 specifies the timeline of the extended model. The timing of information flow is

key to our analysis. We assume that goods producers receive their respective private signals

{si} about the global productivity at t = 0 and commodity suppliers observe their supply

shock ξ only at t = 1. This structure leads to two rounds of information aggregation: trading

in the futures market at t = 0 serves as the first round with informational noise originating

from the trading of financial traders, and trading in the spot market at t = 1 serves as

the second round with financial traders unwinding their futures position and commodity

suppliers observing their supply shock.

We keep the same specification for the island households, who trade and consume both

home and away goods at t = 2 as described in Section 2.2.1.

We allow the goods producers to have the same production technology and private signals

as specified in Section 2.2.2. At t = 1, the producer optimizes its production decision

Xi based on the objective function given in (18) and an expanded information set I1
i =

{si, F, PX} , where F is the futures price traded at t = 0 and PX is the spot price traded at

t = 1:

Xi =
{
φE
[
AXφη

j

∣∣∣ I1
i

]/
PX

}1/(1−φ(1−η))

.

At t = 0, the producer chooses a futures position X̃i to maximize the following expected
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production profit based on its information set I0
i = {si, F}:

max
X̃i

E
[
PiYi| I0

i

]
− FX̃i.

In specifying this objective function, we adopt a simplification by treating the producer as

myopic at t = 0 (i.e., it treats X̃i as its production input at t = 1.)53 Then, the producer’s

futures position is

X̃i =
{
φE
[
AX̃φη

j

∣∣∣ I0
i

]/
F
}1/(1−φ(1−η))

.

We assume that in the futures market at t = 0, the aggregate long position of financial

traders and goods producers is given by the aggregate position of producers multiplied by

a factor eκ logA+θ: eκ logA+θ
∫∞
−∞ X̃i (si, F ) dΦ (εi) , where the factor eκ logA+θ represents the

contribution of financial traders. This multiplicative specification is useful for ensuring the

tractable log-linear equilibrium of our model. The component κ logA with κ > 0 captures

the possibility that the trading of financial traders is partially driven by their knowledge

of the global fundamental logA, while the other component θ v N
(
θ, τ−1

θ

)
, a random

Gaussian variable with a mean of θ and variance τ−1
θ , captures non-fundamental related

trading induced by diversification motives and is unobservable by other market participants.

We allow the commodity suppliers to have the same convex cost function specified in

Section 2.2.3. At t = 1, they observe their supply shock ξ and their marginal cost of

supplying the commodity determines the spot price PX . At t = 0, the suppliers take a

short position in the futures market. To simplify the analysis, we assume that the suppliers

are also myopic in believing that goods producers will take full delivery of their futures

positions. Thus, the suppliers choose an initial short position to maximize the profit from

making delivery of e−(κ logA+θ)X̃S units of the commodity to goods producers:

max
X̃S

E
[
Fe−(κ logA+θ)X̃S

∣∣∣ I0
S

]
− E

[
k

1 + k
e−ξ/k

(
e−(κ logA+θ)X̃S

) 1+k
k

∣∣∣∣ I0
S

]
,

which gives that

X̃S = eξ̄−σ
2
ξ/2k

{
E
[
e−(κ logA+θ)

∣∣ I0
S

]
/E
[
e−

1+k
k

(κ logA+θ)
∣∣∣ I0

S

]}k
F k.

53In other words, at t = 0 each producer chooses a futures position as if it commits to taking full delivery
and using the good for production, even though the producer can revise its production decision based on
the updated information at t = 1. This simplifying assumption, while it affects each producer’s trading
profit, is innocuous for our analysis of how the futures price feeds back to the producers’later production
decisions because each producer still makes good use of its information and the futures price is informative
by aggregating each producer’s information.
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2.5.2. The Equilibrium and Key Result

We analyze the joint equilibrium of all markets: the goods markets between each pair

of matched islands at t = 2, the spot market for the commodity at t = 1, and the futures

market at t = 0. We derive a unique log-linear equilibrium of these markets in Appendix

2.B, and summarize only the key features of the equilibrium here.

During the first round of trading in the futures market at t = 0, the futures price

aggregates the goods producers’private signals and is a log-linear function of logA and θ:

logF = h̃A logA+ h̃θθ + h̃0, (28)

where h̃A > 0 and h̃θ > 0. The futures price does not fully reveal the global productivity

logA because of the noise θ originated from the trading of financial traders.

The spot price that emerges from the commodity delivery at t = 1 represents another

round of information aggregation by pooling together the goods producers’demand for de-

livery. As a result of the arrival of the supply shock ξ, the spot price logPX does not fully

reveal logA or θ, but instead reflects a linear combination of logA, logF, and ξ:

logPX = hA logA+ hF logF + hξξ + h0, (29)

where hA > 0, hF > 0, and hξ < 0.

Despite the updated information from the spot price at t = 1, the informational content

of logF is not subsumed by the spot price, and still has an influence on goods producers’

expectations of the global productivity. As a result of this informational role, the commodity

consumed by producer i at t = 1 is increasing with logF :

logXi = lssi + lF logF + lP logPX + l0, (30)

where ls > 0 and lF > 0. The coeffi cient on the spot price lP has an undetermined sign,

which reflects the offsetting cost effect and informational effect of the spot price, similar to

our characterization of the main model.

While the trading of financial traders does not have any direct effect on commodity supply

and demand, it affects the futures price, through which it can further impact commodity

demand and the spot price. By substituting equation (28) into (29), we express the spot

price logPX as a linear combination of the primitive shocks logA, θ, and ξ:

logPX =
(
hA + hF h̃A

)
logA+ hF h̃θθ + hξξ + hF h̃0 + h0. (31)
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This expression shows that θ, the noise from financial traders’futures position, has a positive

effect on the spot price. Furthermore, by substituting (31) and (28) into (30) and then

integrating the individual producers’commodity demands, their aggregate demand is

log

[∫ ∞
−∞

X (si, F, PX) dΦ (εi)

]
=

[
ls + lPhA + lF h̃A + lPhF h̃A

]
logA+ (lF + lPhF ) h̃θθ + lPhξξ

+ (lF + lPhF ) h̃0 + lPh0 + l0 +
1

2
l2sτ
−1
s . (32)

We can further derive that the coeffi cient on θ in the aggregate commodity demand is

lF + lPhF = khF > 0.

Thus, θ also has a positive effect on aggregate commodity demand.

The effects of θ on commodity demand and the spot price clarify the simple yet impor-

tant conceptual point that traders in commodity futures markets, who never take or make

physical delivery, can nevertheless impact commodity markets through the informational

feedback channel of commodity futures prices. Information frictions in the futures market,

originating from the unobservability of the positions of different participants, are essential

for this feedback effect. In Appendix 2.B, we further derive that as τ θ → ∞ (i.e., the posi-

tion of financial traders becomes publicly observable), the spot market equilibrium converges

to the perfect-information benchmark. This result highlights the importance of improving

transparency in futures markets.

2.6 Implications

In this section, we discuss implications of our model for several empirical issues: esti-

mating the effects of supply and demand shocks, detecting speculative effects in commodity

markets, and understanding the puzzling commodity price boom in 2007 to 2008.

2.6.1. Estimating Effects of Supply and Demand Shocks

The feedback effect of commodity prices has important implications for studies of the

effects of supply and demand shocks in commodity markets. For example, Hamilton (1983)

emphasizes that disruptions to oil supply and resulting oil price increases can have a signifi-

cant impact on the real economy, while Kilian (2009) argues that aggregate demand shocks
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have a bigger impact on the oil market than previously thought. As supply and demand

shocks have opposite effects on oil prices, it is important to isolate their respective effects.

Existing literature commonly uses structural vector autoregressions (SVARs) to decom-

pose historical commodity price dynamics. The premise of these structural models is that,

while researchers cannot directly observe the shocks that hit commodity markets, agents in

the economy are able to observe the shocks and optimally respond to them. As highlighted by

our model, it is unrealistic to assume that agents can perfectly differentiate different types

of shocks. In particular, our model shows that in the presence of informational frictions,

supply shocks and demand shocks can have effects in sharp contrast to standard intuition

developed from perfect-information settings. These contrasts render the structural models

that ignore informational frictions unreliable and potentially misleading.

We now use the popular SVARmodel developed by Kilian (2009) for the global oil market

as an example. This model specifies the dynamics for a vector zt as

A0zt = α+
24∑
i=1

Aizt−i + εt.

The vector zt contains three variables: global crude oil production, a measure of real ac-

tivity, and the spot price for oil. The vector εt contains serially uncorrelated and mutually

independent structural shocks that hit the global oil market from different sources, such as

an oil supply shock, a global demand shock, and an oil-specific demand shock. By imposing

various restrictions on the matrix A0 (which is assumed to be invertible), the model recov-

ers the structural shocks εt from shocks et estimated from a reduced-form VAR model for

zt according to εt = A0et. Without going through the specific restrictions, the restrictions

imposed in the literature are typically motivated by conventional wisdom regarding how

supply, demand, and the spot price should react to the structural shocks under the implicit

assumption that agents can directly observe them. Under this assumption, the structural

shocks εt and the innovations to zt (i.e., et) are informationally equivalent.

It is important to recognize that, in practice, agents observe neither the structural shocks

εt nor the full vector zt. While agents can observe oil prices in a timely fashion, they observe

quantity variables such as global oil production and GDP with a substantial delay on the

order of several quarters.54 This delay in observing the full vector zt makes it impossible for
54This delay results from the fact that it often takes several quarters for different countries to report both

their GDP and their supply of and demand for crude oil, and some countries may even choose not to report
at all. The measure of real activity used by Kilian (2009) builds on an index from dry bulk cargo freight
rates. This index, while useful, is more a measure of expectations than a direct indicator of real activity.
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agents to fully recover the structural shocks. Instead, they have to rely on what they can ob-

serve at the time to partially infer these shocks. Thus, by assuming that agents can directly

observe the structural shocks, the model by Kilian (2009) ignores the realistic informational

frictions that agents face in the global oil market. Without a systematic comparison using a

correctly specified model, it is diffi cult to precisely determine the consequences of the mis-

specification. According to our model, since agents cannot disentangle supply and demand

shocks, they partially attribute the observed price change caused by a positive supply shock

to a weaker global economy. As a result, they reduce their own commodity demand, which

amplifies the price impact of the initial supply shock. Therefore, by ignoring this learning

effect induced by informational frictions, the misspecified SVAR model is likely to understate

the effect of supply shocks and overstate of the effect of demand shocks.

Our model provides the basic ingredients for constructing more complete empirical mod-

els that account for informational frictions faced by economic agents. Ideally, one would

want to build a full economic model that systematically accounts for how commodity prices

aggregate agents’dispersed information and how each agent forms its expectations based on

publicly observed commodity prices together with its own private signal. Even without such

a model, one can still extend the more practical SVAR approach to explicitly account for

the information set available to agents at the time they make their decisions. According to

our analysis, the key is to account for how commodity prices impact agents’expectations.

2.6.2. Detecting Speculative Effects

In the ongoing debate on whether speculation has affected commodity prices during the

commodity market boom and bust of 2007 to 2008, many studies (e.g., Kilian and Murphy

(2014), Juvenal and Petrella (2012), and Knittel and Pindyck (2013)) adopt an inventory-

based detection strategy. This strategy builds on the widely held argument that if speculators

artificially drive up the commodity price, consumers will find consuming the commodity too

expensive and thus reduce consumption, causing inventory of the commodity to spike.

Under this argument, price increases in the absence of inventory increases are explained by

fundamental demand. Consequently, price effects induced by speculation should be limited to

price increases that are accompanied by contemporaneous increases in inventory. Motivated

by this argument, the literature, as reviewed by Fattouh, Kilian, and Mahadeva (2012), tends

to use the lack of pronounced oil inventory spike before the July 2008 peak in oil prices as
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evidence ruling out any significant role played by speculation during the oil price boom.

Despite the intuitive appeal of this inventory-based detection strategy, it ignores im-

portant informational frictions faced by consumers in reality. Like the SVAR models we

discussed earlier, it crucially relies on the assumption that oil consumers observe global eco-

nomic fundamentals and are therefore able to recognize whether current oil prices are too

high relative to fundamentals in making their consumption decisions. This assumption is

unrealistic during periods with great economic uncertainty, especially during 2007 to 2008

when consumers faced severe informational frictions in inferring the strength of the global

economy.

Our model illustrates a counter example to this widely used detection strategy. Under the

conditions specified by Proposition 6, the price elasticity of the goods producers’commodity

demand is positive.55 In such an environment where goods producers have a positive demand

elasticity, if speculation drives up the commodity price, the increased price will also cause

goods producers to consume more rather than less of the commodity by influencing their

expectations about the strength of the global economy. Our model therefore shows that in

the presence of severe informational frictions, speculation can drive up commodity prices

without necessarily reducing commodity consumption and boosting inventory. This insight

points to the weak power of the widely used inventory-based strategy in detecting speculative

effects. In this light, the absence of a pronounced oil inventory spike before the July 2008

peak in oil prices cannot be taken as evidence rejecting the presence of a speculative effect

during this period.

2.6.3. Understanding the Commodity Price Boom of 2007 to 2008

In the aftermath of the synchronized price boom and bust of major commodities in 2007 to

2008, the price boom has been attributed to the combination of rapidly growing demand from

emerging economies and stagnant supply (e.g., Hamilton (2009)). This argument is popular

for explaining the commodity price increases before 2008. However, oil prices continued to

rise over 40%, peaking at $147 per barrel, from January to July 2008 at a time when the U.S.

had already entered a recession (in November 2007 as dated by the NBER), Bear Stearns

had collapsed (in March 2008), and most other developed economies were already showing

signs of weakness. While emerging economies remained strong at the time, it is diffi cult to

55We can also provide similar conditions for the extended model.
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argue, in hindsight, that their growth sped up so much to be able to offset the weakness of

the developed economies and cause oil prices to rise another 40%.

The informational frictions faced by market participants can help us understand this

puzzling price boom. As a result of the lack of reliable data on emerging economies, it was

diffi cult to precisely measure their economic strength in real time. The prices of crude oil

and other commodities were regarded as important price signals (see the evidence referenced

in Footnote 42). This environment makes our model particularly appealing for linking the

large commodity price increases in early 2008 to the concurrent large inflow of investment

capital, motivated by many portfolio managers seeking to diversify their portfolios out of

declining stock markets and into the more promising commodity futures markets (e.g., Tang

and Xiong (2012)). By pushing up commodity futures prices and sending a wrong price

signal, the large investment flow might have confused goods producers across the world into

believing that emerging economies were stronger than they actually were. This distorted

expectation could have prevented the producers from reducing their commodity demand

despite the high commodity prices, which in turn made the high prices sustainable. Even

though more information would eventually correct the producers’ expectations, the high

commodity prices persisted for several months before their collapse in the second half of

2008. Interestingly, after oil prices dropped from their peak of $147 to $40 per barrel at the

end of 2008, oil demand largely evaporated and inventory piled up, despite the much lower

prices.

Taken together, the commodity price boom of 2007 to 2008 was not necessarily a price

bubble detached from economic fundamentals. Instead, it is plausible to argue that, in

the presence of severe informational frictions in early 2008, the large inflow of investment

capital might have distorted signals coming from commodity prices and led to confusion

among market participants about the strength of emerging economies. This confusion, in

turn, could have amplified the boom and bust of commodity prices, which echoes Singleton’s

(2014) emphasis on accounting for agents’expectations in explaining this price cycle. To

systematically examine this hypothesis would require estimating a structural model that

explicitly accounts for the informational feedback effect of commodity prices.

2.7 Conclusion

This paper develops a tractable model to analyze effects of informational frictions in
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commodity markets. Our model shows that, through the informational role of commodity

prices, goods producers’commodity demand can increase with the price, and supply shocks

can have an amplified effect on the price and an undetermined effect on producers’demand.

By further incorporating one round of futures market trading, our extended model shows

that futures prices can also serve as important price signals, even when goods producers also

observe spot prices. Thus, through the same informational channel, noise in futures market

trading can also interfere with goods producers’expectations and affect their commodity

demand. Our analysis highlights the weakness common in empirical and policy studies of

assuming that different shocks are publicly observable to market participants. Our analysis

also provides a coherent argument for how the large inflow of investment capital to commodity

futures markets, by jamming commodity price signals and leading to confusion about the

strength of emerging economies, might have amplified the boom and bust of commodity

prices in the 2007 to 2008 period.
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2.A: Proofs of Propositions

Proof of Proposition 2.1:

Consider the maximization problem of the household on island i:

max
{Ci}i∈[0,1]

(
Hi

1− ηH

)1−ηH
{

1

ηH

(
Ci (i)

1− ηc

)1−ηc
(∫

[0,1]/i
Cj (i) dj

ηc

)ηc
}ηH

subject to the budget constraint

PH +

∫ 1

0

PjCj (i) dj = PiAli. (A.1)

The first order conditions with respect to Ci and C∗i are(
C∗i
Ci

)η (
1− η
η

)η
= λiPi (A.2)(

Ci
C∗i

)1−η (
η

1− η

)1−η

= λiPj (A.3)

where λi is the Lagrange multiplier for his budget constraint. Dividing equations (A.2) and

(A.3) leads to η
1−η

Ci
C∗i

=
Pj
Pi
, which is equivalent to PjC∗i = η

1−ηPiCi. By substituting this

equation back to the household’s budget constraint in (A.1), we obtain Ci = (1− η)Yi.

Market clearing of the island’s produced goods requires Ci +C∗j = Yi, which implies that

C∗j = ηYi. The symmetric problem of the household of island j implies that Cj = (1− η)Yj,

and market clearing of the goods produced by island j implies C∗i = ηYj.

The first-order condition in equation (A.2) also gives the price of the goods produced by

island i. Since the household’s budget constraint in (A.1) is entirely in nominal terms, the

price system is only identified up to λi, the Lagrange multiplier. Following Angeletos and

La’O (2013), we normalize λi to one. Then,

Pi =

(
C∗i
Ci

)η (
1− η
η

)η
=

(
ηYj

(1− η)Yi

)η (
1− η
η

)η
=

(
Yj
Yi

)η
.

Proof of Proposition 2.2:

We first conjecture that the commodity price and each goods producer’s commodity

demand take the following log-linear forms:

logPX = h0 + hA logA+ hξξ, (A.4)

logXi = l0 + lssi + lP logPX , (A.5)
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where the coeffi cients h0, hA, hξ, l0, ls, and lP will be determined by equilibrium conditions.

Define

z ≡ logPX − h0 − hξξ
hA

= logA+
hξ
hA

(
ξ − ξ

)
,

which is a suffi cient statistic of information contained in the commodity price PX . Then,

conditional on observing its private signal si and the commodity price PX , goods producer

i’s expectation of logA is

E [logA | si, logPX ] = E [logA | si, z] =
1

τA + τ s +
h2A
h2ξ
τ ξ

(
τAā+ τ ssi +

h2
A

h2
ξ

τ ξz

)
,

and its conditional variance of logA is

V ar [logA | si, logPX ] =

(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1

.

According to equation (22),

logXi =
1

1− φ (1− η)

{
log φ+ log

(
E
[
AXφη

j | si, logPX

])
− logPX

}
. (A.6)

By using equation (A.5), we obtain

E
[
AXφη

j | si, logPX

]
= E {exp [logA+ φη (l0 + lssj + lP logPX) | si, z]}

= exp [φη (l0 + lP logPX)] · E [exp ((1 + φηls) logA+ φηlsεj) |si, logPX ]

= exp

{
φη (l0 + lP logPX) + (1 + φηls)E [logA | si, logPX ] +

(1 + φηls)
2

2
V ar [logA | si, logPX ]

+
φ2η2l2s

2
V ar [εj | si, logPX ] + (1 + φηls)φηlsCov [εj logA | si, logPX ]

}
.

By recognizing that Cov [εj logA | si, logPX ] = 0 and substituting in the expressions of

E [logA | si, logPX ] , V ar [logA | si, logPX ], and V ar [εj | si, logPX ], we can further sim-

plify the expression of E
[
AXφη

j | si, logPX

]
. Equation (A.6) then gives

logXi =
1

1− φ (1− η)
log φ+

φη

1− φ (1− η)
l0 +

1

1− φ (1− η)
(φηlP − 1) logPX

+

(
1 + φηls

1− φ (1− η)

)(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1(
τAā+ τ ssi +

h2
A

h2
ξ

τ ξ
logPX − h0 − hξξ

hA

)

+
(1 + φηls)

2

2 (1− φ (1− η))

(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1

+
φ2η2l2s

2 (1− φ (1− η))
τ−1
s .
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For the above equation to match the conjectured equilibrium position in (A.5), the constant

term and the coeffi cients of si and logPX have to match. We thus obtain the following

equations for determining the coeffi cients in (A.5):

l0 =

(
1 + φηls

1− φ (1− η)

)(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1(
τAā−

hA
h2
ξ

τ ξ
(
h0 + hξξ

))
(A.7)

+
(1 + φηls)

2

2 (1− φ (1− η))

(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1
φη

1− φ (1− η)
l0

+
φ2η2l2s

2 (1− φ (1− η))
τ−1
s +

1

1− φ (1− η)
log φ,

ls =

(
1 + φηls

1− φ (1− η)

)(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1

τ s, (A.8)

lP =
φη

1− φ (1− η)
lP +

(
1 + φηls

1− φ (1− η)

)(
τA + τ s +

h2
A

h2
ξ

τ ξ

)−1
hA
h2
ξ

τ ξ (A.9)

− 1

1− φ (1− η)
.

By substituting (A.8) into (A.9), we have

ls =
1 + (1− φ) lP
1− φ (1− η)

h2
ξ

hA
τ sτ

−1
ξ . (A.10)

By manipulating (A.8), we also have that

ls =

(
τA +

1− φ
1− φ (1− η)

τ s +
h2
A

h2
ξ

τ ξ

)−1
τ s

1− φ (1− η)
. (A.11)

We now use the market-clearing condition for the commodity market to determine three other

equations for the coeffi cients in the conjectured log-linear commodity price and demand.

Aggregating (A.5) gives the aggregate commodity demand of the goods producers:∫ ∞
−∞

X (si, PX) dΦ (εi) =

∫ ∞
−∞

exp [l0 + lssi + lP logPX ] dΦ (εi)

=

∫ ∞
−∞

exp [l0 + ls (logA+ εi) + lP (h0 + hA logA+ hξξ)] dΦ (εi)

= exp

[
(ls + lPhA) logA+ lPhξξ + l0 + lPh0 +

1

2
l2sτ
−1
s

]
. (A.12)

Equation (20) implies that logXS = k logPX + ξ. Thus, the market-clearing condition

log

[∫ ∞
−∞

X (si, PX) dΦ (εi)

]
= logXS (PX)
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requires that the coeffi cients on logA and ξ and the constant term be identical on both sides:

ls + lPhA = khA, (A.13)

lPhξ = 1 + khξ, (A.14)

l0 + lPh0 +
1

2
l2sτ
−1
s = kh0. (A.15)

Equation (A.14) directly implies that

lP = k + h−1
ξ . (A.16)

Equations (A.13) and (A.14) together imply that

ls = −h−1
ξ hA. (A.17)

By combining this equation with (A.11), and defining b = −ls = h−1
ξ hA, we arrive at

b3 +

(
τA +

1− φ
1− φ (1− η)

τ s

)
τ−1
ξ b+

τ−1
ξ τ s

1− φ (1− η)
= 0, (A.18)

where b is a real root of a depressed cubic polynomial of the form x3 + px+ q = 0, which has

one real and two complex roots. As p and q are both positive, the left-hand side (LHS) is

monotonically increasing in b while the right-hand side (RHS) is fixed. Thus, the real root

b is unique and has to be negative: b < 0.

Following Cardano’s method, the one real root of equation (A.18) is given by

b =

(
τ−1
ξ τ s

2 (1− φ (1− η))

)1/3
3

√√√√√−1 +

√√√√1 +
4

27

(
τ−1
ξ τ s

1− φ (1− η)

)−2(
τA +

1− φ
1− φ (1− η)

τ s

)3

+

(
τ−1
ξ τ s

2 (1− φ (1− η))

)1/3
3

√√√√√−1−

√√√√1 +
4

27

(
τ−1
ξ τ s

1− φ (1− η)

)−2(
τA +

1− φ
1− φ (1− η)

τ s

)3

.(A.19)

Since b = h−1
ξ hA, we have hξ = b−1hA, which together with our expression for ls and equations

(A.10) and (A.16) implies that expressions for hA and hξ be given as in (24) and (25). With

hA and hξ determined, ls is then given by (A.11), lP by (A.16), h0 by (A.7) as

h0 =
1

1 + k (1− φ)
log φ− 1− φ (1− η)

1 + k (1− φ)
bτ−1

s

(
τAā− bτ ξξ

)
(A.20)

+
1

2

1− φ (1− η)

1 + k (1− φ)

((
1− φ+ φ2η2

1− φ (1− η)
+ φη

)
b− 1

)
τ−1
s b.
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and l0 by equation (A.15) as

l0 = (k − lP )h0 −
1

2
l2sτ
−1
s . (A.21)

Proof of Proposition 2.3:

We keep the same setting outlined in the main model, except we let A and ξ be observable

by all market participants. We first derive the equilibrium. In this setting, each producer’s

private signal si becomes useless as A is directly observable. We can still use equation

(22) to derive producer i’s optimal commodity demand. As the producers now share the

same information about A, they must have the same expectation about their future trading

partners’production decisions. As a result, Xi = Xj for any i and j. Equation (22) therefore

implies that in equilibrium Xi =
(
φA
PX

) 1
1−φ

.

Market clearing of the commodity market requires that the producers’aggregate demand

equals the commodity supply, that is, Xi = XS. From equation (20), we must have that

logXi = k logPX + ξ. We then obtain logPX and logXi stated in Proposition 3. It is clear

that this equilibrium is unique.

Proof of Proposition 2.4:

As τ s → ∞, equation (A.18) implies that b goes to − 1
1−φ . Consequently, as τ s → ∞,

equation (24) gives that hA → 1
1+k(1−φ)

, and equation (25) gives that hξ → − 1−φ
1+k(1−φ)

.

Therefore, both hA and hξ converge to their corresponding values in the perfect-information

benchmark.

That |hξ| is larger than it is in the perfect-information benchmark is apparent since the
numerator of |hξ| in equation (25) is positive and larger than 1−φ. That hA is lower follows
by substituting equation (A.18) into equation (24) to arrive at

hA =
1 + τAτ

−1
s (1− φ (1− η)) b

1 + k (1− φ)
.

Since b < 0, it follows that hA < 1
1+k(1−φ)

, which is the value of hA in the perfect-information

benchmark.

Proof of Proposition 2.5:

As ls = −h−1
ξ hA from (A.17), π =

h2A/τA
h2ξ/τξ

= l2s
τξ
τA
. Since ls > 0, it is suffi cient to study the

behavior of how ls varies with τ s and η to understand how π changes with τ s and η. To see
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that ls is monotonically increasing in τ s, we note that ls = −b, where b is the only real and
negative root of equation (A.18). Then, by the Implicit Function Theorem it is apparent

that

∂b

∂τ s
= −

1−φ
1−φ(1−η)

τ ξτ sb+
τsτξ

1−φ(1−η)

3b2 +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

τ−1
s =

b3 + τAτ
−1
ξ b

3b2 +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

τ−1
s < 0.

Similarly, we have
∂b

∂η
= φτ sτ

−1
ξ

(1− (1− φ) ls)
1

(1−φ(1−η))2

3l2s +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

> 0.

Thus, ls is increasing in τ s and decreasing in η, which in turn implies that π is increasing in

τ s and decreasing in η.

To analyze the dependence of π on τ ξ, we have

∂π

∂τ ξ
= l2s

1

τA
+ 2ls

τ ξ
τA

∂ls
∂τ ξ

=
1

τA
b

(
b+ 2τ ξ

∂b

∂τ ξ

)
.

By applying the Implicit Function Theorem again, we obtain

∂b

∂τ ξ
=

(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ b+

τ−1ξ τs

1−φ(1−η)

3b2 +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

τ−1
ξ =

−b3

3b2 +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

τ−1
ξ > 0.

By substituting this into the above expression for ∂π
∂τξ
, we find that

∂π

∂τ ξ
=

b2

τA

 b2 +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

3b2 +
(
τA + 1−φ

1−φ(1−η)
τ s

)
τ−1
ξ

 > 0.

Therefore, π is monotonically increasing in τ ξ.

Proof of Proposition 2.6:

Based on lP and hξ given in equations (A.16) and (25), lP > 0 is equivalent to b2 >

k−1τ−1ξ τs

1−φ(1−η)
, which, as ls = −b > 0, is in turn equivalent to ls > l∗s =

√
k−1τ−1ξ τs

1−φ(1−η)
. In words,

this condition states that the commodity price has to be suffi ciently informative. As b is the

unique real and negative root of equation (A.18), this condition is equivalent to the following

condition on the LHS of equation (A.18): LHS(−l∗s) > 0. By substituting l∗s into the LHS,

we obtain the following condition:

−
k−3/2τ−1

ξ τ s

1− φ (1− η)
−
(
τA +

1− φ
1− φ (1− η)

τ s

)
τ−1
ξ k−1/2 +

√
τ−1
ξ τ s

1− φ (1− η)
> 0,
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which, as 1− φ (1− η) > 0 and defining u =
√

1− φ (1− η), can be rewritten as

u2 − uτ−1
A

√
kτ ξτ s +

(
1− φ+ k−1

)
τ−1
A τ s < 0.

Note that the LHS of this condition LHS (u) is a quadratic form of u, which has its minimum

at u∗ = 1
2τA

√
kτ ξτ s. Thus, this condition is satisfied if and only if the following occurs. First,

LHS (u∗) < 0, which is equivalent to τ ξ/τA > 4k−1 (1− φ+ k−1) , the first condition given

in Proposition 6. Second,

LHS (u) = (u− u∗)2 −
[
(u∗)2 −

(
1− φ+ k−1

)
τ−1
A τ s

]
< 0,

which is equivalent to

u− 1
2τA

√
kτ ξτ s

1
2
τ

1/2
s τ−1

A

√
kτ ξ − 4 (1− φ+ k−1) τA

∈ (−1, 1) .

This leads to the second condition given in Proposition 6.

Proof of Proposition 2.7:

We begin by evaluating the first component of the social welfare from the island house-

holds’goods consumption. We denote this component by

WC = E

[∫ 1

0

(
C (i)

1− η

)1−η (
C∗ (i)

η

)η
di

]
.

In the perfect-information benchmark, by substituting the symmetric consumption of all

island households, the expected social welfare from consumption is

logWC
bench = logE

[∫ 1

0

AXφ
i di

]
= logE

[
AXφ

i

]
.

Given logXi derived in Proposition 3, we have

logWC
bench =

φk

1 + k (1− φ)
log φ+

1 + k

1 + k (1− φ)
ā+

1

2

(
1 + k

1 + k (1− φ)

)2

τ−1
A

+
φ

1 + k (1− φ)
ξ +

1

2

(
φ

1 + k (1− φ)

)2

τ−1
ξ .

Note that the total goods output in this economy is given by

E [Y aggr
bench] = E

[∫ 1

0

Yidi

]
= E

[∫ 1

0

AXφ
i di

]
= WC

bench,
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which indicates that in this symmetric equilibrium with perfect information, the expected

social welfare from consumption is equal to the expected aggregate goods output.

In the presence of informational frictions, by using Proposition 1, the expected social

welfare from consumption is given by

logWC = logE

[
A

∫ ∞
−∞

∫ ∞
−∞

X (si, PX)φ(1−η)X (sj, PX)φη dΦ (εi) dΦ (εj)

]
,

where in the second line, an integral over εj, that is, noise in the signal of the goods producer

of island j, is taken to compute expectation over uncertainty in εj. By substituting

logX (εi) = l0 + lP logPX + lssi = l0 + lP logPX + ls (logA+ εi)

and logPX = h0 +hA logA+hξξ with our expressions for ls, lP , hξ, hA, and b3 from equation

(A.18), we obtain

logWC =
φk

1 + k (1− φ)
log φ+

1 + k

1 + k (1− φ)
ā+

1

2
(1 + φkhA)2 τ−1

A +
φ

1 + k (1− φ)
ξ

+
1

2
φ2
(
1 + kb−1hA

)2
τ−1
ξ +

1

2

(
1− 1

φ
− 2η (1− η)

)
φ2b2τ−1

s

−1

2

φk (1− φ (1− η))

1 + k (1− φ)

(
1−

(
1− φ+ φ2η2

1− φ (1− η)
+ φη

)
b

)
bτ−1

s .

The logarithm of the expected total output in this economy is given by

logE [Y aggr] = logE

[∫ ∞
−∞

Yidi

]
= logE

[
A

∫ ∞
−∞

X (εi)
φ dΦ (εi)

]
= logE

[
eφl0+φlP logPX+(1+φls) logA

∫ ∞
−∞

eφlsεidΦ (εi)

]
= φl0 +

1

2
φ2l2sτ

−1
s + φlPh0 + φlPhξξ +

1

2
φ2l2Ph

2
ξτ
−1
ξ + (1 + φls + φlPhA) ā

+
1

2
(1 + φls + φlPhA)2 τ−1

A .

Again by substituting the expressions for ls, lP , hξ, and hA, we have

logE [Y aggr] =
φk

1 + k (1− φ)
log φ+

(
1 + k

1 + k (1− φ)

)
ā+

1

2
(1 + φkhA)2 τ−1

A

+φ

(
1

1 + k (1− φ)

)
ξ +

1

2
φ2
(
1 + kb−1hA

)2
τ−1
ξ −

1

2
φ (1− φ) b2τ−1

s

−1

2

φk (1− φ (1− η))

1 + k (1− φ)

(
1−

(
1− φ+ φ2η2

1− φ (1− η)
+ φη

)
b

)
bτ−1

s .

It is then easy to compute

logE [Y aggr]− logW = 2φ2η (1− η) b2τ−1
s > 0.
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We now compare expected aggregate goods output with and without informational frictions:

logE [Y aggr]− logE [Y aggr
bench]

=
1

2

(
(1 + φkhA)2 −

(
1 +

φk

1 + k (1− φ)

)2
)
τ−1
A

+
1

2
φ2

((
1 + kb−1hA

)2 −
(

1− k 1− φ
1 + k (1− φ)

)2
)
τ−1
ξ −

1

2
φ (1− φ) b2τ−1

s

−1

2

φk (1− φ (1− η))

1 + k (1− φ)
(1− (1− φ+ φη (1 + φη)) b) bτ−1

s .

Substituting with equations (24) and (A.18), we arrive at

logE [Y aggr]− logE [Y aggr
bench]

=
1

2

φk (1− φ (1− η)) τ−1
s b

(1 + k (1− φ))2 (1 + k − φb)− 1

2
φ (1− φ) b2τ−1

s

+
1

2

φk (1− φ (1− η)) τ−1
s b2

1 + k (1− φ)

(
1− φ

1− φ (1− η)
+ φ2η2 +

(
φ2η2

1− φ (1− η)
− 1

)
φ (1− η)

)
.

Notice that φ2η2

1−φ(1−η)
< 1 and the first term is negative since b < 0. Further note that

1

2

φk (1− φ (1− η)) τ−1
s b2

1 + k (1− φ)

1− φ
1− φ (1− η)

− 1

2
φ (1− φ) b2τ−1

s

= −
(

1− kφ
1 + k (1− φ)

)
1

2
φ (1− φ) b2τ−1

s < 0,

and
1

2

φk (1− φ (1− η)) τ−1
s b2

1 + k (1− φ)

(
φ2η2 − φ− (1 + k) b−1

1 + k (1− φ)

)
< 0,

because φ2η2 < φ and, since φ < 1 and 0 > b > − 1
1−φ , k (1− φ)φ2η2 + (1 + k) b−1 < 0. To

see that b > − 1
1−φ , we rewrite equation (A.18) as

b3 + τAτ
−1
ξ b+ ((1− φ) b+ 1)

τ sτ
−1
ξ

1− φ (1− η)
= 0,

from which it follows that b > − 1
1−φ . Therefore, we see that

logE [Y aggr]− logE [Y aggr
bench] < 0.

Given that the expected social welfare from consumption WC
bench is equal to the expected

aggregate output E [Y aggr
bench] in the perfect-information benchmark, and in the presence of

informational frictions the expected social welfare from consumptionWC is strictly less than
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the expected aggregate goods output E [Y aggr], the expected social welfare from consumption

is lower in the presence of information frictions than in the perfect-information benchmark.

Now we return to the second part of the expected social welfare from commodity suppliers’

disutility of labor. We denote this part by

WL = E

[
k

1 + k
e−ξ/kX

1+k
k

S

]
.

In the perfect-information benchmark, by using logXS derived in Proposition 3, we have

logWL
bench = log

k

1 + k
+

1 + k

1 + k (1− φ)
log φ+

1 + k

1 + k (1− φ)
ā+

φ

1 + k (1− φ)
ξ̄

+
1

2

(
1 + k

1 + k (1− φ)

)2

τ−1
A +

1

2

(
φ

1 + k (1− φ)

)2

τ−1
ξ .

In the presence of informational frictions, aggregate demand XS is given by

logXS = k logPX + ξ = khA logA+ (khξ + 1) ξ + kh0,

and therefore the suppliers’disutility of labor reduces to

logWL = log
k

1 + k
+ (1 + k)h0 + (1 + k)hAā+ (1 + (1 + k)hξ) ξ̄

+
1

2
(1 + k)2 h2

Aτ
−1
A +

1

2
(1 + (1 + k)hξ)

2 τ−1
ξ .

We now analyze the overall social welfare W = WC − WL. We can express the relative

welfare in the two economies as

W

Wbench

=
WC −WL

WC
bench −WL

bench

=
WC

WC
bench

1−WL/WC

1−WL
bench/W

C
bench

<
1−WL/WC

1−WL
bench/W

C
bench

,

where the last inequality follows from WC < WC
bench, as proved above.

Note that in the perfect-information benchmark,

logWL
bench − logWC

bench = log
φk

1 + k
.

Thus, 1 −WL
bench/W

C
bench = 1 − φk

1+k
> 0. Therefore, it is suffi cient to show that WL/WC ≥

WL
bench/W

C
bench to establish that

W
Wbench

< 1.

With some manipulation of our expressions for logWL and logWC , and by substituting

our expressions for hA and hξ and making use of equation (A.18), we arrive at

log
(
WL/WC

)
= log

φk

1 + k
+

1

2
bτ−1

s

((
1− φ2 + φ2η2 + φη + φ2η (1− η)

)
b− (1− φ (1− η))

)
− (1− φ (1− η)) τ−1

s b2 − 1

2
(1− φ (1− η))2 τ−2

s b2
(
τA + τ ξb

2
)
.
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Finally, by invoking equation (A.18) to rewrite the last term, we find that

log
(
WL/WC

)
= log

φk

1 + k
.

Thus, log
(
WL/WC

)
= log

(
WL
bench/W

C
bench

)
, which in turn establishes the proposition.
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2.B: Model Extension

2.B.1 Model Setting

We introduce a new date t = 0 before the dates t = 1 and 2 in the baseline model, and

a centralized futures market at t = 0 for delivery of the commodity at t = 1. All agents

can take positions in the futures market at t = 0, and can choose to revise or unwind their

positions before delivery at t = 1. The ability to unwind positions before delivery is an

advantage that makes futures market trading appealing in practice.

We keep all of the agents in the baseline model: island households, goods producers,

and commodity suppliers and add a group of financial traders. These traders invest in the

commodity by taking a long position in the futures market at t = 0 and then unwinding this

position at t = 1 without taking delivery.

To focus on information aggregation through trading in the futures market, we assume

that there is no spot market trading at t = 0. At t = 1, a spot market naturally emerges

through commodity delivery for the futures market. Commodity suppliers take a short

position in the futures market at t = 0 and then make delivery at t = 1. Suppliers’marginal

cost of supplying the commodity determines the spot price. When a trader chooses to unwind

a futures position at t = 1, his gain/loss is determined by this spot price.

Table 2B.1

Timeline of the Extended Model

t=0 t=1 t=2

Futures Market Spot Market Goods Market

Households Trade/Consume Goods

Producers
Observe Signals

Long Futures

Take Delivery

Produce Goods

Suppliers Short Futures
Observe Supply Shock

Deliver Commodity

Fin Traders Long/Short Futures Unwind Position
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Table 2B.1 specifies the timeline of the extended model. We keep the same specification

for the island households, who trade and consume both home and away goods at t = 2

as described in Section I.A of the main paper. We modify some of the specifications for

goods producers and commodity suppliers and describe our specifications for financial traders

below.

2.B.1.1 Goods Producers

As in the main model, we allow goods producers to have the same production technology

and receive their private signals at t = 0. Each producer takes a long position in the futures

market at t = 0 and then commodity delivery at t = 1. The timing of the producer’s

information flow is key to our analysis. At t = 0, producer i’s information set I0
i = {si, F}

includes its private signal si and the traded futures price F . At t = 1, its information set

I1
i = {si, F, PX} includes the updated spot price PX .
We allow the producer to use its updated information set at t = 1 to revise its futures

position for commodity delivery. That is, its production decision is based on not only its

private signal and the futures price but also the updated spot price. Thus, it is not obvious

that noise in the futures market can affect the producer’s production decision and commodity

demand. We examine this key issue with our extended model.

At t = 1, the producer optimizes its production decision Xi (i.e., commodity demand)

based on its updated information set I1
i :

max
Xi

E
[
PiYi| I1

i

]
− PXXi + (PX − F )X̃i.

The first two terms above represent the producer’s expected profit from goods production and

the last term is the gain/loss from its futures position. The producer’s optimal production

decision is then

Xi =
{
φE
[
AXφη

j

∣∣∣ I1
i

]/
PX

}1/(1−φ(1−η))

. (2.B.1)

When deciding its futures position at t = 0, the producer faces a nuanced issue in

that, because it does not need to commit its later production decision to the initial futures

position, it may engage in dynamic trading. In other words, it could choose a futures position

to maximize its expected trading profit at t = 0. This trading motive is not essential

for our focus on analyzing the aggregation of the producers’ information but significantly

complicates derivation of the futures market equilibrium. To avoid this complication, we
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make a simplifying assumption that the producers are myopic at t = 0. That is, at t =

0, each producer chooses a futures position as if it commits to taking full delivery and

using the good for production, even though the producer can revise its production decision

based on the updated information at t = 1. While this simplifying assumption affects each

producer’s trading profit, it is innocuous for our analysis of how the futures price feeds back

to the producers’later production decisions because each producer still makes good use of its

information and the futures price is informative by aggregating each producer’s information.

Specifically, at t = 0 the producer chooses a futures position X̃i to maximize the following

expected production profit based on its information set I0
i :

max
X̃i

E
[
PiYi| I0

i

]
− FX̃i,

where it treats X̃i as its production input at t = 1. Throughout the rest of this appendix, we

use a tilde to denote variables and coeffi cients associated with the futures market at t = 0;

we maintain the same notation without the tilde for variables related to the spot market at

t = 1. The producer’s futures position is then

X̃i =
{
φE
[
AX̃φη

j

∣∣∣ I0
i

]/
F
}1/(1−φ(1−η))

. (2.B.2)

2.B.1.2 Financial Traders

We introduce a group of financial traders, who trade in the futures market at t = 0

and unwind their position at t = 1 before delivery. For simplicity, we assume that the

aggregate position of financial traders and goods producers is given by the aggregate position

of producers multiplied by a factor eκ logA+θ:

eκ logA+θ

∫ ∞
−∞

X̃i (si, F ) dΦ (εi) ,

where the factor eκ logA+θ represents the contribution of financial traders. This multiplicative

specification is useful for ensuring the tractable log-linear equilibrium of our model.56

56From an economic perspective, this specification implies that the position of financial traders tends to
expand and contract with producers’futures position, which is broadly consistent with the expansion and
contraction of the aggregate commodity futures positions of portfolio investors and hedge funds in the recent
commodity price boom-and-bust cycle (e.g., Cheng, Kirilenko, and Xiong (2012)). Also note that eκ logA+θ

can be less than one. This implies that financial traders may take a net short position at some point, which
is consistent with short positions taken by hedge funds in practice.
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We allow the contribution of financial traders eκ logA+θ to contain a component κ logA,

where κ > 0, to capture the possibility that the trading of financial traders is partially driven

by their knowledge of the global fundamental logA.

The trading of financial traders also contains a random component θ, which is unob-

servable by other market participants. This assumption is realistic in two respects. First,

in practice, the trading of financial traders is often driven by portfolio diversification and

risk-control purposes unrelated to fundamentals of commodity markets. Second, market

participants cannot directly observe others’positions.57 Specifically, we assume that θ has a

normal distribution independent of other sources of uncertainty in the model,

θ v N
(
θ, τ−1

θ

)
,

with mean θ and variance τ−1
θ .

The presence of financial traders introduces an additional source of uncertainty to the

futures market, as both goods producers and commodity suppliers cannot observe θ at t = 0.

At t = 1, financial traders unwind their positions, and commodity suppliers make delivery

only to goods producers.

2.B.1.3 Commodity Suppliers

Commodity suppliers take a short position of X̃S in the futures market at t = 0 and

then make delivery of XS units of the commodity at t = 1. We maintain the same convex

cost function for the suppliers: k
1+k

e−ξ/k (XS)
1+k
k , where the supply shock ξ has a Gaussian

distribution N
(
ξ̄, τ−1

ξ

)
.

We assume that the suppliers observe their supply shock ξ only at t = 1, which implies

that the supply shock does not affect the futures price at t = 0 and instead hits the spot

market at t = 1. Due to this timing, the supply shock provides a camouflage for the un-

winding of financial traders’aggregate futures position at t = 1. That is, even after financial

57Despite the fact that large traders need to report their futures positions to the Commodities Future
Trading Commission (CFTC) on a daily basis, ambiguity in trader classification and netting of positions taken
by traders who are involved in different lines of business nevertheless make the aggregate positions provided
by the CFTC’s weekly Commitment of Traders Report to the public imprecise. See Cheng, Kirilenko, and
Xiong (2012) for a more detailed discussion of the trader classification and netting problems in the CFTC’s
Large Trader Reporting System and a summary of positions taken by commodity index traders and hedge
funds.
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traders unwind their position, the commodity spot price does not reveal their position.58

In summary, the suppliers’ information set at t = 0 is I0
S = {F}, and at t = 1 is

I1
S = {F, PX , ξ} . At t = 1, the suppliers face the following optimization problem:

max
XS

PXXS −
k

1 + k
e−ξ/kX

1+k
k

S + (F − PX) X̃S,

where they choose XS– the quantity of commodity delivery– to maximize the profit from

delivery in the first two terms. The last term is the gain/loss from their initial futures

position. The suppliers’optimal supply curve is then given by XS = eξP k
X , which is identical

to their supply curve in the baseline model.

At t = 0, like the goods producers, the suppliers also face a nuanced issue related to

dynamic trading. As their initial futures position does not necessarily equal their later

commodity delivery, they may also choose to maximize the trading profit from t = 0 to t = 1.

To be consistent with our earlier assumption about the myopic behavior of goods producers,

we assume that at t = 0 the suppliers believe that goods producers will take full delivery of

their futures positions and that the suppliers choose their initial short position to myopically

maximize the profit from making delivery of e−(κ logA+θ)X̃S units of the commodity to goods

producers:

max
X̃S

E
[
Fe−(κ logA+θ)X̃S

∣∣∣ I0
S

]
− E

[
k

1 + k
e−ξ/k

(
e−(κ logA+θ)X̃S

) 1+k
k

∣∣∣∣ I0
S

]
.

Since ξ is independent of θ and logA, it is easy to derive

X̃S = eξ̄−σ
2
ξ/2k

{
E
[
e−(κ logA+θ)

∣∣ I0
S

]
/E
[
e−

1+k
k

(κ logA+θ)
∣∣∣ I0

S

]}k
F k, (2.B.3)

which is a function of the futures price F.

2.B.1.4 Joint Equilibrium of Different Markets

We analyze the joint equilibrium of a number of markets: the goods markets between

each pair of matched islands at t = 2, the spot market for the commodity at t = 1, and the

futures market at t = 0. Equilibrium requires clearing of each of these markets:

58This timing may appear special in our static setting with only one round of futures market trading
followed by physical commodity delivery, as there is no particular reason to argue whether letting the
suppliers observe the supply shock at t = 0 or t = 1 is more natural. However, if we view this setting as one
module of a more realistic setting with many recurrent periods and a supply shock arriving in each period,
then there is always a supply shock hitting the market when financial traders unwind their futures position.
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• At t = 2, for each pair of randomly matched islands {i, j}, the households of these
islands trade their produced goods and clear the market of each good:

Ci + C∗j = AXφ
i ,

C∗i + Cj = AXφ
j .

• At t = 1, the commodity supply equals the goods producers’aggregate demand:∫ ∞
−∞

X (si, F, PX) dΦ (εi) = XS (PX , ξ) .

• At t = 0, the futures market clears:

eκ logA+θ

∫ ∞
−∞

X̃i (si, F ) dΦ (εi) = X̃S (F ) .

2.B.2 The Equilibrium

The goods market equilibrium at t = 2 remains identical to that derived in Proposition 1

for the main model. The futures market equilibrium at t = 0 and the spot market equilibrium

at t = 1 also remain log-linear and can be derived following a similar procedure as the

derivation of Proposition 2. The following proposition summarizes the key features of the

equilibrium with explicit expressions for all coeffi cients given in Section 2.B.4.

PROPOSITION 2.B1: At t = 0, the futures market has a unique log-linear equilibrium:

the futures price is a log-linear function of logA and θ,

logF = h̃A logA+ h̃θθ + h̃0, (2.B.4)

with the coeffi cients h̃A > 0 and h̃θ > 0, while the long position taken by goods producer i

is a log-linear function of its private signal si and logF ,

log X̃i = l̃ssi + l̃F logF + l̃0, (2.B.5)

with the coeffi cient l̃s > 0.

At t = 1, the spot market also has a unique log-linear equilibrium: the spot price of the

commodity is a log-linear function of logA, logF, and ξ,

logPX = hA logA+ hF logF + hξξ + h0, (2.B.6)
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with the coeffi cients hA > 0, hF > 0, and hξ < 0, while the commodity consumed by

producer i is a log-linear function of si, logF, and logPX ,

logXi = lssi + lF logF + lP logPX + l0, (2.B.7)

with the coeffi cients ls > 0 and lF > 0, and the sign of lP undetermined.

There are two rounds of information aggregation in the equilibrium. During the first

round of trading in the futures market at t = 0, goods producers take long positions based

on their private signals. The futures price logF aggregates producers’ information, and

reflects a linear combination of logA and θ, as given in (28). The futures price does not

fully reveal logA due to the θ noise originated from the trading of financial traders. The

spot price that emerges from the commodity delivery at t = 1 represents another round of

information aggregation by pooling together the goods producers’demand for delivery. As a

result of the arrival of the supply shock ξ, the spot price logPX does not fully reveal either

logA or θ, and instead reflects a linear combination of logA and ξ, as derived in (29).

Despite the updated information from the spot price at t = 1, the informational content

of logF is not subsumed by the spot price, and still has an influence on goods producers’

expectations of logA. As a result of this informational role, equation (30) confirms that

each goods producer’s commodity demand at t = 1 is increasing with logF, as lF > 0, and

equation (29) shows that the spot price is also increasing with logF , as hF > 0. This is the

key feedback channel through which futures market trading affects commodity demand and

the spot price despite the availability of information from the spot price.

The simplifying assumptions we make regarding the myopic trading of goods producers

and commodity suppliers at t = 0 are innocuous to the informational role of the futures price

at t = 1. As long as goods producers trade on their private signals, the futures price would

aggregate the information, which in turn establishes the futures price as a useful price signal

for the later round at t = 1. Our simplifying assumptions have quantitative consequences for

goods producers’trading profits and the effi ciency of the futures price signal, but should not

critically affect the qualitative feedback channel of the futures price, which we characterize

in the next subsection.59

Interestingly, Proposition 2.B1 also reveals that lP can be either positive or negative,

59Note that despite the different information content of the futures price and the spot price, there is no
arbitrage between the two prices because the two prices are traded at different points in time and the spot
price is exposed to the supply shock realized later.
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due to the offsetting cost effect and informational effect of the spot price, similar to our

characterization of the main model.

2.B.3. Implications

2.B.3.1 Feedback on Commodity Demand

As financial traders do not take or make any physical delivery, their trading in the futures

market does not have direct effect on commodity supply or demand. However, their trading

affects the futures price, through which it can further impact commodity demand and spot

prices. By substituting equation (28) into (29), we express the spot price logPX as a linear

combination of primitive variables logA, θ, and ξ:

logPX =
(
hA + hF h̃A

)
logA+ hF h̃θθ + hξξ + hF h̃0 + h0. (2.B.8)

The θ term arises through the futures price. As hF > 0 and h̃θ > 0, the noise from financial

traders’trading in the futures market, θ, has a positive effect on the spot price.

Furthermore, by substituting the equation above and (28) into (30), we obtain an indi-

vidual producer’s commodity demand as

logXi = lssi +
(
lF h̃A + lP

(
hA + hF h̃A

))
logA+ (lF + lPhF ) h̃θθ + lPhξξ

+ (lF + lPhF ) h̃0 + lPh0 + l0,

and the producers’aggregate demand as

log

[∫ ∞
−∞

X (si, F, PX) dΦ (εi)

]
=

[
ls + lPhA + lF h̃A + lPhF h̃A

]
logA+ (lF + lPhF ) h̃θθ + lPhξξ

+ (lF + lPhF ) h̃0 + lPh0 + l0 +
1

2
l2sτ
−1
s .

By using equation (2.B.28) in the proof of Proposition 2.B1, the coeffi cient on θ in the

aggregate commodity demand is

lF + lPhF = khF > 0.

Thus, θ also has a positive effect on aggregate commodity demand.

The effects of θ on commodity demand and the spot price clarify the simple yet important

conceptual point that traders in commodity futures markets, who never take or make physical

commodity delivery, can nevertheless impact commodity markets through the informational

feedback channel of commodity futures prices.
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2.B.3.2 Market Transparency

Information frictions in the futures market, originating from the unobservability of the

positions of different participants, are essential in order for the trading of financial traders to

impact the demand for the commodity and spot prices. The following proposition confirms

that as τ θ →∞ (i.e., the position of financial traders becomes publicly observable), the spot

market equilibrium converges to the perfect-information benchmark.

PROPOSITION 2.B2: As τ θ → ∞, the spot price and aggregate demand converge to
the perfect-information benchmark.

Proposition 2.B2 shows that by improving transparency of the futures market, one

can achieve the perfect-information benchmark because by making the position of finan-

cial traders publicly observable, the θ noise no longer interferes with the information ag-

gregation in the futures market. As a result, the futures price fully reveals the global

fundamental, which allows goods producers to achieve the same effi ciency allowed by the

perfect-information benchmark. This nice convergence result relies on the assumption that

the supply noise ξ does not affect the futures market trading at t = 0 and hits the spot mar-

ket only at t = 1. Nevertheless, this result highlights the importance of improving market

transparency.60

Imposing position limits on speculators in commodity futures markets has occupied much

of the post-2008 policy debate, while improving market transparency has received much less

attention. By highlighting the feedback effect originating from information frictions as a key

channel for noise in futures market trading to affect commodity prices and demand, our model

suggests that imposing position limits may not address the central information frictions

that confront participants in commodity markets and thus may not be effective in reducing

potential distortion caused by speculative trading. Instead, increasing the transparency of

trading positions might be more effective.

60While our analysis focuses on the noise effect of their trading, financial traders can also contribute to
information aggregation. As κ increases, the futures position of financial traders builds more on the global
economic fundamental logA, in which case the futures price logF becomes more informative of logA. This
is because one can prove based on Proposition B1 that h̃A/h̃θ, the ratio of the loadings of logF on logA
and θ, increases with κ.
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2.B.4 Technical Proofs

Proof of Proposition 2.B1

We follow the same procedure as in the proof of Proposition 2 in the main paper to

derive the futures market equilibrium at t = 0. We first conjecture the log-linear forms

for the futures price and each island producer’s long position in (28) and (2.B.5) with the

coeffi cients h̃0, h̃A, h̃θ, l̃0, l̃s, and l̃F to be determined by equilibrium conditions.

Let z be a suffi cient statistic of the information contained in F :

z ≡ logF − h̃0 − h̃θθ̄
h̃A

= logA+
h̃θ

h̃A

(
θ − θ

)
.

Then, conditional on observing si and F, producer i’s expectation of logA is

E [logA | si, logF ] = E [logA | si, z] =
1

τA + τ s +
h̃2A
h̃2θ
τ θ

(
τAā+ τ ssi +

h̃2
A

h̃2
θ

τ θz

)

= c0 + cssi + cF

(
logF − h̃0 − h̃θθ̄

)
, (2.B.10)

where

c0 =

(
τA + τ s +

h̃2
A

h̃2
θ

τ θ

)−1(
τAā−

h̃2
A

h̃2
θ

τ θ
h̃0 + h̃θθ̄

h̃A

)
,

cs =

(
τA + τ s +

h̃2
A

h̃2
θ

τ θ

)−1

τ s,

cF =

(
τA + τ s +

h̃2
A

h̃2
θ

τ θ

)−1
h̃A

h̃2
θ

τ θ.

Producer i’s conditional variance of logA is

τ̃A,i = V ar [logA | si, logF ] =

(
τA + τ s +

h̃2
A

h̃2
θ

τ θ

)−1

. (2.B.11)

By substituting equation (2.B.5) into producer i’s optimal production decision in equation

(2.B.2), we obtain

log X̃i =
1

1− φ (1− η)
log φ+

φη

1− φ (1− η)
l̃0 +

1

1− φ (1− η)

(
φηl̃F − 1

)
logF

+

(
1 + φηl̃s

1− φ (1− η)

)(
c0 + cssi + cF

logF

h̃A

)
+

(
1 + φηl̃s

)2

2 (1− φ (1− η))
τ̃A,i +

φ2η2l̃2s
2 (1− φ (1− η))

τ−1
s .
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For the above equation to match the conjectured equilibrium position in equation (2.B.5),

the constant term and the coeffi cients on si and logF have to be identical:

l̃0 =
φη

1− φ (1− η)
l̃0 +

(
1 + φηl̃s

1− φ (1− η)

)
c0 +

(
1 + φηl̃s

)2

2 (1− φ (1− η))
τ̃A,i

+
φ2η2l̃2s

2 (1− φ (1− η))
τ−1
s +

1

1− φ (1− η)
log φ, (2.B.12)

l̃s =

(
1 + φηl̃s

1− φ (1− η)

)
cs, (2.B.13)

l̃F =
φη

1− φ (1− η)
l̃F −

1

1− φ (1− η)
+

(
1 + φηl̃s

1− φ (1− η)

)
cF . (2.B.14)

By substituting equation (2.B.13) into (2.B.14), we have

l̃s =
1 + (1− φ) l̃F
1− φ (1− η)

h̃2
θ

h̃A
τ sτ

−1
θ . (2.B.15)

By manipulating equation (2.B.13), we also have that

l̃s =

(
τA +

1− φ
1− φ (1− η)

τ s +
h̃2
A

h̃2
θ

τ θ

)−1
τ s

1− φ (1− η)
. (2.B.16)

We now use market clearing of the futures market to determine three other equations for the

coeffi cients. Aggregating equation (2.B.5) gives the producers’aggregate position,∫ ∞
−∞

X̃i (si, F ) dΦ (εi) = exp

[(
l̃s + l̃F h̃A

)
logA+ l̃F h̃θθ + l̃0 + l̃F h̃0 +

1

2
l̃2sτ
−1
s

]
. (2.B.17)

Equation (2.B.3) gives X̃S. Define

zθ ≡
logF − h̃0 − h̃Aā

h̃θ
=
h̃A

h̃θ
(logA− ā) + θ.

The suppliers’conditional expection of θ is then

E [θ | logF ] = E [θ | zθ] =

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1 [
τ θθ +

h̃2
θ

h̃2
A

τA

(
logF − h̃0

h̃θ
− h̃A

h̃θ
ā

)]
,

with conditional variance V ar [θ | logF ] =
(
τ θ +

h̃2θ
h̃2A
τA

)−1

. Their conditional expectation

of logA is

E [logA | logF ] = E [logA | zθ] =

(
τA +

h̃2
A

h̃2
θ

τ θ

)−1 [
τAā+

h̃2
A

h̃2
θ

τ θ

(
logF − h̃0 − h̃θθ̄

h̃A

)]
,
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with conditional variance V ar [logA | logF ] =
(
τA +

h̃2A
h̃2θ
τ θ

)−1

. Thus, we obtain an expres-

sion for log X̃S that is linear in logA and θ.

Next, the market-clearing condition log
[
eκ logA+θ

∫∞
−∞ X̃i (si, F ) dΦ (εi)

]
= log X̃S re-

quires that the coeffi cients on logA and θ and the constant term be identical on both sides:

κ+ l̃s + l̃F h̃A = kh̃A +

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1(
h̃θ

h̃A
τA + κτ θ

)
, (2.B.18)

1 + l̃F h̃θ = kh̃θ +

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1
h̃θ

h̃A

(
h̃θ

h̃A
τA + κτ θ

)
, (2.B.19)

l̃0 + l̃F h̃0 +
1

2
l̃2sτ
−1
s = kh̃0 +

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1(
1 + κ

h̃θ

h̃A

)
τ θθ̄ (2.B.20)

−
(
τ θ +

h̃2
θ

h̃2
A

τA

)−1
h̃θ

h̃A

(
1 + κ

h̃θ

h̃A

)
τAā+ ξ̄ − σ2

ξ/2k

−κ
2

2k
(1 + 2k)

(
τA +

h̃2
A

h̃2
θ

τ θ

)−1

− 1

2k
(1 + 2k)

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1

.

Equation (2.B.19) directly implies that

l̃F = k +

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1(
κ
h̃θ

h̃A
− 1

)
τ θh̃

−1
θ . (2.B.21)

Equations (2.B.18) and (2.B.19) together imply that

l̃s = h̃−1
θ h̃A − κ.

By combining this equation with (2.B.16), we arrive at

l̃3s + 2κl̃2s +

(
τ−1
θ τA +

1− φ
1− φ (1− η)

τ−1
θ τ s + κ2

)
l̃s −

τ−1
θ τ s

1− φ (1− η)
= 0. (2.B.22)

By further making the convenient substitution Ls = l̃s + 2
3
κ, called the Tschirnhaus trans-

formation, we obtain the depressed cubic polynomial

L3
s + pLs + q = 0,

where

p = τ−1
θ τA +

1− φ
1− φ (1− η)

τ−1
θ τ s −

1

3
κ2,

q = −2

3
κτ−1

θ τA −
2

3
κ

1− φ
1− φ (1− η)

τ−1
θ τ s −

2

27
κ3 − τ−1

θ τ s
1− φ (1− η)

.
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It is easy to verify that q2

4
+ p3

27
> 0 and therefore Ls is a real root of this depressed cubic

polynomial, which has one real and two complex roots. Following Cardano’s method, the

one real root of equation (2.B.22) is given by

l̃s =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
− 2

3
κ.

Since the coeffi cients of equation (2.B.22) change sign only once, by Descartes’Rule of Signs

the real root must be positive.

Since l̃s = h̃−1
θ h̃A − κ, we have

h̃θ =
(
l̃s + κ

)−1

h̃A,

which, together with our expression for l̃s and equations (2.B.15) and (2.B.21), implies that

h̃θ =

(1− φ (1− η)) τ−1
s +

1− φ

τ θ

(
l̃s + κ

)2

+ τA

 τ θ
1 + k (1− φ)

l̃s

(
l̃s + κ

)
(2.B.23)

and therefore

h̃A =

(1− φ (1− η)) τ−1
s +

1− φ

τ θ

(
l̃s + κ

)2

+ τA

 τ θ
1 + k (1− φ)

l̃s

(
l̃s + κ

)2

. (2.B.24)

Since by equation (2.B.22), l̃s > 0, h̃A and h̃θ must have the same sign. With h̃A and h̃θ

determined, l̃F is then given by equation (2.B.21),

l̃F = k +

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1(
κ
h̃θ

h̃A
− 1

)
τ θh̃

−1
θ ,

h̃0 by equation (2.B.12),

h̃0 =

(
k − l̃F +

1− φ (1− η)

1− φ l̃sτ
−1
s

h̃A

h̃2
θ

τ θ

)−1

· 1

1− φ log φ− ξ̄ + σ2
ξ/2k +

1

2k
(1 + 2k)

(
1 + κ2 h̃

2
θ

h̃2
A

)(
τ θ +

h̃2
θ

h̃2
A

τA

)−1

+
1

2

(
l̃s +

1− φ (1− η)

1− φ

(
1 + φηl̃s +

φ2η2l̃s
1− φ (1− η)

))
l̃sτ
−1
s

+

1− φ (1− η)

1− φ l̃sτ
−1
s +

(
τ θ
h̃2
A

h̃2
θ

+ τA

)−1(
h̃A

h̃θ
+ κ

)(τAā− (l̃s + κ
)
τ θθ̄
) ,
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and l̃0 by equation (2.B.20),

l̃0 =
(
k − l̃F

)
h̃0 + ξ̄ − σ2

ξ/2k +

(
τ θ +

h̃2
θ

h̃2
A

τA

)−1(
1 + κ

h̃θ

h̃A

)
τ θθ̄

−
(
τ θ +

h̃2
θ

h̃2
A

τA

)−1
h̃θ

h̃A

(
1 + κ

h̃θ

h̃A

)
τAā−

1

2
l̃2sτ
−1
s

− 1

2k
(1 + 2k)

(
1 + κ2 h̃

2
θ

h̃2
A

)(
τ θ +

h̃2
θ

h̃2
A

τA

)−1

.

We now derive the spot market equilibrium at t = 1. We again first conjecture that the

spot price PX and a goods producer’s updated commodity demand take the log-linear forms

given in equations (29) and (30) with the coeffi cients h0, hA, hF , hξ, l0, ls, lF , and lP to be

determined by equilibrium conditions.

The mean and variance of producer i’s prior belief over logA carried from t = 0 is derived

in (2.B.10) and (2.B.11). Define

zp =
logPX − h0 − hF logF − hξ ξ̄

hA
= logA+

hξ
hA

(
ξ − ξ̄

)
.

Then, after observing the spot price PX at t = 1, the producer’s expectation of logA is

E [logA | si, logF, logPX ] = E [logA | si, logF, zp] =
τ̃A,icssi +

h2A
h2ξ

(
logPX−h0−hF logF−hξ ξ̄

hA

)
τ̃A,i +

h2A
h2ξ
τ ξ

,

with conditional variance

τA,i = V ar [logA | si, logF, logPX ] =

(
τ̃A,i +

h2
A

h2
ξ

τ ξ

)−1

.

We use (2.B.1) to compute logXi, and obtain a linear expression of si, logF , and PX . By

matching the coeffi cients of this expression with the conjectured form in (30), we obtain

l0 =
1

1− φ log φ+
(1 + φηls)

2

2 (1− φ)
τA,i +

1

2 (1− φ)
φ2η2l2sτ

−1
s −

1 + φηls
1− φ τA,i

hA
h2
ξ

(
h0 + hξ ξ̄

)
+

1

1− φ (1 + φηls) τA,iτ̃A,i

(
c0 − cF

(
h̃0 + h̃θθ̄

))
,

ls =
τ̃A,ics

(1− φ (1− η)) τ−1
A,i − φητ̃A,ics

,

lF =
1

1− φ (1 + φηls) τA,i

(
τ̃A,icF −

hA
h2
ξ

hF

)
, (2.B.25)

lP =
1

1− φ (1 + φηls) τA,i
hA
h2
ξ

− 1

1− φ. (2.B.26)
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Market clearing of the spot market requires
∫∞
−∞XidΦ (εi) = XS, which implies

(k − lP ) logPX = l0 +
1

2
l2sτ
−1
s + ls logA+ lF logF − ξ.

By matching coeffi cients on both sides, we have

(k − lP )h0 = l0 +
1

2
l2sτ
−1
s ,

(k − lP )hA = ls, (2.B.27)

(k − lP )hF = lF , (2.B.28)

(k − lP )hξ = −1. (2.B.29)

From equations (2.B.27) and (2.B.29), we have that ls = −hA
hξ
, and given our expression for

l0 and lF above, we also see that

h0 =

(
k − lP +

1 + φηls
1− φ τA,i

hA
h2
ξ

)−1

·
(

1

1− φ log φ+
(1 + φηls)

2

2 (1− φ)
τA,i +

1

2 (1− φ)
φ2η2l2sτ

−1
s

+
1

1− φ (1 + φηls) τA,iτ̃A,i

(
c0 − cF

(
h̃0 + h̃θθ̄

))
−1 + φηls

1− φ τA,i
hA
h2
ξ

hξ ξ̄ +
1

2
l2sτ
−1
s

)
,

hF =

(
1− φ

1 + φηls
τ−1
A,i (k − lP ) +

hA
h2
ξ

)−1

τ̃A,icF . (2.B.30)

From our expression for ls above and ls = −hA/hξ, we have

l3s + τ−1
ξ

(
τ̃A,i −

φητ̃A,ics
1− φ (1− η)

)
ls −

τ−1
ξ τ̃A,ics

1− φ (1− η)
= 0. (2.B.31)

This is a depressed cubic polynomial whose unique real and positive root is given by

ls =
3

√√√√√−1

2

τ−1
ξ τ̃A,ias

1− φ (1− η)
+

√√√√1

4

(
τ−1
ξ τ̃A,ias

1− φ (1− η)

)2

+
1

27
τ−3
ξ

((
τ̃A,i −

φητ̃A,ias
1− φ (1− η)

))3

+
3

√√√√√−1

2

(
τ−1
ξ τ̃A,ias

1− φ (1− η)

)
−

√√√√1

4

(
τ−1
ξ τ̃A,ias

1− φ (1− η)

)2

+
1

27
τ−3
ξ

((
τ̃A,i −

φητ̃A,ias
1− φ (1− η)

))3

.

It follows that ls > 0 and from equation (2.B.29) that

hA =
(1− φ) ls + (1 + φηls) (τ̃A,i + l2sτ ξ)

−1
l2s

1 + (1− φ) k
> 0,
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and, since ls = −hA/hξ > 0,

hξ = −1− φ+ (1 + φηls) (τ̃A,i + l2sτ ξ)
−1
ls

1 + (1− φ) k
< 0.

We now prove that lF > 0. Given the expression for lF in (2.B.25) and given ls > 0, it is

suffi cient for lF > 0 if

τ̃A,icF >
hA
h2
ξ

hF .

Given the expression for hF in (2.B.30), and recognizing that τ̃A,i > 0 and cF > 0, the above

condition can be rewritten as

1 >
hA
h2
ξ

(
1− φ

1 + φηls
τ−1
A,i (k − lP ) +

hA
h2
ξ

)−1

.

Furthermore, from the expressions for τA,i and lP , this condition can be further expressed as

1

1 + φηls
(1 + k (1− φ))

(
τ̃A,i +

h2
A

h2
ξ

τ ξ

)
>
hA
h2
ξ

.

Since ls = −hA
hξ
, given our expression for hξ < 0, the condition reduces to

1− φ
1 + φηls

(
τ̃A,i + l2sτ ξ

)
> 0,

which is always satisfied. Therefore, lF > 0. In addition, since (k − lP )hA = ls implies that

k > lP , we see from (k − lP )hF = lF that hF > 0.

We now examine the sign of lP . By substituting ls = −hA
hξ
and the expressions of τA,i and

hξ into (2.B.26), we have

lP = − 1

hξ (1 + (1− φ) k)

(
τ̃A,i + l2sτ ξ

)−1 (
kls − (τ ξ − kφη) l2s − τ̃A,i

)
.

Consequently, lP can be positive or negative depending on the sign of kls−(τ ξ − kφη) l2s−τ̃A,i.

Proof of Proposition 2.B2

In (31), logPX is a linear expression of logA, θ, and ξ. We need to show that as τ θ →
∞, the coeffi cients on logA and ξ converge to their corresponding values in the perfect-

information benchmark (Proposition 3 of the main paper), and the variance of θ

Vθ = h2
F h̃

2
θτ
−1
θ → 0.
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We rewrite equation (2.B.22) as(
l̃s + κ

)2

l̃s + τ−1
θ

(
τA +

1− φ
1− φ (1− η)

τ s

)
l̃s =

τ−1
θ τ s

1− φ (1− η)
.

As τ θ becomes suffi ciently large, the right-hand side converges to zero and therefore, since

the cubic polynomial has a unique real solution, l̃s → 0. By substituting equation (2.B.22)

into our expression for h̃A, one can express h̃A as

h̃A =
1− φ (1− η)

1 + k (1− φ)
τ−1
s

(
1 +

(1− φ) l̃s

1− (1− φ) l̃s

)(
τ s

1− φ (1− η)
−
(
τA +

1− φ
1− φ (1− η)

τ s

)
l̃s

)
.

As τ θ → ∞, l̃s → 0, and thus h̃A → 1
1+k(1−φ)

. In addition, by substituting for cs, we can

rewrite (2.B.31) as

τ ξl
3
s + τ̃A,ils = (1 + φηls)

τ̃ 2
A,iτ s

1− φ (1− η)
.

Since τ θ (ls + κ)2 grows as τ θ increases, τ̃A,i =
(
τ s + τA + τ θ (ls + κ)2)−1 → 0 as τ θ →∞. It

then follows that ls → 0.

By substituting (2.B.31) and our expression for cs into our expression for hξ, we have

hξ = − 1− φ
1 + (1− φ) k

− 1− φ (1− η)

1 + (1− φ) k
τ−1
s (τ̃A,ils)

2 .

As τ θ → ∞, τ̃A,ils = (1 + φηls)
τ̃2A,iτs

1−φ(1−η)
− τ ξl3s → 0, and therefore hξ → − 1−φ

1+k(1−φ)
. Given

that ls = −hA
hξ
and given our expression for lP , we have that as τ θ →∞, the coeffi cient of ξ

in (2.B.8) equals

lPhξ = − 1

1− φ (1 + φηls) τA,ils −
1

1− φhξ →
1

1 + k (1− φ)
,

which is its value in the perfect-information benchmark.

Since ls = −hA
hξ
, and given that as τ θ →∞, ls → 0 and hξ → − 1−φ

1+k(1−φ)
, we have hA → 0.

By substituting for τA,i, cF , lP , and h̃A/h̃θ, we can rewrite hF h̃A as

hF h̃A =
1− φ (1− η)

1 + k (1− φ)
τ−1
s τ θ (ls + κ)2 ls

=
1− φ (1− η)

1 + k (1− φ)
τ−1
s

(
(1 + φηls)

τ s
1− φ (1− η)

− τ ξ
(
τ̃−1
A,il

3/2
s

)2 − (τ s + τA) ls

)
,

where we use substitution with equation (2.B.31). As τ θ →∞, ls → 0, and
(
τ̃−1
A,il

3/2
s

)2

→ 0,

the coeffi cient on logA in (2.B.8) hA + hF h̃A → 1
1+k(1−φ)

, which is its value in the perfect-

information benchmark.
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By using the expressions of hF , lP , ls, cF , τA,i, l̃s, and h̃θ in Proposition B1 and by

manipulating terms, we have

hF h̃θ =
1− φ (1− η)

1 + k (1− φ)
τ−1
s ls

(
l̃s + κ

)
τ θ.

Consequently, we can write Vθ as

Vθ =

(
1− φ (1− η)

1 + k (1− φ)
τ−1
s

)2

l2s

(
l̃s + κ

)2

τ θ.

We can rewrite equation (2.B.22) as

τ θ

(
l̃s + κ

)2

=
τ s

1− φ (1− η)
l̃−1
s −

(
τA +

1− φ
1− φ (1− η)

τ s

)
.

By applying the Implicit Function Theorem to equation (2.B.22),

∂l̃s
∂τ θ

= −

(
l̃s + κ

)2

l̃2s

2τ θ

(
l̃s + κ

)
l̃2s + τs

1−φ(1−η)

< 0.

Consequently, τ θ
(
l̃s + κ

)2

is growing in τ θ. Now we can rewrite equation (2.B.31) by sub-

stituting for τ̃A,i and cs as

(
τA + τ s +

(
l̃s + κ

)2

τ θ

)√√√√√τ ξl3s +

(
τA + τ s +

(
l̃s + κ

)2

τ θ

)−1

ls

1 + φηls
=

√
τ s

1− φ (1− η)
.

As τ θ → ∞, ls → 0. Thus, for this equation to hold, we must have τ θ (ls + κ)2 → ∞. The
left-hand side (LHS) of the above equation can then be expressed as

(
τA + τ s +

(
l̃s + κ

)2

τ θ

)√√√√√τ ξl3s +

(
τA + τ s +

(
l̃s + κ

)2

τ θ

)−1

ls

1 + φηls

≈ τ θ

(
l̃s + κ

)2

l3/2s

√
τ ξ

1 + φηls
+ o

(
τ−1
θ

(
l̃s + κ

)−2
)
.

This suggests that l3/2s must be shrinking at approximately the same rate as τ θ
(
l̃s + κ

)2

is

growing for the LHS to remain finite. Therefore, l2s must be shrinking at a faster rate and

Vθ → 0 as τ θ →∞.
In summary, we have shown that as τ θ → ∞, logPX converges with its counterpart in

the perfect-information benchmark. We can similarly prove that the producers’aggregate

demand also converges.
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Chapter 3

Supply Elasticity and Housing Cycles61

3.1. Introduction

Conventional wisdom posits that supply elasticity attenuates housing cycles. As a result,

one expects housing prices to be more volatile in areas with more inelastic housing supplies.

However, as noted by Glaeser (2013) and other commentators, during the recent U.S. housing

cycle in the 2000s, some areas such as Las Vegas and Phoenix experienced more dramatic

housing price booms and busts, despite their relatively elastic housing supply, compared

to areas with more inelastic supply, such as New York and Los Angeles. Interestingly, by

systematically examining the cross-section of the booms and busts experienced by different

counties during this housing cycle, we find that the monotonically decreasing relationship

between the magnitude of housing cycles and supply elasticity is more fragile than commonly

perceived. If one simply sorts counties into three groups based on Saiz’s (2010) widely used

measure of supply elasticity, each with an equal number of counties, the average housing

price increase in the boom period of 2004-2006 and drop in the bust period of 2007-2009

monotonically decreases across the inelastic, middle, and elastic groups. However, as the

inelastic group holds more than half of the population, this coarse grouping may disguise

non-monotonicity under present finer parsings. Indeed, when we sort the counties into ten

elasticity groups, each with an equal number of counties, or into either three or ten elasticity

groups each with an equal population, we uncover a non-monotonic relationship between the

magnitudes of the housing price booms and busts experienced by different counties and their

supply elasticity. The most dramatic boom and bust cycle occurs in an intermediate range

of supply elasticity.

This hump-shaped relationship between housing cycle and supply elasticity, which we

summarize in Section 2, is intriguing and cannot be explained by the usual supply-side

61This chapter is based on joint work with Zhenyu Gao at CUHK and Wei Xiong at Princeton University.
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mechanisms. In this paper, we develop a theoretical model to highlight a novel mechanism

for supply elasticity to affect housing demand through a learning channel. We emphasize

that home buyers observe neither the economic strength of a neighborhood, which ultimately

determines the demand for housing in the neighborhood, nor the supply of housing. In the

presence of these pervasive informational frictions, local housing markets provide a useful

platform for aggregating information. This fundamental aspect of housing markets, however,

has received little attention in the academic literature. It is intuitive that traded housing

prices reflect the net effect of demand and supply factors. Supply elasticity determines

the weight of supply-side factors in determining housing prices and therefore by extension

determines the informational noise faced by home buyers in using housing prices as signals

for the strength of demand.

Our model integrates the standard framework of Grossman and Stiglitz (1980) and Hell-

wig (1980) for information aggregation in asset markets with a housing market in a local

neighborhood. This setting allows us to extend the insights of market microstructure analysis

to explore the real consequences of informational frictions in housing markets. In particu-

lar, our model allows us to analyze how agents form expectations in housing markets, how

these expectations interact with characteristics endemic to a neighborhood, and how these

expectations feed into housing prices.

We first present a baseline setting in Section 3 to highlight the basic information aggrega-

tion mechanism with each household purchasing homes for their own consumption and then

extend the model in Section 4 to further incorporate purchases of investment homes. The

baseline model features a continuum of households in a closed neighborhood, which can be

viewed as a county. Each household in the neighborhood has a Cobb-Douglas utility function

over its goods consumption and housing consumption, as well as housing consumption of its

neighbors. This complementarity in the households’housing consumption motivates each

household to learn about the unobservable economic strength of the neighborhood, which

determines the common productivity of all households and thus their housing demand.

Despite each household’s housing demand being non-linear, the Law of Large Numbers

allows us to aggregate their housing demand in closed form and to derive a unique log-linear

equilibrium for the housing market. Each household possesses a private signal regarding the

neighborhood common productivity. By aggregating the households’housing demand, the

housing price aggregates their private signals. However, the presence of unobservable supply
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shocks prevents the housing price from perfectly revealing the neighborhood strength and

acts as a source of informational noise in the housing price.

Our model also builds in another important feature that households underestimate supply

elasticity. By examining a series of historical episodes of real estate speculation in the

U.S., Glaeser (2013) summarizes the tendency of speculators to underestimate the response

of housing supply to rising prices as a key for understanding these historical experiences.

In our model, underestimation of supply elasticity implies that households underestimate

the amount of informational noise in the observed price signal, which in turn causes the

households’expectations of the neighborhood strength and housing demand to overreact to

the housing price. The amplification of housing price volatility induced by such overreaction

depends on the uncertainty faced by households and the informational content of the price,

both of which are endogenously linked to the neighborhood’s supply elasticity.

It is useful to consider two polar cases. At one end with the supply being infinitely

inelastic, housing prices are fully determined by the strength of the neighborhood and thus

perfectly reveals it. At the other end, with housing supply being infinitely elastic, hous-

ing prices are fully determined by the supply shock, and households’uncertainty about the

strength of the neighborhood does not interact with the housing price. In between these

two polar cases, the households face uncertainty regarding neighborhood strength and the

uncertainty matters to the housing price. Consequently, households’ overreaction to the

price signal has the most pronounced effect on their housing demand and housing price in an

intermediate range of supply elasticity, causing the price volatility to have a hump-shaped

relationship with supply elasticity. That is, housing price volatility is largest at an inter-

mediate supply elasticity rather than when supply is infinitely inelastic. This insight helps

explain the aforementioned empirical observation that during the recent U.S. housing cycle,

counties with supply elasticities in an intermediate range experienced the most dramatic

price booms and busts.

We further extend the baseline model in Section 4 to incorporate immigrants who are

attracted to the neighborhood by its economic strength in a later period and the speculation

of the current households in acquiring secondary homes in anticipation of selling them to im-

migrants. This model extension generates two additional predictions. First, the households’

learning effects can induce another non-monotonic relationship between the variability of

the share of secondary home purchases among total home purchases and supply elasticity.
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The intuition is similar to before. As secondary home purchases are more sensitive than

primary home purchases to the households’expectations of the neighborhood strength, in-

formational frictions and the households’overreaction to the price signal make households’

secondary home purchases most variable at an intermediate range of supply elasticity. This

mechanism also leads to a second prediction regarding a positive relationship between the

variability of the share of secondary home purchases and the volatility of housing prices

across neighborhoods with different elasticities.

Interestingly, we are able to confirm these new model predictions in the data. First, we

find that counties in an intermediate range of supply elasticity indeed had the largest change

in the share of non-owner-occupied home (secondary home) purchases from the pre-boom

period of 2001-2003 to the boom period of 2004-2006, as opposed to counties with either

the most elastic or inelastic supplies. Second, counties with greater increases in the share

of non-owner-occupied home purchases from 2001-2003 to 2004-2006 also experienced larger

price increases in 2004-2006 and larger price decreases in the bust period of 2007-2009. These

empirical findings provide evidence from a new dimension to support the important roles

played by informational frictions and household learning in driving housing cycles.

3.2. Related Literature

The existing literature has emphasized the importance of accounting for home buyers’

expectations (and in particular extrapolative expectations) in understanding dramatic hous-

ing boom and bust cycles, e.g., Case and Shiller (2003); Glaeser, Gyourko, and Saiz (2008);

and Piazzesi and Schneider (2009). Much of the analyses and discussions, however, are made

in the absence of a systematic framework that anchors home buyers’expectations to their

information aggregation and learning process. In this paper, we fill this gap by developing

a model for analyzing information aggregation and learning in housing markets. By do-

ing so, we are able to uncover a novel effect of supply elasticity, beyond its role in driving

housing supply, in determining the informational content of the housing price and house-

holds’learning from the price signal. This learning effect implies non-monotonic patterns

in housing price volatility and the variability of share of secondary home purchases across

neighborhoods with different supply elasticities. This learning mechanism also differentiates

our model from Gao (2013), which shares a similar motivation as ours to explain the dra-

matic housing cycles in the 2000s experienced by areas with intermediate supply elasticities,
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and which emphasizes a joint effect of time-to-build and housing speculators’extrapolative

expectations as an explanation.

In our model, households overreact to the housing price signal. Such overreaction is

driven by their underestimation of supply elasticity. This overreaction mechanism, which

depends on the informational frictions faced by households and the endogenous informa-

tional content of the housing price, is different from the commonly discussed mechanisms

in the behavioral finance literature, such as overconfidence highlighted by Daniel, Hirsh-

leifer, and Subrahmanyam (1998), slow information diffusion by Hong and Stein (1999), and

extrapolation by Barberis, Shleifer, and Vishny (1998) and Barberis et al. (2014).

Our model also differs from Burnside, Eichenbaum, and Rebelo (2013), which offers a

model of housing market booms and busts based on the epidemic spreading of optimistic or

pessimistic beliefs among home buyers through their social interactions. Our learning-based

mechanism is also different from Nathanson and Zwick (2014), which studies the hoarding

of land by home builders in certain elastic areas as a mechanism to amplify price volatility

in the recent U.S. housing cycle. Glaeser and Nathanson (2015) presents a model of biased

learning in housing markets, building on current buyers not adjusting for the expectations

of past buyers and instead assuming that past prices reflect only contemporaneous demand.

This incorrect inference gives rise to correlated errors in housing demand forecasts over time,

which in turn generate excess volatility, momentum, and mean-reversion in housing prices. In

contrast to this model, informational frictions in our model anchor on the interaction between

the demand and supply sides, and, in particular, on the elasticity of housing supply. This

key feature is also different from the amplification to price volatility induced by dispersed

information and short-sale constraints featured in Favara and Song (2014).

By focusing on information aggregation and learning of symmetrically informed house-

holds with dispersed private information, our study differs in emphasis from those that

analyze the presence of information asymmetry between buyers and sellers of homes, such

as Garmaise and Moskowitz (2004) and Kurlat and Stroebel (2014). Neither does our model

emphasize the potential asymmetry between in-town and out-of-town home buyers, which is

shown to be important by a recent study of Chinco and Mayer (2013).

There are extensive studies in the housing literature highlighting the roles played by

both demand-side and supply-side factors in driving housing cycles. On the demand side,

Himmelberg, Mayer, and Sinai (2006) focus on interest rates, Poterba (1991) on tax changes,
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and Mian and Sufi (2009) on credit expansion. On the supply side, Glaeser, Gyourko, Saiz

(2008) emphasize supply as a key force in mitigating housing bubbles, Haughwout, Peach,

Sporn and Tracy (2012) provide a detailed account of the housing supply side during the

U.S. housing cycle in the 2000s, and Gyourko (2009) systematically reviews the literature

on housing supply. By introducing informational frictions, our analysis shows that supply-

side and demand-side factors are not mutually independent. In particular, supply shocks

may affect housing demand by acting as informational noise in household learning and thus

influencing households’expectations of the strength of the neighborhood.

3.3. Some Basic Facts

Before we present a model to analyze how supply elasticity affects learning in housing

markets, we present some basic facts regarding the relationship between supply elasticity and

the magnitudes of housing price booms and busts experienced by different counties during

the recent U.S. housing cycle. Even though common wisdom holds that supply elasticity

attenuates boom and bust cycles, the data do not support a robust, monotonic relationship

between the magnitude of the housing cycle in a county and its supply elasticity. In fact,

our analysis uncovers that counties with supply elasticities in an intermediate range had

experienced more dramatic housing booms and busts than counties with the most inelastic

supply.

Our focus is on the most recent housing cycle, which was a national cycle for the U.S.

housing market. Many factors, such as the Clinton-era initiatives to broaden homeownership,

the low interest rate environment of the late 1990s and early 2000s, the inflow of foreign

capital, and the increase in securitization and sub-prime lending, contributed to the boom.

While this was a well-known national phenomenon at the time, how these factors expressed

themselves at the regional level was more idiosyncratic and uncertain. The magnitude of

housing price cycles experienced by different regions reflect such idiosyncratic uncertainty,

which is the focus of our empirical as well as theoretical analysis.62

Our county-level house price data come from the Case-Shiller home price indices, which

are constructed from repeat home sales. There are 420 counties in 46 states with a large

enough number of repeat home sales to compute the Case-Shiller home price indices. We

62The regional uncertainty introduced by this national phenomenon is absent from the local boom and
bust episodes throughout the 1970s and 1980s. While there are other national housing cycles in history, data
limitations restrict our attention to the most recent U.S. housing cycle.
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use the Consumer Price Index (CPI) from the Bureau of Labor Statistics to deflate the

Case-Shiller home price indices. In addition, we also use population data from the 2000 U.S.

census.

For housing supply elasticity, we employ the commonly used elasticity measure con-

structed by Saiz (2010). This elasticity measure focuses on geographic constraints by defin-

ing undevelopable land for construction as terrain with a slope of 15 degrees or more and

areas lost to bodies of water including seas, lakes, and wetlands. This measure provides an

exogenous measure of supply elasticity, with a higher value if an area is more geographically

restricted. Saiz’s measure is available for 269 Metropolitan Statistical Areas (MSAs). By

matching counties with MSAs, our sample includes 326 counties for which we have data on

both house prices and supply elasticity available from 2000 to 2010. Though our sample

covers only 11 percent of the counties in the U.S., they represent 53 percent of the U.S.

population and 57 percent of the housing trading volume in 2000.

Figure 1 displays the real home price indices for the U.S. and three cities, New York,

Las Vegas, and Charlotte, from 2000 to 2010. We normalize all indices to 100 in 2000. The

national housing market experienced a significant boom and bust cycle in the 2000s with the

national home price index increasing over 60 percent from 2000 to 2006 and then falling back

to the 2000 level through 2010. Different cities in the U.S experienced largely synchronized

price booms and busts during this period even though the magnitudes of the cycle varied

across these cities. According to Saiz’s measure, the elasticity measures for New York, Las

Vegas, and Charlotte are 0.76, 1.39, and 3.09, respectively. New York, which has severe

geographic constraints and building regulations, had a real housing price appreciation of

more than 80 percent during the boom, and then declined by over 25 percent during the bust.

Charlotte, with its vast developable land and few building restrictions, had an almost flat

real housing price level throughout this decade. Sitting in between New York and Charlotte,

Las Vegas, with its intermediate supply elasticity, experienced the most pronounced price

expansion of over 120 percent during the boom, and the most dramatic price drop of over 50

percent during the bust. Many commentators, including Glaeser (2013), have pointed out

that the dramatic boom and bust cycles experienced by Las Vegas and other cities such as

Phoenix are peculiar given the relatively elastic supply in these areas.

Are Las Vegas and Phoenix unique in experiencing these dramatic housing cycles despite

their relatively elastic housing supply? We now systematically examine this issue by sorting
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different counties in our sample into three groups, an inelastic, a middle, and an elastic

group, based on Saiz’s elasticity measure, each with the same number of counties. Figure

2 plots the average price expansion and contraction experienced by each group during the

housing cycle (the top panel), together with the total population in each group (the bottom

panel). We measure the price expansion in 2004-2006, the period that is often defined as the

housing bubble period, and the price contraction in 2007-2009.63

The top panel of Figure 2 shows that the inelastic group had the largest house price

expansion in 2004-2006 and the largest price contraction in 2007-2009, the middle group

experienced a milder cycle, and the elastic group had the most modest cycle. This pattern

appears to be consistent with the aforementioned common wisdom that supply elasticity

attenuates housing cycles.

It seems natural to sort the counties into several groups each with an equal number of

counties. In fact, this is a common practice used in the literature to demonstrate a monotonic

relationship between housing cycles and supply elasticity. Interestingly, the bottom panel of

Figure 2 shows that the population is unevenly distributed across the three groups, with the

inelastic group having more than half of the total population. This is consistent with the

fact that inelastic areas tend to be densely populated. As the inelastic group pools together

a large fraction of the population, there might be substantial heterogeneity between counties

within the inelastic group. Indeed, both New York and Las Vegas fall into this inelastic group.

This consideration motivates us to examine alternative ways of grouping the counties.

In Figure 3, we sort the counties into ten groups from the most inelastic group to the

most elastic group, still with each group holding an equal number of counties. The top

panel shows that the housing price expansion and contraction experienced by these ten

groups are no longer monotonic with elasticity. In particular, group 3, which has the third-

most-inelastic supply, experienced the largest price expansion during the boom, and the

largest price contraction during the bust. Interestingly, Las Vegas falls into group 3, while

New York falls into group 1. The bottom panel again shows that the population tends

to be concentrated in the more inelastic groups. Taken together, Figure 3 shows that the

commonly perceived monotonic relationship between housing cycles and supply elasticity is

not robust.

In Figure 4, we sort the counties into three groups based on supply elasticity in an

63We have also used an alternative boom period of 2001-2006 and obtained qualitatively similar results as
defining the boom in 2004-2006.
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alternative way. Instead of letting different groups have an equal number of counties, we

let them have the same population. If the magnitude of the housing cycle monotonically

decreases with supply elasticity, whether we group the counties by number or population

should not affect the monotonically decreasing pattern across the groups. In contrast, the

top panel of Figure 4 shows that the middle group has the most pronounced housing cycle,

with its price expansion during the boom being substantially more pronounced than that of

the inelastic group, and its price contraction during the bust slightly greater than that of

the inelastic group. The bottom panel shows that the inelastic group has only 40 counties,

the middle group slightly below 120 counties, and the elastic group over 160 counties. Under

this grouping, while New York remains in the inelastic group, Las Vegas is now in the middle

group.

In Figure 5, we further sort the counties into ten groups from the most inelastic group to

the most elastic group, with each group having the same population. This figure shows a finer

non-monotonicity with groups 3 and 5 experiencing the most pronounced price expansions

and contractions.

To further examine whether the more pronounced housing cycles experienced by the

intermediate elasticity groups are robust to controlling for other fundamental factors, such as

changes of income and population and fraction of subprime households, we adopt a regression

approach. Specifically, we separately regress the housing price expansion in 2004-2006 and

contraction in 2007-2009 on two dummy variables that indicate whether a county is in the

middle elasticity group or the most elastic group, which are constructed in Figure 4, together

with a list of control variables. This regression implicitly uses the inelastic group as the

benchmark for the middle and elastic groups. The control variables include the fraction of

subprime households in the county in 2005, which is computed based on individual mortgage

loan applications reported by the “Home Mortgage Disclosure Act”(HMDA) dataset, as well

as the contemporaneous population change and annualized per capita income change.

Table 1 reports the regression results. Columns 1 and 2 report the regressions of the

housing price expansion in 2004-2006 without and with the controls. Columns 3 and 4

report the regressions of the housing price contraction in 2007-2009 without and with the

controls. Among the control variables, the fraction of subprime households is significantly

correlated with both the price expansion during the boom and the price contraction during

the bust. This result is consistent with Mian and Sufi (2009), which shows that credit
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expansion to subprime households before 2006 was a key factor in explaining the recent

housing cycle. The changes in population and income are insignificant in explaining either the

price expansion or the contraction across the cycle. More important, even after controlling

for these fundamental factors, the middle group experienced a significantly more pronounced

housing price expansion in 2004-2006 and a more pronounced price contraction in 2007-2009

relative to the inelastic group.

It is important to note that the findings shown in Figures 2-5 and Table 1 are not driven

by a few areas such as Las Vegas and Phoenix. In unreported analysis, we dropped Las

Vegas and Phoenix and found that results are similar both qualitatively and quantitatively.

These robustness results are available upon request.

Taken together, Figures 2-5 and Table 1 show that the commonly perceived monotonic

relationship between housing cycle and supply elasticity is not robust to finer groupings of

counties. Finer groupings and an alternative method of grouping counties by population

rather than number of counties, however, reveal a robust non-monotonic relationship in

which the counties in a median elasticity range experienced more pronounced price booms

and busts in the 2000s than counties with the most inelastic supply. This non-monotonic

relationship is intriguing and cannot easily be explained by the usual role of elasticity in

affecting the supply side of housing. In the next section, we present a simple model to

illustrate a learning mechanism through which supply elasticity affects the informational

role of housing prices and households’learning from housing prices.

3.4. A Baseline Model

In this section we develop a simple model with two dates t = 1, 2 to analyze the effects

of informational frictions on the housing market equilibrium in a closed neighborhood. One

can think of this neighborhood as a county or a township. A key feature of the model

is that the housing market is not only a place for households to trade housing but also a

platform to aggregate private information about the unobservable strength or quality of the

neighborhood. In addition to its direct role in affecting housing supply in the neighborhood,

supply elasticity also indirectly affects the informational noise in the housing prices.
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3.4.1 Model Setting

There are two types of agents in the economy: households looking to buy homes in the

neighborhood and home builders. Suppose that the neighborhood is new and all households

purchase houses from home builders in a centralized market at t = 1 and consume both

housing and consumption goods at t = 2.64

Each household cares about the strength of the neighborhood, as its utility depends on

not only its own housing consumption but also the housing consumption of other households

in their neighborhood. This assumption is motivated by the empirical findings of Ioannides

and Zabel (2003) and leads to strategic complementarity in each household’s housing de-

mand.65 The strength of this closed neighborhood is reflected by the aggregate productivity

of its households. A strong aggregate productivity implies greater output by all households,

and thus greater housing demand by them as well. In the presence of realistic informa-

tional frictions in gauging the strength of the neighborhood, the housing market provides

an important platform for aggregating information about this aggregate productivity. As a

consequence, the resulting housing price serves as a useful signal about the neighborhood’s

strength.

3.4.1.1 Demand Side

There is a continuum of households, indexed by i ∈ [0, 1]. Household i has a Cobb-

Douglas utility function over its own housing Hi, consumption good Ci, and the housing

consumption of all other households in the neighborhood {Hj}j∈[0,1]:
66

U
(
{Hj}j∈[0,1] , Ci

)
=

{
1

1− ηH

(
Hi

1− ηc

)1−ηc
(∫

[0,1]/i
Hjdj

ηc

)ηc
}1−ηH (

1

ηH
Ci

)ηH
. (33)

The parameters ηH ∈ (0, 1) and ηc ∈ (0, 1) measure the weights of different consumption

components in the utility function. A higher ηH means a stronger complementarity between

64For simplicity, we do not consider the endogenous decision of households choosing their neighborhood
and instead take the pool of households in the neighborhood as given. See Van Nieuwerburgh and Weill
(2010) for a systematic treatment of moving decisions by households across neighborhoods.
65There are other types of social interactions between households living in a neighborhood, which are

explored, for instance, in Durlauf (2004) and Glaeser, Sacerdote, and Scheinkman (2003).
66Our modeling choice of non-separable preferences for housing and consumption is similar to the CES

specification of Piazzesi, Schneider, and Tuzel (2007).
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housing consumption and goods consumption, while a higher ηc means a stronger comple-

mentarity between the housing of household i and housing of the composite house
∫

[0,1]/i
Hjdj

purchased by the other households in the neighborhood.

The production function of household i is eAili, where li is the household’s labor choice

and Ai is its productivity. Ai is comprised of a component A common to all households in

the neighborhood and an idiosyncratic component εi:

Ai = A+ εi,

where A ∼ N
(
Ā, τ−1

A

)
and εi ∼ N (0, τ−1

ε ) are both normally distributed. The common

productivity A represents the strength of the neighborhood, as a higher A implies a more

productive neighborhood. As A determines the households’aggregate demand for housing,

it represents the demand-side fundamental.

As a result of realistic informational frictions, neither A nor Ai is observable to the

households. Instead, each household observes a noisy private signal about A at t = 1.

Specifically, household i observes

θi = A+ νi,

where νi ∼ N
(
0, τ−1

θ

)
is signal noise independent across households. The parameter τ θ

measures the precision of the private signal. As τ θ → ∞, the households’signals become
infinitely precise and the informational frictions about A vanish.

While our model setting is static and focuses on a closed neighborhood, one can provide

a broad interpretation of the uncertainly in the neighborhood strength A. In relating this

setting to the recent housing cycle, we interpret the uncertainty in A as being induced by

a nationwide shock to credit expansion for homeowners in the 2000’s due to the factors

mentioned in Section 3.3. While this shock affected the whole country, its potential impact

on individual neighborhoods was different. Some neighborhoods might attract migrants

with high productivity from other neighborhoods as a result of the national shock, while

others might lose their high-quality residents who could now more easily reallocate to other

locations. As a result, home buyers faced a realistic problem in inferring how this national

shock might have influenced the strength of an individual neighborhood when buying a home.

Households care about the strength of the neighborhood A not only because it determines

their own productivity, but also because of complementarity in their housing demand. Since

households want to live in similar-sized houses to their neighbors, they need to learn about
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A because it affects their neighbors’housing decisions. Consequently, while a household may

have a fairly good understanding of its own productivity when moving into a neighborhood,

complementarity in housing demand motivates it to pay attention to housing prices to learn

about the average level A for the neighborhood.

We assume that each household experiences a disutility for labor l1+ψi

1+ψ
, and that it maxi-

mizes its expected utility at t = 1 by choosing its housing demand Hi and labor li:

max
{Hi,li}

E

[
U
(
{Hj}j∈[0,1] , Ci

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

(34)

such that Ci = eAili − PHi + Πi.

We assume for simplicity that the home builder for household i is part of the household and

that the builder brings home its profit Πi = PHi to the household after construction has

taken place. Furthermore, we normalize the interest rate from t = 1 to t = 2 to be zero. As

a result, at t = 2, household i’s budget constraint satisfies Ci = eAili. The choices of labor

and housing are made at t = 1 subject to each household’s information set Ii = {θi, P} ,
which includes its private signal θi and the housing price P .67

3.4.1.2 Supply Side

Home builders face a convex labor cost

k

1 + k
e−ζS

1+k
k

H

in supplying housing, where SH is the quantity of housing supplied, k ∈ (0,∞) is a constant

parameter, and ζ represents a shock to the building cost. We assume that ζ is observed by

builders but not households,68 and that from the perspective of households ζ ∼ N
(
ζ̄ , 1
)
,

i.e., a normal distribution with ζ̄ as the mean and unit variance.

67We do not include the volume of housing transactions in the information set as a result of a realistic
consideration that, in practice, people observe only delayed reports of total housing transactions at highly
aggregated levels, such as national or metropolitan levels.
68Even though we assume that builders perfectly observe the supply shock, a more realistic setting would

have builders each observing part of the supply and thus needing to aggregate their respective information
in order to fully observe the supply-side shock. We have explored this more general setting, which entails an
additional layer of information aggregation on the builder side of the housing market. Nevertheless, it gives
qualitatively similar insights as our current setting.
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Builders at t = 1 maximize their profit subject to their supply curve

Π (SH) = max
SH

PSH −
k

1 + k
e−ζS

1+k
k

H . (35)

It is easy to determine the builders’optimal supply curve:

SH = P keξ, (36)

where ξ = kζ is interpretated as being a supply shock with normal distribution ξ ∼ N
(
ξ̄, k2

)
,

where ξ̄ = kζ̄. The parameter k measures the supply elasticity of the neighborhood. A more

elastic neighborhood has a larger supply shock, i.e., the supply shock has greater mean and

variance. In the housing market equilibrium, the supply shock ξ not only affects the supply

side but also the demand side, as it acts as informational noise in the price signal when the

households use the price to learn about the common productivity A.

We also incorporate a behavioral feature that households may underestimate the supply

elasticity in the neighborhood and incorrectly believe it to be φk rather than k, where

φ ≤ 1. This feature is motivated by the observation made by Glaeser (2013) that agents tend

to underestimate supply shocks during various episodes of real-estate speculation observed

in U.S. history. Specifically, Glaeser identifies the under-appreciation of the supply response

by buyers as a systematic, cognitive limitation that helps explain historical boom and bust

episodes of real-estate speculation. As a result of this behavioral feature, households may

put too much weight on housing prices in their housing decisions because they overestimate

the precision of prices as a signal about the neighborhood strength A.

This overweighing is reminiscent of extrapolative beliefs, which, as referenced in the in-

troduction, have been recognized in the literature as important for understanding housing

cycles. It is useful to note that while extrapolative beliefs amplify housing price volatility,

they nevertheless imply price volatility monotonically decreases in supply elasticity. The

overweighing of prices highlighted in our model anchors on a characteristic of neighbor-

hoods that allows for it to explain the hump-shaped pattern in price volatility across supply

elasticity.

3.4.2 The Equilibrium

Our model features a noisy rational expectations equilibrium, which requires clearing of

the housing market that is consistent with the optimal behavior of both households and

home builders:
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• Household optimization:
{
{Hi}i∈[0,1] , li

}
solves each household’s maximization prob-

lem in (34).

• Builder optimization: SH solves the builders’maximization problem in (35).

• At t = 1, the housing market clears:∫ ∞
−∞

Hi (θi, P ) dΦ (νi) = P keξ,

where each household’s housing demand Hi (θi, P ) depends on its private signal θi and

the housing price P. The demand from households is integrated over the idiosyncratic

component of their private signals {νi}i∈[0,1] .

We first solve for the optimal labor and housing choices for a household given its utility

function and budget constraint in (34), which are characterized in the following proposition.

PROPOSITION 3.1: Household i’s optimal labor choice depends on its expected produc-

tivity:

li =

ηHE
{ 1

1− ηH

(
Hi

1− ηc

)1−ηc
(∫

[0,1]/i
Hjdj

ηc

)ηc
}1−ηH (

1

ηH
eAi
)ηH ∣∣∣∣∣∣ Ii


1

1+ψ−ηH

,

and its demand for housing is

logHi =
2 + ψ − ηH

ψ + (1− ηH) ηc
logE

[(∫
[0,1]

Hjdj

)ηc(1−ηH)

eηHAi

∣∣∣∣∣ Ii
]
− 1 + ψ − ηH
ψ + (1− ηH) ηc

logP

− 1 + ψ − ηH
ψ + (1− ηH) ηc

logE

[(∫
[0,1]

Hjdj

)ηc(1−ηH)

e(ηH−1)Ai

∣∣∣∣∣ Ii
]

+
ψ

ψ + (1− ηH) ηc
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 . (37)

Proposition 1 demonstrates that the labor chosen by a household is determined by its

expected productivity and that its housing demand is determined by not only its own pro-

ductivity eAi but also the aggregate housing consumption of other households. This latter

component arises from the complementarity in the utility function of the household.

By clearing the aggregate housing demand of the households with the supply from the

builders, we derive the housing market equilibrium. Despite the nonlinearity in each house-

hold’s demand and in the supply from builders, we obtain a tractable unique log-linear
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equilibrium. The following proposition summarizes the housing price and each household’s

housing demand in this equilibrium.

PROPOSITION 3.2: At t = 1, the housing market has a unique log-linear equilibrium:

1) The housing price is a log-linear function of A and ξ:

logP = pAA+ pξξ + p0, (38)

with the coeffi cients pA and pξ given by

pA =
1 + ψ

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ τAb > 0, (39)

pξ = − ψ

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ

(
b

φk

)2

< 0, (40)

where b ∈
[

0, 1+ψ
ψ

τθ(
1+

(1−ηH)ηc
ψ

)
τA+τθ

]
is the unique positive, real root of equation (61), and

p0 is given in equation (66).

2) The housing demand of household i is a log-linear function of its private signal θi and

logP :

logHi = hθθi + hP logP + h0, (41)

with the coeffi cients hθ and hP given by

hθ = b > 0, (42)

hP = −1 + ψ − ηH
ψ

+
1 + ψ + ηc (1− ηH) b

ψ

(
b
φk

)2

τA + τ θ +
(

b
φk

)2

1

pA
, (43)

and h0 given by equation (55).

Proposition 3.2 establishes that the housing price P is a log-linear function of the neigh-

borhood strength A and the housing supply shock ξ, and that each household’s housing

demand is a log-linear function of its private signal θi and the log housing price logP.

Similar to Hellwig (1980), the housing price aggregates the households’dispersed private

information to partially reveal A. The price does not depend on the idiosyncratic noise in

any individual household’s signal because of the Law of Large Numbers. This last obser-

vation is key to the tractability of our model and ensures that the housing demand from

the households retains a log-normal distribution after aggregation. This tractable log-linear
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equilibrium is different from the frameworks of Goldstein, Ozdenoren, and Yuan (2013) and

Albagi, Hellwig, and Tsyvinski (2012, 2014), which employ risk-neutral agents, normally

distributed asset fundamentals, and position limits to deliver tractable nonlinear equilibria.

In the presence of informational frictions, the housing supply shock ξ serves the same

role as noise trading in standard models of asset market trading with dispersed information.

This feature is new to the housing literature and highlights an important channel for supply

shocks to affect the expectations of potential home buyers. Since households cannot perfectly

disentangle changes in housing prices caused by supply shocks from those brought about by

shocks to demand, they partially confuse a housing price change caused by a supply shock

to be a signal about the strength of the neighborhood.

To facilitate our discussion of the impact of learning, it will be useful to introduce a

perfect-information benchmark in which all households perfectly observe the strength of the

neighborhood A. The following proposition characterizes this benchmark equilibrium.

PROPOSITION 3.3: Consider a benchmark setting, in which households perfectly

observe A (i.e., θi = A, ∀i.) There is also a log-linear equilibrium, in which the housing price
is

logP =
1 + ψ

1 + ψ (1 + k)− ηH
A− ψ

1 + ψ (1 + k)− ηH
ξ +

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2 (1 + ψ (1 + k)− ηH)
τ−1
ε

+
ψ

1 + ψ (1 + k)− ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

and all households have the same housing demand

logH =
1 + ψ

ψ
A− 1 + ψ − ηH

ψ
logP +

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2ψ
τ−1
ε

+ log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

Furthermore, the housing market equilibrium with informational frictions characterized in

Proposition 2 converges to this benchmark equilibrium as τ θ ↗∞, and the variance of the
housing price V ar [logP ] has a U-shaped relationship with the supply elasticity k.

It is reassuring that as the households’private information becomes infinitely precise, the

housing market equilibrium converges to the perfect-information benchmark. In this perfect-

information benchmark, the housing price is also a log-linear function of the demand-side
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fundamental A and the supply shock ξ, and each household’s identical demand is a log-linear

function of the perfectly observedA and the housing price logP. Consistent with the standard

intuition, a higher A increases both the housing price and aggregate housing demand, while

a larger supply shock ξ reduces the housing price but increases aggregate housing demand.

It is also easy to see that in this benchmark setting, as the supply elasticity k rises from zero

to infinity, the weight of A (the demand-side fundamental) in the housing price decreases,

while the weight of ξ (the supply-side shock) increases.

Furthermore, in the perfect-information benchmark, the housing price variance has a

U-shaped relationship with the housing supply elasticity k. This is because, as k varies, it

causes the housing price to assign different weights to the demand-side fundamental and the

supply-side shock. The standard intuition from diversification implies that the price has the

lowest variance when the weights of the two factors are balanced, i.e., the supply elasticity

takes an intermediate value. This U-shaped price variance serves a benchmark to evaluate

the housing price variance in the presence of informational frictions.

3.4.3 Impact of Learning

In the presence of informational frictions about the strength of the neighborhood A,

each household needs to use its private signal θi and the publicly observed housing price

logP to learn about A. As the housing price logP is a linear combination of the demand-

side fundamental A and the housing supply shock ξ, the supply shock interferes with this

learning process. A larger supply shock ξ, by depressing the housing price, will have an

additional effect of reducing the households’expectations of A. This, in turn, reduces their

housing demand and consequently further depresses the housing price. This learning effect

thus causes the supply shock to have a larger negative effect on the equilibrium housing price

than it would in the perfect-information benchmark. Similarly, this learning effect also causes

the demand-side fundamental A to have a smaller positive effect on the price than in the

perfect-information benchmark because informational frictions cause households to partially

discount the value of A. The following proposition formally establishes this learning effect

on the housing price.

PROPOSITION 3.4: In the presence of informational frictions, coeffi cients pA > 0 and

pξ < 0 derived in Proposition 3.2 are both lower than their corresponding values in the

perfect-information benchmark.
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The precision of the households’ private information τ θ determines the informational

frictions they face. The next proposition establishes that an increase in τ θ mitigates the in-

formational frictions and brings the coeffi cient pA closer to its value in the perfect-information

benchmark. In fact, as τ θ goes to infinity, the housing market equilibrium converges to the

perfect-information benchmark (Proposition 3).

PROPOSITION 3.5: pA increases with the precision τ θ of each household’s private signal

and decreases with the degree of complementarity in households’housing consumption ηc.

Each household’s housing demand also reveals how the households learn from the housing

price. In the presence of informational frictions about A, housing price is not only the cost of

acquiring shelter but also a signal about A. The housing demand of each household derived

in (41) reflects both of these effects. Specifically, we can decompose the price elasticity

of each household’s housing demand hP in equation (43) into two components. The first

component − 1
ηH
is negative and represents the standard cost effect (i.e., downward sloping

demand curve), as in the perfect-information benchmark in Proposition 3.3, and the second

component 1+ψ+ηc(1−ηH)b
ψ

( b
φk)

2

τA+τθ+( b
φk)

2
1
pA
is positive and represents the learning effect.

A higher housing price raises the household’s expectation of A and induces it to consume

more housing through two related but distinct learning channels. First, a higher A implies a

higher productivity for the household itself. Second, a higher A also implies that other house-

holds demand more housing, which in turn induces each household to demand more housing.

As a reflection of this complementarity effect, the second component in the price elasticity of

housing demand increases with ηc, the degree of complementarity in the household’s utility

of its own housing consumption and other households’housing consumption.

As a result of the presence of the complementarity channel, ηc also affects the impact of

learning on the housing price. As ηc increases, each household puts a greater weight on the

housing price in its learning of A and a smaller weight on its own private signal. This in

turn makes the housing price less informative of A. In this way, a larger ηc exacerbates the

informational frictions faced by households. Indeed, Proposition 5 shows that the loading of

logP on A is decreasing with ηc.

Housing supply elasticity k plays an important role in determining the informational

frictions faced by the households, in addition to its standard supply effect. To illustrate this

learning effect of supply elasticity, we consider two limiting economies as k goes to 0 and∞,
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which are characterized in the following proposition.

PROPOSITION 3.6: As k → ∞ , the housing price and each household’s housing

demand converge to

logP = −ζ,

and

logHi =
1 + ψ

ψ

τ θ

τA + τ θ + (1−ηH)ηc
ψ

τA
θi −

1 + ψ − ηH
ψ

logP + h0.

As k → 0, the housing price and each household’s housing demand converge to

logP =
1 + ψ

1 + ψ − ηH
A+

1

2

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

1 + ψ − ηH
τ−1
ε

+
ψ

1 + ψ − ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 ,

and logHi = 0.

At one end, as supply elasticity goes to zero, the housing price is completely driven

by A and thus fully reveals it. In this case, each household precisely learns A from the

price, and as a result, both the housing price and each household’s housing demand coincide

with their corresponding values in the prefect-information benchmark. At the other end,

as supply elasticity goes to infinity, the housing price is completely driven by the supply

shock ξ and contains no information about A. In this case, each household has to rely on

its own private signal to infer A. But as the housing price is fully determined by the supply

shock and independent of the demand-side fundamental, informational frictions about A do

not matter for the housing price. Consequently, the housing price also coincides with that

in the perfect-information benchmark, even though informational frictions still affect each

household’s housing demand. Taken together, when housing supply is either perfectly elastic

or inelastic, housing price is not affected by informational frictions and coincides with that

in the perfect-information benchmark.

The following proposition characterizes the housing price at an intermediate supply elas-

ticity and, in particular, analyzes the role of the households’underestimation φ of supply

elasticity.

PROPOSITION 3.7: Consider an intermediate level of supply elasticity k ∈ (0,∞) . 1)

In the presence of informational frictions, both pA and |pξ| monotonically decrease with φ. 2)
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When φ = 1, the housing price variance with informational frictions is lower than that of the

perfect-information benchmark. 3) The variance of the housing price logP decreases with

φ, and a suffi cient condition 1 − ψ
ψ+(1−ηH)ηc

τθ
τA
≤ φ2 ≤ 1

2
ensures the price variance to be at

least as large as its corresponding value in the perfect-information benchmark.

Proposition 3.7 shows that, at an intermediate supply elasticity, the households’under-

estimation of supply elasticity causes them to overinterpret the information contained in the

price signal and thus overreact to the price signal. Consequently, the positive loading of

the equilibrium housing price pA on the demand-side fundamental A becomes larger and the

negative loading pξ on the supply shock becomes more negative. That is, the housing price

becomes more responsive to both demand and supply shocks.

Proposition 3.7 also shows that, in the absence of the households’underestimation of

supply elasticity, the presence of informational frictions reduces the housing price variance.

This is because informational frictions make households less responsive to demand shocks,

causing the housing price to load less on demand shocks. When households underestimate

the supply elasticity (φ < 1), their overreaction to the price signal amplifies the price effects

of both supply and demand shocks, and implies that the housing price variance monotonically

decreases with φ. In fact, Proposition 3.7 shows that when φ is suffi ciently small, the housing

price variance is at least as large as its value in the perfect-information benchmark.

Interestingly, the volatility amplification induced by the households’overreaction to the

housing price is most pronounced when the supply elasticity is in an intermediate range.

This follows from our earlier discussion of the two limiting cases when the elasticity goes

to either zero or infinity. At one end, when the supply is infinitely elastic, the households’

learning about the demand side is irrelevant for the price. At the other end, when the supply

is infinitely inelastic, the price fully reveals the demand-side fundamental and there is no

room for the households to overreact. In between these two limiting cases, the demand-side

fundamental plays a significant role in determining the housing price and at the same time

households face substantial uncertainty about the demand-side fundamental, which leaves

room for their overreaction to amplify the price volatility.

In Figure 6, we provide a numerical example to illustrate how informational frictions and

households’overreaction jointly affect the housing price variance. The figure depicts the

log-price variance V ar [logP ] against the supply elasticity under the following parameter
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values:

τ θ = 0.1, τA = 1, φ = 0.1, ψ = 0.6, ηc = 0.5, ηH = 0.9.

For comparison, it also depicts the log-price variance in the perfect-information benchmark,

which is obtained as τ θ → ∞. As the supply elasticity k rises from 0 to 1 (i.e., from

infinitely inelastic to more elastic), the log-price variance decreases with the supply elasticity.

In contrast, when the households face informational frictions with τ θ = 1, Figure 6 shows

that the log-price variance first increases with k, when k is lower than an intermediate level

around 0.1, and then decreases with k.69 The difference between this humped shape and the

monotonically decreasing curve in the perfect-information benchmark illustrates the joint

effect of informational frictions and the households’overreaction to the price signal.

The humped log-price variance illustrated in Figure 6 provides an explanation for the

aforementioned, non-monotonic relationship between the housing boom and bust cycles ex-

perienced by different U.S. counties in the 2000s and supply elasticity.

3.5 Elasticity and Housing Speculation

In this section, we further explore the effects of household learning on housing speculation.

We first extend the baseline model presented in the last section to incorporate secondary

homes and, in particular, to show that the same learning effect discussed earlier leads to new

predictions regarding the relationship between housing speculation and supply elasticity.

Then, we examine these predictions in the data and provide some supportive evidence.

3.5.1 A Model Extension

We extend the model presented in the previous section to incorporate three types of

agents in the economy: households, home builders, and immigrants looking to move into the

neighborhood. The immigrants are the new addition to this extension. Suppose that these

immigrants make their decision at t = 1 on whether to move into the neighborhood, based

on the expected strength of the neighborhood. The immigrants arrive in the neighborhood

at t = 2 and then buy the secondary homes initially owned by the households.

69Outside the range of k depicted in the figure, both of these two lines decrease and eventually converge
to each other as k →∞, as derived in Proposition 3.6.
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3.5.1.1 Households

At t = 1, households purchase two types of homes, one as their primary residence and

the other as a secondary home to sell at t = 2 to the immigrants. Home builders build and

sell these two types of homes in two separate housing markets. This separate treatment of

primary and secondary homes is consistent with the fact that, in practice, primary homes

tend to be single houses, while secondary homes tend to be apartments and condominiums.

Another advantage of giving separate supply curves to primary and secondary homes is that

it ensures a tractable log-linear equilibrium.

When making their decisions at t = 1, households again receive a private signal θi about

the strength of the neighborhood. Like before, the demand of household i for a primary

home is Hi, but now, in addition, the household has a demand for a secondary home,Mi. For

simplicity, suppose that households have no initial wealth and must finance their purchases

by borrowing debt Di from home builders.70 We also normalize the interest rate on the loans

to be zero. Then, the budget constraint of household i at t = 1 is

PHi +Q1Mi = Di, (44)

where P is the price of primary homes and Q1 is the price of secondary homes.

At t = 2, households decide how much of their goods to produce, sell their secondary

homes at a price Q2 to the immigrants that have moved into the neighborhood, and repay

their debt to home builders. Household i again employs its own labor li as an input to

production with production function eAili. As in the baseline model, household i earns income

ΠHi from the home builder of their primary home, who is part of the household. Thus, in

equilibrium, ΠHi = PHi.

The budget constraint of household i at t = 2 is then

Ci = −Di + eAili +Q2Mi + ΠHi, (45)

where Ci is the goods consumption of household i. Households have the same Cobb-Douglas

preferences as in the baseline model for consuming their primary housing and non-housing

consumption at t = 2.

70This assumption is innocuous as our main interest is not to study the effects of the households’credit
constraints.
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At t = 1, each household maximizes

max
{Hi,Mi,li}

E

[
U
(
{Hj}j∈[0,1] , Ci

)
− l1+ψ

i

1 + ψ

∣∣∣∣∣ Ii
]

(46)

under its information set Ii = {θi, P,Q1} , which includes its private signal θi and the housing
prices P and Q1. The household’s consumption Ci is determined by its budget constraint at

t = 2 given in (45), which in turn depends on its budget constraint at t = 1 given in (44).

3.5.1.2 Home Builders

Home builders face separate production processes for building primary and secondary

homes. Specifically, they face the following convex labor cost for building each type of home:

k

1 + k
e−ζjS

1+k
k

j

where j ∈ {H,M} indicates the type of home with H representing primary homes and M

representing secondary homes, Sj is the quantity of type-j homes supplied, and ζj represents

a supply shock. We assume that ζj is observed by builders but not households. From the

perspective of households, there are two components in the supply shock of type-j homes:

ζj = ζ + ej, j ∈ {H,M} .

The first component ζ is common to the two types of homes. It has a normal distribution

with ζ̄ as the mean and unit variance. The second component ej is idiosyncratic to type-j

homes. It has a normal distribution with zero mean and α as its standard deviation.

The builders’optimization determines their supply curves for both primary and secondary

homes:

SH = P keξH and SM = Qk
1e
ξM ,

where, for j ∈ {H,M}, ξj ∼ N
(
ξ̄, (1 + α2) k2

)
and ξ̄ = kζ̄.

3.5.1.3 Immigrants

Immigrants decide whether they want to move into the neighborhood at t = 1, although

they move into the neighborhood only at t = 2 and thus purchase secondary homes from the

initial households at t = 2. This is realistic as it takes time for immigrants to move families
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from one area to another. As such, immigrants have to make their migration decisions based

on their expectations of the strength of a neighborhood at t = 1, rather than the realized

strength at t = 2. As immigrants are from outside of the neighborhood, it is reasonable to

assume that they do not receive any private information and have to rely on Ic = {P,Q1} ,
which contains the publicly observable housing prices at t = 1, to form their expectations.

Like the households, the immigrants also underestimate the housing supply elasticity by the

same factor φ ≤ 1.

It is intuitive that when immigrants hold a higher expectation about the strength of a

neighborhood, the neighborhood will attract a larger number of immigrants. This is because

immigrants also enjoy living and working in a stronger neighborhood. Consequently, there

will be a greater demand for secondary homes at t = 2. For simplicity, we adopt a reduced

form to capture the immigrants’housing demand by assuming that the aggregate wealth W

they bring to buy homes is proportional to their expected strength of the neighborhood:

W = E
[
eA
∣∣ Ic] . (47)

This form allows us to maintain the tractable log-linear equilibrium.71

Anticipating the arrival of immigrants at t = 2, the initial households act as intermediaries

by buying secondary homes at t = 1 and selling them to immigrants at t = 2. To the extent

that the households can perfectly predict the future housing demand of the immigrants

based on the public information available at t = 1, they do not bear any risk in speculating

in secondary homes. This feature serves to simplify our analysis and to highlight the key

insight that the households’demand for secondary homes is crucially influenced by housing

prices P and Q1 traded at t = 1 through their impact on the immigrants’expectation of the

neighborhood strength.

3.5.1.4 Equilibrium

We derive the noisy rational expectations equilibrium as in the baseline model. The

71One may micro-found this form in different ways. One possibility is that the number of immigrants
increases with their expectation of the strength of neighborhood and each immigrant arrives with a fixed
amount of wealth to acquire housing. Another possibility, which we have explicitly worked out in an earlier
draft, is to let the immigrants supply labor to the initial households based on their expectations of the
strength of the neighborhood, which determines the productivity of the households.

161



equilibrium features the clearing of both primary and secondary homes at t = 1:∫ ∞
−∞

Hi (θi, P,Q1) dΦ (vi) = P keξH ,∫ ∞
−∞

Mi (θi, P,Q1) dΦ (vi) = Qk
1e
ξM ,

and the households’learning from the prices of both primary and secondary homes. We also

impose clearing in the market for secondary homes at t = 2, which requires the immigrants

to spend all their wealth W to purchase secondary homes:

Q2

∫ ∞
−∞

Mi (θi, P,Q1) dΦ (vi) = W.

As the nature of the equilibrium and the key steps of deriving the equilibrium are similar

to the baseline model, we leave the detailed description and derivation of the equilibrium to

an Internet Appendix. Instead, we briefly summarize the key features of the equilibrium in

the extended model here.

There is a unique log-linear equilibrium where the primary home price is a log-linear

function of A, ξH , and logQ1:

logP = pAA+ pξξH + pQ logQ1 + p0,

and the prices of secondary homes at t = 1 and t = 2 are identical and equal to a log-linear

function of ξM and logP :

logQ1 = logQ2 = qξξM + qP logP + q0.

All coeffi cients are given in the Internet Appendix. As the immigrants’demand at t = 2 for

secondary homes is determined by the public information available at t = 1, the households

can fully anticipate the price of secondary homes Q2 at t = 2. Competitive pressure ensures

that they earn zero profit by buying secondary homes at t = 1 and then selling them at

t = 2. As a result, the price of secondary homes Q1 at t = 1 is equal to Q2.

As a result of the separate supply shocks in the primary and secondary home markets,

the prices of primary and secondary homes are not perfectly correlated. The price of primary

homes P serves to aggregate the private information of households regarding the strength

of the neighborhood A, while the price of secondary homes simply reflects P , together with

another supply component qξξM , which in turn reveals the supply shock ξM . Each household,
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say household i, treats both prices P and Q1 as useful signals, in addition to its private signal

θi, in forming its expectation of A.

Like the baseline model, through this informational channel, informational frictions and

households’overreaction to the price signals can jointly lead to a hump-shaped relationship

between the log-price variance of both primary and secondary homes and the supply elastic-

ity. To illustrate this relationship, we again use a numerical example based on the following

parameter choices:

τ θ = 0.1, τA = 1, φ = 0.1, ψ = 0.6, ηc = 0.5, ηH = 0.9, α = 1, τ ε = 0.1. (48)

The top two panels of Figure 7 depict the log-price variance of both primary and secondary

homes against supply elasticity. It shows humped-shapes for both curves in the presence of

informational frictions, consistent with that in Figure 6 for the baseline model.

The households’demand for secondary homes is ultimately driven by the immigrants’

learning about the neighborhood strength through the housing prices. As a consequence, the

learning effects are particularly important to the households’demand for secondary homes.

Thus, in this extended model, the households’ demand for secondary homes provides an

additional dimension to examine learning effects. Specifically, the demand of household i for

primary homes is a log-linear function of its private signal θi and housing prices logP and

logQ1, while its demand for secondary homes is a log-linear function of logP and logQ1:

logHi = hθθi + hP logP + hQ logQ1 + h0,

logMi = logM = mP logP +mQ logQ1 +m0,

with all coeffi cients given in the Internet Appendix. As all households agree on the housing

demand of immigrants at t = 2, they choose an identical demand schedule for secondary

homes. We are particularly interested in the fraction of demand for secondary homes relative

to the total housing demand Mi

Hi+Mi
, as this ratio is directly measurable in the data.

3.5.1.5 Empirical Predictions

The bottom-left panel of Figure 7 depicts the variance of Mi

Hi+Mi
, which measures the

variability of the share of investment-driven housing demand in total housing demand with

respect to supply elasticity in the presence and absence of informational frictions. In the ab-

sence of informational frictions, V ar
[

Mi

Hi+Mi

]
monotonically decreases with supply elasticity.
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This pattern is intuitive and reflects how the cost effect of a higher housing price impacts

primary home purchases more than secondary home purchases. As seen in the Internet Ap-

pendix, the loading of primary home demand logH (which is identical across all households)

on the supply shock ζH is
k(1+ψ−ηH)

1+kηH
, where ηH ∈ (0, 1) is the degree of housing-consumption

complementarity, while for secondary home demand logM it is k
1+k

. The primary home de-

mand is, therefore, more variable than secondary home demand for a given supply shock,

and this difference increases with the supply elasticity of the neighborhood. Consequently,

in areas with more elastic supply, the fraction of secondary home purchases is less variable.

Interestingly, in the presence of informational frictions, Figure 7 shows a hump-shaped

pattern of V ar
[

Mi

Hi+Mi

]
with respect to supply elasticity. This humped shape highlights

the learning effects on the households’demand for secondary homes. Building on the same

insight from our earlier discussion, the demand for secondary homes is most variable in an

intermediate range of supply elasticity because the joint effects of informational frictions and

the overreaction of the households and immigrants to the price signals are most influential

in affecting their expectations of the neighborhood strength.

The non-monotonic relationship between the variability of the fraction of secondary-home

demand relative to total demand and housing supply elasticity is again in sharp contrast

to the monotonic relationship in the perfect-information benchmark. This non-monotonic

relationship provides a new prediction for us to explore in the data.

Figure 7 also highlights a second salient feature in the presence of informational frictions.

The variance of housing prices and the variance of the share of secondary-home demand

exhibit similar hump-shaped patterns across supply elasticity, which suggests a positive

correlation between them. The bottom-right panel of Figure 7, by displaying a scatter plot

of these two variances across supply elasticities, illustrates this positive correlation, which

provides a second new prediction for us to test in the data.

3.5.2 Empirical Evidence

In this subsection, we examine the two empirical predictions provided by the model

extension using data from the recent U.S. housing boom: 1) whether during the boom

period of 2004-2006 the share of non-owner-occupied home purchases in the total home

purchases had the greatest increases relative to the pre-boom period of 2001-2003 in counties

with intermediate supply elasticities, and 2) whether counties with greater increases in the
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share of non-owner-occupied home purchases during the boom also experienced larger price

increases in 2004-2006 and larger price decreases during the bust period of 2007-2009.

We construct the share of non-owner-occupied home purchases at the county level from

the “Home Mortgage Disclosure Act” (HMDA) dataset. The HMDA has comprehensive

coverage for mortgage applications and originations in the U.S. We use mortgages originated

for home purchases. HMDA data identify owner occupancy for each individual mortgage.

We then aggregate the HMDA data to the county level and calculate the fraction of mortgage

origination for non-owner-occupied homes in the total mortgage origination as our measure

of the share of secondary home purchases.

Figure 8 depicts the share of non-owner-occupied home purchases for the U.S. and for

three cities, New York, Las Vegas, and Charlotte. At a national level, the share of non-

owner-occupied home purchases rose steadily from a modest level of 7% in 2000 to peak at

a level above 15% in 2005. It then fell gradually to less than 10% in 2010. The peak of the

share of non-owner-occupied home purchases in 2005 was slightly in advance of the peak of

the national home price index in 2006, as shown in Figure 1. Nevertheless, the rise and fall

of the share of non-owner-occupied home purchases were roughly in sync with the boom and

bust of home prices.

Across the three cities, it is interesting to note that Las Vegas had the most dramatic rise

and fall in the share of non-owner-occupied home purchases, followed by Charlotte, with New

York having the most modest rise and fall. The most variable share of non-owner-occupied

home purchases experienced by Las Vegas is particularly interesting as Las Vegas also had

the most dramatic price cycle among these cities.

We now systematically examine the share of non-owner-occupied home purchases across

counties with different housing supply elasticities. We focus on the change in the fraction

of non-owner-occupied home purchases from the pre-boom period of 2001-2003 to the boom

period of 2004-2006.

In Figure 9, we sort the counties in our sample into three groups in the top panel and

ten groups in the bottom panel using the Saiz’s supply elasticity measure, with each group

having the same number of counties. The top panel shows that the change in the share of

non-owner-occupied home purchases is almost the same between the inelastic and the middle

groups, and smaller in the elastic group. As we discussed before, this coarse grouping might

hide finer non-monotonicity. Indeed, the bottom panel shows that the change in the fraction
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of non-owner-occupied home purchases displays a non-monotonic pattern across ten elasticity

groups with the largest share of non-owner-occupied home purchases in groups 3 and 4. This

non-monotonic pattern is consistent with the first prediction of the extended model.

In Figure 10, we sort the counties into elasticity groups each with an equal population

rather than number of counties. Across either the three groups shown in the top panel or

the ten groups shown in the bottom panel, there is a non-monotonic pattern in the change

of the share of non-owner-occupied home purchases across the elasticity groups, with the

change peaking in the middle of the groups.

To further examine whether the largest change in the share of non-owner-occupied home

purchases in the middle elasticity groups is robust to controlling for other fundamental

factors, we also adopt a regression approach in Table 2. Similar to the regressions reported

in Table 1, we regress the change in the share of non-owner-occupied home purchases from

2001-2003 to 2004-2006 on two dummy variables that indicate whether a county is in the

middle elastic group or the elastic group, which are constructed in the top panel of Figure 10,

together with a list of control variables. This regression implicitly uses the inelastic group as

the benchmark for the middle and elastic groups. The control variables include the fraction of

subprime households in the county in 2005, the population change, and annualized per capita

income change. Columns 1 and 2 of Table 2 report the regressions without and with the

controls. In either regression specification, we observe the middle group has a significantly

larger change in the share of non-owner-occupied home purchases than the other groups.

Furthermore, none of the control variables is significant except the annualized per capita

income change in 2004-2006.

Taken together, Figures 9-10 and Table 2 confirm the first prediction of the extended

model that there is a non-monotonic relationship between the variability of the share of

non-owner-occupied home purchases and housing supply elasticity.

Figure 11 and Table 3 provide evidence for the second prediction. The regressions in Table

3 show that change in the share of non-owner occupied home purchases from 2001-2003 to

2004-2006 is positively correlated with the size of the housing price boom in 2004-2006, and

negatively correlated with the size of the housing price bust in 2007-2009. These results

are robust to the inclusion of the control variables that are included in the test of the first

prediction. The two panels of Figure 11 graphically illustrate these correlations by providing

scatter plots of the size of the housing price boom in 2004-2006 and the housing price bust
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in 2007-2009 against the change in the share of non-owner-occupied home purchases from

2001-2003 to 2004-2006. These plots show that these correlations are a broad feature of the

data rather than driven by a few outlying counties. Our empirical analysis thus confirms

the second prediction of the extended model that there is a positive correlation between

the volatility of housing prices and the variability of the share of non-owner occupied home

purchases during the recent U.S. housing cycle.

3.6 Conclusion

This paper highlights a non-monotonic relationship between the magnitude of housing

cycles and housing supply elasticity in the cross-section of U.S. county data during the U.S.

housing cycle of the 2000s. We develop a model of information aggregation and learning

in housing markets to explain this phenomenon. In the presence of pervasive informational

frictions regarding economic strength and housing supply of a neighborhood, households face

a realistic problem in learning about these fundamental variables with housing prices serving

as important signals. Our model highlights how the households’learning interacts with char-

acteristics endemic to local housing supply and demand to impact housing price dynamics.

In particular, supply elasticity affects not only housing supply but also the informational

noise in the price signal for the households’ learning of the neighborhood strength. Our

model predicts that housing price and share of investment home purchases are both most

variable in areas with intermediate supply elasticities and that these variances are positively

correlated. Our empirical analysis also provides evidence that supports these predictions.
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3.A: Proofs of Propositions

Proof of Proposition 3.1:

The first order conditions for household i’s choices of Hi and li at an interior point are

Hi :
(1− ηc) (1− ηH)

Hi

E
[
U
(
{Hj}j∈[0,1] , Ci

)∣∣∣ Ii] = PE

[
ηH
Ci
U
(
{Hj}j∈[0,1] , Ci

)∣∣∣∣ Ii] ,(49)
li : lψi = E

[
ηH
Ci
U
(
{Hj}j∈[0,1] , Ci

)
eAi
∣∣∣∣ Ii] . (50)

Imposing Ci = eAili in equation (49), one arrives at

PHi =
(1− ηc) (1− ηH)

ηH

E

[(∫
[0,1]/i

Hjdj
)ηc(1−ηH)

eηHAi
∣∣∣∣ Ii]

E

[(∫
[0,1]/i

Hjdj
)ηc(1−ηH)

e(ηH−1)Ai

∣∣∣∣ Ii] li.
From equation (50), it follows that

li =

ηHE
{ 1

1− ηH

(
Hi

1− ηc

)1−ηc
(∫

[0,1]/i
Hjdj

ηc

)ηc
}1−ηH (

1

ηH
eAi
)ηH ∣∣∣∣∣∣ Ii


1

1+ψ−ηH

,

from which we see that

logHi =
2 + ψ − ηH

ψ + (1− ηH) ηc
logE

[(∫
[0,1]/i

Hjdj

)ηc(1−ηH)

eηHAi

∣∣∣∣∣ Ii
]
− 1 + ψ − ηH
ψ + (1− ηH) ηc

logP

− 1 + ψ − ηH
ψ + (1− ηH) ηc

logE

[(∫
[0,1]/i

Hjdj

)ηc(1−ηH)

e(ηH−1)Ai

∣∣∣∣∣ Ii
]

+
ψ

ψ + (1− ηH) ηc
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

Note that integrating over the continuum of other households’ housing choices does not

change when sets of measure zero are substracted from it. We then obtain equation (37).

Proof of Proposition 3.2:

We first conjecture that each household’s housing purchasing and the housing price take

the following log-linear forms:

logHi = hP logP + hθθi + h0, (51)

logP = pAA+ pξξ + p0, (52)
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where the coeffi cients h0, hP , hθ, p0, pA, and pξ will be determined by equilibrium conditions.

Given the conjectured functional form for Hi, we can expand equation (37). It follows

that

E

[(∫
[0,1]

Hjdj

)ηc(1−ηH)

eηHAi

∣∣∣∣∣ Ii
]

= eηc(1−ηH)(h0+hP logP+ 1
2
h2θτ
−1
θ )+ 1

2
η2Hτ

−1
ε E

[
e(ηH+ηc(1−ηH)hθ)A

∣∣ Ii] ,
where we use the fact that A is independent of εj and exploit the Law of Large Number for the

continuum when integrating over households, which still holds if we subtract sets of measure

0 from the integral. A similar expression obtains for E
[(∫

[0,1]
Hjdj

)ηc(1−ηH)

e(ηH−1)Ai

∣∣∣∣ Ii]
Define

q ≡ logP − p0 − pξ ξ̄
pA

= A+
pξ
pA

(
ξ − ξ̄

)
,

which is a suffi cient statistic of information contained in P. Then, conditional on observing

its own signal θi and the housing price P, household i’s expectation of A is

E [A | θi, logP ] = E [A | θi, q] =
1

τA + τ θ +
p2A
p2ξ

1
(φk)2

(
τAĀ+ τ θθi +

p2
A

p2
ξ

1

(φk)2 q

)
,

and its conditional variance of A is

V ar [A | θi, logP ] =

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

.

Therefore,

logE
[
e(ηH+ηc(1−ηH)hθ)A

∣∣ Ii]
= (ηH + ηc (1− ηH)hθ)

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1(
τAĀ+ τ θθi +

p2
A

p2
ξ

1

(φk)2 q

)

+
1

2
(ηH + ηc (1− ηH)hθ)

2

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

.
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Then,

logE

[(∫
[0,1]

Hjdj

)ηc(1−ηH)

eηHAi

∣∣∣∣∣ Ii
]

= (ηH + ηc (1− ηH)hθ)

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

·
(
τAĀ+ τ θθi +

pA
p2
ξ

1

(φk)2

(
logP − p0 − pξ ξ̄

))

+ηc (1− ηH)

(
h0 + hP logP +

1

2
h2
θτ
−1
θ

)
+

1

2
η2
Hτ
−1
ε

+
1

2
(ηH + ηc (1− ηH)hθ)

2

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

.

Substituting this expression into equation (37) and matching coeffi cients with the conjectured

log-linear form in (51), it follows that

hθ =
1 + ψ + ηc (1− ηH)hθ

ψ + (1− ηH) ηc

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

τ θ, (53)

hP =
1 + ψ + ηc (1− ηH)hθ

ψ

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1
pA
p2
ξ

1

(φk)2 −
1 + ψ − ηH

ψ
, (54)

h0 =
1 + ψ + ηc (1− ηH)hθ

ψ + (1− ηH) ηc

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1(
τAĀ−

pA
p2
ξ

1

(φk)2

(
p0 + pξ ξ̄

))

+
ηc (1− ηH)

ψ + (1− ηH) ηc

(
h0 +

1

2
h2
θτ
−1
θ

)
+

1

2

(1 + ψ) ηH − (1 + ψ − ηH) (1− ηH)

ψ + (1− ηH) ηc
τ−1
ε

+
1

2

1 + ψ + ηc (1− ηH)hθ
ψ + (1− ηH) ηc

(ηH + ηc (1− ηH)hθ)

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

+
1

2

1 + ψ − ηH
ψ + (1− ηH) ηc

(ηH − 1 + ηc (1− ηH)hθ)

(
τA + τ θ +

p2
A

p2
ξ

1

(φk)2

)−1

+
ψ

ψ + (1− ηH) ηc
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 . (55)

By aggregating households’housing demand and the builders’supply and imposing market

clearing in the housing market, we have

h0 + hP (p0 + pAA+ pξξ) + hθA+
1

2
h2
θτ
−1
θ = ξ + k (p0 + pAA+ pξξ) .
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Matching coeffi cients of the two sides of the equation leads to the following three conditions:

h0 + hPp0 +
1

2
h2
θτ
−1
θ = kp0, (56)

hPpA + hθ = kpA, (57)

hPpξ = 1 + kpξ. (58)

It follows from equation (58) that

pξ = − 1

k − hP
, (59)

and further from equation (57) that

pA =
hθ

k − hP
. (60)

Thus, by taking the ratio of equations (60) and (59), we arrive at

pA
pξ

= −hθ.

Substituting pA
pξ

= −hθ into equation (53), and defining b = −pA
pξ
, we arrive at

1

(φk)2 b
3 +

(
τA +

ψ

ψ + (1− ηH) ηc
τ θ

)
b− 1 + ψ

ψ + (1− ηH) ηc
τ θ = 0. (61)

We see from equation (A.19) that b has at most one positive root since the above third order

polynomial has only one sign change, by Descartes’Rule of Signs. By setting b → −b, we
see that there is no sign change, and therefore b has no negative root. Furthermore, by the

Fundamental Theorem of Algebra, the roots of the polynomial (A.19) exist. Thus, it follows

that equation (A.19) has only one real, nonnegative root b ≥ 0 and 2 complex roots.72

Furthermore, by dropping the cubic term from equation (A.19), one arrives at an upper

bound for b :

b ≤ 1 + ψ

ψ

τ θ(
1 + (1−ηH)ηc

ψ

)
τA + τ θ

.

Since hθ = −pA
pξ

= b, we can recover hθ = b > 0 and pξ = −1
b
pA < 0. From equation (54)

and b = −pA
pξ
, it follows that

hP = −1 + ψ − ηH
ψ

+
1 + ψ + ηc (1− ηH) b

ψ

(
b
φk

)2

τA + τ θ +
(

b
φk

)2

1

pA
. (62)

72The uniqueness of the positive, real root also follows from the fact that the LHS of the polynomial
equation monotonically increases in b.
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From equation (58), one also has that hP = k + p−1
ξ . Since pξ ≤ 0, it follows that hP < k

whenever k > 0.

From hθ = b and equations (60) and (62), we arrive at

pA =
ψ

1 + ψ (1 + k)− ηH

b+
1 + ψ + ηc (1− ηH) b

ψ

(
b
φk

)2

τA + τ θ +
(

b
φk

)2

 > 0. (63)

One arrives at pξ from recognizing that pξ = −1
b
pA.Manipulating equation (61), we recognize

that
1 + ψ + ηc (1− ηH) b

ψ
=
ψ + (1− ηH) ηc

ψ

(
τA + τ θ +

(
b

φk

)2
)
bτ−1

θ . (64)

Substituting equation (64) into equation (63), and invoking equation (61) to replace 1
(φk)2

b3,

one arrives at

pA =
1 + ψ

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ τAb. (65)

and from equation (63), equation (64). and pξ = −1
b
pA, one also has that

pξ = − ψ

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ

(
b

φk

)2

< 0.

From hθ = b, b = −pA
pξ
, and equations (62), (56) and (55), one also finds that

p0 =
1 + ψ + ηc (1− ηH) b

1 + ψ (1 + k)− ηH

τAĀ+ 1
(φk)2

bξ̄

τA + τ θ +
(

b
φk

)2 +
1

2

ψ + ηc (1− ηH)

1 + ψ (1 + k)− ηH
b2τ−1

θ (66)

+
1

2

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

1 + ψ (1 + k)− ηH
τ−1
ε

+
1

2

1 + ψ + ηc (1− ηH) b

1 + ψ (1 + k)− ηH
(ηH + ηc (1− ηH) b)

(
τA + τ θ +

(
b

φk

)2
)−1

+
1

2

1 + ψ − ηH
1 + ψ (1 + k)− ηH

(ηH − 1 + ηc (1− ηH) b)

(
τA + τ θ +

(
b

φk

)2
)−1

+
ψ

1 + ψ (1 + k)− ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

Given p0, pA, and b = −pA
pξ
, we can recover h0 from equation (55).

Since we have explicit expressions for all other equilibrium objects as functions of b, and

b exists and is unique, it follows that an equilibrium in the economy exists and is unique.

Proof of Proposition 3.3:
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When all households observe A directly, there are no longer information frictions in the

economy. Since the households’ idiosyncratic productivity components are unobservable,

they are now symmetric. Then, it follows that Hj = Hi = H. Imposing this symmetry in

equation (37), we see that each household’s housing demand is then given by

logH =
1 + ψ

ψ
A− 1 + ψ − ηH

ψ
logP +

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2ψ
τ−1
ε

+ log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

By market clearing, logH = ξ + k logP, it follows that

logP =
1 + ψ

1 + ψ (1 + k)− ηH
A− ψ

1 + ψ (1 + k)− ηH
ξ +

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2 (1 + ψ (1 + k)− ηH)
τ−1
ε

+
ψ

1 + ψ (1 + k)− ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

This characterizes the economy in the limit as information frictions dissipate.

To see that the economy with information frictions (finite τ θ) converges to this perfect-

information limit, we consider a sequence of τ θ that converges to ∞. From equation (A.19),

it follows that, as τ θ ↗∞, b→ 1+ψ
ψ
. Since hθ = b, it follows that

hθ →
1 + ψ

ψ
.

Taking the limit τ θ ↗ ∞ in equation (63), recognizing that hθ = b remains finite in the

limit, we see that

pA →
1 + ψ

1 + ψ (1 + k)− ηH
.

Since pξ = −1
b
pA, it follows that

pξ → −
ψ

1 + ψ (1 + k)− ηH
.

In addition, from equation (62), we find that as τ θ ↗∞,

hP → −
1 + ψ − ηH

ψ
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Finally, from equations (66) and (55), it follows that

p0 →
ψ

1 + ψ (1 + k)− ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ


+

1

2

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

1 + ψ (1 + k)− ηH
τ−1
ε ,

h0 → log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

+
(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2ψ
τ−1
ε .

Thus, we see that the economy with information frictions converges to the perfect-information

benchmark as τ θ ↗∞.
Furthermore, the variance of the log housing price is given by

V ar [logP ] =

(
ψk

1 + ψ (1 + k)− ηH

)2
(

1 +

(
1 + ψ

ψk

)2

τ−1
A

)
,

from which follows that

∂V ar [logP ]

∂k
=

2ψ2k

(1 + ψ (1 + k)− ηH)3

{
1 + ψ − ηH −

(1 + ψ)2

ψk
τ−1
A

}
.

For k < 1+ψ
ψ

1+ψ
1+ψ−ηH

τ−1
A , ∂V ar[logP ]

∂k
< 0. For k > 1+ψ

ψ
1+ψ

1+ψ−ηH
τ−1
A , ∂V ar[logP ]

∂k
> 0. Thus it

follows that the log housing price is U-shaped in k.

Proof of Proposition 3.4:

From equation (65), it is clear that

pA =
1 + ψ

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ τAb <

1 + ψ

1 + ψ (1 + k)− ηH
.

Thus, it follows that pA is always lower than its corresponding value in the perfect-information

benchmark.

Similarly, since pξ = −1
b
pA, it follows from equation (63) that we can express pξ as

pξ = − ψ

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ

(
b

φk

)2

< − ψ

1 + ψ (1 + k)− ηH
,

which is the corresponding value of pξ in the perfect-information benchmark.

Proof of Proposition 3.5:
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Note that b is determined by the polynomial equation (61). We define the LHS of the

equation as G (b). By using the Implicit Function Theorem and invoking equation (61), we

have
∂b

∂ηc
= −∂G/∂ηc

∂G/∂b
= − (1− ηH) τ θ

3 1
(φk)2

b2 + τA + ψ
ψ+(1−ηH)ηc

τ θ

1 + ψ − ψb
(ψ + (1− ηH) ηc)

2 .

Since, from Proposition 3.2, 0 ≤ b ≤ 1+ψ
ψ

τθ(
1+

(1−ηH)ηc
ψ

)
τA+τθ

≤ 1+ψ
ψ
, it follows that

1 + ψ

ψ
− b ≥ 0

Thus ∂b
∂ηc

< 0. Similarly,

∂b

∂τ θ
= −∂G/∂τ θ

∂G/∂b
=

1

3 1
(φk)2

b2 + τA + ψ
ψ+(1−ηH)ηc

τ θ

1 + ψ − ψb
ψ + (1− ηH) ηc

> 0.

From the expression for pA in Proposition 2,

∂pA
∂ηc

= − 1− ηH
1 + ψ (1 + k)− ηH

τ−1
θ τAb−

ψ + (1− ηH) ηc
1 + ψ (1 + k)− ηH

τ−1
θ τA

∂b

∂ηc
.

Then, it follows, subtituting with equation (61), that

∂pA
∂ηc

= − (1− ηH) τ−1
θ τAb

1 + ψ (1 + k)− ηH

2 1
(φk)2

b3 + ψb
ψ+(1−ηH)ηc

τ θ

2 1
(φk)2

b3 + 1+ψ
ψ+(1−ηH)ηc

τ θ
< 0.

Similarly, with respect to τ θ, we have

∂pA
∂τ θ

=
ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−2
θ τAb

(
1− τ θ

1

b

∂b

∂τ θ

)
=

ψ + (1− ηH) ηc
1 + ψ (1 + k)− ηH

τ−2
θ τAb

2 1
(φk)2

b3 + ψb
ψ+(1−ηH)ηc

τ θ

2 1
(φk)2

b3 + 1+ψ
ψ+(1−ηH)ηc

τ θ
> 0.

Proof of Proposition 3.6:

We first consider the limiting case for the economy as k →∞. Rewrite equation (61) as(
b

φk

)3

+

(
τA +

ψ

ψ + (1− ηH) ηc
τ θ

)
b

φk
− 1 + ψ

ψ + (1− ηH) ηc

1

φk
τ θ = 0. (67)

Then it is apparent from equation (67) that, as k → ∞, that either b
φk

= 0 or b
φk

=

±i
√
τA + ψ

ψ+(1−ηH)ηc
τ θ. Thus, as k → ∞, one has that b

φk
→ 0, and therefore b

k
→ 0.
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Consequently, from equation (65), pA → 0 and the housing price is completely driven by the

supply shock ξ. From Proposition 2, one has that

pξk = − ψk

1 + ψ (1 + k)− ηH
− ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH
τ−1
θ

1

φ

(
b

φk

)
b→ −1,

since b is bounded from above by 1+ψ
ψ
. Thus, logP = −ζ.

In addition, from equation (54), then, since b
k
→ 0 and b is bounded from above by 1+ψ

ψ
,

and from below by 0, one has that

hP = −1 + ψ + ηc (1− ηH) b

φψ

(
τA + τ θ +

(
b

φk

)2
)−1

b

φk

1

pξk
−1 + ψ − ηH

ψ
→ −1 + ψ − ηH

ψ
.

From equation (53), it is straightforward to see that, as k →∞,

hθ = b→ 1 + ψ

ψ

τ θ

τA + τ θ + (1−ηH)ηc
ψ

τA
.

Since hθ remains bounded in the limit, it is easy to see from equation (66) that p0 → 0 as

k →∞. It further follows from equation (55) that in the limit

h0 =
1 + ψ

ψ

(
1 +

ηc (1− ηH) τ θ
ψ (τA + τ θ) + (1− ηH) ηcτA

)
τA

τA + τ θ
Ā

+
ηc (1− ηH)

2ψ

(
1+ψ
ψ

τA + τ θ + (1−ηH)ηc
ψ

τA

)2

τ θ +
1

2

(1 + ψ) ηH − (1 + ψ − ηH) (1− ηH)

ψ
τ−1
ε

+
1 + ψ

2ψ

(
1 +

ηc (1− ηH) τ θ
ψ (τA + τ θ) + (1− ηH) ηcτA

)(
ηH +

(1 + ψ) ηc (1− ηH) τ θ
ψ (τA + τ θ) + (1− ηH) ηcτA

)
(τA + τ θ)

−1

+
1 + ψ − ηH

2ψ

(
ηH − 1 +

1 + ψ

ψ

ηc (1− ηH) τ θ

τA + τ θ + (1−ηH)ηc
ψ

τA

)
(τA + τ θ)

−1

+ log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 . (68)

In the case k → 0, it follows from equation (67) that b → 0 and b
k
→ ∞. From equation

(53), it follows that as k → 0 one has that hθ = b → 0. Furthermore, from equation (65),

one has that

pA →
1 + ψ

1 + ψ − ηH
.

Since hθ → 0, and pA remain bounded as k → 0, we also see from equation (57), subsituting

for the limiting pA, that hP → 0. Substituting for pA in pξ = −1
b
pA with equation (63), it

follows that

pξk = − ψk

1 + ψ (1 + k)− ηH
− 1 + ψ + ηc (1− ηH) b

1 + ψ (1 + k)− ηH

1
φ2

b
k

τA + τ θ +
(

b
φk

)2 → 0,
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and the demand shock A completely drives the housing price.

Since hθ remains bounded in the limit, it is easy to see from equation (66) that as k → 0,

p0 =
1

2

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

1 + ψ − ηH
τ−1
ε

+
ψ

1 + ψ − ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 . (69)

It further follows from equation (56) that in the limit h0 → 0.

Proof of Proposition 3.7:

We first prove that pA decreases with φ and pξ < 0 increases with φ. Note that b is

determined by the polynomial equation (A.19). We define the LHS of the equation as G (b).

Comparative statics of b with respect to φ reveal, by the Implicit Function Theorem and

invoking equation (A.19), that

∂b

∂φ
= −∂G/∂φ

∂G/∂b
=

2 1
(φk)2

b3

3 1
(φk)2

b2 + τA + ψ
ψ+(1−ηH)ηc

τ θ

1

φ

=
2 1

(φk)2
b4

2 1
(φk)2

b3 + 1+ψ
ψ+(1−ηH)ηc

τ θ

1

φ
> 0.

From the expression for pA in Proposition 3.2,

∂pA
∂φ

= − ψ + (1− ηH) ηc
1 + ψ (1 + k)− ηH

τ−1
θ τA

∂b

∂φ
< 0.

Furthermore, by the Implicit Function Theorem, it follows that

∂pξ
∂φ

= −2

φ

ψ + (1− ηH) ηc
1 + ψ (1 + k)− ηH

τ−1
θ

(
b

φk

)2(
φ

b

∂b

∂φ
− 1

)
=

2

φ

ψ + (1− ηH) ηc
1 + ψ (1 + k)− ηH

τ−1
θ

(
b

φk

)2 1+ψ
ψ+(1−ηH)ηc

τ θ

2 1
(φk)2

b3 + 1+ψ
ψ+(1−ηH)ηc

τ θ
.

Since φ ∈ [0, 1] , it follows that ∂pξ
∂φ

> 0.

The variance of the housing price V ar [logP ] is given by

V ar [logP ] = p2
Aτ
−1
A + p2

ξk
2,

from which follows that

∂V ar [logP ]

∂φ
= 2pAτ

−1
A

∂pA
∂φ

+ 2pξk
2∂pξ
∂φ

< 0,
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since pA
∂pA
∂φ

< 0 and pξ
∂pξ
∂φ

< 0.

From Proposition 3.3, the variance of the housing price in the perfect-information bench-

mark is

V ar
[
logP perf

]
=

(
ψk

1 + ψ (1 + k)− ηH

)2
(

1 +

(
1 + ψ

ψk

)2

τ−1
A

)
.

It then follows, substituting for pA and pξ with Proposition 3.2, that

V ar [logP ]− V ar
[
logP perf

]
=

(
p2
A −

(
1 + ψ

1 + ψ (1 + k)− ηH

)2
)
τ−1
A +

(
p2
ξ −

(
ψ

1 + ψ (1 + k)− ηH

)2
)
k2

=

(
ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH

)2

τ−1
θ b

(
τ−1
θ τAb−

2 (1 + ψ)

ψ + (1− ηH) ηc

)
+

(
ψ + (1− ηH) ηc

1 + ψ (1 + k)− ηH

)2

τ−1
θ

(
b

φ

)2
(

2
ψ

ψ + (1− ηH) ηc
+ τ−1

θ

(
b

φk

)2
)
,

from which follows, substituting with equation (61), that V ar [logP ] − V ar
[
logP perf

]
≥ 0

whenever

b ≥
((
φ2 − 1

)
τ−1
θ τA +

ψ

ψ + (1− ηH) ηc

)−1 (
2φ2 − 1

) 1 + ψ

ψ + (1− ηH) ηc
. (70)

Since b ≥ 0, it is thus suffi cient for 1 − ψ
ψ+(1−ηH)ηc

τθ
τA
≤ φ2 ≤ 1

2
for the condition in (70) to

be satisfied.

When φ = 1, then the condition in (70) becomes b ≥ 1+ψ
ψ
. Since

0 ≤ b ≤ 1 + ψ

ψ

τ θ(
1 + (1−ηH)ηc

ψ

)
τA + τ θ

≤ 1 + ψ

ψ

from Proposition ??, this condition can be satisfied only when b = 1+ψ
ψ
, which is the value

of b in the perfect-information benchmark, in which case V ar [logP ] = V ar
[
logP perf

]
.

Thus, when φ = 1, variance with informational frictions is always less than that of the

perfect-information benchmark.
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3.B: Model Extension

3.B.1 The Equilibrium

Our model features a noisy rational expectations equilibrium, which requires clearing of

the two housing markets that are consistent with the optimal behavior of both households

and home builders:

• Household optimization:
{
{Hj}j∈[0,1] , {Mj}j∈[0,1] , li

}
solves each household’s maxi-

mization problem.

• Builder optimization: {Sj}j∈{H,M} solves the builders’maximization problem.

• At t = 2, the market for secondary homes clears:

Q2

∫ ∞
−∞

Mi (θi, P,Q1) dΦ (vi) = W.

• At t = 1, the markets for both primary and secondary homes clear:∫ ∞
−∞

Hi (θi, P,Q1) dΦ (vi) = P keξH ,∫ ∞
−∞

Mi (θi, P,Q1) dΦ (vi) = Qk
1e
ξM ,

where each household’s housing demands Hi (θi, P,Q1) and Mi (θi, P,Q1) depend on

its private signal θi and the housing prices P and Q1. The two types of demands from

the households are integrated over the idiosyncratic component of their private signals

{νi}i∈[0,1] .

We first solve for the optimal labor and housing choices for a household given its utility

function and budget constraint in (14). Similar to the baseline model, household i′s optimal

primary housingHi and labor demand li are given by Proposition 1. The first order condition

for secondary home demand reveals that

E

[
ηH
Ci
U
(
{Hj}j∈[0,1] , Ci

)
Q2

∣∣∣∣ Ii] = E

[
ηH
Ci
U
(
{Hj}j∈[0,1] , Ci

)∣∣∣∣ Ii]Q1. (3.B.1)

Combining the market clearing conditions in the market for secondary homes at t = 1 and

t = 2, and substituting W = E
[
eA
∣∣ Ic] , one also has that

Q2e
ξM = Q−k1 E

[
eA
∣∣ Ic] . (3.B.2)
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The right-hand side, which is public information, is a function of the primary and secondary

housing prices, P and Q1. Thus, it follows that Q2e
ξM must also be measurable with respect

to the public information Ic, and consequently Q2e
ξM = f (P,Q1) for some function f :

R2
+ → R+.

Substituting equation (3.B.2) into (3.B.1), it follows that Q1 satisfies

Q1+k
1 =

E
[
ηH
Ci
U
(
{Hj}j∈[0,1] , Ci

)
e−ξM

∣∣∣ Ii]
E
[
ηH
Ci
U
(
{Hj}j∈[0,1] , Ci

)∣∣∣ Ii] E
[
eA
∣∣ Ic] .

As the left-hand side of this equation is public information, the right-hand side must be public

information as well. This is satisfied if E
[
e−ξM

∣∣ Ii] is public information, i.e., E [e−ξM ∣∣ Ii] =

E
[
e−ξM

∣∣ Ic] , in which case ξM must be public information. This happens because Q1 is fully

revealing about the supply shock ξM . Since ξM is public information, it follows by equation

(3.B.2) that Q2 must also be public information.73 Then, equation (3.B.1) implies that

Q2 = Q1.

This means that households choose their demand for secondary homes so that they earn zero

profit in equilibrium. They, consequently, serve as intermediaries between the immigrants

and home builders in purchasing their homes, and there is effectively only one secondary

housing price in the economy.

From the market clearing condition in the secondary housing market at t = 1, for this to

be the case secondary housing demandMi cannot depend on the private signals of households,

and consequently it must be identical across households, Mi = M. By the market clearing

condition in the secondary housing market at t = 2, then, it follows that

M =
1

Q1

E
[
eA
∣∣ Ic] . (3.B.3)

The secondary home demand, has two components: a cost component in the denominator Q1

and a component in the numerator, which reflects migration driven by the immigrants’expec-

tation based solely on housing prices E
[
eA
∣∣ Ic] . The second term is the additional piece that

73It is easy to see that there cannot be a log-linear equilibrium in which ξM is not public information.
Suppose ξM is not public information and a log-linear equilibrium exists. Then Q1 takes the log-linear form

logQ1 =
1

1 + k
(E [A| Ic]− E [ξM | Ii]) +Q0,

for some constant Q0. Since E [A| Ic] is public information, it follows that E [ξM | Ii] must also be public
information, which is a contradiction.
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distinguishes primary from secondary homes. Buyers of secondary homes– immigrants– are

less informed than the households in the neighborhood, and consequenly have to heavily rely

on the prices to determine their housing demand.

By clearing the aggregate housing demand of primary and secondary homes from the

households with the corresponding supplies from the builders, we derive the housing market

equilibrium. Despite the nonlinearity in each household’s demands and in the supplies, we

obtain a tractable, unique log-linear equilibrium. The following proposition summarizes the

housing price and each household’s housing demand in this equilibrium.

PROPOSITION 3.B1: At t = 1, the primary and secondary housing markets have a unique

log-linear equilibrium: 1) The primary and secondary housing demands of household i are

log-linear function of its private signal θi, logP, and logQ1:

logHi = hθθi + hP logP + hQ logQ1 + h0,

logMi = mP logP +mQ logQ1 +m0.

with hθ = b, where b ≥ 0 is a positive, real root of equation (3.B.27), and all other coeffi cients

given in the proof.

2) The primary housing price is a log-linear function of A, ξH , and logQ1:

logP = pAA+ pξξH + pQ logQ1 + p0,

and the secondary housing price is a log-linear function of ξM and logP :

logQ1 = qξξM + qP logP + q0,

and all coeffi cients given in the proof.

Proposition 3.B1 establishes that the housing prices P and Q1 are log-linear functions

of the common productivity of households A and the housing supply shocks ξH and ξM ,

respectively, and that each household’s housing demand is a log-linear function of its private

signal θi and the log housing prices logP and logQ1. The informational role of housing

prices introduces a rich interaction between the two in housing demand. The conditional

expectation of A

E [A | Ii] =
τAĀ+ τ θθi +

p2A
p2ξ

1+α2

(2+α2)α2(φk)2
xH − pA

pξ

1
(2+α2)α2(φk)2

1
qξ
xQ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2
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now captures an informational hedging effect that having two markets to aggregate house-

holds’private information introduces because the supply shocks in both housing markets

are correlated. The negative terms in the loadings on the two price signals capture that a

high price in both housing markets can also be a sign of a low common supply shock ξ. This

introduces a hedging effect that reduces the loadings on the two price signals because of this

correlation.

Given that the expressions for the two housing prices in Proposition B1 form a linear

system, we can solve it to express primary and secondary housing prices in terms of the

fundamental shocks to the economy

logP =
pA

1− pQqP
A+

pξ
1− pQqP

ξH +
pQqξ

1− pQqP
ξM +

p0 + pQq0

1− pQqP
,

logQ1 = qP
pA

1− pQqP
A+ qP

pξ
1− pQqP

ξH +

(
qξ + qP

pQqξ
1− pQqP

)
ξM + q0 + qP

p0 + pQq0

1− pQqP
.

We characterize the perfect-information benchmark in the following proposition.

PROPOSITION 3.B2: As informational frictions dissipate, the demand for primary homes

is

logH =
1 + ψ

ψ
A− 1 + ψ − ηH

ψ
logP +

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2ψ
τ−1
ε

+ log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

and the primary housing price is

logP =
1 + ψ

1 + ψ (1 + k)− ηH
A− ψ

1 + ψ (1 + k)− ηH
ξH +

(1 + ψ) ηH − (1− ηH) (1 + ψ − ηH)

2 (1 + ψ (1 + k)− ηH)
τ−1
ε

+
ψ

1 + ψ (1 + k)− ηH
log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

The demand for secondary homes is

logM = A− logQ1,

and the secondary housing price is

logQ1 =
1

1 + k
A− 1

1 + k
ξM .
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3.B.2 Technical Proofs

Proof of Proposition 3.B1

We first conjecture that each household’s housing purchasing and the housing price take

the following log-linear forms:

logHi = hP logP + hQ logQ1 + hθθi + h0, (3.B.6)

logP = pAA+ pQ logQ1 + pξξH + p0, (3.B.7)

logMi = mP logP +mQ logQ1 +m0,

logQ1 = qP logP + qξξM + q0,

where the coeffi cients h0, hP , hQ, hθ, p0, pA, pQ, pξ, m0, mP , mQ, q0, qP , and qξ will be

determined by equilibrium conditions.

Given the conjectured functional form for Hi, it follows that

E

[(∫
[0,1]

Hjdj

)ηc(1−ηH)

eηHAi

∣∣∣∣∣ Ii
]

= eηc(1−ηH)(h0+hP logP+hQ logQ1+ 1
2
h2θτ
−1
θ )+ 1

2
η2Hτ

−1
ε E

[
e(ηH+ηc(1−ηH)hθ)A

∣∣ Ii] ,
which uses the fact that A is independent of εj and exploits the Law of Large Number for the

continuum when integrating over households, which still holds if we subtract sets of measure

0 from the integral.

Define

xH ≡ logP − p0 − pQ logQ1 − pξ ξ̄
pA

= A+
pξ
pA

(
ξH − ξ̄

)
,

xQ ≡ logQ1 − q0 − qP logP − qξ ξ̄ = qξ
(
ξM − ξ̄

)
,

which are suffi cient statistics for information contained in P and Q1. Then, household i’s

information set is

Xi =


θi

xH

xQ

 =


A+ νi

A+
pξ
pA

(
ξ − ξ̄ + φkeH

)
qξ
(
ξ − ξ̄ + φkeM

)
 .

We can normalize the noise variables in the signals to standard normal distribution:

Xi =


A+
√
bu1

A+
√
c
(√

eu2 +
√
fu3

)
√
d
(√

eu2 +
√
fu4

)

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where b = τ−1
θ , c =

p2ξ
p2A
, d = q2

ξ , e = (φk)2 , and f = (αφk)2 , and [u1, u2, u3, u4]′ ∼ N (0, I4) .

Each household has a Gaussian prior over A:

A ∼ N
(
Ā, a

)
,

where a = τ−1
A . Thus,

E [Xi] =
[
Ā Ā 0

]′
.

Then, conditional on observing the vector of signals Xi, household i arrives to its conditional

belief E [A | Ii]:

E [A | Ii] = Ā+ Cov [A,Xi]
′ V ar [Xi]

−1 (Xi − E [Xi]) ,

where

V ar [Xi] =


a+ b a 0

a a+ ce+ cf
√
cde

0
√
cde de+ df

 ,
and

Cov [A,Xi]
′ =
[
a11×2 0

]
.

The inverse of this matrix can be found using co-factors and the determinant simplified

through a series of row manipulations. Following this approach, one can arrive at

Cov [A,Xi]
′ V ar [Xi]

−1 = a

[
cfd (2e+ f) bd (e+ f) −b

√
cde

]
(a+ b) cdf (2e+ f) + bda (e+ f)

=

[
1
b

e+f
(2e+f)cf

−e
(2e+f)f

√
cd

]
1
a

+ 1
b

+ e+f
cf(2e+f)

Substituting this expression into E [A | Ii] , we obtain

E [A | Ii] =
1

1
a

+ 1
b

+ e+f
cf(2e+f)

(
1

a
Ā+

[
1
b

e+f
(2e+f)cf

−e
(2e+f)f

√
cd

]
Xi

)
.

Similarly, the conditional variance is given by

V ar [A | Ii] =
1

1
a

+ 1
b

+ e+f
cf(2e+f)

.

Substituting for a, b, c, d, e, and f, we arrive at

E [A | Ii] =
τAĀ+ τ θθi +

p2A
p2ξ

1+α2

(2+α2)α2(φk)2
xH − pA

pξ

1
(2+α2)α2(φk)2

1
qξ
xQ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

,
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and

V ar [A | Ii] =
1

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

.

It is straightforward to see that, under Ic, the conditional expectation and variance of A
take the form

E [A | Ic] =
τAĀ+

p2A
p2ξ

1+α2

(2+α2)α2(φk)2
xH − pA

pξ

1
(2+α2)α2(φk)2

1
qξ
xQ

τA +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

,

and

V ar [A | Ic] =
1

τA +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

.

Therefore,

logE

[(∫
[0,1]

Hjdj

)ηc(1−ηH)

eηHAi

∣∣∣∣∣ Ii
]

= (ηH + ηc (1− ηH)hθ)
τAĀ+ τ θθi +

p2A
p2ξ

1+α2

(2+α2)α2(φk)2
xH − pA

pξ

1
(2+α2)α2(φk)2

1
qξ
xQ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

+ηc (1− ηH)

(
h0 + hP logP + hQ logQ1 +

1

2
h2
θτ
−1
θ

)
+

1

2
η2
Hτ
−1
ε

+
1

2

(
(ηH + ηc (1− ηH)hθ)

2)(τA + τ θ +
p2
A

p2
ξ

1 + α2

(2 + α2)α2 (φk)2

)−1

.

Substituting this expression into equation (5) in the main paper and matching coeffi cients
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with the conjectured log-linear form in (3.B.6), it follows that

hθ =
1 + ψ + ηc (1− ηH)hθ

ψ + (1− ηH) ηc

τ θ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

, (3.B.8)

hP =
1 + ψ + ηc (1− ηH)hθ

ψ

p2A
p2ξ

1+α2

(2+α2)α2(φk)2
1
pA

+ pA
pξ

1
(2+α2)α2(φk)2

qP
qξ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

− 1 + ψ − ηH
ψ

, (3.B.9)

hQ = −1 + ψ + ηc (1− ηH)hθ
ψ

p2A
p2ξ

1+α2

(2+α2)α2(φk)2
pQ
pA

+ pA
pξ

1
(2+α2)α2(φk)2

1
qξ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

, (3.B.10)

h0 =
1 + ψ + ηc (1− ηH)hθ

ψ

τAĀ− p2A
p2ξ

1+α2

(2+α2)α2(φk)2
p0+pξ ξ̄

pA
+ pA

pξ

1
(2+α2)α2(φk)2

q0+qξ ξ̄

qξ

τA + τ θ +
p2A
p2ξ

1+α2

(2+α2)α2(φk)2

+
1 + ψ + ηc (1− ηH)hθ

2ψ
(ηH + ηc (1− ηH)hθ)

(
τA + τ θ +

p2
A

p2
ξ

1 + α2

(2 + α2)α2 (φk)2

)−1

+
1 + ψ − ηH

2ψ
(ηH − 1 + ηc (1− ηH)hθ)

(
τA + τ θ +

p2
A

p2
ξ

1 + α2

(2 + α2)α2 (φk)2

)−1

+ log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ


+

1

2ψ

(
ηc (1− ηH)h2

θτ
−1
θ + η2

Hτ
−1
ε

)
. (3.B.11)

By aggregating households’housing demand and the builders’supply and imposing market

clearing in the housing market, we have

h0 + hP (p0 + pQ logQ1 + pAA+ pξξH) + hQ logQ1 + hθA+
1

2
h2
θτ
−1
θ

= ξH + k (p0 + pQ logQ1 + pAA+ pξξH) .

Matching coeffi cients of the two sides of the equation leads to the following four conditions

h0 + hPp0 +
1

2
h2
θτ
−1
θ = kp0, (3.B.12)

hPpA + hθ = kpA, (3.B.13)

hPpξ = 1 + kpξ, (3.B.14)

hPpQ + hQ = kpQ. (3.B.15)

It follows from equation (3.B.14) that

pξ = − 1

k − hP
, (3.B.16)
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and further from equation (3.B.13) that

pA =
hθ

k − hP
. (3.B.17)

Thus, by taking the ratio of equations (3.B.17) and (3.B.16), we arrive at

pA
pξ

= −hθ.

From equation (3.B.8), hθ > 0, and therefore pA and pξ must have opposite signs. Since the

primary housing price cannot react negatively to an increase in neighborhood strength A, it

must be the case that pA ≥ 0 and pξ ≤ 0.

Finally, from equation (3.B.15), one has that

pQ =
hQ

k − hP
. (3.B.18)

From equation (3.B.3) and the functional form for the conditional expectations and variances

for A given Ii and Ic, Mi can be written as

logMi = − logQ1 +
τAĀ (2 + α2)α2 (φk)2 +

p2A
p2ξ

(1 + α2)xH − pA
pξ

1
qξ
xQ

τA (2 + α2)α2 (φk)2 +
p2A
p2ξ

(1 + α2)

+
1

2

(
τA +

p2
A

p2
ξ

1 + α2

(2 + α2)α2 (φk)2

)−1

.

Given the common knowledge expectation about A and household i′s expectation about A,

and matching coeffi cients of the resulting expression with the conjectured form for logMi,

one arrives at the following restrictions

mP =

p2A
p2ξ

(1 + α2) 1
pA

+ pA
pξ

qP
qξ

τA (2 + α2)α2 (φk)2 +
p2A
p2ξ

(1 + α2)
, (3.B.19)

mQ = −1−
p2A
p2ξ

(1 + α2)
pQ
pA

+ pA
pξ

1
qξ

τA (2 + α2)α2 (φk)2 +
p2A
p2ξ

(1 + α2)
, (3.B.20)

m0 =
τAĀ (2 + α2)α2 (φk)2 − p2A

p2ξ
(1 + α2)

p0+pξ ξ̄

pA
+ pA

pξ

q0+qξ ξ̄

qξ

τA (2 + α2)α2 (φk)2 +
p2A
p2ξ

(1 + α2)

+
1

2

(
τA +

p2
A

p2
ξ

1 + α2

(2 + α2)α2 (φk)2

)−1

. (3.B.21)
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Aggregating secondary housing demand across households and imposing market clearing

mP logP +mQ (qP logP + qξξM + q0) +m0 = ξM + k (qP logP + qξξM + q0) .

Matching coeffi cients of the two sides of the equation leads to the following four conditions

m0 +mQq0 = kq0, (3.B.22)

mQqξ = 1 + kqξ, (3.B.23)

mQqP +mP = kqP . (3.B.24)

It follows from equation (3.B.23) that

qξ = − 1

k −mQ

, (3.B.25)

Finally, from equation (3.B.24), one has that

qP =
mP

k −mQ

. (3.B.26)

Substituting pA
pξ

= −hθ into equation (3.B.8), and defining b = −pA
pξ
, we arrive at

1 + α2

(2 + α2)α2 (φk)2 b
3 +

(
τA +

ψ

ψ + (1− ηH) ηc
τ θ

)
b− 1 + ψ

ψ + (1− ηH) ηc
τ θ = 0, (3.B.27)

which is a cubic polynomial that identifies b, and therefore hθ since hθ = b. Furthermore, by

the Fundamental Theorem of Algebra, the cubic equation (3.B.27) has one unique, existent

root.

Substituting equations (3.B.9) and (3.B.19) into (3.B.10) and (3.B.20), as well as hθ =

b = −pA
pξ
, and equations (3.B.17), (3.B.18), and (3.B.26), one also has that

mP =
(1 + α2) b

τA (2 + α2)α2 (φk)2 + (1 + α2) b2 − b
(k − hP ) ,

mQ = −τA (2 + α2)α2 (φk)2 + (1 + α2) b2 + kb+ (1 + α2) bhQ

τA (2 + α2)α2 (φk)2 + (1 + α2) b2 − b
,

which can be rewritten as

mP = A (b) (k − hP ) , (3.B.28)

mQ = B (b) + C (b)hQ. (3.B.29)
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Substituting hθ = b = −pA
pξ
and equations (3.B.17), (3.B.18), and (3.B.26) into (3.B.9) and

(3.B.10), one arrives at

hP =

1+ψ+ηc(1−ηH)b
ψ

((1 + α2) k +mP ) b− (1 + ψ − ηH)
(τA+τθ)(2+α2)α2(φk)2+(1+α2)b2

ψ

(τA + τ θ) (2 + α2)α2 (φk)2 + (1 + α2) b2 + 1+ψ+ηc(1−ηH)b
ψ

(1 + α2) b
,

hQ = −
1+ψ+ηc(1−ηH)b

ψ
(k −mQ)

(τA + τ θ) (2 + α2)α2 (φk)2 + (1 + α2) b2 + 1+ψ+ηc(1−ηH)b
ψ

(1 + α2) b
b,

which can be rewritten as

hP = E (b) + F (b)mP , (3.B.30)

hQ = G (b) (k −mQ) . (3.B.31)

From equations (3.B.28), (3.B.29), (3.B.30), and (3.B.31), it then follows that

hP =
E (b) + A (b)F (b) k

1 + A (b)F (b)

hQ =
G (b)

1 + C (b)G (b)
(k −B (b)) .

Finally, from equations (3.B.11), (3.B.12), (3.B.21), and (3.B.22), one can express p0 and q0

with the system of linear equations

(k −mQ) q0 =
τA (2 + α2)α2 (φk) Ā+ α2bξ̄ − (1 + α2) b2 p0

pA
− b q0

qξ

τA (2 + α2)α2 (φk) + (1 + α2) b2
+

1

2

(
τA + b2 1 + α2

(2 + α2)α2 (φk)2

)−1

and

(k − hP ) p0 =
1 + ψ + ηc (1− ηH) b

ψ

τAĀ (2 + α2)α2 (φk)2 + α2bξ̄ − (1 + α2) b2 p0
pA
− b q0

qξ

(τA + τ θ) (2 + α2)α2 (φk)2 + (1 + α2) b2
+

1

2
b2τ−1

θ

+
1 + ψ + ηc (1− ηH) b

2ψ
(ηH + ηc (1− ηH) b)

(
τA + τ θ + b2 1 + α2

(2 + α2)α2 (φk)2

)−1

+
1 + ψ − ηH

2ψ
(ηH − 1 + ηc (1− ηH) b)

(
τA + τ θ + b2 1 + α2

(2 + α2)α2 (φk)2

)−1

+
1

2ψ

(
ηc (1− ηH) b2τ−1

θ + η2
Hτ
−1
ε

)
+ log

(1− ηc)
(

1− ηH
ηH

)(
1− ηc
ηc

) ηc(1−ηH)
ψ

 .

From equation (3.B.14), one also has that hP = k
(
1 + p−1

ξ

)
. Since pξ ≤ 0, it follows that

hP < k whenever k > 0. Similarly, mQ < k since qξ ≤ 0.
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Since we have explicit expressions for all other equilibrium objects as functions of b, and

b exists and is unique, it follows that a log-linear equilibrium in the economy exists and is

unique.

Proof of Proposition 3.B2

When all households observe A directly, there are no longer information frictions in the

economy. Since the households’ idiosyncratic productivity components are unobservable,

they are now symmetric. Then, it follows that Hj = Hi = H. Imposing this symmetry

in equation (5) in the main paper, we see that each household’s housing demand and the

housing price are the same as given in Proposition 3.

In addition, since Hj = Hi = H, Mi = Mj = M, one has that

logM = A− logQ1.

By market clearing in the secondary housing market, logH = ξM + k logQ1, it follows that

logQ1 =
1

1 + k
A− 1

1 + k
ξM .

This characterizes the economy in the limit as information frictions dissipate.
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3.C: Figures and Tables

Figure 3.1: Case-Shiller Home Price Index

This figure plots the Case-Shiller home price index for the U.S. and three cities, New

York, Las Vegas, and Charlotte. The price index is deflated by the CPI and normalized to

100 in 2000.
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Figure 3.2: Housing Cycle across Three Elasticity Groups with an Equal

Number of Counties

This figure is constructed from sorting the counties in the U.S. into three groups based on

Saiz’s (2010) housing supply elasticity measure, with each group holding an equal number of

counties. The top panel depicts the average housing price expansion during the boom years

of 2003 to 2006 and the average housing price contraction during the bust years of 2006 to

2009 in each of the groups. The bottom panel depicts the population in each group in the

2000 U.S. census.
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Figure 3.3: Housing Cycle across Ten Elasticity Groups with an Equal Number

of Counties

This figure is constructed from sorting the counties in the U.S. into ten groups based on

Saiz’s (2010) housing supply elasticity measure, with each group holding an equal number of

counties. The top panel depicts the average housing price expansion during the boom years

of 2003 to 2006 and the average housing price contraction during the bust years of 2006 to

2009 in each of the groups. The bottom panel depicts the population in each group in the

2000 U.S. census.
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Figure 3.4: Housing Cycle across Three Elasticity Groups with an Equal

Population

This figure is constructed from sorting the counties in the U.S. into three groups based on

Saiz’s (2010) housing supply elasticity measure, with each group holding an equal population.

The top panel depicts the average housing price expansion during the boom years of 2003

to 2006 and the average housing price contraction during the bust years of 2006 to 2009 in

each of the groups. The bottom panel depicts the population in each group in the 2000 U.S.

census.
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Figure 3.5: Housing Cycle across Ten Elasticity Groups with an Equal

Population

This figure is constructed from sorting the counties in the U.S. into ten groups based on

Saiz’s (2010) housing supply elasticity measure, with each group holding an equal population.

The top panel depicts the average housing price expansion during the boom years of 2003

to 2006 and the average housing price contraction during the bust years of 2006 to 2009 in

each of the groups. The bottom panel depicts the population in each group in the 2000 U.S.

census.
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Figure 3.6: Housing Price Variance in the Baseline Model

This figure depicts the log-price variance in the baseline model against the supply elastic-

ity, based on the following parameters: τ θ = 0.1, τA = 1, φ = 0.1, ηc = 0.5, ψ = 0.6, ηH = 0.9.

The solid line depicts the log-price variance in the presence of informational frictions, while

the dashed line depicts the log-price variance in the perfect-information benchmark.
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Figure 3.7: Variance of Primary and Secondary Housing Prices and Fraction of

Secondary Homes in the Extended Model

This figure depicts the log-price variance of both primary and secondary homes in the

extended model in the top two panels, the variance of the fraction of secondary home demand

in the bottom left panel, and a scatter plot of the variance of the fraction and the variance

of the secondary housing price in the bottom right panel based on the following parameters:

τ θ = 0.1, τA = 1, φ = 0.1, ηc = 0.5, ψ = 0.6, ηH = 0.9,α = 1, τ ε = 0.1.
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Figure 8: The Share of Non-Owner-Occupied Home Purchases

This figure plots the share of non-owner-occupied home purchases for the U.S. and three

cities, New York, Las Vegas, and Charlotte.
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Figure 3.9: The Share of Non-Owner-Occupied Home Purchases in 2005 across

Elasticity Groups with an Equal Number of Counties

We use Saiz’s (2010) supply elasticity measure to sort the counties in our sample into

three groups in the top panel and ten groups in the bottom panel, with each group holding

the same number of counties. Each bar measures the average share of non-owner-occupied

home purchases in 2005 in each group. The share of non-owner-occupied home purchases in

each county is computed from the “Home Mortgage Disclosure Act”data set.

199



Figure 3.10: The Share of Non-Owner-Occupied Home Purchases in 2005

across Elasticity Groups with an Equal Population

We use Saiz’s (2010) supply elasticity measure to sort the counties in our sample into

three groups in the top panel and ten groups in the bottom panel, with each group holding

the same population. Each bar measures the average share of non-owner-occupied home

purchases in 2005 in each group. The share of non-owner-occupied home purchases in each

county is computed from the “Home Mortgage Disclosure Act”data set.
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Figure 3.11: Change in the Fraction of Non-Owner-Occupied Home Purchases

from 2001 to 2004 and the Recent Housing Cycle

The top panel plots the average housing price expansion during the boom years of 2003 to

2006 against the change of fraction of non-owner occupied home purchases from 2001-03 to

2004-06; the bottom panel plots the average housing price contraction during the bust years

of 2006 to 2009 against the change of fraction of non-owner occupied home from 2001-03 to

2004-06.
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Table 1: Housing Boom and Bust during the Recent Cycle

This table presents coeffi cient estimates from regressing the change in real house price

from 2003 to 2006 (housing boom period) and from 2006 to 2009 (housing bust period) on the

dummies indicating whether a county is in the middle-elasticity group or the elastic group,

with the inelastic group as the benchmark and a list of control variables. Robust standard

errors are in parentheses. ***, **, * indicate coeffi cient estimates statistically distinct from

0 at the 1%, 5%, and 10% levels, respectively.
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Table 2: Change in the Fraction of Non-Owner-Occupied Home Purchases from

2001-03 to 2004-06

This table presents coeffi cient estimates from regressing the fraction of non-owner occu-

pied home purchases in 2005 on the dummies indicating whether a county is in the middle-

elasticity group or the elastic group, with the inelastic group as the benchmark and a list of

control variables. Robust standard errors are in parentheses. ***, **, * indicate coeffi cient

estimates statistically distinct from 0 at the 1%, 5%, and 10% levels, respectively.
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Table 3: Change in the Fraction of Non-Owner-Occupied Home Purchases from

2001-03 to 2004-06 and the Recent Housing Cycle

This table presents coeffi cient estimates from regressing the change in real house price

from 2003 to 2006 (housing boom period) and from 2006 to 2009 (housing bust period) on

the change of fraction of non-owner occupied home purchases from 2001-03 to 2004-06 and

a list of control variables. Robust standard errors are in parentheses. ***, **, * indicate

coeffi cient estimates statistically distinct from 0 at the 1%, 5%, and 10% levels, respectively.
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