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Abstract

We show that the folk theorem generically holds forN -player repeated games with private

monitoring if the support of each player�s signal distribution is su¢ ciently large. Neither

cheap talk communication nor public randomization is necessary.

In Chapter 1, we introduce the model, states the assumptions and the main result, and

o¤er the overview of the proof. In Chapter 2, we show the folk theorem in the two-player

prisoners�dilemma, assuming special forms of communication. Given this chapter, we are

left to extend the folk theorem to the general two-player game and the general N -player

game with N � 3 and dispense with the special forms of communication. In Chapter 3, we

summarize what new assumptions are su¢ cient for each extension. In the following chapters,

we o¤er the proof: in Chapters 4 and 5, we extend the result to the general two-player game

and the general N -player game, respectively, with the special forms of communication. In

Chapters 6 and 7, we dispense with the special forms of communication in the two-player

game and N -player game, respectively.
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Chapter 1

Introduction

1.1 Introduction

One of the key results in the literature on in�nitely repeated games is the folk theorem:

any feasible and individually rational payo¤ can be sustained in equilibrium when players

are su¢ ciently patient. Even if a stage game does not have an e¢ cient Nash equilibrium,

the repeated game does. Hence, the repeated game gives a formal framework to analyze a

cooperative behavior. Fudenberg and Maskin (1986) establish the folk theorem under perfect

monitoring, that is, when players can directly observe the action pro�le. Fudenberg, Levine,

and Maskin (1994) extend the folk theorem to imperfect public monitoring, where players

can observe only public noisy signals about the action pro�le.

The driving force of the folk theorem is reciprocity: if a player deviates today, she will

be punished in future. For this mechanism to work, players need to infer what actions

are expected by the other players. For example, in the trigger strategy equilibrium of the

prisoners� dilemma with perfect monitoring, if a player takes defection before the other

players take defection, then it is seen as a deviation of that player. On the other hand, if

a player takes defection after some player takes defection, then it is seen as an equilibrium

behavior. Hence, to know whether to cooperate or defect, each player needs to infer which

1



action is expected by the other players. In other words, each player needs to coordinate her

action with the other players�histories.

This coordination is straightforward if the players�strategies only depend on the public

component of histories, such as action pro�les in perfect monitoring or public signals in pub-

lic monitoring. Since this public information is common knowledge, players can coordinate

a punishment contingent on the public information (reciprocity), and thereby provide dy-

namic incentives to choose actions that are not static best responses. However, with private

monitoring, since they do not share common information about histories, this coordination

becomes complicated as periods proceed. Hence, �coordination failure�may arise.

Hörner and Olszewski (2006) and Hörner and Olszewski (2009) show the robustness of

this coordination to private monitoring, where players can observe only private noisy signals

about the action pro�le, if monitoring is almost perfect and almost public, respectively. If

monitoring is almost perfect, then players can believe that every player observes the same

signal corresponding to the action pro�le with a high probability. If monitoring is almost

public, then players can believe that every player observes the same signal with a high

probability.1 Hence, almost common knowledge about relevant histories still exists.

However, with general private monitoring, almost common knowledge may not exist and

coordination is di¢ cult (we call this problem �coordination failure�).2 Hence, the robustness

of the folk theorem to general private monitoring has been an open question. For example,

Kandori (2002) states that �[t]his is probably one of the best known long-standing open

questions in economic theory.�3

This paper is the �rst to show that the folk theorem holds in repeated games with dis-

counting and generic monitoring: in any N -player repeated game with private monitoring,

we give su¢ cient conditions with which any feasible and individually rational payo¤ is sus-

1See also Mailath and Morris (2002) and Mailath and Samuelson (2006).
2Mailath and Morris (2002), Mailath and Samuelson (2006) and Sugaya and Takahashi

(2011) o¤er the formal models of this argument.
3See Mailath and Samuelson (2006) for a survey.

2



tainable in a sequential equilibrium for a su¢ ciently large discount factor.4 We also show

that these su¢ cient conditions are generic if the cardinality of the support of each player�s

signal distribution is su¢ ciently large.

Repeated games with private monitoring are relevant for many traditional economic prob-

lems. For example, Stigler (1964) proposes a repeated price-setting oligopoly, where �rms

set their own prices in face-to-face negotiations and cannot directly observe their opponents�

prices. Instead, a �rm obtains some information about opponents�prices through its own

sales. Since the level of sales depends on both opponents�prices and unobservable demand

shocks, the sales level is an imperfect signal. Moreover, each �rm�s sales level is often private

information since it is also determined in a face-to-face negotiation. Thus, the monitoring is

imperfect and private. In principal-agent problems, if the principal evaluates the agent sub-

jectively, then the monitoring by the principal about the agent becomes private. Despite the

importance of these problems, only a limited number of papers successfully analyze repeated

games with private monitoring.5 Our result o¤ers a benchmark to analyze these problems

in a general private-monitoring setting.

To show the folk theorem under general monitoring, we unify and improve on three

approaches in the literature on private monitoring that have been used to show the partial

results so far: belief-free, belief-based and communication approaches.

The belief-free approach (and its generalizations) has been successful in showing the

folk theorem in the prisoners�dilemma.6 A strategy pro�le is belief-free if, for any history

4See Lehrer (1990) for the case of no discounting.
5Harrington and Skrzypacz (2011) show evidence of cooperative behavior (cartels) among

�rms in lysine and vitamin industries. After arguing that these industries �t Stigler�s setup,
they write a repeated-game model with private monitoring and solve a special case. See also
Harrington Jr and Skrzypacz (2007).
Fuchs (2007) applies a repeated game with private monitoring to a contract between a

principal and an agent with subjective evaluation.
6Kandori and Obara (2006) use a similar concept to analyze a private strategy in pub-

lic monitoring. Kandori (2011) considers �weakly belief-free equilibria,�which is a gener-
alization of belief-free equilibria. Apart from a typical repeated-game setting, Takahashi
(2010) and Deb (2011) consider the community enforcement and Miyagawa, Miyahara, and
Sekiguchi (2008) consider the situation where a player can improve the precision of monitor-
ing by paying cost.

3



pro�le, the continuation strategy of each player is optimal conditional on the histories of

the opponents. Hence, coordination failure never happens. With almost perfect monitoring,

Piccione (2002) and Ely and Välimäki (2002) show the folk theorem for the two-player

prisoners� dilemma.7 Without any assumption on the precision of monitoring but with

conditionally independent monitoring, Matsushima (2004) obtains the folk theorem in the

two-player prisoners� dilemma, which is extended by Yamamoto (2012) to the N -player

prisoners�dilemma with conditionally independent monitoring.8

Previously, attempts to generalize Matsushima (2004) have shown only limited results

without almost perfect or conditionally independent monitoring: for some restricted classes

of the distributions of private signals, Fong, Gossner, Hörner, and Sannikov (2010) show that

the payo¤ of the mutual cooperation is approximately attainable in the two-player prison-

ers�dilemma. Sugaya (2012) shows that the folk theorem holds with a general monitoring

structure in the prisoners�dilemma if the number of players is no less than four.

Several papers construct belief-based equilibria, where players�strategies involve statis-

tical inference about the opponents�past histories. That is, since common knowledge about

relevant histories no longer exists, each player calculates the beliefs about the opponents�

histories to calculate best responses. With almost perfect monitoring, Sekiguchi (1997)

shows that the payo¤ of the mutual cooperation is approximately attainable and Bhaskar

and Obara (2002) show the folk theorem in the two-player prisoners�dilemma.9 Phelan and

Skrzypacz (2012) characterize the set of possible beliefs about opponents�states in a �nite-

state automaton strategy and Kandori and Obara (2010) o¤er a way to verify if a �nite-state

automaton strategy is an equilibrium.

7See Yamamoto (2007) for the N -player prisoners�dilemma. Ely, Hörner, and Olszewski
(2005) and Yamamoto (2009) characterize the set of belief-free equilibrium payo¤s for a
general game. Except for the prisoners�dilemma, this set is not so large as that of feasible
and individually rational payo¤s.

8The strategy used in Matsushima (2004) is called a �belief-free review strategy.� See
Yamamoto (2012) for the characterization of the set of belief-free review-strategy equilibrium
payo¤s for a general game with conditional independence. Again, except for the prisoners�
dilemma, this set is not so large as that of feasible and individually rational payo¤s.

9Bhaskar and Obara (2002) also derive a su¢ cient condition for the N -player prisoners�
dilemma.
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Another approach to analyze repeated games with private monitoring introduces public

communication. Folk theorems have been proven by Compte (1998), Kandori and Mat-

sushima (1998), Aoyagi (2002), Fudenberg and Levine (2007) and Obara (2009). Intro-

ducing a public element (the result of communication) and letting a strategy depend only

on the public element allow these papers to sidestep the di¢ culty of coordination through

private signals. However, the analyses are not applicable to settings where communication

is not allowed: for example, in Stigler (1964)�s oligopoly example, anti-trust laws prohibit

communication. Hörner and Olszewski (2006) also argue that �communication reintroduces

an element of public information that is somewhat at odds with the motivation of private

monitoring as a robustness test�to the lack of common knowledge.

This paper incorporates all three approaches. First, the equilibrium strategy to show the

folk theorem is phase-belief-free. That is, we see the repeated game as the repetition of long

review phases. Each player has two strategies for the review phase; one is generous to the

opponent and the other is harsh to the opponent.10 At the beginning of each review phase,

for each player, both generous and harsh strategies are optimal conditional on any realization

of the opponents�histories. Between review phases, each player can change the opponent�s

continuation payo¤ from the next review phase by changing the transition probability be-

tween the two strategies, without considering the other players�histories. This equilibrium

is immune to coordination failure at the beginning of each phase and gives us freedom to

control the continuation payo¤s.

Second, however, the belief-free property does not hold except at the beginning of the

phases. Hence, we consider each player�s statistical inference about the opponents� past

histories as in the belief-based approach within each phase.

Finally, in our equilibrium, to coordinate the play in the middle of the phase, the play-

ers do communicate. We o¤er su¢ cient conditions with which this message exchange can

10As will be seen in Section 1.6, for a game with more than two players, one of player i�s
strategies is generous to player i + 1 and the other is harsh to player i + 1. In addition,
players � (i; i+ 1)�s payo¤s are constant regardless of which strategy player i picks from the
two.
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be done with their actions, that is, without assuming any explicit communication device.

The di¢ culty to communicate via actions is that, since the players need to infer the oppo-

nents�messages from their private histories, common knowledge about the past messages

no longer exists. One of our methodological contributions is to o¤er a systematic way to

replace the public communication with message exchange via actions in general monitoring

by overcoming the lack of common knowledge.

The paper is organized as follows: in the rest of Chapter 1, we introduce the model,

states the assumptions and the main result, and o¤er the overview of the proof. After that,

we relate the in�nitely repeated game to a �nitely repeated game with a �reward function�

and derives su¢ cient conditions on the �nitely repeated game to show the folk theorem in

the in�nitely repeated game. The remaining parts of the paper are devoted to the proof of

the su¢ cient conditions.

In Chapter 2, we show the su¢ cient conditions in the two-player prisoners�dilemma,

assuming special forms of communication. Given this chapter, we are left to extend the folk

theorem to the general two-player game and the general N -player game with N � 3 and

dispense with the special forms of communication. In Chapter 3, we summarize what new

assumptions are su¢ cient for each extension. In the following chapters, we o¤er the proof:

in Chapters 4 and 5, we extend the result to the general two-player game and the general

N -player game, respectively, with the special forms of communication. In Chapters 6 and 7,

we dispense with the special forms of communication in the two-player game and N -player

game, respectively.

1.2 Model

1.2.1 Stage Game

The stage game is given by
�
I; fAi; Yi; Uigi2I ; q

	
. I = f1; : : : ; Ng is the set of players, Ai

with jAij � 2 is the �nite set of player i�s pure actions, Yi is the �nite set of player i�s private
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signals, and Ui is the �nite set of player i�s ex-post utilities. Let A �
Q
i2I Ai, Y �

Q
i2I Yi

and U �
Q
i2I Ui be the set of action pro�les, signal pro�les and ex post utility pro�les,

respectively.

In every stage game, player i chooses an action ai 2 Ai, which induces an action pro�le

a � (a1; : : : ; aN) 2 A. Then, a signal pro�le y � (y1; : : : ; yN) 2 Y and an ex post utility

pro�le ~u � (~u1; : : : ; ~uN) 2 U are realized according to a joint conditional probability function

q (y; ~u j a).

Following the convention in the literature, we assume that ~ui is a deterministic function

of ai and yi so that observing the ex post utility does not give any further information than

(ai; yi). If this were not the case, then we could see a pair of a signal and an ex post utility,

(yi; ~ui), as a new signal.

Player i�s expected payo¤ from a 2 A is the ex ante value of ~ui given a and is denoted

by ui (a). For each a 2 A, let u (a) represent the payo¤ vector fui (a)gi2I .

In this paper, we only consider independent mixture of actions, that is, �(A) is the set

of independent mixed strategies �(A) =
Q
i2I �(Ai) in the stage game and by � 2 �(A),

each player i takes ai 2 Ai with probability �i (ai). �(A�i) and ��i 2 �(A�i) are similarly

de�ned.

1.2.2 Repeated Game

Consider the in�nitely repeated game of the above stage game in which the (common)

discount factor is � 2 (0; 1). Let ai;� and yi;� , respectively, denote the action played and the

private signal observed in period � by player i. Player i�s private history up to period t � 1

is given by hti � fai;� ; yi;�g
t�1
�=1. With h

1
i = f;g, for each t � 1, let H t

i be the set of all h
t
i. A

strategy for player i is de�ned to be a mapping �i :
1S
t=1

H t
i !4(Ai). Let �i be the set of all

strategies for player i. Finally, let E(�) be the set of sequential equilibrium payo¤s with a

common discount factor �.
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1.3 Assumptions

In this section, we state assumptions. First, we assume the full dimensionality condition.

Let F � co(fu(a)ga2A) be the set of feasible payo¤s. The minimax payo¤ for player i is

v�i � min
��i2�(A�i)

max
ai2Ai

ui(ai; ��i):

In addition, let ���i be a minimaxing strategy against player i in the stage game.

Then, the set of feasible and individually rational payo¤s is given by F � � fv 2 F : vi �

v�i for all ig. We assume the full dimensionality of F �.

Assumption 1 The stage game payo¤ structure satis�es the full dimensionality condition:

dim(F �) = N .

Second, we state assumptions on the signal structure. In the proof of the folk theorem,

we proceed in the following steps: �rst, we show the folk theorem, assuming the availability

of special forms of cheap talk. Second, we dispense with the special forms of cheap talk so

that all the communication is done by actions.

Hence, in Section 1.3.1, we state assumptions that we use whether or not the special

forms of cheap talk are available. Then, in Section 1.3.2, we state what special forms of cheap

talk we assume in the �rst step of the proof. Finally, Section 1.3.3 states a condition on the

cardinality of each player�s support of signals under which we can generically dispense with all

forms of cheap talk assumed in Section 1.3.2. Exact conditions about the signal distributions

to dispense with cheap talk are somewhat complicated and explained in Chapter 3.

In summary, the folk theorem holds if (i) the assumptions in Section 1.3.1 are satis�ed

and either (ii-a) the special forms of cheap talk in Section 1.3.2 are available or (ii-b) the

assumptions in Chapter 3 are satis�ed. Further, the assumptions in (ii-b) are generic if the

cardinality of each player�s support of signals satis�es Assumption 6 in Section 1.3.3.
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1.3.1 Common Assumptions

First, we assume that full support for monitoring:

Assumption 2 For all y 2 Y and a 2 A, q(y j a) > 0.

By Sekiguchi (1997), with this assumption, sequential equilibria are realization equivalent

to Nash equilibria. Hence, for the rest of the paper, we concentrate on Nash equilibria.

Second, we assume that, for any pair of players (i; j), given any action pro�le a 2 A, each

player j can statistically identify player i�s deviation. Let qj(~ai; a�i) � (qj(yj j ~ai; a�i))yj be

the vector expression of the conditional distribution of player j�s signals given ~ai; a�i. We

assume that all the vectors qj(~ai; a�i) with ~ai 2 Ai are linearly independent:

Assumption 3 For any i; j 2 I and a 2 A, all the vectors qj(~ai; a�i) with ~ai 2 Ai are

linearly independent.

Third, with more than two players, for any trio (i; n; j), given any action pro�le a 2 A,

player j can statistically identify which of players i and n is more suspicious about deviations.

We assume that all the vectors qj(~ai; a�i) with ~ai 2 Ai and qj(~an; a�n) with ~an 2 An; ~an 6= an

are linearly independent:

Assumption 4 For N � 3, for any i; n; j 2 I and a 2 A, qj(~ai; a�i) with ~ai 2 Ai and

qj(~an; a�n) with ~an 2 An and ~an 6= an are linearly independent.

Note that this is the same as pairwise identi�ability condition for each a in Fudenberg,

Levine, and Maskin (1994).

Fourth, we assume that, for each player i, for player j whose index is de�ned as

j =

8><>: i� 1 (right before player i) if i 6= 1;

2 (right after player i) if i = 1;

there exists player j�s mixed strategy �̂j in the stage game such that, given the other players�

histories a�(i;j); y�(i;j), di¤erent (ai; yi) has di¤erent information about (aj; yj):

9



Assumption 5 For any i 2 I, with

j =

8><>: i� 1 if i 6= 1;

2 if i = 1;

there exists �̂j 2 �(Aj) such that, for all a�(i;j) 2 A�(i;j), y�(i;j) 2 Y�(i;j), ai; a0i 2 Ai and

yi; y
0
i 2 Yi, if (ai; yi) 6= (a0i; y0i), then

E
�
1aj ;yj j yi; y�(i;j); ai; a�(i;j); �̂j

�
6= E

�
1aj ;yj j y0i; y�(i;j); a0i; a�(i;j); �̂j

�
: (1.1)

1.3.2 Assumptions about Cheap Talk

We assume the following two forms of cheap talk are available until Chapter 5.

Perfect Cheap Talk We �rst assume the availability of perfect cheap talk. When a

player sends a message m via perfect cheap talk, the other players observe m directly and

m becomes common knowledge.

This communication is (i) cheap (not directly payo¤-relevant), (ii) instantaneous and (iii)

public and perfect (it generates the same signal as the message to each player).

Error-Reporting Noisy Cheap Talk Between j and i with Precision p 2 (0; 1) We

second assume that, for each pair of players j and i with j 6= i, player j has an access to the

following special form of cheap talk named �error-reporting noisy cheap talk with precision

p�with precision p 2 (0; 1) to send a binary message m 2 fG;Bg to player i.11

Intuitively, this communication is (i) cheap (not directly payo¤-relevant), (ii) instanta-

neous but (iii) private and noisy (it generates a private signal to player i that can be di¤erent

from the original message of player j). In addition, as the name suggests, (iv) when player

11Except for Chapter 6, p is always equal to 1
2
.
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i�s signal is wrong, the �error is reported�to player i � 1 (modN) with a high probability.

As we will see in Section 1.6, player i� 1 is a �controller�of player i�s payo¤.

Formally, when player j sends m to player i via error-reporting noisy cheap talk with

precision p 2 (0; 1), it generates player i�s private signal f [i] (m) 2 fG;Bg with the following

probability:

Pr (ff [i] (m) = fg j m) =

8><>: p for all (m; f) with f = m;

1� p for all (m; f) with f 6= m:

That is, f [i] (m) is correct with probability p but incorrect with probability 1� p.

Given the original message m and player i�s signal f [i] (m), it generates player (i� 1)�s

private signal g [i� 1] (m) 2 fm;Eg. Intuitively, if player i�s signal is an error, then g[i �

1](m) = E with probability p, that is, �the error is reported�to the controller of player i

with probability p:

Pr (fg [i� 1] (m) = Eg j m; f [i] (m)) =

8><>: p for (m; f [i] (m)) with f [i] (m) 6= m;

1� p for (m; f [i] (m)) with f [i] (m) = m:

Finally, player j � 1 (the controller of player j, the sender) observes a private signal

f2 [j � 1] (m) 2 fG;Bg and player i � 1 (the controller of player i, the receiver) observes a

private signal g2[i� 1](m) 2 fG;Bg. We assume that there exists � > 0 such that

� with arbitrarily �xed �, for su¢ ciently large p, even after observing any f2[j � 1](m),

player i still believes that if f [i] (m) 6= m, then g[i� 1](m) = E with a high probabil-

ity.12

Formally, with arbitrarily �xed �, for su¢ ciently large p, f2 [i] (m) and g2 [j] (m) are

very imprecise signals compared to f [i](m) and g[j](m): for all m 2 fG;Bg, f [i](m) 2
12If j � 1 6= i, then player i does not observe f2[j � 1](m).
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fG;Bg, g[i� 1](m) 2 fG;Bg, f2 2 fG;Bg, and g2 2 fG;Bg,

Pr (ff2 [j � 1] (m) = f2; g2 [i� 1] (m) = g2g j m; f [i](m); g [i� 1] (m)) � �; (1.2)

� a pair (f [i](m); f2[j � 1](m)) contains some information about the other players�sig-

nals.

Formally, for any m 2 fG;Bg, g[i � 1](m) 2 fG;Bg, f [i](m); f [i](m)0 2 fG;Bg and

f2[j�1](m); f2[j�1](m)0 2 fG;Bg, if (f [i](m); f2[j � 1](m)) 6= (f [i](m)0; f2[j � 1](m)0),

then 







E
�
1g2[i�1](m) j m; g[i� 1](m); f [i](m); f2[j � 1](m)

�
�E

�
1g2[i�1](m) j m; g[i� 1](m); f [i](m)0; f2[j � 1](m)0

�







 � �: (1.3)

In this paper, we use the Euclidean norm. In general, for a random variable x 2 X,

we de�ne 1x as a jXj � 1 vector such that, if x = x̂, the element corresponding to x̂ is

equal to one and the other elements are zero. For example,

1g2[i�1](m) =

8>>>>>>>><>>>>>>>>:

264 1
0

375 if g2[i� 1](m) = G;

264 0
1

375 if g2[i� 1](m) = B;

(1.4)

and

� a pair (g[i� 1](m); g2[i� 1](m)) contains some information about the other players�

signals.

Formally, for any m;m0 2 fG;Bg, f [i](m) 2 fG;Bg, g[i � 1](m); g[i � 1](m)0 2

fG;Bg and g2[i � 1](m); g2[i � 1](m)0 2 fG;Bg, if (m; g[i� 1](m); g2[i� 1](m)) 6=
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(m0; g[i� 1](m)0; g2[i� 1](m)0), then







E
�
1f2[j�1](m) j m; g[i� 1](m); g2[i� 1](m); f [i](m)

�
�E

�
1f2[j�1](m) j m0; g[i� 1](m)0; g2[i� 1](m)0; f [i](m)

�







 � �: (1.5)

We assume that all the signals are private and so

� player j knows only m;

� player i knows only f [i] (m);

� player i� 1 knows only g[i� 1] (m) and g2[i� 1] (m); and

� player j � 1 knows only f2[j � 1](m).13

1.3.3 Assumptions about Dispensability of Cheap Talk

In Chapters 6 and 7, we show that both perfect cheap talk and error-reporting cheap talk

are dispensable. Exact su¢ cient conditions for dispensability are stated in Chapter 3 and

here, we state the assumptions about the cardinality of each player�s support of signals under

which the su¢ cient conditions in Chapter 3 are generic:

Assumption 6 The cardinality of each player�s support of signals is su¢ ciently large: for

any i 2 I, we have

jYij � jAjj with j 6= i if N = 2; (1.6)

jYij � max
j 6=n
j;n 6=i

jAjj+ jAnj if N � 3: (1.7)

Intuitively speaking, when player j sends a message to player i by taking actions, with

two players, player i needs to statistically infer player j�s actions, which is generically possible

13If there is a player whose index appears multiple times, then we assume that the player
knows all the signals of the players with that index. For example, if player j and player i�1
are the same player, she knows m, g[i� 1] (m) and g2[i� 1] (m).
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if (1.6) is satis�ed. With more than two players, player i needs to statistically infer player j�s

action in such a way that another player n 2 � (i; j) cannot manipulate player i�s inference,

which is generically possible if (1.7) is satis�ed.

1.4 Result

First, with Assumptions 1, 2, 3, 4 and 5, we can generically construct an equilibrium to

attain any point in int(F �) if perfect cheap talk and error-reporting noisy cheap talk are

available.

Theorem 7 If Assumptions 1, 2, 3, 4 and 5 are satis�ed and perfect cheap talk and error-

reporting noisy cheap talk are available, then the folk theorem holds: for any v 2 int(F �),

there exists �� < 1 such that, for all � > ��, v 2 E (�).

In Chapter 3, we provide su¢ cient conditions to dispense with both perfect cheap talk

and error-reporting noisy cheap talk. These su¢ cient conditions are generic if Assumption

6 is satis�ed:

Theorem 8 If Assumption 6 is satis�ed, then both perfect cheap talk and error-reporting

noisy cheap talk are generically dispensable in Theorem 7: if Assumptions 1 and 6 are

satis�ed, then for a generic signal distribution fq (y j a)gy;a, for any v 2 int(F �), there exists
�� < 1 such that, for all � > ��, v 2 E (�).

Assumptions 3, 4 and 5 are also generic under Assumption 6 and so omitted in the

statement of Theorem 8.

From now on, we arbitrarily �x v 2 int(F �) and construct an equilibrium to support v

in a Nash equilibrium.
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1.5 Overview of the Argument

This section provides an intuitive explanation for our construction. Following Hörner and

Olszewski (2006), we see a repeated game as repetition of TP -period review phases. TP will

be formally de�ned later. In Section 1.5.1, we explain that our equilibrium is �phase-belief-

free�and how it makes our equilibrium immune to coordination failure at the beginning of

each phase. Section 1.5.2 o¤ers the basic structure of the review phase.

To explain the details of the review phase, we assume perfect and error-reporting noisy

cheap talk is available as explained in Section 1.3.2. With these communication devices, in

Sections 1.5.3, 1.5.4 and 1.5.5, we o¤er the detailed explanation of the review phase.

Finally, we explain how to dispense with the communication devices in Section 1.5.6.

1.5.1 Phase-Belief-Free

As Hörner and Olszewski (2006), the equilibrium is phase-belief-free. Each player i has

two TP -period-�nitely-repeated-game strategies, denoted by �i(G) and �i(B). Since TP -

period-�nitely-repeated-game strategies are not fully speci�ed strategies in the in�nitely

repeated game, we call them �action plans�in the context of the in�nitely repeated game.

At the beginning of each review phase, for each player i, independently of her history, any

continuation strategy that adheres to one of the two action plans �i(G) and �i(B) in the

review phase is optimal. We say that player i taking �i(xi) with xi 2 fG;Bg in the review

phase is �in state xi 2 fG;Bg.�

Intuitively speaking, �i(G) is a �generous�action plan that gives a high payo¤ to player

i + 1 (modN) who takes either �i+1(G) or �i+1(B), regardless of the other players�state

pro�le x�(i;i+1) 2 fG;BgN�2. On the other hand, �i(B) is a �harsh�action plan that gives a

low payo¤ to player i+1 regardless of player (i+ 1)�s action plans (including those di¤erent

from �i+1(G) and �i+1(B)) and x�(i;i+1). Hence, player (i� 1)�s state controls player i�s

value regardless of x�(i�1), replacing i with i� 1 in the previous two sentences. Since these
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two action plans are optimal at the beginning of the next phase, it is up to player i � 1

whether player i� 1 will take �i�1(G) or �i�1(B) in the next phase. Therefore, player i� 1

with �i�1(G) in the current phase can freely reduce player i�s continuation payo¤ from the

next review phase by transiting to �i�1(B) with a higher probability while player i � 1

with �i�1(B) can freely increase player i�s continuation payo¤ by transiting to �i�1(G) with

a higher probability.14 When we say �strategies� in the context of the in�nitely repeated

game, they include the speci�cation of the state transition probability. In summary, we do

not need to consider player (i� 1)�s incentive to punish player i after a �bad history� in

state G or to reward player i after a �good history�in state B.

1.5.2 Structure of the Review Phase

The basic structure of the review phase is summarized as follows. At the beginning of the

review phase, the players communicate a state pro�le x 2 fG;BgN . This communication

stage is named the �coordination block�since the players try to coordinate on x. The details

will be explained in Section 1.5.3.

Based on the result of the coordination block, the players play the �nitely repeated

game for many periods. This step consists of multiple �review rounds.�The details will be

explained in Section 1.5.5.

Finally, at the end of the phase, the players communicate the histories in the coordination

block and review rounds. This stage is named the �report block�since the players report the

histories in the review rounds. The role of this communication will be explained in Section

1.5.4.
14Here, the changes in the continuation payo¤s are measured by the di¤erences between

player i�s ex ante value given xi�1 at the beginning of the review phase and the ex post
value at the end of the review phase after player i� 1 observes the history in the phase. See
Section 1.6 for the formal de�nition.
For example, if player i � 1 with xi�1 = G does not reduce player i�s continuation value,

then it means that the state of player i � 1 in the next review phase is G with probability
one, so that the ex post value is the same as the ex ante value.
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1.5.3 Coordination Block

The role of the coordination block is to coordinate on x as in Hörner and Olszewski (2006).

With the perfect cheap talk, each player tells the truth about her own state xi and the state

pro�le x 2 fG;BgN becomes common knowledge. In the review rounds, based on x, the

players play �(x) with a high probability on the equilibrium path. Intuitively, �(x) is the

mixed action pro�le taken in the �usual�histories when the state pro�le is x. See Section

1.6 for the formal de�nition of �(x).

1.5.4 Report Block

We introduce the report block where the players communicate the histories in the coordina-

tion block and review rounds. This communication enables us to concentrate on "-equilibrium

until the end of the last review round. Suppose that we have constructed a strategy pro�le

which is "-equilibrium at the end of the last review round if we neglect the report block. We

explain how to attain the exact equilibrium by using the report block.

Suppose that the perfect cheap talk and public randomization are available. Each player

i is picked by the public randomization with probability 1
N
.15 The picked player i sends the

whole history in the coordination block and review rounds (denoted by hmaini ) to player i�1.

That is, hmaini is player i�s history from the beginning of the coordination block to the end

of the last review round.

Assume that player i always tells the truth about hmaini . To make "-equilibrium exact

equilibrium, player i � 1 changes the continuation payo¤ of player i so that, for all t, after

hti, it is exactly optimal to take an action prescribed by the equilibrium strategy. Since

the original strategy pro�le was "-equilibrium with arbitrarily small ", this can be done by

slightly changing the continuation strategy based on hmaini�1 and hmaini .16

15For N � 3, the formal procedure is slightly di¤erent. See Section 5.9.
16With more than two players, player i � 1 also needs to know the histories of players

� (i� 1; i). So that players �(i� 1; i) can send their histories to player i� 1, we introduce
another communication stage after the report block, named the �re-report block.�Since this
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The remaining task with the perfect cheap talk and public randomization is to show the

incentive to tell the truth about hmaini . Intuitively, with de�ning a linear space and norm prop-

erly for the history, player i�1 punishes player i proportionally to



hmaini�1 � E

h
hmaini�1 j ĥmaini

i


2
with ĥmaini being the reported history. The optimal report ĥmaini to minimize the expected

punishment E
�


hmaini�1 � E

h
hmaini�1 j ĥmaini

i


2 j hmaini

�
is to tell the truth: ĥmaini = hmaini .17

Since the adjustment for exact equilibrium is small, the small punishment is enough to in-

centivize player i to tell the truth. Therefore, the total changes in the continuation payo¤

based on the report block do not a¤ect the equilibrium payo¤.

1.5.5 Review Rounds

Between the coordination block and the report block, the players play a T -period �review

round�for L times. Here, L 2 N is a �xed integer that will be determined in Section 2.6,

and

T = (1� �)�
1
2

so that

T !1 and �LT ! 1 as � ! 1: (1.8)

Intuitively, if the discount factor is large, T is su¢ ciently long to aggregate information

e¢ ciently and, at the same time, the discounting over T periods is negligible since �T goes to

unity. Throughout the paper, we neglect the integer problem since it is handled by replacing

each variable s that should be an integer with minn2N
n�s

n.

The reason why we have T periods in each review round is to aggregate private signals for

many periods to get precise information as in Matsushima (2004).18 There are two reasons

why we have L review rounds. The �rst reason is new: as we will explain, the signals of the

information sent by players � (i� 1; i) in the re-report block is used only to control player
i�s continuation payo¤, the truthtelling incentive for players � (i� 1; i) is trivially satis�ed.
See Section 5.10.

17Note that this logic is the same as we show the consistency of generalized-method-of-
moments estimators.

18See also Radner (1985) and Abreu, Milgrom, and Pearce (1991).
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players can be correlated while Matsushima (2004) assumes that the signals are conditionally

independent. To deal with correlation, we need multiple review rounds.

The second reason is the same as Hörner and Olszewski (2006). If we replace each period

of Hörner and Olszewski (2006) with a T -period review round, then we need a su¢ ciently

large number of review rounds so that a deviator should be punished su¢ ciently long to

cancel out the gains in the instantaneous utility from deviation.

Below, we o¤er a more detailed explanation of the review rounds. In Section 1.5.5.1,

we concentrate on the �rst role of the L rounds by considering the case where the block

of Hörner and Olszewski (2006) has one period, that is, the stage game is the two-player

prisoners�dilemma. We will explain the general two-player game and the general more-than-

two-player game in Sections 1.5.5.2 and 1.5.5.3, respectively, where the second role of the L

rounds is important.

Whenever we consider the two-player case and we say players i and j, we assume that

player j is player i�s (unique) opponent unless otherwise speci�ed.

1.5.5.1 The Two-Player Prisoners�Dilemma

In the two-player prisoners�dilemma, we consider player i�s incentive to take �i(G) when

player j takes �j(G). The other combinations of (xi; xj) are symmetric. Remember that

since x is communicated via perfect cheap talk, x is common knowledge.

So that �i(G) is generous to player j, player i needs to take cooperation with ex ante high

probability. On the other hand, player j can reduce player i�s continuation payo¤ from the

next review phase based on her history within the current review phase (see the explanation

of the phase-belief-free in Section 1.5.1).

To incentivize player i to take Ci, player j needs to punish player i after observing a

suspicious history. On the other hand, for e¢ ciency, player j should not punish player i if

player i cooperates. To satisfy these two requirements simultaneously in a noisy environment,

player j needs to aggregate information over long T periods (review round).
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Information Aggregation Let us explain how player j aggregates information. Since

Assumption 3 implies that player j can statistically identify player i�s action, player j can

map her history in each period into a real number so that

E [�i[�] (yj) j �j; Ci]� E [�i[�] (yj) j �j; Di] = ui (�j; Di)� ui (�j; Ci) ; (1.9)

where �j is player j�s equilibrium mixed action in that period and �i is the mixed action

that player j expects player i to take. Intuitively, conditional on �j, after observing a �good�

signal yj which occurs more likely after player i�s cooperation, player j gives a high point

�i[�] (yj) while after observing a �bad� signal yj which occurs more likely after player i�s

defection, player j gives a low point �i[�] (yj), so that the expected gain in points from

cooperation cancels out the loss in instantaneous utilities. We normalize �i[�] (yj) by adding

or subtracting a constant so that

E [�i[�] (yj) j �j; Ci] = 0. (1.10)

Further, let �u be the maximum absolute value of the points:

�u = max
j;�;yj

j�i[�] (yj)j > 0:

As we will see in Lemma 12, this �u is well de�ned.

Recall that we have L review rounds. For each lth review round, player j aggregates

�i[�(l)] (yj;t) and creates player j�s score about player i:

Xj(l) =
X

t: lth review round

�i[� (l)] (yj;t) : (1.11)
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Here �j (l) is player j�s equilibrium mixed action in the lth review round and �i(l) is the

mixed action that player j expects player i to take (as will be seen, the players take i.i.d.

mixed actions in each review round).

Conditional Independence Following Matsushima (2004), assume that player i�s signals

were independent of player j�s signals conditional on any action pro�le a.

With xi = G, let �i (x) = (1� 2�)Ci + 2�Di with a small � > 0 be an action plan that

takes Ci with high probability 1 � 2�. Intuitively, player j wants to incentivize player i to

take �i (x) by aggregating information over the review round and the punishment should be

small if player i takes Ci frequently.

This is done as follows. Let the change in player i�s continuation payo¤ be equal to

(
�2�uT +

LX
l=1

Xj(l)

)
�

; (1.12)

where, in general, fXg� is equal to X if X � 0 and 0 otherwise. That is, player j adds the

scores from all the review rounds. From (1.9), the expected score decreases when player i

takes defection and this cancels out the gain in instantaneous utilities from defection. Hence,

as long as
PL

l=1Xj(l) � 2�uT , player i is indi¤erent between cooperation and defection.

Hence, for "-equilibrium, we are left to show that player i after any history believes thatPL
l=1Xj(l) � 2�uT with a high probability and that e¢ ciency is not destroyed.

From (1.9) and (1.10), the expected increase in the score in each period (that is, the

expected point) is non-positive. Therefore, by the law of large numbers, with �u > 0 and L 2

N, for su¢ ciently large T , player i believes that
PL

l=1Xj(l) � 2�uT with a high probability.

Since player i�s signals are independent of player j�s signals, player i cannot update any

information about player j�s signals about player i from player i�s history. Therefore, this

statement is correct after any history of player i.

At the same time, since the expected value of �i[� (l)](yj) under cooperation is 0, for

su¢ ciently small �, the ex ante value of Xj(l) is close to 0 and so the ex ante reduction of
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the continuation payo¤ is close to �2�uT . Since there are L T -period review rounds, per-

period e¢ ciency loss is equal to 2�u=L, which can be arbitrarily small for large L. Therefore,

we are done.

Conditional Dependence Now, we dispense with conditional independence. That is,

player i�s signals and player j�s signals can be correlated arbitrarily. Since the expected

score is 0 under a constant cooperation, to prevent an ine¢ cient punishment, player j cannot

punish player i after the score is excessively high (in the above example, more than 2�uT ).

On the other hand, if the signals are correlated, then it happens with a positive probability

that player i believes that, judging from her own history and correlation, player j�s score

about player i has been excessively high already. Then, player i wants to start to defect.

More generally, it is impossible to create a punishment schedule that is approximately

e¢ cient and that at the same time incentivizes player i to cooperate after any history. Hence,

we need to let player i�s incentive to cooperate break down after some history. Symmetrically,

player j also switches her own action after some history.

Intuitively, player i switches to a constant defection after player i�s expectation of player

j�s score about player i is much higher than the ex ante mean. We want to specify exactly

when each player i switches to a constant defection based on player i�s expectation of player

j�s score about player i.

Re�ective Learning Problem However, this creates the following problem: since player

i switches her action based on player i�s expectation of player j�s score about player i, player

i�s action reveals player i�s expectation of player j�s score about player i. Since both �player

i�s expectation of player j�s score about player i�and �player i�s score about player j�are

calculated from player i�s history, player j may want to learn �player i�s expectation of player

j�s score about player i�from �player j�s signals about player i�s action.� If so, player j�s

decision of actions depends also on player j�s expectation of player i�s expectation of player

j�s score about player i. Proceeding one step further, player i�s decision of actions depends
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on player i�s expectation of player j�s expectation of player i�s expectation of player j�s score

about player i. This chain of �re�ective learning�continues in�nitely.

Error-Reporting Noisy Cheap Talk Cuts o¤ the Re�ecting Learning We want to

construct an equilibrium that is not destroyed by the re�ective learning. From the discussion

of the report block, we can focus on "-equilibrium. This means that, to verify an equilib-

rium, it is enough to show that each player believes that her action is optimal with a high

probability (not probability one). To prevent the re�ective learning, we take advantage of

this �" slack�in "-equilibrium and the noise in the error-reporting noisy cheap talk explained

in Section 1.3.2.

The basic structure is as follows. Recall that we have L T -period review rounds. At the

beginning of each lth review round, in a normal history (we will de�ne the �normal�history

later), player j decides to take one of the following three mixed action plan

�j (l) =

8>>>><>>>>:
��j (x) � (1� �)Ci + �Di;

�j (x) � (1� 2�)Ci + 2�Di;

�j (x) � (1� 3�)Ci + 3�Di;

(1.13)

with probability 8>>>><>>>>:
�=2;

1� �;

�=2;

respectively with small �; � > 0. Once player j decides �j (l), player j takes an action

according to �j(l) i.i.d. within the lth review phase.

Note that player j takes the same action plan �j (x) as in the case with conditional

independence with a high probability. If �j (l) 6= �j (x), then player j makes player i

indi¤erent between any action pro�le sequence from the lth review round. This can be done
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by changing the transition probability to xj = B at the beginning of the next review phase.

See the de�nition of �xji [�j(l)](yj) in Section 2.3.

At the end of each lth review phase, player j�s history is partitioned into the following

two:

� player j�s score about player i has been �not erroneously high�: Xj(~l) � �u
L
T for all

~l = 1; :::; l; or

� player j�s score about player i has been erroneously high: there exists ~l = 1; :::; l with

Xj(~l) >
�u
L
T .

In the former case, we say �j(l + 1) = G and in the latter case, we say �j(l + 1) = B.

Intuitively speaking, if �j(l + 1) = G, then player i will be indi¤erent between Ci and Di

in the (l + 1)th review round and so �i (l) is optimal. On the other hand, if �j(l + 1) = B,

then player i should switch to a constant defection from the (l + 1)th review round.

Player j informs player i of �j(l+1) by sending �j(l+1) to player i by the error-reporting

noisy cheap talk with precision p = 1� exp(�T 1
2 ). Player i observes f [i](�j(l+1)). If there

is an error, that is, if f [i](�j(l + 1)) 6= �j(l + 1), then the error is reported to player j, that

is, g[j](�j(l + 1)) = E with high probability 1 � exp(�T 1
2 ). If the error is reported, then

player j will make player i indi¤erent between any action pro�le from the (l + 1)th review

round. Again, see the de�nition of �xji [�j(l)](yj) in Section 2.3 for how to do this. Note that

this change of player j�s continuation strategy does not a¤ect player i�s incentive since the

probability of an error and the probability of error-reporting are independent of player j�s

message.

Consider player i�s incentive at the end of the lth review round, calculating the optimal

action in the (l + 1)th review round. We partition player i�s history into two classes: normal

and abnormal.

We say player i�s history at the end of the lth review round is normal if, for all the

previous rounds ~l = 1; :::; l,
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1. player i (symmetrically to player j) picks �i(~l) = �i(x);

2. the realized frequency of player i�s action in the ~lth review round is actually close to

�i(x); and

3. player i�s signal frequency during the periods when player i takes cooperation in the

~lth review round is close to the a¢ ne full of player i�s signal frequency with respect to

player j�s actions:

a�
�
fqi (Ci; aj)gaj2Aj

�
:

As de�ned in Assumption 3, qi (�) = (qi(yi j �))yi is player i�s signal distribution under

�.

Otherwise, we say player i�s history is abnormal. If player i�s history is abnormal, then

player i will make player j indi¤erent between any action pro�le. See the de�nition of

�xij [�i(l)](yi) in Section 2.3 for how to do this. Note that this change of player i�s continuation

strategy does not a¤ect player j�s incentive since whether player i�s history is normal or not

is not controllable for player j (Conditions 1 and 2 are determined by player i�s mixture and

Condition 3 takes the a¢ ne hull with respect to player j�s action).

After the normal history, player i disregards player j�s message about �j(l+1) and keeps

taking �i(l + 1) in the (l + 1)th review round de�ned symmetrically to (1.13). The almost

optimality of this action plan is explained as follows: roughly speaking, since player i has

taken Ci very often in the previous rounds (see Conditions 1 and 2 of the normal history),

player i can concentrate on periods when player i took Ci to infer player j�s score about

player i.

If player i�s signal frequency is very close to the ex ante distribution under �j(x), then

player i�s conditional expectation of player j�s score about player i is also close to the ex
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ante mean of the score, that is, player i puts little belief on the event that �j(l + 1) = B.

Since the length of the review round is T , this believe is no more than exp(��(T )).19

If player i�s signal frequency is not close to the ex ante distribution under �j(x), then

it is likely that player j took ��j(x) (�j (x), respectively) if the frequency is skewed toward

qi (Ci; Cj) (qi (Ci; Dj), respectively) compared to qi (Ci; �j (x)) since ��j(x) (�j (x), respec-

tively) takes Cj (Dj, respectively) more often than �j(x). In this case, player j makes any

action optimal for player i. Note that since player i�s signal frequency is close to the a¢ ne

hull of player i�s signal distributions with respect to aj, whenever player i�s signal frequency is

not close to the ex ante distribution under �j(x), it should be skewed either toward qi (Ci; Cj)

or qi (Ci; Dj).

Hence, in both cases, player i is almost indi¤erent between Ci andDi. Note that the above

discussion is only before player i learns about player j�s history from player j�s continuation

action plan.

Before proceeding to the learning problem, let us specify player i�s action plan after the

abnormal history (that is, at least one of Conditions 1, 2 and 3 is violated). In this case,

player i obeys player j�s message: if f [i](�j(l+ 1)) = G, then player i keeps taking �i(l+ 1)

as prescribed by (1.13) in the (l + 1)th review round. If f [i](�j(l + 1)) = B, then player i

switch to a constant defection from the (l + 1)th review round.

The remaining questions are (i) how we can make sure that the re�ective learning does

not destroy an equilibrium, (ii) how we can incentivize player j to tell the truth about

�j(l + 1), and (iii) whether e¢ ciency is preserved.

Consider the �rst question. When player i obeys the message, the error is reported with

a high probability (if any) and player j�s action plan symmetrically de�ned to player i�s

action plan is independent of whether the error is reported or not. Hence, regardless of the

learning about player j�s continuation action plan, player i keeps a high belief on the event

that, if there is an error in f [i](�j(l + 1)), then the error is reported to player j.

19For a variable XT which depends on T , we say XT = exp(��(T )) if and only if there
exist k1; k2 > 0 such that exp(�k1T ) � XT � exp(�k2T ) for su¢ ciently large T .
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When player i disregards the message, there are two channels for the learning about

player j�s score through player j�s continuation action plan. The �rst one is player i�s signals

coming from player j�s message about �j(l + 1) by the error-reporting noisy cheap talk.

Since the order of noise, exp(�T 1
2 ), is much larger than the original belief on �j(l+1) = B,

exp(��(T )), it is almost optimal for player i to disregard the message.

The second channel is through player j�s reaction to player i�s message. When player i

learns that player j will play a constant defection, this means player j has obeyed player i�s

message, which means player j makes player i indi¤erent between any action pro�le sequence.

Hence, learning this event is not a problem.

When player i learns that player j will play �i(l + 1) as prescribed by (1.13), the prob-

lematic history of player i is as follows: player i originally believes that player j�s history

should have been abnormal (for example, player i believes that player j took ��j(x)), player

i has sent �i(~l + 1) = B for some ~l = 1; :::; l (that is, has told player j to defect), no error is

reported to player i, but player j will play �i(l+1) as prescribed by (1.13). If player j took

��j(x) as player i believes, then player j should have obeyed the message. Hence, without an

error, it would be inconsistent. There are two possibilities: player i�s original belief about

player j�s history was wrong or although the error was not reported, player j�s signal was

wrong (f [j](�i(~l + 1)) = G) and player j has obeyed player i�s message. The second event

can happen with probability exp(�2T 1
2 ), which is bigger than the original belief about the

�rst event exp(��(T )), and player i can attribute this inconsistency to the second case and

adhere to player i�s original belief about player j�s history.

Therefore, due to the noise in the error-reporting noisy cheap talk and " slack in "-

equilibrium, player i can neglect the learning from player j�s continuation action plan.

Consider the second problem to incentivize player j to tell the truth about �j(l + 1).

Remember that player i does not disregard the message only after the abnormal history.

Hence, player i has made player j indi¤erent between any action pro�le sequence whenever
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player j�s message matters, which implies player j is indi¤erent between player i cooperating

and defecting. Hence, the truthtelling incentive is satis�ed.

Finally, with high probability 1 � 2�, player i takes �i(l) = �i(x) for each lth review

round. Then, by the law of large numbers, the realized frequency of player i�s action is

close to �i(x). Again, by the law of large numbers, player i�s signal frequency is close to

the a¢ ne full of player i�s signal frequency with respect to player j�s actions. Hence, player

i�s history is normal and takes cooperation with a high probability. Further, an error and

error-reporting do not happen with a high probability. Hence, e¢ ciency is preserved.

Summary Let us intuitively summarize the equilibrium construction. Although the break-

down of cooperation after abnormal histories is inevitable, we need to verify that the re�ective

learning does not destroy the incentives.

To make it possible for player i to take an optimal action depending on player j�s score

about player i, player j informs player i of the optimal action via the error-reporting noisy

cheap talk.

When player i calculates player i�s optimal action, although player i�s signal frequency is

not close to the true distribution under �j(x), as long as it is close to the a¢ ne hull of player

i�s signal distributions with respect to player j�s action, player i believes that player j�s

action is not equal to �j(x) and that player i is indi¤erent between any action. Therefore,

player i disregards player j�s message. Player i can neglect the learning from player j�s

continuation action plan since there is noise in the error-reporting noisy cheap talk and we

can concentrate on almost optimality because of the report block.

When player i obeys player j�s message, on the other hand, the error (if any) should be

reported to player j and player j�s continuation action plan is independent of whether the

error is reported or not. Therefore, player i can obey the message without being worried

about a mistake, neglecting the learning from player j�s continuation action plan.
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1.5.5.2 General Two-Player Game

Now, we consider the second role of L, that is, we consider the general two-player game where

the block of Hörner and Olszewski (2006) has more than one period. We still concentrate

on the two-player case.

Imagine that we replace each period in Hörner and Olszewski (2006) with a T -period

review round. We need L review rounds so that, when player i uses the harsh strategy,

regardless of player j�s deviation, we can keep player j�s value low enough. If player j

deviates for a non-negligible part of a review round, then by the law of large numbers, player

i can detect player j�s deviation with a high probability. If player i minimaxes player j from

the next review round after such an event, then player j can get a payo¤ higher than the

targeted payo¤ only for one review round. With su¢ ciently long L, therefore, player j�s

average payo¤ from a review phase can be arbitrarily close to the minimax payo¤.

A known problem to replace one period in Hörner and Olszewski (2006) with a review

round is summarized in Remark 5 in their Section 5. Player i�s optimal action in a round

depends on player j�s signals in the past rounds. Player i calculates the belief about player

j�s past signals at the beginning of the round and starts to take an action that is optimal from

her belief. While player i observing signals in that round, since player j�s actions depend on

player j�s signals in the past rounds, player i may realize that player j�s actions are di¤erent

from what player i expected from her belief about player j�s signals. Then, player i needs

to correct her belief about player j�s past signals.

Realize that this is the same �re�ective learning� problem as we have dealt with for

�j(l + 1). Here, we will proceed as follows: �rst, as in (1.13), player j takes �j(l) = �j (x)

with a high probability. However, player j also takes action plans di¤erent from �j (x)

with a positive probability, which are comparable to ��j (x) and �j (x) in the two-player

prisoners� dilemma. In a general game, player j takes a minimaxing action plan with a

positive probability in addition to those comparable to ��j (x) and �j (x).

Second, at the end of the lth review round, when player i has a history such that
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1. player i�s history is normal as de�ned in Section 1.5.5.1 and

2. for some past ~lth review round with ~l � 1; :::; l, player i observes a signal frequency

that is not close to the ex ante mean of player i�s signal distribution under �j(x),

then, player i will minimax player j from the (l + 1)th review round with a high prob-

ability. However, there is a positive probability with which player i �forgives�player j and

keeps taking �i(l) de�ned in the �rst step. Player j�s strategy is symmetrically de�ned.

Importantly, since player j takes a minimaxing action plan in the �rst step, the support

of player j�s action plans in the next review round does not depend on whether player j�s

history satis�es Conditions 1 and 2.

Note that, whether or not player j deviates, player i�s history is normal with a high

probability as explained in Section 1.5.5.1. If Condition 2 is satis�ed, then it is likely that

player j took an action plan di¤erent from �j (x). This is comparable to player i putting

a high belief on ��j(x) (�j (x), respectively) if the frequency is skewed toward qi (Ci; Cj)

(qi (Ci; Dj), respectively) compared to qi (Ci; �j (x)) in the prisoners�dilemma. If this belief

is correct, then player j makes any action optimal for player i. Therefore, player i will punish

player j by taking a minimax action plan from the next review round with a high probability.

We are left to verify that player i�s learning about the optimal action from player j�s

continuation action plan does not change player i�s incentive. The new learning in addition

to the learning explained in Section 1.5.5.1 is whether player j will take a minimaxing action

plan or not. However, as we have explained above, the support of player j�s action plans in

the next review round does not depend on whether player j will minimax player i or not as

long as player j�s history is normal. Hence, player i cannot update the belief so much.

1.5.5.3 General More-Than-Two-Player Game

Finally, we consider a general game with more than two players. There are two problems

unique to a game with more than two players: �rst, if player i�s state xi is B, then player
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(i+ 1)�s value should be low. Since player i is in the bad state, player i can only increase

the continuation payo¤ of player i + 1. That is, we cannot punish player i + 1 by reducing

the continuation payo¤. Hence, players � (i+ 1) need to minimax player i+1 if player i+1

seems to have deviated. With two players, player i is the only opponent of player i + 1

(i+1 = j in the two-player game) and so it su¢ ces for player i to unilaterally punish player

i + 1. Thus, the punishment explained in Section 1.5.5.2 works. On the other hand, with

more than two players, we need to make sure that players � (i+ 1) can coordinate on the

punishment. This coordination can be done by communication among all the players about

who will be punished at the end of each review round. See Chapter 5 for the details.

Second, there will be a new problem when we dispense with the perfect cheap talk in the

coordination block. We will address this issue when we discuss dispensability of the perfect

cheap talk in Section 1.5.6.2.

1.5.6 Dispensing with Special Communication Devices

We are left to dispense with the special communication devices introduced in Section 1.3.2.

We �rst explain the dispensability in the two-player game and then proceed to the dispens-

ability in the more-than-two-player game.

1.5.6.1 Two Players

Dispensing with the Perfect Cheap Talk for x We explain how to replace the perfect

cheap talk for the coordination on x in the coordination block with messages via actions.

We proceed in steps.

First, we replace the perfect cheap talk with the error-reporting noisy cheap talk. By

exchanging messages by the error-reporting noisy cheap talk several times, each player i can

construct the inference of x, denoted by x(i). The important properties to establish are (i)

x(i) = x for all i with a high probability, (ii) the communication is incentive compatible, and

(iii) after realizing that x(i) 6= x(j), that is, after player i realizes that player i�s inference is
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di¤erent from player j�s inference, player i believes that player j should have realized that

there was an error in the communication and that player j has made player i indi¤erent

between any action pro�le sequence in all the review rounds with a high probability. This

enables player i to stick to her own inference. See Chapter 6 for the details.

Dispensing with the Error-Reporting Noisy Cheap Talk Second, we replace the

error-reporting noisy cheap talk with messages via actions. Given the discussion above, by

doing so, we can dispense with the perfect cheap talk in the coordination block and the

error-reporting noisy cheap talk in the review rounds.

Consider the situation where player j sends a binary noisy cheap talk message m 2

fG;Bg to player i with precision p = 1 � exp(�T k) with k 2 (0; 1) (in Section 1.5.5.1,

k = 1=2). With two players, player i� 1 is equal to player j. Remember that the important

properties that we use in Section 1.5.5.1 are (i) cheap, (ii) instantaneous, and (iii) precise

with probability 1 � exp(��(T k)): there exist c1; c2; c3 > 0 such that, for su¢ ciently large

T , (iii-a) f [i](m) = m with probability no less than 1 � c1; (iii-b) if f [i](m) 6= m, then

g[j](m) = E with probability no less than 1� exp(�c2T k); (iii-c) any signal pair can occur

with probability no less than exp(�c3T k).

Instead of the error-reporting noisy cheap, player j (sender) sends the message via actions:

player j with message m determines zj(m) 2 fG;B;Mg such that

zj(m) =

8>>>><>>>>:
m with probability 1� �;

fG;Bg n fmg with probability �=2;

M with probability �=2

and player j takes

�
zj(m)
j �

8>>>><>>>>:
(1� �) aGj + �aBj if zj(m) = G;

(1� �) aBj + �aGj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M
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with � < 1
2
for T k period. That is, player j sends the �true�message �zj(m)j = �mj with high

probability 1��. On the other hand, player j �tells a lie�with probability �: with probability

�=2, player j sends the opposite message zj(m) = fG;Bg n fmg and with probability �=2,

player j �mixes�two messages: zj(m) = M and �Mj = 1
2
aGj +

1
2
aBj . When player j tells a

lie, player j makes player i indi¤erent between any action pro�le, which corresponds to the

situation where the error is reported: g[j](m) = E.

Player i (receiver) takes some mixed action �receivei . Player i needs to infer the message

from her private history.

There are three di¢ culties: the message exchange is now (i) payo¤-relevant, (ii) takes

time and (iii) imprecise.

Since T k < T with k 2 (0; 1), the length of the communication is much shorter than

that of the review rounds. Therefore, we can deal with the �rst di¢ culty by changing the

continuation payo¤s to cancel out the di¤erences in instantaneous utilities. With T k <

T , this does not a¤ect the equilibrium payo¤, that is, the equilibrium payo¤ is mainly

determined by instantaneous utilities and changes in the continuation payo¤ from the T -

period review rounds. (ii) In addition, T k < T implies that the second di¢ culty does not

a¤ect the equilibrium payo¤ either.

(iii) We are left to consider the third di¢ culty. We want to create a mapping from player

i�s history to f [i](m) 2 fG;Bg to preserve (iii-a), (iii-b) and (iii-c).

The basic intuition is as follows. Suppose that player i calculates the log likelihood

between zj(m) = G and zj(m) = B. If one of them is su¢ cient larger than the other,

then player i infers that the one with the higher likelihood is the true message. If the log

likelihoods for zj(m) = G and zj(m) = B are similar, then since the log likelihood is strictly

concave, player i puts a high belief on the event that zj(m) = M , which means zj(m) 6= m

and player j makes player i indi¤erent. Therefore, pick f [i](m) 2 fG;Bg arbitrarily.

33



Since player j takes all the possible zj(m) with probability at least �=2, the likelihood

conditional on m = G and that conditional on m = B are close to each other. Therefore,

the following inferences are well de�ned:

� if there exists zj 2 fG;Bg such that, for all m 2 fG;Bg, the likelihood of zj(m) = zj

is su¢ ciently higher than that of zj(m) = fG;Bg n fzjg conditional on m, then player

i infers f [i](m) = zj; and

� otherwise, for all m 2 fG;Bg, conditional on m, player i puts a high belief on zj(m) =

M and picks f [i](m) 2 fG;Bg arbitrarily.

This satis�es (iii-a) and (iii-b) since (iii-a) f [i](m) = zj(m) with a high probability by

the law of large numbers and (iii-b) conditional on true m, if f [i](m) 6= m, then it is very

likely that zj(m) 6= m and that player j makes player i indi¤erent.

We are left to show that (iii-c) any signal pair can occur with probability no less than

exp(�c2T k) for some c2. With full support of the distribution of signal pro�le y, this is true.

Dispensing with the Perfect Cheap Talk and Public Randomization in the Report

Block We are left to dispense with the perfect cheap talk and public randomization in the

report block about hmaini .

First, we replace the perfect rich cheap talk to send hmaini with perfect cheap talk that can

send only a binary message. We attach a sequence of binary messages to hmaini . To send hmaini ,

player i sends the sequence of binary messages corresponding to hmaini . Expecting that we

will replace the perfect cheap talk with messages via actions, we make sure that the number

of binary messages sent is su¢ ciently smaller than T . Otherwise, it would be impossible

to replace the cheap and instantaneous talk with payo¤-relevant and taking-time messages

via actions. Since each period in each review round is i.i.d., it su¢ ces that player i reports

how many times player i observes an action-signal pair (ai; yi) for each (ai; yi) 2 Ai � Yi for

each review round. Hence, the cardinality of the relevant history is approximately TLjAijjYij.
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Since each message is binary, the number of binary messages necessary to send the relevant

history is log2 T
LjAijjYij, which is much smaller than T .

Second, we dispense with the public randomization. Recall that we use the public ran-

domization to determine who will report the history such that (i) ex ante (before the report

block), every player has a positive probability to report the history, and that (ii) ex post

(after the realization of the public randomization), there is only one player who reports the

history.

To see why both (i) and (ii) are important, remember that the equilibrium strategy would

be only "-optimal without the adjustment based on the report block. Thus, to attain the

exact optimality, it is important for each player in the review rounds to believe that the

reward will be adjusted with a positive probability. Therefore, (i) is essential.

(ii) is important because, the logic to incentivize player i to tell the truth uses the fact

that player i does not know hmainj (again, with two players, player i� 1 is player j). If player

i could observe a part of player j�s sequential messages which partially reveal hmainj before

�nishing reporting hmaini , then player i may want to tell a lie.

We show that the players use their actions and private signals to establish the properties

(i) and (ii), without the public randomization.

Third, we replace the perfect binary cheap talk with noisy binary cheap talk. Before

doing so, we explain what property of the communication is important in the report block.

The role of the report block is for player j to adjust player i�s continuation payo¤ so that

�i(G) and �i(B) are both exactly optimal. Since this adjustment does not a¤ect player j�s

payo¤, while player i sends hmaini , player j (the receiver) does not care about the precision

of the message. On the other hand, if player i realizes that her past messages may not have

transmitted correctly in the middle of sending a sequence of messages, then we cannot pin

down player i�s optimal action plan after that.

Therefore, we consider conditionally independent noisy cheap talk such that, when player

i sends m 2 fG;Bg, player j receives a signal f ci[j](m) 2 fG;Bg. The message transmits
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correctly, that is, f ci[j](m) = m, with a high probability. Player i receives no information

about f ci[j](m), so that player i can always believe that the message transmits correctly

with a high probability. Then, the truthtelling is still optimal after any history.

Finally, we replace the conditionally independent noisy cheap talk with messages via

repetition of actions. Although we do not assume conditional independence of signals a

priori or do not assume that 2 jYij � jAjj jYjj,20 as long as the adjustment of the continuation

payo¤ based on the messages is su¢ ciently small, we can construct a message exchange

protocol such that the sender always believes that the message transmits correctly with a

high probability. We defer the detailed explanation to Section 6.7.5.1 in Chapter 6.

1.5.6.2 More Than Two Players

With more than two players, we follow the same step as in the two-player case to dispense

with the communication devices. Each step is the same as in the two-player case with player

j replaced with player i� 1 except for the following two di¤erences: �rst, how to replace the

perfect cheap talk in the coordination block with the noisy cheap talk and second, how to

make sure that the players other than a sender and a receiver do not have an incentive to

manipulate the communication by changing their actions.

Recall that player i informs the other players �i of xi in the coordination block. With

two players, there is only one receiver of the message. On the other hand, with more than

two players, there are more than one receivers of the message. If some players infer xi is

G while the others infer xi is B, then the action that will be taken with a high probability

in the review rounds may not be included in fa(x)gx. Since we do not have any bound

on player i�s payo¤ in such a situation, it might be of player i�s interest to induce this.

Since we assume that the signals from the error-reporting noisy cheap talk when player

i sends the message to player j are private, if we let player i inform each player j of xi
20The latter implies that we cannot use the method that Fong, Gossner, Hörner, and

Sannikov (2010) create �j(yj) in their Lemma 1 to preserve the conditional independence
property.
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separately, then player i may want to tell a lie to a subset of players. In Chapter 7, we

create a message protocol so that, while the players exchange messages and infer the other

players�messages from private signals in order to coordinate on xi, there is no player who

can induce a situation where some players infer xi is G while the others infer xi is B in order

to increase her own equilibrium payo¤. Yamamoto (2012) o¤ers a procedure to achieve this

goal with conditionally independent monitoring. Our contribution is a non-trivial extension

of his procedure so that it is applicable to a general monitoring structure.

When we dispense with the error-reporting noisy cheap talk, in the two-player game, it

su¢ ces to verify that the sender has an incentive to tell the truth (take actions as prescribed

by the strategy) and the receiver has an incentive to receive a message as prescribed by the

strategy. With more than two players, we also need to make sure that players other than

the sender and the receiver do not have an incentive to deviate in order to manipulate the

receiver�s signal distribution and inference. See Chapter 7 for the formal treatments of this

incentive problem.

1.6 Finitely Repeated Game

In this section, we consider a TP -period �nitely repeated game with a �reward function.�

Intuitively, a �nitely repeated game corresponds to a review phase in the in�nitely repeated

game and a reward function correspond to changes in the continuation payo¤.

We derive su¢ cient conditions on strategies and reward functions in the �nitely repeated

game such that we can construct a strategy in the in�nitely repeated game to support v.

The su¢ cient conditions are summarized in Lemma 9.

Let �TPi : HTP
i ! �(Ai) be player i�s strategy in the �nitely repeated game. Let �

TP
i be

the set of all strategies in the �nitely repeated game. Each player i has a state xi 2 fG;Bg.

In state xi, player i plays �i (xi) 2 �TPi .
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In addition, locate all the players on a circle clockwise. Each player i with xi gives a

�reward function��i+1(xi; � : �) : HTP+1
i ! R to the left-neighbor i+1 (identify player N+1

as player 1).21 The reward functions are mapping from player i�s histories in the �nitely

repeated game to the real numbers.

Our task is to �nd f�i (xi)gxi;i and f�i+1(xi; � : �)gxi;i such that, for each i 2 I, there are

two numbers vi and �vi to contain v between them:

vi < vi < �vi (1.14)

and such that there exists TP with lim�!1 �
TP = 1 which satis�es the following conditions:

for su¢ ciently large �, for any i 2 I,

1. for any combination of the other players� states x�i � (xn)n6=i 2 fG;BgN�1, it is

optimal to take �i (G) and �i (B):

�i (G) ; �i (B) 2 arg max
�
TP
i 2�TPi

E

"
TPX
t=1

�t�1ui (at) + �i(xi�1; h
TP+1
i�1 : �) j �TPi ; ��i(x�i)

#
;

(1.15)

2. regardless of x�(i�1), the discounted average of player i�s instantaneous utilities and

player (i� 1)�s reward function on player i is equal to �vi if player (i� 1)�s state is good

(xi�1 = G) and equal to vi if player (i� 1)�s state is bad (xi�1 = B):

1� �

1� �TP
E

"
TPX
t=1

�t�1ui (at) + �i(xi�1; h
TP+1
i�1 : �) j �(x)

#
=

8><>: �vi if xi�1 = G;

vi if xi�1 = B
(1.16)

for all x�(i�1) 2 fG;BgN�1.

Intuitively, since lim�!1
1��
1��TP =

1
TP
, this requires that the time average of the expected

sum of the instantaneous utilities and the reward function is close to the targeted

payo¤s vi and �vi; and
21The players are inward-looking.
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3. 1��
�T

P converges to 0 faster than �i(xi�1; h
TP+1
i�1 : �) diverges and the sign of �i(xi�1; h

TP+1
i�1 :

�) satis�es a proper condition:

8>>>><>>>>:
lim�!1

1��
�TP

sup
xi�1;h

TP+1
i�1

���i(xi�1; hTP+1i�1 : �)
�� = 0;

�i(G; h
TP+1
i�1 : �) � 0;

�i(B; h
TP+1
i�1 : �) � 0:

(1.17)

We call (1.17) the �feasibility constraint.�

As seen in Section 1.5, (1.17) implies that player i�1 with xi�1 = G can reduce player

i�s continuation payo¤ by transiting to xi�1 = B with a higher probability while player

i�1 with xi�1 = B can increase player i�s continuation payo¤by transiting to xi�1 = G

with a higher probability.

We explain why these conditions are su¢ cient. As explained in Section 1.5, we see the

in�nitely repeated game as the repetition of TP -period review phases.

In each review phase, each player i has two possible states fG;Bg 3 xi and player i with

state xi takes �i(xi) in the phase. (1.15) implies that both �i(G) and �i(B) are optimal

regardless of the other players� states. (1.16) implies that player i�s ex ante value at the

beginning of the phase is solely determined by player (i� 1)�s state: �i�1(G) gives a high

value while �i�1(B) gives a low value.

Here, �i(xi�1; h
TP+1
i�1 : �) represents the di¤erences between player i�s ex ante value given

xi�1 at the beginning of the phase and the ex post value at the end of the phase after player

i � 1 observes hTP+1i�1 . �i(xi�1; h
TP+1
i�1 : �) = 0 implies that the ex post value is the same

as the ex ante value since player i � 1 transits to the same state in the next phase with

probability one. With xi�1 = G (B, respectively), the smaller �i(G; h
TP+1
i�1 : �) (the larger

�i(B; h
TP+1
i�1 : �), respectively), the more likely it is for player i� 1 to transit to the opposite

state B (G, respectively) in the next phase. The feasibility of this transition is guaranteed

by (1.17).
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The following lemma summarizes the discussion:

Lemma 9 For Theorem 7, it su¢ ces to show that, for any v 2 int(F �), for su¢ ciently

large �, there exist fvi; �vigi2I with (1.14), TP with lim�!1 �
TP = 1, ff�i (xi)gxi2fG;Bggi2I

and ff�i(xi�1; � : �)gxi�12fG;Bggi2I such that (1.15), (1.16) and (1.17) are satis�ed in the

TP -period �nitely repeated game.

Proof: See Section 1.9.

From now on, when we say player i�s action plan, it means player i�s behavioral mixed

strategy �i (xi) within the current review phase (or, the �nitely repeated game). On the

other hand, when we say player i�s strategy, it contains both �i (xi) and �i+1(xi; � : �) which

determines player i�s continuation strategy from the next review phase.

Let us specify vi and �vi. This step is the same as Hörner and Olszewski (2006). Given

x 2 fG;BgN , pick 2N action pro�les fa(x)gx2fG;BgN . As we have mentioned, player (i� 1)�s

state xi�1 refers to player i�s payo¤ and indicates whether this payo¤ is strictly above or

below vi no matter what the other players�states are. That is, player (i� 1)�s state controls

player i�s payo¤. Formally,

max
x:xi�1=B

ui(a(x)) < vi < min
x:xi�1=G

ui(a(x)) for all i 2 I:

For example, in the two-player prisoners�dilemma, for x = (G;G), ai(x) = Ci.

Take vi and vi such that

max

�
v�i ; max

x:xi�1=B
ui(a(x))

�
< vi < vi < vi < min

x:xi�1=G
ui(a(x)): (1.18)

Remember that v�i is player i�s minimax value. From now on, without loss, we assume that

���i is a perfectly mixed action plan: �
�
�i (a�i) > 0 for all a�i 2 A�i. Otherwise, perturb ���i

slightly so that each player j 2 �i takes all the actions in Aj with a positive probability and

(1.18) still holds.
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Action pro�les that satisfy the desired inequalities may not exist. However, if Assumption

1 is satis�ed, then there always exist an integer z and 2z �nite sequences fa1(x); : : : ; az(x)g

x2fG;BgN such that each vector wi(x), the average discounted payo¤ vector over the sequence

fa1(x);

: : : ; az(x)gx2fG;BgN , satis�es the appropriate inequalities provided � is close enough to 1. The

construction that follows must then be modi�ed by replacing each action pro�le a(x) by the

�nite sequence of action pro�les fa1(x); : : : ; az(x)gx2fG;BgN . Details are omitted as in Hörner

and Olszewski (2006).

Given � > 0 that will be determined later, for each i, given a (x), we perturb ai (x) to

�i(x) so that player i takes all the actions in Ai with a positive probability no less than 2�:

taking ai (x) with probability 1� 2 (jAij � 1) � and take ai 6= ai (x) with probability 2�. For

example, in the two-player prisoners�dilemma, for x = (G;G), �(x) = (1� 2�)Ci+2�Di as

in (1.13).

Let fw(x)gx2fG;BgN be the corresponding payo¤ vectors under � (x):

w(x) � u (�(x)) with x 2 fG;BgN : (1.19)

As we will see in Section 2.6, with su¢ ciently small �, (1.18) implies

max

�
v�i ; max

x:xi�1=B
wi(x)

�
< vi < vi < vi < min

x:xi�1=G
wi(x): (1.20)

Below, we construct f�i (xi)gxi;i and f�i(xi�1; � : �)gxi�1;i satisfying (1.15), (1.16) and

(1.17) with �vi and vi de�ned above in the �nitely repeated game.

1.7 Coordination, Main and Report Blocks

In this section, we explain the basic structure of the TP -period �nitely repeated game. At

the beginning of the �nitely repeated game, there is the �coordination block.�In the �nitely
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repeated game, the players play the action-plan pro�le �(x) depending on the state pro�le

x = (xn)n2I 2 fG;BgN . Since xi is player i�s private state, player i informs the other players

�i of xi by sending messages about xi.

As seen in Section 1.5, we �rst assume that the players can communicate x via perfect

cheap talk. The players take turns: player 1 tells x1 �rst, player 2 tells x2 second, and so

on until player N tells xN . With the perfect cheap talk, this block is instantaneous and

x becomes common knowledge. Second, we replace the perfect cheap talk with the error-

reporting noisy cheap talk. As we will see, with two players, this block is still instantaneous

while with more than two players, this block now consists of many periods. More importantly,

x is no longer common knowledge. Finally, we replace the error-reporting noisy cheap talk

with messages via actions. Since the players repeat the messages to increase the precision,

this block takes time.

After the coordination block, we have �main blocks.�One main block consists of a review

round and a few supplemental rounds. The review round lasts T periods with

T = (1� �)�
1
2

as seen in Section 1.5. After that, for each player i, each player j 2 �i sends messages

about what is player i�s optimal action in the next round. As explained in Section 1.5, we

�rst assume that player j sends the messages via error-reporting noisy cheap talk. With

the error-reporting noisy cheap talk, this message is sent instantaneously. Then, we replace

the error-reporting noisy cheap talk with messages via actions. Since the players repeat the

messages to increase the precision, sending the messages takes time.

Let hmaini be a generic element of player i�s history at the end of the last main block, that

is, player i�s history in the coordination block and all the main blocks.

After the last main block, we have the �report block�where each player reports hmaini . We

�rst assume that the players decide who will report the history by the public randomization
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device and that the picked player reports hmaini by the perfect cheap talk. Then, this block

is instantaneous. Second, we dispense with the public randomization. Third, we replace the

perfect cheap talk with conditionally independent (noisy) cheap talk. Fourth, we dispense

with the conditionally independent cheap talk.

When we say hTP+1i , this denotes player i�s history at the end of the report block, that

is, hTP+1i contains both hmaini and what information player i receives about
�
hmainn

�
n2I in the

report block.

1.8 Almost Optimality

As seen in Section 1.5, we �rst show that player i�s strategy is �almost optimal,� or that

the strategy pro�le is �"-equilibrium�with " = exp(��(T 1
2 )) until the end of the last main

block if we neglect the report block. After that, based on the communication in the report

block, player i� 1 adjusts the reward function so that player i�s strategy is exactly optimal

after any history in any period of the review phase if we take the report block into account.

We divide the reward function into two parts:

�i(xi�1; h
TP+1
i�1 : �) = �maini (xi�1; h

main
i�1 : �) + �reporti (xi�1; h

TP+1
i�1 : �):

Note that �maini (xi�1; h
main
i�1 : �) is the reward based on player (i� 1)�s history except for the

report block and that �reporti (xi�1; h
TP+1
i�1 : �) is the reward based on player (i� 1)�s whole

history including the report block. As we will see, �reporti (xi�1; h
TP+1
i�1 : �) is the adjustment

that we mention above.

As a preparation to prove the existence of �i with (1.15), (1.16) and (1.17), we �rst

construct �maini such that

43



1. �i(xi) is �almost optimal with exp(��(T
1
2 )) if we ignore the report block�: for all

i 2 I and x 2 fG;BgN , for any � and h�i in the coordination and main blocks,

max�i2�maini
E
hPTP

t=1 �
t�1ui (at) + �maini (xi�1; h

main
i�1 : �) j h�i ; �i; ��i(x�i)

i
�E

hPTP
t=1 �

t�1ui (at) + �maini (xi�1; h
main
i�1 : �) j h�i ; �(x)

i
� exp(��(T 1

2 )): (1.21)

Here, �maini is the set of all possible strategies in the coordination and main blocks;

and

2. (1.16) and (1.17) are satis�ed with �i replaced with �maini (neglecting �reporti ).

That is, our �rst objective is to construct �i (xi) and �maini (xi�1; h
main
i�1 : �) satisfying

(1.21), (1.16) and (1.17). After constructing such �maini , our second (and �nal) objective is

to construct the action plan in the report block and the adjustment �reporti such that �i(xi)

and �i = �maini + �reporti satisfy (1.15), (1.16) and (1.17).

In Chapter 2, we pursue these two objectives in the two-player prisoners�dilemma with

the special forms of cheap talk. Given Chapter 2, we are left to extend the result to the

general two-player game and the general N -player game with N � 3 and dispense with the

special forms of communication. In Chapter 3, we summarize what new assumptions are

su¢ cient for each extension. In the following chapters, we o¤er the proof: in Chapters 4

and 5, we extend the result to the general two-player game and the general N -player game,

respectively, with special forms of communication. In Chapters 6 and 7, we dispense with

the special forms of communication in the two-player game and N -player game, respectively.
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1.9 Appendix of Chapter 1

1.9.1 Proof of Lemma 9

To see why this is enough for Theorems 7 and 8, de�ne the strategy in the in�nitely repeated

game as follows: de�ne

p(G; hTP+1i�1 : �) � 1 + 1� �

�TP
�i(G; h

TP+1
i�1 : �)

�vi � vi
;

p(B; hTP+1i�1 : �) � 1� �

�TP
�i(B; h

TP+1
i�1 : �)

�vi � vi
: (1.22)

If (1.17) is satis�ed, then for su¢ ciently large �, p(G; hTP+1i�1 : �), p(B; hTP+1i�1 : �) 2 [0; 1]

for all hTP+1i�1 . We see the repeated game as the repetition of TP -period �review phases.�

In each phase, player i has a state xi 2 fG;Bg. Within the phase, player i with state xi

plays according to �i (xi) in the current phase. After observing h
TP+1
i in the current phase,

the state in the next phase is equal to G with probability p(xi; h
TP+1
i : �) and B with the

remaining probability.

Player (i� 1)�s initial state is equal to G with probability pi�1v and B with probability

1� pi�1v such that

pi�1v �vi + (1� pi�1v )vi = vi:

Then, since

(1� �)

TPX
t=1

�t�1ui (at) + �TP
�
p(G; hTP+1i�1 : �)�vi +

�
1� p(G; hTP+1i�1 : �)

�
vi
�

=
�
1� �TP

� 1� �

1� �TP

(
TPX
t=1

�t�1ui (at) + �i(G; h
TP+1
i�1 : �)

)
+ �TP �vi
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and

(1� �)

TPX
t=1

�t�1ui (at) + �TP
�
p(B; hTP+1i�1 : �)�vi +

�
1� p(B; hTP+1i�1 : �)

�
vi
�

=
�
1� �TP

� 1� �

1� �TP

(
TPX
t=1

�t�1ui (at) + �i(B; h
TP+1
i�1 : �)

)
+ �TP vi;

(1.15) and (1.16) imply that, for su¢ ciently large discount factor �,

1. conditional on the opponents�state, the above strategy in the in�nitely repeated game

is optimal;

2. regardless of x�(i�1), if player i � 1 is in the state G, then player i�s payo¤ from the

in�nitely repeated game is �vi and if player i� 1 is in the state B, then player i�s payo¤

is vi; and

3. the payo¤ in the initial period is pi�1v �vi + (1� pi�1v )vi = vi as desired.
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Chapter 2

Two-Player Prisoners�Dilemma

2.1 Special Case

In this chapter, we illustrate the proof of the folk theorem by focusing on a special case where

(i) public randomization is available, (ii) perfect cheap talk is available, (iii) error-reporting

noisy cheap talk with precision p 2 (0; 1) is available, (iv) there are two players (N = 2),

and (v) the payo¤ structure is prisoners�-dilemma

ui(Di; Cj) > ui(Ci; Cj) > ui(Di; Dj) > ui(Ci; Dj); (2.1)

and for all i,

v 2 int([u1(D1; D2); u1(C1; C2)]� [u2(D2; D1); u2(C2; C1)]): (2.2)

We comment on each of these �ve simpli�cations.

Public Randomization As mentioned in Section 1.5, the players use public randomiza-

tion in the report block to determine who will report the history hmaini such that (i) ex ante

(during the main blocks), every player has a positive probability to report the history, and
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that (ii) ex post (after the realization of the public randomization), there is only one player

who reports the history.

Speci�cally, we assume that the players can draw a public random variable yp from the

uniform distribution on [0; 1] whenever they want.

In Chapters 6 and 7, we show that the public randomization is dispensable and that the

players use their actions and private signals to establish the properties (i) and (ii).

Perfect Cheap Talk Perfect cheap talk will be used in the coordination block to coordi-

nate on x and in the report block to report the whole history hmaini .

In Chapters 6 and 7, we show that the perfect cheap talk is dispensable. As explained

in Section 1.5, for the coordination block, we �rst replace the perfect cheap talk with the

error-reporting noisy cheap talk and then replace the error-reporting noisy cheap talk with

messages via actions. For the report block, we �rst replace the perfect cheap talk with the

conditional independence (noisy) cheap talk and then replace the conditional independence

cheap talk with messages via actions.

Error-Reporting Noisy Cheap Talk Between Players j and i with Precision p 2

(0; 1) We assume that player j has an access to the error-reporting noisy cheap talk to send

a binary message m 2 fG;Bg to player i with precision p, as explained in Section 1.3.2.

As we will see below, in the two-player game, p will be either p = 1 � exp(�T 1
2 ) or

p = 1� exp(�T 2
3 ) while � for (1.2), (1.3) and (1.5) is a �xed number. Noting that j = i� 1

and i = j � 1 with two players, the properties that we will use are summarized in the

following lemma:

Lemma 10 The signals by the error-reporting noisy cheap talk between j and i with pre-

cision 1� exp(�T k) with k = 1=2; 2=3 satisfy the following conditions:
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1. for any m 2 fG;Bg, player i�s signal f [i] (m) is correct with a high probability:

Pr (ff [i] (m) = mg j m) � 1� exp(�T k);

2. for any m 2 fG;Bg, f [i] (m) 2 fG;Bg and f2[i](m) 2 fG;Bg, after knowing m,

f [i] (m) and f2[i](m), player i puts a high belief on the events that either f [i] (m) is

correct or g [j] (m) = E. That is,

Pr (ff [i] (m) = m or g [j] (m) = Eg j m; f [i] (m); f2[i](m))

= 1� exp(��(T k));

3. for anym 2 fG;Bg and g2 [j] (m) 2 fG;Bg, if g [j] (m) = m (the error is not reported),

then player j puts a high belief on the event that player i�s �rst signal is correct:

Pr (ff [i] (m) = mg j m; fg [j] (m) = mg ; g2[j](m)) � 1� exp(��(T k));

and

4. for any m 2 fG;Bg, any signal pro�le can happen with a positive probability:

Pr (f(f [i] (m); g[j](m); f2[i](m); g2[j](m)) = (f; g; f2; g2)g j m)

� exp(��(T k))

for all (f; g; f2; g2).

Proof: The only nontrivial statement is Condition 3. Since � is �xed, it su¢ ces to show

that

Pr (ff [i] (m) = mg j m; fg [j] (m) = mg) � 1� exp(��(T k)):
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By Bayes�rule,

Pr (ff [i] (m) = mg j m; fg [j] (m) = mg)

=
Pr (ff [i] (m) = g [j] (m) = mg j m)

Pr (fg [j] (m) = mg j m)

� 1� exp(�2T k)
1� exp(�T k) ;

as desired.

Condition 1 implies that the signal is correct with a high probability. Condition 2 implies

that, even after player i realizes that her signal is not correct (f [i](m) 6= m), player i believes

that player j realizes the mistake (that is, g[j](m) = E) with a high probability. On the other

hand, Condition 3 implies that, after observing g[j](m) = m, player j believes that player i

received the correct signal (since otherwise player i should have received g[j](m) = E) with a

high probability.1 Further, Condition 4 implies that all the players believe that any mistake

happens with a positive probability. As seen in Section 1.5, this is important to solve the

re�ective learning problem.

On the other hand, with more than two players, p will be p = 1� exp(�T 1
2 ) while � for

(1.2), (1.3) and (1.5) is a �xed number. As for Lemma 10, we can summarize the important

features of the error-reporting noisy cheap talk in the following lemma:

Lemma 11 The signals by the error-reporting noisy cheap talk satis�es the following con-

ditions:

1. for any m 2 fG;Bg, player i�s signal f [i] (m) is correct with a high probability:

Pr (ff [i] (m) = mg j m) � 1� exp(�T 1
2 );

2. for any m 2 fG;Bg, f [i] (m) 2 fG;Bg and f2[j � 1](m) 2 fG;Bg, after knowing m,

f [i] (m) and f2[j� 1](m), player i puts a high belief on the events that either f [i] (m)
1We use this property only in Section 6.2.

50



is correct or g [i� 1] (m) = E. That is,

Pr (ff [i] (m) = m or g [i� 1] (m) = Eg j m; f [i] (m); f2[j � 1](m))

� 1� exp(��(T 1
2 ));

and

3. for any m 2 fG;Bg, any signal pro�le can happen with a positive probability:

Pr (f(f [i] (m); g[i� 1](m); f2[j � 1](m); g2[i� 1](m)) = (f; g; f2; g2)g j m)

� exp(��(T 1
2 ))

for all (f; g; f2; g2).

We do not have a condition corresponding to Condition 3 of Lemma 10.

As seen in Lemmas 10 and 11, the learning from f2 and g2 is negligible for the almost

optimality. Hence, while we are considering the almost optimality, we neglect f2 and g2,

which will play roles when we consider the exact optimality in Section 2.8.

In Chapters 6 and 7, we show that we can replace the error-reporting noisy cheap talk

with messages via actions, so that we can keep the important features summarized in Lemmas

10 and 11.

History with Cheap Talk and Public Randomization Since the players communicate

via cheap talk, the players store the signals from the cheap talk in the history. When a sender

sends a messagem via perfect cheap talk (error-reporting noisy cheap talk, respectively) then

the players observe a perfect signal m (private signals f , g, f2 and g2 depending on their

indices, respectively). In addition, the sender observes the true message. With abuse of

notation, when the communication is done before the players take actions in period t, we

include these observations to the history in period t of player i, hti.
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In addition, since the players coordinate the future play via public randomization, the

players store the realization of the public randomization in the history. Again, when a public

randomization device is drawn before the players take actions in period t, we include the

realization of the public randomization device to the history in period t of each player i, hti.

Two Players As explained in Sections 1.5.5.3 and 1.5.6.2, the two-player case is special

in the following three aspects: �rst, if player (i� 1)�s state xi�1 is B, then with more than

two players, players �i need to coordinate on minimaxing player i if player i seems to have

deviated. Second, when the players coordinate on xi in the coordination block, we need to

make sure that no player can induce the situation where some players infer xi is G while the

others infer xi is B. Third, while player j sends a message to player n, no other players can

manipulate player n�s inference. See Chapter 5 for the �rst problem and Chapter 7 for the

second and third problems.

Below, we concentrate on the two-player case. Since we assume two players, let player j

be player i�s unique opponent.

The Prisoners�Dilemma Remember that we take a(x) such that (1.18) holds. If (2.2)

is the case, then we can take

ai(x) �

8><>: Ci if xi = G;

Di if xi = B:

Then, as we mentioned in (1.20), we can take

�i(x) �

8><>: (1� 2�)Ci + 2�Di if xi = G;

(1� 2�)Di + 2�Ci if xi = B

with su¢ ciently small � > 0. Then, it happens to be the case that �i (x) with xi = B is very

close to minimaxing player j at the same time of satisfying (1.20).
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In a general game, �i(x) with xi = B is not close to a minimaxing action plan. Since

player i with �i(B) needs to keep player j�s payo¤ low with a non-negative reward for any

action plan of player j, player i needs to switch to a minimaxing action plan if player i

believes that player j has deviated with a high probability.

For this reason, Hörner and Olszewski (2006) have a block consisting of more than one

period and in each period, if player i observes a signal indicating player j�s deviation, then

player i switches to a minimaxing action. As explained in Section 1.5, in our equilibrium,

if player i observes signals indicating player j�s deviation in a review round, then player i

minimaxes player j from the next review round. See Chapter 4 for the formal treatment of

the general two-player game.

Summary In summary, for the proof in Chapter 2, we assume that the perfect cheap talk,

error-reporting noisy cheap talk and public randomization are available, all of which are

shown to be dispensable in Chapter 6.

We focus on the two-player prisoners�dilemma: I = 2 and Ai = fCi; Dig satisfying (2.1).

Further, we focus on v with (2.2).

We can take �(x) such that

�i(x) �

8><>: (1� 2�)Ci + 2�Di if xi = G;

(1� 2�)Di + 2�Ci if xi = B
(2.3)

with small � > 0 to be determined.

In addition, for notational convenience, whenever we say players i and j, unless otherwise

speci�ed, i and j are di¤erent.

For the rest of Chapter 2, we prove the folk theorem in this special case: we arbitrarily �x

v with (2.2) and then construct a strategy pro�le (action plans and rewards) in the �nitely

repeated game with (1.15), (1.16) and (1.17).
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2.2 Structure of the Phase

In this section, we formally de�ne the structure of the TP -period �nitely repeated game

(review phase), whose structure will be explained below. TP depends on L and T . L 2 N

will be pinned down in Section 2.6 and T = (1� �)�
1
2 .

As seen in Section 1.7, at the beginning of the phase, there is the coordination block.

The players take turns to communicate x. First, player 1 sends x1 via perfect cheap talk.

Second, player 2 sends x2 via perfect cheap talk. For notational convenience, let the round

for xi denote the moment that player i sends xi.

After the coordination blocks, there are L �main blocks.�Each of the �rst (L� 1) main

blocks are further divided into three rounds. That is, for l 2 f1; :::; L � 1g, the lth main

block consists of the following three rounds: �rst, the players play a T -period review round.

Second, there is a supplemental round for �1(l + 1). Third, there is a supplemental round

�2(l + 1). As seen in Section 1.5, �i(l + 1) 2 fG;Bg is an index of whether player i has

observed an �erroneous score� in the review rounds 1; : : : ; l. In the supplemental round

for �i(l + 1), player i sends �i(l + 1) via error-reporting noisy cheap talk with precision

p = 1� exp(�T 1
2 ).

The last Lth main block has only the T -period review round.

Let T (l) be the set of T periods in the lth review round. In addition, in each lth review

round, each player i randomly picks one period ti(l) from T (l): Pr (fti(l) = tg) = 1
T
for all

t 2 T (l). Let Ti(l) � T (l) n fti(l)g be the other periods than ti(l) in the lth review round.

As we will see, player i �excludes�period ti(l) when she determines her continuation action

plan so that player j cannot learn player i�s history in period ti(l) by observing player i�s

continuation action plan. As will be seen in Section 2.8, this is important to incentivize

player i to tell the truth in the report block.

After the last main block, there is the report block, where player i who is picked by the

public randomization reports the whole history hmaini .
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Given this structure, we show that, for su¢ ciently large �, with TP = L (1� �)�
1
2 , there

exist �i (xi) and �i(xj; h
TP+1
j : �) satisfying (1.15), (1.16) and (1.17).

2.3 Preparation

Before constructing an equilibrium, we de�ne functions and statistics useful for the equilib-

rium construction.

First, we formally de�ne the point �i[�] (yj) as brie�y explained in Section 1.5.5.1. Specif-

ically, for each � 2 �(A), we want to create a statistics (point) �i[�](yj) that cancels out

the di¤erences in the instantaneous utilities for di¤erent ai�s:

ui(ai; �j) + E [�i[�](yj) j ai; �j] (2.4)

is independent of ai 2 Ai, as in (1.9).

Further, we want to make sure that if � = � (x), then the expected sum of the instanta-

neous utility and �i[� (x)](yj) satis�es

ui(ai; �j(x)) + E [�i[�(x)](yj) j ai; �j(x)] = wi(x) (2.5)

for all ai 2 Ai. This corresponds to (1.10) in Section 1.5. From (1.19), this implies

E [�i[�(x)](yj) j �(x)] =

8><>: � 0 if xj = G;

� 0 if xj = B:
(2.6)

Since Assumption 3 implies that player j can statistically infer player i�s action, the

existence of such �i is guaranteed.

Lemma 12 If Assumption 3 is satis�ed, then there exists �u > 0 such that, for each i 2 I,

� 2 �(A) and f� (x)gx2fG;Bg2 , there exists �i[�] : Yj ! [��u; �u] with (2.4) and (2.5).
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Proof: See Section 2.9.

Note that the bound for �i, �u, is independent of x and �j. Hence, by re-taking �u if

necessary, we can make sure that, for all i 2 I and � 2 �(A), we have

ui(ai; �j) + E [�i[�](yj) j ai; �j] 2 [��u; �u] for all ai 2 Ai: (2.7)

Second, de�ne

�
xj
i [�j](yj)

8><>: � 0 for all yj if xj = G;

� 0 for all yj if xj = B
(2.8)

such that, for all i 2 I,

ui(ai; �j) + E
�
�
xj
i [�j](yj) j ai; �j

�
(2.9)

is independent of ai 2 Ai and �j 2 �(Aj) and included in [�2�u; 2�u].

The existence of such �xji [�j](yj) is guaranteed: arbitrarily �x �ai 2 Ai and de�ne

�
xj
i [�j](yj) =

8><>: �i[�ai; �j](yj)� �u if xj = G;

�i[�ai; �j](yj) + �u if xj = B:

Then, Lemma 12 and (2.7) imply (2.8). In addition, (2.9) holds for all ai 2 Ai. To make

sure that (2.9) holds for all �j 2 �(Aj), add or subtract the payo¤ di¤erence with respect

to �j 2 �(Aj) to cancel out the di¤erence, keeping (2.8). Since �xji [�j](yj) can depend on

�j, this is possible.

Third, since, again, Assumption 3 implies that player j can statistically infer player i�s

action, player j can give a reward that cancels out the e¤ect of discounting:

Lemma 13 If Assumption 3 is satis�ed, then for each i 2 I, there exists ��i : N�Aj�Yj ! R

such that

�t�1ui (at) + E
�
��i (t; aj;t; yj;t) j at

�
= ui (at) for all at 2 A and t 2 f1; :::; TPg (2.10)
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and

lim
�!1

1� �

1� �TP

TPX
t=1

sup
aj;t;yj;t

����i (t; aj;t; yj;t)�� = 0 (2.11)

for TP = �(T ) with T = (1� �)�
1
2 .

Proof: See Section 2.9.

The intuition is straightforward. Since player j can identify player i�s action, player j

rewards player i if player i takes an action with a lower instantaneous utility in earlier periods

rather than postponing it. Since the discount factor converges to unity, this adjustment is

small.

2.4 Equilibrium Strategies

Given the preparation above, we de�ne �i (xi) in the coordination and main blocks and

�maini (xj; h
main
j : �). See Section 2.8 for the de�nition of �i(xi) in the report block and

�reporti (xj; h
TP+1
j : �).

In Section 2.4.1, we de�ne the state variables that will be used to de�ne the action plans

and rewards. Given the states, Section 2.4.2 de�nes the action plan �i(xi) and Section

2.4.3 de�nes the reward function �maini (xj; h
main
j : �). Finally, Section 2.4.4 determines the

transition of the states de�ned in Section 2.4.1.

2.4.1 States xi, �j(l + 1), �̂j(l + 1) and �i(l)

The state xi 2 fG;Bg is determined at the beginning of the review phase and �xed. With

the perfect cheap talk, after player 2 sends x2 in the coordination block, x becomes common

knowledge. Hence, from now on, we use xj for the de�nition of player i�s strategy after the

coordination block.

As seen in Section 1.5, �j(l + 1) 2 fG;Bg is player j�s state. Intuitively, �j(l + 1) = B

implies that player j has observed an erroneous score about player i in the lth round or
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before. As will be formally de�ned in Section 2.4.4, �j(l+1) is determined at the end of the

lth review round.

On the other hand, since player j�s reward on player i in the (l + 1)th review round

depends on �j(l + 1) as seen in Section 1.5, it is natural to consider player i�s belief about

�j(l + 1) = G. The space for player i�s possible beliefs about �j(l + 1) = G in each period t

in the (l + 1)th review round is [0; 1] and it depends on the details of a history hti. However,

we classify the set of player i�s histories into two partitions: the set of histories labeled as

�̂j (l + 1) = G and that labeled as �̂j (l + 1) = B. Intuitively, �̂j(l + 1) = G (�̂j(l + 1) = B,

respectively) implies that player i believes that �j(l + 1) = G (�j(l + 1) = B, respectively)

is likely.

To make the equilibrium tractable, �̂j(l + 1) depends only on player i�s history at the

beginning of the (l + 1)th review round and is �xed during the (l + 1)th review block, as

will be de�ned in Section 2.4.4. Given x 2 fG;Bg2 and �̂j(l + 1) 2 fG;Bg, player i takes

an i.i.d. action plan within the (l + 1)th review round.

Further, as we have brie�y mentioned in Sections 1.5, player j makes player i indi¤erent

between any action pro�le after some history. If she does in the lth review round, then �maini

will be
P

� �
xj
i [�j;� ](yj;� ) for period � in the lth review round and after with �j;� being an

action plan that player j takes in period � . �j(l) 2 fG;Bg is an index of whether player j

uses such a reward. See Section 2.4.3 for how the reward function depends on �j(l) and see

Section 2.4.4 for the transition of the states.

2.4.2 Player i�s Action Plan �i (xi)

In this subsection, we de�ne player i�s action plan �i(xi). In the coordination block, player

i tells the truth about xi.
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In the each lth review round, player i with �i(xi) takes an i.i.d. action plan �i(l) as

follows: given � > 0, remember that

�i(x) =

8><>: (1� 2�)Ci + 2�Di if xi = G;

(1� 2�)Di + 2�Ci if xi = B:

In addition to �i(x), we de�ne �i(x) and ��i(x) as in Section 1.5.5.1:

��i(x) =

8><>: (1� �)Ci + �Di if xi = G;

(1� 3�)Di + 3�Ci if xi = B:

�i(x) =

8><>: (1� 3�)Ci + 3�Di if xi = G;

(1� �)Di + �Ci if xi = B:

Intuitively, in equilibrium, with a high probability, player i takes �i(x). However, with some

small probability, player i takes ��i(x) (taking Ci more often) or �i(x) (takingDi more often):

with � > 0,

� if �̂j(l) = G, then player i believes that the score has not been erroneous and that

player i is almost indi¤erent between any action. As in Section 1.5.5.1, player i takes

�i(x) with a high probability.

�with probability 1� �, player i takes �i(l) = �i(x);

�with probability �
2
, player i takes �i(l) = ��i(x); and

�with probability �
2
, player i takes �i(l) = �i(x); and

� if �̂j(l) = B, then player i believes that the score has been erroneous and that player

i should take a static best response to player j�s action plan. Therefore, player i with

�̂j(l) = B takes Di with probability one.

In the supplemental round for �i(l + 1), player i sends the message �i(l + 1) truthfully

via error-reporting noisy cheap talk with precision p = 1� exp(�T 1
2 ). We assume that the
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players cannot manipulate p.2 That is, in the supplemental round for �i(l + 1), only the

error-reporting noisy cheap talk with p = 1� exp(�T 1
2 ) is available.

2.4.3 Reward Function

In this subsection, we explain player j�s reward function on player i, �maini (xj; h
main
j : �).

Reward Function The reward �maini (xj; h
main
j : �) is written as

�maini (xj; h
main
j : �) =

LX
l=1

X
t2T (l)

��i (aj;t; yj;t) +

8><>: �2�uT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = G;

2�uT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = B:

(2.12)

Note that the �rst term cancels out the e¤ect of discounting. Intuitively, �maini (x; hmainj ; l) is

the reward for the lth review round.

Reward Function for the lth Review Round Next we de�ne �maini (x; hmainj ; l) for each

l = 1; :::; L. There are following two cases: in the lth review round,

1. if �j(l) = B, then player j makes player i indi¤erent between any action pro�le by

�maini (x; hmainj ; l) =
X
t2T (l)

�
xj
i [�j(l)](yj;t): (2.13)

Remember that by (2.8),

X
t2T (l)

�
xj
i [�j(l)](yj;t)

8><>: � 0 if xj = G;

� 0 if xj = B:

Intuitively, this means (1.17) is not an issue after �j(l) = B; and

2. otherwise, that is, if �j(l) = G, then consider the following two subcases:

2The same constraint is applicable whenever a player sends a message via error-reporting
noisy cheap talk with precision p 2 (0; 1).
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(a) if player j has observed an erroneous score, that is, if �j(l) = B, then �maini (x; hmainj ; l)

is a constant ��i(x; �j(l); l) to be determined; and

(b) if player j has not observed an erroneous score, that is, if �j(l) = G, then player

j monitors player i by player j�s score about player i in the lth review round,

denoted by Xj(l).

As we will see, if 2-(b) is the case, then player j takes �j(x) in the lth review

round.

We formally de�ne Xj(l). Intuitively, Xj(l) is the summation of reward that

makes any action optimal to player i:
P

t2T (l) �i[� (x)](yj;t), except that player j

keeps period tj(l) separated as mentioned in Section 2.2. That is, player j�s score

about player i is de�ned as

Xj(l) �
X
t2Tj(l)

�i[� (x)](yj;t): (2.14)

Then,

�maini (x; hmainj ; l) = ��i(x; �j(l); l) +Xj(l) + �
xj
i [�j (x)](yj;tj(l)): (2.15)

Note that the reward in the separated period tj(l), �
xj
i [�j(x)](yj;tj(l)), makes player

i indi¤erent between any action in period tj(l).

Therefore, in total, if 2 is the case, then

�maini (x; hmainj ; l) =

8><>: ��i(x; �j(l); l) +Xj(l) + �
xj
i [�j (x)](yj;tj(l)) if �j(l) = G;

��i(x; �j(l); l) if �j(l) = B:

(2.16)
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Here, ��i(x; �j(l); l) is a constant with

��i(x; �j(l); l)

8><>: � 0 if xj = G;

� 0 if xj = B
(2.17)

that will be determined in Section 2.7 so that (1.21), (1.16) and (1.17) are satis�ed.

2.4.4 Transition of the States

In this subsection, we explain the transition of the players�states. Since x is �xed in the

phase, we consider the following four states:

2.4.4.1 Transition of �j(l + 1) 2 fG;Bg

As mentioned in Section 1.5, �j(l + 1) 2 fG;Bg is player j�s index of the past erroneous

score. The initial condition is �j(1) = G. Inductively, given �j(l) 2 fG;Bg, �j(l + 1) is

determined as follows: if �j(l) = B, then �j(l + 1) = B. That is, once �j(l) = B happens,

it lasts until the end of the phase. If �j(l) = G, then �j(l + 1) = G if and only if the score

in the lth review round is not erroneous. That is,

1. if

Xj (l)

8><>: � �u
L
T if xj = G;

� � �u
L
T if xj = B:

; (2.18)

then �j(l + 1) = G; and

2. if

Xj (l)

8><>: > �u
L
T if xj = G;

< � �u
L
T if xj = B:

; (2.19)

then �j(l + 1) = B.
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Let us check feasibility (1.17). First, after �i(l + 1) = B, (2.17) implies

�maini (x; hmainj ; l)

8><>: � 0 if xj = G;

� 0 if xj = B:

Therefore, to show (1.17), by (2.12) and (2.17), it su¢ ces to show that, with �l being the last

review round with �j(l) = G (if �j(l) = G for all l, then �l = L),

�lX
l=1

Xj (l)

8><>: � 2�uT if xj = G;

� �2�uT if xj = B:

Note that, except for the �lth review round, (2.18) holds. In addition, by Lemma 12, for

l with �j(l) = G,

Xj (l)

8><>: � �uT if xj = G;

� ��uT if xj = B:

In total,
�lX
l=1

Xj (l)

8><>: �
�
�l � 1

�
�u
L
T + �uT � 2�uT if xj = G;

� �
�
�l � 1

�
�u
L
T � �uT � �2�uT if xj = B;

as desired.

2.4.4.2 Transition of �̂j(l + 1) 2 fG;Bg

As we have mentioned in Section 2.4.1, �̂j(l + 1) 2 fG;Bg is the partition of player i�s

histories. Intuitively, player i believes that �j(l + 1) = �̂j(l + 1) with a high probability.

Since �j(1) = G is common knowledge, de�ne �̂j(1) = G. We de�ne �̂j(l) inductively. If

�̂j(l) = B, then �̂j(l + 1) = B. Hence, once �̂j(l) = B happens, it lasts until the end of the

phase. Hence, we concentrate on how �̂j(l+1) 2 fG;Bg is de�ned conditional on �̂j(l) = G.
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As we have explained in Section 2.4.2, player j sends �j(l + 1) via error-reporting noisy

cheap talk and player i observes a signal f [i](�j(l+1)) 2 fG;Bg. Player i constructs �̂j(l+1)

from her history in the lth review round and f [i](�j(l + 1)).

Suppose player i�s history in the lth review round satis�es the following three conditions:

1. player i takes �i(l) = �i(x);

2. the empirical distribution of ai;t�s is close to �i(x); that is,







 1

T � 1
X
t2Ti(l)

1ai;t � �i(x)







 < " (2.20)

with " being a small number to be determined; and

3. player i�s signal frequency in the periods where player i takes ai(x) in Ti(l) is close to

the a¢ ne hull of player i�s signal distributions with respect to player j�s action.

Before formally de�ning Condition 3, let us explain the intuitive meaning of these con-

ditions. With these conditions, player i�s history is normal as explained in Section 1.5.5.1.

First, from Condition 1 and 2, for su¢ ciently small � and ", player i takes ai (x) for most

of the time. Hence, we concentrate on the set of periods where player i takes ai(x) in Ti(l),

denoted by

Ti(l; x):

Second, if player i observes a signal frequency close to the ex ante mean under �j(x), then

player i believes that if player j takes �j(l) = �j(x), then player j also observes the signal

frequency close to the ex ante mean with a high probability by the law of large numbers.

This means player j�s score is not erroneous. In addition, if player j takes �j (l) 6= �j (x),

then player i will be indi¤erent between any action pro�le sequence as will be seen in Section

2.4.4.3. Therefore, when player i is told to defect from the error-reporting noisy cheap talk

(f [i](�j(l + 1)) = B), player i believes that this is an error with a high probability.
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Third, if player i observes a signal frequency far from the ex ante mean under �j(x), then

since player i�s signal frequency is close to the a¢ ne hull of player i�s signal distributions

with respect to player j�s action, player i�s signal frequency is skewed toward either Cj or

Dj. If player i�s signal frequency is skewed toward Cj, then player i believes that player j

takes ��j (x) rather than �j (x) and if player i�s signal frequency is skewed toward Dj, then

player i believes that player j takes �j (x). Again, after player j takes �j (l) 6= �j (x), as

we will formally de�ne in Section 2.4.4.3, player i will be indi¤erent between any action

pro�le sequence. Therefore, when player i receives f [i](�j(l+ 1)), player i believes that this

is irrelevant information.

Therefore, it is almost optimal for player i to disregard f [i](�j(l+1)) and to have �̂j(l+

1) = G.

In other cases, player i obeys the message: �̂j(l + 1) = f [i](�j(l + 1)).

We are left to formally de�ne Condition 3. Recall that qi (�) is the vector of player i�s

signal distribution given �, qi (�) � (qi (yi j �))yi2Yi. In particular, we de�ne

qi (x) � qi (ai(x); �j(x)) :

In addition, let Qi(ai) be the a¢ ne hull of player i�s signal distributions with respect to

player j�s action given ai:

Qi(ai) � a�
�
fqi(ai; aj)gaj2Aj

�
\ RjYij+ :

Here, since the signal frequency should be non-negative, we restrict our attention to RjYij+ .

In particular, with ai = ai(x), we de�ne

Qi (x) � Qi (ai(x)) :
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We also consider the matrix representation of Qi(ai):

Qi(ai) =
n
yi 2 RjYij+ : Qi(ai)yi = qi (ai)

o
:

Note that all the signal frequencies should be on the simplex over Yi. Hence, by a¢ ne

transformation, we can assume each element of Qi (ai) and qi (ai) is included in (0; 1):

Lemma 14 For each i 2 I and ai, we can take Qi(ai) such that all the elements are in (0; 1).

Proof: See Section 2.9.

With Ti(l; x) being the set of periods when player i takes ai (x) in the lth review round,

Condition 3 is equivalent to the condition that the distance between player i�s signal fre-

quency and Qi(x) is small: 





Qi(x)�
1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t







 < ": (2.21)

Instead of using (2.21) directly, we consider the following procedure. First, with Li;x

being the number of rows for Qi(x), we de�ne an Li;x � 1 vector 1Qi(x) as follows:3 after

observing yi, player i calculates Qi(x)1yi. Then, player i draws Li;x random variables from

the uniform [0; 1] independently. If the lth realization of this random variable is no less than

the lth element of Qi(x)1yi, we de�ne the lth element of 1Qi(x) equal to 1. Otherwise, the

lth element of 1Qi(x) is 0. By de�nition, the distribution of 1Qi(x) is independent of player

j�s action.

Condition 3 is satis�ed if
3Remember that, in Chapter 1, for a random variable x 2 X, we de�ne 1x as a jXj � 1

vector such that, if x = x̂, the element corresponding to x̂ is equal to one and the other
elements are zero. Here, 1Qi(x) is a vector each of whose element can be either 0 or 1. These
are not contradictory since Qi(x) is not a random variable.
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� Qi(x)
�

1
jTi(l;x)j

P
t2Ti(l;x) 1yi;t

�
and 1

jTi(l;x)j
P

t2Ti(l;x) 1Qi(x) are close:







Qi(x)
0@ 1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t

1A� 1

jTi(l; x)j
X

t2Ti(l;x)

1Qi(x)







 < "

K1

; (2.22)

and

� 1
jTi(l;x)j

P
t2Ti(l;x) 1Qi(x) and qi (x) are close:





 1

jTi(l; x)j
X

t2Ti(l;x)

1Qi(x) � qi (x)







 < "

K1

: (2.23)

By Lipschitz continuity of Qi (x) and triangle inequality, for su¢ ciently large K1, (2.22)

and (2.23) implies (2.21). In addition, by de�nition, the probability of (2.23) is independent

of player j�s action.

Consider (2.22). For �; " < 1
4
, if Conditions 1 and 2 are satis�ed, the length of Ti (l; x) is

proportional to T :

jTi (l; x)j = �(T ) :

Hence, by the law of large numbers, conditional on player i�s history fai;t; yi;tg, (2.22) does

not hold with probability

p[Qi (x)](fai;t; yi;tgt2Ti(l)) = exp(��(T )):

We want to make this probability completely independent of player j�s action plan.

For that purpose, let �p[Qi] be the maximum of p[Qi (x)](fai;t; yi;tgt2Ti(l)) with respect to

fai;t; yi;tgt2Ti(l) and x. For some fai;t; yi;tgt2Ti(l) and x, if p[Qi(x)](fai;t; yi;tgt2Ti(l)) is less than

�p[Qi], then player i draws a random variable from the uniform [0; 1]. If this realization is

no less than �p[Qi] � p[Qi (x)](fai;t; yi;tgt2Ti(l)), then player i behaves as if (2.22) were not

satis�ed.
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Then, in total, player i behaves as if (2.22) is not satis�ed with probability �p[Qi]. From

now on, when we say (2.22) is satis�ed, it means that







Qi(x)
0@ 1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t

1A� 1

jTi(l; x)j
X

t2Ti(l;x)

1Qi(x)







 < "

K1

and the realization of the random variable explained above is more than �p[Qi]� p[Qi (x)](

fai;t; yi;tgt2Ti(l)). This implies that the probability of (2.22) is independent of player j�s action

plan.

In summary, we de�ne the transition of �̂j(l + 1) as follows: if player i�s history in the

lth review round satis�es the following two conditions, then player i disregards the message

and �̂j (l + 1) = G:

1. player i takes �i(l) = �i(x); and

2. (2.20), (2.22) and (2.23) are satis�ed, which implies (2.21).

Otherwise, player i obeys the message and

�̂j (l + 1) = f [i](�j(l + 1)): (2.24)

2.4.4.3 Transition of �j(l + 1) 2 fG;Bg

As we have seen in Section 2.4.3, �j(l + 1) = B implies that player j uses the reward (2.13)

and player i is indi¤erent between any action pro�le in the (l + 1)th review round by (2.9)

(except for the incentives from �reporti ).

If �j(l) = B, then �j(l + 1) = B. That is, once �j(l) = B happens, it lasts until the end

of the phase. Hence, we concentrate on how �j(l + 1) 2 fG;Bg is de�ned conditional on

�j(l) = G.

�j(l + 1) = B if one of the following four conditions is satis�ed:
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1. when player j sends �j(l + 1) by the error-reporting noisy cheap talk, the error is

reported:

g[j](�j(l + 1)) = E;

2. at the beginning of the (l + 1)th review round, player j with �̂j(l + 1) = G takes

�j (l + 1) 6= �j(x). With abuse of notation, for this condition, we include the case with

l + 1 = 1 (that is, l = �1); and

3. (2.20), (2.22) or (2.23) is not satis�ed for player j (with indices i and j reversed).

Otherwise, �j(l + 1) = G.

We summarize the implications of the transitions of �j.

First, player j makes player i indi¤erent between any action pro�le after receiving

g[j](�j(l+1)) = E. Since player i believes that, whenever her signal is wrong: f [i](�j(l+1)) 6=

�j(l+1), player j receives g[j](�j(l+1)) = E and so any action will be optimal with a high

probability. Therefore, (2.24) is an almost optimal inference.

Second, consider how player j constructs �̂i(l + 1). Reversing the indices i and j in

Sections 2.4.4.2, whenever player j uses the signal of the error-reporting noisy cheap talk

f [j](�i(l+1)), �j(l+1) = B has been already determined. This implies that player j makes

player i indi¤erent between any action pro�le (including player j�s action plan), whenever

player i�s message has an impact on player j�s continuation action plan. Hence, player i is

indi¤erent between any message.

Third, consider all the cases where player j does not take �j(x) in the (l + 1)th review

round:

� if �j(l+1) 6= �j(x) with �̂i(l+1) = G, then Condition 2 is the case and so �j(l+1) = B;

and

� if �̂i(l + 1) = B, then by the above discussion, player j has obeyed player i�s message,

which implies �j(l + 1) = B.
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In total, if �j(l + 1) 6= �j(x), then player i is indi¤erent between any action pro�le.

Fourth, the distribution of �j(l+ 1) is independent of player i�s action plan. To see why,

consider each of the three conditions inducing �j(l + 1) = B:

1. the probability of error is exp(�T 1
2 ) for all �j(l + 1);

2. with �̂i(l + 1) = G, �j (l + 1) is determined by player j�s own randomization; and

3. (2.20) is determined by player j�s own randomization and (2.22) and (2.23) are inde-

pendent of player i�s action plan (with indices i and j reversed).

2.5 Player i�s Belief about Optimal Actions

Given the above strategy, we want to formally show that player i believes that player i�s

inference of �j(l+1) is correct (�̂j(l+1) = �j(l+1)) or any action is optimal (�j(l+1) = B)

with high probability 1�exp(��(T 1
2 )), conditional on that player j has the state �̂i(l+1) =

G. Notice that if �̂i(l + 1) = B, then player j has obeyed player i�s message and any action

is optimal for player i (�j(l + 1) = B).

First, consider the case where player i obeys the signal f [i](�j(l + 1)). Suppose that

player i could know �j(l + 1) (she cannot in private monitoring). Consider the two possible

realizations of the signals in the supplemental round for �j(l+1). If f [i](�j(l+1)) = �j(l+1),

then player i receives a correct message. If f [i](�j(l+ 1)) 6= �j(l+ 1), then with probability

1� exp(��(T 1
2 )), player j should receive the signal telling that player i did not receive the

correct signal, that is, g[j](�j(l + 1)) = E. If g[j](�j(l + 1)) = E, then as seen in Section

2.4.4.3, �j(l + 1) = B, as desired.

Notice that, symmetrically to player i�s action plan �i(x), player j�s continuation action

plan is independent of g[j](�j(l + 1)) (except for the report block). Therefore, the learning

from player j�s continuation action plan does not change player i�s belief.

On the other hand, suppose player i disregards the signal f [i](�j(l + 1)). As seen in

Section 2.4.4.2, player i believes either
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1. player j�s score is not erroneous with a high probability if player i observes a signal

frequency close to the ex ante mean under �j(x); or

2. player j takes either ��j (x) or �j (x) rather than �j (x) with a high probability if player

i observes a signal frequency far from the ex ante mean under �j(x).

Since the length of the review round is T , the belief on the above two events is no less

than 1� exp(��(T )), before learning from player j�s continuation action plan.

The learning from player j�s continuation action plan changes the belief in the following

two ways. First,
n
f [i](�j(~l))

oL
~l=1
reveals

n
�j(~l)

oL
~l=1
. However, since the error occurs with a

positive probability
�
exp(��(T 1

2 ))
�L
= exp(��(T 1

2 )), the update of the belief is su¢ ciently

small compared to the original belief 1� exp(��(T )).

Second, player i in the ~lth review round conditions that �̂j(~l) = G (as mentioned, oth-

erwise, �j(~l) = B and player i is indi¤erent between any action pro�le). This conditioning

changes player i�s belief on player j�s history in the following way: player i�s belief on player

j�s history where player j obeys player i�s message f [j](�i(~l)) can be decreased. For ex-

ample, if player i sends �i(~l) = B and the error is not reported, then the probability that

f [j](�i(~l)) = G is small. However, this decrease is at most by exp(��(T 1
2 )) since any

signal pro�le can occur with positive probability exp(��(T 1
2 )) in the supplemental round

for �i(~l). On the other hand, player i�s belief on player j�s history where player j disre-

gards player i�s message f [j](�i(~l)) remain unchanged. In total, the update of the belief is�
exp(��(T 1

2 ))
�L
= exp(��(T 1

2 )), which is su¢ ciently small compared to the original belief

1� exp(��(T )).

Formally, we can show the following lemma:

Lemma 15 For all �u and L, there exists �� such that, for all � < ��, there exist ��, �" such that,

for all � < �� and " < �", for any history hti with t being in the lth review round, conditional

on �̂i(~l) = G for all ~l � l and �j(l), player i after hti believes that �̂j(l) = �j(l) or �j(l) = B.

Proof: See Section 2.9.
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As we have mentioned, the statement is conditional on �̂i(~l) = G for all ~l � l. We also

condition on �j(l) since given �̂i(l) = G, aj(l) is independent of �j(l).

2.6 Variables

In this section, we show that all the variables can be taken consistently satisfying all the

requirements that we have imposed: �u, L, �, � and ".

First, �u is determined in Lemma 12, independently of the other variables (note that �u is

independent of �j (x)).

Second, �x L so that

max

�
max
x:xj=B

ui (a (x)) ; v
�
i

�
+ 2

�u

L
< vi < vi < min

x:xj=G
ui (a (x))� 2

�u

L
: (2.25)

This is possible because of (1.18).

Third, given �u and L, �x �� so that Lemma 15 holds and for all � < ��,

max

�
max
x:xj=B

ui (a (x)) ; v
�
i

�
+ 2

�u

L
+ �L

�
2�u�min

�
min
i;x

ui (a (x)) ; v
�
i

��
< vi < vi < min

x:xj=G
ui (a (x))� 2

�u

L
� �L

�
2�u+max

i;x
ui (a (x))

�
: (2.26)

This is possible because of (2.25). As explained in Section 2.4.2, a small � implies that the

event that player i with �̂j(l) = G takes �i (l) = �i (x) with a high probability.

Fourth, �x � < ��. Then, we can take �� and �" so that Lemma 15 holds. Take " < �" and

� < �� so that

max

�
max
x:xj=B

wi (x) ; v
�
i (�)

�
+ 2

�u

L
+ �L

�
2�u�min

n
min
x
wi (x) ; v

�
i (�)

o�
< vi < vi < min

x:xj=G
wi (x)� 2

�u

L
� �L

�
2�u+max

i;x
wi (x)

�
: (2.27)
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Here,

v�i (�) � max
x:xj=B;ai

ui (ai; �j (x))

is the maximum payo¤ that player i can get if xj = B and player j takes �j(x). Since �j(x)

with xj = B takes Dj with probability 1 � 2�, for su¢ ciently small �, v�i (�) is su¢ ciently

close to the minimax value v�i . Together with (1.19), for su¢ ciently small �, (2.26) implies

(2.27).

Since TP = LT and T = (1� �)�
1
2 , we have

lim
�!1

�TP = 1:

Therefore, discounting for the payo¤s in the next review phase goes to zero.

2.7 Almost Optimality of �i(xi)

We have de�ned �i(xi) and �maini except for ��i(x; �j(l); l). In this section, based on Lemma

15, we show that if we properly de�ne ��i(x; l), then �i(xi) and �maini satisfy (1.21), (1.16)

and (1.17):

Proposition 16 For su¢ ciently large �, there exists ��i(x; �j(l); l) such that

1. �i(xi) is almost optimal conditional on �̂i(l) = G: for each l 2 f1; :::; Lg, conditional

on �̂i(l) = G,

(a) for any period t in the lth review round, (1.21) holds; and

(b) when player i sends the message about �i(l+1) by the error-reporting noisy cheap

talk, (1.21) holds;4

4With l = L, this is redundant.
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2. (1.16) is satis�ed with �i replaced with �maini . Since each xi 2 fG;Bg gives the same

value conditional on xj, the action plan in the coordination block is optimal;5 and

3. �maini satis�es (1.17).

Proof: See Section 2.9.

Here, we o¤er the intuitive explanation. First, we construct ��i(x; �j(l); l), assuming that

the players follow �i(xi). We want to make sure that

� for (1.16), player i�s value from the lth review round

1

T
E

24X
t2T (l)

ui(at) + �maini (x; hmainj ; l) j x

35
is close to �vi (vi, respectively) if xj = G (xj = B, respectively), �̂j(l) = �j(l) and

�j(~l) = G for all ~l � l. Note that the last condition implies that player j takes

�j(l) = �j(x); and

� for (1.17), ��i(x; �j(l); l) � 0 (��i(x; �j(l); l) � 0, respectively) if xj = G (xj = B,

respectively), as seen in (2.19).

If �̂j(l) = �j(l) = G, then the players take �(x) and from (2.5), player i�s value from the

lth review round is close to wi (x) except for ��i(x; �j(l); l). Hence, if we determine

��i(x; �j(l); l)

8><>: � 0 xj = G;

� 0 xj = B

properly, we can make sure that player i�s value from the lth review round is close to �vi if

xj = G and vi if xj = B.

5This is not precise since we will further adjust the reward function based on the report
block. However, as we will see, even after the adjustment of the report block, any xi 2 fG;Bg
still gives exactly the same value and so the strategy in the coordination block is exactly
optimal.
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If xj = G and �̂j(l) = �j(l) = B, then player i takes a best response to player j�s action

�j(x) and the average instantaneous utility during the lth review round is more than wi(x).

The reward is 0 except for ��i(x; �j(l); l). Therefore, from (2.27), player i�s value from the

lth review round is close to �vi if we properly determine ��i(x; �j(l); l) � 0.

If xj = B and �̂j(l) = �j(l) = B, then player i takes a best response to player j�s

action �j(x). Since �j(x) is close to the minimaxing action Dj, the average instantaneous

utility during the lth review round is v�i (�) � vi. The reward is 0 except for ��i(x; �j(l); l).

Therefore, from (2.27), player i�s value from the lth review round is close to vi if we properly

determine ��i(x; �j(l); l) � 0.

Second, we verify 1-(a): in the lth review round, it is almost optimal for player i to follow

�i(xi), conditional on �̂i(~l) = G for all ~l. Lemma 15 guarantees that, for almost optimality,

player i can assume �j(l) = �̂j(l) or �j(l) = B. If the latter is the case, then any action is

optimal. Hence, we concentrate on the case with �j(l) = �̂j(l) and �j(l) = G, which implies

that player j takes �j(x).

For the last Lth review round, player i maximizes

1

T
E

24X
t2T (l)

ui(at) + �maini (x; hmainj ; l) j x

35 (2.28)

with l = L. If �j(L) = �̂j(L) = G, then �maini (x; hmainj ; L) is the summation of �i[� (x)](yj;t),

which makes any action optimal for player i. If �j(L) = �̂j(L) = B, then �maini (x; hmainj ; L)

is constant and so player i wants to take a static best response to �j(x). Therefore, Di is

almost optimal in order to maximize (2.28). Therefore, �i(xi) is almost optimal for the Lth

review round.

We proceed backward. Suppose that player i follows �i(xi) from the (l + 1)th review

round and consider player i�s incentive in the lth review round. Note that we de�ne ��i such

that player i�s value is almost independent of �j(l + 1) as long as player i follows �i(xi)
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from the (l + 1)th review round and ��j(l + 1) = �̂j(l + 1) or �j(l + 1) = B.�6 In addition,

Lemma 15 implies that player i in the main blocks believes that ��j(l + 1) = �̂j(l + 1)

or �j(l + 1) = B�with a high probability. Further, Section 2.4.4.3 guarantees that the

distribution of �j(l + 1) = B is independent of player i�s action plan. Therefore, for almost

optimality, we can assume that player i in the lth review round maximizes (2.28), assuming

that �j(l) = �̂j(l) and �j(l) = G. Therefore, the same argument as for the Lth review round

establishes that �i(xi) is almost optimal for the lth review round.

Third, 1-(b) is true since, as seen in Section 2.4.4.3, whenever player i�s message a¤ects

player j�s continuation action, player i has been indi¤erent between any action pro�le. In

addition, although player i�s message and signal observation a¤ect player i�s posterior about

the optimality of �̂j(l + 1), the e¤ect is su¢ ciently small for almost optimality (see the

discussion in Section 2.5).

Fourth, 2 is true since except for rare events �̂j(l) = B, �̂i(l) = B, �i(l) = B or �j(l) = B,

the players take �(x) in the lth review round and player j uses the reward (2.16). By

construction of ��i(x; �j(l); l), the ex ante value is �vi (vi, respectively) if xj = G (xj = B,

respectively).

Finally, from Section 2.4.4.1, �maini satis�es 3 since we take ��i(x; �j(l); l) � 0 (��i(x; �j(l); l) �

0, respectively) if xj = G (B, respectively).

Therefore, we are left to construct the action plan in the report block and �reporti such

that �i(xi) and �maini + �reporti satisfy (1.15), (1.16) and (1.17) based on Proposition 16.

2.8 Exact Optimality

In this section, we explain the action plan and the reward �reporti in the report block.

6In the above discussion, we have veri�ed that this claim is correct for the case with
�j(l + 1) = G (with L replaced with l + 1).
For �j(l + 1) = B, player i is indi¤erent between any action pro�le sequence, as desired.
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2.8.1 Preparation

We start with proving two Lemmas about incentivizing player i to tell the truth about hmaini .

As we will see, player i conditions that player j believes that player i�s score about player

j is not erroneous: �̂j(l) = G. In this case, player j takes a fully mixed action plan.

When player i reports her history (ai;t; yi;t) for some period t in the coordination or main

blocks, player j punishes player i proportionally to



1aj;t;yj;t � E �1aj;t;yj;t j ŷi;t; âi;t; �j;t�

2 :
Here, 1aj;t;yj;t is an jAjj jYjj � 1 vector whose element corresponding to (aj;t; yj;t) is one and

other elements are zero. (âi;t; ŷi;t) is player i�s message.

Intuitively,7 player i wants to maximize

� E
h

1aj;t;yj;t � E �1aj;t;yj;t j ŷi;t; âi;t; �j;t�

2 j yi;t; ai;t; �j;ti : (2.29)

We assume that player i knew player j�s action plan �j;t. Since player j takes a fully mixed

action plan conditional on �̂i(l) = G, Assumption 5 implies that the truthtelling is uniquely

optimal:

Lemma 17 If Assumption 5 is satis�ed, then for each i, any fully mixed action plan �j;t 2

�(Aj) and player i�s history (ai;t; yi;t) 2 Ai�Yi, (âi;t; ŷi;t) = (ai;t; yi;t) is a unique maximizer

of (2.29).

Proof: By algebra.

Take ex ante value of (2.29) before observing yi;t assuming the truthtelling (âi;t; ŷi;t) =

(ai;t; yi;t):

� E
h

1aj;t;yj;t � E �1aj;t;yj;t j yi;t; ai;t; �j;t�

2 j ai;t; �j;ti : (2.30)

7That is, except that player i can learn about (aj;t; yj;t) from the continuation play between
period t and the report block.
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As in Lemma 12, we can show the existence of player j�s reward on player i which cancels

out the di¤erence in (2.30) for di¤erent ai;t�s:

Lemma 18 If Assumptions 3 is satis�ed, then for any j 2 I and �j 2 �(Aj), there exists

�i[�j] : Yj ! R such that

E [�i[�j](yj) j ai; �j]� E
h

1aj ;yj � E �1aj ;yj j yi; ai; �j�

2 j ai; �ji = 0

for all ai 2 Ai.

Proof: The same as Lemma 12.

2.8.2 Report Block

Given these two lemmas, we explain the action plan and the reward �reporti in the report

block. As brie�y mentioned in Sections 1.7 and 1.8, player i reports hmaini to player j if

player i is picked by the public randomization. Player j calculates �reporti based on the

reported history ĥmaini so that �i(xi) is exactly optimal against �j(xj) and �maini + �reporti .

With the perfect cheap talk, the players could report hmaini simultaneously and instan-

taneously. However, as seen in Section 1.5, for the dispensability of the cheap talk, it is

important to construct the report block so that only one player sends the message and that

the cardinality of the messages is su¢ ciently small.

For the �rst purpose, the players use public randomization. Player 1 reports hmain1 if

yp � 1
2
and player 2 reports hmain2 if yp > 1

2
. Below, we consider the case where player i

reports the history.

From Section 2.2, there is a chronological order for the rounds. Hence, we can number

all the rounds serially. For example, the round for x1 is round 1, the round for x2 is round

2, the �rst review round is round 3, the supplemental round for �1(l + 1) is round 4, the

supplemental round for �2(l + 1) is round 5, and so on.
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Let hr+1i be player i�s history at the beginning of the (r + 1)th round. The reward from

the report block is the summation of the rewards for each round:

�reporti (xj; h
TP+1
j : �) =

X
r

�reporti

�
hr+1j ; ĥr+1i ; r

�
:

Here, ĥr+1i is player i�s report about hr+1i . Precisely, to reduce the cardinality of the messages,

player i reports the summary of hr+1i . The details will be determined below. Note that the

reward for round r, �reporti

�
hr+1j ; ĥr+1i ; r

�
, depends on the history until the end of round r.

We de�ne �reporti

�
hr+1j ; ĥr+1i ; r

�
such that

1. during the main blocks, for each period t and each hti, player i believes that it will be

optimal to tell the truth about hr+1i ; and

2. based on the truthful report hr+1i , �reporti will be adjusted so that �i(xi) is exactly

optimal.

1 can be achieved by using the punishment similar to (2.29), which will be formally

proven in Section 2.9.6. Here, suppose that we have shown the truthtelling incentive 1 and

let us concentrate on the adjustment 2.

Since we need to keep the cardinality of the messages su¢ ciently small, we consider the

summary statistics #~r
i for the history in each round ~r: for round 1, let #

1
i be x1, the message

sent by the perfect cheap talk in round 1. Similarly, for round 2, let #2
i be x2.

For round ~r corresponding to a review round, for each (ai; yi) 2 Ai � Yi, let #~r
i (ai; yi)

be how many times player i observed an action-signal pair (ai; yi) in round ~r. Let #~r
i be a

vector
�
#~r
i (ai; yi)

�
ai;yi
.

For round ~r where player i sends a message m via error-reporting noisy cheap talk, let

#~r
i be player i�s message and signals (m; g[i](m); g2[i](m)).

8

8Although we neglected the secondary signals f2[i](m) and g2[i](m) for the almost opti-
mality, for the exact optimality, we need to take into account the belief updates from the
secondary signals.
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For round ~r where player i receives a message m via error-reporting noisy cheap talk, let

#~r
i be player i�s signals (f [i](m); f2[i](m)).

Let hr+1i �
�
#~r
i

	
~r�r be a summary of player i�s history at the beginning of round r + 1.

By backward induction, we construct �reporti

�
hr+1j ; ĥr+1i ; r

�
. For round r corresponding

to a review round, let (T (r; ai))ai2Ai 2 T
jAij be the set of strategies that take ai for T (r; ai)

times in round r.

In the last round (the Lth review round), since player j determines her continuation

strategy treating each period within a past round identically, player i�s belief about player

j�s continuation strategy at the beginning of the Lth review round conditional on �j(L) and

�̂i(L) = G is determined by hri . Conditional on �j(L), the learning from signal observations is

redundant. Hence, conditional on �j(L) and �̂i(L) = G, player i�s value of taking (T (r; ai))ai

only depends on hri regardless of fai;t; yi;tg in the Lth review round. Since Proposition 16

holds conditional on �j(L) and �̂i(L) = G, for all (T (r; ai))ai consistent with the equilibrium

strategy, player i�s value of taking (T (r; ai))ai does not change by more than exp(��(T
1
2 )).

On the other hand, from player i�s report, player j can know hri and how many times

player i took ai in round r. Let (#r
i (ai))ai be this number. With abuse of notation, we say

player i reports that she took (T (r; ai))ai if T (r; ai) is equal to #
r
i (ai) for all ai.

Therefore, based on the report of hri and (T (r; ai))ai, player j can construct �
report
i (hr+1j ;

ĥr+1i ; r) such that, given hri , �j(L) and �̂i(L) = G,

� between all (T (r; ai))ai that should be taken with a positive probability, player i is

indi¤erent after any history in the Lth review round; and

� if player i reports (T (r; ai))ai that should not be taken on the equilibrium path, then

player j punishes player i. We make sure that this punishment is su¢ ciently large to

discourage any deviation after any history.

In addition, player j adjusts player i�s learning at the beginning of the Lth review round.

Let Vi(hri ) be the expected increase of player i�s continuation payo¤at the beginning of round
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r if player i could know �j(l) and �j(l), where the lth review round is the �rst round to come

after round r (if round r is the ~lth review round for some ~l, then l = ~l). By Proposition 16,

Vi(h
r
i ) is very small. Player j adds Vi(h

r
i ) to the reward so that player i does not have an

incentive to improve the learning until the beginning of round r.

Then, we proceed backwards. In the review rounds, the key di¤erences from the last

review round are

� player i�s history in round r a¤ects player i�s expected continuation payo¤ from the

next round through learning. This e¤ect is canceled out by adding Vi(hr+1i ); and

� the distribution of �j(~l) for the future rounds and whether player j obeys the message

can a¤ect player i�s continuation payo¤ conditional on �̂i(~l) = G for the future rounds,

but the distribution of �j(~l) and whether player j obeys the message is independent of

player i�s action plan. Hence, this e¤ect does not a¤ect the optimality.

Hence, the same argument holds.

For round r where player i sends a message m, we replace (T (r; ai))ai with the set of

possible messages m�s in the above discussion.

For round r where player i receives a message m, player i does not take an action.

Therefore, by backward induction, we verify that �i(xi) is optimal, taking all the contin-

uation strategies into account after a deviation given the truthtelling incentive. See Section

2.9.6 for how to incentivize the players to tell the truth.

2.9 Appendix of Chapter 2

2.9.1 Proof of Lemma 12

By linear independence of (qi (ai; �j))ai2Ai (Assumption 3), for all �, there exists �i[�] : Yj !

R such that

ui(ai; �j) + E [�i[�](yj) j ai; �j] = 0:
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Without loss, we assume that �i[�](yj) is upper hemi-continuous with respect to �. Since

�(A) 3 � is compact, there exists �u such that �i[�] : Yj ! [��u; �u] for all � 2 �(A). We

can add or subtract a constant so that (2.5) is satis�ed. Re-take �u if necessary.

2.9.2 Proof of Lemma 13

This follows from Assumption 3 as Lemma 12. Since
�
1� �t�1

�
ui (at) converges to 0 as �

goes to unity for all t 2 f1; :::; TPg with TP = �((1� �)�
1
2 ), we have

lim
�!1

sup
t2f1;:::;TP g;aj;t;yj;t

����i (t; aj;t; yj;t)�� = 0;
which implies (2.11).

2.9.3 Proof of Lemma 14

Let m be the minimum element of Qi(x) and M be the maximum element of Qi(x). Let

~Qi(x) be the matrix whose (l; n) element is
(Qi(x))l;n+jmj+1
jM j+2jmj+2 2 (0; 1) and qi(x) be the vector

whose lth element is (qi(x))l+jmj+1
jM j+2jmj+2 2 (0; 1).

Since a�
�
fqi(ai; aj)gaj2Aj

�
� a� (f1yigyi2Yi), without loss of generality, we can assume

that the �rst row of Qi(x) is parallel to (1; :::; 1) and that the �rst element of qi(x) is 1.

We will show

n
yi 2 RjYij+ : Qi(x)yi = qi (x)

o
= Qi (x) = ~Qi (x) �

n
yi 2 RjYij+ : ~Qi(x)yi = ~qi (x)

o
:

1. Qi (x) � ~Qi (x)

82



Suppose that yi 2 Qi (x). Then,

�
~Qi(x)yi

�
l
=

(Qi(x)yi)l
jM j+ 2 jmj+ 2 +

jmj+ 1
jM j+ 2 jmj+ 2 (1; :::; 1)| {z }

�rst row of Qi(x)

yi

=
(qi(x))l

jM j+ 2 jmj+ 2 +
jmj+ 1

jM j+ 2 jmj+ 2 = (~qi(x))l ;

as desired.

2. Qi (x) � ~Qi (x)

Suppose that yi 2 ~Qi (x). Then, for all l,
�
~Qi(x)yi

�
l
= (~qi (x))l, that is,

(Qi(x)yi)l
jM j+ 2 jmj+ 2 +

jmj+ 1
jM j+ 2 jmj+ 2(1; :::; 1)yi (2.31)

=
(qi(x))l

jM j+ 2 jmj+ 2 +
jmj+ 1

jM j+ 2 jmj+ 2 ;

If yi 62 a� (f1yigyi2Yi), then

(Qi(x)yi)1
jM j+ 2 jmj+ 2 +

jmj+ 1
jM j+ 2 jmj+ 2(1; :::; 1)yi

=
jmj+ 2

jM j+ 2 jmj+ 2
X
l

yi;l

6= jmj+ 2
jM j+ 2 jmj+ 2 =

(qi(x))1
jM j+ 2 jmj+ 2 +

jmj+ 1
jM j+ 2 jmj+ 2

and so contradiction to (2.31) with l = 1.

If yi 2 a� (f1yigyi2Yi), then (2.31) implies

(Qi(x)yi)l
jM j+ 2 jmj+ 2 =

(qi(x))l
jM j+ 2 jmj+ 2 ;

or (Qi(x)yi)l = (qi(x))l and so yi 2 Qi (x).
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2.9.4 Proof of Lemma 15

We consider the proof for a more general strategy of player j. Given some �xed set Aj(x) 2

2�(Aj) of player j�s mixed actions, player j determines �j(l) as follows:

� �j(l) = �j(x) with probability 1� �; and

� for each �j 2 Aj(x), �j(l) = �j with probability 1
jAj(x)j�.

If the latter is the case, �j(l) = B. That is, the latter corresponds to the case where

�j(l) 6= �j(x). The other conditions for �j(l), �̂i(l) and �j(l) are the same.

Now, let us prove Lemma 15. Once �j(~l) = B is induced, then �j(~l0) = B for all the

following rounds. Hence, there exists a unique l� such that �j(~l) = B is initially induced in

the (l� + 1)th review round: �j (1) = � � � = �j (l
�) = G and �j (l� + 1) = � � � = �j (L) = B.

Similarly, there exists l̂� with �̂j (1) = � � � = �̂j(l̂
�) = G and �̂j(l̂� + 1) = � � � = �̂j (L) = B.

If �j (L) = G (�̂j (L) = G, respectively), then de�ne l� = L (l̂� = L, respectively).

Then, there are following three cases:

2.9.4.1 l� = l̂�

This means �j (l) = �̂j (l) for all l as desired.

2.9.4.2 l� > l̂�

This means that player i obeys the message in the supplemental round for �j(l̂� + 1):

�̂j(l̂
� + 1) = f [i](�j(l̂

� + 1)):

By Lemma 10, player i believes that, conditional on �j(l̂� + 1),

�̂j(l̂
� + 1) = f [i](�j(l̂

� + 1)) = �j(l̂
� + 1) = G
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or g[j](�j(l̂� + 1)) = E with probability no less than 1 � exp(��(T 1
2 )). If the former is

the case, then l� � l̂� (contradiction). If the latter is the case, then �j(l̂� + 1) = B, as

desired. Since player j�s continuation action plan in the main blocks does not depend on

g[j](�j(l̂
� + 1)), we are done.

2.9.4.3 l� < l̂�

There are following two cases. First, if player i obeys the message in the supplemental round

for �j(l� + 1), then by the same reason as above, we are done.

Second, player i disregards f [i](�̂j(l� + 1)). As seen in Section 2.4.4.2, player i�s history

in the l�th review round satis�es

1. (2.20):



 1
T�1

P
t2Ti(l�) 1ai;t � �i(x)




 < "; and

2. (2.21):



 1
jTi(l�;x)j

P
t2Ti(l�;x) 1yi;t �Qi (x)




 < ".

There are two cases: �rst, if player i�s signal frequency in Ti(l�; x) is su¢ ciently close to

the ex ante distribution: 





 1

jTi(l�; x)j
X

t2Ti(l�;x)

1yi;t � qi(x)







 < �: (2.32)

Then, for su¢ ciently small �, " and �, player i believes that

Xj (l
�)

8><>: � �u
L
T if xj = G;

� � �u
L
T if xj = B;

that is, �j(l� + 1) = G, with probability 1� exp(��(T )):

Lemma 19 Fix �u and L. For any i 2 I, l 2 f1; :::; Lg and x, suppose player j takes an

action as described above. There exist ��; ��; �" such that, for all � < ��, � < �� and " < �",

if player i�s history satis�es (2.20), (2.21) and (2.32), then given �j (l�) = �j(x), player i
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believes that

Xj (l
�)

8><>: � �u
L
T if xj = G;

� � �u
L
T if xj = B

(2.33)

with probability 1� exp(��(T )).

Proof: For su¢ ciently small � and ", Ti(l; x) (the set of periods where player i takes ai (x))

is su¢ ciently long and (2.33) is satis�ed if the score in Ti(l; x) is not erroneous:

X
t2Ti(l;x)

�i[� (x)](yj;t)

8><>: � 2
3
�u
L
T if xj = G;

� �2
3
�u
L
T if xj = B:

For su¢ ciently small �, � and ", the distribution of fyi;tgt2Ti(l;x) while player i takes ai (x)

is close to the ex ante mean and so the conditional expectation of the score in Ti(l; x) is close

to the ex ante mean:

E

24 X
t2Ti(l;x)

�i[� (x)](yj;t) j fyi;tgt2Ti(l;x) ; ai (x) ; �j(x)

35
8><>: � 1

2
�u
L
T if xj = G;

� �1
2
�u
L
T if xj = B:

Note that, for su¢ ciently small �, the ex ante mean of �i[� (x)](yj;t) given ai (x) ; �j (x) is

su¢ ciently close to that given � (x), which is zero.

In such a case, by Hoe¤dling�s inequality, player i believes that

X
t2Ti(l;x)

�i[� (x)](yj;t)

8><>: � 2
3
�u
L
T if xj = G;

� �2
3
�u
L
T if xj = B

with probability 1� exp(��(T )), as desired.

Second, if player i�s signal frequency in Ti(l�; x) is not close to the ex ante distribution:





 1

jTi(l�; x)j
X

t2Ti(l�;x)

1yi;t � qi(x)







 � �:
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Then, player i believes that player j does not take �j(l�) = �j (x):

Lemma 20 For any i 2 I, l 2 f1; :::; Lg and x, suppose player j takes an action as described

above. There exists �� > 0 such that, for all � < ��, there exists �� > 0 such that, for any

� < ��, there exist �" and fAj(x)gx such that for all " < �", if player i�s history satis�es

1.



 1
T�1

P
t2Ti(l) 1ai;t � �i(x)




 < ";

2.



 1
jTi(l;ai)j

P
t2Ti(l;x) 1yi;t �Qi (x)




 < "; and

3.



 1
jTi(l;ai)j

P
t2Ti(l;x) 1yi;t � qi(x)




 � �,

then player i puts a belief at least 1� exp(��(T )) on the events that �j(l) 6= �j(x).

Proof: For notational simplicity, let fi be player i�s signal frequency in the periods where

player i takes ai(x) in Ti(l):

fi =
1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t :

Fix � > 0. Note that from 3,







 1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t � qi(x)







 � �:

Suppose player i�s history in the lth review round is fai;t; yi;tgt2T (l). The likelihood

between �j 2 Aj (x) against �j(x) is given by

Pr
�
�j j fai;t; yi;tgt2T (l)

�
Pr
�
�j(x) j fai;t; yi;tgt2T (l)

�
=

Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j

�
Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j(x)

�
�

Q
ai 6=ai(x)

Pr
�
fyi;tgt2Ti(l;ai) j ai; �j

�
Pr
�
fyi;tgt2Ti(l;ai) j ai; �j(x)

� Pr
�
yi;ti(l) j ai;ti(l); �j

�
Pr
�
yi;ti(l) j ai;ti(l); �j(x)

� Pr(�j)

Pr (�j(x))
;
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where Ti (l; ai) is the set of periods in the lth review round with ai;t = ai. We want to show

that if 1, 2 and 3 are satis�ed, then this likelihood is exp(�(T )) for some �j 2 Aj(x) with

�j 6= �j(x).

For this purpose, we want to show that

log Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j

�
= jTi (l; x)j

X
yi

fi(yi) log qi(yi j ai(x); �j)

is su¢ ciently bigger than log Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j(x)

�
.

Instead of working on �j, we work on the distribution directly. De�ne

ti � qi(ai(x); �j)� qi (x) :

By Taylor series, we have

X
yi

fi(yi) log qi(yi j ai(x); �j) (2.34)

=
X
yi

fi(yi) log qi (yi j x) +
1X
n=1

(�1)n�1
X
yi

fi(yi)
1

n (qi (yi j x))n
(ti(yi))

n

with qi (yi j x) = qi (yi j ai(x); �j(x)). We want to show that the second term in the second

line is su¢ ciently large.

First, we concentrate on the case where fi 2 Qi (x) and consider the subspace of player

i�s signals, Qi (x). There exists K1 > 0 such that, for each � > 0, for any e� � K1�, we have

Be� (qi(x)) � Qi (x)

since �j(x) mixes all aj 2 Aj with probability at least �. Here, Be� (qi(x)) is the closed ball

with radius e� > 0 and center qi(x) in the linear space a�
�
f1yigyi2Yi

�
\Qi (x).
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Let Ce� (qi(x)) be the surface of Be� (qi(x)). Intuitively, we will de�ne Aj(x) such that

fqi(ai(x); �j)g�j2Aj(x) is a discretization of Ce� (qi(x)).

Since kfi � qi(x)k � � from 3, for su¢ ciently small �, for any e� � K1�, we have

fi =2 Be� (qi(x)) :

In addition, since q (y j a) has full support, for su¢ ciently small �, for any e� � K1�, we

have

�t � max
i;x;ti;yi2Yi;�j2�(Aj)

ti(yi)

qi (yi j ai(x); �j)
<
1

3
; (2.35)

where the maximization with respect to ti is subject to 9qi 2 Be� (qi(x)) with ti = qi� qi (x).

Given any e� 2 (0; K1�], given fi 2 Qi(x) with kfi � qi(x)k � �, de�ne ti such that

qi (x) + ti is on Ce� (qi (x)). Since ktik = e�, fi =2 Be� (qi(x)) and kfi � qi (x)k � 1, there

exists b � e� such that

ti � b (fi � qi (x)) :

Then, X
yi

fi(yi)
1

qi (yi j x)
ti(yi) = b

 X
yi

(fi(yi))
2 1

qi (yi j x)
� 1
!
:

Since
P

yi
(fi(yi))

2 1
qi(yijx) is uniquely minimized at fi = qi (x) and the minimized value is

1, we have

min
fi:kfi�qi(x)k��

X
yi

(fi(yi))
2 1

qi (yi j x)
� 1 � e�;ai(x);�j(x) > 0:

Since �(Aj) is compact, there exists e� independent of � such that

min
i2I

ai(x)2Ai;�j(x)2�(Aj)

min
fi:kfi�qi(x)k��

X
yi

(fi(yi))
2 1

qi (yi j x)
� 1 = 8e� > 0:

Therefore, for any fi with kfi � qi(x)k � �, there exists ti such that

� qi (x) + ti 2 Ce� (qi(x)); and
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� we have X
yi

fi(yi)
1

qi (yi j x)
ti(yi) � 8e�e�:

By (2.34), we have

X
yi

fi(yi) log (qi(yi j x) + ti(yi))

=
X
yi

fi(yi) log qi (yi j x) +
1X
n=1

(�1)n�1
X
yi

fi(yi)
1

n (qi (yi j x))n
(ti(yi))

n

�
X
yi

fi(yi) log qi (yi j x) +
 
1�

1X
n=1

(�t)n
!
8e�e�

�
X
yi

fi(yi) log qi (yi j x) + 4e�e�:

The last inequality uses the fact that �t < 1
3
(See (2.35) for the de�nition of �t). Therefore,

min
i;x

fi2Qi(x)

max
qi2Ce� (qi(x))

(X
yi

fi(yi) log qi(yi)�
X
yi

fi(yi) log qi(yi j x)
)
� 4e�e�:

By Assumption 2, there exists "x > 0 such that, for su¢ ciently small �,

Ce� (qi(x)) � �"x �
n
qi 2 �

�
f1yigyi2Yi

�
: qi(yi) � "x for all yi 2 Yi

o
:

Since
P

yi
fi (yi) log qi(yi) is Lipschitz continuous in fi 2 Qi(x) and qi 2 �"x, there exists M

such that there are M points in Ce� (qi(x)), denoted by C
M
e� (qi(x)), such that

min
i;x

fi2Qi(x)

max
qi2CMe� (qi(x))

(X
yi

fi(yi) log qi(yi)�
X
yi

fi(yi) log qi(yi j x)
)
� 3e�e�:
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Now we consider the case with fi 62 Qi (x). From 1 and 2, there exists (si(yi))yi2Yi such

that

fi + si 2 Qi (x) ;

ksik � ":

Again, since
P

yi
fi (yi) log qi(yi) is Lipschitz continuous in fi 2 Qi(x) and qi 2 �"x, there

exists " > 0 such that, for all si with ksik � ", we have

min
i;x

fi2Qi(x)

max
qi2CMe� (qi(x))

(X
yi

(fi(yi) + si(y)) log qi(yi)�
X
yi

(fi(yi) + si(y)) log qi(yi j x)
)

� e�e�:

Therefore, in total, for su¢ ciently small �, for any e� 2 (0; K1�], there exists a �nite set

CMe� (qi(x)) such that, if Conditions 1, 2 and 3 are satis�ed, then

max
qi2CMe� (qi(x))

(X
yi

fi(yi) log qi(yi)�
X
yi

fi(yi) log qi(yi j x)
)
� e�e�: (2.36)

Fix � > 0 and then � > 0 and e� = K1� so that the above statement is true. By de�nition

of Qi(x), there exists a set of M player j�s strategies, denoted by Aj(x), such that, for each

point qi 2 CMe� (qi(x)), there exists a mixture �j 2 Aj (x) such that qi = qi(yi j ai(x); �j).

Then, (2.36) means that, if Conditions 1, 2 and 3 are satis�ed, then there exists �j 2 Aj(x)

such that

log Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j

�
� log Pr

�
fyi;tgt2Ti(l;x) j ai(x); �j (x)

�
� jTi (l; x)j e�e� � (1� 2 jAij �� 2") e�K1�T:

The last inequality uses de�nition of �i (x) and Condition 1.
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On the other hand, consider the periods when player i takes ai 6= ai (x). Note that, for

all �j 2 Aj (x),

jlog qi (yi j ai; �j)� log qi (yi j x)j

= jlog (qi(yi j x) + ti(yi))� log qi (yi j x)j � �:

Hence,

Q
ai 6=ai(x)

Pr
�
fyi;tgt62Ti(l;ai) j ai; �j

�
Pr
�
fyi;tgt2Ti(l;ai) j ai; �j(x)

� � exp(��
X

ai 6=ai(x)

jTi (l; ai)j)

� exp(��3 jAij �T )

if we take �" � �. The last inequality follows from jTi (l; ai)j � 3 jAij �T . To see why

jTi (l; ai)j � 3 jAij �T , suppose not. Then, jTi (l; ai)j > 3 jAij �T . Then,
P

ai 6=ai(x) jTi (l; ai)j >

3 jAij �T , which means jTi (l; x)j < (1� 3 jAij �)T � (1 � 2 jAij � � ")T for �" � �, which

contradicts to Condition 1.

Therefore, in total,

Pr
�
�j j fai;t; yi;tgt2T (l)

�
Pr
�
�j(x) j fai;t; yi;tgt2T (l)

�
=

Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j

�
Pr
�
fyi;tgt2Ti(l;x) j ai(x); �j(x)

�
�

Q
ai 6=ai(x)

Pr
�
fyi;tgt62Ti(l;ai) j ai; �j

�
Pr
�
fyi;tgt2Ti(l;ai) j ai; �j(x)

� Pr
�
yi;ti(l) j ai;ti(l); �j

�
Pr
�
yi;ti(l) j ai;ti(l); �j(x)

� Pr(�j)

Pr (�j(x))

� exp (((1� 2 jAij �� 2") e�K1 � �3 jAij) �T )
1

M
:

= exp (� (T ))
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for su¢ ciently small � and ", as desired. Here, we can neglect
Pr(yi;ti(l)jai;ti(l);�j)
Pr(yi;ti(l)jai;ti(l);�j(x))

by As-

sumption 2.

In summary, we take �, � and " so that Lemmas 19 and 20 are satis�ed. Then, if player

i disregards the message,

1. if 





 1

jTi(l�; x)j
X

t2Ti(l�;x)

1yi;t � qi(x)







 < �;

then player i believes that �j(l�) 6= �j(x) (which means �j(l�) = B) or

Xj (l
�)

8><>: � �u
L
T if xj = G;

� � �u
L
T if xj = B

with probability 1� exp(��(T )); and

2. if 





 1

jTi(l�; x)j
X

t2Ti(l�;x)

1yi;t � qi(x)







 � �;

then player i believes that �j(l�) 6= �j(x) (which means �j(l�) = B) with probability

1� exp(��(T )).

These bounds are before learning from player j�s continuation action plan. The learning

from player j�s continuation action plan changes the belief in the following two ways. First,n
f [i](�j(~l))

oL
~l=1
reveals

n
�j(~l)

oL
~l=1
. However, since the error occurs with positive probability�

exp(��(T 1
2 ))
�L
= exp(��(T 1

2 )), the update of the belief is su¢ ciently small compared to

the original belief 1� exp(��(T )).

Second, player i conditions that �̂j(~l) = G for all ~l � l. This conditioning changes player

i�s belief on player j�s history in the following way: player i�s belief on player j�s history where

player j obeys player i�s message f [j](�i(~l)) can be decreased at most by exp(��(T
1
2 )) for

the supplemental round for �i(~l) since any signal pro�le can occur with positive probability
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exp(��(T 1
2 )) in the supplemental round for �i(~l). On the other hand, player i�s belief on

player j�s history where player j disregards player i�s message f [j](�i(~l)) remains unchanged.

In total, the update of the belief is
�
exp(��(T 1

2 ))
�L
= exp(��(T 1

2 )), which is su¢ ciently

small compared to the original belief 1� exp(��(T )), as desired.

2.9.5 Proof of Proposition 16

For 3, it su¢ ces to have

��i(x; �j(l); l)

8><>: � 0 if xj = G;

� 0 if xj = B;
(2.37)

j��i(x; �j(l); l)j � maxi;a 2 jui (a)jT (2.38)

for all x 2 fG;Bg2, �j(l) 2 fG;Bg and l 2 f1; :::; Lg.

To see why (2.37) and (2.38) are su¢ cient, notice the following: (2.38) with T = (1� �)�
1
2

implies

lim
�!1

1� �

�TP
sup
x;hmainj

�����
LX
l=1

�maini (x; hmainj ; l)

����� = 0:
See the discussion in Section 2.4.4.1 to see why (2.37) is enough for (1.17).

Now, we are left to prove 1 and 2. 1-(b) is true by the reasons that we have explained in

Section 2.7.

We will verify 1-(a) by backward induction. Section 2.4.4.3 guarantees that the distri-

bution of �j(l) is independent of player i�s action plan and so we can neglect the e¤ect of

player i�s action plan on �j(l). Further, for a moment, forget about the �rst term in �maini ,

�2�uT (2�uT , respectively) for xj = G (xj = B, respectively).

In the Lth review round, for almost optimality, we can assume that �j(L) = �̂j(L) and

that player j uses (2.16) by the following reason: by Lemma 15, conditional on �̂i(L) = G,

player i has a posterior no less than 1�exp(��(T 1
2 )) on the event that �j(L) = �̂j(L) or any

action is optimal. Since the per-period di¤erence of the payo¤ from two di¤erent strategies
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is bounded by �U � 2�u + maxi;a 2 jui(a)j, the expected loss from assuming �j(L) = �̂j(L)

is no more than exp(��(T 1
2 )) �UT . Therefore, for almost optimality, we can assume that

�j(L) = �̂j(L). Further, if (2.13) is used, then any action is optimal. Therefore, we can

assume that player j uses (2.16).

In addition, if player j does not play �j(x), then it means that �j(L) = B and that any

action is optimal for player i (that is, (2.13) is used). Hence, we can concentrate on the case

where player j plays �j(x).

If �j(L) = �̂j(L) = G, then any action plan is almost optimal for su¢ ciently large T since

Lemma 12 implies that the marginal expected increase in Xj(L) cancels out the marginal

decrease in instantaneous utilities. If �j(L) = �̂j(L) = B, then Di is strictly optimal since

the reward (2.16) is constant. Therefore, �i(xi) is optimal. Remember that in the period

tj(L) excluded from Xj(L), �
xj
i [�](yj;tj(L)) makes any action optimal.

Further, if player j uses (2.16) and �j(L) = �̂j(L), then player i�s average continuation

payo¤ at the beginning of the Lth review round except for ��i(x; �j(L); L) is

wi(x) if �j(L) = �̂j(L) = G;

ui(Di; (1� 2�)Cj + 2�Dj) � wi(x) if xj = G; �j(L) = �̂j(L) = B;

ui(Di; (1� 2�)Dj + 2�Cj) � maxfmaxx:
xj=B

wi(x); v
�
i (�)g if xj = B; �j(L) = �̂j(L) = B:

(2.39)

Hence, there exists ��i(x; �j(L); L) with (2.37) and (2.38) such that player i�s average con-

tinuation payo¤ is equal to min
x:xj=G

wi(x) if xj = G and maxfmaxx:xj=B wi(x); v�i (�)g if

xj = B.

Therefore, we de�ne ��i(x; �j(L); L) such that player i�s value from the Lth review round

is independent of �j(L) as long as �j(L) = �̂j(L).9 In addition, Lemma 15 implies that

player i in the main blocks does not put a belief more than exp(��(T 1
2 )) on the events

9In the above discussion, we have veri�ed that this claim is correct for the case with
�j(L) = G.
Otherwise, player i is indi¤erent between any action pro�le sequence, as desired.
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that �j(L) 6= �̂j(L) and player i�s value depends on action pro�les in the Lth review round.

Further, again, we can neglect the e¤ect of player i�s action plan on �j. Therefore, for almost

optimality, we can assume that player i in the (L� 1)th review round maximizes

E

24 X
t2T (L�1)

ui(at) + �maini (x; hmainj ; L� 1) j x

35 ; (2.40)

assuming �j(L� 1) = �̂j(L� 1).

Therefore, the same argument as for the Lth review round establishes that �i(xi) is

almost optimal in the (L� 1)th review round.

Further, if player j uses (2.16) and �j(L� 1) = �̂j(L� 1), then player i�s average payo¤

from the (L� 1)th review round except for ��i(x; �j(L � 1); L � 1) is given by (2.39). The

cases where (2.13) will be used in the Lth review round will happen with probability no

more than � (player j takes �j(L� 1) = �j(x) with probability 1� �) plus some negligible

probabilities for not having (2.20), (2.22) or (2.23). When (2.13) is used, per period payo¤

is bounded by [�2�u; 2�u] by (2.9).

Therefore, there exists ��i(x; �j(L� 1); L� 1) with (2.37) and (2.38) such that if player j

uses (2.16) and �j(L� 1) = �̂j(L� 1), then player i�s average continuation payo¤ from the

(L� 1)th and Lth review rounds is

min
x:xj=G

wi(x)� �
�
2�u+min

x:xj=G
wi(x)

�
if xj = G;

maxfmaxx:xj=B wi(x); v�i (�)g+ �
�
2�u�maxfmaxx:xj=B wi(x); v�i (�)g

�
if xj = B:

Recursively, for l = 1, 1-(a) of the proposition is satis�ed and the average ex ante payo¤

of player i is

min
x:xj=G

wi(x)� L�
�
2�u+min

x:xj=G
wi(x)

�
if xj = G;

maxfmaxx:xj=B wi(x); v�i (�)g+ L�
�
2�u�maxfmaxx:xj=B wi(x); v�i (�)g

�
if xj = B:
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Note that, in the �rst review round, player j uses (2.16) and �̂j(1) = �j(1) = G with

probability one.

Taking the �rst term �2�uT (2�uT , respectively) for xj = G (xj = B, respectively) into

account, the average ex ante payo¤ is

min
x:xj=G

wi(x)� 2�u
L
� L�

�
2�u+min

x:xj=G
wi(x)

�
if xj = G;

maxfmaxx:xj=B wi(x); v�i (�)g

+2�u
L
+ L�

�
2�u�maxfmaxx:xj=B wi(x); v�i (�)g

� if xj = B:

From (2.27), we can further modify ��i (x;G; 1) with (2.37) and (2.38) such that �i(xi)

gives �vi (vi, respectively) if xj = G (B, respectively). Therefore, 2 of the proposition is

satis�ed.

2.9.6 Formal Construction of the Report Block

We formally construct the action plan in the report block and �reporti so that player i tells the

truth about hmaini and that �i (xi) is exactly optimal. Here, we do not consider the feasibility

constraint (1.17). As we will see, �reporti is bounded by [�T�1; T�1] and we can restore (1.17)

by adding or subtracting a small constant depending on xj without a¤ecting e¢ ciency or

incentive.

Let Aj(r) be the set of information up to and including round r consisting of

� what state xj player j is in;

� what action plan �j(l) player j took in the lth review round if round r is the lth review

round; and

� �̂i(l) = G in the lth review round if round r is the lth review round or after.

We want to show that �i(xi) is exactly optimal in round r conditional on Aj(r). Note

that Aj(r) contains xj and so the equilibrium is belief-free at the beginning of the �nitely

repeated game.

97



The following notations are useful: as de�ned in Section 2.8, #r
i is the summary of player

i�s history within round r, hri is the summary of player i�s history at the beginning of round

r, and (T (r; ai))ai is the set of player i�s strategies that take ai for T (r; ai) times in round r

ex ante (if round r corresponds to a review round). On the other hand, let #̂r
i be player i�s

report of #r
i and

�
T̂ (r; ai)

�
ai
be such that, according to player i�s report #̂r

i , player i takes

each ai for T̂ (r; ai) times in round r. In addition, let tr be the �rst period of round r.

For round r corresponding to a review round, we divide a review round into T
3
4 review

subrounds. Each kth subround is from period tr + (k � 1)T
1
4 + 1 to period tr + kT

1
4 with

k 2 f1; : : : ; T 3
4g. Let T (r; k) be the set of periods in the kth subround of round r. Let

#r
i (k)(ai; yi) 2 f1; :::; T

1
4g be how many times player i observed an action-signal pair (ai; yi)

in the kth subround of round r and #r
i (k) be (#

r
i (k)(ai; yi))ai;yi.

When player i is picked by the public randomization device with probability 1
2
, player

i sends the messages via perfect cheap talk: sequentially from round 1 to the last round,

player i reports the history as follows:

� if round r corresponds to a review round, then

��rst, player i reports the summary #r
i ;

� second, for each subround k, player i reports the summary #r
i (k);

� third, public randomization is drawn such that each subround k is randomly

picked with probability T�
3
4 . Let k(r) be the subround picked by the public

randomization; and

� fourth, for k(r), player i reports the whole history fai;t; yi;tgt2T (r;k(r)) in the k(r)th

subround;

� if player i sends a message by the error-reporting noisy cheap talk in round r, then

player i reports #r
i , which is her true message m and signals g[i](m) and g2[i](m); and
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� if player i receives a message by the error-reporting noisy cheap talk in round r, then

player i reports #r
i , which is her signals f [i](m) and f2[i](m).

Remember that we want to use binary perfect cheap talk as mentioned in Section 1.5.

For round r corresponding to a review round, for each #r
i 2 f1; :::; TgjAijjYij, we can attach

a sequence of binary messages fG;Bg so that the sequence uniquely identi�es #r
i . The

length of the sequence is jAij jYij log2 T . Similarly, for each #r
i (k), we can attach a sequence

of binary messages fG;Bg with length 1
4
jAij jYij log2 T . For each (ai; yi), we can attach a

sequence of binary messages fG;Bg with length log2 jAij jYij. Then, the number of binary

messages to send the fourth message fai;t; yi;tgt2T (r;k(r)) is log2 jAij jYijT
1
4 . Hence, in total,

the length of the messages is �(T
1
4 ). For the other rounds, the length of the necessary

messages is at most 3. Therefore, in total, the number of messages we need is

�(T
1
4 ): (2.41)

As a preparation to show the incentive to tell the truth, we prove the following lemma:

Lemma 21 If Assumption 5 is satis�ed, then given � > 0, there exists �" > 0 such that

1. there exists gi(hmainj ; ai; yi) such that, for each l 2 f1; :::; Lg and t 2 T (l), conditional

on �̂i(l) = G, it is better for player i to report (ai;t; yi;t) truthfully: for all hmaini and

hmainj with �̂i(l) = G, conditional on �̂i(l) = G,

E
�
gi(h

main
j ; âi;t; ŷi;t) j hmaini ; (âi;t; ŷi;t) = (ai;t; yi;t)

�
(2.42)

> E
�
gi(h

main
j ; âi;t; ŷi;t) j hmaini ; (âi;t; ŷi;t) 6= (ai;t; yi;t)

�
+ �"T�(N�1);

where (âi;t; ŷi;t) is player i�s report about (ai;t; yi;t) in the report block;
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2. for the round where player i sends the message by the error-reporting noisy cheap talk,

it is better to report (m; g[i](m); g2[i](m)) truthfully:

E

264 gi(h
main
j ; m̂; \g[i](m); \g2[i](m))

j hmaini ;
�
m̂; \g[i](m); \g2[i](m)

�
= (m; g[i](m); g2[i](m))

375 (2.43)

> E

264 gi(h
main
j ; m̂; \g[i](m); \g2[i](m))

j hmaini ;
�
m̂; \g[i](m); \g2[i](m)

�
6= (m; g[i](m); g2[i](m))

375+ �"T�1;

where
�
m̂; \g[i](m); \g2[i](m)

�
is player i�s report in the report block about the message

and signals of the supplemental round; and

3. for the round where player i receives the message from the error-reporting noisy cheap

talk, it is better to report (f [i](m); f2[i](m)) truthfully:

E

264 gi(h
main
j ; \f [i](m); \f2[i](m))

j hmaini ;
�
\f [i](m); \f2[i](m)

�
= (f [i](m); f2[i](m))

375 (2.44)

> E

264 gi(h
main
j ; \f [i](m); \f2[i](m))

j hmaini ;
�
\f [i](m); \f2[i](m)

�
6= (f [i](m); f2[i](m))

375+ �"T�1;

where
�
\f [i](m); \f2[i](m)

�
is player i�s report in the report block about the signals of

the supplemental round.

Proof: 1. Note that with �̂i(l) = G, player j takes �j;t that takes each action with

probability no less than �. We show that

gi(h
main
j ; âi;t; ŷi;t) = �1ftj(l) = tg



1aj;t;yj;t � E[1aj;t;yj;t j âi;t; ŷi;t; �j;t]

2
works.10 To see this, consider the following two cases:

10Kandori and Matsushima (1998) use a similar reward to give a player the incentive to
tell the truth about the history.
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(a) if tj(l) 6= t, then any report is optimal since gi(hmainj ; âi;t; ŷi;t) = 0; and

(b) if tj(l) = t, then period t is not used for the construction of player j�s continuation

action plan. Hence, player i cannot learn aj;t; yj;t from hmaini . Hence, player i, after

knowing tj(l) = t and �j;t, wants to minimize

min
âi;t;ŷi;t

E
h

1aj;t;yj;t � E[1aj;t;yj;t j âi;t; ŷi;t; �j;t]

2 j ai;t; yi;t; �j;ti :

Lemma 21 implies that (âi;t; ŷi;t) = (ai;t; yi;t) is a unique minimizer.

Since Aj(x) 3 �j;t is �nite, we are left to show that there exists �" > 0 such that,

for any hmaini , l and t 2 T (l), player i puts a belief at least �"T�1 on tj(l) = t.

From now on, we condition on player j�s history at the beginning of the lth review

round with �̂i(l) = G.

Let#�
j(l)(aj; yj;1Qj(x)) denote howmany times player j observed each pair (aj; yj;1Qj(x))

in the lth review round and #�
j(l) be a vector (#

�
j(l)(aj; yj;1Qj(x)))(aj ;yj ;1Qj(x)). Note

that the distribution of player j�s continuation action plan from the next round is fully

determined by #�
j(l) and (aj;tj(l); yj;tj(l);1Qj(x);tj(l)). Hence, it su¢ ces to show that, if

player i could know fai;� ; yi;�g�2T (l), #�
j(l) and (aj;tj(l); yj;tj(l);1Qj(x);tj(l)), player i puts

a belief at least �"T�1 on tj(l) = t for each t.

For any t and t0 2 T (l), the likelihood ratio between tj(l) = t and tj(l) = t0 is given by

Pr
�
tj(l) = t j fai;� ; yi;�g�2T (l); �j(l);#�

j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l))
�

Pr
�
tj(l) = t0 j fai;� ; yi;�g�2T (l); �j(l);#�

j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l))
�

=
Pr
�
#�
j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l)) j fai;� ; yi;�g�2T (l); �j(l); tj(l) = t

�
Pr
�
#�
j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l)) j fai;� ; yi;�g�2T (l); �j(l); tj(l) = t0

�
2
�
min q(aj; yj;1Qj(x) j ai; yi; �j(l));

1

min q(aj; yj;1Qj(x) j ai; yi; �j(l))

�
;
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where the minimum is taken with respect to aj; yj;1Qj(x). By Assumption 2 and Lemma

14, there exists �" > 0 such that

�
min q(aj; yj;1Qj(x)jai; yi; �j(l));

1

min q(aj; yj;1Qj(x)jai; yi; �j(l))

�
2
�
�";
1

�"

�
:

Since Aj(x) 3 �j(l) is �nite, we can take �" independently from ai; yi; �j(l). Hence, we

have

Pr
�
tj(l) = t j fai;� ; yi;�g�2T (l); �j(l);#�

j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l))
�

> �"Pr
�
tj(l) = t0 j fai;� ; yi;�g�2T (l); �j(l);#�

j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l))
�
:

Since there exists at least one t with

Pr
�
tj(l) = t j fai;� ; yi;�g�2T (l);#�

j(l); (aj;tj(l); yj;tj(l);1Qj(x);tj(l))
�
� T�(N�1);

we are done.

2. From (1.5),

gi(h
main
j ; m̂; \g[i](m); \g2[i](m))

= �



1f2[j](m) � E[1f2[j](m) j f [j](m); m̂; \g[i](m); \g2[i](m)]


2

works. Since player j�s continuation action plan is independent of f2 [j] (m), condition-

ing on hmaini does not change the optimality.
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3. From (1.3),

gi(h
main
j ; \f [i](m); \f2[i](m))

= �



1g2[j](m) � E[1g2[j](m) j m; g[j](m); \f [i](m); \f2[i](m)]


2

works. Since player j�s continuation action plan is independent of g2 [j] (m), condition-

ing on hmaini does not change the optimality.

Since � is �xed in Section 2.6, �" is now �xed. Given this preparation, by backward

induction, we construct �reporti

�
hr+1j ; ĥr+1i ; r

�
for each r such that

�reporti (xj; h
TP+1
j : �) =

X
r

�reporti

�
hr+1j ; ĥr+1i ; r

�

makes it optimal to tell the truth in the report block and that �i(xi) is exactly optimal.

Formally, �reporti

�
hr+1j ; ĥr+1i ; r

�
is determined as follows. If player i is not selected by

the public randomization device or there exists l such that the lth review round is before or

equal to round r and �̂i(l) = B, then

�reporti

�
hr+1j ; ĥr+1i ; r

�
= 0: (2.45)

Otherwise, �reporti

�
hr+1j ; ĥr+1i ; r

�
is the summation of the following rewards and punish-

ments.

Punishment for a Lie One component of �reporti

�
hr+1j ; ĥr+1i ; r

�
is the punishment for

telling a lie. For round r corresponding to a review round, the punishment is the summation

of the following three:

� the number indicating player i�s lie about fai;t; yi;tgt2T (r;k(r)):

X
t2T (r;k(r))

T�3gi(h
main
j ; âi;t; ŷi;t); (2.46)
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� the number indicating player i�s lie about #r
i (k):

T�3 � T
3
4 � 1

8<:#̂r
i (k(r)) 6=

X
t2T (r;k(r))

1âi;t;ŷi;t

9=; ; (2.47)

where 1âi;t;ŷi;t is an jAij jYij�1 vector such that the element corresponding to (âi;t; ŷi;t)

is equal to 1 and the others are 0. Here, the term T
3
4 cancels out T�

3
4 , the probability

that each k is selected to be k(r) by the public randomization; and

� the number indicating player i�s lie about #r
i :

T�3 � 1
(
#̂r
i 6=

X
k

#̂r
i (k)

)
: (2.48)

If player i sends a message by the error-reporting noisy cheap talk in round r, then player

i reports (m; g[i](m); g2[i](m)). Player j punishes player i if it is likely for player i to tell a

lie by

T�3gi(h
main
j ; m̂; \g[i](m); \g2[i](m)): (2.49)

If player i receives a message from the error-reporting noisy cheap talk in round r, then

player i reports (f [i](m); f2[i](m)). Player j punishes player i if it is likely for player i to tell

a lie by

T�3gi(h
main
j ; \f [i](m); \f2[i](m)): (2.50)

Cancel Out the Expected Punishment by Telling the Truth Note that even if

player i tells the truth, the expected punishment is positive for (2.46), (2.49) and (2.50)

and the expectation of the punishment is di¤erent for di¤erent actions and messages.11 We

cancel out the di¤erences in ex ante values of the punishment between di¤erent actions and

messages:

11On the equilibrium, (2.47) and (2.48) are 0 after any history.
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� if round r is a review round, then player j gives player i

X
t2T (r)

1ftj(l) = tg1ft 2 T (r; k(r))gT�3�i[�j(l)](yj;t); (2.51)

� if player i sends the message in round r, then player j gives player i

T�3�i(f [j] (m)); (2.52)

and

� if player i receives the message in round r, then player j gives player i

T�3�i(m): (2.53)

Here, �i(f [j] (m)) (�i(m), respectively) is de�ned so that the di¤erences in (2.49) ((2.50),

respectively) among messages are canceled out ex ante before sending (receiving, respec-

tively) the message, as we de�ne �i[�j](yj;t) in Lemma 18. Assumption 3 guarantees the

existence of such a reward.

Then, in each period of the main block, given truthtelling in the report block, before

taking an action or sending a message, the ex ante punishments from (2.46), (2.47), (2.48),

(2.49), (2.50), (2.51), (2.52) and (2.53) are zero.

Reward for the Optimal Action Another component of �reporti (hr+1j ; ĥr+1i ; r) is the re-

ward for taking an equilibrium action in round r (or, punishment for not taking an equi-

librium action). From
�
#~r
i

	
~r�r�1, we can calculate h

r
i =

�
#~r
i

	
~r�r�1. Let ĥ

r
i be player j�s

inference of hri based on player i�s reports
n
#̂~r
i

o
~r�r�1

.

If round r corresponds to a review round, then based on the reports ĥri and #̂
r
i , player j

gives the reward

fi(ĥ
r
i ; #̂

r
i ; �j(r)); (2.54)
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which is to be determined. Here, �j(r) is player j�s action plan in round r.

If round r corresponds to a round where player i sends the message m, then based on

the reports ĥri and m̂, player j gives the reward

fi(ĥ
r
i ; m̂); (2.55)

which is to be determined.

We will take fi such that

fi(ĥ
r
i ; #̂

r
i ; �j(r)); fi(ĥ

r
i ; m̂) 2 [�T�r�(N�1)�4; T�r�(N�1)�4] (2.56)

for all ĥri , #̂
r
i , �j(r) and m̂.

Incentive to Tell the Truth Before specifying fi, we establish player i�s incentive to tell

the truth. For the reports about the last round, all the reports about the previous rounds

are sunk. Hence, what the reports a¤ect is the punishment and fi for the last round. Both

are zero for �̂i(L) = B. Hence, player i can condition �̂i(L) = G. From (2.56), the e¤ect

on fi is bounded by �(T�(N�1)�4) while the marginal e¤ect on punishment from telling a

lie is at least �(T�(N�1)�3) from (2.46), (2.47), (2.48), (2.49), (2.50) and Lemma 21. Hence,

truthtelling is strictly optimal.

Given the incentive to tell the truth about the last round, the same argument holds for

the second last round, and so on. By induction, we establish player i�s incentive to tell the

truth for all the rounds.

Ex Ante Expected Punishment Given the truthtelling incentive and (2.51), (2.52) and

(2.53), in each period of each main block, before taking an action or sending a message, the

ex ante punishments from (2.46), (2.47), (2.48), (2.49), (2.50), (2.51), (2.52) and (2.53) are

zero.
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Determination of fi We determine fi by backward induction.

In the last round (the Lth review round), since player j determines her continuation

strategy treating each period within a past round identically, player i�s belief about player

j�s continuation strategy at the beginning of the Lth review round conditional on �j(L) and

�̂i(L) = G is determined by hri . Conditional on �j(L), the learning from signal observations

is redundant. In addition, given the truthtelling incentive, the expected punishments from

(2.46), (2.47), (2.48), (2.49), (2.50), (2.51), (2.52) and (2.53) are zero and can be ignored.

Hence, conditional on �j(L) and �̂i(L) = G, player i�s value of taking (T (r; ai))ai only

depends on hri regardless of fai;t; yi;tg in the Lth review round. Let v(ĥri ; �j(r); (T (r; ai))ai)

denote this value. On the other hand, from player i�s report, player j can know hri and how

many times player i took ai in round r. Therefore, player j can calculate fi such that, if ĥri

is an on-path history,

� if (T̂ (r; ai))ai is an equilibrium action plan given ĥri , then

fi(ĥ
r
i ; #̂

r
i ; �j(r)) =

v(ĥri ; �j(r); (T
�(r; ai))ai)� v(ĥri ; �j(r); (T̂ (r; ai))ai)

Pr(player i is picked by the public randomization)
(2.57)

so that player i is indi¤erent between any equilibrium action plan. Here, (T �(r; ai))ai

is such (T (r; ai))ai that minimizes v(ĥ
r
i ; �j(r); (T̂ (r; ai))ai) among those taken with a

positive probability in equilibrium after ĥri ; and

� if (T̂ (r; ai))ai is not an equilibrium action plan given ĥri , then

fi(ĥ
r
i ; #̂

r
i ; �j(r)) = �T�1�(N�1)�4 (2.58)

On the other hand, if ĥri is an o¤-path history, then fi is de�ned to be 0.

We can take fi(ĥri ; #̂
r
i ; �j(r)) satisfying (2.56) since (i) the original action plan is almost

optimal by Proposition 16 conditional on �j(L) and �̂i(L) = G, (ii) we have established the
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incentive to tell the truth, and (iii) from (ii) and �i, the ex ante punishments from (2.46),

(2.47), (2.48), (2.49), (2.50), (2.51), (2.52) and (2.53) are zero.

Consider player i�s incentive on the equilibrium path. With �̂i(L) = B, then �reporti

�
hr+1j ; ĥr+1i ; r

�
=

0 and �j(L) = B. Hence, any action sequence is optimal. With �̂i(L) = G, (2.57) makes

player i indi¤erent between all the (T (r; ai))ai�s that are taken with a positive probability in

equilibrium after ĥri , regardless of fai;t; yi;tg in the Lth review round. In addition, (2.58) is

su¢ ciently large to discourage any deviation after any history on the equilibrium path since

the equilibrium action plan is almost optimal except for the report block.

Therefore, we are done with the last round. We proceed backward.

For the lth review round, given ĥri and #̂
r
i , we can calculate the following e¤ects of player

i�s history in the lth review round on the continuation payo¤ from the next round: given ĥri

and #̂r
i , player i�s optimal action plan from the next round is determined. Given this,

� the e¤ect on fi for round ~r � r + 1 (this is well de�ned since we proceed backward);

� the e¤ect on (2.46), (2.47), (2.48), (2.49), (2.50), (2.51), (2.52) and (2.53) for round

~r � r + 1. Since all are zero, we neglect this e¤ect;

� the e¤ect on the distribution of �j(l). By Proposition 16, as long as player i can learn

�j(l), this e¤ect can be neglected. See below for the e¤ect on learning;

� the e¤ect on the distribution of �j(l). Since the distribution is independent of player

i�s action plan, we neglect this e¤ect; and

� the e¤ect on player i�s learning about �j(l) and �j(l).

Hence, we can concentrate on the e¤ect on fi and player i�s learning about �j(l) and �j(l).

Since fi for round ~r � r+1 is bounded by (2.56) (replace r with r+1), the former is bounded

by [��(T�r�(N�1)�5);�(T�r�(N�1)�5)]. For the latter, let Vi(hri ;#r
i ) be the expected increase

of player i�s continuation payo¤ at the beginning of round r + 1 if player i could know �j(l)
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and �j(l) from round r + 1. Note that �j(l) and �j(l) fully determine player i�s optimal

action from the next round. Proposition 16 implies Vi(hri ;#
r
i ) = exp(��(T

1
2 )).

Player j constructs fi(ĥri ; #̂
r
i ; �j(r)) in the following two steps: �rst, player j makes player

i indi¤erent between all the #r
i in terms of the above two e¤ects so that player i does not

have an incentive to a¤ect fi for round ~r � r + 1 or improve the learning at the beginning

of round r + 1 (ex post). This is bounded by [��(T�r�(N�1)�5);�(T�r�(N�1)�5)].

Second, given the �rst step, player j makes player i indi¤erent between all the (T (r; ai))ai�s

that are taken with a positive probability in equilibrium after ĥri and discourages player i

from any deviation after any history on the equilibrium, as in the Lth review round.

The total adjustment can be bounded by [�T�r�(N�1)�4; T�r�(N�1)�4], as desired.

For round r corresponding to a round where player i sends a message m, we replace

(T (r; ai))ai with the set of possible messages m�s in the above discussion.

For round r corresponding to a round where player i receives a message m, player i does

not take an action.

We can proceed until the �rst round and show the optimality of �i(xi) recursively.

Finally, without the reward in the report block, for all x 2 fG;Bg2, �i(xi) gives a payo¤

vi for xj = B and �vi for xj = G. In this section, we have established the exact optimality of

�i(xi) conditional on xj. Since the summation of the reward in the report block is bounded

by T�1, for all x 2 fG;Bg2, �i(xi) is optimal against �j(xj) and gives a payo¤ close to vi
for xj = B and �vi for xj = G. By adjusting the reward based on xj, we can make sure that

�i(xi) is optimal against �j(xj) and the payo¤ is vi for xj = B and �vi for xj = G. Since

�i(xi) is optimal conditional on xj, it is optimal for both players to send xi truthfully in the

coordination block (although player 2, the second sender, knows x1 when she sends x2).
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Chapter 3

Overview of the Extensions

In the following chapters, we prove the folk theorem for a general game without cheap talk

or public randomization (Theorem 8) in steps. Remember that the arguments in Chapter 1

are valid for all the steps.

We o¤er an overview of the structure and summarize exactly what generic conditions we

need to prove Theorems 7 and 8 in each step.

3.1 Structure

First, in Chapter 4, we show the folk theorem for the general two-player game with the

perfect cheap talk, error-reporting noisy cheap talk and public randomization.

Second, in Chapter 5, we show the folk theorem for the general more-than-two-player

game with the perfect cheap talk, error-reporting noisy cheap talk and public randomization.

Note that, by the end of the second step, we have shown Theorem 7. Hence, we are left

to show Theorem 8, dispensing with the perfect cheap talk, error-reporting noisy cheap talk

and public randomization.

Third, in Chapter 6, we prove the dispensability in the two-player game. We proceed in

steps. In the coordination block, we replace the perfect cheap talk with the error-reporting

noisy cheap talk. Then, we dispense with the error-reporting noisy cheap talk in the coor-
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dination and main blocks. On the other hand, in the report block, we dispense with public

randomization, after which we replace the perfect cheap talk with conditionally independent

noisy cheap talk. Then, we dispense with the conditionally independent cheap talk.

Fourth, in Chapter 7, we dispense with the perfect cheap talk, error-reporting noisy cheap

talk and public randomization in the more-than-two-player game. The main di¤erence from

the two-player case is how to construct the coordination block without the perfect cheap

talk but with the error-reporting noisy cheap talk.

3.2 Assumptions

Given the above structure, we mention what generic assumptions are su¢ cient to prove

Theorems 7 and 8 in each step. Again, all the assumptions are generic under Assumption 6.

3.2.1 General Two-Player Game with Cheap Talk and Public Ran-

domization

In the the general two-player game with the perfect cheap talk, error-reporting noisy cheap

talk and public randomization, no additional assumption is necessary, that is, Assumptions

1, 2, 3 and 5 are su¢ cient.

3.2.2 General More-Than-Two-Player Game with Cheap Talk and

Public Randomization

With more than two players, we also assume Assumption 4 so that player j can identify

which of two players i and n is more suspicious in deviations since for each player j, there

are more than one opponents.

Assumptions 1, 2, 3 and 5 are maintained as they are.
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3.2.3 General Two-Player Game withOUT Cheap Talk

Now we consider how to dispense with the perfect cheap talk, error-reporting noisy cheap

talk and public randomization device in the general two-player game.

3.2.3.1 Coordination Block

With cheap talk, each player communicates xi via perfect cheap talk. We need to consider

the protocol to coordinate on xi by sending messages via actions.

Error-Reporting Noisy Cheap Talk First, we replace the perfect cheap talk in the

coordination block with the error-reporting noisy cheap talk. To do so, we do not need any

new assumptions.

Messages via Actions Second, we replace the error-reporting noisy cheap talk with mes-

sages via actions. Since we replace the perfect cheap talk in the coordination block with

the error-reporting noisy cheap talk, this step enables us to dispense with the perfect cheap

talk in the coordination block and the error-reporting noisy cheap talk in the main blocks.

In this step, we make an assumption to make sure that we can create a message protocol

to preserve the important features of the inferences which were guaranteed with the error-

reporting noisy cheap talk (see Lemma 10). A su¢ cient condition will be Assumption 39 in

Chapter 6.

3.2.3.2 Report Block

With public randomization, the players coordinate on who will report the history by the

public randomization device. In addition, the picked player reports the history via perfect

cheap talk.
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Dispensing with Public Randomization We �rst dispense with the public randomiza-

tion device. So that the players can coordination through their actions and private signals,

Assumption 40 in Chapter 6 is su¢ cient.

Conditionally Independent Noisy Cheap Talk We second replace the perfect cheap

talk with conditionally independent noisy cheap talk. For this step, no new assumption is

necessary (except for the availability of the conditionally independent noisy cheap talk).

Messages via Actions We third replace the conditionally independent noisy cheap talk

with messages via actions. As seen in Section 1.5.6, we need to create a statistics of a receiver

to infer the messages from a sender so that the sender cannot get any information about

the realization of the statistics through her private signals. See Assumption 41 in Chapter

6. Note that we do not assume that 2 jYij � jAjj jYjj for all i; j with i 6= j. Hence, we

cannot use the method that Fong, Gossner, Hörner, and Sannikov (2010) create �j(yj) in

their Lemma 1, which preserves the conditional independence property.

3.2.4 General More-Than-Two-Player Game withOUTCheap Talk

Finally, we consider how to dispense with the perfect cheap talk, error-reporting noisy cheap

talk and public randomization device in the general more-than-two-player game.

Before proceeding to the explanation of message exchange protocols, note that when

the players exchange messages via actions, the message exchange becomes payo¤ relevant.

Therefore, for each player i, player i � 1 changes player i�s continuation payo¤ to cancel

out the di¤erences in instantaneous utilities. Since the sender of a message may be di¤erent

from players i and i� 1, to control player i�s continuation payo¤ properly, player i� 1 needs

to identify the sender�s message and player i�s action simultaneously. We will introduce

Assumption 48 in Chapter 7 for this purpose.
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3.2.4.1 Coordination Block

In Chapter 5, each player communicates xi via perfect cheap talk in the coordination block.

Error-Reporting Noisy Cheap Talk We �rst replace the perfect cheap talk with the

error-reporting noisy cheap talk. As we have explained in Section 1.5.6.2, with more than

two players, it is important to create a message protocol so that, while the players exchange

messages and infer the other players�messages in order to coordinate on xi, there is no

player who can induce a situation where some players infer xi is G while the others infer xi

is B. Since the signals from the error-reporting noisy cheap talk are private as we will see

in Section 1.3.2, we need a more sophisticated communication protocol than the case with

two players. For that purpose, we will add Assumption 49 in Chapter 7.

Messages via Actions Then, we replace the error-reporting noisy cheap talk with mes-

sages via actions. So that we can create a message protocol to preserve the important features

that were satis�ed by the error-reporting noisy cheap talk, Assumption 51 is su¢ cient.

3.2.4.2 Report Block

We make the more-than-two-player-case counterparts of Assumptions 40 and 41 to dispense

with the public randomization and perfect cheap talk in the report block. So that the players

can coordinate through their actions and private signals, we add Assumption 53. In addition,

to construct a statistics to preserve the conditional independence property, Assumption 54

is su¢ cient.
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Chapter 4

General Two-Player Game with

Cheap Talk

In this chapter, we prove Theorem 7 (folk theorem with cheap talk) for the general two-player

game with the perfect cheap talk, error-reporting noisy cheap talk and public randomization

devices.

Since there are only two players, when we say players i and j, unless otherwise speci�ed,

player i is di¤erent from player j.

4.1 Valid Lemmas

Since we maintain Assumptions 3 and 5, Lemmas 12, 13, 17 and 18 are still valid. Also,

since the error-reporting noisy cheap talk is available, Lemma 10 holds.

4.2 Intuitive Explanation

The basic structure is the same as in the prisoners�dilemma: in each �nitely repeated game,

there are L review rounds and several supplemental rounds. In each review round, player j
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monitors player i by making a score:

Xj(l) =
X
t2Tj(l)

�i[� (x)](yj;t):

If the realization of Xj(l) is far from the ex ante mean, then player j will have �j(l+1) = B

and switch to a constant reward ��i(x;B; l + 1).

Remember that player j with xj = B and �j (l + 1) = B needs to give a non-negative

constant reward. On the other hand, player j with harsh strategy �j(B) and �i needs to

ensure that player i�s payo¤ is below vi regardless of player i�s action plan.

In the prisoners�dilemma, aj(x) with xj = B de�ned to satisfy (1.18) happens to be the

minimaxing action. Hence, for su¢ ciently small �, player i�s payo¤ is below vi regardless

of player i�s action plan with a non-negative reward. However, in a general game, aj(x)

with xj = B is not always a minimaxing action. Therefore, player j with xj = B and

�j (l + 1) = B needs to switch to the minimaxing action if player j thinks that player i has

deviated.

Reversing the indices i and j, we incentivize player i with xi = B and �i (l + 1) = B to

switch to the minimaxing action if player i thinks that player j has deviated. The logic is

based on Lemma 15.1 That is, if

1. player i takes �i(l) = �i(x);

2. the empirical distribution of ai;t�s is close to �i(x); and

3. player i�s signal frequency in the periods where player i takes ai(x) in Ti(l) is close to

the a¢ ne hull of player i�s signal distributions with respect to player j�s action,

then whenever player i observes a signal frequency far from the ex ante mean under

�j(x), player i believes that player j takes �j(l) 6= �j(x). After �j(l) 6= �j(x), player j

makes player i indi¤erent between any action pro�le, which means player i is willing to

1In Section 2.9, we have proven Lemma 15 for a general game.
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take the minimaxing action. Intuitively, di(l + 1) 2 fG;Bg indicates whether or not player

i minimaxes player j from the (l + 1)th review round. Since the above three conditions

are satis�ed with a high probability regardless of player j�s deviation, player j is punished

su¢ ciently severely.

4.3 Structure of the Phase

As in the prisoners�dilemma, after the lth review round, we have the supplemental rounds

for �i(l + 1).

In addition, player i with �i(l + 1) = B and di(l + 1) = B minimaxes player j in the

(l+1)th review round. Since player i�s reward function is constant after �i(l+1) = B, player

j wants to take the static best response to player i�s action. To best respond to player i,

player j wants to know di(l + 1). Therefore, we also introduce the supplemental round for

di(l+1) so that player i can send di(l+1) via error-reporting noisy cheap talk with precision

p = 1� exp(�T 1
2 ). The truthtelling incentive will be veri�ed later.

4.4 Preparation

Before constructing the equilibrium, we make three preparations.

4.4.1 Minimax and Values

Fix ��j be a player j�s minimaxing strategy against player i. Given vi, take u su¢ ciently

small so that

vi > vi (B) � max
�
max
x:xj=B

ui(a (x)); v
�
i

�
+ 2u: (4.1)

Given u, for su¢ ciently small �,

vi (B) � max
�
max
x:xj=B

wi(x); max
x:xj=B

ui (ai (x) ; �j (x)) ; v
�
i

�
+ u: (4.2)
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Re-take �u if necessary to assume

�u � vi (B) + u; vi (B)� v�i (4.3)

4.4.2 Statistics to Monitor Player j

Instead of using player i�s signal directly, player i constructs a statistics to infer whether

player j has deviated. The following is the lemma to construct such a statistics:

Lemma 22 If Assumption 3 is satis�ed, then there exist q2 > q1 such that, for all i 2 I

and a 2 A, there exists a function 
ai : Yi ! (0; 1) such that player i can statistically infer

whether player j takes aj or not:

E [
ai (yi) j ~aj; ai] =

8><>: q2 if ~aj = aj;

q1 otherwise.

Proof: Assumption 3 guarantees the existence of such 
ai . Further, we can assume that


ai : Yi ! (0; 1) and q1; q2 2 (0; 1) by applying an appropriate a¢ ne transformation of 
�s.

Intuitively, if 1
jTi(l;x)j

P
t2Ti(l;x) 


a(x)
j (yj;t) is far from q2, player i infers that player j has

deviated.

4.4.3 Perfect Monitoring

In this subsection, we consider a one-shot game with perfect monitoring parameterized with

l 2 N with the same sets of players and their possible actions. The result of this section

is used when we consider how player j punishes player i in the TP -period �nitely repeated

game with private monitoring.

In the game with parameter l 2 f1; :::; L� 1g, player j takes �j(x). Take a pure strategy

aBRi (x) 2 BRi(�j(x)).
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Depending on player i�s action, dj(l + 1) 2 fG;Bg is determined as follows: if player

i takes ai(x), then dj(l + 1) = G with probability one. If player i takes ai 6= ai(x), then

dj(l + 1) = B with probability pl+1j (x) and dj(l + 1) = G with the remaining probability

1� pl+1j (x).

Player i�s payo¤ will be the convex combination of the following two variables:

1. �instantaneous utility�

~ui (ai) =

8><>: ui (ai; �j(x)) + u if ai = aBRi (x);

ui (ai; �j(x)) if ai 6= aBRi (x);

that is, if player i takes aBRi (x), player i gets a small �bonus�u > 0; and

2. �continuation payo¤�

E
�
W l+1
i (dj(l + 1)) j ai

�
such that player i�s payo¤ is equal to

V l
i � max

ai

1

L� l + 1
~ui(ai) +

L� l

L� l + 1
E
�
W l+1
i (dj(l + 1)) j ai

�
with

W l+1
i (G) =

(L� l � 1) vi (B) + �u
L� l

+ u; (4.4)

W l+1
i (B) = v�i : (4.5)

In this game, we can show the following lemma:
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Lemma 23 For any L � 2, q2 > q1 and u, there exist �q > 0 and �� > 0 such that, for any

q < �q and � < ��, for any i 2 I, there exist fpl+1
j
(x); �pl+1j (x)gL�1l=1 with

�pl+1j (x) 2 [0; 1]

pl+1
j
(x) =

q2 � q � (1� 2 (jAij � 1) �) q1
q2 � q1

�pl+1j (4.6)

for all l = 1; :::; L� 1 such that, for fpl+1j (x)gL�1l=1 ,

1. if pl+1j (x) � �pl+1j (x) for all l, then it is uniquely optimal for player i to take aBRi (x);

and

2. if pl+1j (x) 2
h
pl+1
j
(x); �pl+1j (x)

i
for all l, then

V l
i � W l

i (G) =
(L� l) vi (B) + �u

L� l + 1
+ u:

Intuitively, pl+1j (x) is the probability for player j to switch to minimaxing in the repeated

game. pl+1j (x) is su¢ ciently high so that player i is indi¤erent between taking ai (x) and

aBRi (x) except for a small �bonus�for aBRi (x), which means player i should take aBRi (x) as

stated in Statement 1 and the punishment is su¢ ciently severe as stated in Statement 2.

Proof: Fix u. Then, �x ��0 so that (4.2) holds for all � < ��0.

If ai(x) = aBRi (x), then take �pl+1j (x) = 0. The optimality of aBRi (x) is obvious. In

addition, with u�i (x) = ~ui(a
BR
i (x)),

V l
i =

1

L� l + 1
u�i (x) +

L� l

L� l + 1
W l+1
i (G)

=
1

L� l + 1
(ui(ai(x); �j(x)) + u) +

L� l

L� l + 1

�
(L� l � 1) vi (B) + �u

L� l
+ u

�
� 1

L� l + 1
vi(B) +

(L� l � 1) vi (B) + �u
L� l + 1

+ u� 1

L� l + 1
u

= W l
i (G)�

1

L� l + 1
u;
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as desired. The inequality uses (4.2).

Otherwise, de�ne �pl+1j (x) 2 (0; 1) as the solution for

�pl+1j (x)
(L� l � 1) vi (B) + �u

L� l
+
�
1� �pl+1j (x)

�
v�i = vi (B) + u:

With pl+1j (x) = �pl+1j (x),

� if player i takes aBRi (x), then the payo¤ is

1

L� l + 1
u�i (x) +

L� l

L� l + 1
vi (B) +

L� l

L� l + 1
u;

and

� if player i takes ai(x), then the payo¤ is at most

1

L� l + 1
ui(ai (x)) +

L� l

L� l + 1

�
(L� l � 1) vi (B) + �u

L� l
+ u

�
� 1

L� l + 1
(u�i (x)� u) +

L� l

L� l + 1

�
(L� l � 1) vi (B) + �u

L� l
+ u

�
� 1

L� l + 1
u�i (x) +

L� l

L� l + 1
vi (B) +

L� l

L� l + 1
u� 1

L
u:

Hence, it is uniquely optimal for player i to take aBRi (x).

Since (L�l�1)vi(B)+�u
L�l � v�i , for all p

l+1
j (x) � �pl+1j (x), we have the same incentive. In

addition, with �pl+1j (x),

V l
i =

1

L� l + 1
u�i (x) +

L� l

L� l + 1
vi (B) +

L� l

L� l + 1
u

� W l
i (G)�

1

L� l + 1
u � W l

i (G)�
1

L
u:

Hence, for su¢ ciently small � and q, we have V l
i � W l

i (G) for all p
l+1
j (x) 2 [pl+1

j
(x); �pl+1j (x)]:
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4.5 Equilibrium Strategy

As in Section 2.4, we de�ne �i (xi) and �maini (xj; h
main
j : �). In Section 4.5.1, we de�ne the

state variables that will be used to de�ne the action plans and rewards. Given the states,

Section 4.5.2 de�nes the action plan �i(xi) and Section 4.5.3 de�nes the reward function

�maini (xj; h
main
j : �). Finally, Section 4.5.4 determines the transition of the states de�ned in

Section 4.5.1.

4.5.1 States xi, �j(l + 1), �̂j(l + 1), di(l + 1), d̂j(l + 1) and �j(l + 1)

The state xi 2 fG;Bg is determined at the beginning of the phase and �xed. By the perfect

cheap talk, x becomes common knowledge.

As in the prisoners�dilemma, �j(l + 1) 2 fG;Bg is player j�s state, indicating whether

player j�s score about player i has been erroneous. On the other hand, �̂j(l + 1) 2 fG;Bg

indicates whether player i believes that �j(l + 1) = G or �j(l + 1) = B is likely.

As seen in Section 4.2, di(l + 1) 2 fG;Bg is player i�s state, indicating whether or not

player i minimaxes player j. On the other hand, d̂j(l+1) 2 fG;Bg indicates whether player

i believes that dj(l + 1) = G or dj(l + 1) = B (player j minimaxes player i) is likely.

Further, as in the prisoners�dilemma, player j makes player i indi¤erent between any

action pro�le sequence after some history. If she does in the (l + 1)th review round, then �maini

will be
P

� �
xj
i [�j(l)](yj;� ) for period � in the (l + 1)th review round and after. �j(l + 1) 2

fG;Bg is an index of whether player j uses such a reward. See Section 4.5.3 for how the

reward function depends on these four states.

4.5.2 Player i�s Action Plan �i (xi)

In the coordination block, each player sends xi truthfully via perfect cheap talk. Then, the

state pro�le x becomes common knowledge.
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In the lth review round, player i takes �i(l) 2 �(Ai) i.i.d. within the round. �i (l)

depends on �̂j(l), di(l) and d̂j(l):

1. if �̂j(l) = G, then

(a) if di(l) = G, then, given some �xed set Ai(x) of player i�s mixed action plans (see

Lemma 20 for the de�nition of Ai (x));

i. �i(l) = �i(x) with probability 1� �;

ii. �i(l) = ��i with probability
�
2
; and

iii. for each �i 2 Ai(x), �i(l) = �i with probability 1
2jAi(x)j�;

(b) if di(l) = B;

i. �i(l) = ��i with probability 1� �;

ii. �i(l) = �i(x) with probability
�
2
; and

iii. for each �i 2 Ai(x), �i(l) = �i with probability 1
2jAi(x)j�.

Note that the support of �i (l)�s is constant regardless of di(l); and

2. if �̂j(l) = B, then

(a) if d̂j(l) = G, then �i (l) = aBRi (x); and

(b) if d̂j(l) = B, then BRi(��j).

In the supplemental rounds for �i(l + 1) and di(l + 1), respectively, player i sends the

message �i(l + 1) and di(l + 1), respectively, truthfully via error-reporting noisy cheap talk

with precision p = 1� exp(�T 1
2 ).

4.5.3 Reward Function

In this subsection, we explain player j�s reward function on player i, �maini (xj; h
main
j : �).
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Reward Function As in the prisoners�dilemma, the reward �maini (xj; h
main
j : �) is written

as

�maini (xj; h
main
j : �) =

LX
l=1

X
t2T (l)

��i (t; aj;t; yj;t) (4.7)

+

8><>: �2�uT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = G;

2�uT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = B:

Remember that T (l) is the set of periods in the lth review round, that the �rst term cancels

out the e¤ect of discounting, and that �maini (x; hmainj ; l) is the reward for the lth review round.

Reward Function for the lth Review Round Next we de�ne �maini (x; hmainj ; l) for each

l = 1; :::; L. There are following two cases: in the lth review round,

1. if �j(l) = B, then player j makes player i indi¤erent between any action pro�le by

�maini (x; hmainj ; l) =
X
t2T (l)

�
xj
i [�j(l)](yj;t): (4.8)

Remember that by (2.8),

X
t2T (l)

�
xj
i [�j(l)](yj;t)

8><>: � 0 if xj = G;

� 0 if xj = B

and (1.17) is not an issue after �j(l) = B; and

2. otherwise, that is, if �j(l) = G, then player j�s reward on player i is based on the state

pro�le x, the index of the past erroneous score �j(l), index of minimaxing dj(l) and
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player j�s score about player i, Xj(l):

�maini (x; hmainj ; l) =

8><>: ��i(x;G; dj(l); l) +Xj(l) + �
xj
i [�j (x)](yj;tj(l)) if �j(l) = G;

��i(x;B; dj(l); l) if �j(l) = B:

(4.9)

Here, ��i(x; �j(l); dj(l); l) is a constant with

��i(x; �j(l); dj(l); l)

8><>: � 0 if xj = G;

� 0 if xj = B
(4.10)

that will be determined later so that (1.15), (1.16) and (1.17) are satis�ed.

Note that, as in the two-player prisoners�dilemma, one period tj(l) is randomly ex-

cluded from the construction of the score and we add �xji [�j (x)](yj;tj(l)) separately.

In addition, as we mentioned in Lemma 23, player j with �j(l) = B and dj(l) = G

gives a small bonus on u for taking aBRi (x). By Assumption 3, there exists �ui [�j(l)](yj)

so that

E [�ui [�j(l)](yj) j ai; �j(l)] =

8><>: u if ai = aBRi (x);

0 if ai 6= aBRi (x):

Player j with �j(l) = B and dj(l) = G adds

X
t2T (l)

�ui [�j(l)](yj;t) (4.11)

to �maini (x; hmainj ; l). For su¢ ciently small u, �ui [�j(l)](yj) is su¢ ciently small for all yj.

Hence, when we consider (1.17), we ignore (4.11).

4.5.4 Transition of the States

In this subsection, we explain the transition of player i�s states. Since xi is �xed in the phase,

we consider the following �ve states:
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4.5.4.1 Transition of �j(l + 1) 2 fG;Bg

The transition of �j(l+ 1) 2 fG;Bg and the proof that (4.10) is su¢ cient for (1.17) are the

same as in Section 2.4.4.1.

4.5.4.2 Transition of �̂j(l + 1) 2 fG;Bg

The transition of �̂j(l+ 1) 2 fG;Bg is the same as in Section 2.4.4.2 except that, if player i

has �̂j(l) = G and di(l) = B, then �̂j(l + 1) = G. As explained in Section 4.2, if di(l) = B,

then player i believes that player j has made player i indi¤erent between any action pro�le.

Hence, the belief about �j(l) is irrelevant for almost optimality.

Speci�cally, �̂j(1) = G. If �̂j(l) = B, then �̂j(l + 1) = B. Below, we explain how

�̂j(l + 1) 2 fG;Bg is de�ned given �̂j(l) = G.

Suppose player i�s history in the lth review round satis�es the following two conditions,

then player i disregards the message and

�̂j (l + 1) = G :

1. di(l) = B, that is, player i believes that player j has taken �j(~l) 6= �j(x) for ~l � l� 1;

or

2. di(l) = G and the following two conditions are satis�ed:

(a) player i takes �i(l) = �i(x); and

(b) (2.20), (2.22) and (2.23) are satis�ed. Remember the discussion in Section 2.4.4.2,

which implies the probability of (2.22) is independent of player j�s strategy.

Otherwise, player i obeys the message and

�̂j (l + 1) = f [i](�j(l + 1)): (4.12)
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Note that (2.20), (2.21), (2.22) and (2.23) are well de�ned for the general game in Section

2.4.4.2.

4.5.4.3 Transition of di(l + 1) 2 fG;Bg

Remember that di(l + 1) = B is the index of whether player i minimaxes player j in the

(l + 1)th review round. For the �rst round, di(1) = G (no punishment in the initial review

round). If di(l) = B, then di(l+1) = B. Below, we explain how di(l+1) 2 fG;Bg is de�ned

given di(l) = G.

Intuitively, by Lemma 22, for periods where player i takes ai (x), if player i observes a

lot of low 

a(x)
i (yi;t), then it is more likely that player j takes �j (l) 6= �j (x).

Hence, if player i�s history in the lth review round satis�es the following four conditions,

then player i minimaxes player j from the next review round:

di (l + 1) = B :

1. player i uses the harsh strategy: xi = B;

2. player i takes �i(l) = �i(x);

3. (2.20), (2.22) and (2.23) are satis�ed, which implies (2.21); and

4. 1
jTi(l;x)j

P
t2Ti(l;x) 


a(x)
i (yi;t) is low.

Otherwise, di (l + 1) = G.

We are left to de�ne Condition 4 formally. First, as Qi(x)1yi and 1Qi(x), we de�ne

�
a(x)
i 2 f0; 1g from 


a(x)
i (yi): player i after taking ai (x) and observing yi, player i draws a

random variable from the uniform [0; 1]. If the realization of this random variable is no more
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than 
a(x)i (yi), then �
a(x)
i = 1. Otherwise, �a(x)i = 0. Lemma 22 implies

Pr
�n
�
a(x)
i = 1

o
j ~aj; ai (x)

�
=

8><>: q2 if ~aj = aj (x) ,

q1 otherwise.

Second, let Condition 4 be satis�ed if

� 1
jTi(l;x)j

P
t2Ti(l;x) 


a(x)
i (yi;t) and 1

jTi(l;x)j
P

t2Ti(l;x) �
a(x)
i;t are close:







 1

jTi (l; x)j
X

t2Ti(l;x)



a(x)
i (yi;t)�

1

jTi(l; x)j
X

t2Ti(l;x)

�
a(x)
i;t







 < q

3
; (4.13)

and

� player i draws a random variable from the uniform [0; 1] and the realization of this

random variable is no less than

�pl+1i (x)min

8><>:1;
n
q2T � qT �

P
t2Ti(l;x) �

a(x)
i;t

o
+

q2T � q1T

9>=>; : (4.14)

As we have adjusted the probability of (2.22) in Section 2.4.4.2, we adjust the probability

of (4.13) so that the probability of (4.13) is independent of fai;t; yi;tgt2T (l). When we say

(4.13) is satis�ed, we take this adjustment into account.

Notice that, if di(l + 1) = B, then (4.13) and (4.14) imply

X
t2Ti(l;x)



a(x)
i (yi;t) � q2T �

2

3
qT:
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Together with (2.20), we have

1

jTi (l; x)j
X

t2Ti(l;x)



a(x)
i (yi;t) � q2

T

jTi (l; x)j
� 2
3
q

T

jTi (l; x)j

� q2
1

1� 2 (jAij � 1) �
� 2
3
q

1

1� 2 (jAij � 1) �
� q2 �

q

2
(4.15)

for su¢ ciently small �. By Lemma 22, this implies that player i�s signal frequency is far away

from qi (x). Since (2.20), (2.22) and (2.23) imply that player i�s signal frequency is in the

a¢ ne hull of qi (ai (x) ; aj) with respect to aj 2 Aj, there exists �j 2 Aj (x) with �j 6= �j (x)

such that player i�s signal frequency is skewed towards qi (ai (x) ; �j) and player i believes

that player j took �j 2 Aj (x) with �j 6= �j (x) in the lth review round. As we will see in

Section 4.5.4.5, this implies that player i believes that any action will be optimal from the

(l + 1)th review round and will have an incentive to minimax player j.

4.5.4.4 Transition of d̂j(l + 1) 2 fG;Bg

Player j sends dj(l + 1) via error-reporting noisy cheap talk in the supplemental round for

dj(l + 1). Player i always obeys the signal:

d̂j(l + 1) = f [i](dj(l + 1)): (4.16)

4.5.4.5 Transition of �j(l + 1) 2 fG;Bg

As we have seen in Section 2.4.3, �j(l + 1) = B implies that player i is indi¤erent between

any action pro�le (except for the incentives from �reporti ).

As in the two-player prisoners�dilemma, if �j(l) = B, then �j(l + 1) = B. Hence, we

concentrate on how �j(l + 1) 2 fG;Bg is de�ned conditional on �j(l) = G. �j(l + 1) = B if

one of the following �ve conditions is satis�ed:
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1. when player j sends �j(l) by the error-reporting noisy cheap talk, the error is reported:

g[j](�j(l)) = E;

2. when player j sends dj(l) by the error-reporting noisy cheap talk, the error is reported:

g[j](dj(l)) = E;

3. at the beginning of the (l + 1)th review round, player j with �̂j(l + 1) = G and

dj(l + 1) = G takes �j (l + 1) 6= �j(x). With abuse of notation, we include the case

with l = �1;

4. at the beginning of the (l + 1)th review round, player j with �̂j(l + 1) = G and

dj(l + 1) = B takes �j (l + 1) 6= ��j . With abuse of notation, we include the case with

l = �1; or

5. (2.20), (2.22) or (2.23) is not satis�ed for player j (that is, with indices i and j reversed).

Otherwise, �j(l + 1) = G.

There are following four implications. First, as in the two-player prisoners�dilemma,

player j makes player i indi¤erent between any action pro�le after receiving g[j](m) = E

after sending some message m. Hence, it is almost optimal for player i to obey the message.

Second, if player j obeys player i�s message about �i(l+1) (this is the necessary condition

for having �̂i (l + 1) = B) or player i�s message about di(l+1) a¤ects player j�s continuation

strategy (�̂i (l + 1) = B is the necessary condition for this), then �j(l + 1) = B. Hence,

player i is indi¤erent between any message.

Third, if �̂i(l + 1) = G, then Conditions 3 and 4 imply that if �di(l + 1) = G and

�j(l+1) 6= �j(x)�or �di(l+1) = G and �j(l+1) 6= ��j ,�then player i is indi¤erent between

any action pro�le.

Fourth, the distribution of �j(l + 1) is independent of player i�s strategy.
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4.6 Player i�s Belief about Optimal Actions

As in the two-player prisoners�dilemma, we formally show that player i believes that �̂j(l+

1) = �j(l + 1) or �j(l + 1) = B with high probability 1� exp(��(T 1
2 )), conditional on that

player j has the state �̂i(l + 1) = G.

In addition, we show that if player i minimaxes player j (�̂j(l+1) = G and di(l+1) = B),

then player i believes that �j(l+1) = B with high probability 1� exp(��(T 1
2 )), conditional

on that player j has the state �̂i(l + 1) = G.

Lemma 24 For all �u and L, there exists �q such that, for all q < �q, there exists �� such

that, for all � < ��, there exists �� and �" such that, for all � < �� and " < �", for all i 2 I

and l 2 f1; :::; Lg, for any history hti with t being in the lth review round, conditional on

�̂i(~l) = G for all ~l � l and �j(l), player i after hti believes that

1. �̂j(l) = �j(l) or �j(l) = B;

2. d̂j(l) = dj(l) or �j(l) = B; and

3. if di(l) = B, then �j(l) = B.

with high probability 1� exp(��(T 1
2 )).

Proof: The proof of the �rst claim is the same as in Lemma 15 except that player i�s

learning from player j�s continuation action plan is small since player j with �̂i(~l) = G takes

any action Aj(x) [ f��jg with a positive probability no less than 1
2jAj j�.

The second is proven by Lemma 10: player i believes that, conditional on dj(l),

d̂j(l) = f [i](dj(l)) = dj(l)

or g[j](dj(l)) = E (this implies �j(l) = B) with probability no less than 1 � exp(��(T 1
2 )).

Since player j�s continuation action plan in the main blocks does not depend on g[j](dj(l)),

we are done.
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Let us prove the third claim. First, Take �q and ��1 such that Lemma 23 holds. Fix q < �q.

Given q, take ��2, ��2 and �"2 such that for all � < ��2, � < ��2 and " < �"2, (4.14) implies





 1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t � qi(x)







 � �:

Finally, �x �� < ��2 such that Lemma 20 is satis�ed. Then, for all � < ��, we can take take

� < min f��1; ��2g and " < �"2 such that Lemma 20 holds for �, � and ".

Then, take l� such that di(l�) = G and di(l�+1) = B. Then, for the l�th review round, the

premise of Lemma 20 is satis�ed, which means player i believes �i(l�) = B with probability

1 � exp(��(T )) conditional on �̂i(l�) = G. As for the �rst claim, player i�s learning from

player j�s continuation action plan is small, as desired.

4.7 Variables

In this section, we show that we can take all the variables necessary for the equilibrium

construction appropriately: �u, q2, q1, u, �q, L, �, � and ".

First, Lemma 12 determines �u and Lemma 22 determines q1 and q2.

Second, from (1.18), we have

max

�
v�i ; max

x:xj=B
ui(a(x))

�
< vi < vi < vi < min

x:xj=G
ui(a(x)):

Take u su¢ ciently small so that

vi (B) + u < vi < vi < vi < min
x:xj=G

ui(a(x))

with vi (B) = vmaxfv�i ;maxx:xj=B ui(a(x))g+ 2u as de�ned in (4.1). Re-take �u if necessary

to have (4.3).
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Third, take L su¢ ciently large such that

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
< vi < vi < vi < min

x:xj=G
ui(a(x))� 2

�u

L
:

Fourth, given L; q2; q1; u, �x �q1 and ��1 so that Lemma 23 holds.

Fifth, take ��2 < ��1 su¢ ciently small so that for all � < ��2, (4.2) holds and

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
< vi < vi < vi < min

x:xj=G
wi(x)� 2

�u

L
:

Sixth, given �u and L, take �� so that Lemma 15 holds and for all � < ��, we have

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
+ �L

�
2�u�min

i;x

(L� 1) vi (B) + �u
L

�
< vi < vi < min

x:xj=G
wi (x)� 2

�u

L
� �L

�
2�u+max

i;x
wi (x)

�
: (4.17)

Finally, �x q < �q1 su¢ ciently small. Then, we can take � < ��, � < ��2 and " < �"2 so that

(4.15) holds for �xed q and Lemma 24 holds.

4.8 Almost Optimality

Based on Lemma 24, we now show that if we properly de�ne ��i(x; �j(l); dj(l); l), then �i(xi)

and �maini satisfy (1.21), (1.16) and (1.17).

We show that �i(xi) satis�es the following proposition by backward induction:

Proposition 25 For all i 2 I, there exists ��i(x; �j(l); dj(l); l) such that

1. �i(xi) is almost optimal conditional on �̂i(l) = G: for each l 2 f1; :::; Lg, conditional

on �̂i(l) = G,

(a) for any period t in the lth review round, (1.21) holds; and
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(b) when player i sends the message about �i(l+1) or di(l+1) by the error-reporting

noisy cheap talk, (1.21) holds;2

2. (1.16) is satis�ed with �i replaced with �maini . Since each xi 2 fG;Bg gives the same

value conditional on xj, the strategy in the coordination block is optimal;3 and

3. �maini satis�es (1.17).

Note that �̂i(l) = B implies �j(l) = B and that player i can condition on �̂i(l) = G.

1-(b) follows from the following two facts: �rst, whenever player i�s messages change

player j�s action, �j(l + 1) = B. Second, since there is an error of order exp(��(T 1
2 )) after

any message, given Lemma 24, the e¤ect on player i�s learning about the optimal action is

negligible.

To show 3, as in the prisoners�dilemma, it su¢ ces to have

��i(x; �j(l); dj(l); l)

8><>: � 0 if xj = G;

� 0 if xj = B;
(4.18)

j��i(x; �j(l); dj(l); l)j � maxi;a 2 jui (a)jT (4.19)

for all x 2 fG;Bg2, �j(l) 2 fG;Bg, dj(l) 2 fG;Bg and l 2 f1; :::; Lg.

We are left to construct ��i so that 1-(a) and 2 are satis�ed together with (4.18) and

(4.19). Below, we consider the cases with xj = G and xj = B separately.

4.8.1 Case 1: xj = G

Note that dj(l) = G for all l if xj = G (see Section 4.5.4.3). Hence, the logic is the same as

in the prisoners�dilemma.

2With l = L, this is redundant.
3This is not precise since we will further adjust the reward function based on the report

block. However, as we will see, even after the adjustment of the report block, any xi 2 fG;Bg
still gives exactly the same value and so the strategy in the coordination block is exactly
optimal.
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We start backward induction from the Lth review round. Suppose that player j uses

(4.9) in the Lth round. If �j(L) = �̂j(L) and d̂j(L) = dj(L), then from (4.9) and Section

4.5.2, if player i obeys �i(xi), then player i�s average continuation payo¤ except for ��i is

equal to wi(x) if �j(L) = G and ui(aBRi (x); �j(x)) � wi(x) if �j(L) = B.

Therefore, for l = L, there exists ��i(x; �j(l); dj(l); l) with (4.18) and (4.19) such that

player i�s average continuation payo¤ is equal to wi(x) if (4.9) is used, �j(L) = �̂j(L), and

dj(L) = d̂j(L).

Consider the almost optimality of �i(xi). For almost optimality, Lemma 24 guarantees

that player i can always believe that (4.9) is used, that �j(L) = �̂j(L), and that dj(L) =

d̂j(L). Therefore, if �̂j(L) = G, then any action is almost optimal for player i and if �̂j(L) =

B, then �aBRi (x) and BRi
�
��j
�
, respectively, are optimal if d̂j(L) = G and d̂j(L) = B,

respectively,�as desired.

Consider the (L � 1)th review round. Since (i) we have de�ne ��i(x; �j(L); dj(L); L)

such that player i�s value from the Lth review round is independent of �j(L) as long as

�j(L) = �̂j(L), (ii) Lemma 24 implies that player i in the main blocks does not put a

belief more than exp(��(T 1
2 )) on the events that �j(L) 6= �̂j(L) and �j(L) = G, (iii) the

distribution of �j(L) is independent of player i�s strategy, and (iv) dj(L) is �xed, and so we

can assume that player i in the (L� 1)th review round maximizes

1

T
E

24 X
t2T (L�1)

ui(at) + �maini (x; hmainj ; L� 1) j x

35 ;
assuming �j(L� 1) = �̂j(L� 1) and dj(L� 1) = d̂j(L� 1).

Therefore, by the same reason as in the Lth review round, there exists ��i(x; �j(l); dj(l); l)

with (4.18) and (4.19) such that �i (xi) is almost optimal and player i�s average payo¤

from the (L� 1)th review round is equal to wi(x) if (4.9) is used, �j(L � 1) = �̂j(L � 1),

dj(L� 1) = d̂j(L� 1), and player i obeys �i(xi).
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If (4.9) is used in the (L� 1)th review round, then (4.8) will be used in the Lth review

round with probability no more than � (player j takes �j(L) 6= �j(x) with dj(L) = G or

�j(L) 6= ��j with dj(L) = B) plus exp(��(T 1
2 )) (player j obeys the message or an error is

reported in the supplemental rounds). When (4.8) is used, per period payo¤ is bounded by

[�2�u; 2�u] by (2.9).

Therefore, for l = L � 1, re-taking ��i(x; �j(l); dj(l); l) if necessary, player i�s average

continuation payo¤ for the next two review rounds is equal to wi(x)� � (2�u+maxi;xwi (x))

in the limit as � ! 1if player i obeys �i(xi).

Recursively, for l = 1, 1-(a) is satis�ed and the average ex ante payo¤ of player i from

the �rst review round is wi(x) � �L (2�u+maxi;xwi (x)) if xj = G. Note that, in the �rst

review round, �j(1) = �̂j(1) = G and dj(1) = d̂j(1) = G.

Taking the �rst term �2�uT in (4.7) into account, the average ex ante payo¤ is wi(x) �

2 �u
L
� �L (2�u+maxi;xwi (x)) if xj = G.

From (4.17), we can further modify ��i (x;G;G; 1) with (4.18) and (4.19) such that �i(xi)

gives �vi if xj = G. Therefore, 2 is satis�ed.

4.8.2 Case 2: xj = B

The main di¤erence from the case with xj = G is that, if xj = B, then player i needs to

take into account that player i�s action in the lth review round will a¤ect the probability of

being minimaxed in the next review round (dj(l + 1) = B).

As in the case with xj = G, �̂i(l) = B implies �i(l) = B and player i is indi¤erent

between any action pro�le sequence. Hence, player i conditions �̂i(l) = G. In addition,

the distribution of �j(l + 1) is independent of player i�s strategy. Since �j(l) = B does not

happen with probability more than � + exp(��(T 1
2 )) in each main block, we can deal with

the e¤ect of �j(l) = B as in the case with xj = G. Therefore, we assume that �j(l) = G for

each round.
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Further, by Lemma 24, player i can neglect the possibility of mis-coordination for almost

optimality. Hence, we assume that, for each l, �̂j(l) = �j(l), d̂j(l) = dj(l) and �̂i(l) = G.

In the Lth review round, consider the following cases:

1. if player j uses (4.9) and �j(L) = �̂j(L) = G, then any action is almost optimal. The

average payo¤ of player i in the Lth review round except for ��i is wi(x);

2. if player j uses (4.9) and �j(L) = �̂j(L) = B, then there are following two cases:

(a) if dj(L) = d̂j(L) = G, then aBRi (x) is optimal and gives the average payo¤ u�i (x).

Note that we take (4.11) into account when we consider the payo¤; and

(b) if dj(L) = d̂j(L) = B, then BRi(��j) is optimal and gives the average payo¤ v
�
i .

Therefore, for l = L, there exists ��i(x; �j(l); dj(l); l) with (4.18) and (4.19) such that

player i�s average continuation payo¤ is equal to �u+u if 1 or 2-(a) is the case and v�i if 2-(b)

is the case. Note that the former is higher than the latter by

�u+ u� v�i : (4.20)

In the (L� 1)th review round,

1. if player j uses (4.9) and �j(L�1) = �̂j(L�1) = G, then any action is almost optimal

since (i) the payo¤s from �j(L) = G and �j(L) = B with dj(L) = G are the same and

(ii) �j(L� 1) = G implies dj(L) = G (See Section 4.5.4.3) and player i can neglect the

e¤ect of player i�s action in the (L� 1)th review round on dj(L).

The average payo¤ of player i from the (L� 1) and Lth review rounds except for

��i(x; L� 1; �j(L� 1); d̂i(L� 1)) is no more than

wi(x) + �u

2
+
u

2
� vi(B) + �u

2
+ u;

137



2. suppose that player j uses (4.9) and �j(L � 1) = �̂j(L � 1) = B. Now, �j(L) is �xed

at B. Hence, the relevant cases are the following two:

(a) if dj(L� 1) = d̂j(L� 1) = G, then aBRi (x) is optimal.

To see why, remember that player j will have dj(L) = B with probability (4.14)

plus negligible adjustment based on (4.13). The marginal decrease of this proba-

bility by not taking the static best response is bounded by

�pLj (x)
marginal decrease of Pr

�
1
T

n
�
a(x)
i;t = 1

o
j aj(x)

�
q2 � q1

�
�pLj (x)

T
:

On the other hand, the maximum gain of preventing dj(L) = B is equal to T

times (4.20). Therefore, the expected gain is bounded by �pLj (x) times (4.20).

Since (4.20) corresponds to the gain of preventing dj(L) = B for l = L � 1 in

Lemma 23, player j should take aBRi (x) for su¢ ciently large �.4

Note that player i does not have an incentive to take ai 6= aj (x) ; a
BR
i (x) since

Pr
�
1
T

n
�
a(x)
i;t = 1

o
j aj(x)

�
is the same as aBRi (x) and the instantaneous utility

gain is smaller than aBRi (x).

Given player i�s strategy, if �j(L � 1) = �̂j(L � 1) = B and d̂i(L � 1) = d̂i(L �

1)(i) = G, then, conditional on �j(L) = G, d̂i(L) happens with probability

�pl+1j (x)min

�
1;
q2 � q � (1� 2 (jAij � 1) �) q1

q2 � q1

�

from (4.14). Therefore, Lemma 23 guarantees that the average payo¤ from the

(L� 1)th and Lth main block is no more than

vi(x) + �u

2
+ u;

4And so large T from (1.8).
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(b) if dj(L � 1) = d̂j(L � 1) = B, then dj(L) is �xed at B. Therefore, BRi(��j) is

optimal and this gives the average payo¤ v�i .

Therefore, for l = L� 1, there exists ��i(x; �j(l); dj(l); l) with (4.18) and (4.19) such that

player i�s average continuation payo¤ is equal to
maxfvi(x);v�i g+�u

2
+ u if 1 or 2-(a) is the case

and v�i if 2-(b) is the case.

Recursively, for l = 1, Proposition 16 is satis�ed and the average ex ante payo¤ of

player i at the �rst review round is (L�1)vi(x)+�u
L

+ u. Note that, in the �rst review round,

�j(1) = �̂j(1) = G and dj(1) = d̂j(1) = G.

Taking the probability of having �j(l) = B and the �rst term 2�uT in (4.7) into account,

the average ex ante payo¤ is (L�1)vi(x)+�u
L

+ u+ 2 �u
L
+ L�

�
2�u�mini;x:xj=B vi (x)

�
.

From (4.17), we can further modify ��i (x;G;G; 1) with (4.18) and (4.19) such that �i(xi)

gives vi if xj = B. Therefore, 2 is satis�ed.

4.9 Exact Optimality

The report block is the same as in the prisoners�dilemma except that

1. for the proof for Lemma 21, player i can also learn �a(x)j . Since �a(x)j satis�es full

support 
a(x)j (yj) 2 (0; 1), the same proof works;

2. Vi(hri ;#
r
i ) also includes the e¤ect on learning dj(l); and

3. we have additional supplemental rounds.
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Chapter 5

General N-Player Game with Cheap

Talk

In this chapter, we prove Theorem 7 (folk theorem) for the general N -player game with

N � 3, perfect cheap talk, error-reporting noisy cheap talk and public randomization. See

Chapter 7 for the dispensability of special forms of cheap talk and public randomization.

In this chapter, all the error-reporting noisy cheap talk has precision 1 � exp(�T 1
2 ). In

addition, when we say player i with i 62 f1; :::; Ng, it means player i (modN). In particular,

player 0 is player N and player N + 1 is player 1.

Fix v 2 int(F �) arbitrarily. We will �nd f�i(xi)gi;xi and
�
�i(xi�1; h

TP+1
i�1 : �)

	
i;xi�1

in the

�nitely repeated game with (1.15), (1.16) and (1.17).

As in Chapter 1, let

v�i � min
��i2�(A�i)

max
ai2Ai

ui(ai; ��i)

be the minimax payo¤ (by independently mixed strategies). In addition, let ���i � (��j;i)j 6=i

be the solution for the above problem, that is, ��j;i is player j�s stage game strategy when

players �i minimax player i.
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Given vi, take u su¢ ciently small so that

vi > vi (B) � max
�
max

x:xi�1=B
ui(a (x)); v

�
i

�
+ 2u: (5.1)

Given u, for su¢ ciently small �,

vi (B) � max
�
max

x:xi�1=B
wi(x); max

x:xi�1=B
ui (ai (x) ; �j (x)) ; v

�
i

�
+ u: (5.2)

Take �u so that

�u � vi (B) + u; vi (B)� v�i (5.3)

5.1 Intuitive Explanation

Before proceeding to the proof, we o¤er an intuitive explanation. As in the two-player case,

we have L main blocks, where L will be de�ned in Section 5.7. Player i � 1 incentivizes

player i by the reward function. Similarly to �j(l) and �̂j(l) in the two-player case, player

i� 1 has �i�1(l) 2 fG;Bg indicating whether player i� 1 has observed an �erroneous score�

and player i has �i�1(l)(i) 2 fG;Bg indicating what is the optimal action for player i. With

more than two players, player i+1 also has �i�1(l)(i+1) 2 fG;Bg, which is player (i+ 1)�s

inference of �i�1 (l).

The game with more than two players is di¤erent from the one with two players in

the following three aspects. First, as we mentioned in Section 1.5.5.3, the players need to

coordinate on punishment.

Second, as seen in Section 1.5.6.2, player i informs the other players �i of xi in the

coordination block. With two players, there is only one receiver of the message. On the

other hand, with more than two players, there are more than one receivers of the message.

If some players infer xi is G while the others infer xi is B, then the action that will be taken

in the review rounds with a high probability may not be included in fa(x)gx. Since we do
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not have any bound on the payo¤ of a player in such a situation, it might be of some player�s

interest to induce this.

In this chapter, since xi is communicated by public cheap talk, this is not an issue.

However, in Chapter 7, where the players communicate via actions, we need to make sure

that no player can induce mis-coordination of xi among the other players in order to increase

her payo¤.

Third, when player j sends a message to player n, there is another player i. In this

chapter, player j sends the message by perfect or error-reporting noisy cheap talk. In each

case, the distribution of player n�s signal is exogenously given and there is no way for player

i to manipulate the communication between players j and n. However, in Chapter 7, where

player j sends the message via actions, we need to make sure that player i does not have an

incentive to deviate in order to manipulate the signal distributions between players j and n

and to �confuse�players j and n.

Let us go back to the �rst question: how players �i coordinate on minimaxing player i

after the histories where player i is likely to have deviated. To deal with this problem, we

consider the following mechanism to coordinate on the punishment.

For each player i, there are two monitors, players i � 1 and i + 1. In other words, each

player n monitors players n� 1 and n+ 1.

After the lth review round, each player j constructs a variable dj(l+1) 2 f0; j�1; j+1g.

dj(l + 1) = 0 implies that player j thinks that there was no deviator in players j � 1 and

j+1 in the lth review round. dj(l+1) = j� 1 implies that player j thinks that player j� 1

deviated in the lth review round. dj(l + 1) = j + 1 implies that player j thinks that player

j + 1 deviated. Intuitively speaking, since player j monitors player j � 1, player j wants to

know the realization of the score of player j � 2 (the controller of player j � 1). This is why

�j�2(l)(j) is also de�ned.
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Player j sends the message dj(l+1) to each player n 2 �j via error-reporting noisy cheap

talk.1 Player n constructs the inference of dj(l+1), dj(l+1)(n) 2 f0; j� 1; j +1g, from the

private signal of the error-reporting noisy cheap talk.

Each player n minimaxes player i by ��n;i if and only if player n infers that the two

monitors i� 1 and i+ 1 think that player i has deviated:

di�1(l + 1)(n) = di+1(l + 1)(n) = i:

To incentivize the players to tell the truth about dj(l + 1), whenever player j�s message

has an impact on the decision of whom to be minimaxed (we say �player j is pivotal�), we

make player j indi¤erent between any action pro�le. Assumption 4 guarantees that player j

cannot create a situation where player j is pivotal by deviation to increase her own payo¤,

as we will see in Lemma 33.

5.2 Almost Optimality

As seen in Section 1.8, we �rst show that player i�s strategy is �almost optimal.�We divide

the reward function into two parts:

�i(xi�1; h
TP+1
i�1 : �) = �maini (xi�1; h

main
i�1 ; h

rereport
i�1 : �) + �reporti (xi�1; h

TP+1
i�1 ; hrereporti�1 : �):

Contrary to the two-player case, we have hrereporti�1 in �maini and �reporti . We will de�ne hmaini�1 ,

hTP+1i�1 and hrereporti�1 below.

With more than two players, player i� 1 wants to use the information owned by players

� (i� 1; i) to construct player (i� 1)�s reward function on player i. Hence, as we will see

in Section 5.4, after the report block where player i reports hmaini , we have the �re-report

block�where players � (i� 1; i) send their history to player i� 1. This information is used
1Precisely, since dn(l + 1) is ternary while the error-reporting noisy cheap talk can send

a binary message, player n sends a sequence of binary messages. See Section 5.5.2.

143



only for �i and does not a¤ect the value of players � (i� 1; i). Therefore, we can assume

that players � (i� 1; i) tell the truth. Further, since the information in the re-report block

is used only for the reward (not for the action plan �i�1(xi�1)), it is su¢ cient for player i�1

to know the information by the end of the review phase.

Let hmaini�1 , h
TP+1
i�1 , and hrereporti�1 , respectively, be the history of player i�1 in the main blocks,

�in the coordination, main and report blocks,�and in the re-report block, respectively.

We �rst construct �i (xi) and �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) satisfying (1.21), (1.16) and

(1.17) if we neglect the report block. After constructing such �maini , we construct the strategy

in the report block such that �i = �maini + �reporti satis�es (1.15), (1.16) and (1.17).

5.3 Preparations

Before proceeding to the equilibrium construction, we make the following preparations.

5.3.1 Functions and Statistics

We de�ne functions and statistics useful for the equilibrium construction. First, since we

assume the availability of the error-reporting noisy cheap talk, Lemma 11 holds.

Second, we de�ne the point �i[� (x)] (yi�1), corresponding to point �i[� (x)](yj) in the

two-player case. That is, �i[� (x)] (yi�1) cancels out the di¤erences in the instantaneous

utilities for di¤erent ai�s:

ui(ai; ��i (x)) + E [�i[� (x)] (yi�1) j ai; ��i (x)] (5.4)

is independent of ai 2 Ai, as in (2.4).

Further, as in (2.5), we want to make sure that

ui(ai; ��i(x)) + E [�i[� (x)] (yi�1) j ai; ��i (x)] = wi(x) (5.5)
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for all ai 2 Ai. From (1.19), this implies

E [�i[� (x)] (yi�1) j �(x)] =

8><>: � 0 if xi�1 = G

� 0 if xi�1 = B:
(5.6)

Since Assumption 3 implies that player i� 1 can statistically infer player i�s action, (5.4)

and (5.5) can be satis�ed simultaneously:

Lemma 26 If Assumption 3 is satis�ed, then there exists �u > 0 such that, for each i 2 I

and � (x) 2 �(A), there exists �i[� (x)] : Yi�1 ! [��u; �u] with (5.4) and (5.5).

Proof: The same as Lemma 12.

Third, as for �xji [�j](yj), de�ne

�
xi�1
i [��i](yi�1)

8><>: � 0 for all yi�1 if xi�1 = G;

� 0 for all yi�1 if xi�1 = B
(5.7)

such that, for all i 2 I,

ui(ai; ��i) + E [�xi�1i [��i](yi�1) j ai; ��i] (5.8)

is independent of ai 2 Ai and ��i 2 �(A�i) and included in [�2�u; 2�u].

Fourth, as for ��i (t; aj;t; yj;t), we can construct the reward to cancel out discounting:

Lemma 27 If Assumption 3 is satis�ed, then for each i 2 I, there exists ��i : N��(A�i)�

Yi�1 ! [��u; �u] such that, for all ai;t 2 Ai and ��i;t, we have

�t�1ui (ai;t; ��i;t) + E
�
��i (t; ��i;t; yi�1;t) j ai;t; ��i;t

�
= ui (ai;t; ��i;t) for all t 2 f1; :::; TPg

and

lim
�!1

1� �

1� �TP

TPX
t=1

sup
��i;t;yi�1;t

����i (t; ��i;t; yi�1;t)�� = 0 (5.9)
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for all TP = �(T ) with T = (1� �)�
1
2 .

Proof: The same as Lemma 13.

As we will see in Section 5.5.3, we add

TPX
t=1

��i (t; ��i;t; yi�1;t) (5.10)

to �maini so that we can ignore discounting.

Fifth, as 
ai (yi), player i constructs a statistics to infer whether player i�1 has deviated.

Lemma 28 If Assumption 3 is satis�ed, then there exist q2 > q1 such that, for all i 2 I,

ai (x) 2 Ai, ai�1 (x) 2 Ai�1 and ��(i�1;i) (x) 2 �
�
A�(i�1;i)

�
, there exists a function 
xi : Yi !

(0; 1) such that player i can statistically infer whether player i� 1 takes ai�1(x) or not:

E
�

xi (yi) j ai (x) ; ~ai�1; ��(i�1;i) (x)

�
=

8><>: q2 if ~ai�1 = ai�1 (x) ;

q1 otherwise.

Proof: The same as Lemma 22.

Sixth, as in the two-player case, let qi (�) be the vector of player i�s signal distribution

given �:

qi (�) � (qi (yi j �))yi2Yi :

In particular, with � = (ai(x); ��i(x)), we de�ne

qi (x) � qi (ai(x); ��i(x)) :

For each pair of players i and j 6= i, let Qj
i (x) be the a¢ ne hull of player i�s signal

observations with respect to player j�s actions given that player i takes ai (x) and players
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� (i; j) take ��(i;j) (x):

Qj
i (x) � a�

��
qi(ai (x) ; aj; ��(i;j) (x))

	
aj2Aj

�
\ RjYij+ :

As in the two-player case, we consider the following representation:

Qj
i (x) =

n
yi 2 RjYij+ : Qji (x)yi = qi (x)

o
:

As in Lemma 14, we can assume each element of Qi (x) and qi (x) is included in (0; 1):

Lemma 29 For each i; j 2 I, we can take Qji (x) such that all the elements of Qi (x) and

qi (x) are in (0; 1).

Proof: The same as Lemma 14.

With Assumption 4, we make sure that Qj
i (x) and Q

n
i (x) with j 6= n does not intersect

except for qi (x):

Lemma 30 If Assumption 4 is satis�ed, then for all i 2 I, we have

Qj
i (x) \Qn

i (x) = qi (x) for all j 6= n.

Proof: In this proof, we concentrate on the simplex on Yi and omit the last component of

qi(�) since 1qi (�) = 1 for all � 2 �(A).

Since

Qj
i (x) =

8><>:yi 2 RjYij+ :
9 ftj(aj)gaj2Aj with

yi = qi (x) +
P

aj2Aj tj(aj)qi(ai (x) ; aj; ��(i;j) (x))

9>=>; ;

it su¢ ces to show that, for each j; n with j 6= n,

X
aj2Aj

tj(aj)qi(ai (x) ; aj; ��(i;j) (x)) =
X
an2An

tn(an)qi(ai (x) ; an; ��(i;j) (x))
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implies

tj(aj) = tn(an) = 0

for all aj; an, which is guaranteed by Assumption 4.

5.3.2 Perfect Monitoring

As in the two-player game, we consider a one-shot game with perfect monitoring parame-

terized with l 2 N. In the game with parameter l 2 f1; :::; L � 1g, players �i takes ��i(x).

Depending on player i�s action, di+1(l + 1) 2 f0; ig is determined. If player i takes ai(x),

then di+1(l + 1) = 0 with probability one. If player i takes ai 6= ai(x), then di+1(l + 1) = i

with probability pl+1i+1(x) and di+1(l+1) = 0 with the remaining probability 1� pl+1i+1(x). The

payo¤ of player i is determined as

V l
i = max

ai

1

L� l + 1
~ui(ai) +

L� l

L� l + 1
E
�
W l+1
i (d(l + 1)) j ai

�
with

~ui(ai) =

8><>: ui (ai; ��i(x)) + u if ai = aBRi (x);

ui (ai; ��i(x)) if ai 6= aBRi (x);

W l+1
i (G) =

(L� l � 1) vi(B) + �u
L� l

+ u;

W l+1
i (B) = v�i :

Here, aBRi (x) 2 BRi (��i (x)). If BRi (��i (x)) has multiple elements, then pick one arbi-

trarily.

As in the two-player case, we can show the following lemma:
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Lemma 31 For any L � 2, q2 > q1 and u, there exist �q > 0 and �� > 0 such that, for any

q < �q and � < ��, for all i 2 I, there exist fpl+1
i+1
(x); �pl+1i+1(x)gL�1l=1 with

�pl+1i+1(x) 2 [0; 1]

pl+1
i+1
(x) =

q2 � q � (1� 2 (jAi+1j � 1) �) q1
q2 � q1

�pl+1i+1 (5.11)

for all l = 1; :::; L� 1 such that, for fpl+1i+1(x)gL�1l=1 ,

1. if pl+1i+1(x) � �pl+1i+1(x) for all l, then it is uniquely optimal for player i to take a
BR
i (x);

and

2. if pl+1i+1(x) 2
h
pl+1
i+1
(x); �pl+1i+1(x)

i
for all l, then

V l
i � W l

i (G) =
(L� l) vi (B) + �u

L� l + 1
+ u:

Proof: The same as Lemma 23.

5.4 Structure of the Phase

In this section, we explain the structure of the �nitely repeated game. As in the two-player

game, we have the coordination block at the beginning, where each player takes turns to

send the cheap talk message xi 2 fG;Bg: �rst, player 1 sends x1, second, player 2 sends x2,

and so on until player N sends xN . Note that x will become common knowledge for the rest

of the game.

After the coordination block, we have L main blocks. The �rst (L�1) blocks are further

divided into 1 + 2N +N (N � 1) rounds. That is, for l 2 f1; :::; L� 1g, the lth main block

consists of the following rounds: �rst, the players play a T -period review round.

After that, as indicated in Section 5.1, each player i � 1 sends �i�1(l + 1) to player

n 2 fi; i+ 1g by the error-reporting noisy cheap talk between i� 1 and n. The players take
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turns: player 1 sends �1(l+1) to player 2, player 1 sends �1(l+1) to player 3, player 2 sends

�2(l + 1) to player 3, player 2 sends �2(l + 1) to player 4, and so on until player N sends

�N(l + 1) to player 2. We call the instance where player i � 1 sends �i�1(l + 1) to player

n 2 fi; i+ 1g the �supplemental round for �i�1(l + 1) between i� 1 and n.�

After that, each player j sends dj(l + 1) to each player n 2 �j by the error-reporting

noisy cheap talk between j and n. The players take turns: player 1 sends d1(l+1) to player

2, player 1 sends d1(l + 1) to player 3, and so on until player 1 sends d1(l + 1) to player

N . Then, player 2 sends d2(l + 1) to player 1, player 2 sends d2(l + 1) to player 3, and

so on until player 2 sends d2(l + 1) to player N . This step continues until player N sends

dN(l + 1) to player N � 1. We call the instance where player j sends dj(l + 1) to player n

the �supplemental round for dj(l + 1) between j and n.�

The last Lth main block has only the T -period review round.

Let T (l) be the set of T periods in the lth review round. As in the two-player case, player

i randomly picks ti(l) from T (l). The action plan is determined by the history in periods in

Ti(l) = T (l) n fti(l)g.

After the last main block, there is the report block, where each player i reports the whole

history hmaini .

Finally, after the report block, there is the re-report block, where each player i reports

the whole history hmaini again. This time, player i�s message is used only for the reward

�mainj (xj�1; h
main
j�1 ; h

rereport
j�1 : �) with j 6= i. That is, player i�s message does not a¤ect player i.

5.5 Equilibrium Strategy

In this section, we de�ne �i (xi) and �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �). In Section 5.5.1, we de�ne

the state variables that will be used to de�ne the action plans and rewards. Given the states,

Section 5.5.2 de�nes player i�s action plan �i(xi) and Section 5.5.3 de�nes player (i� 1)�s
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reward function �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) on player i. Finally, Section 5.5.4 determines

the transition of the states de�ned in Section 5.5.1.

5.5.1 States xi, �i�1(l+1), �i�1(l+1)(i), �i�2(l+1)(i), di(l+1), dj(l+1)(i),

ci(l + 1) and �i�1(l)

The intuitive meaning of xi 2 fG;Bg and �i�1(l + 1) 2 fG;Bg is the same as in the two-

player case with j replaced with i� 1. Then, �i�1(l + 1)(n) 2 fG;Bg with n 2 fi; i+ 1g is

player n�s inference of �i�1(l + 1).

As seen in Section 5.1, di(l+ 1) 2 f0; i� 1; i+ 1g indicates what player i thinks about a

deviation by players i� 1 and i+ 1.

Player j 6= i sends dj(l + 1) via error-reporting noisy cheap talk to player i in the

supplemental round for dj(l + 1) between j and i. Let dj(l + 1)(i) be player i�s inference of

the message, which will be determined in Section 5.5.4.4.

Player i �con�rms�player n�s deviation if and only if player i infers that the two monitors

n� 1 and n+ 1 think that player n has deviated:

dn�1(l + 1)(i) = dn+1(l + 1)(i) = n:

In such a case, n 2 ci(l+1). That is, ci(l+1) � f0g[ I is the set of players whose deviation

has been con�rmed (ci(l + 1) = f0g means that no player�s deviation has been con�rmed).

If there is a unique player in ci(l + 1) (ci(l + 1) = fng with n 2 I), then player i minimaxes

player n by taking ��i;n.

The intuitive meaning of �i�1(l) 2 fG;Bg is the same as in the two-player case.

5.5.2 Player i�s Action Plan �i (xi)

In the coordination block, each player sends xi truthfully. Then, the state pro�le x becomes

common knowledge.
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In the lth review round, player i�s strategy depends on �i�1(l)(i) and ci(l).

1. if �i�1(l)(i) = G, then

(a) if there is no n 2 I with ci(l) = fng, then, given some �xed set Ai(x) of player i�s

mixed action plans (see Lemma 35 for the de�nition of Ai (x)),

i. �i(l) = �i(x) with probability 1� �;

ii. �i(l) = ��i;n for some player n 2 �i with probability �
2(N�1) ; and

iii. for each �i 2 Ai(x), �i(l) = �i with probability 1
2jAi(x)j�;

(b) if there is n 2 I with ci(l) = fng,

i. �i(l) = ��n;i with probability 1� �;

ii. �i(l) = �i(x) with probability
�
3
;

iii. �i(l) = ��i;n0 for some player n
0 2 � (i; n) with probability �

3(N�3) ; and

iv. for each �i 2 Ai(x), �i(l) = �i with probability 1
3jAi(x)j�;

Note that the support of �i (l) is constant regardless of ci (l); and

2. if �i�1(l)(i) = B, then

(a) if ci(l) = f0g, then �i (l) = aBRi (x); and

(b) otherwise, BRi(���i).

In the supplemental round for �i(l + 1) between i and n 2 fi + 1; i + 2g, player i sends

�i(l + 1) truthfully via error-reporting noisy cheap talk to player n.

In the supplemental round for di(l + 1) between i and n 2 �i, player i sends di(l + 1)

truthfully via error-reporting noisy cheap talk to player n.

Since di(l + 1) is ternary while the error-reporting noisy cheap talk can send a binary

message, we attach a sequence of binary messages to each di(l + 1). Speci�cally, given

di(l + 1) 2 f0; i � 1; i + 1g, player i de�ne a sequence di(l + 1)f1g; di(l + 1)f2g 2 fG;Bg2:
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if di(l + 1) = 0, then di(l + 1)f1g = G and di(l + 1)f2g = B with probability 1
2
and

di(l + 1)f1g = B and di(l + 1)f2g = G with probability 1
2
. If di(l + 1) = i � 1, then

di(l + 1)f1g = G and di(l + 1)f2g = G. If di(l + 1) = i + 1, then di(l + 1)f1g = B and

di(l + 1)f2g = B.

Player i with di(l + 1) sends di(l + 1)f1g and di(l + 1)f2g truthfully via error-reporting

noisy cheap talk. We de�ne

f [n](di(l + 1)) =

8>>>><>>>>:
0 if f [n](di(l + 1)f1g) 6= f [n](di(l + 1)f2g);

i� 1 if f [n](di(l + 1)f1g) = f [n](di(l + 1)f2g) = G;

i+ 1 if f [n](di(l + 1)f1g) = f [n](di(l + 1)f2g) = B;

g[n� 1](di(l + 1))

=

8><>: E if g[n� 1](di(l + 1)f1g) = E or g[n� 1](di(l + 1)f2g) = E;

di(l + 1) otherwise,

g2[n� 1](di(l + 1)) = (g2[n� 1](di(l + 1)f1g); g2[n� 1](di(l + 1)f2g)) ;

and

f2[i� 1](di(l + 1)) = (f2[i� 1](di(l + 1)f1g); f2[i� 1](di(l + 1)f2g)) :

Lemma 11 holds as if player i sent di(l + 1) via error-reporting noisy cheap talk since

� the message transmits correctly with probability 1� exp(��(T 1
2 ));

� given di(l+1)f1g; di(l+1)f2g, player n puts a conditional belief 1� exp(��(T
1
2 )) on

the events that f [n](di(l + 1)) = di(l + 1) or g[n� 1](di(l + 1)) = E; and

� given di(l + 1)f1g; di(l + 1)f2g, any signal sequences can happen with probability no

less than exp(��(T 1
2 )).

153



5.5.3 Reward Function

In this subsection, we explain player (i� 1)�s reward function on player i, �maini (xi�1; h
main
i�1 ; h

rereport
i�1 :

�).

Score As in the two-player case, player i�1 picks ti�1(l) randomly from T (l) and the score

is the summation of the points �i[� (x)](yi�1) over Ti�1(l) � T (l) n fti�1(l)g:

Xi�1(l) =
X

t2Ti�1(l)

�i[� (x)](yi�1;t)

As we will see, Xi�1(l) is used only if players �i take ��i(l) = ��i(x).

Reward Function As in the two-player case, the reward �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) is

written as

�maini

�
xi�1; h

main
i�1 ; h

rereport
i�1 : �

�
=

LX
l=1

X
t2T (l)

��i (t; ��i;t; yi�1;t)

+

8><>: �2�uT +
PL

l=1 �
main
i (xi�1; h

main
i�1 ; h

rereport
i�1 ; l) if xi�1 = G;

2�uT +
PL

l=1 �
main
i (xi�1; h

main
i�1 ; h

rereport
i�1 ; l) if xi�1 = B:

(5.12)

Note that we add (5.10) to ignore discounting. Here, player i� 1 uses information owned by

players �(i� 1; i) such as ��i;t. In general, if player i� 1 uses information owned by players

� (i� 1; i), the information is sent by players �(i�1; i) to player i�1 in the re-report block.

As we will see in Section 5.5.4, since the information owned by players �(i � 1; i) does not

a¤ect player (i� 1)�s action plan, player (i� 1)�s equilibrium strategy is well de�ned.

Reward Function for the lth Review Round Next we de�ne �maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; l)

for each l = 1; :::; L. There are following two cases: in the lth review round,
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1. if �i�1(l) = B, then player i � 1 makes player i indi¤erent between any action pro�le

by

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; l) =

X
t2T (l)

�
xi�1
i [��i (l)](yi�1;t): (5.13)

(5.7) guarantees that (1.17) is not an issue after �i�1(l) = B; and

2. otherwise, that is, if �i�1(l) = G, then player (i� 1)�s reward on player i is based on

x, �i�1(l) and ci�1(l). The formal description is given by

�maini

�
xi�1; h

main
i�1 ; h

rereport
i�1 ; l

�
(5.14)

=

8><>: ��i(x;G; ci�1(l); l) +Xi�1(l) + �
xi�1
i [��i (l)](yi�1;ti�1(l)) if �i�1(l) = G;

��i(x;B; ci�1(l); l) if �i�1(l) = B;

Here, ��i(x; �i�1(l); ci�1(l); l) will be determined later so that (1.21), (1.16) and (1.17)

are satis�ed.

In addition, as in the two-player case, player i � 1 with �i�1(l) = G, �i�1(l) = B and

di�1(l) = G gives a small bonus on u for taking aBRi (x). By Assumption 3, there exists

�ui [��i(l)](yi�1) so that

E [�ui [��i(l)](yi�1) j ai; ��i(l)] =

8><>: u if ai = aBRi (x);

0 if ai 6= aBRi (x):

Player i� 1 with �i�1(l) = G, �i�1(l) = B and di�1(l) = G adds

X
t2T (l)

�ui [��i(l)](yi�1;t) (5.15)

to �maini

�
xi�1; h

main
i�1 ; h

rereport
i�1 ; l

�
. For su¢ ciently small u, �ui [��i(l)](yi�1) is su¢ ciently

small for all yi�1. Hence, when we consider (1.17), we ignore (5.15).
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5.5.4 Transition of the States

In this subsection, we explain the transition of player i�s states. Since xi is �xed in the phase,

we consider the following six:

5.5.4.1 Transition of �i�1(l + 1) 2 fG;Bg

The transition of �i�1(l + 1) 2 fG;Bg is the same as in Section 4.5.4.1 with j replaces

with i � 1, except that �i�1(l + 1) = G even if the score is erroneous if player (i� 1)�s

signal frequency is far away from the a¢ ne hull of player (i� 1)�s signal distributions with

respect to player i�s action. As we will see, in such a case, �i�1 (l + 1) = B and �i�1 (l + 1)

is irrelevant for player i. In addition, this does not a¤ect player i�s incentive since player i

cannot control whether player (i� 1)�s signal frequency is far away from the a¢ ne hull of

player (i� 1)�s signal distributions with respect to player i�s action.

Now, we de�ne the transition of �i�1(l): the initial condition is �i�1(1) = G. If �i�1(l) =

B, then �i�1(l+ 1) = B. If �i�1(l) = G, then �i�1(l+ 1) = G if at least one of the following

three conditions is satis�ed:

1. the score is regular:

Xi�1 (l)

8><>: � �u
L
T if xj = G;

� � �u
L
T if xj = B;

2. some player�s deviation has been con�rmed: ci�1 (l) 6= f0g; or

3. player i � 1 takes �i�1 (x), player (i� 1)�s action frequency is close to �i�1 (x), and

player (i� 1)�s signal frequency while player i � 1 is taking ai�1 (x) is not close to

Qi
i�1 (x). That is, the following three conditions are satis�ed:

(a) player i� 1 takes �i�1 (x): �i�1 (l) = �i�1 (x);
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(b) player (i� 1)�s action frequency is close to �i�1 (x):





 1

T � 1
X

t2Ti�1(l)

1ai�1;t � �i�1(x)







 < "; (5.16)

and

(c) player (i� 1)�s signal frequency while player i � 1 is taking ai�1 (x) is not close

to Qi
i�1 (x).

Otherwise, that is, if the score is erroneous

Xi�1 (l)

8><>: > �u
L
T if xj = G;

< � �u
L
T if xj = B;

(5.17)

ci�1(l) = f0g, and �not 3-(a), not 3-(b) or not 3-(c),�then �i�1(l + 1) = B.

We are left to formally de�ne Condition 3-(c). For notational convenience, we specify

the conditions such that, if and only if these conditions are satis�ed, Condition 3-(c) is not

satis�ed.

First, player i � 1 creates 1Qii�1(x) from Qii�1(x)1yi�1 as player j creates 1Qj(x) from

Qj (x)1yj in the two-player case.

Condition 3-(c) is not satis�ed if and only if







Qii�1(x)
0@ 1

jTi�1(l; x)j
X

t2Ti�1(l;x)

1yi�1;t

1A� 1

jTi�1(l; x)j
X

t2Ti�1(l;x)

1Qii�1(x)







 < "

K1

; (5.18)

and 





 1

jTi�1(l; x)j
X

t2Ti�1(l;x)

1Qii�1(x) � q
i
i�1 (x)







 < "

K1

: (5.19)

Here, as for (2.22) in the two-player case, we adjust the probability of (5.18) so that the

probability of (5.18) is independent of ai�1;t; yi�1;t and so of players � (i� 1)�s strategy.

From now on, when we say (5.18) is satis�ed, it takes this adjustment into account.
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As in the two-player case, K1 is su¢ ciently large so that (5.18) and (5.19) imply





Qj
i (x)�

1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t







 < ": (5.20)

5.5.4.2 Transition of �i�1(l + 1)(i) 2 fG;Bg and �i+1(l + 1)(i) 2 fG;Bg

The transition of �i�1(l+1)(i) 2 fG;Bg is the same as in the two-player case with j replaced

with i � 1, except that if ci(l) 6= f0g, then �i�1(l + 1)(i) = �i�1(l)(i). As will be seen in

Section 5.6.2, player i with ci(l) 6= f0g and �i�1(l)(i) = G believes that player i is indi¤erent

between any action pro�le. This implies that player i does not need to infer �i�1(l + 1)

seriously.

Speci�cally, �i�1(1)(i) = G. If �i�1(l)(i) = B, then �i�1(l+ 1)(i) = B. If �i�1(l)(i) = G,

then �i�1(l + 1)(i) 2 fG;Bg is de�ned as follows.

Suppose player i�s history in the lth review round satis�es the following two conditions,

then player i disregards the message and

�i�1 (l + 1) (i) = G :

1. ci(l) 6= f0g, that is, player i believes that some player�s deviation has been con�rmed;

or

2. ci(l) = f0g and the following three conditions are satis�ed:

(a) player i takes �i(l) = �i(x);

(b) the actual frequency of player i�s actions in the lth review round is close to �i(x):





 1

T � 1
X
t2Ti(l)

1ai;t � �i(x)







 < "; (5.21)

and
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(c) there exists some player j 2 �i such that player i�s signal frequency while player

i is taking ai (x) is close to Q
j
i (x).

Otherwise, player i obeys the message:

�i�1(l + 1)(i) = f [i](�i�1(l + 1)): (5.22)

We are left to formally de�ne 2-(c). As for (2.22) and (2.23), player i constructs the

following random variables. First, player i creates 1Qji (x) from Qji (x)1yi as player i creates

1Qi(x) from Qi (x)1yi.

Condition 2-(c) is satis�ed if and only if there exists j 2 �i such that







Qji (x)
0@ 1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t

1A� 1

jTi(l; x)j
X

t2Ti(l;x)

1Qji (x)







 < "

K1

; (5.23)

and 





 1

jTi(l; x)j
X

t2Ti(l;x)

1Qji (x)
� qji (x)







 < "

K1

: (5.24)

Here, as for (2.22) in the two-player case, we adjust the probability of (5.23) so that the

probability of (5.23) is independent of fai;t; yi;tgt2T (l) and so of players (�i)�s strategy. From

now on, when we say (5.23) is satis�ed, it takes this adjustment into account.2

As in the two-player case, K1 is su¢ ciently large so that (5.23) and (5.24) implies





Qj
i (x)�

1

jTi(l; x)j
X

t2Ti(l;x)

1yi;t







 < ": (5.25)

For �i+1(l + 1)(i), player i always obeys the message

�i+1(l + 1)(i) = f [i](�i+1(l + 1)): (5.26)
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5.5.4.3 Transition of di(l + 1)

We de�ne the transition of di(l + 1) 2 f0; i � 1; i + 1g: di(l + 1) = 0 implies that player i

believes that both player i� 1 and i+ 1 has taken �i�1 (x) and �i+1 (x) respectively in the

lth review round; di(l + 1) = i� 1 implies that player i believes that player i� 1 has taken

�i�1 (l) 6= �i�1 (x); di(l+1) = i+1 implies that player i believes that player i+1 has taken

�i+1 (l) 6= �i+1 (x).

De�ne di(1) = 0. For l = 1; :::; L� 1, di(l + 1) is determined as follows:

1. if di(l) 6= 0 or ci(l) 6= f0g, then di(l + 1) = di(l); and

2. if di(l) = 0 and ci(l) = f0g,

(a) if �i (l) = G (player i has not observed an erroneous score), then player i monitors

player i� 1:

di(l + 1) = i� 1

if the following �ve conditions are satis�ed:

i. �i�2 (l) (i) = B (player i believes that player i � 2 (the controller of player

i� 1) has observed an erroneous score);

ii. xi�2 = B (player i� 2 takes the harsh strategy);

iii. player i takes �i(l) = �i(x);

iv. (5.21), (5.23) and (5.24) are satis�ed for j = i� 1; and

v. 1
jTi(l;x)j

P
t2Ti(l;x) 


x
i is low.

Otherwise,

di(l + 1) = 0;

and
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(b) if �i (l) = B (player i has not observed an erroneous score), then

8><>: di(l + 1) = 0 if xi = G;

di(l + 1) = i+ 1 if xi = B:

Note that if xi = B and �i(l) = B, then player i always thinks player i + 1 has

deviated.

We are left to specify Condition 2-(a)-v. As player i constructs �a(x)i 2 f0; 1g from



a(x)
i (yi) in the two-player case, player i constructs �xi from 
xi (yi).

As in the case with two players, Condition 2-(a)-v is satis�ed if and only if

� 1
jTi(l;x)j

P
t2Ti(l;x) 


x
i (yi;t) and

1
jTi(l;x)j

P
t2Ti(l;x) �

x
i;t are closed:







 1

jTi (l; x)j
X

t2Ti(l;x)


xi (yi;t)�
1

jTi(l; x)j
X

t2Ti(l;x)

�xi;t







 < q

3
; (5.27)

and

� player i draws a random variable from the uniform [0; 1] and the realization of this

random variable is no less than

pl+1i (x)min

8><>:1;
n
q2T � qT �

P
t2Ti(l;x) �

x
i;t

o
+

q2T � q1T

9>=>; : (5.28)

As in the two-player case, we adjust the probability of (5.27) so that the probability

of (5.27) is independent of fai;t; yi;tgt2T (l). When we say (5.27) is satis�ed, we take this

adjustment into account.

Notice that, if di(l + 1) = i� 1, then

1

jTi (l; x)j
X

t2Ti(l;x)


xi (yi;t) � q2 �
q

2
(5.29)
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for su¢ ciently small �, as for (4.15).

We postpone the intuitive explanation of this transition until Section 5.5.4.5.

5.5.4.4 Transition of dj(l + 1)(i)

If j = i, then player i knows dj(l + 1). Hence, dj(l + 1)(i) = dj(l + 1).

For each j 6= i, player i constructs dj(l + 1)(i) by

dj(l + 1)(i) = f [i](dj(l + 1)) (5.30)

using the signals that arrive when player j sends the message about dj(l + 1) via error-

reporting noisy cheap talk between players j and i.

5.5.4.5 Transition of ci(l + 1) � f0g [ I

As seen in Section 5.5.2, ci(l + 1) 3 n if and only if player n�s deviation is �con�rmed.�

Formally, ci(1) = f0g and for l � 1, if there exists n 2 I such that ci(l) 3 n (player n�s devi-

ation has been con�rmed) or dn�1(l+ 1)(i) = dn+1(l+ 1)(i) = n (the two monitors of player

n agree that player n does not take �n (l) = �n(x) except for the noise in communication),

then ci(l + 1) 3 n. Otherwise, ci(l + 1) = f0g.

Let us explain the basic structure of the coordination on the punishment. For a simple

explanation, assume that dj(l) = 0 for all j 2 I and there is no noise in the communication:

�j(l) = �j(l)(n) and dj(l + 1) = dj(l + 1)(n) for all j and n.

See Section 5.5.4.3. Since we want to consider player i�s incentive, we consider the

transition of dj(l + 1) for the two monitors of player i, players i � 1 and i + 1. For j 2

fi� 1; i+ 1g,

1. if �i�1 (l) = G, then

(a) player i� 1 monitors player i� 2 6= i and so di�1(l + 1) 6= i; and
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(b) player i + 1 monitors player i but since �i�1(l)(i + 1) = G (assuming no error),

player i+ 1 always has di+1(l + 1) = 0; and

2. if �i�1 (l) = B, then

(a) if xi�1 = G, then di�1(l + 1) = 0; and

(b) if xi�1 = B, then di�1(l + 1) = i. Hence, it is up to player i + 1 whether or

not player i�s deviation is con�rmed. How player i + 1 with �i+1(l) = G and

�i�1(l)(i + 1) = B monitors player i is the same as how player j with �j(l) = B

monitors player i in the two-player case.

From 1 and 2-(a), while xi�1 = G or �i�1 (l) = G, player i does not need to consider the

possibility of di�1(l + 1) = i. Consider the case with xi�1 = �i�1 (l) = B. From 2-(b), as in

the two-player case, we can show that player i should take the static best response to players

(�i)�s action and player i�s value is su¢ ciently small.

The remaining question is whether player i has an incentive to manipulate �i+1(l) so

that player i + 1 monitors player i + 2 rather than player i in Case 2-(b). Here is where

Assumption 4 plays an important role: Lemma 32 below guarantees that player i cannot

manipulate �i+1(l) to increase her payo¤.

5.5.4.6 Transition of �i�1(l) 2 fG;Bg

As in the two-player case, if �i�1(l) = B, then �i�1(l + 1) = B. Hence, we concentrate on

how �i�1(l+ 1) 2 fG;Bg is de�ned conditional on �i�1(l) = G. �i�1(l+ 1) = B if one of the

following conditions are satis�ed:

1. when player i � 1 sends �i�1(l + 1) or when some player j 2 �i sends dj (l + 1) to

player i via error-reporting noisy cheap talk, the error is reported:

g[i� 1](�i�1(l + 1)) = E
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or

g[i� 1](dj(l + 1)) = E for some j 2 �i; (5.31)

2. when player j 2 �i sends �j(l + 1) or dj (l + 1) to player n 2 �i via error-reporting

noisy cheap talk, the receiver (player n) makes a mistake:

(a) j 2 � (i� 1; i) and we have

f [n](�j(l + 1)) 6= �j(l + 1) for some n 2 fj + 1; j + 2g n fig;

or

(b) j 2 �i and

f [n](dj(l + 1)) 6= dj(l + 1) for some n 2 �i: (5.32)

For dj(l+1), since we map a ternary signal into a sequence of binary signals in Section

5.5.2, the probability of (5.32) depends on dj(l+1). We adjust this probability so that

the probability of (5.32) is independent of dj(l+1), as we do for (2.22). From now on,

when we say (5.32) is satis�ed, we take this adjustment into account;

3. for j 2 �i, at the beginning of the (l + 1)th review round, player j with �j�1(l+1)(j) =

G and cj(l+1) 6= fng � I takes �j (l + 1) 6= �j(x). With abuse of notation, we include

the case with l = �1;

4. for j 2 �i, at the beginning of the (l + 1)th review round, player j with �j�1(l+1)(j) =

G and cj(l + 1) = fng � I takes �j (l + 1) 6= ��j;n. With abuse of notation, we include

the case with l = �1; or

5. for j 2 �i, player j takes �j(x) but (5.21), (5.23) or (5.24) is not satis�ed (indices i

and j are reversed).

Note that, in order to calculate the transition, player i � 1 needs to know players �i�s

history such as �j(l+1) with j 2 � (i� 1; i). These variables are sent in the re-report block
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and so included in hrereporti�1 . Since �i�1(l+1) only a¤ects the reward function (does not a¤ect

the action plan), it su¢ ces that player i� 1 knows the information by the end of the review

phase.

The important property of �i�1 (l + 1) is that the distribution of �i�1 (l + 1) is indepen-

dent of player i�s strategy. Let us check all the conditions:

1. the probability for Condition 1 is exogenously given and independent of �i�1(l+1) and

dj22 (l + 1);

2. the probability for Condition 2 is exogenously given and independent of player j�s

message;

3. Condition 3 is determined by the mixture by players �i and the probability is �xed at

�;

4. Condition 4 is determined by the mixture by players �i and the probability is �xed at

�; and

5. if Condition 1, 2, 3 or 4 is satis�ed, then �i�1(l+ 1) = B is determined. Otherwise, as

we will see in Section 5.6.2, players �i take ��i(x) and the probability of Conditions

5 is independent of player i�s action plan.

5.6 Properties of the Equilibrium

5.6.1 Pairwise Distinguishability

Assumption 4 implies that each player i can distinguish which one of each pair fj; ng is more

likely to deviate, which derives the following two lemmas:

Lemma 32 For all �u and L, there exists �" such that, for all " < �", for each i 2 I and

l = 1; :::; L � 1, if players �i plays ��i (l) = ��i (x), then �n�1 (l + 1) = B with n � 1 2

� (i� 1; i) implies �i�1(l + 1) = B.
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Proof: Without loss, assume �n�1 (l) = G and �n�1 (l + 1) = B with n � 1 2 � (i� 1; i).

Then,

� Condition 1 of Section 5.5.4.1 implies 1
jTn�1(l;x)j

P
t2Tn�1(l;x) 1yn�1;t is far from qn�1 (x);

and

� Condition 3 of Section 5.5.4.1 implies 1
jTn�1(l;x)j

P
t2Tn�1(l;x) 1yn�1;t is close to Q

n
n�1 (x).

Together with Lemma 30, this implies 1
jTn�1(l;x)j

P
t2Tn�1(l;x) 1yn�1;t is far fromQ

j
n�1 (x) for

all j 2 � (n� 1; n) 3 i, which implies �i�1(l+ 1) = B from Condition 5 of Section 5.5.4.6.

Lemma 33 For each q, there exists �"q > 0 such that, for all " < �"q, for each i 2 I and

l = 1; :::; L�1, if players�i plays ��i (l) = ��i (x), then dn+1 (l + 1) = n with n 2 � (i� 1; i)

implies �i�1(l + 1) = B.

Proof: The same as Lemma 32.

5.6.2 a�i(l), �j (l + 1), dj(l + 1) and cj(l + 1)

In this section, we assume each message m after each lth review round by player j 2 �i can

transmit correctly to player n 2 �i since otherwise, Condition 2 of Section 5.5.4.6 implies

�i�1(l + 1) = B conditional on m.

Let l (if any) be the review round where player i�1 has �i�1 (l) = G and �i�1 (l + 1) = B.

Without an error, �i�1 (l) (i+ 1) = G.

First, consider the situation until the lth review round. Let l� � l (if any) be the �rst

review round where (1) there exists j 2 � (i� 1; i) with �j(l� + 1) = B or (2) player i + 1

decides �i(l� + 1)(i+ 1) by f [i+ 1] (�i(l� + 1)) (obeys player i�s message).

Since �j(l�) = G for all j 2 �i and l� � l, dj(~l+1) 2 f0; j � 1g for all j 2 �i and ~l � l�.

Let l̂ � l� (if any) be the �rst review round where (3) there exists j 2 �i with dj(l̂+1) =

j � 1. Then, players �i take ��i(l̂) = ��i (x) or �i�1(l̂) = B from Condition 3 of Section
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5.5.4.6. Since �i�1(l) = �i�1 (l) (i+1) = G implies di+1(l̂+1) = 0, (3) implies dj(l̂+1) = j�1

with j 2 � (i; i+ 1). Thus, Lemma 33 implies �i�1(l̂ + 1) = B.

Hence, players �i take ��i(l�) = ��i (x) or �i�1(l�) = B. If the former is the case, then

(1) �j(l� + 1) = B with j 2 � (i� 1; i) implies �i�1(l� + 1) = B from Lemma 32 and (2)

player i + 1 decides �i(l� + 1)(i + 1) by f [i + 1] (�i(l� + 1)) implies �i�1(l� + 1) = B from

Condition 2 of Section 5.5.4.2 and Condition 5 of Section 5.5.4.6.

In total, for ~l � l,

� players �i play �i�1(~l) = ��i (x) or �i�1(~l) = B;

� ��j(~l + 1) = G for all j 2 � (i� 1; i), �i(~l + 1)(i + 1) = G regardless of player i�s

message, and dj(~l + 1) = 0 for all j 2 �i�or �i�1(~l + 1) = B; and

� if ��i(l+1) 6= ��i (x), then �i�1(l+1) = B (this follows from the second bullet point).

Second, consider the ~lth review rounds with ~l � l+1. Since �i�1 (l + 1) = B, di�1(~l+1) =

0 for all ~l � l + 1 if xi�1 = G and di�1(~l + 1) = i for all ~l � l + 1 if xi�1 = B. From above,

we can assume dj(l + 1) = 0 for all j 2 �i, �j(l + 1) = G for all j 2 � (i� 1; i) and

�i(l + 1)(i + 1) = G (otherwise, �i�1(l + 1) = B). Again, let l� � l + 1 (if any) be the �rst

review round where (1) there exists j 2 � (i� 1; i) with �j(l� + 1) = B or (2) player i + 1

decides �i(l� + 1)(i+ 1) by f [i+ 1] (�i(l� + 1)).

Since �j(l�) = G for j 2 � (i� 1; i), dj(~l + 1) 2 f0; j � 1g for all j 2 � (i� 1; i) and
~l � l�.

Let l̂ � l� with l̂ � l+1 (if any) be the �rst review round where there exists j 2 � (i� 1; i)

with dj(l̂ + 1) = j � 1. Note that players �i take ��i(l̂) = ��i (x) or �i�1(l̂) = B from

Condition 3 of Section 5.5.4.6. Consider the following three cases:

1. if there exists j 2 � (i� 1; i; i+ 1) with dj(l̂ + 1) = j � 1 6= i, then Lemma 33 implies

�i�1(l̂ + 1) = B; and
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2. if dj(l̂ + 1) = 0 for all j 2 � (i� 1; i; i+ 1), then di+1(l̂ + 1) = i. If xi�1 = G, then

this is contradiction. Hence, consider the case with xi�1 = B. Since player i� 1 with

xi�1 = �i�1 (l + 1) = B has di+1(~l + 1) = i for all ~l � l + 1, we have cj(l̂ + 1) = fig

for all j 2 �i regardless of player i�s message (note that the deviation by player

n 2 fi� 1; i+ 1g cannot be con�rmed with dj(l̂+ 1) = 0 for all j 2 � (i� 1; i; i+ 1)).

Hence, dj(~l+1) with ~l � l̂+1 will be �xed for all j 2 �i. Further, since cj(~l+1) 6= f0g

for all j 2 �i, �j(~l + 1) will be �xed for all j 2 �i and ~l � l̂ + 1 from Condition 2

of Section 5.5.4.1 and �j�1(~l + 1)(j) will be �xed for all j 2 �i and ~l � l̂ + 1 from

Condition 2 of Section 5.5.4.2. Therefore,

(a) if l̂ < l�, then this contradicts �j(l�) = G and �j(l
� + 1) = B for some j 2

� (i� 1; i); and

(b) if l̂ = l�, then players �i take ��i(l�) = ��i (x) or �i�1(l�) = B. If the former is

the case, then �j(l� + 1) = B with j 2 � (i� 1; i) implies �i�1(l� + 1) = B from

Lemma 32.

In total, for ~l � l + 1,

� unless cj(~l) = fig for all j 2 �i, players �i play �i�1(~l) = ��i (x) or �i�1(~l) = B; and

� ��j(~l+1) = G for all j 2 � (i� 1; i), �i(~l+1)(i+1) = G, cj(~l+1) = fig for all j 2 �i

if xi�1 = B and di+1(~l + 1) = i, and cj(~l + 1) = f0g if xi�1 = G or di+1(~l + 1) = 0,�

regardless of player i�s messages, or �i�1(~l + 1) = B.

Therefore, we have the following lemma:

Lemma 34 For each i 2 I and l = 1; :::; L, in the lth review round, �i�1(l) = B or the

following statement is true:

1. if �i�1(l) = G, then
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(a) players �i play �i�1(l) = ��i (x) and �j(l) = G for all j 2 � (i� 1; i), �i(l)(i +

1) = G, and dj(l) = 0 for all j 2 �i; and

(b) for the next review round,

i. ��i(l+1) = ��i (x), �j(l+1) = G for all j 2 � (i� 1; i), �i(l+1)(i+1) = G

regardless of player i�s message, and dj(l + 1) = 0 for all j 2 �i; or

ii. �i�1(l + 1) = B; and

2. if �i�1(l) = B, then one of the following two is correct:

(a) cj(l) = fig for all j 2 �i and players �i takes ��i(l) = ���i. For the next round,

player �i take ��i (l + 1) = ���i or �i�1(l + 1) = B; or

(b) cj(l) = f0g for all j 2 �i and players �i takes ��i(l) = ��(x). For the next

round,

i. �j(l+1) = G for all j 2 � (i� 1; i), �i(l+1)(i+1) = G, and �cj(l+1) = fig

for all j 2 �i if xi�1 = B and di+1(l + 1) = i�and �cj(l + 1) = f0g for all

j 2 �i if xi�1 = G or di+1(l + 1) = 0,�regardless of player i�s messages; or

ii. �i�1(l + 1) = B; and

3. �j�1(l)(j) = G for all j 2 �i.

Proof: Claims 1 and 2 follow the discussion above. Claim 3 requires the proof. Suppose

�j�1(l � 1)(j) = B and �j�1(l)(j) = G. By Section 5.5.4.2, cj(l � 1) 6= f0g. From Claims 1

and 2 of the current lemma, we can concentrate on the case where players �i play �i�1(l) =

��i (x). Then, Condition 2 of Section 5.5.4.2 and Condition 5 of Section 5.5.4.6 implies

�i�1(l) = B.

5.6.3 Player i�s Belief

Consider player i�s inference of �i�1(l + 1), �i�1(l + 1)(i) 2 fG;Bg. As in the proof of

Lemma 15, let l� (l̂�, respectively) be such that �i�1(l) = B (�i�1(l)(i) = B, respectively)
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is initially induced in the (l� + 1)th ((l̂� + 1)th, respectively) review round. If �i�1 (L) = G

(�i�1 (L) (i) = G, respectively), then de�ne l� = L (l̂� = L, respectively). Then, there are

following three cases:

l� = l̂� This means �i�1 (l) = �i�1(l)(i) for all l.

l� > l̂� This means that player i obeys the message in the supplemental round for �i�1(l̂�+1)

between i� 1 and i:

�i�1(l̂
� + 1)(i) = f [i](�i�1(l̂

� + 1)):

By Lemma 11, player i believes that, conditional on �i�1(l̂� + 1),

�i�1(l̂
� + 1)(i) = f [i](�i�1(l̂

� + 1)) = �i�1(l̂
� + 1)

or g[i� 1](�i�1(l̂� + 1)) = E with probability no less than 1� exp(��(T 1
2 )).

If the former is the case, then l� � l̂� (contradiction). If the latter is the case, then

�i�1(l̂
� + 1) = B. Since players (�i)�s continuation actions plan in the main blocks do not

depend on g[i� 1](�i�1(l̂� + 1)), this belief is valid after learning.

l� < l̂� If �i�1(l� + 1)(i) = f [i](�i�1(l
� + 1)), then as in the case with l� > l̂�, player i

believes that �i�1(l) = B with probability 1� exp(��(T 1
2 )) conditional on �i�1(l�+1), even

after learning from the continuation action plan by players �i.

If player i disregards the message, then as in the case with two players, there are following

two cases:

1. ci(l�) 6= f0g. Then, from Lemma 34, there should exist j 2 �i and l < l� such that

f [i] (dj(l)) 6= 0 = dj(l);
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or �i�1(l) = B. If the former is the case, then by Lemma 11, player i believes that,

conditional on dj(l), g[i�1] (dj(l)) = E with probability 1�exp(��(T 1
2 )). Since players

(�i)�s continuation action plans in the main blocks do not depend on g[i � 1](dj(l)),

this belief is valid after learning; and

2. ci(l�) = f0g. From Lemma 34, unless �i�1(l�) = B, cj(l�) = f0g, �j(l�) = G with

j 2 �i and �i(l�)(i + 1) = G. From �j(l
�) = G with j 2 �i, unless �i�1(l�) = B,

�j�1(l
�)(j) = B for all j 2 � (i; i+ 1). In total, unless �i�1(l�) = B, cj(l�) = f0g and

�j�1(l
�)(j) = B for all j 2 �i.

Since player i disregards the message, from Condition 2 of Section 5.5.4.2, (5.21) is

satis�ed and there exists some player j 2 �i such that player i�s signal frequency while

player i is taking ai (x) is close to Q
j
i (x). Let J be the set of such player j 2 �i.

If jJ j > 1, then by Lemma 30 implies player i�s signal frequency while player i is

taking ai (x) is close to the ex ante mean qi (x) and player i believes that the score is

not erroneous and �i�1(l� + 1) = G with probability 1� exp(��(T )).

If jJ j = 1, then the same proof as Lemma 15 shows that player i believes that the

score is not erroneous or �i�1(l�) = G with probability 1� exp(��(T )).

These bounds are before learning from the continuation action plan by players �i.

The learning from the continuation action plan changes the belief in the following two

ways. First, when player j 2 �i sends a message m, f [i](m) reveals the part of the

histories m. However, since any sequence of signals occurs with positive probability�
exp(��(T 1

2 ))
�(2N+N(N�1))L

= exp(��(T 1
2 )), the update of the belief is su¢ ciently

small compared to the original belief 1� exp(��(T )).

Second, player i conditions that �j�1(~l)(j) = G with j 2 �i. Since player j observes

any f [j](�j�1(~l)) with probability exp(��(T
1
2 )) regardless of a history of players �j,

the update of the belief is
�
exp(��(T 1

2 ))
�L
= exp(��(T 1

2 )).
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Third, since player j with �j�1(~l)(j) takes all the actions with probability �(�), the

update of the belief is (�(�))L.

Next, consider player i�s inference of cj(l) with j 2 �i. If there exist j 2 �i and ~l � l with

cj(~l) 6= f0g; fig, then Lemma 34 implies �i�1(l) = B. In addition, if there exist j; j0 2 �i

and ~l � l with cj(~l) 6= cj0(~l), then Lemma 34 implies �i�1(l) = B. Further, if there exist

j 2 �i and ~l � l such that player i�s message a¤ects cj(~l), then �i�1(l) = B.

Hence, we can concentrate on the case where cj(l) = cj0(l) = f0g; fig for j; j0 2 �i and

cj(l) = cj0(l) is independent of player i�s message. If ci(~l) 6= cj(~l) for some j 2 �i and ~l < l,

then there should exist n 2 �i and l̂ � ~l such that

f [i](dn(l̂)) 6= dn(l̂)

or

f [j](dn(l̂)) 6= dn(l̂):

If the former is the case, player i believes that, conditional on dn(l̂), g[i� 1](dn(l̂)) = E with

probability 1 � exp(��(T 1
2 )). Since player (i� 1)�s continuation action plan in the main

blocks does not depend on g[i � 1](dn(l̂)), this belief is valid after learning. If the latter is

the case, then Condition 2 of Section 5.5.4.6 implies �i�1(l + 1) = B.

In total, we have shown the following lemma:

Lemma 35 For all �u and L, there exists �� such that, for all � < ��, there exists �� > 0 such

that, for all � < ��, there exist �" and fAi(x)gi;x such that, for all " < �", for any history hti

with t being in the lth review round, conditional on �j�1(~l)(j) = G for all j 2 �i and ~l � l

and ��i(l), player i after hti believes with probability 1� exp(��(T
1
2 )) that

1. �̂i�1(l)(i) = �i�1(l) and ci (l) = cj (l) for all j 2 I; or

2. �i�1(l) = B.
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5.7 Variables

In this section, we show that we can take all the variables necessary for the equilibrium

construction appropriately: �u, q2, q1, u, �q, L, �, � and ".

First, Lemma 26 determines �u and Lemma 28 determines q1 and q2.

Second, from (1.18), we have

max

�
v�i ; max

x:xi�1=B
ui(a(x))

�
< vi < vi < vi < min

x:xi�1=G
ui(a(x)):

Take u su¢ ciently small so that

vi (B) + u < vi < vi < vi < min
x:xi�1=G

ui(a(x));

where vi (B) = maxfv�i ;maxx:xi�1=B ui(a(x)) + 2u as de�ned in (5.1). Re-take �u if necessary

to have (5.3).

Third, take L su¢ ciently large su¢ ciently small such that

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
< vi < vi < vi < min

x:xi�1=G
ui(a(x))� 2

�u

L
:

Fourth, given L; q2; q1; u, �x �q1 and ��1 so that Lemma 31 holds.

Fifth, take ��2 < ��1 so that, for all � < ��2, (5.2) holds and

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
< vi < vi < vi < min

x:xi�1=G
wi(x)� 2

�u

L
:

Sixth, given �u and L, take ��1 so that for all � < ��1, we have

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
+ �L

�
2�u�min

i;x

(L� 1) vi (B) + �u
L

�
< vi < vi < min

x:xj=G
wi (x)� 2

�u

L
� �L

�
2�u+max

i;x
wi (x)

�
: (5.33)
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Finally, �x q < �q1 su¢ ciently small. Then, we can take �"1 for Lemma 32 and �"q for

Lemma 33. Fix � < ��1, � and " < min f�"1; �"qg so that Lemma 35 hold.

5.8 Almost Optimality

Based on Lemmas 34 and 35, we now show that if we properly de�ne ��i(x; �i�1(l); ci�1(l); l),

then �i(xi) and �maini satisfy (1.21), (1.16) and (1.17):

Proposition 36 For all i 2 I, there exists ��i(x; �i�1(l); ci�1(l); l) such that

1. �i(xi) is almost optimal conditional on �j�1(l)(j) = G for all j 2 �i and ~l � l: for

each l 2 f1; :::; Lg,

(a) for any period t in the lth review round, (1.21) holds; and

(b) when player i sends messages by the error-reporting noisy cheap talk in the sup-

plemental rounds, (1.21) holds;2

2. (1.16) is satis�ed with �i replaced with �maini . Since each xi 2 fG;Bg gives the same

value conditional on x�i, the strategy in the coordination block is optimal;3 and

3. �maini satis�es (1.17).

Lemma 34 shows that �j�1(l)(j) = B for some j 2 �i, then �i�1(l) = B and that player

i can condition on �j�1(l)(j) = G for all j 2 �i.

Lemma 34 also shows that, whenever player i�s message changes some player�s action after

the lth review round, �i�1(l+1) = B is predetermined. In addition, Lemma 35 implies that

player i can infer (cn(l))n2�i and �i�1(l) with probability 1� exp(��(T
1
2 )) (or any action is

optimal) by sending messages as prescribed by the equilibrium action plan. Therefore, 1-(b)

holds.
2If l = L, then this is redundant.
3As in the two-player case, even after the adjustment of the report block, any xi 2 fG;Bg

still gives exactly the same value.
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As in the two-player case, for 3, it su¢ ces to have

��i(x; �i�1(l); ci�1(l); l)

8><>: � 0 if xi�1 = G;

� 0 if xi�1 = B;
(5.34)

j��i(x; �i�1(l); ci�1(l); l)j � maxi;a 2 jui (a)jT (5.35)

for all x 2 fG;BgN , �i�1(l) 2 fG;Bg, ci�1(l) � f0g [ 2I and l 2 f1; :::; Lg.

We are left to construct ��i so that 1-(a) and 2 are satis�ed together with (5.34) and

(5.35). Remember that, from Lemma 34 and 35, if ci(l) = fng 2 �i, then player i believes

�i�1(l) = B with probability 1�exp(��(T 1
2 )). Hence, it is almost optimal to take any �i(l).

Further, from Lemmas 34 and 35, we can concentrate on the following �ve cases:

� xi�1 = G, �i�1(l)(i) = �i�1(l) = G, cj(l) = f0g for all j 2 I, players �i take ��i(x),

�j(l) = G for all j 2 � (i� 1; i), and �j�1(l)(j) = G for all j 2 �i.

Further, ��j(l + 1) = G for all j 2 � (i� 1; i), �j�1(l + 1)(j) = G for all j 2 �i, and

cj(l + 1) = f0g for all j 2 �i,�or �i�1(l + 1) = B;

� xi�1 = G, �i�1(l)(i) = �i�1(l) = B, cj(l) = f0g for all j 2 I, players �i take ��i(x),

�j(l) = G for all j 2 � (i� 1; i), and �j�1(l)(j) = G for all j 2 �i.

Further, ��j(l + 1) = G for all j 2 � (i� 1; i), �j�1(l + 1)(j) = G for all j 2 �i, and

cj(l + 1) = f0g for all j 2 �i,�or �i�1(l + 1) = B;

� xi�1 = B, �i�1(l)(i) = �i�1(l) = G, cj(l) = f0g for all j 2 I, players �i take ��i(x),

�j(l) = G for all j 2 � (i� 1; i), and �j�1(l)(j) = G for all j 2 �i.

Further, ��j(l + 1) = G for all j 2 � (i� 1; i), �j�1(l + 1)(j) = G for all j 2 �i, and

cj(l + 1) = f0g for all j 2 �i,�or �i�1(l + 1) = B;

� xi�1 = B, �i�1(l)(i) = �i�1(l) = B, cj(l) = f0g for all j 2 I, players �i take ��i(x),

�j(l) = G for all j 2 � (i� 1; i), and �j�1(l)(j) = G for all j 2 �i.
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Further, ��j(l + 1) = G for all j 2 � (i� 1; i), �j�1(l + 1)(j) = G for all j 2 �i, and

cj(l + 1) = fig for all j 2 �i if di+1(l + 1) = i and cj(l + 1) = f0g for all j 2 �i if

di+1(l + 1) 6= i,�or �i�1(l + 1) = B; and

� xi�1 = B, �i�1(l)(i) = �i�1(l) = �i�1(l)(i + 1) = B, cj(l) = fig for all j 2 I, players

�i take ���i, �j(l) = G for all j 2 � (i� 1; i), and �j�1(l)(j) = G for all j 2 �i.

Further, ��j(l + 1) = G for all j 2 � (i� 1; i), �j�1(l + 1)(j) = G for all j 2 �i, and

cj(l + 1) = fig for all j 2 �i,�or �i�1(l + 1) = B.

Since the distribution of �i�1(l+1) is independent of player i�s strategy, player i�s incentive

is the same as in the two-player case. Remember that in the fourth case, player i + 1

determines di+1(l + 1) = i or not as player j determines dj(l + 1) = B or not in the two-

player case.

Therefore, almost optimality of �i(xi) and the existence of ��i with (5.34) and (5.35) can

be shown as in the two-player case.

5.9 Report Block

We are left to construct the report and re-report blocks to attain the exact optimality of the

equilibrium strategies. In this section, we explain the report block.

5.9.1 Preparation

As in the two-player case, we need to establish the truthtelling incentive in the report block.

When player i reports her history (ai;t; yi;t) in some period t in the main blocks, intuitively,

player i� 1 punishes player i proportionally to



1aj;t;yj;t � E �1aj;t;yj;t j ŷi;t; y�(i;j);t; âi;t; a�(i;j);t; �j;t�

2
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with

j =

8><>: i� 1 if i 6= 1;

2 if i = 1:
(5.36)

Hence, player i wants to maximize

� E

264 

1aj;t;yj;t � E �1aj;t;yj;t j ŷi;t; y�(i;j);t; âi;t; a�(i;j);t; �j;t�

2
j yi;t; y�(i;j);t; ai;t; a�(i;j);t; �j;t

375 : (5.37)

Compared to the two-player case, we assume that player i knows the history of players

� (i; j).

Since player j with �j�1(l)(j) = G takes a fully mixed strategy, Assumption 5 implies

that the truthtelling is uniquely optimal:

Lemma 37 If Assumption 5 is satis�ed, then for each i, any fully mixed strategy �j;t and

any history of players �j, (âi;t; ŷi;t) = (ai;t; yi;t) is a unique maximizer of (5.37).

5.9.2 Report Block

Given Lemma 37, we construct the report block.

5.9.2.1 Structure of the Report Block

The report block proceeds as follows:

1. player N sends the message about hmainN ;

2. player N � 1 sends the message about hmainN�1;

...

3. player 3 sends the message about hmain3 ;

4. then, public randomization yp is drawn; and
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5. player 1 reports hmain1 if yp � 1
2
and player 2 reports hmain2 if yp > 1

2
.

We explain each step in the sequel.

5.9.2.2 Player i sends hmaini

Since there is a chronological order for the rounds and r is a generic serial number of rounds,

the notations #r
i , #

r
i (k), T (r; k) and fai;t; yi;tgt2T (r;k) de�ned in Chapter 2 is still valid except

that

� if player i sends m to player n via error-reporting noisy cheap talk in round r, then

#r
i contains m for sure. In addition, if and only if player n� 1 is player i, #r

i contains

g[n� 1](m) and g2[n� 1](m); and

� if player i receives m from player n via error-reporting noisy cheap talk in round r,

then #r
i contains f [i](m) for sure. In addition, if and only if player n � 1 is player i,

#r
i contains f2[n� 1](m).

Player i sends the message about hmaini in the same way as player i sends the message in

Section 2.9.6. That is, for each round r,

� if round r corresponds to a review round, then

��rst, player i reports the summary #r
i ;

� second, for each subround k, player i reports the summary #r
i (k);

� third, public randomization is drawn such that each subround k is randomly

picked with probability T�
3
4 . Let k(r) be the subround picked by the public

randomization; and

� fourth, for k(r), player i reports the whole history fai;t; yi;tgt2T (r;k(r)) in the k(r)th

subround; and
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� if player i sends or receives a message by error-reporting noisy cheap talk in round r,

then player i reports #r
i .

Again, the necessary number of binary messages to send the information is

�(T
1
4 ): (5.38)

5.9.2.3 Reward Function �reporti

We are left to de�ne the reward function �reporti . As a preparation, we prove the following

lemma:

Lemma 38 Let hi be player i�s history right before player i sends the message about hmaini

in the report block. If Assumption 5 is satis�ed, then there exists �" > 0 such that

1. for each l 2 f1; :::; Lg, in the lth review round, there exists gi(hmaini�1 ; h
rereport
i�1 ; ai; yi)

such that, for period t 2 T (l), it is better for player i to report (ai;t; yi;t) truthfully: if

�j�1(l)(j) = G for all j 2 �i, then for all hi,

E
�
gi(h

main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t) j hi; (âi;t; ŷi;t) = (ai;t; yi;t)

�
(5.39)

> E
�
gi(h

main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t) j hi; (âi;t; ŷi;t) 6= (ai;t; yi;t)

�
+ �"T�(N�1);

where (âi;t; ŷi;t) is player i�s message in the report block; and

2. for round r where player i sends or receives the message by the error-reporting noisy

cheap talk, it is better for player i to report player i�s history #r
i truthfully:

E
h
gi(h

main
i�1 ; h

rereport
i�1 ; #̂r

i ) j hi; #̂r
i = #

r
i

i
(5.40)

> E
h
gi(h

main
i�1 ; h

rereport
i�1 ; #̂r

i ) j hi; #̂r
i 6= #r

i

i
+ �"T�1;

where #̂r
i is player i�s message about #

r
i in the report block.
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Proof: 1. By the same proof as Lemma 21, we can show that

gi(h
main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t) = �1ftj(r) = t for all j 2 �ig

�


1aj;t;yj;t � E[1aj;t;yj;t j ŷi;t; y�(i;j);t; âi;t; a�(i;j);t; �j;t]

2

with

j =

8><>: i� 1 if i 6= 1;

2 if i = 1
(5.41)

works. Note that, compared to Lemma 21, we have

T�(N�1) = Pr (1ftj(r) = t for all j 2 �ig = 1)

instead of T�1 = Pr (1ftj(r) = tg = 1). Also, we assume player i could know how

many times player j 2 �i observes each (aj; yj; (1Qnj (x))n2�j;�
x
j ) and player j�s history

in tj(l): (aj;tj(l); yj;tj(l); (1Qnj (x);tj(l))n2�j;�
x
j;tj(l)

)j2�i.

As we will see, players � (i� 1; i) sends the information tj(r); a�(i;j); y�(i;j) to player

i� 1 in the re-report block and so they are in hrereporti�1 .

2. If player i sends m to player n via error-reporting noisy cheap talk in round r, then

(a) if #r
i contains g[n� 1](m) and g2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ) = �



1f2[i�1](m) � E[1f2[i�1](m) j f [n](m); #̂r

i ]



2 :

(b) if #r
i does not contain g[n� 1](m) and g2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i )

= �



1f2[i�1](m) � E[1f2[i�1](m) j f [n](m); #̂r

i ; g[n� 1](m); g2[n� 1](m)]



2 :
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As we will see, player n 2 � (i� 1; i) sends f [n](m) and player n�1 2 � (i� 1; i)

sends g[n� 1](m) and g2[n� 1](m) to player i� 1 in the re-report block.

If player i receives m from player n via error-reporting noisy cheap talk in round r,

then

(a) if #r
i contains f2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ) = �



1g2[i�1](m) � E[1g2[i�1](m) j m; g[i� 1](m); #̂r

i ]



2 :

(b) if #r
i does not contain f2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i )

= �



1g2[i�1](m) � E[1g2[i�1](m) j m; g[i� 1](m); #̂r

i ; f2[n� 1](m)]



2 :

Then, (1.3) and (1.5) imply that truthtelling is optimal.

As we will see, player n 2 � (i� 1; i) sends m and player n � 1 2 � (i� 1; i) sends

f2[n� 1](m) to player i� 1 in the re-report block.

Given these preparations, by backward induction, we construct �reporti

�
hTP+1i�1 ; hrereporti�1 ; ĥr+1i ; r

�
for each r such that

�reporti (xi�1; h
TP+1
i�1 ; hrereporti�1 ) =

X
r

�reporti

�
hr+1i�1 ; h

rereport
i�1 ; ĥr+1i ; r

�

makes it optimal to tell the truth in the report block and �i(xi) is exactly optimal.

Formally, �reporti

�
hr+1i�1 ; h

rereport
i�1 ; ĥr+1i ; r

�
is determined as follows. If �i 2 f1; 2g and player

i is not selected by the public randomization�or there exists l such that the lth review round

is before or equal to round r and �j�1(l)(j) = B for some j 2 �i, then

�reporti

�
hr+1i�1 ; h

rereport
i�1 ; ĥr+1i ; r

�
= 0: (5.42)
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Otherwise, �reporti

�
hr+1i�1 ; h

rereport
i�1 ; ĥr+1i ; r

�
is the summation of the following rewards and

punishments.

Punishment for a Lie As in the two-player case, we punish a lie. For round r corre-

sponding to a review round, the punishment is the summation of the following three:

� the number indicating player i�s lie about fai;t; yi;tgt2T (r;k(r)):

X
t2T (r;k(r))

T�3gi(h
main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t); (5.43)

� the number indicating player i�s lie about #r
i (k):

T�3 � T
3
4 � 1

8<:#̂r
i (k(r)) 6=

X
t2T (r;k(r))

1âi;t;ŷi;t

9=; ; (5.44)

and

� the number indicating player i�s lie about #r
i :

T�3 � 1
(
#̂r
i 6=

X
k

#̂r
i (k)

)
: (5.45)

For round r where player i sends or receives a message m, player i� 1 punishes player i

if it is likely for player i to tell a lie by

T�3gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ): (5.46)

Cancel Out the Expected Punishment by Telling the Truth As in the two-player

case, we cancel out the di¤erences in ex ante value of the punishment between di¤erence

actions and messages: if player i reports the history (player i 2 f1; 2g needs to be picked by

the public randomization to report the history), then we add the following variable to �maini :
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� if round r is a review round, then

X
t2T (r)

1ft 2 T (r; k(r))g1ftj(l) = t for all j 2 �igT�3�i[a�(i;j);t; �j;t](yi�1;t);

� if player i sends the message in round r, then

T�3�i(f [n] (m));

where player n is the receiver of the message; and

� if player i receives the message in round r, then

T�3�i(n;m)

where player n is the sender of the message m.

Here, �i
�
a�(i;j); �j

�
(yi�1) is de�ned so that the di¤erences in (5.43) among action ai�s

are canceled out ex ante before taking ai. Since we assume that player i� 1 knew a�(i;j); �j,

Assumption 3 is su¢ cient to construct such �i
�
a�(i;j); �j

�
(yi�1). As we will see, player i�1

gets the information about a�(i;j); �j from players � (i� 1; i) in the re-report block.

Similarly, �i(f [n] (m)) (�i(n;m), respectively) is de�ned so that the di¤erences in (5.46)

among messages are canceled out ex ante before sending (receiving, respectively) the message.

Again, player n 2 � (i� 1; i) sends f [n] (m) (m, respectively) to player i�1 in the re-report

block. The identi�ability to construct such �i is guaranteed by Lemma 11.

Reward for Optimal Action and Incentive to Tell the Truth This is the same as

in the general two-player case. We construct the reward fi so that, for each round r, for

any period t in round r, for any history hti, conditional on A�i(r), �i(xi) is optimal. Here,

A�i(r) represents
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� which state x�i 2 fG;Bg players �i are in;

� for the review round l that is equal to round r, which action plan �j(l) each player

j 2 �i takes in the lth review rounds; and

� �j�1(l)(j) = G for all j 2 �i in the lth review round if round r is the lth review round

or after.

See Section 2.9.6 for the construction of fi. With more than two players, the de�nition

of Vi(hri ;#
r
i ) includes the learning about (�j(l + 1); dj(l + 1))j2�i.

5.10 Re-Report Block

This is the block for each player i�1 to collect the information owned by players � (i� 1; i)

which is necessary to construct player(i� 1)�s reward on player i, �i.

In the re-report block, we have the following rounds in this chronological order:

� players � (N � 1; N) send the information to player N � 1 to construct �N ;

� players � (N � 2; N � 1) send the information to player N � 2 to construct �N�1;
...

� players � (1; 2) send the information to player 1 to construct �2; and

� players � (N; 1) send the information to player N to construct �1.

We explain what information is sent for each step:

5.10.1 Information Sent by Players � (i� 1; i) to Player i� 1

First, each player n 2 � (i� 1; i) sends the information about their histories in the coordi-

nation and main blocks:
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� which state xn player n has;

� for each lth review round, what strategy �n(l) player n took. Remember that player

n�s strategy within a round is i.i.d ;

� for each lth review round, for each
�
an; yn;

�
1Qjn(x)

�
j2�n

;�xn

�
, how many times player

n observed
�
an; yn;

�
1Qjn(x)

�
j2�n

;�xn

�
;

� for each lth review round, which period tn(l) is excluded from Tn(l);

� what is the history
�
an; yn;

�
1Qjn(x)

�
j2�n

;�xn

�
in the excluded period tn(l); and

� for each supplemental round, m, f [n](m), f2[n](m), g[n](m) and g2[n](m), whenever

they are the pieces of information that player n sends or receives.

Second, the players communicate about the histories related to the report block:

� for each round r corresponding to a review round;

��rst, player i�1 sends to players� (i� 1; i) which k(r) player i�1 and i coordinate

about sending (ai;t; yi;t) for each r corresponding to the review round. With public

randomization, k(r) is public. Expecting that we replace public randomization

with coordination through private signals, we let player i�1 speak k(r) here; and

� then, for each r, based on player (i� 1)�s report k(r), each player n 2 � (i� 1; i)

sends (an; yn; (1Qjn(x))j2�n;�
x
n)t2T (r;k(r)); and

� for a supplemental round, each player n 2 � (i� 1; i) sends player n�s signals f [n](m),

f2[n](m), g[n](m) and g2[n](m).4

Then, player i � 1 collects all the information necessary to construct player (i� 1)�s

reward on player i, �i. Further, the cardinality of the messages sent in the re-report block is

�(T
1
4 ) (5.47)

4If player n is not a receiver of a signal, then we exclude that signal.
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by the same calculation as for (2.41).
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Chapter 6

General Two-Player Game Without

Cheap Talk

In this chapter, we prove the dispensability of the perfect cheap talk, error-reporting noisy

cheap talk and public randomization in the proof of Theorem 7 and thereby prove Theorem

8.

After we summarize new notations and assumptions in Section 6.1, we show that the

players can communicate and coordinate via actions and private signals. We take the fol-

lowing steps to dispense with the perfect and error-reporting noisy cheap talk and public

randomization device.

Remember that the coordination block uses the perfect cheap talk to communicate x,

that the supplemental rounds for �i(l + 1) and di(l + 1) use the error-reporting noisy cheap

talk, and that the report block uses the public randomization and perfect cheap talk.

First, in Section 6.2, we replace the perfect cheap talk in the coordination block with the

error-reporting noisy cheap talk. Although xi is no longer common knowledge, by exchanging

the messages via error-reporting noisy cheap talk several times, each player can construct an

inference of xi such that, given the opponent�s inference, each player puts a belief no less than

1 � exp(��(T 1
2 )) on the event that if their inferences are di¤erent, then the opponent has
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made her indi¤erent between any action pro�le sequence in the main blocks. No additional

assumption is necessary for this step.

Second, Section 6.3 explains the structure of the review phase (�nitely repeated game)

when we dispense with perfect cheap talk.

Third, in Section 6.4, we dispense with the error-reporting noisy cheap talk in the coor-

dination block (given the �rst step above) and supplemental rounds. See Section 1.5 for the

intuition and Section 6.1.1 for a new assumption su¢ cient for this step.

Third, in Section 6.5, we summarize the discussion and formally de�ne the equilibrium

strategy in the coordination and main blocks without perfect and error-reporting noisy cheap

talk. The almost optimality of this strategy is veri�ed in Section 6.6.

Fourth, in Section 6.7.3, we dispense with the public randomization in the report block,

keeping the perfect cheap talk. Now, the players coordinate with their actions and private

signals. Section 6.1.2 o¤ers a su¢ cient condition for this step.

Fifth, in Section 6.7.4, we replace the perfect cheap talk in the report block with �condi-

tionally independent noisy cheap talk,�where each message transmits correctly with a high

probability but there is a positive probability that an error happens. The sender does not

receive any feedback about whether the message transmits correctly or not.

In the report block, the receiver does not have an incentive to infer the messages correctly

since the messages are used only for the reward on the sender. Hence, we can disregard the

incentives for the receiver.

We can show that the number of the messages that need to be sent to convey the infor-

mation is su¢ ciently small compared to the precision of the conditionally independent noisy

cheap talk, which means that all the messages transmit correctly with an ex ante high prob-

ability. Since the cheap talk is conditionally independent, the sender always believes that

each message transmits correctly with a high probability. Given the strict incentive in the

report block for the sender, this is enough to incentivize the sender to tell the truth and to
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construct �reporti to make �i(xi) exactly optimal. This step does not require any assumption

in addition to the availability of the conditionally independent cheap talk.

Then, we replace the conditionally independent noisy cheap talk with messages via ac-

tions. This step is novel since we do not assume anything about the di¤erences in the cardi-

nality of the support of each player�s signals. See Section 6.1.3 for what generic assumption

is su¢ cient.

When we say players i and j in this chapter, unless otherwise speci�ed, it implies that

i 6= j. In addition, without loss of generality, we assume that

jA1j jY1j � jA2j jY2j : (6.1)

6.1 Notations and Assumptions

6.1.1 Assumption for Dispensing with the Error-Reporting Noisy

Cheap Talk

As we will see, player j who wants to send a binary message m 2 fG;Bg takes di¤erent

actions for di¤erent messages. We assume that there exist aGj and a
B
j such that for any ai,

the di¤erent history of the receiver has di¤erent information about whether player j takes

aGj or a
B
j :

Assumption 39 For each j 2 I, there exist aGj 2 Aj and aBj 2 Aj such that

1. for each ai 2 Ai and yi 2 Yi, we have

qi(yijai; aGj ) 6= qi(yijai; aBj );

and
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2. for all �j 2 �(Aj) with �j(aGj ) > 0 and �j(aBj ) > 0, for all (ai; yi) and (a0i; y
0
i) with

(ai; yi) 6= (a0i; y0i), we have

E
�
1aj ;yj j yi; ai; �j

�
6= E

�
1aj ;yj j y0i; a0i; �j

�
:

6.1.2 Assumption for Dispensing with the Public Randomization

When we dispense with the public randomization in the report block, the players use actions

and private signals to coordinate. Fix i 2 I arbitrarily.

There are two di¤erent assumptions to achieve this goal, each one of which is su¢ cient.

We will explain these two separately.

6.1.2.1 Conditionally Dependent Signals

When the players�signals are correlated given some action pro�le a
p:r:(i) 2 A,1 then we can

proceed as follows: the players play a
p:r:(i)

and each player observes her own private signal.

Player j partitions the set of her signals into non-empty subsets Y i
j;1 and Y

i
j;2 with Yj =

Y i
j;1 [ Y i

j;2.

Player i tries to infer which set player j�s signal belongs to. With some �pi 2 (0; 1), player

i classi�es the set of her signals into two classes: the set of signals with which player i thinks

that player j observes yj 2 Y i
j;1 with probability more than �pi and the set of signals with

which player i thinks that player j observes yj 2 Y i
j;1 with probability less than �pi. That is,

Y i
i;1 �

n
yi 2 Yi : Pr(fyj 2 Y i

j;1g j a
p:r:(i)

; yi) > �pi

o
(6.2)

Y i
i;2 �

n
yi 2 Yi : Pr(fyj 2 Y i

j;1g j a
p:r:(i)

; yi) < �pi

o
: (6.3)

1p:r: stands for �public randomization.�
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A su¢ cient condition to dispense with public randomization is that there exist Y i
j;1 and

Y i
j;2 with Y

i
j;1[Y i

j;2 and �pi 2 (0; 1) such that Y i
i;1 and Y

i
i;2 are non-empty partitions of Yi. Note

that this is generic if the players�signals are correlated given some action pro�le a
p:r:(i) 2 A.

6.1.2.2 Conditionally Independent Signals

We o¤er another su¢ cient condition that works with conditionally independent signals. In

this assumption, each player takes a mixed strategy and then she needs to infer the action-

signal pair observed by the other player. Even if the signals are conditionally independent,

since the other player plays a mixed strategy, her signals contain non-trivial information

about what action-signal pair the other player observes.

Speci�cally, take i 2 I arbitrarily. Then, player n 2 I (can be the same as player i) takes

a mixed strategy �p:r:(i)n .

Player j 6= i has a function �p:r:(i)j that maps her action-signal pairs into real numbers

in [0; 1]: �p:r:(i)j : Aj � Yj ! (0; 1). As player j constructs �a(x)j from 

a(x)
j (yj), player j

constructs �p:r:(i)j 2 f0; 1g from �
p:r:(i)
j (aj; yj).

Player i tries to infer whether player j has �p:r:(i)j = 1 (corresponding to Y i
j;1 in the

previous assumption) or �p:r:(i)j = 0 (corresponding to Y i
j;2 in the previous assumption).

With some �pi 2 (0; 1), player i classi�es the set of her action-signal pairs into two classes:

the set of action-signal pairs with which player i thinks that player j observes �p:r:(i)j = 1

with probability more than �pi and the set of action-signal pairs with which player i thinks

that player j observes �p:r:(i)j = 1 with probability less than �pi. That is,

H i
i;1 �

n
(ai; yi) 2 Ai � Yi : Pr(f�p:r:(i)j = 1g j �p:r:(i)j ; ai; yi) > �pi

o
(6.4)

H i
i;2 �

n
(ai; yi) 2 Ai � Yi : Pr(f�p:r:(i)j = 1g j �p:r:(i)j ; ai; yi) < �pi

o
: (6.5)

A su¢ cient condition to dispense with public randomization is that there exist �p:r:(i)

and �p:r:(i)j such that
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� H i
i;1 and H

i
i;2 are non-empty partitions of Ai � Yi;

� given �
p:r:(i)
j , the probability that player i observes yi 2 Yi with (ai; yi) 2 H i

i;1 is

independent of ai 2 Ai; and

� given �p:r:(i)i , the probability that player i observes (ai; yi) 2 Ai�Yi with (ai; yi) 2 H i
i;1

is independent of aj 2 Aj.

Note that the last two conditions are new, which implies that the probability that player

i is willing to report her history in the report block is constant �for all ai from player i�s

perspective�and �for all aj from player j�s perspective,�as we will see in Section 6.7. This

is important to incentivize them to take a mixed strategy.

This condition is generic under Assumption 6 since �p:r:(i)j has jAjj jYjj degrees of freedom

while we have jAij+ jAjj constraints.

In summary, the following assumption is su¢ cient:

Assumption 40 For each i 2 I, one of the following two conditions is satis�ed:

1. there exists a
p:r:(i) 2 A such that there exist Y i

j;1, Y
i
j;2, �pi, Y

i
i;1 and Y

i
i;2 such that Y

i
i;1 and

Y i
i;2 satisfy (6.2), (6.3) and

Y i
i;1 6= ;; Y i

i;2 6= ;; Yi = Y i
i;1 [ Y i

i;2;

or

2. there exists �p:r:(i) 2 �(A) such that there exist �p:r:(i)j , �pi, H i
i;1 and H

i
i;2 such that

(a) H i
i;1 and H

i
i;2 satisfy (6.4), (6.5) and

H i
i;1 6= ;; H i

i;2 6= ;; Ai � Yi = H i
i;1 [H i

i;2;

192



(b) given �p:r:(i)j , the probability that player i observes yi 2 Yi with (ai; yi) 2 H i
i;1 is

independent of ai 2 Ai; and

(c) given �p:r:(i)i , the probability that player i observes (ai; yi) 2 Ai�Yi with (ai; yi) 2

H i
i;1 is independent of aj 2 Aj.

6.1.3 Assumption for Dispensing with the Conditionally Indepen-

dent Cheap Talk

As mentioned, after we replace the perfect cheap talk in the report block with the condi-

tionally independent noisy cheap talk, we dispense with the conditionally independent cheap

talk.

To do so, we want to construct a statistics that preserves the conditional independence

property for player 2. Player 2 sends a binary message m 2 fG;Bg by taking am2 2 faG2 ; aB2 g.

Player 1 takes some mixed action �report1 2 �(A1). Based on the realization of the mixture

a1 and signal observation y1, player 1 calculates �1(a1; y1). We want to make sure that,

regardless of player 2�s signal observation, player 2 believes that player 1 statistically infers

player 2�s signal properly: there exist q2 > q1 such that

E
�
�1(a1; y1) j �

report
1 ; a2; y2

�
=

8><>: q2 if a2 = aG2 ;

q1 if a2 6= aG2

(6.6)

for all y2 2 Y2.

A su¢ cient condition for the existence of such � is as follows:

Assumption 41 One of the following two assumptions is satis�ed:

1. the monitoring is conditionally independent: q(y�i j a; yi) = q(y�i j a) for all a 2 A

and y 2 Y ; or
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2. there exists �report1 2 �(A1) such that
�
Pr
�
a1; y1 j �report1 ; a2; y2

��
a1;y1

is linearly inde-

pendent with respect to (a2; y2).

Note that Condition 2 is generic since we assume (6.1) and that we do not assume the

counterpart for player 1 to send the message.

The following lemma shows that Assumption 41 is su¢ cient to have �1 with (6.6).

Lemma 42 If Assumption 41 is satis�ed for �report1 2 �(A1), then for all aG2 2 A2, there

exist q2 > q1 and �1 : A1 � Y1 ! (0; 1) such that (6.6) holds for all y2 2 Y2.

Proof: The same as Lemma 12.

6.2 Replacing the Perfect Cheap Talk in the Coordina-

tion Block with the Error-Reporting Noisy Cheap

Talk

Remember that, with the perfect cheap talk, the players communicate about x in the coor-

dination block in the following way: �rst, player 1 tells x1 and second, player 2 tells x2.

We divide the step where player i sends the message about xi into the following steps

(remember that this step is called the �round for xi�with the perfect cheap talk in Section

2.2):

1. �rst, player i sends xi to player j via error-reporting noisy cheap talk with precision

p = 1� exp(�T 1
2 ). Among other things,2 f [j](xi; 1) 2 fG;Bg and g[i](xi; 1) 2 fxi; Eg

are generated. With abuse of notation, instead of xi, we use (xi; 1) since, as we will

see, player i will re-send the message xi and we want to distinguish the results of the

�rst message and those of the second message;

2Precisely, in addition to f2[j](xi; 1) and g2[i](xi; 1).
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2. second, player i sends xi to player j via error-reporting noisy cheap talk with precision

p = 1� exp(�T 2
3 ). Among other things,3 f [j](xi; 2) 2 fG;Bg and g[i](xi; 2) 2 fxi; Eg

are generated.

It is important to realize that the precision is higher in the second step. Given these two

steps, player j constructs an inference of xi, xi(j) 2 fG;Bg; and

3. third, player j sends xi(j) to player i via error-reporting noisy cheap talk with precision

p = 1� exp(�T 1
2 ). Among other things, f [i](xi(j)) 2 fG;Bg and g[j](xi(j)) 2 fxi; Eg

are generated.

Given these three steps, player i constructs an inference of xi, xi(i) 2 fG;Bg. Each

player n 2 f1; 2g plays the continuation game as if xi were xi(n) in Chapter 4.

In addition, after some events, player i (player j, respectively) makes player j (player

i, respectively) indi¤erent between any action pro�le sequence in the main blocks by using

�xij [ai;t](yi;t) (�
xj
i [aj;t](yj;t), respectively) for �

main
j (�maini , respectively).

Intuitively, the coordination goes as follows: if player i observes g[i](xi; 2) = xi, then

with a high probability, player i infers xi(i) = xi. With a small probability, however, player

i uses the signal from player j�s message: xi(i) = f [i](xi(j)). In addition, if the latter is the

case, then player i makes player j indi¤erent between any action pro�le in the main blocks.

If g[i](xi; 2) 6= xi, then player i uses the signal from player j�s message: xi(i) = f [i](xi(j)).

On the other hand, player j uses the signals from the second message from player i and

xi(j) = f [j](xi; 2) with a high probability. With a small probability, however, player j uses

the signal from the �rst message: xi(j) = f [j](xi; 1). In addition, if the latter is the case,

then player j makes player i indi¤erent between any action pro�le in the main blocks.

Consider player i�s inference. If player i uses f [i](xi(j)), then since player j�s contin-

uation action plan is independent of g[j](xi(j)), 2 of Lemma 10 implies that player i can

3Precisely, in addition to f2[j](xi; 2) and g2[i](xi; 2).
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always believe that player i�s inference is correct or player j knows the mistake with a high

probability.

If player i adheres to xi after g[i](xi; 2) = xi, then player i before observing player j�s

continuation action plan believes that f [j](xi; 2) = g[i](xi; 2) by 3 of Lemma 10 with a high

probability. Hence, player i believes that xi(j) = f [j](xi; 2) = g[i](xi; 2) or any action pro�le

is optimal. When player i realizes that xi(j) 6= g[i](xi; 2) from learning, player i believes that

player j uses f [j](xi; 1) rather than f [j](xi; 2). Here is where we use the assumption that the

precision of the second message is higher than the �rst message. Since the precision of the

second message is higher than the �rst message, player i after observing xi(j) contradictory

to player i�s expectation from the second message believes that player j uses the �rst message

(this happens with a positive probability) and that there was an error in the �rst message.

Remember that player j makes player i indi¤erent between any action pro�le in the main

blocks if player j uses the �rst message. Therefore, after observing xi(j) contradictory to xi,

player i believes that any action is optimal with a high probability.

Therefore, player i is willing to obey the same strategy as in the case with the perfect

cheap talk with xi replaced with xi(i).

Consider player j�s inference. If player j uses the �rst message: xi(j) = f [j](xi; 1), then

since player i�s continuation action plan is independent of g[i](xi; 1), 2 of Lemma 10 implies

that this is almost optimal.

Suppose that player j uses f [j](xi; 2) and realizes xi(i) 6= f [j](xi; 2) from learning. There

are two possibilities: g[i](xi; 2) = xi(i) 2 fG;Bg or player i used player j�s message and

f [i](xi(j)) = xi(i) (there is an error). Since the precision of player i�s second message is

higher than player j�s message, player j believes that player i uses player j�s message (this

happens with a positive probability) and that there was an error in player j�s message.

Remember that player i makes player j indi¤erent between any action pro�le in the main

blocks if player i uses player j�s message. Therefore, after observing xi(i) contradictory to

f [j](xi; 2), player j believes that any action is optimal with a high probability.
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Verify that g[i](xi; 2) = xi and that player i adheres to xi with a high probability regard-

less of player j�s message and so player j cannot manipulate xi(i).

The following lemma formalizes the argument:

Lemma 43 We can de�ne (xi(1); xi(2))i2I and the events that a player makes her opponent

indi¤erent between any action pro�le sequence such that, conditional on x 2 fG;Bg2, for

each i 2 I, the inferences in the coordination block satisfy the following:

1. given the true state xi and player j�s inference xi(j), player i puts a belief no less than

1� exp(��(T 1
2 )) on the events that xi(j) = xi(i) or player i is indi¤erent between any

action pro�le;

2. given the true state xi and player i�s inference xi(i), player j puts a belief no less than

1 � exp(��(T 1
2 )) on the events that xi(i) = xi(j) or player j is indi¤erent between

any action pro�le; and

3. it is almost optimal for the players to send the messages truthfully.

We �rst de�ne xi(i) and xi(j). Player i constructs xi(i) as follows:

1. if g[i](xi; 2) = xi in the second step, then player i mixes the following two:

(a) with probability 1��, xi(i) = xi. That is, with a high probability, player i adheres

to her own state; and

(b) with probability �, xi(i) = f [i](xi(j)). That is, with a low probability, player i

uses the signal from player j�s message; and

2. if g[i](xi) = E in the second step, then player i always uses the signal from player j�s

message: xi(i) = f [i](xi(j)).

For completeness, if player i deviates in the step 1 or 2 of the communication, then player

i always uses the signal from player j�s message: xi(i) = f [i](xi(j)).

Player j mixes the following two:
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1. with probability 1 � �, xi(j) = f [j](xi; 2). That is, with a high probability, player j

uses the signal from player i�s second message; and

2. with probability �, xi(j) = f [j](xi; 1). That is, with a low probability, player j uses

the signal from player i�s �rst message.

Second, we identify after what history player i (player j, respectively) makes player j

(player i, respectively) indi¤erent between any action pro�le sequence.

Player i makes player j indi¤erent between any action pro�le sequence if (and only if

based on the round for xi)4 g[i](xi; 1) = E, g[i](xi; 2) = E, or �1-(b) or 2 is the case for the

construction of xi(i).�

Player j makes player i indi¤erent between any action pro�le sequence if (and only if

based on the round for xi) g[j](xi(j)) = E or 2 is the case for the construction of xi(j).

Given the above preparation, we prove the lemma:

Proof of 1 of Lemma 43: If 1-(b) or 2 of the construction of xi(i) is the case, then 2 of

Lemma 10 guarantees the result. Note that player j�s continuation action plan in the main

blocks does not reveal g[j](xi(j)).

If 1-(a) is the case, then without conditioning on xi(j), by 3 of Lemma 10, player i puts

a belief no less than 1� exp(��(T 2
3 )) on the event that f [j](xi; 2) = xi = xi(i). Whenever

player j uses f [j](xi; 1) for xi(j), player j makes player i indi¤erent between any action

pro�le sequence. Hence, without conditioning on xi(j), player i puts the belief no less than

1� exp(��(T 2
3 )) on the event that xi(j) = xi(i) or player i is indi¤erent between any action

pro�le.

Suppose that player i learns xi(j) 6= xi(i). Remember that with probability �, player

j uses the signal of the �rst message f [j](xi; 1). Since the precision of the �rst message is

p = 1 � exp(�T 1
2 ), 4 of Lemma 10 implies that player i believes that any f [j](xi; 1) could

4With abuse of notation, for the multimple steps to coordinate on xi, we use the same
notation �the round for xi�as in the case with the perfect cheap talk. In Section 6.3, we
introduce a di¤erent notation from the case with the perfect cheap talk.
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happen with probability exp(��(T 1
2 )) regardless of g[i](xi; 1) and g2[i](xi; 1). Since player

i�s prior on f [j](xi; 2) = xi(i) is 1�exp(��(T
2
3 )), after learning xi(j) 6= xi(i), player i puts a

posterior no less than 1�exp(��(T 2
3 ))= exp(��(T 1

2 )) = 1�exp(��(T 2
3 )) on the event that

player j uses the signal of the �rst message f [j](xi; 1) and that f [j](xi; 1) was wrong. In that

event, player j makes player i indi¤erent between any action pro�le sequence. Therefore, we

are done.

Proof of 2 of Lemma 43: If 2 of the construction of xi(j) is the case, then 2 of Lemma

10 guarantees the result. Note that xi(i) never reveals g[i](xi; 1).

If 1 of the construction of xi(j) is the case, then 2 of Lemma 10 implies that, without

conditioning on xi(i), player j puts the belief no less than 1 � exp(��(T
2
3 )) on the events

that xi(j) = xi or player j is indi¤erent between any action pro�le since (i) if g[i](xi; 2) = E,

then player j is indi¤erent between any action pro�le and (ii) if g[i](xi; 2) = xi and player i

uses f [i](xi(j)), then player j is indi¤erent between any action pro�le.

Suppose that player j learns that xi(i) 6= xi(j) and xi(i) = xi.5 If player j put a

high belief on xi(i) = g[i](xi; 2) = xi, then this lemma would not hold. However, with

probability �, player i uses the signal from player j�s message, f [i](xi(j)). Since the precision

of this message is p = 1 � exp(�T 1
2 ), 4 of Lemma 10 implies that player j believes that

any f [i](xi(j)) could happen with probability exp(��(T
1
2 )) regardless of g[j](xi(j)) and

g2[j](xi(j)). Since player j�s prior on the event �xi = f [j](xi; 2) or g[i](xi; 2) = E� is

1�exp(��(T 2
3 )), after learning xi(i) 6= xi(j) and xi(i) = xi, player i puts a posterior no less

than 1 � exp(��(T 2
3 ))= exp(��(T 1

2 )) = 1 � exp(��(T 2
3 )) on the event that player i uses

the result of player j�s message f [i](xi(j)) and that f [i](xi(j)) happened to be xi. In that

event, player i makes player j indi¤erent between any action pro�le sequence. Therefore, we

are done.
5In the other cases, either xi(i) = xi(j) or �xi(i) 6= xi and so player j is indi¤erent

between any action pro�le in the main blocks.�

199



Proof of 3 of Lemma 43: Let us consider player i�s incentive. First, the probability that

player j makes player i indi¤erent is almost independent of player i�s strategy: g[j](xi(j)) =

E happens with probability no more than exp(��(T 1
2 )) regardless of xi(j). In addition,

whether 1 or 2 is the case for the construction of xi(j) is determined by player j�s own

randomization.

Since xi controls player j�s value, not player i�s value, player i does not have an incentive

to deviate to coordinate on a di¤erent xi. Since 1 of Lemma 43 guarantees that player i can

infer player j�s inference xi(j) correctly or player i is indi¤erent between any action pro�le,

we are done.

Next, we consider player j�s incentive. First, the probability that player i makes player j

indi¤erent is independent of player j�s strategy: the distribution of g[i](xi; 1) and g[i](xi; 2)

is independent of player j�s strategy. In addition, whether 1-(a) or 1-(b) is the case for the

construction of xi(i) is determined by player i�s own randomization.

Second, by 2 of Lemma 43, the equilibrium strategy enables player j to infer player i�s

inference xi(i) correctly or player j is indi¤erent between any action pro�le with probability

no less than 1� exp(��(T 1
2 )).

Third, whenever player i uses the signal from player j�s message, f [i](xi(j)), 1-(b) or 2

is the case for the construction of xi(i) and player i makes player j indi¤erent.

Therefore, the truthtelling incentive for xi(j) is satis�ed.

6.3 Structure of the Review Phase

Replacing the perfect cheap talk in the coordination block with the error-reporting noisy

cheap talk, we have the following structure of the review phase. Now, the coordination block

has six rounds with the following chronological order:

� the round for (x1; 1) where player 1 sends x1 via error-reporting noisy cheap talk with

precision p = 1� exp(�T 1
2 );
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� the round for (x1; 2) where player 1 sends x1 via error-reporting noisy cheap talk with

precision p = 1� exp(�T 2
3 );

� the round for (x1; 3) where player 2 sends x1(2) via error-reporting noisy cheap talk

with precision p = 1� exp(�T 1
2 );

� the round for (x2; 1) where player 2 sends x2 via error-reporting noisy cheap talk with

precision p = 1� exp(�T 1
2 );

� the round for (x2; 2) where player 2 sends x2 via error-reporting noisy cheap talk with

precision p = 1� exp(�T 2
3 ); and

� the round for (x2; 3) where player 1 sends x2(1) via error-reporting noisy cheap talk

with precision p = 1� exp(�T 1
2 ).

After that, we have L review blocks. For each lth main block with l = 1; :::; L� 1, there

are following seven rounds in the following chronological order:

� the lth review round where the players play the stage game for T periods;

� the supplemental round for �1(l+1) where player 1 sends �1(l+1) via error-reporting

noisy cheap talk with precision p = 1� exp(�T 1
2 );

� the supplemental round for �2(l+1) where player 2 sends �2(l+1) via error-reporting

noisy cheap talk with precision p = 1� exp(�T 1
2 );

� the supplemental round for d1(l+1) where player 1 sends d1(l+1) via error-reporting

noisy cheap talk with precision p = 1� exp(�T 1
2 ); and

� the supplemental round for d2(l+1) where player 2 sends d2(l+1) via error-reporting

noisy cheap talk with precision p = 1� exp(�T 1
2 ).

The last main block only has the Lth review round where the players play the stage game

for T periods.
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After that, we have the report block, which will be explained fully in Section 6.7.

As we can see, there is a chronological order for the rounds. Hence, we can number all

the rounds serially. For example, the round for (x1; 1) is round 1, the round for (x1; 2) is

round 2, and so on.

In addition, if we replace the error-reporting noisy cheap talk with precision p with

messages via actions, then round r where player i sends the message via error-reporting

noisy cheap talk with precision p = 1 � exp(�T k) consists of T k periods. For example, in

the round for (x1; 1), the players play the stage game for T
1
2 periods.

Finally, let T (r) be the set of periods in round r. As in Chapter 2, player i randomly

picks one period ti (r) from T (r) and then use periods Ti (r) = T (r)�fti (r)g for the deter-

mination of action plans in the coordination and main blocks.

6.4 Dispensing with the Error-Reporting Noisy Cheap

Talk

Consider round r where player j sends m via error-reporting noisy cheap talk with precision

p = 1� exp(�T k) with k 2 f1=2; 2=3g. We replace the error-reporting noisy cheap talk with

precision 1 � exp(�T k) with messages via actions as follows. Now, round r consists of T k

periods.

With � < 1
2
, to send message m, player j takes

�
zj(m)
j =

8>>>><>>>>:
(1� �) aGj + �aBj if zj(m) = G;

�aGj + (1� �) aBj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M
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with

zj(m) =

8>>>><>>>>:
m with probability 1� �;

fG;Bg n fmg with probability �
2
;

M with probability �
2

for T k periods. That is, when zj (m) is not equal to m with probability �, player j tells a lie.

On the other hand, given some �nite set Ai to be determined, player i (receiver) deter-

mines �i(r) as follows:

� �i(r) = ��i = (1� 2 (jAij � 1) �) aGi +
P

ai 6=aGi
2�ai with probability 1� �; and

� for each �i 2 Ai, �i(r) = �i with probability 1
jAj�.

Player i takes �i(r) for T k periods. Note that ��i is comparable to �i (x) in the main

rounds with ai (x) replaced with aGi .

Our task is to create a mapping from player j�s history to g[j](m) 2 fm;Eg and that

from player i�s history to f [i](m) 2 fG;Bg such that important features of Lemma 10 are

satis�ed. The mapping from player i�s history to f [i](m) cannot depend on m since the

receiver does not know the true message.6

6.4.1 Formal: g[j](m) 2 fm;Eg

Remember that player j makes player i indi¤erent between any action pro�le after g[j](m) =

E. Player j has g[j](m) = m if and only if the following three conditions are satis�ed:

1. player j tells the truth: zj(m) = m;

6As we will see, yj;tj(r) is not revealed by player j�s continuation play in the main block.
Similarly to g2[j](m) for the error-reporting noisy cheap talk, yj;tj(r) plays an important role
to incentivize the players to tell the truth in the report block.
Symmetrically, yi;ti(r) is not revealed by player i�s continuation play in the main block,

which plays a similar role to f2[i](m).
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2. the empirical distribution of aj;t�s is close to �j(r) = �mj (note that if �j(r) 6= �mj , then

Condition 1 is not the case):







 1

T k � 1
X
t2Tj(r)

1aj;t � �mj







 < " (6.7)

with " being a small number to be determined; and

3. player j�s signal frequency in the periods where player j takes amj in Tj(r) is close to

the a¢ ne hull of player j�s signal distributions with respect to player i�s action.

Otherwise, g[j](m) = E.

We are left to de�ne Condition 3. First, de�ne Tj(l;m),Qj(m), Qj(m), qj (m) and 1Qj(m)

as Tj(l; x), Qj(x), Qj(x), qj (x) and 1Qj(x) with aj (x) replaced with a
m
j .

Condition 3 is satis�ed if

� Qj(m)
�

1
jTj(l;m)j

P
t2Tj(l;m) 1yj;t

�
and 1

jTj(l;m)j
P

t2Tj(l;m) 1Qj(m) are close:







Qj(m)
0@ 1

jTj(l;m)j
X

t2Tj(l;m)

1yj;t

1A� 1

jTj(l;m)j
X

t2Tj(l;m)

1Qj(m)







 < "

K1

: (6.8)

As we have adjusted the probability of (2.22) in Section 2.4.4.2, we adjust the proba-

bility of (6.8) so that the probability of (6.8) is independent of faj;t; yj;tgt2T (l). When

we say (6.8) is satis�ed, we take this adjustment into account; and

� 1
jTj(l;m)j

P
t2Tj(l;m) 1Qj(m) and qj (m) are close:







 1

jTj(l;m)j
X

t2Tj(l;m)

1Qj(m) � qj (m)







 < "

K1

:
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As for (2.22) and (2.23), we take K1 so that Condition 3 implies





Qj(m)�
1

jTj(l;m)j
X

t2Tj(l;m)

1Qj(m)







 < ":

6.4.2 Formal: f [i](m) 2 fG;Bg

Player i constructs f [i](m) based only on fai;t; yi;tgt2Ti(r). Let fi (ai; r) be the frequency of

taking ai in Ti(r) and yi(ai; r) be the frequency of player i�s signals in Ti(r) while taking ai.

Since player j takes i.i.d. strategies,

hi(r) = (fi (ai; r) ;yi (ai; r))ai

is the su¢ cient statistics.

Player i infers zj(m) (creates f [i](m) 2 fG;Bg) from the likelihood. Given m 2 fG;Bg

and hi(r), the conditional likelihood ratio between zj(m) = zj 2 fG;B;Mg and zj(m) =

z0j 2 fG;B;Mg is

Pr (zj(m) = zj j m;hi(r))
Pr
�
zj(m) = z0j j m;hi(r)

�
=

Pr ((yi(ai; r))ai j zj(m) = zj; (fi (ai; r))ai)

Pr
�
(yi(ai; r))ai j zj(m) = z0j; (fi (ai; r))ai

� Pr (zj(m) = zj j m)
Pr
�
zj(m) = z0j j m

� :
The log likelihood for

Pr ((yi(ai; r))ai j zj(m) = zj; (fi (ai; r))ai)

Pr
�
(yi(ai; r))ai j zj(m) = z0j; (fi (ai; r))ai

�
is expressed as

T k log (L(hi(r); G)� L(hi(r); B))
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with

logL(hi(r); zj) =
X
ai

fi (ai; r)L(yi (ai; r) ; ai; zj)

and

L(yi (ai; r) ; ai; zj) = yi;1 (ai; r) log q(yi;1jai; �zjj ) + � � �+ yi;jYij (ai; r) log q(yi;jYijjai; �
zj
j ):

From Assumption 39, L(hi; zj) is strictly concave with respect to the mixture of aGj and

aBj for all hi(r) and there exists � > 0 such that one of the following is true (this is formally

shown in the proof of Lemma 44):

1. zj(m) = G is su¢ ciently more likely than zj(m) = B: L(hi; G)� � � L(hi; B);

2. zj(m) = B is su¢ ciently more likely than zj(m) = G: L(hi; B)� � � L(hi; G); or

3. if neither of Conditions 1 nor 2 is satis�ed, then since L(hi; zj) is strictly concave,

zj(m) =M is most likely: L(hi;M)� � � L(hi; G);L(hi; B).

Suppose that 1 is the case. This means that

Pr (zj(m) = G j m; (fi (ai; r) ;yi(ai; r))ai)
Pr (zj(m) = B j m; (fi (ai; r) ;yi(ai; r))ai)

� exp(�T k) �=2
1� �

for all m 2 fG;Bg. Remember that zj(m) = M implies that player j told a lie and that

g[j](m) = E. Hence, given any m 2 fG;Bg, player i puts a conditional belief no less than

1� exp(�(�T k)) on the event that m = G or g[j](m) = E.

Similarly, if 2 is the case, then given any m 2 fG;Bg, player i puts a conditional belief

no less than 1� exp(�(�T k)) on the event that m = B or g[j](m) = E.

Finally, if 3 is the case, then given any m 2 fG;Bg, player i puts a conditional belief no

less than 1� exp(�(�T k)) on the event that g[j](m) = E. In this case, player i can infer m

arbitrarily for almost optimality.
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Hence, using the likelihood, there exists a mapping from fai;t; yi;tgt2Ti(r) to f [i](m) 2

fG;Bg such that, given any m 2 fG;Bg, player i puts a conditional belief more than

1� exp(�(�T k)) on the event that m = f [i](m) or g[j](m) = E.

We state the above discussion formally:

Lemma 44 If Assumption 39 is satis�ed, then for any j 2 I, there exists � > 0 such that,

for all � 2
�
0; 1

3

�
, one of the following three is correct:

1. zj(m) = G is su¢ ciently more likely than zj(m) = B for allm 2 fG;Bg: L(hi; G)�� �

L(hi; B);

2. zj(m) = B is su¢ ciently more likely than zj(m) = G for allm 2 fG;Bg: L(hi; B)�� �

L(hi; G); or

3. if neither of Conditions 1 nor 2 is satis�ed, then zj(m) = M is most likely for all

m 2 fG;Bg:

L(hi;M)� � � L(hi; G);L(hi; B):

Proof: From the above discussion, it su¢ ces to show that there exists � > 0 such that, with

L(hi(r); zj; z0j) � L(hi(r); zj)� L(hi(r); z0j);

for any hi(r), one of the following is true:

1. L(hi(r); G;B) � �;

2. L(hi(r); B;G) � �; or

3. L(hi(r);M;G) � � and L(hi(r);M;B) � �.

Let ��j = �aGj + (1� �) aBj for � 2 [0; 1] and consider

L(yi; ai; �) = yi;1 log q(yi;1jai; ��j ) + � � �+ yi;jYij log q(yi;jYijjai; ��j ):
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Then,

d2L(yi; ai; �)
d�2

= �
jYijX
k=1

yi;k

(
q(yi;kjai; �Gj )� q(yi;kjai; �Bj )

q(yi;kjai; ��j )

)2
< 0

for any yi and ai because of Assumption 39. Hence, L(yi; ai; �) is strictly concave. Therefore,

since L(hi(r); zj; ~zj) is the di¤erence in

X
ai

fi (ai; r)L(yi; ai; �);

we have

max fL(hi(r); G;B);L(hi(r); B;G);min fL(hi(r);M;G);L(hi(r);M;B)gg > 0

for all � 2
�
0; 1

3

�
.

Since (i) LHS is continuous in hi(r) and � with Assumption 2 and (ii) �(f1yigyi2Yi) 3 yi,

�(f1aigai2Ai) 3 (fi (ai; r))ai and
�
0; 1

3

�
3 � are compact, there exists � > 0 such that, for all

� 2
�
0; 1

3

�
and hi(r),

max fL(hi(r); G;B);L(hi(r); B;G);min fL(hi(r);M;G);L(hi(r);M;B)gg > �:

By Assumption 2 (full support), neglecting
�
ai;ti(r); yi;ti(r)

�
does not a¤ect the posterior

so much.

6.4.3 Formal: �i(j !m i)

In addition, player i constructs �i(j !m i) 2 fG;Bg for a round where player i receives a

message m from player j. Intuitively, �i(j !m i) = B implies that player i makes player j

indi¤erent between any action pro�le sequence in the subsequent rounds.

�i(j !m i) = G if and only if

1. player i takes �i(r) = ��i; and
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2. the empirical distribution of ai;t�s is close to �i(r) = ��i:







 1

T k � 1
X
t2Ti(r)

1ai;t � �mi







 < "

Consider player j who has g[j](m) = m. Then, from Section 6.4.1, player j takes �mj ,

the empirical distribution of aj;t�s is close to �j(r) = �mj , and player j�s signal frequency in

Tj(m; r) is close to Qj (m).

If player j�s signal frequency is close to the ex ante mean under ��i, then player j believes

that player i also should observe the signal close to the ex ante mean, which implies f [i](m) =

m by the consistency of the likelihood estimator.

On the other hand, if player j�s signal frequency is far away from the ex ante mean under

��i, then player j believes that player i takes �i(r) 6= ��i and �i(j !m i) = B, as in Lemma

15.

In summary, we can show the following lemma:

Lemma 45 For all � > 0 satisfying Lemma 44, there exists �� such that, for all � < ��, there

exist ��, �" and fAigi2I such that, for all � < �� and " < �", the above mappings satisfy the

following: for all i; j 2 I,

1. for any m 2 fG;Bg, f [i](m) = m with probability 1� exp(��(T k)) and g[j](m) = m

with probability 1� � � exp(��(T k));

2. for any m 2 fG;Bg, given m and any hi(r), player i puts a belief no less than 1 �

exp(��(T k)) on the event that f [i](m) = m or g[j](m) = E;

3. for any m 2 fG;Bg, given m and any hj(r), player j with g[j](m) = m puts a belief

no less than 1� exp(��(T k)) on the event that f [i](m) = m or �i(j !m i) = B;

4. for anym 2 fG;Bg, any (f [i](m); g[j](m)) happens with probability at least exp(��(T k));

5. the probability of g[j](m) being E is independent of player i�s strategy; and
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6. the distribution of �i(j !m i) is independent of player j�s strategy.

Note that, compared to the error-reporting noisy cheap talk, Condition 3 implies that

player j with g[j](m) = m believes that f [i](m) = m or �i(j !m i) = B with probability no

less than 1�exp(��(T k)), instead of believing f [i](m) = m. However, since �i(j !m i) = B

implies that player j is indi¤erent between any action sequence, the inference de�ned in

Section 6.2 is still almost optimal. In addition, Condition 6 guarantees that player j does

not have an incentive to deviate to manipulate �i(j !m i). Further, as f2[i](m) is not

revealed in the main blocks, yi;ti(r) is not revealed by player i�s continuation play in the main

block. Similarly, as g2[j](m) is not revealed in the main blocks, yj;tj(r) is not revealed by

player j�s continuation play in the main block. This fact will be important to incentivize the

players to tell the truth in the report block.

Proof: 1. This follows from the law of large numbers.

2. This follows from Lemma 44.

3. Since the maximum likelihood estimator is consistent, for hi(r) which is equal to the

ex ante frequency �
Pr
�
ai; yi j ��i; �mj

��
ai;yi

;

we should have

logL(hi(r);m)� logL(hi(r);m0) > 0

with m0 = fG;Bg�fmg.

Since (i) L(hi(r);m) is continuous in hi(r) and � with Assumption 2 and (ii)�(f1yigyi2Yi) 3

yi, �(f1aigai2Ai) 3 (fi (ai; r))ai and
�
0; 1

3

�
3 � are compact, L(hi(r);m) is uniform con-

tinuous in hi(r) and �. Since (Pr(ai; yi j ��i; �mj ))ai;yi is also continuous in �, there exists

K1 > 0 such that, for all � 2
�
0; 1

3

�
, for hi(r) with

hi(r) =
�
Pr
�
ai; yi j ��i; �mj

��
ai;yi

;
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logL(hi(r);m)� logL(hi(r);m0) > K1:

Since logL(hi(r);m) is uniform continuous with respect to hi(r) and �, there exists ��

such that, for all � 2
�
0; 1

3

�
, for hi(r) with




hi(r)� �Pr �ai; yi j ��i; �mj ��ai;yi


 < ��;
we have

logL(hi(r);m)� logL(hi(r);m0) >
K1

2
:

Fix � < K1

2
so that Lemma 44 holds. Then, player i infers m if




hi(r)� �Pr �ai; yi j ��i; �mj ��ai;yi


 < ��: (6.9)

Given ��, there exist ��1 and �"1 such that, for all � < ��1 and " < �"1, if Conditions 2 and

3 in Section 6.4.1 are satis�ed, then if player i�s observation of each pair of actions and

signals in Ti : (m; r) is close to the ex ante mean
�
Pr
�
ai; yi j ��i; amj

��
ai;yi
, then (6.9) is

satis�ed: if 





 1

jTi : (m; r)j
X

t2Ti : (m;r)

1ai;t;yi;t �
�
Pr
�
ai; yi j ��i; �mj

��
ai;yi







 < ��

2
; (6.10)

then (6.9) is satis�ed. For example, if we take ��1 + �"1 < ��=2, then the number of

periods not included in Ti : (m; r) is small enough.

Further, since (i) small � implies Pr
�
yi j ��i; �mj

�
is almost equal to Pr

�
yi j aGi ; �mj

�
and

(ii) Conditions 1 and 2 in Section 6.4.3 with small � imply that player i takes aGi very

often, (6.10) is satis�ed without considering the frequency of actions: there exist ��2

and �"2 such that, for all � < ��2 and " < �"2, if Conditions 1 and 2 in Section 6.4.3 are

211



satis�ed and 





 1

jTi : (m; r)j
X

t2Ti : (m;r)

1yi;t �
�
Pr
�
yi j ��i; �mj

��
yi







 < ��

4
;

then (6.9) is satis�ed. In addition, if one of Conditions 1 and 2 in Section 6.4.3 is not

satis�ed, then �i(j !m i) = B.

In summary, if







 1

jTi : (m; r)j
X

t2Ti : (m;r)

1yi;t �
�
Pr
�
yi j ��i; �mj

��
yi







 < ��

4
;

then f [i](m) = m or �i(j !m i) = B. The rest of the proof is the same as in Lemma

15 with �u
4
replaced with ��

4
.

4. Given m, any (yt)t2T (r) can occur with probability at least

�
min
y;a

q(y j a)
�Tk

:

Assumption 2 (full support) implies that this probability is exp(��(T k)).

5. We adjusted the probability of (6.8) so that this probability is independent of faj;t; yj;tg

t2T (l). Hence, the distribution of g[j](m) is determined solely by player j�s mixture.

6. The distribution of �i(j !m i) is determined solely by player i�s mixture.

6.5 Equilibrium Strategies

In this section, we de�ne �i(xi) and �maini .
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6.5.1 States

The states �j(l+1), �̂j(l+1), di(l+1) and d̂j(l+1) are de�ned as in Chapter 4 except that

x is replaced with x(i) = (x1(i); x2(i)) de�ned in Section 6.2.

If we replace the error-reporting noisy cheap talk with messages via actions, then we use

f [i](m) (when player i is a receiver) and g[i](m) (when player i is a sender) de�ned in Section

6.4.

In addition, remember that each player i makes player j indi¤erent between any action

pro�le sequence if the following events happen in the coordination block: g[i](xi; 1) = E,

g[i](xi; 2) = E, g[i](xj(i)) = E, �1-(b) or 2 is the case for the construction of xi(i),�2 is the

case for the construction of xj(i), or �with m being the message sent by player j via actions,

�i (j !m i) = B happens.�

We create a new state �j(c) 2 fG;Bg to summarize these events. For player i, if at least

one of the events listed above happens, then we say �j(c) = B. Otherwise, �j(c) = G. Note

that �j(c) is well de�ned for the coordination block with and without the error-reporting

noisy cheap talk.

Then, we de�ne �j(l + 1) 2 fG;Bg as before except that

1. if �j(c) = B, then �j(1) = B; and

2. if �j(i!m j) = B happens while player i sends the message in the supplemental rounds

between the lth review round and the (l + 1)th review round, then �j(l + 1) = B.

6.5.2 Player i�s Action Plan �i (xi)

6.5.2.1 With the Error-Reporting Noisy Cheap Talk

In the coordination block, the players play the game as explained in Section 6.2. For the

other blocks, �i(xi) prescribes the same action with x replaced with x(i) except for the report

block. See Section 6.7 for the strategy in the report block.
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6.5.2.2 Without the Error-Reporting Noisy Cheap Talk

In a round where player i would send a message m via error-reporting noisy cheap talk with

precision p if it were available, the players�strategies are explained in Section 6.4. Here,

since player i is sender, reverse i and j: player i (sender) takes �zi(m)i and player j (receiver)

takes ��j. f [j](m) 2 fG;Bg and g[i](m) 2 fm;Eg are determined as in Section 6.4.

6.5.3 Reward Function

In this subsection, we explain player j�s reward function on player i, �maini (xj; h
main
j : �).

6.5.3.1 With the Error-Reporting Noisy Cheap Talk

The reward function is the same as in Chapter 4 except that x is replaced with x(j).

6.5.3.2 Without the Error-Reporting Noisy Cheap Talk

Without the error-reporting noisy cheap talk, �maini (xj; h
main
j : �) is de�ned by

�maini (xj; h
main
j : �) =

LX
l=1

X
t2T (l)

��i (t; aj;t; yj;t) +
X
r

�maini (xj; h
main
j ; r : �);

where �maini (xj; h
main
j ; r : �) is the reward for each round r. Note that we add (2.10) only

for the review rounds. For the other rounds where the players communicate, the reward for

round r, �maini (xj; h
main
j ; r : �), directly takes discounting into accounting as we will see in

(6.11).

For round r corresponding to a review round, the reward function is the same as in the

case with the error-reporting noisy cheap talk.
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For round r where the players communicate, player j makes player i indi¤erent between

any action pro�le sequence by

�maini (xj; h
main
j ; r) =

X
t2T (r)

�t�1�
xj
i [�j(r)](yj;t): (6.11)

6.6 Almost Optimality of �i(xi)

We �rst consider player i�s incentive to receive a message m. When player i receives the

message, Lemma 45 implies that ��i gives player i the inference f [i](m) satisfying f [i](m) = m

or g[j](m) = E with 1 � exp(��(T 1
2 )). In addition, the probability of g[j](m) being E is

independent of player i�s strategy. Since (6.11) cancels out the di¤erence in the instantaneous

utilities, it is almost optimal to take ��i.

Second, we verify player i�s incentive to send a message. Consider the rounds for (xi; 1)

or (xi; 2). With the error-reporting noisy cheap talk, we are done with Lemma 43. Suppose

that we replace the error-reporting noisy cheap talk with messages via actions. Remember

that if player i deviates in these rounds, then player i uses the signal from player j�s message

in the round for (xi; 3). Therefore, from Lemmas 43 and 45, �x(i) = x(j),���j(i!xi j) = B

for the round (xi; 1) or (xi; 2)� or ��j(c) = B� with probability 1 � exp(��(T 1
2 )) and

the coordination on the same inference of xi is achieved with a high probability, regardless

of player i�s strategy in the rounds for (xi; 1) or (xi; 2). In addition, the distribution of

�j(i !xi j) = B and �j(c) = B is independent of player i�s strategy from Lemmas 43 and

45. Since xi controls only player j�s payo¤, this implies that player i is indi¤erent between

any action plan in the rounds for (xi; 1) or (xi; 2).

For the other rounds where player i sends a message, whenever player i�s message a¤ects

player j�s strategy (action or reward), �j(l) = B has been determined with l being the next

review round.
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Therefore, when player i sends a message, player i is almost indi¤erent between any

action plan.

For the review rounds, from Lemmas 43 and 45, given x(j), for any t in the main blocks

and any hti, player i puts a conditional belief no less than 1�exp(��(T
1
2 )) on the event that

x (j) = x (i), �j(i !xi j) = B or �j(c) = B. Therefore, the same proof for Proposition 25

works except that now player j makes player i indi¤erent between any action pro�le sequence

with a higher probability:

1. �j(c) = B with probability

�|{z}
zj(xj) 6=xj
in the round
for (xj ;1)

+ �|{z}
zj(xj) 6=xj
in the round
for (xj ;2)

+ �|{z}
1-(b)

is the case
for xj(j)

+ �|{z}
zj(xi(j)) 6=xi(j)
in the round
for (xi;3)

+ �|{z}
2

is the case
for xi(j)

� 5�:

plus negligible probability exp(��(T 1
2 )); and

2. for each supplemental rounds where player j sends a message m,

�|{z}
zj(m) 6=m

plus negligible probability exp(��(T 1
2 )).

Therefore, instead of (4.17), we re-take � su¢ ciently small such that

(L� 1) vi (B) + �u
L

+ u+ 2
�u

L
+ (5 + 2L) �

�
2�u�min

i;x

(L� 1) vi (B) + �u
L

�
< vi < vi < min

x:xj=G
wi(x)� 2

�u

L
� (5 + 2L) �

�
2�u+max

i;x
wi (x)

�
: (6.12)

Finally, since the review round has T period while the other round has at most T
2
3

periods, the payo¤s from the rounds other than the review rounds are negligible. Therefore,

Proposition 25 holds.
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6.7 Report Block

We are left to construct the report block. First, we explain the report block with the perfect

cheap talk and public randomization. Although this is the same setup as in Chapter 2, since

we replace the cheap talk in the coordination block and supplemental rounds with messages

via actions, we need to change the structure accordingly.

Second, we construct the report block with the perfect cheap talk but without public

randomization device.

Third, we replace the perfect cheap talk with conditionally independent noisy cheap talk.

Finally, we replace the conditionally independent noisy cheap talk with messages via

actions.

6.7.1 Preparation

Before constructing an equilibrium, let us make three preparations.

First, consider the situation where player 2 sends a binary message to player 1 by taking

actions. Suppose player 1 takes �report1 de�ned in Lemma 42 and calculates �1(a1;t; y1;t),

de�ned in Lemma 42. Player 1 constructs �1;t from �1(a1;t; y1;t) as she constructs �
a
1;t from


a1(y1;t). Lemma 42 implies that

Pr
�
f�1;t = 1g j �report1;t ; a2;t; y2;t

�
=

8><>: q2 if a2;t = aG2 ;

q1 if a2;t 6= aG2

(6.13)

for all t and y2;t. Intuitively, this is important to preserve the properties of the conditionally

independent noisy cheap talk when we dispense with it in Section 6.7.5.

Second, consider the situation where player i sends a binary message to player j by taking

actions. Suppose player j takes aj 2 Aj. Since Assumption 3 guarantees that player j can
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identify ai, for each i 2 I and a 2 A, there exist  aj : Yj ! (0; 1) and q2 > q1 such that

E
�
 aj (yj) j ~ai; aj

�
=

8><>: q2 if ~ai = ai;

q1 if ~ai 6= ai:
(6.14)

Given such  aj , player j calculates  
a
j (yj;t). Player j constructs 	

a
j;t from  aj (yj;t) as she

constructs �aj;t from 
aj (y1;t). (6.14) implies that

Pr (f	j;t = 1g j ~ai; aj) =

8><>: q2 if ~ai = ai;

q1 if ~ai 6= ai:
(6.15)

Note that we do not condition on yi, that is, the conditional independence property does not

necessarily hold.

Third, whenever the players play the stage game, we cancel out the di¤erence in the

instantaneous utilities and discounting by adding

�t�1�
xj
i [�j;t](yj;t):

Since the report block lasts for �(T
1
3 ) periods, this does not a¤ect the equilibrium payo¤.

From now on, therefore, we ignore the instantaneous utilities.

6.7.2 Report Block with the Perfect Cheap Talk and Public Ran-

domization

We formally construct �reporti assuming that the players send messages via actions in the

coordination block and supplemental rounds, keeping the perfect cheap talk and public

randomization in the report block.

Remember that r is a serial number of the rounds. Let Aj(r) be the set of information

up to and including round r consisting of

218



� what state xj player j is in;

� x(j) if round r is after the coordination block;

� for each lth review round, what action plan �j(l) player j took in the lth review round

if round r is the lth review round; and

� �̂i(l) = G.

Remember that, for each round r, for any period t in round r and any history hti, condi-

tional on Aj(r), �i(xi) is almost optimal.

The reward �reporti is the same as in the case with the cheap talk in the coordination

block and supplemental rounds except for the following di¤erences:

Subrounds As we divide a review round into review subrounds whose length is T
1
4 periods,

we divide each round into subrounds whose length is T
1
4 periods.

Since the rounds for (x1; 2) and (x2; 2) have T
2
3 periods, there are T

2
3
� 1
4 subrounds. Since

the other rounds for communication have T
1
2 periods, there are T

1
4 subrounds.

The coordination on k(r) is analogously modi�ed.

Truthtelling Incentive Since the players communicate via actions, we use (2.42) to give

the incentive for player i to tell the truth instead of (2.43) and (2.44). Although the sender

j only mixes aGj and a
B
j , Condition 2 of Assumption 39 guarantees the incentive. Note that

player j�s action plan is independent of the signal observation in period tj(r) and that player

i cannot learn it from the history in the coordination and main blocks.

The Rounds where Player i Sends or Receives the Message Note that player i

takes a mixed strategy in the round where player i sends or receives the message. Moreover,

the history in this round a¤ects the belief about the best responses at the beginning of the

next round.
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Therefore, as we incentivize player i to take a mixed strategy by using Vi(hri ) and fi in

the review round, we cancel out the di¤erence of the values coming from the learning at the

beginning of the next round. Then, we cancel out the di¤erence in the payo¤s in the current

round.

Since player i is almost indi¤erent between any action plan (see Section 6.6), the e¤ect

of this adjustment is su¢ ciently small.

6.7.3 Report Block withOUT the Public Randomization

In this subsection, we keep the availability of the perfect cheap talk and dispense with the

public randomization device. We use the public randomization device to coordinate on the

following two: �rst, who reports the history in the report block. Second, for each round r,

the picked player sends the message about (ai;t; yi;t) for t included in T (r; k(r)) for some

k(r) determined by the public randomization. We explain how to dispense with the public

randomization for each of them.

6.7.3.1 Coordination on Who will Report the History

Remember that the problem is that we want to require that (i) for each i, there is a positive

probability that �reporti adjusts the reward function and that (ii) each player should not learn

about the opponent�s history from the opponent�s messages in the report block before player

i sends the message in the report block.

Instead of using the public randomization device, we use actions and private signals to

coordinate. The speci�c way of the coordination depends on whether Condition 1 or 2 of

Assumption 40 is satis�ed.

When Condition 1 of Assumption 40 is satis�ed:

1. �rst, the players take the action pro�le ap:r:(2). Then, each player i observes yi 2 Yi;
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2. player 2 sends the message whether player 2 observed y2 2 Y 2
2;1 or y2 2 Y 2

2;2 in Step 1.

See Assumption 40 to review the notation. Player 1 adjusts player 1�s reward function

on player 2 if and only if player 2 says that player 2 observed y2 2 Y 2
2;1;

3. player 2 sends the messages �rst. Player 2 has the following two cases:

(a) if player 2 observed y2 2 Y 2
2;1, then player 2 sends the messages about her history

hmain2 truthfully; and

(b) if player 2 observed y2 2 Y 2
2;2, then player 2 sends a meaningless message f;g; and

4. player 1 sends the messages about her history hmain1 truthfully.

When Condition 2 of Assumption 40 is satis�ed:

1. �rst, the players take the action pro�le �p:r:(2). Then, each player i observes ai; yi 2

Ai � Yi;

2. player 2 sends the message whether player 2 observed (a2; y2) 2 H2
2;1 or (a2; y2) 2 H2

2;2

in Step 1. Player 1 adjusts player 1�s reward function on player 2 if and only if player

2 says that player 2 observed (a2; y2) 2 H2
2;1;

3. player 2 sends the messages �rst. Player 2 has the following two cases:

(a) if player 2 observed (a2; y2) 2 H2
2;1, then player 2 sends the messages about her

history hmain2 truthfully; and

(b) if player 2 observed (a2; y2) 2 H2
2;1, then player 2 sends a meaningless message

f;g; and

4. player 1 sends the messages about her history hmain1 truthfully.

In Step 4, when Condition 1 (Condition 2, respectively) is satis�ed in Assumption 40,

player 2 adjusts player 2�s reward function on player 1 if and only if player 2 observed
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y2 2 Y 2
2;2 ((a2; y2) 2 H2

2;1, respectively). Therefore, the probability that player j�s reward on

player i is adjusted is now Pr(y2 2 Y 2
2;2 j ap:r:(2)) (Pr(a2; y2 2 H2

2;2 j a1; �
p:r:(2)
2 ), respectively)

for i = 1 and Pr(y2 2 Y 2
2;1 j ap:r:(2)) (Pr(a2; y2 2 H2

2;1 j a2; �
p:r:(2)
1 ), respectively) for i = 2.

The term representing

1

Pr(player i is picked by the public randomization device)

in �reporti of Section 2.9.6 is analogously modi�ed to

Pr(y2 2 Y 2
2;2 j ap:r:(2)) (Pr(a2; y2 2 H2

2;2 j a1; �
p:r:(2)
2 ), respectively) for i = 1;

Pr(y2 2 Y 2
2;1 j ap:r:(2)) (Pr(a2; y2 2 H2

2;1 j a2; �
p:r:(2)
1 ), respectively) for i = 2:

Consider player 1�s incentives. By Assumptions 2 and 40, there is a positive probability

that y2 2 Y 2
2;2 ((a2; y2) 2 H2

2;2, respectively) and player 2�s reward on player 1 is adjusted.

In addition, when player 1 sends the message in Step 4, player 1 conditions that player 2�s

message in Step 3 does not reveal hmain2 , as desired.

Therefore, we need to verify the incentives that the players take ap:r:(2) (�p:r:(2), respec-

tively) in Step 1 and player 2 tells the truth in Step 2 and 3. To establish the incentives, we

add the following rewards:

� in Step 1,

�when Condition 1 is satis�ed in Assumption 40, to incentivize the players to take

ap:r:(2), each player j gives a reward on ap:r:(2)i :

T�1	a
p:r:(2)

; (6.16)

and
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�when Condition 2 is satis�ed in Assumption 40, given the other player�s action

�
p:r:(2)
j , each ai 2 Ai gives the same probability for

Pr(a2; y2 2 H2
2;2 j a1; �

p:r:(2)
2 ) for i = 1;

Pr(a2; y2 2 H2
2;1 j a2; �

p:r:(2)
1 ) for i = 2:

Hence, player i is indi¤erent between all the actions;

� in Step 2, to incentivize player 2 to tell the truth, player 1 punishes player 2 by �T�2

if player 2 sends the message y2 2 Y 2
2;1 ((a2; y2) 2 H2

2;1, respectively) while player

1 observed y1 2 Y 2
1;2 (�

p:r:(2)
1 = 0, respectively) and punishes player 2 by � 1

�p2
T�2 if

player 2 sends the message y2 2 Y 2
2;2 while player 1 observed y1 2 Y 2

1;1 (�
p:r:(2)
1 = 1,

respectively).

In addition, when Condition 2 is satis�ed in Assumption 40, di¤erent a2�s can have

di¤erent expected punishment in this step, given the truthtelling incentive. We cancel

out that di¤erence by changing the reward function so that player 2 before observing

y2 is indi¤erent between any action; and

� in Step 3,

� if player 2 sent the message y2 2 Y 2
2;1 ((a2; y2) 2 H2

2;1, respectively) in Step 2,

then player 1�s reward on player 2 is the same as �report2 so that player 2 sends the

messages about her history hmain2 truthfully; and

� if player 2 sent the message y2 2 Y 2
2;2 ((a2; y2) 2 H2

2;2, respectively) in Step 2, then

player 1 changes �report2 so that player 1 gives a small reward on f;g:

�report2 (x1; h
TP+1
1 : �) = T�31 fplayer 2 sends f;gg � T�3:
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Then, we can show the incentive compatibility of the above strategy by backward induc-

tion.

� in Step 3, since player 2 believes that the message in Step 2 was transmitted correctly,

it is optimal to tell the truth by the same reason as in Section 2.9.6;

� in Step 2, since all the rewards a¤ected by player i�s current and future actions are

bounded by �(T�3),7 if

Pr(fy1 2 Y 2
1;1g j a

p:r:(2)
1 ; y2) >

�LT�2 +�(T�3)
1
�p2
�LT�2 ��(T�3)

! �p2

or

Pr(f�p:r:(2)1 = 1g j �p:r:(2)1 ; a2; y2) >
�LT�2 +�(T�3)
1
�p2
�LT�2 ��(T�3)

! �p2;

then it is optimal to send y2 2 Y 2
2;1 ((a2; y2) 2 H2

2;1, respectively) and if

Pr(fy1 2 Y 2
1;1g j a

p:r:(2)
1 ; y2) <

�LT�2 ��(T�3)
1
�p2
�LT�2 +�(T�3)

! �p2

or

Pr(f�p:r:(2)1 = 1g j �p:r:(2)1 ; a2; y2) <
�LT�2 +�(T�3)
1
�p2
�LT�2 ��(T�3)

! �p2;

then it is optimal to send y2 2 Y 2
2;2 ((a2; y2) 2 H2

2;2, respectively), as desired; and

� in Step 1, if Condition 1 of Assumption 40 is satis�ed, since all the rewards a¤ected

by player i�s action except for (6.16) are bounded by �(T�2), it is strictly optimal to

take ap:r:(2). If Condition 2 of Assumption 40 is satis�ed, then the future strategy and

the reward will be the same for all the actions except for the punishment coming from

Step 2. As we have seen, we cancel out the di¤erences in the punishment in Step 2 so

that each player is indi¤erent between any action.

7For the punishment in Step 5 in the coordination on k(r) below, there is a punishment of
order T�2. However, as we will see, by backward induction, this punishment is not a¤ected
by Step 2 here.
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Remember that player 1 rewards player 2 in Step 3 based on player 2�s message about y2

((a2; y2), respectively), not depending on player 1�s history (a1; y1). Therefore, after sending

the message about y2 ((a2; y2), respectively) in Step 2, it is optimal for player 2 to follow the

equilibrium strategy.

6.7.3.2 Coordination on k(r)

For each player i, while player i sends the messages about hmaini , for each round r, the players

coordinate on k(r) 2 f1; : : : ; Kg with K � T
3
4 .

By abuse of language, in our equilibrium,

� in Step 3 in Section 6.7.3.1, even if player 2 sends f;g, the players play the following

game for each round and player 1 punishes player 2; and

� in Step 4 in Section 6.7.3.1, even if player 2 sent hmain2 , the players play the following

game for each round and player 2 punishes player 1.

We create a mapping between a sequence of f1; 2g, i 2 f1; 2glog2K , and k(r) such that

each i uniquely identi�es k(r) and that, for each k(r), there is at least one i that is mapped

into k(r).

For each n 2 f1; :::; log2Kg, the players coordinate on one element of f1; 2g as in Steps 1,

2 and 3 in Section 6.7.3.1. That is, when Condition 1 (Condition 2, respectively) is satis�ed

in Assumption 40,

1. the players take ap:r:(i) (�p:r:(i), respectively) for log2K times;

2. for each n 2 f1; :::; log2Kg, if player j observes yj 2 Y i
j;1 (�

p:r:(i)
j = 1, respectively),

then player j infers that the nth element of i is 1. Otherwise, that is, if player j

observes yj 2 Y i
j;2 (�

p:r:(i)
j = 0, respectively), then player j infers that the nth element

of i is 2. By doing so, player j infers i. Let i(j) be player j�s inference. Let k(r; j) be

player j�s inference of k(r) that corresponds to i (j);
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3. on the other hand, for each n 2 f1; :::; log2Kg, player i infers i (i) and k(r; i) using the

partitions Y i
i;1 and Y

i
i;2 (H

i
i;1 and H

i
i;2, respectively);

4. player i sends the sequence of binary messages i (i) 2 f1; 2glog2K ;

5. for each n 2 f1; :::; log2Kg, player j punishes player i if player i�s message in (i) is

di¤erent from in (j). Here, in (i) and in (j) are the nth element of i (i) and i (j),

respectively.

Speci�cally, player j punishes player i by �T�2 if player i sends the message in (i) = 1

while player j observed in (j) = 2 and by� 1
�pi
T�2 if player i sends the message in (i) = 2

while player j observed in (j) = 1.

Again, if Condition 2 is satis�ed in Assumption 40, we adjust the reward function to

cancel out the di¤erence in the ex ante punishment, given the truthtelling incentive.

Note that this is the same as in Step 2 in Section 6.7.3.1; and

6. from the message i (i), player j knows k(r; i). Player j calculates the punishment (2.47)

based on k(r; i).

By backward induction, we can show that it is always optimal to follow the equilibrium

strategy: consider the message for the last element of the sequence, iK (i), for the last

round. Since the punishment from the previous messages about i (i) is sunk and the reward

or punishment a¤ected by player i�s continuation strategy except for the punishment coming

from iK (i) 6= iK (j) is �(T�3), if

Pr(fyj 2 Y i
j;1g j ap:r:(i); yi) >

�LT�2 +�(T�3)
1
�pi
�LT�2 ��(T�3)

! �pi

or

Pr(f�p:r:(i)i = 1g j �p:r:(i)j ; ai; yi) >
�LT�2 +�(T�3)
1
�pi
�LT�2 ��(T�3)

! �pi;
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then it is optimal to send yi 2 Y i
i;1 ((ai; yi) 2 H i

i;1, respectively) and if

Pr(fyj 2 Y i
j;1g j ap:r:(i); yi) <

�LT�2 ��(T�3)
1
�pi
�LT�2 +�(T�3)

! �pi;

or

Pr(f�p:r:(i)i = 1g j �p:r:(i)j ; ai; yi) <
�LT�2 +�(T�3)
1
�pi
�LT�2 ��(T�3)

! �pi;

then it is optimal to send yi 2 Y i
i;2 ((ai; yi) 2 H i

i;2, respectively), as desired.

Given this, the players have an incentive to take ap:r:(i) since the reward on ap:r:(i) is

su¢ ciently large if Condition 1 is satis�ed in Assumption 40. If Condition 2 is satis�ed in

Assumption 40, then since (i) all ai gives the same probability of (ai; yi) 2 H i
i;1, (ii) player

i�s continuation payo¤ only depends on whether (ai; yi) 2 H i
i;1 or not, and (iii) given the

truthtelling incentive, we have adjusted the reward function to cancel out the di¤erence in

the ex ante punishment, it is optimal to take �p:r:(i).

For the second iK�1 (i), since the expected punishment from the last message iK (i) is

�xed by the equilibrium strategy, the same argument holds. Recursively, we can show the

optimality of the equilibrium strategy.

Although player j punishes player i for mis-coordination in Step 5, when player j cal-

culates (2.47), player j uses player i�s inference of k(r), k(r; i). Hence, once player i sends

the messages about i(i), player i has the incentive to tell the truth about hmaini based on her

own inference k(r; i).

Expected Punishment As we have mentioned, when the players coordinate on whether

player 2 should send the message about hmain2 , player 1 rewards player 2 in Step 3 based on

player 2�s message about y2 (a2; y2, respectively). In addition, when the players coordinate

on k(r), player j uses k(r; i) to calculate (2.47) and the term T
3
4 in (2.47) is replaced by

1

Pr(k(r; i) is realized in the coordination explained in Section 6.7.3.2)
:
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Therefore, given the truthtelling incentive during the coordination on who will report

the history and which is k(r) (which has been veri�ed), the expected punishment from the

coordination is independent of the players�history in
�
hmain1 ; hmain2

�
. Hence, this coordination

in the report block does not a¤ect any incentive in the coordination and main blocks.

In addition, this also implies that, as mentioned in footnote 7 of Chapter 6, when the

players coordinate on who will report the history in Step 2 of Section 6.7.3.1, we can assume

that the expected punishment from in (i) 6= in (j) is �xed.

6.7.4 Report Block with Conditionally Independent Cheap Talk

In this subsection, we replace the perfect cheap talk with conditionally independent noisy

cheap talk. That is, each player has the conditionally independent noisy cheap talk commu-

nication device to send a binary message m 2 fG;Bg. When player i sends the message m,

the receiver (player j) observes the correct message m with high probability 1 � exp(�T 1
3 )

while player j observes the erroneous message fG;Bgnfmg with low probability exp(�T 1
3 ).

Player i (sender) does not obtain any information about what message player j receives

(conditional on m). Hence, the communication is conditionally independent.

When player j (receiver) constructs �reporti , player j needs to take care of the possibility

that player j receives an erroneous message.

First, the expected punishment for (2.47) and (2.48) together with �i now depends on

what messages player i will send for fai;t; yi;tgt2T (r;k(r;i)) since each fai;t; yi;tgt2T (r;k(r;i)) has

di¤erent probabilities of mis-transmission. However, the total expected punishment from a

round could be calculated by f#r
i (k)gk;r if f#r

i (k)gk;r transmitted correctly. Since the ex-

pected punishment is su¢ ciently small under the truthtelling with conditionally independent

cheap talk, player j can make all the f#r
i (k)gk;r�s indi¤erent in terms of (2.47) and (2.48)

together with �i. Then, the e¤ect of the probability of making error for fai;t; yi;tgt2T (r;k(r;i))
is canceled out.
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Second, let us consider the other messages. Note that the number of binary messages

sent in the report block is �(log2 T ) since we exclude fai;t; yi;tgt2T (r;k(r;i)). Therefore, all the

messages transmit correctly with probability at least

1��(log2 T ) exp(�T
1
3 ):

In addition, the cardinality of the information sent by all the messages is �(T ). LetMi be

the set of information possibly sent by player i in the report block with jMij = �(T ). Let

Pi be the jMij � jMij matrix whose (k; k0) element represents

Pr

0B@ player j receives the message corresponding to the element k0 ofMi

j player i sends the message corresponding to the element k ofMi

1CA :

Since jMij = �(T ) and all the messages transmit correctly with probability no less than

1��(log2 T ) exp(�T
1
3 ),

�
1��(log2 T ) exp(�T

1
3 )
��(T )

� 1��(T )�(log2 T ) exp(�T
1
3 )! 1

as T goes to in�nity and so

lim
�!1

P�1i = lim
T!1

P�1i = E (identity matrix).

Let

�reporti (xj; h
TP+1
j ; k : �)

be the reward function that player j with hTP+1j would construct after the history corre-

sponding to the element k via perfect cheap talk, that is, if Pi were E.8 In addition, let

�reporti (xj; h
TP+1
j : �) be the vector stacking all �reporti (xj; h

TP+1
j ; k : �)�s with respect to k.

8Here, we use hTP+1j instead of hmainj since player j needs to use the signal observations
while the players coordinate on who will report the history and k(r).
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If player j uses kth element of

P�1i �reporti (xj; h
TP+1
j : �)

when player j receives kth element ofMi from player i, then player i�s incentive is the same

as in the situation that the messages would always transmit correctly (as if Pi were E). Since

the truthtelling incentive is strict, multiplying P�1i to �reporti (xj; h
TP+1
j : �) does not a¤ect

the incentives in the report block if P�1i is su¢ ciently close to E.

6.7.5 Report Block withOUT the Conditionally Independent Cheap

Talk

Finally, we dispense with the conditionally independent cheap talk. Consider Step 2 of

Section 6.7.3.1. If player 2 wants to send y2 2 Y 2
2;1 or (a2; y2) 2 H2

2;1, then player 2 takes a
G
2

for T
1
3 periods. On the other hand, if player 2 wants to send y2 2 Y 2

2;2 or (a2; y2) 2 H2
2;2,

then player 2 takes aB2 for T
1
3 periods.

Player 1 takes �report1 for T
1
3 periods. Player 1 infers that player 2�s message is G if

P
t�1;t

T
1
3

>
q2 + q1
2

(6.17)

and B otherwise. Here, the summation is taken over T
1
3 periods where player 2 sends the

message.

Next, consider Step 3 of Section 6.7.3.1. If 3-(a) is the case, then player 2 would send

binary messages about hmain2 with the conditionally independent noisy cheap talk. Since all

the messages are binary, we can see player 2 sending a binary message m 2 fG;Bg. Without

the conditionally independent cheap talk, for each message m, the players spend T
1
3 periods.

Player 2 takes am2 and player 1 takes �
report
1 . Player 1 infers player 2�s message by (6.17).
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On the other hand, if 3-(b) of Section 6.7.3.1 is the case, then the players spend the same

number of periods as in 3-(a). For periods where player 2 would send the message about

hmain2 if 3-(a) were the case, player 2 takes aG2 . On the other hand, for periods where player 2

sends the message about k(r), player 2 sends the same message as in 3-(a). Player 1 always

takes �report1 .9

Player 1�s reward on player 2 is determined as follows: while player 2 sends the message

m corresponding to Step 2 of Section 6.7.3.1, player 1 gives the following reward: let t(m)

be the �rst period when player 2 sends m.

1. at t(m), both aG2 and a
B
2 are indi¤erent and are better than the other actions (if any).

The reward is given by

	
aG2 ;a1;t(m)
1;t(m) +	

aB2 ;a1;t(m)
1;t(m) � (q2 + q1) : (6.18)

By algebra, we can verify that

(a) the expected payo¤ of taking aG2 or a
B
2 in period t(m) is 0; and

(b) the expected payo¤ of taking another action is �(q2 � q1); and

2. after that, the constant action is optimal:

t(m)+T
1
3�1X

t=t(m)+1

0B@c+ T�1 �L
1

q2 (1� q1) (q1 � q2)
2

0B@ (1� q1)1f�1;t(m) = 1g	
aG2 ;a1;t
1;t

+q21f�1;t(m) = 0g	
aB2 ;a1;t
1;t

1CA
1CA :

(6.19)

Here, c is a constant such that the expected payo¤ of taking aG2 after a2;t(m) = aG2 is

equal to 0.

From (6.13) and (6.19), we can verify that

9Note that player 1 takes the same action between in 3-(a) and 3-(b). Therefore, player
1 does not need to know which is the case.
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(a) the expected payo¤ of taking am2 in period t after taking a
m
2 in period t(m) is 0;

and

(b) the expected payo¤ of taking another action in period t after taking am2 in period

t(m) is ��(T�1).

Next, let us consider the reward for the messages corresponding to Step 3 of Section

6.7.3.1.

If player 1 infers that player 2�s message corresponding to Step 2 says that player 2

observed y2 2 Y 2
2;1 or (a2; y2) 2 H2

2;1, then for each message m in Step 3 of Section 6.7.3.1,

player 1 gives the same reward as (6.18) and (6.19).

If player 1 infers that player 2�s message in Step 2 says that player 2 observed y2 2 Y 2
2;2

or (a2; y2) 2 H2
2;2, then for periods where player 2 is supposed to take a

G
2 , player 1 gives

X
t

�
	
aG2 ;a1;t
1;t � q2

�
; (6.20)

so that player 2 takes aG2 . Note that the expected payo¤ from (6.20) by taking aG2 is zero.

For periods where player 2 sends the message about k(r), player 1 gives the same reward

as (6.18) and (6.19).

By backward induction, we can show the following: suppose that player 2 constantly took

aG2 in Step 2 of Section 6.7.3.1. Then, with probability no less than 1� exp(��(T
1
3 )), player

1 uses the reward (6.18) and (6.19).10 Consider the last message m. All the rewards from

(6.18) and (6.19) determined by the previous messages are sunk. In addition, the punishment

and reward in the report block (gi and fi) de�ned in Section 2.9.6 are bounded by �(T�3).

Hence, the di¤erence between 1-(a) and 1-(b) is su¢ ciently large that, in period t(m), player

2 takes either aG2 or a
B
2 . In addition, the di¤erence between 2-(a) and 2-(b) is su¢ ciently

large that after taking aG2 or a
B
2 in period t(m), player 2 should take the constant action.

10More precisely, given the truthtelling incentive, since player j takes into the account
that Pi is not an identity matrix as seen in Section 6.7.4, player i believes that the messages
transmit correctly with probability one.
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Since this equilibrium strategy makes the expected payo¤ about the last message from

(6.18) and (6.19) equal to 0, the same argument holds until the �rst message.

Symmetrically, if player 2 constantly took aB2 in Step 2 of Section 6.7.3.1, then it is

optimal for player 2 in Step 3 to take aG2 when player 2 is supposed to take a
G
2 and to take

aG2 or a
B
2 constantly for periods where player 2 should send a message for k(r).

Finally, when player 2 sends the message about y2 in Step 2 of Section 6.7.3.1, it is strictly

optimal to take a constant action since (i) there is a strict incentive for the constant action

and (ii) it gives player 2 the better idea about whether player 2 should tell the truth about

the history or take aG2 constantly.

Therefore, (i) this replacement of the conditionally independent cheap talk with messages

via actions does not a¤ect the payo¤ and since player 2 repeats the message for T
1
3 periods,

(ii) player 1 infers the correct message m with high probability 1 � exp(��(T 1
3 )), (iii)

player 2�s private signal cannot update player 2�s belief about player 1�s inference of player

2�s message (conditional independence) by (6.13), and (iv) since the number of necessary

messages is �(T
1
4 ), the number of necessary periods for player 2 to send all the messages is

�(T
1
3
+ 1
4 ) < �(T );

as desired.

For player 1, since we cannot assume that jA1j jY1j � jA2j jY2j, we cannot generically �nd

a function �2(a2; y2) with the conditional independence property symmetric to �1(a1; y1).

Therefore, after Step 4 in Section 6.7.3.1, we add an additional round where player 1 sends

the messages about player 1�s histories in Step 4. Based on the information that player 2

obtains in this additional round, player 2 creates a statistics to infer player 1�s messages in

Step 4, so that while player 1 sends the messages about hmain1 in Step 4 (before observing the

history in the additional round), player 1 cannot update player 2�s inference of the messages

from player 1�s signal observations.
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6.7.5.1 Recovery of Conditional Independence

In Step 4 of Section 6.7.3.1, without cheap talk, player 1 takes a1 2 faG1 ; aB1 g to send the

message. To send each message m, player 1 repeats am1 for T
1
3 periods. Player 2 takes some

mixed action �c:i:2 with �c:i:2 (a2) > � for all a2 2 A2. As for player 2, this takes �(T
1
3
+ 1
4 )

periods.

After this step is over, we have the following round named the �round for conditional

independence.�The intuitive structure is as follows. For each period t in Step 4, player 1

reports the history in period t to player 2 in the round for conditional independence. Player

2 infers player 1�s messages in Step 4 combining player 2�s signals in Step 4 and player 1�s

reports about player 1�s history.

Player 2 gives the following rewards to player 1: (i) the adjustment of player 1�s reward

so that �1(x1) is exactly optimal; (ii) a reward that makes an optimal strategy in the round

for conditional independence given player 1�s history in Step 4 unique; (iii) we make sure

that (i) is much smaller than (ii), so that player 1�s history in Step 4 and the strictness of

player i�s incentive in the round for conditional independence completely determines player

1�s strategy in the round for conditional independence, independently of hmain1 . (iv) Given

player 1�s continuation strategy in the round for conditional independence, player 2 in Step

4 changes player 1�s continuation payo¤ so that ex ante (before player 1 takes an action in

each period of Step 4), the di¤erence in the expected payo¤s about the reward in (ii) from

di¤erent actions in Step 4 is canceled out, taking (ii) into account. (iv) implies that the

round for conditional independence does not a¤ect player 1�s incentive in Step 4.

Finally, since player 2 obtains rich information about player 1�s history in Step 4 from

the round for conditional independence, player 2 infers player 1�s messages in Step 4 so that

player 1 cannot update the belief about player 2�s inference of player 1�s message during Step

4. (iii) implies that the incentives in the round for conditional independence is not a¤ected

by this.
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Now, we de�ne the round of conditional independence formally. For each period t in Step

4, we attach S log2 jA1j jY1j periods in the round for conditional independence. S is a �xed

number to be determined independently of T . Hence, this new round also takes �(T
1
3
+ 1
4 )

periods.

In these S log2 jA1j jY1j periods, player 1 sends the message about the history in each

period t in Step 4, (a1;t; y1;t), as follows:

� we create a mapping between a sequence of
�
aG1 ; a

B
1

	
(denoted by a1(a1; y1) 2 faG1 ; aB1 g

log2jA1jjY1j), and (a1; y1) 2 jA1j�jY1j, such that each a1(a1; y1) uniquely identi�es (a1; y1)

and that, for each (a1; y1), there is at least one a1(a1; y1) that is mapped into (a1; y1);

� player 1�s strategy is to be determined. Intuitively, S log2 jA1j jY1j periods are separated

into log2 jA1j jY1j sets of S periods. In each S periods, player 1 sends the message about

the corresponding element of a1(a1;t; y1;t), depending on player 1�s history (a1;t; y1;t) in

Step 4.

� player 2 always takes aG2 ; and

� S log2 jA1j jY1j periods are separated into log2 jA1j jY1j sets of S periods. In each S

periods, player 2 infers that player 1 sends the message aG1 if

P
s	

aG1 ;a
G
2

2;s

S
>
q2 + q1
2

(6.21)

and aB1 otherwise. From these inferences and the correspondence a1(a1; y1), player 2

infers player 1�s message (â1;t; ŷ1;t).

Let

�


1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; â1;t; ŷ1;t

�

2 � f(h
S log2jA1jjY1j
2 ); (6.22)

be player 2�s reward on player 1. Here, hS log2jA1jjY1j2 is player 2�s history in the S log2 jA1j jY1j

periods where player 1 sends (â1;t; ŷ1;t) and f will be determined in the following lemma:
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Lemma 46 There exists e1 such that, for each S 2 N and " > 0, there generically exist f

and e2 > 0 such that, suppose that the players play the following game:

1. Nature chooses a1;t (t is introduced to make the notations consistent) and (y1;t; y2;t) is

distributed according to q(yt j a1;t; �c:i:2 ). Player 1 can observe only (a1;t; y1;t);

2. the players play an (S log2 jA1j jY1j)-period �nitely repeated game where, in each period

s 2 f1; : : : ; S log2 jA1j jY1jg, player 1 chooses a1;s 2 A1, the signal pro�le (y1;s; y2;s) is

generated by q(ys j a1;s; aG2 ), player 1 can observe only (a1;s; y1;s), and there is no

instantaneous utility;

3. player 2 infers (â1;t; ŷ1;t) as explained above; and

4. player 1�s utility is given by (6.22).

Then,

(a) the message transmits correctly with probability at least 1� "� e1 exp(��(S
1
2 )); and

(b) for any two pure strategies �1 and ~�1, if there exists h1 where �1 j h1 6= ~�1 j h1 on the

path after h1, then the continuation payo¤ from h1 is di¤erent by at least e2 (player

1�s incentive is strict by e2). Here, with abuse of notation, �1 and h1 are player 1�s

strategy and history in the game just de�ned. Let ��1 be the (unique) optimal strategy.

Note that e2 > 0 here corresponds to (ii) in the intuitive explanation above.

Proof: There exists �E such that



1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; â1;t; ŷ1;t
�

2 < �E
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for all a2;t, y2;t, â1;t and ŷ1;t. In addition, de�ne

e = min
(a1;t;y1;t)

8>>>>>>>><>>>>>>>>:

min(â1;t;ŷ1;t) 6=(a1;t;y1;t) E

264 

1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; â1;t; ŷ1;t
�

2

j �c:i:2 ; a1;t; y1;t

375
�E

264 

1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; â1;t; ŷ1;t
�

2

j �c:i:2 ; a1;t; y1;t

375

9>>>>>>>>=>>>>>>>>;
:

By Assumption 5, e > 0. Note that �E and e are independent of S and f .

Fix S and " > 0 arbitrarily. Lemma 12 implies that we can �nd and �x f and e2 > 0

such that (b) is satis�ed and that f(hS log2jA1jjY1j2 ) 2 [� "e
2
; "e
2
] for all hS log2jA1jjY1j2 . Speci�cally,

�rst, without loss of generality, we can make sure that player 1 has only two actions aG1 and

aB1 since otherwise, Lemma 12 enables player 2 to give a very high punishment if player 1

takes an action other than aG1 or a
B
1 . Second, consider the last period of the game. If there

is a history where aG1 and a
B
1 are indi¤erent, Lemma 12 guarantees that player 2 can break

the ties by adding a small reward for aG1 uniformly for all the histories. Hence, we establish

the strictness in the last period. Third, we can proceed by backward induction. Whenever

player 2 breaks a tie for some period, it does not a¤ect the strict incentives in the later

periods since the reward in a certain period will be sunk in the later periods.

Let ��1 be such that player 1 constantly takes aG1 or a
B
1 for each S periods that correspond

to the proper counterpart of a1(a1;t; y1;t). In addition, de�ne

R�(a1;t; y1;t) = �E
h

1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; a1;t; y1;t

�

2 j �c:i:2 ; a1;t; y1;t

i
;

�R(a1;t; y1;t) = �min(â1;t;ŷ1;t) 6=(a1;t;y1;t) E

264 

1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; â1;t; ŷ1;t
�

2

j �c:i:2 ; a1;t; y1;t

375 ;
R = �max(a1;t;y1;t);(â1;t;ŷ1;t) 6=(a1;t;y1;t) E

264 

1a2;t;y2;t � E �1a2;t;y2;t j �c:i:2 ; â1;t; ŷ1;t
�

2

j �c:i:2 ; a1;t; y1;t

375 :
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Note that for all (a1;t; y1;t),

R�(a1;t; y1;t)�R � 2E;

R�(a1;t; y1;t)� �R(a1;t; y1;t) � e.

For (a), since the message transmits with ex ante probability 1� exp(��(S 1
2 )) with ��1,

the optimal strategy ��1 should guarantee

(1� Pr ((â1;t; ŷ1;t) 6= (a1;t; y1;t)))R�(a1;t; y1;t)

+Pr ((â1;t; ŷ1;t) 6= (a1;t; y1;t)) �R(a1;t; y1;t)

�E
h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i
�

�
1� exp(��(S 1

2 ))
�
R�(a1;t; y1;t) + exp(��(S

1
2 ))R

�E
h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i

or

Pr ((â1;t; ŷ1;t) 6= (a1;t; y1;t))

� R�(a1;t; y1;t)�R

R�(a1;t; y1;t)� �R(a1;t; y1;t)
exp(��(S 1

2 ))

+
E
h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i
� E

h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i
R�(a1;t; y1;t)� �R(a1;t; y1;t)

� 2E

e
exp(��(S 1

2 )) + ":

Take

e1 =
2E

e
> 0;

which is independent of S and f , then we are done.

Given that, for each period t in Step 4 of Section 6.7.3.1, player 1 will take ��1 j (a1;t; y1;t)

in the round for conditional independence and that player 2�s reward on player 1 in the
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round for conditional independence is (6.22), the expected payo¤ from Nature�s choice a1;t

is determined. By Lemma 12, there exists �g(a1) such that

X
a1

�g (a1)	
a2;t;a1
2;t (6.23)

cancels out the di¤erence from (6.22). Player 2 adds (6.25) to player 2�s reward on player 1 in

the report block. Then, seeing a1;t as player 1�s action in Step 4 of Section 6.7.3.1, any action

gives ex ante payo¤ 0 in terms of the payo¤s in the round for conditional independence. Note

that this corresponds to (iv) in the intuitive explanation above.

Then, based on the report ��1 in the round for conditional independence, player 2 can

construct the statistics that indicates player 1�s action with the conditional independence

property from the perspective of Step 4 of Section 6.7.3.1.

Lemma 47 There exist S 2 N, " > 0 and �2 : â1; ŷ1; y2 ! (0; 1) such that, for all (a1;t; y1;t),

if player 1 reports (a1;t; y1;t) by ��1, then for all y1;t,

E
�
�2(â1;t; ŷ1;t; y2;t) j �c:i:2 ; a1;t; y1;t; �

�
1 j �c:i:2 ; a1;t; y1;t

�
=

8><>: q2 if a1;t = aG1;t;

q1 if a1;t 6= aG1;t:

Proof: Since, from Condition (a) of Lemma 46, (â1;t; ŷ1;t) transmits with probability no

less than 1 � " � e1 exp(��(S
1
2 )), for su¢ ciently large S and small ", player 2 has enough

information. Note that e1 does not depend on S.

Now, we are ready to construct Step 4 of Section 6.7.3.1. Fix S 2 N and " > 0 such that

Lemma 47 holds. Then, �x f and e2 such that Lemma 46 holds for those S and ". Finally,

take � such that

e2 > T�1 = (1� �)
1
2 : (6.24)

This implies that (iii) in the intuitive explanation is satis�ed.
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Step 4 of Section 6.7.3.1 For each T
1
3 periods when player 1 is supposed to take a

constant action, player 2 infers that player 1�s action is aG1 if

P
t�2;t

T
1
3

>
q2 + q1
2

and aB2 otherwise. Here �2;t 2 f0; 1g is calculated from �2(â1;t; ŷ1;t; y2;t). Then, from Lemma

47, if player 1 uses ��1 j a1;t; y1;t in the round for conditional independence, then �2;t has the

same property as �1;t from Lemma 47.

If player 2 sent the message y2 2 Y 2
2;2 or (a2; y2) 2 H2

2;2 in Step 2 of Section 6.7.3.1, then

player 2�s reward on player 1 in the Step 4 is symmetrically de�ned as player 1�s reward on

player 2 in Step 3 after player 1 infers that player 2�s message in Step 2 says that player 2

observed y2 2 Y 2
2;1 or (a2; y2) 2 H2

2;1. If y2 2 Y 2
2;1 or (a2; y2) 2 H2

2;1, then player 2 only cancels

out the di¤erences in player 1�s instantaneous utilities. Hence, player 1 can condition that

y2 2 Y 2
2;2 or (a2; y2) 2 H2

2;2. On the top of that, player 2 gives the reward

X
a1

�g (a1)	
a2;t;a1
2;t (6.25)

to cancel out the e¤ect of the round for conditional independence.

Round for Conditional Independence For S log2 jA1j jY1j periods that correspond to

period t in Step 4 of Section 6.7.3.1, player 1 plays ��1 j a1;t; y1;t and player 2 plays aG2 . The

reward is given by (6.22).

Optimality of Player 1�s Strategy Note that all the rewards in Step 4 of Section 6.7.3.1

a¤ected by the messages in the round for conditional independence are bounded by T�1.

Since we take T such that e2 > T�1 by (6.24), from Condition 2 of Lemma 46, regardless of

the history in Step 4, the optimal strategy in the round for conditional independence is ��1

(note that (6.25) is sunk in the round for conditional independence).
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Then, (6.25) together with the expected reward in the round for conditional independence

makes player 1 indi¤erent between all the actions in terms of the expected reward in the

round for conditional independence and yield 0 in expectation regardless of the history.

Therefore, the same argument as in Step 3 of Section 6.7.3.1 for player 2 establishes the

incentive in Step 4 since, given that player 1 takes ��1, the conditional independence property

holds and player 1 conditions that y2 2 Y 2
2;2 or (a2; y2) 2 H2

2;2, that is, player 1 cannot infer

player 2�s history from Step 3.
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Chapter 7

General N-Player Game Without

Cheap Talk

In this chapter, we prove the dispensability of the perfect and error-reporting noisy cheap

talk and public randomization in the proof of Theorem 7 for the general N -player game with

N � 3 (see Chapter 5 for the proof with the perfect and error-reporting noisy cheap talk

and public randomization). Remember that in Chapter 5, the coordination block uses the

perfect cheap talk, the supplemental rounds use the error-reporting noisy cheap talk, the

report block uses the public randomization and perfect cheap talk, and the re-report block

uses the perfect cheap talk.

First, in Section 7.2, we replace the perfect cheap talk in the coordination block with

the error-reporting noisy cheap talk. As seen in Section 1.5.6.2, with more than two players,

we need to make sure that while the players exchange messages and infer the other players�

messages from private signals generated by the error-reporting noisy cheap talk in order to

coordinate on xi, there is no player who can induce a situation where some players infer

xi is G while the others infer xi is B in order to increase her own equilibrium payo¤. For

this purpose, in Section 7.1.1, we introduce the new assumptions and explain why they are

su¢ cient.
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Second, Section 7.3 explains the structure of the review phase (�nitely repeated game)

without perfect cheap talk.

Third, in Section 7.4, we dispense with the error-reporting noisy cheap talk in the coor-

dination block (given the �rst step above) and supplemental rounds. See Section 7.1.2 for

what assumption is su¢ cient for this step.

Fourth, in Section 7.5, we de�ne the equilibrium strategy in the coordination and main

blocks. The almost optimality of this strategy is veri�ed in Section 7.6.

Fifth, in Section 7.7, we dispense with the public randomization and the perfect cheap

talk in the report and re-report blocks. Section 7.1.3 explains new assumptions for this step.

In this chapter, when we say player i 62 f1; :::; Ng, without otherwise speci�ed, it means

player i (modN). In addition, without loss of generality, assume that

jA1j jY1j � � � � � jAN j jYN j : (7.1)

In addition, since we only use the error-reporting noisy cheap talk with precision p =

1� exp(�T 1
2 ), we omit the precision.

7.1 Notations and Assumptions

Before explaining the assumptions for dispensing with cheap talk, we will o¤er one assump-

tion that is useful to construct a reward while players are exchanging the messages. Imagine

the situation where player j takes two possible actions �Aj with �Aj � Aj and
�� �Aj�� = 2 and

players � (i; j) take ��(i;j) where each player takes each action with probability at least

� > 0. We assume that player i� 1 can identify actions by player i 6= j from her action ai�1

and signal yi�1:
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Assumption 48 For all � > 0, i; j 2 I, �Aj � Aj with
�� �Aj�� = 2 and f�ngn2�(i;j) with

�n(an) � � for all n and an,
�
Pr
�
ai�1; yi�1 j ai; aj; ��(i;j)

��
ai�1;yi�1

is linearly independent

with respect to ai 2 Ai and aj 2 �Aj.

We argue that Assumption 48 is generic under Assumption 3. There are following two

cases: if player j is player i � 1, then player i � 1 knows aj and Assumption 48 is equiv-

alent to linear independence of
�
q
�
yi�1 j ai; aj; ��(i;j)

��
yi�1
, which is equivalent to Assump-

tion 3. If player j is not player i � 1, then player i � 1 mixes all the actions. Hence,�
Pr
�
ai�1; yi�1 j ai; aj; ��(i;j)

��
ai�1;yi�1

is generically linearly independent if

jAi�1j jYi�1j �
�� �Aj�� jAij = 2 jAij ;

which is implied by Assumption 3.

7.1.1 Assumptions for Dispensing with the Perfect Cheap Talk in

the Coordination Block

We explain how to replace the perfect cheap talk with the error-reporting noisy cheap talk

in the coordination block. As explained in Section 1.3.2, the error-reporting noisy cheap talk

is �private� in that when player j sends the message to player n via error-reporting noisy

cheap talk, the main signal f [n] (m) is only observed by player n.

This creates the problem mentioned in Section 1.5.6.2: if player i sent the message xi

to each of the other players �i via error-reporting noisy cheap talk separately, then player

i could create a situation where some players infer xi is G while the others infer xi is B by

telling a lie. Since the action that will be taken in the main blocks after such an event may

not be included in f�(x)gx and we do not have any bound on player i�s payo¤ in such a

situation, it might be of player i�s interest to tell a lie.
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To prevent this situation, we consider the following message protocol: let N(i) � fi; i+

1; i+ 2g be the set of players whose index is in fi; i+ 1; i+ 2g. In addition, let

n�(i) 2 arg min
j2fi;i+2g

jAjj jYjj (7.2)

be the player whose jAjj jYjj is smaller between fi; i+ 2g. Let

n��(i) = fi; i+ 2g n fn�(i)g (7.3)

be the other player. Note that N(i) = fn�(i); i + 1; n��(i)g. The players communicate as

follows:

1. �rst, player i sends the message about xi to player n�(i) via error-reporting noisy cheap

talk. Let wi = f1[n
�(i)](xi) be player i�s inference;

2. then, player n�(i) sends the message about wi to players N(i) via actions. This corre-

sponds to �Phase 1�of Hörner and Olszewski (2006);

3. after that, each player j in N(i) sends the message about her inference of xi in Step 2

to each player n 6= j via error-reporting noisy cheap talk; and

4. �nally, each player n infers xi based on the messages from N(i). This corresponds to

�Phase 2�of Hörner and Olszewski (2006).

As Hörner and Olszewski (2006), to incentive each player j 2 N(i) to tell the truth in

Step 3, for each j 2 N(i), if there exists player n 2 �j such that player n�s inference of player

j�s message changes player n�s inference of xi in Step 4 (that is, if player j is �pivotal�),

then player j � 1, who will know player j is pivotal in the re-report block, makes player j

indi¤erent between any action pro�le sequence.

Given above, we will show that player n�(i) does not want to deviate in Step 2 in order

to create a situation where player n�(i) herself will be pivotal with a high probability in
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Step 3. Remember that we take n�(i) such that the set of player n�(i)�s action-signal pairs

is smaller than that of player n�� (i) in (7.2). Heuristically, this guarantees that player n�(i)

cannot infer player n��(i)�s inference precisely, which prevents player n�(i) from creating the

situation where player n�(i) is pivotal.

Given player n�(i)�s truthtelling strategy in Step 2, the probability that player i is pivotal

in Step 3 is almost independent of player i�s strategy in Step 1. Since xi controls player

(i+ 1)�s payo¤, players i and n�(i) 6= i + 1 do not have an incentive to manipulate the

communication in Step 1.

Below, we explain what assumption is su¢ cient for what step.

The �rst step is straightforward if the error-reporting noisy cheap talk is available.

After player n�(i) infers wi, player n�(i) sends the message about wi to players N(i) =

fn�(i); i + 1; n��(i)g. While player n�(i) sends wi, player n�(i) takes awin�(i) and player j 2

�n�(i) take �receivej 2 �(Aj) for T
1
2 periods. That is, in equilibrium, the players take

�(i; wi) �
�
awin�(i); �

receive
�n�(i)

�
for T

1
2 periods.

Take n 2 N(i) n n�(i). Suppose that player j = N(i) n fn�(i); ng unilaterally deviates

and takes aj 2 Aj. Then, the distribution of player n�s action-signal pairs is

qn(aj; ��j(i; wi)) � (q (an; yn j aj; ��j(i; wi)))an2An;yn2Yn :

Consider the following linear equations: for any aj 2 Aj,

in(i)qn(aj; ��j(i; wi)) =

8><>: q2 if wi = G;

q1 if wi = B:
(7.4)

Here, in(i) is a 1�jAnj jYnj vector. Solve (7.4) for in(i). Suppose that there are Ln(i) linearly

independent solutions. Then, let

In (i) =
�
iln(i)

�Ln(i)
l=1

(7.5)
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be the Ln(i) � jAnj jYnj matrix collecting all the linearly independent in(i)�s. Since all the

expressions are linear, we can make sure that each element in In (i) is in (0; 1) by a proper

a¢ ne transformation as in Lemma 14.

Intuitively, if player n uses in(i)1an;t;yn;t after the history (an;t; yn;t) to infer wi, then player

j cannot manipulate player n�s inference by (7.4). That is,

1. if
P

t in(i)1an;t;yn;t is close to (q2; :::; q2)
>, then player n infers wi is G;

2. if
P

t in(i)1an;t;yn;t is close to (q1; :::; q1)
>, then player n infers wi is B; and

3. if
P

t in(i)1an;t;yn;t is close to neither (q2; :::; q2)
> nor (q1; :::; q1)

>, then player n infers

wi is M (�middle�).

Note that (7.4) implies that player j = N(i)nfn�(i); ng cannot manipulate this inference.

Hence, we are left to show that player n�(i) cannot induce the situation that player n�(i)

will be pivotal. Intuitively, it su¢ ces to show that player n� (i) puts a negligible belief on the

event that player n��(i) infers wi is ŵi 2 fG;Bg and player i + 1 infers wi is fG;Bg n fŵig

(we allow player i+1 to infer wi isM) since, as we will see, these are only cases where player

n�(i) will be pivotal with a non-negligible probability.

To calculate player n�(i)�s belief, consider the matrix projecting player n�(i)�s history on

the conditional expectation of player n�s history given an action pro�le by players �n�(i)

being equal to ��n�(i)(i; wi):

Qn;n�(i)(i)
(jAnjjYnj�jAn�(i)jjYn�(i)j)

;

where the element corresponding to (an; yn) ;
�
an�(i); yn�(i)

�
is the conditional probability that

player n observes (an; yn) given
�
an�(i); yn�(i)

�
and ��n�(i)(i; wi):

q(an; ynj��n�(i)(i; wi); an�(i); yn�(i)):

Since ��n�(i)(i; wi) = �receive�n�(i) is independent of wi, Qn;n�(i)(i) is independent of wi.
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Given Qn;n�(i)(i), the set of player n� (i)�s histories such that player n� (i) believes that

player n infers ŵi 2 fG;Bg with a non-negligible probability should be included in

In;n�(i)["](i; ŵi) �

8>>>><>>>>:
x 2 RjAn�(i)jjYn�(i)j+ : 9" 2 RLn(i) such that8><>: k"k � ";

In(i)
�
Qn;n�(i)(i)x+ "

�
= q(ŵi)1:

9>>>>=>>>>;
with q(ŵi) = q2 if ŵi = G and q(ŵi) = q1 if ŵi = B.

So that player n� (i) puts a negligible belief on the event that player n��(i) infers wi =

ŵi 2 fG;Bg and player i + 1 infers wi = fG;Bg n fŵig, we want to make sure that, for

su¢ ciently small ",

In��(i);n�(i)["](i; G) \ I i+1;n�(i)["](i; B) = ;

and

In��(i);n�(i)["](i; B) \ I i+1;n�(i)["](i; G) = ;:

We show that the following assumption is su¢ cient:

Assumption 49 There exist
�
aGi ; a

B
i ; �

receive
i

	
i2I , q2, q1, and �" > 0 such that q2; q1 2 (0; 1),

q2 > q1, and for each i 2 I,

1. there exists x 2 RLi+1(i)+Ln��(i)(i) such that

264 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

375
0

x � 0;

264 q21

q11

375 � x > 0;

2. there exists x 2 RLi+1(i)+Ln��(i)(i) such that

264 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

375
0

x � 0;

264 q11

q21

375 � x > 0;
and
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3. for all i 2 I,

j =

8><>: i� 1 if i 6= 1;

2 if i = 1;

a�(i;j) 2 A�(i;j) and �j 2 �(Aj) with

(a) �j(aGj ) > 0 and �j(a
B
j ) > 0 if j = n�(i); and

(b) �j = �receivej for j 6= n�(i),

for all (ai; yi) and (a0i; y
0
i) with (ai; yi) 6= (a0i; y0i), we have

E
�
1aj ;yj j yi; ai; �j; a�(i;j)

�
6= E

�
1aj ;yj j y0i; a0i; �j; a�(i;j)

�
:

As we will see in Section 7.7, Condition 3 will be used to show the truthtelling incentive

in the report block.

Under Assumption 6, Assumption 49 is generic. Since Condition 3 is generic, we con-

centrate on Conditions 1 and 2. Note that (7.4) puts 2 (jAjj � 1) constraints while we have

jAnj jYnj � 1 degrees of freedom for in(i) if qn(aj; ��j(i; wi)) is linearly independent for each

wi and aj except for the constraint that �if we add all the elements up, then it should be

one.�Hence, generically Ln(i) is equal to jAnj jYnj � 2 jAjj + 1. Therefore, for each of Con-

ditions 1 and 2, we have jAi+1j jYi+1j+
��An��(i)�� ��Yn��(i)��� 2 jAi+1j � 2 ��An��(i)��+ 1 degrees of

freedom for x,1 while we have
��An�(i)�� ��Yn�(i)��+ 1 constraints. Since

jAi+1j jYi+1j+
��An��(i)�� ��Yn��(i)��� 2 jAi+1j � 2 ��An��(i)��+ 1

� jAi+1j jYi+1j+
��An�(i)�� ��Yn�(i)��� 2 jAi+1j � 2 ��An��(i)��+ 1 by (7.2)

� jAi+1j
�
jYi+1j � 2�

2

jAi+1j
��An��(i)���+ ��An�(i)�� ��Yn�(i)��+ 1

�
��An�(i)�� ��Yn�(i)��+ 1 by Assumption 6,

1Note that two rows are parallel to 1.
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we can generically �nd x.

Lemma 50 If Assumption 49 is satis�ed, then there exists �" > 0 such that, for all " � �",

In��(i);n�(i)["](i; G) \ I i+1;n�(i)["](i; B) = ; (7.6)

and

In��(i);n�(i)["](i; B) \ I i+1;n�(i)["](i; G) = ;: (7.7)

Proof: By Farkas Lemma,2 for (7.6) and (7.7), it su¢ ces to show that

1. there exists x 2 RLi+1(i)+Ln��(i)(i) such that for all "; "0 with k"k � " and k"0k � ",

8>>>>>>>><>>>>>>>>:

264 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

375
0

x � 0;

0B@
264 q21

q11

375+ In(i)

264 "

"0

375
1CA � x > 0

and

2. there exists x 2 RLi+1(i)+Ln��(i)(i) such that, for all "; "0 with k"k � " and k"0k � ",

8>>>>>>>><>>>>>>>>:

264 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

375
0

x � 0;

0B@
264 q11

q21

375+ In(i)

264 "

"0

375
1CA � x > 0

With " = 0, this is equivalent to

2Farkas Lemma has a constraint that each element of x should be non-negative. How-
ever, since we have equality constraints in the de�nition of In;n�(i)["](i; ŵi), not inequality
constraints, for each l with xl < 0, we can multiply �1 to xl, each element of lth row of
the matrix in the LHS, and lth element of the vector in RHS. Therefore, non-negativity
constraint is redundant.
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� there exists x 2 RLi+1(i)+Ln��(i)(i) such that

264 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

375
0

x � 0;

264 q21

q11

375 � x > 0
and

� there exists x 2 RLi+1(i)+Ln��(i)(i) such that

264 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

375
0

x � 0;

264 q11

q21

375 � x > 0:

By Assumption 49, we can �nd such x. Fix x. Then, now that x is �xed, by the continuity

of the linear function, for su¢ ciently small ", we have Conditions 1 and 2 as desired.

7.1.2 Assumption for Dispensing with the Error-Reporting Noisy

Cheap Talk

We explain how player j sends a binary message m 2 fG;Bg to player n via actions instead

of the error-reporting noisy cheap talk. Since we only use the error-reporting noisy cheap

talk with precision p = 1� exp(�T 1
2 ), we concentrate on the case with p = 1� exp(�T 1

2 ).

As in the two-player case, with � being a small number to be de�ned, the sender (player

j) determines

zj(m) =

8>>>><>>>>:
m with probability 1� �;

fG;Bg n fmg with probability �
2
;

M with probability �
2

and player j takes

�
zj(m)
j =

8>>>><>>>>:
(1� �) aGi + �aBi if zj(m) = G;

(1� �) aBi + �aGi if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M
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for T
1
2 periods with � � 1

3
. Player n (receiver) takes

��n = (1� 2 (jAnj � 1) �) aGn +
X
an 6=aGn

2�an

Player i 2 �(j; n) takes �receivei (compared to ��n, �receivei is independent of �).

For each i 2 I, let hi(r) be the realized frequency of player i�s signal-action pair in

round r where player j sends m. We want to construct f [n](m) 2 fG;Bg from hn(r) and

g[n� 1](m) 2 fm;Eg from hn�1(r) such that

� player n� 1 has g[n� 1](m) = m with a high probability;

� player n cannot manipulate g[n� 1](m);

� player n infers the message correctly (f [n](m) = m) with a high probability;

� givenm, player n believes that f [n](m) = m or g[n�1](m) = E with a high probability;

and

� player i 2 �(j; n) (other than the sender and receiver) cannot manipulate f [n](m) to

increase her own payo¤.

Player n�1 has g[n�1](m) = E if and only if at least one of the following three conditions

are satis�ed:

1. as in the two player case, zj(m) 6= m;

2. player j�s action frequency is not close to �mj ; and

3. player j�s signal frequency while player j takes amj is not close to the a¢ ne hull of player

j�s signal distributions with respect to player n�s action a�(fqj(amj ; an; �receive�(j;n))gan).

As for Qn
j (x) in Chapter 6, let Qj(j !m n) � a�(fqj(amj ; an; �receive�(j;n))gan) \ R

jYj j
+ . Let

Qj(j !m n) =
n
yj 2 RjYj j+ : Qj(j !m n)yj = qj(j !m n)

o
: (7.8)
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As in Lemma 14, we can assume that each element in Qj(j !m n) is in (0; 1).

Perturb Qj(j !m n) by " so that

Qj["](j !m n) =

8>>>><>>>>:
yj 2 RjYj j+ : 9" 2 RjYj j such that8><>: k"k � ";

Qj(j !m n) (yj + ") = qj(j !m n):

9>>>>=>>>>; (7.9)

By the law of large numbers, player n� 1 has g[n� 1](m) = m with a high probability.

In addition, since we take the a¢ ne hull with respect to player n�s actions, player n cannot

manipulate g[n� 1](m).

f [n](m) is determined as follows:

1. if the following two conditions are satis�ed, then player n infers f [n](m) = m̂ 2 fG;Bg:

(a) player n�s action frequency is close to ��n; and

(b) there exists i 2 �(j; n) and m̂ 2 fG;Bg such that player n�s signal frequency

while player n takes aGn is close to the a¢ ne hull of player n�s signal distributions

with respect to player i�s action a�(fqn(am̂j ; aGn ; ai; �receive�(i;j;n))gai).

As we will see in Lemma 52, there is at most one m̂ 2 fG;Bg such that i 2 �(j; n)

and m̂ 2 fG;Bg satisfy 1-(b); and

2. otherwise, player n infers f [n](m) from the likelihood as in the two-player case

As for Qj(j !m n), let Qi
n(j !m̂ n) � a�(fqn(am̂j ; aGn ; ai; �receive�(i;j;n))gai) \ R

jYnj
+ and

Qi
n["](j !m̂ n) �

8>>>><>>>>:
yn 2 RjYnj+ : 9" 2 RjYnj such that8><>: k"k � ";

Qin(j !m̂ n)yn + " = q
i
n(j !m̂ n):

9>>>>=>>>>; (7.10)

As in Lemma 14, we can assume that each element in Qn(j !m̂ n) is in (0; 1).
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Consider the properties of f [n](m). Suppose Case 1 of f [n](m) is the case. Then, since 1-

(a) is the case, for su¢ ciently small �, player n takes aGn for most of the time. For simplicity,

let us proceed as if player n took aGn all the time.

Below, we assume that there are no multiple m̂�s in Case 1:

 S
i2�(j;n)

Qi
n["](j !G n)

!
\
 S
i2�(j;n)

Qi
n["](j !B n)

!
= ;

for su¢ ciently small ". That is, f [n](m) is uniquely determined in Case 1.

Suppose player j takes �mj (otherwise, g[n�1](m) = E). By Condition 2 of g[n�1](m) =

E, for su¢ ciently small �, player n can believe that player j takes amj for most of the time.

For simplicity, let us proceed as if player j took amj all the time.

Then, player n believes that, conditional on m̂, g[n � 1](m̂) = m̂ with a non-negligible

probability only if player n�s signal frequency is included in

Hn["](j !m̂ n) =

8>>>><>>>>:
yn 2 RjYnj+ : 9" 2 RjYnj such that8><>: k"k � ";

Qj(j !m̂ n) (Mj;n(m̂)yn + ") = qj(j !m̂ n):

9>>>>=>>>>; (7.11)

where

Mj;n(m̂) =

266664
q(yj;1 j am̂j ; aGn ; �receive�(j;n) ; yn;1) � � � q(yj;1 j am̂j ; aGn ; �receive�(j;n) ; yn;jYnj)

...
...

q(yj;jYj j j am̂j ; aGn ; �receive�(j;n) ; yn;1) � � � q(yj;jYj j j am̂j ; aGn ; �receive�(j;n) ; yn;jYnj)

377775
is the matrix which projects player n�s signal observation to the conditional distribution of

player j�s signal observation.
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In other words, if

Hn["](j !G n) \
�S

i2�(j;n)Q
i
n["](j !B n)

�
=Hn["](j !B n) \

�S
i2�(j;n)Q

i
n["](j !G n)

�
= ;

for su¢ ciently small ", then player n inferring f [n](m) according to Case 1 believes that,

conditional on m, either f [n](m) = m or g[n� 1](m) = E with a non-negligible probability,

as desired.

As in the two-player case, player n inferring f [n](m) according to Case 2 believes that,

conditional on m, either f [n](m) = m or g[n� 1](m) = E with a non-negligible probability,

as desired.

Therefore, in total, given m, player n believes that f [n](m) = m or g[n�1](m) = E with

a high probability. In addition, player n infers the message correctly with a high probability

by the law of large numbers.

Hence, we are left to show player i 2 �(j; n) (other than the sender and receiver) cannot

manipulate f [n](m) to increase her payo¤. For this purpose, de�ne �i�1(j ! n) 2 fG;Bg

as follows: �i�1(j ! n) = B if and only if i 2 � (j; i) and Case 1 is not the case, that is,

1. player n�s action frequency is not close to ��n; or

2. player n�s signal frequency while player n takes aGn is not close to the a¢ ne hull of player

n�s signal distributions with respect to player i�s action a�(fqj(amj ; aGn ; ai; �receive�(i;j;n))gai).

If �i�1(j ! n) = B happens, then player i � 1 makes player i indi¤erent between any

action pro�le from the next review round.

Note that unless player n infers f [n](m) = m, �i�1(j ! n) = B. Further, since we

take the a¢ ne hull of player i, the distribution of �i�1(j ! n) is independent of player i�s

strategy.3 Therefore, player i cannot manipulate f [n](m) and increase her payo¤.

In total, we want to assume that, for su¢ ciently small ",

3Precisely speaking, we need to do a small adjustment as (2.22). See Section 7.4.2.
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1.  S
i2�(j;n)

Qi
n["](j !G n)

!
\
 S
i2�(j;n)

Qi
n["](j !B n)

!
= ;; (7.12)

and

2.

Hn["](j ! Gn) \
 S
i2�(j;n)

Qi
n["](j !B n)

!

= Hn["](j !B n) \
 S
i2�(j;n)

Qi
n["](j !G n)

!
= ;: (7.13)

For (7.12) and (7.13), it su¢ ces to assume that following:

Assumption 51 There exist
�
aGi ; a

B
i ; ��i; �

receive
i

	
i2I such that, for each j 2 I and n 2 �j,

the following �ve conditions are satis�ed:

1. for all i; i0 2 �n, there is x 2 R2jYnj�jAij�jAi0 j+2 such that

264 Qin(j !G n)

Qi
0
n(j !B n)

375
0

x � 0;

264 qin(j !G n)

qi
0
n(j !B n)

375 � x < 0;

2. for all i 2 �n, there is x 2 RjYj j+jYnj�jAnj�jAij+2 such that

264 Qj(j !G n)Mj;n(G)

Qin(j !B n)

375
0

x � 0;

264 qj(j !G n)

qin(j !B n)

375 � x < 0;

3. for all i 2 �n, there is x 2 RjYj j+jYnj�jAnj�jAij+2 such that

264 Qj(j !G n)Mj;n(B)

Qin(j !G n)

375
0

x � 0;

264 qj(j !B n)

qin(j !G n)

375 � x < 0;
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4. for each an 2 Ai and yn 2 Yi, we have

q(yn j an; aGj ; �receive�(n;j)) 6= q(yn j an; aBj ; �receive�(n;j));

and

5. for all i 2 I,

j0 =

8><>: i� 1 if i 6= 1;

2 if i = 1;

a�(i;j0) 2 A�(i;j0) and �j0 2 �(Aj0) with

(a) �j0(aGj0) > 0 and �j0(a
B
j0) > 0 if j

0 = j; and

(b) �j0 = ��j0 or �receivej0 if j0 6= j,

for all (ai; yi) and (a0i; y
0
i) with (ai; yi) 6= (a0i; y0i), we have

E
h
1aj0 ;yj0 j yi; ai; �j0 ; a�(i;j0)

i
6= E

h
1aj0 ;yj0 j y

0
i; a

0
i; �j0 ; a�(i;j0)

i
:

For notational simplicity, we assume that
�
aGi ; a

B
i ; �

receive
i

�
i2I in Assumption 49 satis�es

Assumption 51.

Condition 4 is equivalent to Condition 1 of Assumption 39 in the two-player case. As

we will see in Section 7.7, Condition 5 will be used to show the truthtelling incentive in the

report block.

Under Assumption 6, Assumption 51 is generic. First, consider Condition 1. Note that

there are jYnj + 1 constraints. On the other hand, after noting that the signal frequency is

on the simplex over Yn, x has 2 jYnj � jAij � jAi0j+ 1 degrees of freedom. By Assumption 6,

since 2 jYnj � jAij � jAi0j+ 1 � jYnj+ 1, x satisfying Condition 2 generically exists.
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Second, consider Conditions 2. Note that there are jYnj + 1 constraints while x has

jYjj+ jYnj � jAnj � jAij+ 1 degrees of freedom. By Assumption 6, since jYjj+ jYnj � jAnj �

jAij+ 1 � jYnj+ 1, x satisfying Condition 2 generically exists. Condition 3 is symmetric.

Finally, Conditions 4 and 5 are generic.

The next lemma shows that Assumption 49 is su¢ cient for (7.12) and (7.13):

Lemma 52 If Assumption 49 is satis�ed, then there exists �" > 0 such that, for all " < �",

(7.12) and (7.13) are satis�ed.

Proof: It su¢ ces to show that

1. for all i; i0 2 �n, for su¢ ciently small ",

Qi
n["](j !G n) \Qi0

n["](j !B n) = ;;

2. for all i 2 �n, for su¢ ciently small ",

Hn["](j !G n) \Qi
n["](j !B n) = ;;

and

3. for all i 2 �n, for su¢ ciently small ",

Hn["](j !B n) \Qi
n["](j !G n) = ;:

They are equivalent to

1. for all i; i0 2 �n, for su¢ ciently small ", for all " 2 R2jYnj�jAij�jAi0 j+2 with k"k � ",

there is no yn 2 RjYnj+ such that

264 Qin(j !G n)

Qi
0
n(j !B n)

375yn =
264 qin(j !G n)

qi
0
n(j !B n)

375+ ";
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2. for all i 2 �n, for su¢ ciently small ", for all " 2 RjYj j+jYnj�jAnj�jAij+2 with k"k � ",

there is no yn 2 RjYnj+ such that

264 Qj(j !G n)Mj;n(G)

Qin(j !B n)

375yn =
264 qj(j !G n)

qin(j !B n)

375+ ";
and

3. for all i 2 �n, for su¢ ciently small ", for all " 2 RjYj j+jYnj�jAnj�jAij+2 with k"k � ",

there is no yn 2 RjYnj+ such that

264 Qj(j !B n)Mj;n(B)

Qin(j !G n)

375yn =
264 qj(j !B n)

qin(j !G n)

375+ ":

By Farkas Lemma, they are equivalent to

1. for all i; i0 2 �n, for su¢ ciently small ", for all " 2 R2jYnj�jAij�jAi0 j+2 with k"k � ",

there is x 2 R2jYnj�jAij�jAi0 j+2 such that

264 Qin(j !G n)

Qi
0
n(j !B n)

375
0

x � 0;

0B@
264 qin(j !G n)

qi
0
n(j !B n)

375+ "
1CA � x < 0;

2. for all i 2 �n, for su¢ ciently small ", for all " 2 RjYj j+jYnj�jAnj�jAij+2 with k"k � ",

there is x 2 RjYj j+jYnj�jAnj�jAij+2 such that

264 Qj(j !G n)Mj;n(G)

Qin(j !B n)

375
0

x � 0;

0B@
264 qj(j !G n)

qin(j !B n)

375+ "
1CA � x < 0;

and
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3. for all i 2 �n, for su¢ ciently small ", for all " 2 RjYj j+jYnj�jAnj�jAij+2 with k"k � ",

there is x 2 RjYj j+jYnj�jAnj�jAij+2 such that

264 Qj(j !B n)Mj;n(B)

Qin(j !G n)

375
0

x � 0;

0B@
264 qj(j !B n)

qin(j !G n)

375+ "
1CA � x < 0:

The rest of the proof is the same as Lemma 50.

7.1.3 Assumptions for Dispensing with the Public Randomization

and Perfect Cheap Talk

First, to dispense with the public randomization, we want to make an assumption comparable

to Assumption 40 in the two-player case. For each i 2 I, with player j replaced with player

i�1 (the controller of player i�s payo¤), all the de�nitions about ap:r:(i), �p:r:(i), �p:r:(i)i�1 , (6.2),

(6.3), (6.4), (6.5), H i
i;1 and H

i
i;2 in Section 6.1.2 are valid with more than two players.

Now, we formally state the analogue of Assumption 40 for more than two players:

Assumption 53 For each i 2 I, one of the following two conditions is satis�ed:

1. there exists a
p:r:(i) 2 A such that there exist Y i

i�1;1, Y
i
i�1;2, �pi, Y

i
i;1 and Y

i
i;2 such that Y

i
i;1

and Y i
i;2 satisfy (6.2) and (6.3) with j replaced with i� 1 and

Y i
i;1 6= ;; Y i

i;2 6= ;; Yi = Y i
i;1 [ Y i

i;2; Yi�1 = Y i
i�1;1 [ Y i

i�1;2;

and

2. there exists �p:r:(i) 2 �(A) such that there exist �p:r:(i)i�1 , �pi, H i
i;1 and H

i
i;2 such that

(a) H i
i;1 and H

i
i;2 satisfy (6.4), (6.5) with j replaced with i� 1 and

H i
i;1 6= ;; H i

i;2 6= ;; Ai � Yi = H i
i;1 [H i

i;2;
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and

(b) for all n 2 I, given �p:r:(i)�n , the probability that player i observes (ai; yi) 2 Ai� Yi

with (ai; yi) 2 H i
i;1 is independent of an 2 An.

Second, when player i with i � 2 sends the message, player i � 1 wants to construct a

statistics �i�1(ai�1; yi�1) such that player i� 1 can infer player i�s message statistically and

that the conditional independence property holds for player i, as �j(aj; yj) in Lemma 42: for

aGi 2 Ai and �
report
�i , for all (ai; yi) 2 Ai � Yi,

E
�
�i�1(ai�1; yi�1) j �

report
�i ; ai; yi

�
=

8><>: q2 if ai = aGi ;

q1 if ai 6= aGi :
(7.14)

A su¢ cient condition for the existence of such �i�1(ai�1; yi�1) is the linear independence

of (Pr(ai�1; yi�1 j �report�i ; ai; yi))ai�1;yi�1 with respect to ai 2 Ai and yi 2 Yi:

Assumption 54 There exists f�reportj gj2I such that, for each i � 2, (Pr(ai�1; yi�1 j �report�i ;

ai; yi))ai�1;yi�1 is linearly independent with respect to ai 2 Ai and yi 2 Yi.

Note that this is generic since we assume (7.1) and that we do not assume the counterpart

for player 1 to send the message.

The following lemma shows that Assumption 41 is su¢ cient to have �i�1 with (7.14).

Lemma 55 If Assumption 54 is satis�ed with
�
�reportj

	
j2I , then there exist q2 > q1 such

that for all i 2 f2; :::; Ng, there exist �i�1 : Ai�1� Yi�1 ! (0; 1) such that (7.14) is satis�ed.

Proof: The same as Lemma 42.
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7.2 Coordination Block with the Error-Reporting Noisy

Cheap Talk

Now, we consider the coordination block without the perfect cheap talk but with the error-

reporting noisy cheap talk with precision p = 1� exp(�T 1
2 ).

As mentioned in Section 7.1.1, we de�ne

N(i) = fi; i+ 1; i+ 2g;

n�(i) 2 arg min
j2fi;i+2g

jAjj jYjj ;

n��(i) = fi; i+ 2g n fn�(i)g:

First, player i sends the message about xi 2 fG;Bg to player n�(i) by the error-reporting

noisy cheap talk and let wi = f [n�(i)] (xi) 2 fG;Bg be player n�(i)�s inference of this

message. Second, player n�(i) sends the message about wi to players N(i) via actions. Each

player n 2 N(i) constructs player n�s inference of wi, denoted by wi(n) 2 fG;M;Bg. Here,

the inference M (�middle�) is introduced so that it prevents player n�(i) from creating a

situation where player n�(i) is pivotal. See 7.1.1 for the de�nition of �pivotal.�

7.2.1 Structure of the Coordination Block

Formally, the coordination block proceeds as follows:

� the periods where the players coordinate on x1:

� the coordination round 1 for x1. Player 1 sends the message about x1 to player

n�(1) via error-reporting noisy cheap talk. If n�(1) = 1, then this round does not

exist;

� the coordination round 2 for x1. Player n�(1) sends the message about w1 to

players N(1) via actions. Player n 2 N(1) creates the inference w1(n); and
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� for each j 2 N(1) = f1; 2; 3g and n 2 �j, we have the coordination round 3 for

x1 between j and n, where player j sends the message w1(j) to player n via error-

reporting noisy cheap talk. The players take turns: �rst, player 1 sends w1(1) to

player 2, second, player 1 sends w1(1) to player 3, and so on until player 1 sends

w1(1) to player N . Then, player 2 sends w1(2) to player 1, and so on until player

2 sends w1(2) to player N . After player 2, player 3 sends w1(3) to each of the

opponents �3 sequentially;

...

� the periods where the players coordinate on xi:

� the coordination round 1 for xi. Player i sends the message about xi to player

n�(i) via error-reporting noisy cheap talk. If n�(i) = i, then this round does not

exist;

� the coordination round 2 for xi. Player n�(i) sends the message about wi to

players N(i) via actions. Player n 2 N(i) creates the inference wi(n); and

� for each j 2 N(i) and n 2 �j, we have the coordination round 3 for xi between

j and n, where player j sends the message wi(j) to player n via error-reporting

noisy cheap talk. Again, the players take turns;

...

� the periods where the players coordinate on xN :

� the coordination round 1 for xN . Player N sends the message about xN to player

n�(N) via error-reporting noisy cheap talk. If n�(N) = N , then this round does

not exist;

� the coordination round 2 for xN . Player n�(N) sends the message about wN to

players N(N) via actions. Player n 2 N(N) creates the inference wN(n); and
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� for each j 2 N(N) and n 2 �j, we have the coordination round 3 for xN between

j and n, where player j sends the message wN(j) to player n via error-reporting

noisy cheap talk. Again, the players take turns.

For notational convenience, let T (n�(i)!wi N(i)) be the set of periods in the coordina-

tion round 2 for xi, where player n� (i) sends the message wi to players N(i) via actions. As

in the review round, player n randomly picks tn(n� (i) !wi N(i)) from T (n� (i) !wi N(i))

and does not use period tn(n� (i)!wi N(i)) for inference. That is, player n uses the periods

in

Tn(n
� (i)!wi N(i)) � T (n� (i)!wi N(i))r ftn(n� (i)!wi N(i))g :

We explain each round in the sequel.

7.2.2 Coordination Round 1 for xi

If player i is the same person as player n�(i), then this round does not exist. Let wi = xi be

player n�(i)�s inference (player i�s inference in other words).

Otherwise, player i sends xi by the error-reporting noisy cheap talk and player n�(i)

creates the inference of xi denoted by wi as wi = f [n�(i)](xi).

7.2.3 Coordination Round 2 for xi

This is the round where player n�(i) sends wi to players N(i). Player n�(i) takes a
wi
n�(i) and

each player j 2 �i takes �receivej for T
1
2 periods, de�ned in Assumption 49. Remember that

T (n�(i)!wi N(i)) be the set of periods in this round.

See (7.4) and (7.5) for the de�nition of the Ln(i)�jAnj jYnj matrix In(i). Based on In(i),

each player n 2 N(i) n fn�(i)g constructs a random variable 1In;t(i) (Ln(i) � 1 vector) as

follows: after taking an and observing yn, player n calculates In (i)1an;yn. Here, 1an;yn is a

jAnj jYnj � 1 vector such that the element corresponding to an; yn is equal to 1 and the other

elements are 0. Hence, In (i)1an;yn is a Ln(i)� 1 vector. Then, player n draws Ln(i) random
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variables independently from the uniform distribution on [0; 1]. If the lth realization of these

random variables is less than the lth element of In (i)1an;yn, then the lth element of 1In(i) is

equal to 1. Otherwise, the lth element of 1In(i) is equal to 0. We have

Pr(f
�
1In(i)

�
l
= 1g j a; y) = iln(i)1an;yn : (7.15)

Given f1In;t(i)gt2Tn(n�(i)!wiN(i))
, player n 2 N(i) infers wi as follows:

1. player n�(i) infers her own message straightforwardly: wi (n�(i)) = wi; and

2. player n 2 N(i) n fn�(i)g infers as follows:

(a) if 





 1

T
1
2 � 1

X
t2Tn(n�(i)!wiN(i))

1In;t(i) � q21







 � ";

then wi (n) = G;

(b) if 





 1

T
1
2 � 1

X
t2Tn(n�(i)!wiN(i))

1In;t(i) � q11







 � ";

then wi (n) = B; and

(c) otherwise, wi (n) =M (the posterior is not skewed enough for wi = G or wi = B

and so player n�(i) infers that the message is �middle�).

Assumption 49 implies the following Lemma:

Lemma 56 For any " < �", for any i 2 I and wi 2 fG;Bg,

1. for any n 2 N(i�),

(a) if players n�(i) and n follow the equilibrium strategy, then

Pr (fwi (n) = wig j wi) � 1� exp(��(T
1
2 ));
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and

(b) the distribution of wi (n) given wi is independent of player j = N(i) n fn�(i); ng�s

unilateral deviation; and

2. for any history of player n�(i) at the end of the coordination round 2 for xi, player

n�(i) puts a belief exp(��(T 1
2 )) on the event

fG;Bg 3 wi (n��(i)) 6= wi (i+ 1) 2 fG;Bg:

Proof: 1. Follows from (7.4) and (7.15).

2. By Hoe¤ding�s inequality, there exists K1 such that, for each k > 0, for any frequency

of action-signal pair xn�(i) for player n� (i), player n� (i) with xn�(i) believes that, for

each n 2 fn��(i); i+ 1g, player n�s frequency of action-signal pair xn satis�es



Qn;n�(i)(i)xn�(i) � xn

 < K1k (7.16)

with probability no less than exp(�kT 1
2 ).

In addition, Hoe¤ding�s inequality, there exists K2 such that





 1

T
1
2 � 1

X
t2Tn(n�(i)!wiN(i))

1In;t(i) � In(i)xn







 > K2k

with probability no more than exp(�kT 1
2 ), conditional on xn.

Further, by Lipschitz continuity of the linear function, there exists K3 such that (7.16)

implies 

In(i)Qn;n�(i)(i)xn�(i) � In(i)xn


 < K3K1k:
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In total, when player n�(i) believes player n has wi (n) 2 fG;Bg with probability no

less than 2 exp(�kT 1
2 ),



In(i)Qn;n�(i)(i)xn�(i) � qn (wi (n))

 � (K3K1 +K2) k:

Hence, if we take k and " su¢ ciently small compared to �" in Assumption 49, then

player n�(i) cannot put a belief more than 4 exp(�kT 1
2 ) on the event

fG;Bg 3 wi (n��(i)) 6= wi (i+ 1) 2 fG;Bg;

as desired.

As we will see, as long as the error-reporting noisy cheap talk by the other players

transmits correctly in the coordination round 3 for xi (this is true with an ex ante high

probability at the end of the coordination round 2 for xi), player n�(i) is pivotal for some

player�s inference of xi if and only if fG;Bg 3 wi (n��(i)) 6= wi (i+ 1) 2 fG;Bg. 2 of Lemma

56 guarantees that, after any history (including those after player n�(i)�s deviation), the

probability that player n�(i) is pivotal is negligible for the almost optimality.

For each n 2 N(i) n fn�(i)g, consider player j = N(i) n fn�(i); ng. As we will see, player

j is not pivotal if players n�(i) and n infer the same state wi. Therefore, 1-(b) of Lemma 56

guarantees that player j cannot manipulate player n�s inference to create a situation where

player j is pivotal.

For each n 2 �N (i), as long as the error-reporting noisy cheap talk transmits correctly

in the coordination round 3 for xi (this is true with an ex ante high probability at the end

of the coordination round 2 for xi), every player infers xi in the same way. Since xi controls

the payo¤ of player i+ 1 2 N (i), player n 2 �N (i) is indi¤erent for each fwi(j)gj2N(i).
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7.2.4 Coordination Round 3 for xi Between Players j and n

This is the round where player j 2 N(i) sends wi(j) to player n 2 I. Let wi(j)(n) 2

fG;B;Mg be player n�s inference of player j�s message. Here, we assume that the error-

reporting noisy cheap talk is available. See Section 7.4 for how to dispense with the error-

reporting noisy cheap talk.

If player j is the same player as player n, then wi(j)(n) = wi(j), that is, player j infers

her own message straightforwardly.

Otherwise, player j sends messages as follows. From wi(j) 2 fG;M;Bg, player j con-

structs a sequence of two binary messages wi(j)f1g; wi(j)f2g 2 fG;Bg2: if wi(j) = G, then

wi(j)f1g = wi(j)f2g = G; If wi(j) = B, then wi(j)f1g = wi(j)f2g = B; If wi(j) = M , then

wi(j)f1g = G and wi(j)f2g = B with probability 1
2
and wi(j)f1g = B and wi(j)f2g = G

with probability 1
2
.

Player j sends the two messages wi(j)f1g and wi(j)f2g sequentially via error-reporting

noisy cheap talk.

With abuse of notation, we de�ne g[n � 1](wi(j)) 2 fwi(j); Eg and f [n](wi(j)) 2

fG;M;Bg as follows: for g[n� 1](wi(j)),

1. g[n � 1](wi(j)) = wi(j) if and only if player n � 1 thinks that there is no error for

f [n](wi(j)f1g) and f [n](wi(j)f2g), that is, g[n � 1](wi(j)f1g) = wi(j)f1g and g[n �

1](wi(j)f2g) = wi(j)f2g; and

2. g[n� 1](wi(j)) = E otherwise.

For f [n](wi(j)), player i infers f [n](wi(j)) from f [n](wi(j)f1g) and f [n](wi(j)f2g), using

the mapping between wi(j) and wi(j)f1g; wi(j)f2g.

1. f [n](wi(j)) = G if and only if f [n](wi(j)f1g) = f [n](wi(j)f2g) = G;

2. f [n](wi(j)) = B if and only if f [n](wi(j)f1g) = f [n](wi(j)f2g) = B; and
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3. f [n](wi(j)) = M if and only if �f [n](wi(j)f1g) = G and f [n](wi(j)f2g) = B� or

�f [n](wi(j)f1g) = B and f [n](wi(j)f2g) = G.�

Finally, player n infers wi(j) as wi(j)(n) = f [n](wi(j)).

7.2.5 Player n�s Inference of xi

Based on these rounds, player n infers xi as follows. Let xi(n) 2 fG;Bg be player n�s

inference of xi. From fwi (j) (n)gj2N(i), player n constructs xi (n) such that

xi (n) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

G if

8>>>>>>>>>><>>>>>>>>>>:

wi (n
��(i)) (n) = wi (i+ 1) (n) = G;

wi (n
��(i)) (n) =M;wi (i+ 1) (n) = G;

wi (n
��(i)) (n) = G;wi (i+ 1) (n) =M;

wi (n
��(i)) (n) = B;wi (i+ 1) (n) = G;wi (n

�(i)) (n) = G;

wi (n
��(i)) (n) = G;wi (i+ 1) (n) = B;wi (n

�(i)) (n) = G;

B otherwise.

(7.17)

Finally, let

x (n) = fxi(n)gi2I

be the pro�le of the inferences.

7.2.6 De�nition of �i�1(c) 2 fG;Bg

Based on the realization of the coordination block, if some events happen, then player i� 1

makes player i indi¤erent between any action pro�le sequence in the main blocks. �i�1(c) = B

implies that such an event happens while �i�1(c) = G implies that such an event does not

happen.

We will de�ne the events to induce �i�1(c) = B: for each j 2 I, while the players

coordinate on xj,
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1. there exists player j0 2 �i with j0 2 N(j) such that when player j0 sends the message

wj(j
0) to player i in the coordination round 3 for xj between j0 and i, player i� 1 has

g[i� 1](wj(j0)) = E;

2. there exist players j0 2 �i and n 2 �i such that when player j0 sends the message

wj(j
0) to player n in the coordination round 3 for xj between j0 and n, player n has a

wrong signal f [n](wj(j0)) 6= wj(j
0); and

3. player i is in N(j) and consider the following inference:

xj (n) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

G if

8>>>>>>>>>><>>>>>>>>>>:

wj (n
��(j)) = wj (j + 1) = G;

wj (n
��(j)) =M;wj (j + 1) = G;

wj (n
��(j)) = G;wj (j + 1) =M;

wj (n
��(j)) = B;wj (j + 1) = G;wj (n

�(j)) = G;

wj (n
��(j)) = G;wj (j + 1) = B;wj (n

�(j)) = G;

B otherwise.

(7.18)

Note that this is what we replace player n�s inference of the messages in the coordination

round 3 in (7.17) with the true messages. We have �i�1(c) = B if there exist n 2 I

and j 2 I such that player i�s message wj(i) matters for xj(n) in (7.18). That is,

(a) if player i is n�(j), then

fG;Bg 3 wj (n��(j)) 6= wj (j + 1) 2 fG;Bg; (7.19)

and

(b) if player i is in N(j) n fn�(j)g, then

wj � wj (n
�(j)) 6= wj (i

0) : (7.20)
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with i0 = N(j) n fi; n�(j)g (player i0 makes a mistake in the coordination round 3

for xj between n�(j) and i0).

Note that, although player n can be player i herself, whether or not wj(i) matters in

(7.18) is determined by the other players�messages fwj(i0)gi0 6=i.

In the de�nition of �i�1(c), player i�1 uses the information owned by players �(i�1; i).

Section 7.8 explains how players �(i� 1; i) inform player i� 1 of their history necessary to

create �i�1(c) in the re-report block. Since �i�1(c) only a¤ects the reward function (that is,

does not a¤ect action plan �i�1(xi�1)), it su¢ ces that player i� 1 knows the information by

the end of the review phase.

We verify that the distribution of �i�1(c) is almost independent of player i�s strategy: for

Cases 1 and 2, we need to verify that player i cannot manipulate �i�1(c) by a¤ecting some

player�s messagem while coordinating on xj in the coordination round 2 for xj. The de�nition

of the error-reporting noisy cheap talk implies that the probability of g[i� 1](m) = E when

player i is a receiver and that of f [n](m) 6= m when player j 2 �i is a sender and player

n 2 �i is a receiver are almost independent of m.4

For Case 3-(a), 2 of Lemma 56 implies that player i puts a belief no more than exp(��(T 1
2 ))

on (7.19) after any history (including those after player i�s deviation) at the end of the coordi-

nation round 2 for xj. Since wj (n��(j)) and wj (j + 1) are �xed at the end of the coordination

round 2 for xj, whether (7.19) happens or not is almost independent of player i�s strategy.

For Case 3-(b), note that if wj(n��(j)) = wj, then (7.20) is not the case. In the coor-

dination round 2 for xj, the distribution of wj(n��(j)) is independent of player i�s strategy

because of (7.4). In addition, regardless of wj, this event happens with probability no more

than exp(��(T 1
2 )) from the perspective at the end of the coordination round 1 for xj by

4Note that m can be a¤ected by player i�s strategy before the round where player j sends
m to player n.
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1 of Lemma 56.5 Therefore, no player can change the distribution of �i�1(c) by more than

exp(��(T 1
2 )).

In summary, we have shown the following lemma:

Lemma 57 If

1. the probability of g[i� 1](m) = E when player i is a receiver of a message m is almost

independent of m; and

2. the probability of f [n](m) 6= m when player j 2 �i is a sender of a message m and

player n 2 �i is a receiver is almost independent of m,

then, the distribution of �i�1(c) 2 fG;Bg is almost independent of player i�s strategy.

The premise of lemma is stated to clarify what assumption about the error-reporting

noisy cheap talk is used, expecting that we will dispense with it later.

7.2.7 Incentives in the Coordination Block

First, Lemma 57 implies that player i does not have an incentive to manipulate �i�1(c).

Second, we consider player i�s incentive to tell the truth about wn(i) with i 2 N(n) for

the coordination round 3 for xn between i and i0 2 �i. If player i0 with i0 2 �i received

a wrong signal f [i0](wn(j)) for some n 2 I and j 2 �i, then Case 2 of �i�1(c) implies

�i�1(c) = B. Hence, together with Case 3 of �i�1(c), whenever player i�s message matters

for xn(i0) for some i0 2 �i, then �i�1(c) = B and player i is indi¤erent between any action

pro�le sequence. Therefore, it is optimal for player i to tell the truth.

Third, we consider the incentive of player i in the coordination rounds 1 and 2 for xn.

If player i is player n�(n), then since xn controls the value of player n + 1 6= n�(n), player

n�(n) is indi¤erent between coordinating on xn(j) = G for all j 2 I or xn(j) = B for all

5Note that wj can be a¤ected by some player�s strategy in the coordination round 1 for
xj.
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j 2 I. (7.17) and 2 of of Lemma 56 imply that, if the messages in the coordination round

3 transmit correctly if a sender is not player n�(n) (this is true with probability no less

than 1 � exp(��(T 1
2 ))), then player n�(n) at the end of the coordination round 2 puts a

conditional belief no less than 1� exp(��(T 1
2 )) on the event that xn(j) = G for all j 2 I or

xn(j) = B for all j 2 I regardless of player n�(n)�s history. Therefore, player n�(n) (player

i) is almost indi¤erent between any strategy in the coordination rounds 1 and 2 for xn.

If player i is player n (the initial holder of state xn) but not player n�(n), then again,

since xn controls the value of player n+ 1 6= n, player n is indi¤erent between coordinating

on xn(j) = G for all j 2 I or xn(j) = B for all j 2 I. 1 of of Lemma 56 implies that

regardless of player n�s strategy in the coordination rounds 1 and 2 for xn, players n�(n) and

n+1 have wn(n�(n)) = wn(n+1) 2 fG;Bg with probability no less than 1� exp(��(T
1
2 )).

Then, (7.17) implies that, if the messages in the coordination round 3 transmit correctly if

a sender is not player n (again, this is true with probability no less than 1� exp(��(T 1
2 ))),

then xn(j) = G for all j 2 I. Therefore, player n (player i) is almost indi¤erent between any

strategy in the coordination rounds 1 and 2.

If player i is not player n or player n�(n), then 1 of of Lemma 56 implies that, regardless

of player i�s strategy in the coordination rounds 1 and 2 for xn, players n�(n) and at least

one player i0 2 N(n) n fig have wn(n�(n)) = wn(i
0) = xn with probability no less than

1 � exp(��(T 1
2 )). Then, (7.17) implies that, if the messages in the coordination round

3 transmit correctly if a sender is not player i (this is true with probability no less than

1� exp(��(T 1
2 ))), then either xn(j) = G for all j 2 I or xn(j) = B for all j 2 I. Therefore,

player i is almost indi¤erent between any strategy in the coordination rounds 1 and 2.

Finally, we show that the de�nition of �i�1(c) = B implies that, for any i, for any t in

the main blocks, for any hti, player i puts a belief no less than 1� exp(��(T
1
2 )) on the event

that x(j) = x(i) for all j 2 �i or �i�1(c) = B by the following reasons: (i) if player i�s signal

f [i](wn(j)) was wrong for some n 2 I and j 2 �i, then, given wn(j), g[i�1](wn(j)) = E with

probability no less than 1 � exp(��(T 1
2 )). Since g[i � 1](wn(j)) is not revealed by players
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(�i)�s continuation play in the main blocks, player i believes that �i�1(c) = B because of

Case 1. (ii) If player i0 with i0 2 �i received a wrong signal f [i0](wn(j)) for some n 2 I

and j 2 �i, then Case 2 of �i�1(c) implies �i�1(c) = B. From (i) and (ii), player i who

considers almost optimality can condition that f [i0](wn(j)) = wn(j) for all i0 2 I, n 2 I and

j 2 �i. (iii) If player i is pivotal for player i0�s inference of xn with i0 2 �i and n 2 I,6 then

�i�1(c) = B. Therefore, in total, x(j) = x(i) for all j 2 �i or �i�1(c) = B.

The following lemma summarizes the above discussion:

Lemma 58 The following two statements are true:

1. if, for each player i 2 I,

(a) the probability of g[i � 1](m) = E when player i is a receiver of a message m is

almost independent of m;

(b) the probability of f [n](m) 6= m when player j 2 �i is a sender of a message m

and player n 2 �i is a receiver is almost independent of m and player i�s strategy;

and

(c) for all n with i 6= n+1, player i�s value is almost the same between xn(j) = G for

all j 2 I and xn(j) = B for all j 2 I regardless of fxn0(j)gj2I;n0�n�1 (n0 � n � 1

implies that the coordination rounds for xn0 comes before those for xn),

then it is almost optimal for player i to follow the equilibrium strategy in the coordi-

nation block; and

2. for any i 2 I, for any t in the main blocks, for any hti, player i puts a belief no less

than 1� exp(��(T 1
2 )) on the event that x(j) = x(i) for all j 2 �i or �i�1(c) = B.

6(7.18) uses the true message wn(j) to de�ne whether player i is pivotal or not. However,
if there exists some player i0 2 �i receives a wrong signal from player j 2 �i, then player i
will be indi¤erent between any action pro�le sequence from (ii).
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We mention 1-(a), 1-(b) and 1-(c) to clarify what properties of the error-reporting noisy

cheap talk are used, expecting that we will dispense with it later. Note that, for the second

statement, 1-(a), 1-(b) and 1-(c) are not necessary.

7.3 Structure of the Review Phase

Replacing the perfect cheap talk in the coordination block with the error-reporting noisy

cheap talk, the structure of the coordination block is as explained in Section 7.2.1. Now, the

coordination block has at most N(1 + 1 + 3(N � 1)) rounds.7 After the coordination block,

the structure is the same as in Section 5.4 of Chapter 5. As in Chapter 5, let r be a generic

serial number for a round.

If we replace the error-reporting noisy cheap talk with messages via actions, then as we

will see in Section 7.4, we treat rounds where a player sends one message and rounds where

a player send two messages separately. Each round where the sender sends one message has

T
1
2 periods. Section 7.4 explains how the sender sends the message. On the other hand, each

round where the sender would send two messages via error-reporting noisy cheap talk (for

example, the coordination round 3 for xi between j and n) is now divided into two rounds

each of which has T
1
2 periods without the error-reporting noisy cheap talk. Using the �rst

T
1
2 -period round, the sender sends the �rst message as we will explain in Section 7.4. After

that, using the second T
1
2 -period round, the sender sends the second message. With abuse

of notation, let r again be a generic serial number for a round and T (r) be the set of periods

in round r. As in the review round, player i randomly excludes period ti (r) from the periods

used for the inferences. Let Ti(r) � T (r)�fti(r)g be the periods that player i uses for the

inferences.
7The precise number depends on whether n�(i) = i or not for each i.
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7.4 Dispensing with the Error-Reporting Noisy Cheap

Talk

We consider how player j sends a binary message m 2 fG;Bg to player n by taking actions

rather than error-reporting noisy cheap talk in some round.

As mentioned in Section 7.1.2, with � being a small number to be de�ned, the sender

(player j) determines

zj(m) =

8>>>><>>>>:
m with probability 1� �;

fG;Bg n fmg with probability �
2
;

M with probability �
2

and player j takes

�
zj(m)
j =

8>>>><>>>>:
(1� �) aGj + �aBj if zj(m) = G;

(1� �) aBj + �aGj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M

for T
1
2 periods. Player n (receiver) takes

��n = (1� 2 (jAnj � 1) �) aGn +
X
an 6=aGn

2�an

Player i 2 �(j; n) takes �receivei .

7.4.1 Formal: g[n� 1](m) 2 fm;Eg

As in Section 7.1.2, player n � 1 has g[n � 1](m) = m if and only if the following three

conditions are satis�ed:

1. as in the two player case, zj(m) = m;
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2. player j�s action frequency is close to �mj :







 1

T
1
2 � 1

X
t2Tj(r)

1aj;t � �mj







 < "

3
;

and

3. player j�s signal frequency while player j takes amj is close to Qj(j !m n).

We are left to de�ne Condition 3. Let Tj(r;m) be the set of periods where player j takes

amj in round r, where player j sends m to player n. As player i creates 1Qi(x) from Qi(x) and

yi, player j creates 1Qj(j!mn) from Qj(j !m n) and yj.

Condition 3 is satis�ed if and only if the following two conditions are satis�ed:

� Qj(j !m n)
�

1
jTj(r;m)j

P
t2Tj(r;m) 1yj;t

�
and 1

jTj(r;m)j
P

t2Tj(r;m) 1Qj(j!mn) are close:







Qj(j !m n)

0@ 1

jTj(r;m)j
X

t2Tj(r;m)

1yj;t

1A� 1

jTj(r;m)j
X

t2Tj(r;m)

1Qj(j!mn)







 < "

3
: (7.21)

As we have adjusted the probability of (2.22) in Section 2.4.4.2, we adjust the proba-

bility of (7.21) so that the probability of (7.21) is independent of faj;t; yj;tgt2T (r). When

we say (7.21) is satis�ed, we take this adjustment into account; and

� 1
jTj(r;m)j

P
t2Tj(r;m) 1Qj(j!mn) and qj(j !m n) are close:







 1

jTj(r;m)j
X

t2Tj(r;m)

1Qj(j!mn) � qj(j !m n)







 < "

3
:

Then, for su¢ ciently small � and " compared to �" in Lemma 52, g[n � 1](m) = m only

if yj = 1
jTj(r;m)j

P
t2Tj(r;m) 1yj;t satis�es

yj 2 Qj[�"](j !m n):
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7.4.2 Formal: f [n](m) 2 fG;Bg

On the other hand, as explained in Section 7.1.2, f [n](m) is determined as follows:

1. if the following two conditions are satis�ed, then player n infers f [n](m) = m̂:

(a) player n�s action frequency is close to ��n:





 1

T
1
2 � 1

X
t2Tn(r)

1an;t � ��n







 < "

3
; (7.22)

and

(b) there exist i 2 �(j; n) and m̂ 2 fG;Bg such that player n�s signal frequency while

player n takes aGn is close to Q
i
n(j !m̂ n).

As we will see below, Lemma 52 guarantees that there is at most one m̂ 2 fG;Bg such

that i 2 �(j; n) and m̂ 2 fG;Bg satisfy 1-(b); and

2. otherwise, player n infers f [n](m) from the likelihood as in the two-player case.

We are left to de�ne Condition 1-(b). Let Tn(r;G) be the set of periods where player n

takes aGn . As player j creates 1Qj(j!mn) from Qj(j !m n) and yj, player n creates 1Qin(j!m̂n)

from Qin(j !m̂ n) and yn.

We say player n�s signal frequency while player n takes aGn is close to Q
i
n(j !m̂ n) if and

only if the following two conditions are satis�ed:

� Qin(j !m̂ n)
�

1
jTn(r;G)j

P
t2Tn(r;G) 1yn;t

�
and 1

jTn(r;G)j
P

t2Tn(r;G) 1Qin(j!m̂n) are close:







Qin(j !m̂ n)

0@ 1

jTn(r;G)j
X

t2Tn(r;G)

1yn;t

1A� 1

jTn(r;G)j
X

t2Tn(r;G)

1Qin(j!m̂n)







 < "

3
:

(7.23)

Again, we adjust the probability of (7.23) so that this probability is independent of

fan;t; yn;tgt2T (r); and
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� 1
jTn(r;G)j

P
t2Tn(r;G) 1Qin(j!m̂n) and q

i
n(j !m̂ n) are close:







 1

jTn(r;G)j
X

t2Tn(r;G)

1Qin(j!m̂n) � q
i
n(j !m̂ n)







 < "

3
: (7.24)

Then, for su¢ ciently small � and " compared to �" in Lemma 52, Case 1 is the case only

if yn = 1
jTn(r;G)j

P
t2Tn(r;G) 1yn;t satis�es

yn 2 Qi
n[�"](j !m n)

for some i 2 � (j; n).

7.4.3 De�nition of �i�1(j !m n) 2 fG;Bg

While player j 2 I sends a message m to player n 2 �j, for each i 2 I, player i� 1 creates

�i�1(j !m n) 2 fG;Bg. As for �i�1(c), �i�1(j !m n) = B implies that player i � 1 makes

player i indi¤erent between any action pro�le sequence in the subsequent rounds. We de�ne

�i�1(j !m n) 2 fG;Bg as follows:

1. for i = j (sender), �i�1(j !m n) = G always;

2. for i = n (receiver), �i�1(j !m n) = B if and only if g[n� 1](m) = E; and

3. for i 2 �n (not a receiver), �i�1(j !m n) = B if and only if (7.22) or (7.23) is not

satis�ed for m̂ = m.

7.4.4 Summary of the Properties of g[n�1](m), f [n](m) and �i�1(j !m

n)

In summary, we can show the following lemma:
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Lemma 59 For su¢ ciently large T , for any j 2 I and n 2 �j, the above communication

protocol satis�es the following:

1. g[n� 1](m) = E with probability 1� � � exp(��(T 1
2 )) for any m 2 fG;Bg;

2. given any m 2 fG;Bg and any on-path history, player n puts a belief no less than

1� exp(��(T 1
2 )) on the event that f [n](m) = m or g[n� 1](m) = E;

3. for each i 2 �(j; n), if f [n](m) 6= m, then �i�1(j !m n) = B;

4. given m 2 fG;Bg and a history of players �n, any f [n](m) happens with probability

at least exp(��(T 1
2 ));

5. the distribution of g[n� 1](m) is independent of player n�s strategy; and

6. the distribution of �i�1(j !m n) is independent of player i�s strategy.

Proof: 1. This follows from the law of large numbers.

2. If Case 2 for f [n](m) is the case, then as in the two-player case, we are done.

Consider Case 1 is the case. Conditional on m, suppose player n infers m0 = fG;Bg n

fmg. Then, for su¢ ciently small � and ",

1

jTn(r;G)j
X

t2Tn(r;G)

1yn;t 2 Qi
n[�"](j !m0 n): (7.25)

On the other hand, by Hoe¤ding�s inequality, there exists K1 such that, if player

n believes g[n � 1](m) = m with probability 1 � exp(�kT 1
2 ), then the conditional

expectation of 1
jTj(r;m)j

P
t2Tj(r;m) 1yj;t given m̂ should be in

8>>>><>>>>:
yj 2 RjYnj+ : 9" 2 RjYnj such that8><>: k"k � K1k;

Qj(j !m̂ n) (yj + ") = qj(j !m̂ n):

9>>>>=>>>>; :
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Since Tj(r;m) and Tn(r;G) are di¤erent at most for (2� (jAnj � 1)+�+2")T+2 periods

if g[n� 1](m) = m and Case 1 for f [n](m) is the case, the above condition implies

yn =
1

jTn(r;G)j
X

t2Tn(r;G)

1yn;t

is included in 8>>>><>>>>:
yj 2 RjYnj+ : 9" 2 RjYnj such that8><>: k"k � K1k + (2� (jAnj � 1) + �+ 2") + 2

T
;

Qj(j !m̂ n)Mj;n (m̂) (yn + ") = qj(j !m̂ n):

9>>>>=>>>>; :

Take k, � and " su¢ ciently small so that for �" in Lemma 52, we have

�" < K1k + (2� (jAnj � 1) + �+ 2") +
2

T

for large T . Then, the above condition implies

1

jTn(r;G)j
X

t2Tn(r;G)

1yn;t 2Hn[�"](j !m0 n): (7.26)

By Lemma 52, (7.26) contradicts to (7.25).

Therefore, for su¢ ciently small k, � and ", conditional on m, whenever player n infers

m0 = fG;Bg n fmg, player n believes g[n � 1](m0) = E with probability no less than

1� exp(�kT 1
2 ), as desired.

3. By de�nition of f [n](m), if f [n](m) 6= m, then either (7.22) or (7.23) is satis�ed, which

implies �i�1(j !m n) = B.
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4. Given (at; y�n;t)t2T (r), any (yn;t)t2T (r) can occur with probability at least

�
min
y;a

q(yn j a; y�n)
�T 1

2

:

Assumption 2 (full support) implies that this probability is exp(��(T 1
2 )). The rest of

the proof is the same as in Lemma 45.

5. We adjusted the probability of (7.21) so that this probability is independent of faj;t; yj;tgt2T (l).

Hence, the distribution of g[j](m) is determined solely by player j�s mixture.

6. We adjusted the probability of (7.23) so that this probability is independent of fan;t; yn;tgt2T (r).

Hence, the distribution of �i�1(j !m n) is determined solely by player n�s mixture.

7.5 Equilibrium Strategies

In this section, we de�ne �i(xi) and �maini .

7.5.1 States

The states �i(l + 1), �i�1(l + 1) (i), �i�1(l + 1) (i+ 1), di(l + 1), dj(l + 1)(i), ci(l + 1) and

�i(l) are de�ned as in Chapter 5 except that x is replaced with x(i) de�ned in Section 7.2.5

and

� if �i(c) = B happens in the coordination block, then �i(l) = B; and

� if �i(j !m n) = B happens in a round between the lth review round and (l + 1)th

review round where player j 2 I sends a messagem to player n 2 �j, then �i(l+1) = B

If we replace the error-reporting noisy cheap talk with messages via actions, then we use

f [i](m) (when player i is a receiver) and g[i](m) (when player i+ 1 is a receiver) de�ned in

Section 7.4.
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7.5.2 Player i�s Action Plan �i (xi)

7.5.2.1 With the Error-Reporting Noisy Cheap Talk

In the coordination block, the players play the game as explained in Section 7.2. For the

other blocks, �i(xi) prescribes the same action with x replaced with x(i) except for the report

and re-report blocks. See Sections 7.7 and 7.8 for the strategy in the report and re-report

blocks.

7.5.2.2 Without the Error-Reporting Noisy Cheap Talk

When player j 2 I sends a message m to player n 2 �j, then the strategies are determined

in Section 7.4.

7.5.3 Reward Function

In this subsection, we explain player i�1�s reward function on player i, �maini (xi�1; h
main
i�1 ; h

rereport
i�1 :

�). In general, the total reward �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) is the summation of rewards

for each round r:

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) =

LX
l=1

X
t2T (l)

��i (t; ��i;t; yi�1;t)

+
X
r

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �):

Note that we add (5.10) to ignore discounting only for the review rounds. As we will see,

for the round where the players communicate, we use reward function that take discounting

into account directly.

We de�ne �maini (x; hmaini�1 ; h
rereport
i�1 ; r : �) for each r.

As a preparation, let us de�ne the reward to cancel out the di¤erence in the instantaneous

utilities for player i. Note that while player j sends the message by taking actions, player

j takes aj 2 faGj ; aBj g and player n 2 � (i; j) takes either ��n or �receiven , both of which
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satisfy �n(an) � � for all n and an. Then, Assumption 48 guarantees that player i � 1 can

statistically identify player i�s action and construct the following reward function:

Lemma 60 For all � > 0, there exists �U > 0 such that, for all i; j 2 I and f�ngn2�(i;j) with

�n(an) � � for all n and an, there exists �
xi�1
i [��(i;j)] : Ai�1 � Yi�1 ! [� �U; �U ] such that

1. for all ai 2 Ai, aj 2 faGj ; �Bj g and ��(i;j) satisfying the above condition,

ui
�
ai; aj; ��(i;j)

�
+ E

�
�
xi�1
i [��(i;j)](ai�1; yi�1) j ai; aj; ��(i;j)

�
(7.27)

is independent of ai; aj; ��(i;j); and

2. for all (ai�1; yi�1), we have

�
xi�1
i [��(i;j)](ai�1; yi�1)

8><>: � 0 if xi�1 = G;

� 0 if xi�1 = B:

Proof: For f�ngn2�(i;j) with �n(an) � �, Assumption 48 guarantees the identi�ability and

the same proof as for Lemma 12 works.

Note that �U depends on �.

7.5.3.1 With the Error-Reporting Noisy Cheap Talk

In the coordination block, for round r where player j sends message m to player n�(i), player

i� 1 gives

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �) =

X
t2T (r)

�t�1�
xi�1
i [��(i;j)(r)](ai�1; yi�1)

to make player i indi¤erent between any action pro�le sequence. Note that we take discount-

ing into account.
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In the main blocks, the reward function is the same as in Chapter 5 except that x replaced

with x(i� 1).

7.5.3.2 Without the Error-Reporting Noisy Cheap Talk

For round r where player j sends a message, player i� 1 gives

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �) =

X
t2T (r)

�t�1�
xi�1
i [��(i;j) (r)](ai�1;t; yi�1;t)

de�ned in Lemma 60. Again, we take discounting into account.

For round r corresponding to a review round, the reward function is the same as in the

case with the error-reporting noisy cheap talk.

7.6 Almost Optimality of the Strategy

We want to verity (1.21), (1.16) and (1.17) are satis�ed. First, by de�nition in Section 7.5.3,

(1.17) is satis�ed.

Second, since the length of the rounds other than the review rounds is T
1
2 , the payo¤ from

the review rounds approximately determines the payo¤ from the review phase for su¢ ciently

large � (and so su¢ ciently large T ). Therefore, we neglect the payo¤s from the rounds other

than the review rounds.8

Third, we consider (1.21) and (1.16) in the case with the error-reporting noisy cheap talk.

Suppose that x(j) = x(i) for all i; j 2 I at the end of the coordination block. Then, (1.21)

and (1.16) are shown as in the case with the perfect cheap talk.

This implies that the premises of Lemma 58 are satis�ed. Therefore, (i) the incentive in

the coordination block is satis�ed and (ii) we can concentrate on the case with x(j) = x(i)

for all i; j 2 I.
8Notice that �U in Lemma 60 depends on �. We �rst �x � (and so �x �U) and then take T

going to in�nity.
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(i) and (ii) imply (1.21). In addition, by the law of large numbers, x(j) = x for all j 2 �i

in the coordination block with probability no less than 1� exp(��(T 1
2 )). Therefore, (1.16)

is satis�ed at the beginning of the review phase.

Finally, we consider (1.21) and (1.16) in the case without the error-reporting noisy cheap

talk. Again, suppose that x(j) = x(i) for all i; j 2 I at the end of the coordination block.

Then, (1.21) and (1.17) are veri�ed as in the case with the error-reporting noisy cheap talk

except for the following two points:

� player i � 1 makes player i indi¤erent between any action pro�le sequence because

of g[i � 1](m) = E or �i�1(j !m n) = B with a higher probability. However, the

probability of g[i � 1](m) = E or �i�1(j !m n) = B is bounded by �(�). Hence,

re-taking � su¢ ciently small as we do in (6.12), we can deal with this problem as in

the two-player case; and

� when player j 2 �i sends a message m to player n 2 � (i; j), player i can manipulate

the distribution of f [n](m). However, Lemma 59 implies that player i cannot manip-

ulate �i�1(j !m n). f [n](m) matters for player i�s continuation payo¤ if and only if

�i�1(j !m n) = G. Hence, the relevant events for player i are

� f [n](m) = m and �i�1(j !m n) = G; or

� f [n](m) 6= m or �i�1(j !m n) = B.

Since f [n](m) 6= m implies �i�1(j !m n) = B, the relevant histories for player i are

� �i�1(j !m n) = G; or

� �i�1(j !m n) = B.

Since player i cannot manipulate �i�1(j !m n) by Lemma 59, player i does not have

an incentive to manipulate f [n](m).
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To verify the incentives in the coordination block, we consider the premises of Lemmas

57 and 58 in the case without the error-reporting noisy cheap talk.

The premise 1 of Lemmas 57 and premise 1-(a) of Lemma 58 are satis�ed by Lemma 59.

As we have mentioned above, when player j 2 �i sends a messagem to player n 2 � (i; j),

player i does not have an incentive to manipulate f [n](m). Therefore, the premise 2 of

Lemmas 57 and premise 1-(b) of Lemma 58 are satis�ed.

We are left to verify the premise 1-(c) of Lemma 58: player i�s value is almost the same

between xn(j) = G for all j 2 I and xn(j) = B for all j 2 I regardless of fxn0(j)gj2I;n0 6=n.

To formally show this, we proceed backward from player N�s state. There are following two

cases:

� suppose that xn0(j) 6= xn0(j
0) happens for some n0 2 f1; :::; N � 1g, j 2 I and j0 2 �j.

Then, by de�nition of f�i�1(j00 !m n00)gj00;n00 and 2 of Lemma 58,9 player i puts a belief

no less than 1�exp(��(T 1
2 )) on the event that �i�1(c) = B in the coordination rounds

for xn0 or that there exist j00 2 I and n00 2 �j00 such that �i�1(j00 !m n00) = B happens

when player j00 2 �i sends a message m to player n00 in the coordination round 3 for

xn0. Therefore, if xn0(j) 6= xn0(j
0) happens for some n0 2 f1; :::; N � 1g, j 2 I and

j0 2 �j, then player i is almost indi¤erent between any action pro�le sequence, which

implies player i�s value is almost constant; and

� suppose that xn0(j) = xn0(j
0) for all n 2 f1; :::; N � 1g and j; j0 2 I. Then, if either

xN(j) = G for all j 2 I or xN(j) = B for all j 2 I is the case, then we have veri�ed

that (1.16) holds with x replaced with x(j). Since i 6= N +1, player i�s value is almost

the same between xN(j) = G for all j 2 I and xN(j) = B for all j 2 I.

Therefore, 1-(c) of Lemma 58 holds for n = N . This implies that each player follows the

equilibrium path in the coordination rounds for xN . Hence, at the end of the coordination

rounds for xN�1, each player i expects that xN(j) = xN for all j 2 I or �i�1(j !m n) = B

92 of Lemma 58 does not use the premises 1-(a), 1-(b) and 1-(c).
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in the coordination round 3 for xN between some j 2 I and n 2 �j with probability no less

than 1 � exp(��(T 1
2 )). Hence, the same argument as for n = N holds for n = N � 1. By

induction, we are done.

Therefore, all the premises in Lemmas 57 and 58 are satis�ed. This implies that

1. it is almost optimal for player i to follow the equilibrium strategy in the coordination

block; and

2. for any i, for any t in the main blocks, for any hti, player i puts a belief no less than

1 � exp(��(T 1
2 )) on the event that x(j) = x(i) for all j 2 �i or ��i�1(j !m n) = B

or �i�1(c) = B happens in the coordination block.�

Note that 1 implies the almost optimality of �i(xi) in the coordination block and that 2

implies the almost optimality of �i(xi) in the main blocks. Hence, (1.21) is veri�ed.

Since we have veri�ed (1.16) for x(j) = x(i) for all i; j 2 I, we are left to show (1.16)

at the beginning of the review phase. Compared to the case with the error-reporting noisy

cheap talk, we need to deal with the fact that g[n� 1](m) = E and �i�1(j !m n) = B can

happen when player j sends a message m to player n in the coordination block with a higher

probability. However, since the ex ante probability of g[n� 1](m) = E or �i�1(j !m n) = B

for some j 2 I, n 2 �j and m is bounded by �(�), re-taking � smaller if necessary, we are

done.

7.7 Report Block

7.7.1 Preparation

Before constructing an equilibrium, let us make three preparations. First, consider the

situation where player i � 2 sends a binary message to player i � 1 by taking actions.

Suppose player �i take �report�i de�ned in Lemma 55 and calculate �i�1(ai�1;t; yi�1;t), de�ned
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in Lemma 55. Player i� 1 constructs �i�1;t as player 1 constructs �1;t from �1(a1;t; y1;t) in

the two-player case. Lemma 55 implies that

Pr
�
f�i�1;t = 1g j �report�i;t ; ai;t; yi;t

�
=

8><>: q2 if ai;t = aGi ;

q1 if ai;t 6= aGi

(7.28)

for all t and yi;t. The role of �i�1 is the same as that of �1 in the two-player case.

Second, consider the situation where player j 2 � (i� 1; i) sends a binary message to

player i�1 by taking actions by taking aj 2 faGj ; aBj g. Players� (j; i) take �
report
�(j;i) . Intuitively,

player i� 1 uses this information to monitor i and it is important to make sure that player

i cannot manipulate player (i� 1)�s inference. For this purpose, for some q2 > q1, for each

i� 1 and j 2 � (i� 1; i), we want to construct  ij!i�1 : Ai�1 � Yi�1 ! (0; 1) such that, for

each ai 2 Ai, we have

E
h
 ij!i�1(ai�1; yi�1) j ai; aj; �

report
�(j;i)

i
=

8><>: q2 if aj = aGj ;

q1 if aj = aBj :

Since Assumption 48 implies that
�
Pr
�
ai�1; yi�1 j ai; aj; ��(j;i)

��
ai�1;yi�1

are linearly indepen-

dent with respect to ai 2 Ai and aj 2 faGj ; aBj g, such q2, q1 and  ij!i�1 always exist.

Player i � 1 constructs 	ij!i�1 from  ij!i�1 (ai�1; yi�1) as player j constructs 	j;t from

 j (aj; yj). Then,

Pr
��
	ij!i�1 = 1

	
j ai; aj; �report�(j;i)

�
=

8><>: q2 if aj = aGj ;

q1 if aj = aBj

(7.29)

for all ai 2 Ai.

Third, as we will see, in the report block or re-report block, either �one player j takes

aj 2 faGj ; aBj g and the others are supposed to take �
report
�j �or �all the players are supposed to

take �p:r:(i) or ap:r:(i), depending on whether Condition 1 or 2 is the case in Assumption 53.�
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In both cases, Assumptions 3 and 48 guarantee that player i � 1 can statistically identify

player i�s action. Therefore, we can change the reward to cancel out the di¤erences in the

instantaneous utility in the report block. Since the report block lasts for �(T
1
3 ) periods, this

does not a¤ect the equilibrium payo¤.

We are left to construct the report and re-report blocks to attain the exact optimality

of the equilibrium strategies. In this section, we explain the report block. Contrary to the

two-player case, we directly construct the report block without public randomization or any

cheap talk.

7.7.2 Structure of the Report Block

The report block proceeds as follows:

1. player N sends the messages about hmainN ;

2. player N � 1 sends the messages about hmainN�1;

...

3. player 3 sends the messages about hmain3 ;

4. as in the two-player case, players 1 and 2 coordinate on which of them will send

messages: when Condition 1 (Condition 2, respectively) is satis�ed in Assumption 53,

(a) each player takes ap:r:(2)i (�p:r:(2)i , respectively) and each player i observes her

private history (ai; yi); and

(b) if player 2 observes y2 2 Y 2
2;1 ((a2; y2) 2 H2

2;1, respectively), then player 2 sends

the message that y2 2 Y 2
2;1 ((a2; y2) 2 H2

2;1, respectively) to player 1. Otherwise,

that is, if player 2 observes y2 2 Y 2
2;2 ((a2; y2) 2 H2

2;2, respectively), then player 2

sends the message that y2 2 Y 2
2;2 ((a2; y2) 2 H2

2;2, respectively) to player 1;
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5. if player 2 has sent the message y2 2 Y 2
2;1 ((a2; y2) 2 H2

2;1, respectively), then player 2

sends the meaningful messages about hmain2 . If player 2 has sent the message y2 2 Y 2
2;2

((a2; y2) 2 H2
2;2, respectively), then player 2 takes a

G
2 for the periods where player 2

would send the messages about hmain2 otherwise;

6. player 1 sends the message about hmain1 ; and

7. the players play the round for conditional independence.

We explain each step in the sequel.

7.7.3 Player i � 3 sends hmaini

Since there is a chronological order for the rounds and r is a generic serial number of rounds,

the notations #r
i , #

r
i (k), T (r; k) and fai;t; yi;tgt2T (r;k) de�ned in Chapter 5 is still valid.

Player i sends the messages about hmaini in the same way as player 2 sends the messages

in Chapter 6 with two players.

That is, for each round r,

1. �rst, player i reports #r
i ;

2. second, player i reports f#r
i (k)gk2f1;:::;Kg. See Section 2.9.6 for the de�nition of K;

3. third, players i and i � 1 coordinate on k(r) as players 2 and 1 coordinate on k(r) in

Section 2.9.6; and

4. fourth, player i sends fai;t; yi;tgt2T (r;k(r;i)). k(r; i) is the result of the coordination on

k(r) in Step 3.

In Steps 1, 2 and 4, player i sends a message as player 2 does in Chapter 6 and player i�1

interprets the message as player 1 does in Chapter 6: player i takes ai 2 faGi ; aBi g, players

�i take �report�i , and player i� 1 constructs �i�1 2 f0; 1g. From (7.28), player i cannot infer

�i�1 from player i�s signals.
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In Step 3, the coordination between player i and i�1 is the same as in Section 6.7.3.2 with

j replaced with i�1 (with the other players � (i� 1; i) taking ap:r:(i)�(i�1;i) or �
p:r:(i)
�(i�1;i) depending

on whether Condition 1 or 2 is satis�ed in Assumption 53). Assumption 53 implies that this

is a well de�ned procedure.

7.7.4 Player 2 sends hmain2

Player 2 sends the messages about hmain2 as player i � 3 if and only if player 2 observed

y2 2 Y 2
2;1 (or (a2; y2) 2 H2

2;1 if Condition 2 is the case in Assumption 53) in Step 4 of

Section 7.7.2. If player 2 observes y2 2 Y 2
2;2 (or (a2; y2) 2 H2

2;2), then player 2 takes a
G
2 for

periods where player 2 would send #r
2, f#r

2(k)gk2f1;:::;Kg and fa2;t; y2;tgt2T (r;k(r;2)) otherwise.

In addition, the coordination on k(r) between players 2 and 1 is the same as in Chapter 6

(with the other players � (1; 2) taking ap:r:(2)�(1;2) or �
p:r:(2)
�(1;2)). Assumption 53 implies that this is

a well de�ned procedure.

As for the case with i � 3, player 2 takes a2 2 faG2 ; aB2 g, players �2 take �
report
�2 and player

1 constructs �1 2 f0; 1g. From (7.28), player 2 cannot infer �1 from player 2�s signals.

7.7.5 Player 1 sends hmain1

Player 1 sends the messages about hmain1 to player N as player i � 3. As in the two-player

case, player 1 takes a1 2 faG1 ; aB1 g and players �1 take �c:i:�1 with �c:i:j (aj) > � for all j 2 �1

and aj 2 Aj.

After that, player 1 sends the histories in the report block to player N as player 1 does

to player 2 in the round for conditional independence in Section 6.7.5.1. Again, this set

of periods is called �the round for conditional independence.�In this round, player 1 takes

some action a1 2 A1 and players �1 take aG�1. Player N infers this message from yN . By

Assumption 3, player N can statistically identify player 1�s action.

From the history in the round for conditional independence, player N constructs �N .

Compared to the two-player case, player 2 is replaced with player N .
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7.7.6 Reward Function �reporti

When Condition 1 is the case for Assumption 53, while the players should take ap:r:(n) to

coordinate on k(r) or whether player 2 reports the history, player i � 1 incentivizes player

i to take ap:r:(n)i . As in the two-player case, Assumption 3 is su¢ cient for player i � 1 to

construct a strict reward on ap:r:(n)i .

When Condition 2 is the case for Assumption 53, then as in the two-player case, for each

i 2 I, any ai 2 Ai gives the same ex ante probability for the results of the coordination.

In the report block, when player i sends the message, no player j 2 �i has an incentive

to manipulate player (i� 1)�s inference of player i�s message since player i�s message only

a¤ects player (i� 1)�s reward on player i and we construct the structure of the report block

in Section 7.7.2 and the punishment for telling a lie, gj(hmainj�1 ; h
rereport
j�1 ; âj;t; ŷj;t), so that player

j does not have an incentive to learn player i�s history from the report block. Note that

gj(h
main
j�1 ; h

rereport
j�1 ; âj;t; ŷj;t) conditions players �(i� 1; i)�s history.

Finally, we construct �reporti that makes �i(xi) exactly optimal. This step is the same as

in Section 5.9 except for the following:

1. at the end of the coordination round 2 for xj,

(a) player i =2 N(j) is exactly indi¤erent between fwj(n)gn2N(j); and

(b) player i 2 N(j) is exactly indi¤erent between wj(i) 2 fG;Bg.

This is possible since

(a) player i =2 N(j) is almost indi¤erent between fwj(n)gn2N(j) without adjustment

since (i) players coordinate on the same xj(n) with a high probability for all

fwj(n)gn2N(j), (ii) the probability that player i � 1 makes player i indi¤erent in

future does not depend on fwj(n)gn2N(j) by more than exp(��(T
1
2 )), and (iii) xj

controls the payo¤ of player j + 1 6= i.
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Since fwj(n)gn2N(j) will be revealed in the re-report block, we can adjust player

i�s value so that player i�s value is constant for all fwj(n)gn2N(j); and

(b) for player i 2 N(j), players will coordinate on the same xj(n) regardless of wj(i)

or player i � 1 makes player i indi¤erent between any action pro�le sequence.

Since the probability of the latter case is independent of player i�s continuation

play after the coordination round 2 for xj given fwj(n)gn2N(j);n6=i, we can make

sure that, given fwj(n)gn2N(j);n6=i which will be revealed in the re-report block,

player i�s value is determined solely by fwj(n)gn2N(j);n6=i;

2. given 1, only player n�(j) reports her history in the coordination round 2 for xj:

(a) for player i = n�(j), since the other players take �receive�i , Condition 3 of Assump-

tion 49 is su¢ cient to incentivize player n�(j) to tell the truth;

(b) for player i 2 N (j) n fn�(j)g, the distribution of fwj(n)gn2N(j);n6=i is independent

of player i�s action plan and from 1-(b), player i�s value is determined solely by

fwj(n)gn2N(j);n6=i. Hence, player i is indi¤erent between any realization of the

history in this round without adjustment; and

(c) for player i 2 �N (j), from 1-(a), player i is indi¤erent between fwj(n)gn2N(j).

Hence, player i is indi¤erent between any realization of the history in this round

without additional adjustment;

3. in the coordination round 1 for xj, players i and n�(i) report the history and we make

players i and n�(i) indi¤erent between any realization of wi;

4. when we construct a punishment g to incentivize player i as in Lemma 38, we assume

player i could know the following variables for all n 2 �i:

(a) 1In;t(j) when player n infers the message by player n
�(j) in the coordination round

2 for xj;
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(b) 1Qi0n (j!Gn)
and 1Qi0n (j!Bn)

for each i0 2 � (j; n) when player j sends a message to

player n;

(c) �a(x)n;t when player n tries to monitor player n� 1 in the review round; and

(d) 1Qjn(x) for each j 2 �n when player n calculates (5.23) and (5.24).

Since all of these have full support, the same proof as Lemma 21 works. For notational

convenience in Section 7.8, let 'n;t be the vector of variables in 3-(a), 3-(b), 3-(c) and

3-(d) that are valid in period t; and

5. for a round where the players communicate, we (i) �rst cancel out the e¤ect of the

history in the round on the learning about the best responses from the next rounds,

and (ii) second make any action sequence is indi¤erent ex ante. The construction of fi

is the same as Section 2.8.

We are left to deal with the probability that the message does not transmit correctly

with probability 1 without perfect cheap talk. We deal with this problem in Section 7.9 after

we explain the re-report block.

7.8 Re-Report Block

As in Section 5.10, we introduce the re-report block so that, for each player i, player i � 1

can collect the information necessary to construct �i from players � (i� 1; i).

The basic structure of the re-report block is the same as in Section 5.10:

1. players � (N � 1; N) send the information to player N � 1 to construct �N ;

2. players � (N � 2; N � 1) send the information to player N � 2 to construct �N�1;
...

N-1. players � (1; 2) send the information to player 1 to construct �2; and
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N. players � (N; 1) send the information to player N to construct �1.

When players � (i� 1; i) send the information to player i� 1, each player takes turns to

send the information:

1. player 1 sends the information to player i�1 if 1 2 � (i� 1; i). If 1 62 � (i� 1; i), then

skip this step;

...

N player N sends the information to player i � 1 if N 2 � (i� 1; i). If N 62 � (i� 1; i),

then skip this step.

When player j 2 � (i� 1; i) sends the information about her history, she sends the

following information chronologically:

� for each round r, what strategy �j player j took in round r. Note that this contains

the information about what message player j sent if player j sends a message in that

round. The cardinality of this message is �xed and �nite since the support of �j(r) is

�xed and �nite, independently of T ;

� for each round r, what was tn(r). The cardinality of this message is no more than T ;

� for each round r, for each
�
aj; yj; 'j

�
, how many times player j observed

�
aj; yj; 'j

�
.

The cardinality of this message is no more than �(T );

� for each round r,
�
aj;tj(r); yj;tj(r); 'j;tj(r)

�
. Note that the these two pieces of information

are su¢ cient for player i�1 to know what was player j�s inference of a message if player

j receives a message in that round and to construct �i�1(j !m n) and �i�1(l);

� at the end of each lth review round, what was the realization of player n�s random-

ization for the construction of some states. The cardinality of this message is a �nite

�xed number;
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� so that player i� 1 knows
�
a�i;t; y�i;t; '�i;t

�
t2T (r;k(r;i)),

��rst, for each r, player i�1 sends the message about k(r; i) to players� (i� 1; i).10

Each player j 2 � (i� 1; i) infers k(r; i) from their private signals. Let kj (r; i) be

player j�s inference. The cardinality of this message is no more than T
3
4 ; and

� second, player j sends the messages about
�
aj;t; yj;t; 'j;t

�
t2T (r;kj(r;i))

to player i�1.

The cardinality of this message is exp(�(T
1
4 )); and

� if player j is player 1, then player 1 sends the message about player 1�s history in the

round for conditional independence: (a1;t; y1;t) for all t in the round for conditional

independence as in the two-player case. The cardinality of this message is exp(�(T
1
4 )).

Therefore, the cardinality of the whole message is exp(�(T
1
4 )) and the length of the

sequence of binary messages fG;Bg necessary to encode the information is �(T 1
4 ). To send

a binary message m 2 fG;Bg, player j repeats amj for T
1
3 times to increase the precision.

The other players �j take �report�j . Importantly, player i� 1 can identify player j�s message

by 	ij!i�1. (7.29) implies that player i cannot manipulate player (i� 1)�s inference. The

incentive to tell the truth is automatically satis�ed since player j�s message is used only for

the reward on player i with i 6= j.

7.9 Probability of Errors in the Report and Re-Report

Blocks

Note that the cardinality of the whole messages in the report and re-report blocks is exp(�(T
1
4 )).

Hence, the length of the sequence of binary messages fG;Bg that each player takes to send

the messages in the report or re-report block is �(T
1
4 ).

10We assume that player i � 1 knew player i�s inference k(r; i). See Section 7.9 for how
to deal with the small probability that player i � 1 mis-interprets player i�s message about
k(r; i) in the report block.
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Since all the messages transmit correctly with probability at least

1��(T 1
4 ) exp(��(T 1

3 ));

by the same treatment as in Section 6.7.4, we can assume as if all the messages would transmit

correctly. We do not apply this procedure for the messages in the round for conditional

independence. As seen in Lemma 46, the incentive in the round for conditional independence

is established taking into account the probability of mis-transmission.

298



Bibliography

Abreu, D., P. Milgrom, and D. Pearce (1991): �Information and timing in repeated

partnerships,�Econometrica, 56(2), 1713�1733.

Aoyagi, M. (2002): �Collusion in dynamic Bertrand oligopoly with correlated private sig-

nals and communication,�Journal of Economic Theory, 102(1), 229�248.

Bhaskar, V., and I. Obara (2002): �Belief-based equilibria in the repeated prisoners�

dilemma with private monitoring,�Journal of Economic Theory, 102(1), 40�69.

Compte, O. (1998): �Communication in repeated games with imperfect private monitor-

ing,�Econometrica, 66(3), 597�626.

Deb, J. (2011): �Cooperation and community responsibility: A folk theorem for repeated

random matching games,�mimeo.

Ely, J., J. Hörner, andW. Olszewski (2005): �Belief-free equilibria in repeated games,�

Econometrica, 73(2), 377�415.

Ely, J., and J. Välimäki (2002): �A robust folk theorem for the prisoner�s dilemma,�

Journal of Economic Theory, 102(1), 84�105.

Fong, K., O. Gossner, J. Hörner, and Y. Sannikov (2010): �E¢ ciency in a repeated

prisoners�dilemma with imperfect private monitoring,�mimeo.

Fuchs, W. (2007): �Contracting with Repeated Moral Hazard and Private Evaluations,�

American Economic Review, 97(4), 1432�1448.

299



Fudenberg, D., and D. Levine (2007): �The Nash-threats folk theorem with communi-

cation and approximate common knowledge in two player games,�Journal of Economic

Theory, 132(1), 461�473.

Fudenberg, D., D. Levine, and E. Maskin (1994): �The folk theorem with imperfect

public information,�Econometrica, 62(5), 997�1039.

Fudenberg, D., and E. Maskin (1986): �The folk theorem in repeated games with

discounting or with incomplete information,�Econometrica, 53(3), 533�554.

Harrington, J., and A. Skrzypacz (2011): �Private monitoring and communication

in cartels: Explaining recent collusive practices,� American Economic Review, 101(6),

2425�2449.

Harrington Jr, J., and A. Skrzypacz (2007): �Collusion under monitoring of sales,�

The RAND Journal of Economics, 38(2), 314�331.

Hörner, J., andW. Olszewski (2006): �The folk theorem for games with private almost-

perfect monitoring,�Econometrica, 74(6), 1499�1544.

(2009): �How robust is the folk theorem?,�The Quarterly Journal of Economics,

124(4), 1773�1814.

Kandori, M. (2002): �Introduction to repeated games with private monitoring,�Journal

of Economic Theory, 102(1), 1�15.

(2011): �Weakly belief-free equilibria in repeated games with private monitoring,�

Econometrica, 79(3), 877�892.

Kandori, M., and H. Matsushima (1998): �Private observation, communication and

collusion,�Econometrica, 66(3), 627�652.

Kandori, M., and I. Obara (2006): �E¢ ciency in repeated games revisited: The role of

private strategies,�Econometrica, 74(2), 499�519.

300



(2010): �Towards a belief-based theory of repeated games with private monitoring:

An application of POMDP,�mimeo.

Lehrer, E. (1990): �Nash equilibria of n-player repeated games with semi-standard infor-

mation,�International Journal of Game Theory, 19(2), 191�217.

Mailath, G., and S. Morris (2002): �Repeated games with almost-public monitoring,�

Journal of Economic Theory, 102(1), 189�228.

Mailath, G., and L. Samuelson (2006): Repeated games and reputations: long-run rela-

tionships. Oxford University Press.

Matsushima, H. (2004): �Repeated games with private monitoring: Two players,�Econo-

metrica, 72(3), 823�852.

Miyagawa, E., Y. Miyahara, and T. Sekiguchi (2008): �The folk theorem for repeated

games with observation costs,�Journal of Economic Theory, 139(1), 192�221.

Obara, I. (2009): �Folk theorem with communication,� Journal of Economic Theory,

144(1), 120�134.

Phelan, C., and A. Skrzypacz (2012): �Beliefs and private monitoring,�The Review of

Economic Studies.

Piccione, M. (2002): �The repeated prisoner�s dilemma with imperfect private monitor-

ing,�Journal of Economic Theory, 102(1), 70�83.

Radner, R. (1985): �Repeated principal-agent games with discounting,� Econometrica,

53(5), 1173�1198.

Sekiguchi, T. (1997): �E¢ ciency in repeated prisoner�s dilemma with private monitoring,�

Journal of Economic Theory, 76(2), 345�361.

301



Stigler, G. (1964): �A theory of oligopoly,� The Journal of Political Economy, 72(1),

44�61.

Sugaya, T. (2012): �belief-free review-strategy equilibrium without conditional indepen-

dence,�mimeo.

Sugaya, T., and S. Takahashi (2011): �Coordination failure in repeated games with

private monitoring,�mimeo.

Takahashi, S. (2010): �Community enforcement when players observe partners�past play,�

Journal of Economic Theory, 145(1), 42�62.

Yamamoto, Y. (2007): �E¢ ciency results in N player games with imperfect private mon-

itoring,�Journal of Economic Theory, 135(1), 382�413.

(2009): �A limit characterization of belief-free equilibrium payo¤s in repeated

games,�Journal of Economic Theory, 144(2), 802�824.

(2012): �Characterizing belief-free review-strategy equilibrium payo¤s under con-

ditional independence,�mimeo.

302


	Contents
	Introduction
	Introduction
	Model
	Stage Game
	Repeated Game

	Assumptions
	Common Assumptions
	Assumptions about Cheap Talk
	Assumptions about Dispensability of Cheap Talk 

	Result
	Overview of the Argument
	Phase-Belief-Free
	Structure of the Review Phase
	Coordination Block
	Report Block
	Review Rounds
	Dispensing with Special Communication Devices

	Finitely Repeated Game
	Coordination, Main and Report Blocks
	Almost Optimality
	Appendix of Chapter 1
	Proof of Lemma 9


	Two-Player Prisoners' Dilemma
	Special Case
	Structure of the Phase
	Preparation
	Equilibrium Strategies
	States xi, 0=x"0115j(l+1), j(l+1) and 0=x"0112i(l)
	Player i's Action Plan 0=x"011Bi( xi) 
	Reward Function
	Transition of the States

	Player i's Belief about Optimal Actions
	Variables
	Almost Optimality of 0=x"011Bi(xi)
	Exact Optimality
	Preparation
	Report Block

	Appendix of Chapter 2
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Proposition 16
	Formal Construction of the Report Block


	Overview of the Extensions
	Structure
	Assumptions
	General Two-Player Game with Cheap Talk and Public Randomization
	General More-Than-Two-Player Game with Cheap Talk and Public Randomization
	General Two-Player Game withOUT Cheap Talk
	General More-Than-Two-Player Game withOUT Cheap Talk


	General Two-Player Game with Cheap Talk
	Valid Lemmas
	Intuitive Explanation
	Structure of the Phase
	Preparation
	Minimax and Values
	Statistics to Monitor Player j
	Perfect Monitoring

	Equilibrium Strategy
	States xi, 0=x"0115j(l+1), j(l+1), di(l+1), j(l+1) and 0=x"0112j(l+1)
	Player i's Action Plan 0=x"011Bi( xi) 
	Reward Function
	Transition of the States

	Player i's Belief about Optimal Actions
	Variables
	Almost Optimality
	Case 1: xj=G
	Case 2: xj=B

	Exact Optimality

	General N-Player Game with Cheap Talk
	Intuitive Explanation
	Almost Optimality
	Preparations
	Functions and Statistics
	Perfect Monitoring

	Structure of the Phase
	Equilibrium Strategy
	States xi, 0=x"0115i-1(l+1), 0=x"0115i-1(l+1)(i), 0=x"0115i-2(l+1)(i), di(l+1), dj(l+1)(i), ci(l+1) and 0=x"0112i-1(l)
	Player i's Action Plan 0=x"011Bi( xi) 
	Reward Function
	Transition of the States

	Properties of the Equilibrium
	Pairwise Distinguishability
	a-i(l), 0=x"0115j( l+1) , dj(l+1) and cj(l+1)
	Player i's Belief

	Variables
	Almost Optimality
	Report Block
	Preparation
	Report Block

	Re-Report Block
	Information Sent by Players -( i-1,i)  to Player i-1


	General Two-Player Game Without Cheap Talk
	Notations and Assumptions
	Assumption for Dispensing with the Error-Reporting Noisy Cheap Talk
	Assumption for Dispensing with the Public Randomization
	Assumption for Dispensing with the Conditionally Independent Cheap Talk

	Replacing the Perfect Cheap Talk in the Coordination Block with the Error-Reporting Noisy Cheap Talk
	Structure of the Review Phase
	Dispensing with the Error-Reporting Noisy Cheap Talk
	Formal: g[j](m){m,E}
	Formal: f[i](m){G,B}
	Formal: 0=x"0112i(jmi)

	Equilibrium Strategies
	States
	Player i's Action Plan 0=x"011Bi( xi) 
	Reward Function

	Almost Optimality of 0=x"011Bi(xi)
	Report Block
	Preparation
	Report Block with the Perfect Cheap Talk and Public Randomization
	Report Block withOUT the Public Randomization
	Report Block with Conditionally Independent Cheap Talk
	Report Block withOUT the Conditionally Independent Cheap Talk 


	General N-Player Game Without Cheap Talk
	Notations and Assumptions
	Assumptions for Dispensing with the Perfect Cheap Talk in the Coordination Block
	Assumption for Dispensing with the Error-Reporting Noisy Cheap Talk
	Assumptions for Dispensing with the Public Randomization and Perfect Cheap Talk

	Coordination Block with the Error-Reporting Noisy Cheap Talk
	Structure of the Coordination Block
	Coordination Round 1 for xi
	Coordination Round 2 for xi
	Coordination Round 3 for xi Between Players j and n
	Player n's Inference of xi
	Definition of 0=x"0112i-1(c){G,B}
	Incentives in the Coordination Block

	Structure of the Review Phase
	Dispensing with the Error-Reporting Noisy Cheap Talk
	Formal: g[n-1](m){m,E}
	Formal: f[n](m){G,B}
	Definition of 0=x"0112i-1(jmn){G,B}
	Summary of the Properties of g[n-1](m), f[n](m) and 0=x"0112i-1(jmn)

	Equilibrium Strategies
	States
	Player i's Action Plan 0=x"011Bi( xi) 
	Reward Function

	Almost Optimality of the Strategy
	Report Block
	Preparation
	Structure of the Report Block
	Player i3 sends himain
	Player 2 sends h2main
	Player 1 sends h1main
	Reward Function 0=x"0119ireport

	Re-Report Block
	Probability of Errors in the Report and Re-Report Blocks

	Bibliography

