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ABSTRACT

INFORMATION TRANSMISSION AND
INCENTIVES IN MARKETS

MATTI SUOMINEN

George Mailath

This dissertation comprises of three independent essays studying information
transmission and incentives in financial and non financial markets. The first essay
develops a structural model of stock markets that accounts for several stylized facts
on the relationship between stock returns and trading volume. In this model the rate
of public and private information arrival are probabilistic, the latter depending on
the informed trader’s ability and effort. The ability is uncertain and stochastically
changing over time. Time series properties of the model include contemporaneous
correlation between volatility and volume, both unconditionally and conditional on
the current information set, and autocorrelation in volatility. When short sales
constraints are included, there is a positive correlation between stock returns and
volume. Secondly, the essay studies traders’ incentives under delegated portfolio
management.

The second essay studies firms incentives in credit markets over industry
evolution. As industry evolves, the number of producers first increases and later
rapidly falls. Sometimes even seventy percent of the prevailing firms exit in such

a shakeout. Other stylized facts are that the price of the output initially falls

\'s



and the quantity produced by each producer increases, both at a decreasing rate,
and stabilize after the shakeout. Even though the number of firms is increasing in
growing markets, these markets are also characterized by higher exit rates than the
mature markets. In this essay I develop a model of reputation formation in credit
markets which, when applied to growing markets, gives rise to these phenomena.
The third essay (joint work with Illtae Ahn) studies community enforcement
in a private information, random matching setting, where buyers privately “net-
work” for information and sellers have a short term incentive to supply low quality.
We show that high quality can be sold in a sequential equilibrium when there are M
sellers and buyers, even when each buyer periodically observes only N*(M) other
buyers’ and sellers’ games where 0 < limps_.., N *2/M < oo. We show that when
such networking is costly and M is large, low quality is supplied with positive prob-
ability in any Nash equilibrium. For this case, we characterize conditions for a

sequential equilibrium in which both high and low quality are supplied.
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Chapter 1

Trading Volume and Information

Revelation in Stock Markets

1.1 Introduction

In this paper I develop a structural model of stock markets that accounts for several
major stylized facts on the relationship between stock returns and trading volume:
(1) positive contemporaneous correlation between volume and absolute returns,
(2) positive correlation between volume and stock returns itself and (3) serially
correlated volatility. In addition, I study the trader’s incentives under delegated
portfolio management.

[ assume a single large trader, representing a leading brokerage firm, who is
engaged in information acquisition and asset management. I call him the portfolio
manager. [ assume that his access to private information depends on his ability and
effort. Ability is unobservable to other market participants and changes stochas-

tically over time, capturing effects such as changes in the firm’s employees, their



ability to process private information and changes in the availability of private in-
formation. The investors and the market maker estimate the portfolio manager’s
ability. Portfolio manager’s reputation is their estimate of his current ability. I as-
sume a market mechanism similar to Kyle (1985) and Admati and Pfeiderer (1988),
with the exceptions that the arrival of public information about the assets under-
lying value is probabilistic and the quantity traded by the informed trader, the
informed portfolio manager, becomes public information at the end of each day.!
In equilibrium, the amount of funds delegated to the portfolio manager in-
creases in his reputation. Because of concern about his reputation, the portfolio
manager trades only in the event that he receives private information. His trades
then reveal information to the other market participants, resulting in a positive
correlation between volatility and volume. The expected price volatility depends
on the true ability of the informed trader and inherits any autocorrelation in the
process determining ability. I assume that the true ability of the portfolio manager
changes according to a two state Markov process and show that in this case the
correlation between volatility and volume is positive both unconditionally and con-
ditional on the public information set. I solve for the autocorrelation function for
volatility and demonstrate that it is positive and geometrically decaying, very much
like the autocorrelation functions of individual stocks and stock indices documented
by the empirical research. I also show that the conditional volatility is autocorre-
lated, mean reverting and that it may be positively (or negatively) correlated with

the expected trading volume. When short sales constraints are included there is

The assumption that trades of the informed trader become public information at the end of
the day is consistent with the structure of markets in some countries, e.g. Finland, where a list
of security transactions between brokers is publicly distributed at the end of each day. We could
replace this assumption with a less stringent assumption that only the market maker observes
the trades between different traders. This would better reflect the structure of NYSE, where a
specialist observes all trades between different brokers with some delay:.



a positive correlation between stock returns and trading volume.? Finally, I show
that endogenous information acquisition can amplify the changes in volatility and
trading volume.

The empirical regularities that I study are documented in Karpoff (1987) and
Gallant et. al. (1992). The latter, however, conclude that “there seems to be no
model with dynamically optimizing, heterogenous agents that could Jjointly account
for the major stylized facts” listed in the first paragraph of this paper. The positive
autocorrelation in volatility for lags as long as twenty days make it unlikely that
this phenomenon could be explained merely by the dissemination of single pieces
of public or private information. Several theoretical articles have recently emerged
to address this discrepancy. Foster and Viswanathan (1995), for instance, build a
speculative trading model that can account for several of these stylized facts, but
make an assumption of changing expected volatility of the underlying asset returns
to obtain their results. Harris and Raviv (1993), on the other hand, build a model
based on differences in opinion that can account for the positive volume-absolute
price change correlation and the positive autocorrelation in volume. One drawback
of their model, however, is that it concerns solely the arrival of public information,
whereas in reality it is often difficult to relate the changes in volatility and volume
to the arrival of any public information. Other articles that have addressed the
issue are at least: Brock and LeBaron (1996), de Fontnouvelle (1996) and Shalen
(1993). First two of these are adaptive beliefs models where agents follow naive, ad
hock updating rules when assessing the market informativeness and the profitabil-

ity of information acquisition. These models are able to produce roughly similar

2Diamond and Verrecchia (1987) and Karpoff (1987) have earlier suggested short sales con-
straints as a plausible explanation for the return-volume correlation. This explanation is partic-
ularly appealing since this correlation is not present in futures markets where the costs of short
selling are small.



unconditional volume-volatility correlations and autocorrelations as observed in the
empirical data. Shalen (1993), on the other hand, is a two period model which
argues that dispersion of beliefs can be positively related to both volume-volatility
correlation and autocorrelation in volatility.

Another, more empirically oriented approach to explaining these phenomena
is the “Mixture of Distribution Hypothesis”, extended by Anderssen (1996). In
these models the dynamic features are governed by information flow, modelled as
a stochastic volatility process. Other closely related articles include Benabou and
Laroque (1992), Bollerslev, Chou and Kroner (1992), Blume, Easley and O’hara
(1994), Brown, Harlow and Starks (1996), Campbell, Grossman and Wang (1993),
Chevalier and Ellison (1996), Diamond and Verrecchia (1987), Dow and Gorton
(1995), Grundy and McNichols (1989) and Wang (1994).

The rest of the paper is organized as follows: Section two describes the model.
Section three describes an equilibrium where the portfolio manager trades only when
he receives private information. Section four studies dynamic properties of this
equilibrium. Section five extends the model to include short sales constraints and
allows the portfolio manager to invest (in terms of effort) in information acquisition.

Section six concludes the paper.

1.2 Model Description

There are T periods ¢ € {1,2,...T'}, a safe asset and a single risky asset. There is a
continuum [0, /] of small investors, each endowed with unit wealth, who can invest
directly to the markets or invest through the portfolio manager. There are two other

kinds of market participants, whose behavior I take as exogenously determined.



They are the market maker, whose behavior is characterized by the zero profit
constraint, and the noise traders. Similarly as in Kyle (1985) and Admati and
Pfleiderer (1988), in each period the different traders submit “market orders” to
the market maker.

The value of the risky asset in period T is Fr = F + YL, 6., where F is
a constant larger than T and 6, a random innovation realized in the beginning of

period t. I assume that in every period

1 with pr. k&
6e=1¢ 0 withpr. (1-2k) ,

-1 with pr. &k

where k < 1/2. As in Easley and O’hara (1992), the assumption that k is less than
half reflects “event uncertainty”. The return on the safe asset is normalized to zero.

With probability p there is a public announcement, a,, in period { that reveals
6¢. With probability (1—p) there is no announcement. In addition there is an annual
report in period T that reveals all §,’s. Implicit in this structure is that the asset
returns over the entire time interval 1, T] is exogenously given.

There is a single portfolio manager (a leading brokerage firm) who may have
access to private information. He observes a signal z, € {§,,0} in the beginning of
each period. The probability that z, = §, depends on his ability (in a later section
also his effort). When z, = 0 the portfolio manager can not tell apart the events
that & = 0 and z; = 0 and that & # 0 but z, = 0. The portfolio manager can be

two types, good and bad, and his type changes over time in a way that investors

(41



can not perfectly observe.>* I assume that
a) when the manager is good, Pr{z, = §,} =@ < 1, and
b) when the manager is bad Pr{z, =6} = a, where 0 < e < @.

Let s, € {g,b} denote the portfolio manager’s type in period t; Here g stands
for good and b for bad portfolio manager. The portfolio manager starts as good with
probability e/ (e + 1) In each period, good managers become bad with probability
# and bad managers good with probability . Both i and ¢ are less than half.
Investors can not observe the type of the portfolio manager and must base their
decisions solely on the portfolio managers reputation, which is based on the portfolio
manager’s past actions and all other publicly available information. The portfolio
manager is not endowed with any wealth nor does he have the ability to save.® The
portfolio manager’s commission is an exogenously determined fraction ¢ of the assets
under management. To keep the calculations simple there is no discounting by any
of the traders and all agents are risk neutral. The noise trading, u., is independent

across periods and in each period it is drawn from a uniform distribution on the

30One interpretation is that the portfolio manager is a firm owned by it's employees and its
employees change over time in a way that investors can not perfectly observe. Similar idea of firm
reputation is developed in Tirole (1996). In Tirole’s model there are infinitely many employees,
however, so the average quality of a worker is always the same. My assumption of a single but
changing type corresponds to a model with finitely many employees, since in both cases the average
quality of the worker is changing over time. This makes my equilibrium history dependent in a
very natural way. Similar assumption of changing types, in their model honest and dishonest, is
made in Benabou and Laroque (1992). See also Holmstrom (1982) and Cole, Dow and English
(1995).

4For tractability I have assumed that the portfolio manager’s signals are perfect when z, # 0. I
believe, however, that the model can be extended to the more realistic case of imperfect signals as
long as the probability of an error in the bad portfolio manager’s signal is larger than that in the
good portfolio manager’s signal. Because of tractability I have also assumed that the signal reveals
only &, not for instance Zi:x 8;. Again, it seems possible to extend the model to incorporate this,
perhaps more natural signal.

5The idea is that the portfolio manager’s own trading is not directly observable and it is very
small relative to the trading on the assets that he manages.



interval [—m, m].

There is a competitive market maker who is willing to be the opposing party
to the market demand at a price p, that equals the expected value of the asset
conditional on his information set. That is, if we denote by v the net order flow
that is presented to the market maker at some time ir. period ¢ and by ¥ the public
information set that is available to the market maker at that point in time, then
the market clearing price is given by

T
P.=EF+5 6 |v,0).

=0

In every period the timing of events is as follows:

(a) Portfolio manager’s type is determined.

(b) Investors allocate their investments between the different assets. Portfo-

lio manager privately observes z,.

(c) Traderssubmit ‘market orders’ to the market maker and an opening price

Pt is determined, trades are executed.

(d) A public signal a, that fully reveals &, is published with probability p.

Portfolio manager’s previous trade, ;, becomes public information.

(e) Markets are open for a second time and trading with market maker is
possible at the closing price p§'. The portfolio manager sells his position

to the market maker and pays his investors z,(1 — ¢)+ , [pf‘ - pﬁ’] 8

In period T, there is an additional stage 6 in which all 6,’s for 7 < T are

SWe are ignoring the possibility that this payment is negative. We may, for instance, assume
that investors do not have a limited liability and that negative payments are possible.

7



announced.

The assumption that the portfolio manager sells his position to the market
maker at stage five is innocent since the portfolio manager’s trade has already
become public information. This trading round is not informative about the asset’s
value and its trading volume is unimportant for our results. Indeed, the results
would be similar if this trading round would include some noise trading, or there
was no trading at all at price p.

I therefore assume a setting where the informed trader, the professional port-
folio manager, receives a private signal in the beginning of the day on the daily
innovation on the value of the security. This innovation may become public infor-
mation either through a direct disclosure of information, the public announcement,
or it may be revealed through the trading of the informed portfolio manager. In the
equilibrium that I construct, the public signal will provide a yardstick to evaluate
the trading performance of the portfolio manager and prevent him from chumning,
Le., trading even in the event that he has no private information.” In reality, an
alternative yardstick could be the observable actions of other, competing portfolio
managers.

Let ¥, denote the public information set available at the end of the period
t. Let R;(¥,_;) denote the public belief (at the beginning of the period t) that the
portfolio manager is good in period t. Let a, denote the associated probability that

the portfolio manager observes 6, i.e., let
Qy = C—Y-Rt + (1 - Rt)g.

Note that o, = R, in the extreme case where @ = 1 and « = (0. When there is no

T will use this terminology throughout this paper when referring to the portfolio managers
trading in the event that z, # 0.



risk of confusion, I will drop the time subscripts from R, and «. Throughout the

paper I assume that the amount of potential investors, I, is larger than m/c.

1.3 Equilibrium

In this section I show that when the probability of public information arrival, p, is
large and the probability of nonzero innovation on asset returns, k, is small, there
exists sequential equilibria where the portfolio manager follows a linear trading
strategy in the opening round of trade: y, = y"z,, where y* is a positive constant.
He therefore trades only in the event that z, is different from zero. His trades then
reveal his private information, which results in early revelation of information and
increases the price volatility prior to period 7.

There exists several sequential equilibria with linear trading strategies. We
focus our attention to the equilibrium in which both the periodic returns to in-
vestors and the amount of investments to the portfolio manager are maximized.®
In this equilibrium the value of the portfolio manager’s future payoff increases in
his reputation and reputational concerns prevent him from churning: i.e., trading
even in the event that he has no information. Investors use Bayes rule to update
the probability of a good portfolio manager and invest through the portfolio man-
ager whenever their expected payoff exceeds zero. The investments to the portfolio
manager, T(R:), are strictly increasing in R, and the portfolio manager follows the
following simple linear trading rule: y,(z;) = m (1 — kay) z.

To develop the argument it is instructive to first look at the market maker’s

81t is straighforward to show that when p is large this trading strategy maximizes the periodic
trading profits even within a larger class of feasible trading strategies: symmetric trading strategies
where the portfolio manager churns with probability €.



problem assuming that the portfolio manager follows a linear trading rule: y(z,) =
y*(R¢)z:, where y* # 0. Let us introduce the following notation: Let b=E [6- | ©,].
Since the public information set at the end of the period 7, V., includes both the
public announcement, a,, and the portfolio manager’s trade, y,, these two variables
should be used in calculating (i. We have: 3,. =1lifa, =1 or y; = y* and there is
no a,; & =—1if ar = —1 or y; = —y* and there is no a,; 8, = 0 otherwise.

Given this notation and given «,, the pricing rule for the market maker can

be written as:

t—-1
1Dt° = ?’*‘ Z(ST + E((St I 'Ut,(‘(t)
7=0

( 1 if v, >m
- lf‘,:a fm—-y" < v, <m
=F+ 5y +J 0 fy-m<uy<m-y
=0
I'_"'kf; if —-m<uv<y -m
| -1 if v, < —1n
and
t -
PP=F+3% 6.

=0
Given the portfolio manager’s trading strategy and the structure of the game, the
market maker can infer the portfolio manager’s private information from his trades
when setting the closing price p. When setting the opening price, however, the
market maker can not perfectly infer the value of &, from v, when v, € [-m,m],

and must calculate the expected value of §, using the Bayes rule.?

9For instance in the region m — y* < v, < m there are two possible events: either 2, = 1 and

10



Having looked at the market maker’s problem we can already state the fol-

lowing result:
Lemma 1: The trading profits in the equilibrium where the portfolio man-
ager follows the trading rule y,(z;) = m (1 — ka,) z,, are larger than the trading

profits in any equilibrium with trading strategies linear in z,.

Proof. Taking as given the market maker’s pricing rule, ¥, and z, = 1, the

expected periodic trading profits can be written as

-1 _
T =E [yz (B —p0) 1o =36 + 1] : (1.1)
t

For y, < y* we have

ko -y m-y—-y*
“=y|l- ‘/7v (1/2m)du + y/ (1/2m)du
1 —ka m-y-y* y*

-y-m

/:y- _y-m(l/2m)du

m

+y |1+ ka
y 1 - ka

> k
1 (y [1 -1 fc;m] y‘+2y[1n—y‘]+y[1+ I_C;mJ (v —y))
2
y
o _ 1.2
v 2(1 — ka)m’ (1.2)

Ue=ve—y'ory=0and u, = v,. The p.df. glv| 2 =1) =g(v| 2z, =0) = 1/2m, so Bayes rule
implies

] X

Koes ~ ke

kagk + (1—-2ka)t  1—ka'

2m

Pr[z;=l|v¢]=

11



It is straightforward to check that the expression for the expected trading
profit is identical in the event that z, = —1 as a function of -y fory > ~y*. In any
linear equilibrium the expected trading profits are then k2a, times the expected
trading profits given by equation (1.2) with y* replacing y. Maximizing this with

respect to y* gives the result. B

The expected trading profits from following this trading strategy are

_[m(1 - ka)]?

T(R,) = 2kay, [m(l — ko) 201 — kaym

] = m(ka, — k%a?). (1.3)

Before we go on to prove that there exists a sequential equilibrium in which
the portfolio manager follows this trading strategy, we must specify how the beliefs
are updated in a linear equilibrium. Since we are interested in sequential equilibria,
we must specify these beliefs for all possible events on and off the equilibrium path.
The beliefs over different types of portfolio managers at the beginning of period t+1
are obtained using the Bayes rule whenever possible. At off-the-equilibrium paths
this is not possible, however. There are a number of ways to specify the beliefs at
off-the-equilibrium paths. Here I have assumed that what appears to be churning
1s taken as evidence of a bad portfolio manager. These investor beliefs can easily be
shown to be sequentially rational. Furthermore, in a two period version of the model

1t is easy to show that since ¢ < &, the bad portfolio manager does indeed have a

12



higher incentive to churn.!® More precisely, if R, denotes the posterior probability

of a good portfolio manager given ¥,, then

( §al_3,_ if 8, # 0 and sign[gt] = signfy,]
Rt if A, = Ye = 0
R={ uon £, # 1 =0 9

((1-2k)+2k(1-&)) R,
(1=2k)+2k(1—cx)

0 if 6, # 0 and sign[gt] # sign[y,]

if ¥y =0 and no a,

In particular, R, = 0 when the portfolio manager is caught churning. Given the

transition probabilities 12 and ¢ for good and bad portfolio managers, we have:

Ripi = Ri(1— p) + (1 - Ro)e

=Rt(1—€"’ﬂ)+5.

For a complete description of the strategies and beliefs we must still specify the
portfolio manager’s beliefs: Let his beliefs be that others update ¢ as specified
and play according to their equilibrium strategies. We can now state the first

proposition.

Proposition 1: There exists £ > 0 and 5 < 1 such that for all k£ and p

that satisfy k < k and p > p, the above strategies form a sequential equilibrium of

101f the no churning constraint fails for the good portfolio manager it always fails also for the bad
portfolio manager. The converse, however, is not true. Indeed, there exists sequential equilibria
where only the bad portfolio managers churn with positive probability.

13



the game. In this equilibrium the investments to the portfolio manager, z(R,), are
larger than the investments in any other linear equilibrium. Furthermore, z(R,) is

strictly increasing in R,.

The formal proof of the proposition is given in the appendix. The intuition
is as follows: Because the portfolio manager’s commission depends only on the
amount of assets under his management he is indifferent between trading strategies
that result in the same level of reputation. Among actions that result in the same
level of reputation he may as well follow the trading strategy that, in equilibrium,
gives the largest expected profits to his investors. Effectively, the portfolio manager
then chooses y, among three alternatives: y, € {y*, —y*,0}. Given that the expected
trading profits (1.3) increase in Ry, it is easy to show that the portfolio manager’s
value function is increasing in R,. Given the updating of investors’ beliefs, it is also
straightforward to show that the portfolioc manager wants to trade according to this
strategy when z; # 0. The problem, however, is to prevent churning. It is here, where
the conditions on & and p are needed. High p and small k reduce the probability
that churning leads to higher reputation and increase the probability of the converse.
Since the portfolio manager’s value function increases in his reputation, when p is
high enough and k low enough, the portfolio manager prefers not want to churn.

The condition for no churning can be relaxed in many other ways besides
raising p and reducing : First, if there existed a honest portfolio management firm
who never churns, the rational dishonest portfolioc management firms would have an
incentive to pretend they are honest, since by not churning more can be extracted
from the noise traders. Similar reputation effect could prevail in a framework where

T period intervals, such as above, are repeated infinitely often. As a third way of

14



relaxing the incentives to churn, consider a framework where the portfolio manager
is given an opportunity to periodically (at stage 5) reveal his information, 2z, # 0,
in the form of an investment report and assume that these reports are verifiable. In
such a framework, there exits an equilibrium with identical trading rule as above,
in which the portfolio manager periodically reveals all non zero z's to the public,
whenever either p or k is small enough.!!+12

Interestingly, the equilibrium changes somewhat when we include a profit
based commission for the portfolio manager (the main time series properties remain
similar, however). It turns out that the profit function (1.2) is concave for y < y*
and ¥y > y* and continuous at y, = y*. The derivative, however, is not continuous
at ¥*, but rather there is an upward jump at that point. This implies that the
equilibrium with profit based commissions is one in mixed strategies. Furthermore,
1t can be shown that such equilibrium results in smaller or equal trading profits
as compared to those given by equation (1.3.). It seems that with a commission
based solely on the assets under management, the portfolio manager can commit
to less aggressive trading strategy than in the presence of profit based commission
and may therefore obtain higher expected trading profits.

It is instructive to compare this equilibrium to one that would prevail when
there is a single informed trader who is trading for his own account and whose
trading is not observable. This is the framework in Kyle (1985). In his model the
informed trader trades relatively small quantities on information in order to hide his

information and benefit from it over several periods. As compared with his model,

1 have assumed that no effort by the portfolio manager is necessary to observe z,. The same
equilibrium, however, would hold even if we included such cost of effort, as long as this cost was
small enough.

2Pischer and Verrecchia (1996) discuss evidence that fund managers are eager to publicly
announce their trades after taking their positions. The framework of this paper could easily be
altered to justify that kind of behavior.
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here the fact that the portfolio manager’s trades are publicly observable result in
early revelation of information and an increased volatility in asset returns prior to T

(we will soon study the relationship between information revelation and volatility).

1.4 Time Series Properties

Let us now look at some of the dynamic properties of this equilibrium.™® To begin
with, let us calculate the expressions for expected price variance and the expected
trading volume, conditional on ¥,_;. Let us measure these from the closing prices,
for instance 6?(¥,_,) = var[Pf ~ P¢, | ¥,_y], and use the associated trading vol-
ume. I will drop the ¢ superscript from P¢ so that P, always refers to closing
price unless otherwise mentioned. The expressions for price variability and trading
volume are somewhat different when we measure the price variability from open-
ing prices and use the corresponding trading volume. As you recall, there is no
asymmetric information in closing prices, whereas in opening prices there is.

As Admati and Pfleiderer (1988) argue a proper measure for the volume of
trade can be obtained as follows. Let d* = max(d,0),d”~ = max(—d, 0). The volume
of trade at stage two (including trades that are crossed out between traders) is
wy = max(v +y/, u; +y; ). Similarly, the volume of trade at stage five is wi=|y|.
Our measure volume, wy, is the sum of these two volumes. Our results are similar if
we measure the volume only at stage two. Regarding variance, note that P, — P,_,
=6=F [6: | ©]. The martingale property of prices, formally shown in proposition
two below, implies that £ [P, — P,_ | ¥, ;] = 0. Given this and the fact that &, is

either zero, one or minus one. we obtain that var(P,— Py | Uy y| = E [53 | ‘Ilt_l] .

13When doing so we are restricting our attention to the cases where p is high and k is small.
See the discussion at the end of the previous section for motivation.
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Straightforward calculations give:

0 =var(P, — Py | Uemi] = 2k(p + (1 — p)ae),

. R 2
wf=Efw, | ¥, = 323 + ko, [3y'(R,) + yéTz) .

w, is different from v, for two reasons: First because we now include the cases where
the portfolio manager’s and noise trader’s orders cancel and secondly we take into
account the unwinding of the portfolio manager’s position in stage five at in each
period (for instance the selling of y* in the event that y, = y*).

We summarize some of the resulting dynamic properties of the model in the
next two propositions. The following two propositions after that characterize the

dynamics of o, and wf, i.e., the dynamics of conditional volatility and volume.
Proposition 2: The asset prices are a martingale with respect to U,_,.

Proof.
t—-1
EPf| ¥ ]=F+ 251— + E[E 6| Vo] | Too]
=0

~
|

1

=F+Y 6 =P 1
0

T

Proposition 3: Let 0 < s < T — ¢. The following results hold:

cov [(Pz - Pz-1)2,wt | ‘I’t-l] > 0,
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cov [(P ~ Pee1)?,wi] >0,

cov [(P;H - Pt+s—1)2a (P.— Pt—l)2] =

[46#/62(1 - p)*@ - af?

T 0 ](l—s—,u)’>0.

The proofs of this and all remaining propositions are given in the appendix. So
the volatility and trading volume are positively correlated both unconditionally
and conditional on ¥. The autocorrelation function for volatility is positive and
geometrically decaying. very much like the autocorrelation functions of stocks and
stock indices documented by the empirical research (see e.g. Brock et. al., 1996).
Equally interesting as to show that our model can match these stylized facts,
is to characterize the dynamics of conditional volatility and volume. The next two
propositions show that the conditional volatility is autocorrelated and mean revert-
ing (as the literature on GARCH assumes). The proposition after that characterizes
the relationship between conditional volatility and expected trading volume. Before
proceeding, let us introduce the following notation: Let E¢(-) denote the expecta-
tion operator conditioned on the public information set ¥,_;. We can now state the

following propositions:

Proposition 4: cov[af, (¥r4s-1),02(T,1)] > 0.

18



Proposition 5: o} is mean reverting. In particular, Ei[cl,,] < 0% when
o? > 32 and E,[0?,,] > 02 for 02 < 72, where

=2 _ _ o s(@-a)
T —2k[p+(1 p)(_-i-———(s_*_#) )}

Proposition 6: When k < %=¥8 ~ 0.48, the conditional volatility, o2,
and the conditional expected trading volume, wy, are positively correlated random

variables.

What is also interesting is that under extreme conditions, very high k and
@, also the opposite to proposition 6 may hald, that is, that these two random
variables are actually negatively correlated. This possibility is due to the fact that
as . increases the size of the portfolio manager’s trade is reduced. It is interesting
that this can occur even in a model where the amount of noise trading is exogcnously
given.

The positive correlation between volume and volatility conditional on the
current information set arises from the fact that the portfolio manager trades only
when he receives private information and the fact that his trades carry information
and affect prices. This effect is so strong that there is a positive correlation between
volume and volatility even when we are not conditioning on the public information
set. It is not obvious that this should be the case because good ability is correlated
with a high reputation and high reputation, on the other hand, leads the portfolio
manager to reduce the size of his trade (as we argued the expected trading volume
may actually be negatively correlated with the expected volatility).

The evolution of the true volatility depends on the evolution of the portfolio
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manager’s ability. When the portfolio manager is good he discovers more informa-
tion and prices are more volatile. When the portfolio manager’s true ability changes
according to a two state Markov process, the autocorrelation function is geomet-
rically decaying. This happens because the longer the time period between return
observations, the larger is the probability of switches in the portfolio manager’s
type.

The evolution of conditional volatility and volume are characterized by the
evolution of R,. Besides being dictated by the process determining the true ability
and by chance, the evolution of R, has the following characteristic: In periods of
high volatility in asset returns, §, # 0, agents reputations change because these
events separate “informed” portfolio managers from the “uninformed” and allow
inference on the type of the portfolio manager. In contrast when the volatility of

asset returns is low, gt =0,
Rt+l = R¢(1 — = 5) +5,

and reputation drifts down towards it’s long run average, £/(u + ), or below.!4
An additional observation about the stock return - trading volume relation

is made in Jones et. al. (1994). They show that size of transactions has no

information value beyond the number of transactions. Since the above model] is a

simplified model with only one informed trader, discussing this observation in the

MIf we use the above results and derive a dynamic evolution equation for conditional volatility
this looks somewhat similar to a GARCH (1,1) process: 0? = go?_ | +yr? |. In our formulation
o? , and r?_; are not sufficient statistics for predicting the conditional volatility o2, however, and
also yf_l is needed. In addition, these variables do not enter the evolution equation for volatility
in a simple linear form as in the GARCH model. As Anderssen (1995) pointed out, the first of
these observations suggests a reason for why empirical models predicting volatility may gain by
incorporating volume of trade (proxy for ¥,) in the evolution equation for volatility, as is done in
Anderssen (1995) and Lamoreux and Lastrapes (1991). We should note, however, that when pis
small, little information may be lost by omitting y,—; from the right hand side. See Bollerslev,
Chou and Kroner for a survey on the work related to GARCH.
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context of this model is only indicative. Nevertheless, if we assume that the noise
trading comes from a single noise trader, then in line with the findings of Jones
et. al. (1994), the model predicts that the number of transactions contains all the
relevant information regarding the price change that is imbedded in the volume of
trade: i.e., are there two transactions or only one. In this model, the size of the
orders is determined by the size of the noise trading and has no information value

beyond the number of transactions, which reflects the arrival of new information.

1.5 Extending the Basic Model

1.5.1 Introducing Short Sales Constraints

In this section we repeat the above analysis but include constraints on short selling.
To do this in the simplest possible way, let us assume that there is some exogenously
determined and independent state variable f,, which determines whether the port-
folio manager can sell stock short in period ¢ and that the realization of ft is public
information.!® Let us assume that ft = 1 in the presence of short sales constraints
and that prob[ f, = 1] = f > 0. In the appendix it is argued that for a slightly
different trading rule:

Yz when f; =0
Ye= ¥ when f=1landz =1
0 otherwise

5This kind of probabilistic short sales constraint could arise for instance if the portfolio manager
could sell short some stocks, but not the others. In such a case, if the periodic innovations are
stock specific, whether the short sales constraint is binding or not depends on which stock the
innovation concerns. Alternatively we may think that the portfolio manager holds a imperfectly
diversified portfolio and can not sell stocks short at all. In such case he can react to a negative
innovation only if he happens to holds the relevant stock.
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the propositions one through three continue to hold. In addition we have:

Proposition 7:

CUU((Pt - H_]),wg) > 0.

The intuition behind this result is clear: When ft = 1, the portfolio manager
is trading only in the event that z, = 1 and, as before, his trades carry information.

As for all other propositions, the formal proof is given in the appendix.

1.5.2 Endogenous Information Acquisition

In this section we show that endogenous information acquisition can amplify the
changes in volatility and trading volume. There are at least two possible ways to
model endogenous information acquisition: either the investments on information
acquisition are observable to the investors, for instance the act of hiring more secu-
rity analysts, or they are not, for instance the amount of effort that is put into the
information acquisition. We shall concentrate on the second possibility. 16

Let us now assume that the bad portfolio manager may also observe §, with
probability @, instead of q, if he invests e > 0. Let the strategies and the beliefs for
the investors and portfolio managers be similar to those in section three, except for
the bad portfolio manager who now searches information with probability ¢*(R,) €

[0,1]. Let

Q = a-Rg + (1 - Rt) [Eq'(Rt) +Q(1 - q‘(Rg))] .

18Let us first briefly discuss the possibility of observable investments. Suppose that both types of
managers may hire more security analysts but only the good managers can pick out good security
analysts. Other things equal, the incentives of both types of firms to invest would then seem
to increase in R, simply because investors then place higher probability for the event that good
security analysts are hired.
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Lemma 1: In any equilibrium with the above strategies q; < 1.

Proof. Assume that q; = 1. Then in equilibrium both types of portfolio managers
invest and reputation in period t + 1 is independent of the performance in period
t. In this case it is optimal for the bad manager not to invest and to set g =0.A

contradiction. B

Proposition 8: Let T = 2. When p is large and k is small, there exists
g:(R) € [0,1) for t < T such that the above strategies form a sequential equilibrium
of the game. In this equilibrium ¢*(R,) = 0 when R, is close enough to either zero

or one.

The reasoning for why the portfolio manager follows the trading strategy
Ye¢ = Y*2z is similar to before. Intuition behind the result concerning ¢*(R,), on
the other hand, is as follows: When the portfolio manager’s reputation is close to
zero or one all successes (failures) are attributed to good luck (bad luck) and are
not taken as evidence of the portfolio manager’s type. In this case the portfolio
manager has no incentives to invest in information acquisition. This is an example
of a well known property of Bayes rule: the signals, the successes or failures of the
portfolio manager, affect the posterior probability most when there is uncertainty
over the agent’s type.

The above proposition suggests that endogenous information acquisition will
amplify the changes in volatility and trading volume provided that ¢ is small relative

to 4, so that managers are typically bad. As the proposition shows, when ¢ is small
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and reputation is at or below its long run average ¢/(c + #) the portfolio manager
does not have any incentive to invest in information acquisition and ¢* is equal to
zero. If, however, the portfolio manager succeeds to develop a higher reputation, so
that there becomes more uncertainty over his type, it may then pay for him to invest
in information acquisition. So when R, is high, there is both a high probability that
the portfolio manager is good, and if he is bad, there is a high probability that
he invests in information acquisition. Similarly, however, if the portfolio manager’s
reputation ever becomes very high, the manager will start to reduce the level of his
investment.

How would the results on the asset market dynamics extend to the case
where the number of portfolio managers is large. If we interpret the changes in « as
changes in the availability of private information, then nothing changes. How about
if we insist on the interpretation of o as ability and assume that the abilities are
independent across portfolio managers. Even then, however, the results may extend
even to the case where the number of portfolio managers is very large. With several
portfolio managers, as with a single portfolio manager, the initial volatility in asset
returns, 6. # 1, separates good portfolio managers from bad, but it may also lead
to reallocation of assets to the successful portfolio managers, whose reputations
have increased. If there are always are enough successful portfolio managers, whose
incentives to search for information are increased, the expected price volatility may
always go up following a period of volatility in asset returns. When & =0, on the
other hand, the reputations of all portfolio managers move towards (or below) the
long run averages of the good portfolio managers. This suggests that as long as there
is event uncertainty, i.e., k < 1/2, most of our results on asset market dynamics,

namely the volatility and volume correlation, their positive autocorrelation and

24



mean reversion can be maintained even with a large number of informed portfolio

managers.

1.6 Conclusion

This paper developed a simple model of stock market microstructure that can ac-
count for the major stylized facts on the stock return and trading volume dynamics.
I assumed a single informed trader, called portfolio manager, who is engaged in in-
formation acquisition and asset management. His access to private information
depends on his ability and effort. The ability is unobservable to other market par-
ticipants and changes stochastically over time, capturing effects such as changes in
the firm’s employees, their ability to process private information and changes in the
availability of private information. The investors and the market maker estimate
the portfolio manager’s ability. The portfolio manager’s reputation is their esti-
mate of his current ability. The market mechanism is similar to Kyle (1985) and
Admati and Pfleiderer (1988), with the exceptions that there is probabilistic public
information arrival on the underlying asset returns and the quantity traded by the
informed trader, the informed portfolio manager, becomes public information at the
end of each day (see footnote one for motivation).

In equilibrium, because of concern about his reputation, the informed portfo-
lio manager trades only in the event that he receives private information. His trades
then reveal information to the other market participants, resulting in a positive cor-
relation between volatility and volume. The expected price volatility depends on the
true ability of the informed trader and inherits any autocorrelation in the process

determining this ability. I assumed that the true ability of the portfolio manager

[()
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changes according to a two state Markov process and showed that in this case the
correlation between volatility and volume is positive both conditional on the public
information set and not. I solved for the autocorrelation function for volatility and
verified that it is positive and geometrically decaying, very much like the autocorre-
lation functions of individual stocks and stock indices documented by the empirical
research. I showed that the conditional volatility is autocorrelated, mean reverting
and that it may be positively (or negatively) correlated with the expected trading
volume. When short sales constraints are included there was a positive correla-
tion between stock returns and trading volume. Finally, I showed that endogenous

information acquisition can amplify the changes in volatility and trading volume.



Chapter 2

Reputation, Credit Markets and

Industry Evolution

2.1 Introduction

It is well established that in the presence of limited liability and moral hazard,
fierce competition and zero profits cannot prevail in mature markets, where de-
mand and technology no longer improve; see for instance Klein and Leffler (1981)
on quality provision, and Stiglitz and Weiss (1981) on the incentives for taking
risks. The reason is that with limited possibilities to punish the entrepreneurs for
defection, entrepreneurs must be bribed in terms of positive mark-ups to act pru-
dently. The threat of losing these mark-ups gives the firms an incentive to refrain
from opportunistic behavior. What is perhaps less well understood is that such
phenomena need not characterize evolving markets, where demand and technology
improve rapidly. In such markets, producers have an incentive to behave prudently

even in the absence of any mark-ups just in the hope of a better future, i.e., the



positive mark-ups of mature markets. These observations provide an alternative
explanation for the stylized facts of industry evolution, as documented by Gort and
Klepper (1982).

Stylized facts of an evolving industry are that first the number of producers
increases and later it rapidly falls. The price of the product falls and the quantity
produced by each producer increases, both at a decreasing rate, and stabilize after
the shakeout. Despite the net entry into the young, growing markets, these mar-
kets are also characterized by higher exit rates than the mature markets. In the
existing literature, e.g., Gort and Klepper (1982), Klepper and Graddy (1990) and
Jovanovic and MacDonald (1994), these phenomena are often related to the arrival
of product innovations. Jovanovic and MacDonald (1994) argue that in the case of
the American tire industry the shakeout occurred in response to the emergence of
a major invention. Gort and Klepper (1982), on the other hand, provide evidence
from a number of industries, and find that typically the shakeout occurs at the end
of a period of rapid technological improvement. According to the data regarding
prices and quantities presented in their paper and recollected in Hopenhayn (1993),
the shakeout seems also to be associated with a large drop in the growth rate of
demand. As one would expect, these two events seem interrelated.

Klepper and Graddy (1990) further discuss the evidence in Gort and Klepper
(1982), and present a model where there is much entry and exit in young markets,
and where over time only the most efficient firms survive. Here the shakeout is
caused by the gradual exit of the least efficient firms. One drawback of their model
is that the entry rate is exogenously determined by an assumption that there is only
a small number of new potential entrants in every period. Other related articles

are at least Klepper and Miller (1995), Klepper (1996) and Horvath, Schivardi and
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Woywode (1996).

In this paper we study the financial aspects of industry evolution and identify
a phenomenon related to the reputation formation in credit markets that gives rise
to similar dynamics in industry evolution. Our explanation of industry dynamics is
therefore radically different from those in the existing literature: here the shakeout
is explained by a change in the severity of the borrowers moral hazard problem
in response to an exogenous change in the growth rate of demand or the rate of
technological improvement.!

We analyze a model where the entrepreneurs must borrow a fixed amount
from the financial markets in every period in order to set up their production fa-
cilities. We assume that entrants who have successfully obtained credit have access
to two possible production technologies: a safe and a risky technology. Because of
the convexity in their payoffs due to their limited liability, the entrepreneurs have a
short term incentive to choose the risky technology. We study the borrowers’ incen-
tives to choose the safe technology, and analyze the resulting market equilibrium as
the function of the market size.

The model has infinitely many potential entrepreneurs. Because of fixed costs
in production and a moral hazard problem, in equilibrium only finitely many firms
obtain credit and enter, and the competition is imperfect.? As one would expect

there are more firms in the larger markets, and the competition is therefore more

'Hopenhayn (1993) also considers a situation where the shakeout occurs in response to an
exogenous change in the growth rate of demand or the rate of technological improvement. In his
model there are several types of firms, characterized by their cost functions, and the types of the
firms change stochastically over time. When the growth stops there is a gradual shakeout because
the less efficient firms are slowly driven out of the markets by efficient producers whose proportion
slowly increases (for each cohort of producers the proportion of efficient firms increases over time).
His model of industry evolution is closely related to the models by Gort and Klepper (1990) and
Klepper (1996).

?In a later section we consider a model where there is technological improvement over time and
a continuum of firms enter the markets in every period as long as the technology improves.
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intense. Nevertheless, in contrast to the free entry model of Cournot competition
by Novshek (1980), here the firms in larger markets earn larger profits. The reason
is that in larger markets the firms are also producing larger quantities and have a
greater potential gains from taking risks related to their costs of production. To
prevent these firms from taking risks, the equilibrium profit stream in large markets
must be larger than in small markets.

We then look at what happens in growing markets. We assume a setting
where the demand for output grows rapidly until, at some random point in time,
the growth rate of demand slows and the market matures. In this case, fixed costs
and the moral hazard problem reduce the entry into the small markets. As markets
grow more entrants obtain credit and enter, and competition increases resulting
in a gradually declining price. In contrast to the mature markets where demand
no longer increases, here the firms do not necessarily earn strictly positive profits.
The firms are willing to behave prudently in growing markets merely because they
hope to be among the producers who make it to the large and highly profitable
(stationary) markets in the future. Since larger stationary markets imply larger
profits for incumbent producers, the continuation value for keeping a good credit
rating is typically much higher is growing markets than in stationary markets of
the same size. As a result more firms can be issued credit. This effect is intensified
by the fact that when the number of firms increases in such small and growing
markets, all firms produce less and the potential gains from taking risks become
even smaller; allowing for an even larger number of firms to enter. As the market
then suddenly matures and the growth stops, there is shakeout caused by an increase
in the severity of the moral hazard problem that results from a decrease in the value

of the expected future returns for existing firms.
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There is some evidence that at least some of the shakeouts have been finan-
cially driven: e.g., the US ski resort industry. Until the late 1980’s the demand for

ski resorts’ services grew rapidly and the number of firms in the industry increased.

(Now the) growth in the industry has been flat for 10 years... Over
the past 10 years, the number of US ski resorts has dropped from 709
to 519 as intense compelition has led to the sale or closure of smaller
resorts that lacked the finances to undertake popular improvements, such

as faster ski lifts (Financial Times, February 5th, 1997).

One additional stylized fact was that in addition to a higher entry rate, the
growing markets are also characterized by a relatively high exit rate. We extend
our model to account for this observation by assuming that there are two types
of entrepreneurs: ones that can avoid taking risks and ones that cannot. This
extension of the model can account not only for the observed dynamics in the
number of firms, prices and quantities but also the dynamics in entry and exit
rates. It can also explain why the latest cohorts of entrants are more likely to exit
than firms who have entered before them. Especially the structure of this extended

model is closely related to Diamond (1989).

2.2 The Basic Model

In this section we study a model of industry evolution that has the following char-

acteristics: By assumption the firms must borrow funding for a machine from the
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capital markets in every period in order to produce. There is a possible conflict of in-
terest between borrowers and lenders: because of limited liability the entrepreneurs
may have a short term incentive to produce with risky technology that is dominated
(in expectation) by the safe technology. We investigate how entry to the markets
is affected by the firms incentives to choose the safe technology and study the re-
sulting industry equilibrium. Because of fixed costs and the above mentioned moral
hazard problem, our equilibrium is characterized by finitely many active producers
and imperfect competition.

We assume infinitely many agents of two types: Lenders and potential en-
trepreneurs. The entrepreneurs live infinitely long whereas the lenders only for a
period. We make this assumption, along with Diamond (1989), so that the only
intertemporal linkage is that for the borrowers. To produce an entrepreneur must
borrow F' units of money from the capital markets to buy a machine or, alterna-
tively, to cover their fixed costs. Because F is larger than zero only finitely many
firms can ever obtain credit and enter. By assumption, the entrepreneurs can not
save and so they must borrow F’ units of money in every period in which they wish
to produce. As in Diamond (1989) we assume that the lender and the borrower
can ex ante commit to use a costly monitoring technology that destroys the current
periods profits in certain pre specified states of the world.

Once in possession of a machine the entrepreneurs have access to two different
production technologies: a safe and a risky technology. With the safe technology

the costs of production are:

Clq) = F + cq.,
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and with the risky technology these costs are

F +tq, with pr. v
C((h) = )
F+cq withpr. (1-7)

wheret>c>c=0.

We assume that the entrepreneurs have no wealth and they have limited
liability so that their periodic payoffs are never less than zero. We will confine
most of our analysis to the case where ~, € and F are such that in equilibrium only
the firms who are expected to produce with riskless technology are issued credit.
We assume that the firms’ outputs and profits are not observable to the lenders
(although this is not crucial) and that entering firms compete in quantities. We
assume that the entrepreneurs discount future with a constant discount factor &
and that the values of their outside opportunities are zero.

As mentioned the lenders, in contrast to borrowers, live only for one period.
They are risk neutral and, for simplicity, they do not discount their payoffs within
the period that they live. They are endowed with F units of wealth in the beginning
of the period and they derive utility from their end of the period wealth. Along
with Diamond (1989) we assume that the only statistics that lenders observe from
the past are the number of times that a borrower has and has not paid his debt.
In each period the loan markets work as follows: The potential entrepreneurs i €
{1,2,...} are organized into a queue. The potential entrepreneurs approach lenders
sequentially one at a time and pick two lenders j € {1,2,...} randomly and offer
them interest rates R; € [0,00] to borrow F. Once an entrepreneur obtains F
units of money from a lender he and the lender exit the loan markets and the next

potential entrepreneur enters. If both banks refuse to lend to an entrepreneur at
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the interest rates that he offered, the entrepreneur must exit the loan markets. The
loan markets for a given period stop once an entrepreneur with good credit history
is declined credit twice.

The lenders j € {1,2,...} make their lending decisions sequentially, knowing
the actions of all other lenders before them. The ordering of entrepreneurs as they
apply for lending is important in determining the identities of entrepreneurs who
obtain credit and it is not necessarily the same as the order in which they are
indexed. We will assume throughout the paper that the incumbent entrepreneurs
are always given priority in obtaining lending, that is, they are always ahead of
the other entrepreneurs in the queue. The ordering of incumbents in this queue,
on the other hand, is important as it determines the exit rule in the event that
the aggregate number of firms in the current period is smaller than in the previous
period. We look at two possible rules of organizing incumbents: one where their
ordering is determined randomly in the beginning of each period and one where
their ordering corresponds to the entrepreneurs’ initial dates of entry. These two
ways to order the entrepreneurs correspond to exit rules “Equal probability of exit”
and “First in last out,” which are specified more carefully below. The ordering of
potential entrepreneurs who were not active in the previous period is assumed to
be random.?

Our assumption of non-observable profits guarantees that the optimal con-
tract between bank and the entrepreneur is a loan contract. Note however that on

the equilibrium path, the firms’ profits are non stochastic so the payoffs to differ-

3By giving priority to former borrowers the lenders increase the incentives of the current en-
trepreneurs to behave prudently and thereby the amount of lending that can be done in any given
period. This assumption is also the most natural one if there are several types of entrepreneurs
and those with a proven track record are perceived somehow less risky by the lenders than those
with no track record. We will analyze such model in section five.
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ent contracts, equity and debt could be made identical. Nevertheless the choice of
contract, equity or debt, could affect the firms’ incentives off-the-equilibrium path.
Note also that in this setting the lenders will behave competitively since each bor-
rower can ask credit from two lenders and the number of lenders is infinite, whereas
only finitely many firms can ever obtain credit, meaning that the probability that
two entrepreneurs approach any particular lender in any given period is zero. We
have here been very explicit about the organization of the loan markets. It should
be mentioned, however, that this is only one possible organization of loan markets
where the lenders behave competitively, the number of entrepreneurs who obtain
credit is non random and lending takes place until there are no lenders who would
like to lend to potential entrepreneurs at any positive interest rate.

We now look how the demand for the industry output is determined. It is

assumed that in every period the demand is exogenously given by:

Q. = Gila — BP), (2.1)

where Q; is the quantity, P, the price, @ and 3 positive constants and G a (possibly)
time dependent parameter that reflects the size of the markets. Equation (2.1) can
be interpreted as there being (i, customers at time ¢, each of whom has demand

(@ — BP,). In terms of the inverse demand function, this can be written as:

Pt=a—th/Gt)

where o = a/b, and 3 = 1/b.



We want to analyze the industry evolution in this kind of setting under the
assumption that the demand for industry output, G,, grows in every period at some
positive rate g — 1 > 0, until the growth of demand stops at some random point
in time. For simplicity we take the rate of growth, g — 1, and the stopping time of
growth as exogenously determined. For simplicity, we will also assume that there
is a possibly very large bound on G,, so that G. <G, where G = gTG,.

Let us denote the state of the economy as (g, G,), where g, € {g,s} is
the current growth state, g > s = 1, and G, the size of the markets in period ¢.
We assume that the state of the economy evolves as follows: If the state of the
economy is currently (g, G,) the next periods state is (s,G.) with probability p and
(9, min{¢gG,,G}) with probability (1 — p). When the current state of the economy
is (s,G,), the next period’s state is (s,G.) for certain. For t < T, irrespective of
the number of periods that the industry demand has grown. the growth stops with
probability p in the next period and when it stops it never resumes again. Note
also that the current periods growth is realized in the beginning of the period in the
sense that the demand for that period already reflects the entire growth for that

period. Note also that the growth state matters only when G, < G.

2.3 Equilibrium

We characterize a market equilibrium, where incumbent firms use the safe tech-
nology and no additional firm can obtain sufficient capital to enter. Throughout
this section we assume that in product markets the firms compete in quantities and
in product markets the equilibrium is the one shot Nash equilibrium. Because of

this and our assumption that the firms have similar costs, the equilibrium in the
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product market is always symmetric with respect to incumbent firms. The decision
over which of all the potential entrepreneurs produce in the market in any particu-
lar period is made by the capital markets by allocating their supply of funds to a
subset of potential producers. In the equilibrium that we consider the lenders lend
F’ only to n(g,,G,) entrepreneurs who have never failed in their debt and, when
determining the identity of those entrepreneurs, they give priority to entrepreneurs
who were active in the previous period. Their strategy is to commit to the use of the
costly monitoring technology whenever the interest payment by the entrepreneur is
below the scheduled payment. We make the assumption about giving priority to
old entrepreneurs because it seems to reflect the reality and it is likely to be the one
that maximizes the amount of funds lent to the industry (subject to the perceived
exit rule in shakeout and the assumption that the firms compete in quantities).? In

equilibrium the market structure depends only on the state of the economy (g, Gt).

2.3.1 Stationary Markets

To characterize the market evolution we must first characterize the market structure
in all states (s,G,) for G, < G, that is in all the stationary markets, and then
by backward induction figure out the market structure in growing markets, states
(9, Gt). Throughout the paper we assume that the cost parameters € and F are large
enough so that in the equilibrium where the entrepreneurs use the safe technology
the number of firms is larger than in the equilibrium where the firms use the risky
technology. We will later provide conditions on &, F and 7. the probability of high

marginal costs, that guarantee that this is indeed the case. In any state, in addition

4Note that if we did allow for collusion, the profits would be higher and the maximum number
of firms might be higher as well. However with competitive loan markets and many potential
entrants such collusion could be very difficult to sustain.
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to market clearing conditions in product markets, the following three conditions
must hold for an equilibrium in which the entrepreneurs produce with the riskless
technology: (1) the incumbent firms must make non-negative profits and (2) they
must have an incentive to use the safe technology and (3) no additional lending to
new entrants is profitable.

Let us now derive the equilibrium conditions for such an equilibrium for an
arbitrary stationary market (s, G,). Denote by = (n, G') the equilibrium profit, and
by ¢(n, G.) the equilibrium output of a single firm who engages in a quantity compe-
tition with n—1 other firms, all producing with safe technology. It is straightforward

to show that:

_ Gg(a - 6)2 _
7T(7L, Gg) = m F, (22)
and
Gila—c
10,6) = A

To calculate the equilibrium conditions we must also calculate the profits of the firm
when optimally deviating to the risky technology, 7¢(n,G,¢) for ¢ € {0,2}, when
the other (n — 1) producers produce g(n,G). When the marginal cost Z is below the
price so that the firms produces a strictly positive quantity even in the event that

€ =T it is easy to show that:

Gi(2a 4 (n—1)c — (n + 1)8)? N

4b(n + 1)2 F

de('n, Gt, E) =
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When € is higher than the market price that would prevail if the deviating firm did
not produce at all, then 74(n, G,,¢) = 0.

One of our assumptions was that the entrepreneur has a limited liability.
This means that if the entrepreneur obtains credit with an interest rate R the
entrepreneurs payoff is max{m — R, 0}. Since 7 (n,G,,0) > w(n, G:) > R, when
R > 7%(n,G,,?) it may be in the interest of the entrepreneur to choose the risky
technology although En?(n,G,&) < w(n,G,). This is because of the convexity that
limited liability introduces to his payoff.

We are focusing on the equilibrium in which the firms use the riskless tech-
nology and in which the lenders do not discount future within a period. In this
equilibrium R = 0, as the lenders are behaving competitively, and entry to the
markets brings profits down so that in equilibrium w(n,Gy) > 0 > 7%(n,G,,q).
As mentioned, we will discuss later the optimality of the equilibrium with riskless
technology.

Denote by V¥(n, G) the value of the future payoff stream for an entrepreneur
in stationary markets of size (G, assuming that n producers, including the en-
trepreneur, are active in every period. Abstracting from the integer problems, the

three equilibrium conditions in state (s, G) can then be written as:

(1 =6 +~6)w(n,G)
(1-46)

(1 -7)7n,G,0) < =(1-6+v6)V3(n,G), (2.3)

7(n,G) 2 0, (2.4)
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and either

(1-v)m(n,G,0) = (1-6+6)V3(n,Gy) or (2.5)
w(n,G) =0

By looking at equation (2.3) we note that (because (n,G,0) > m > 0)
equation (2.4) is never binding in the equilibrium, and by equation (2.5) we conclude
that equation (2.3) holds as an equality in mature markets.> The equality in (2.3)
then determines n(s,G) uniquely, where n(s,G) is the maximum number of firms
that can obtain credit repeatedly in a stationary market of size . Substituting for

7(n,G) and 7(n, G,0) and rearranging we obtain:

[Gt(a—c)2 [ 1-6++6 J _Gi(2a+(n— 1)0)2] B vF
bin+1)2 [(1-6)(1-7) 4b(n +1)? T (1-6)(1-7)

ar

—(a—cle(n+1) —

G, [( (e ~¢)?

(n+ 1)2(:2] vE
brn+1)2 [(1-6)(1-7)

T |Taoaa—y @

This gives us a second order equation for n(s, G) which has the unique solution:

SIf we require that n is an integer the condition for equality is replaced by:

(1=yrn+1,G) > U808t LG) _ S, 4 1. @7,) or

(1-6)

2.6
T(n+1,G) <0 (26)
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n(s,G) = @ (‘/1 + 5)216— s 1) ~1 (2.8)

where
_ 4byF 9
T e

Equation (2.8) shows that both n(s,G.) and G,/(n + 1)? are increasing in G,. In
fact, it is easy to see from equation (2.7) or (2.8) that for a very large G, n(s,G)

approaches some constant. We have that:

s _ 2(a—c¢) ¥
n(s,G) <7’ = - (\/1+(1—5)(1—7)—1>_1

and n(s, G) approaches 72° as G — oo. Given that G/(n+1)? is strictly increasing in
G we have also the result that 7(s, G) is strictly increasing in (;. Let us summarize

these important results:
n(s,gG) > n(s,G), ¥g > 1

and

n(s,9G) > 7(s,G), Vg > 1.
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In the equilibrium above the incentives to cheat are bigger in larger markets.
Similarly then, so must be the value of behaving prudently, or in other words, the
discounted stream of equilibrium profits. The result that (2.3) never binds is similar
to the result in Klein and Leffler (1980) and extends the result of Stiglitz and Weiss
(1981) to a repeated game setting: in stationary markets the sellers must receive a
positive stream of profits to prevent cheating from taking place. What we have also
shown is that with quantity competition this stream of profits is larger in larger
markets.

Now there are two questions that we have omitted so far and which we can
now answer. First question is a condition on F, v and Z that guarantees that the
equilibrium with safe technology is robust to the threat of fly-by-night entry from

firms producing with the risky technology. For this it is sufficient that

En(n(s,G),G,&) <0

When this condition holds there is no room for any firm producing with risky
technology to enter, even if the lender could somehow persuade the entrant to
distribute its entire profits as interest to the lender. Second question is what is a
sufficient condition on F, v and Z so that the number of firms in the equilibrium in
which the firms use the safe technology is larger than the number of firms in the
equilibrium with risky technology. The precise conditions for this are given in the
appendix but similarly as the first condition, this condition is satisfied as long as v,

F and € are large enough. Throughout the analysis we assume this to be the case.
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2.3.2 Growing Markets

Having solved what happens in the mature markets in an equilibrium where the
firms use the riskless technology we can look what happens in the growing markets.
We show that the growth opportunities relax the incentive compatibility constraint
allowing for a larger number of firms to operate in growing markets than in sta-
tionary markets of the same size. We show that the zero profit constraint can be
binding in growing markets whereas in static markets it could not. To get some
intuition let us look more closely at the incentive compatibility constraint for the
growing markets.

The situation is now more complicated than in the stationary markets. Sev-
eral things may happen even if the entrepreneur pays back his loan at the end of
the period. First there is uncertainty over the next period’s growth state. Second,
for any given growth state if the equilibrium number of producers is smaller in that
state than what it is today, there may be uncertainty over whether any particular
entrepreneur is issued credit in the next period or not. That is, there may be some
credit rationing among incumbent producers in some states of the world. To calcu-
late the value function at any growth state we must specify the rule that determines
who gets credit and who does not in the event that some firms must exit. Civen
that all entrepreneurs are identical, there are several ways to define consistent deci-
sion rules that determine which of the firms exit and which remain. We look at two
possible decision rules for exit: (1) “Equal probability of exit for all incumbents”
and (2) “First in last out.” These definitions are self explanatory. The latter is
well motivated in a setting, such as the one that we analyze in section 5, where
there are several types of entrepreneurs and a long good credit history increases the

probability of a good entrepreneur. For the second exit rule to be well specified we
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assume that even if there are several entrants in any given period they enter in some
order so that there are no ties.® In both cases, once the entrepreneur is declined
credit we assume that he is not issued credit in any of the future periods.”

Let us denote by v;(n,m;, G,) the probability that entrepreneur ¢ who was
issued credit in the previous state (g,G,), gets credit in state (9j, min{g;G,,G})
given that n — 1 other entrepreneurs were given credit in previous period and my
of them have entered the markets before i. That is, ¥;(n,m;,G,) is entrepreneur
¢’s probability of survival when the next period’s growth state is J € {s,g9}. When
the exit rule is “Equal probability of exit for all incumbents” Yi(n,m;,G,) does not

depend on m; and it is:

. n(g;, min{G.g;,G}

As profits, this probability is adversely related to the current number of producers,
but now only in the first order. Similarly when the exit rule is “Last in first out.”

In that case ;(n,m;, G,) does not depend on n and is simply:

1 ifn(g;,min{G.g;, G}) > m;
;(ma, Gy) = (95 {G.g; _})
0 if n(g;, min{G.g;,G}) < my

Let us first assume that the exit rule is “Equal probability of exit.” As before,

let us denote by V9(G,) the value of the future payoff stream to an incumbent

SIn a later part of the paper we will assume that in the case of ties the decision rule is “Equal
probability of exit”. Formally the exit rule is determined by determined how incumbents are
ordered in queue as they enter the credit markets.

"Since all entrepreneurs are identical and there are infinitely many entreprencurs we can assume
this kind of behavior. Irrespective of that, this would be the case in the equilibria that we consider
even if the firm that exited with a good credit history was the next one to enter if there was further
entry. This is because once the number of firms declines in the equilibria that we consider, i.e.,
there is a shakeout, the number of firms never increascs again.
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entrepreneur in state (g, G;). Remember that the value of the outside opportunities
to all entrepreneurs are zero. Now, as before, the incentive compatibility and zero

profit conditions in state (g, G,) can be written as:

(1 - y)n%(n,G,,0) — w(n,Ge) < (2.9)

Y6 [pﬂ)a(n, G )V(Ge) + (1 = p)ihy(n, G)V*(min{G.g;, (_}})] ,

*(n,G,) > 0. (2.10)

In addition, in equilibrium one of the equations holds as an equality.

Look at the state (g, G,) such that gG. = G. We know by our previous results
concerning stationary markets that in this case Y4 2 1y because more producers can
stay in the market if there is growth and the state is (9.G) than if it is (s, G,). We
also know that when there are exactly n(s,G,) producers in markets Yy =Yy =1
for all incumbents and since V*(G) > V*(G,) neither the incentive compatibility
nor the zero profit constraint hold as an equality. Therefore the equilibrium number
of firms, n(g,G,), must be strictly larger than n(s, G,). But this means that 1, < 1
and that there is exit when the growth stops at (i;. More generally the same result,
namely that ¢, < 1 for any G, < G, follows if the following two conditions hold:
V9(gG,) > V*(G,) and n9(gG,) > n*(G,).

We can solve for the optimal amount of firms in growing markets by backward
induction. Having solved for n(g, gG;) we can work back equations (2.9) and (2.10)
recursively to determine n(g, G,). Because of the structure of the model, however,
it is not possible to obtain a closed form representation for n(g,Gt), and therefore

the profits or the magnitude of the shakeout, except for extreme values of g and
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6. The following proposition characterizes the number of firms in growing markets

when g and § are large.

Proposition 1: When the exit rule is “Equal probability of exit,” there
exists g such that for all g > g, there exists §(g) such that for all § > 6 and for all

G, < gTGO:

1. m(9,G,) =0
2' "/’g(g,Gt) = 1

3. ’l/)s(g, Gt) <1

That is, when g is larger than some boundary value and § is sufficiently large,
the profits in growing markets are always zero. The number of firms is constantly
increasing and there is a shakeout once the growth of the demand stops.

The proof of the proposition is given in the appendix. The intuition is that
when g and § are sufficiently large the value of behaving prudently is very large
and the incentive compatibility constraint is not binding even when there is the
maximum number of firms operating in markets and the profits are zero. When
the zero profit constraint holds in the growing markets we can easily characterize
the evolution in prices, quantities produced by all firms and the number of firms in

growing markets. We have:

Gt(a - C)2

"(ga Gt) = Fb
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As the markets grow, the number of producers increases. This increases competi-

tion, increasing the production by each producer:

G.F
Q(g;Gt) = #:

and resulting in a geometrically decreasing market price:

_a(d?*-1)+c F
p(ga Gt) - b2 + b3G¢ .

When the growth stops and the markets mature, the number of firms decreases to
the point where the incentive compatibility constraint holds. That is, there is a
shakeout as the growth stops. At this point the market price increases to some
extent because of a decrease in competition. After that the number of producers,
prices and quantities stabilize.?

We now look at the second possible exit rule: “Last in first out.” Since the
exit rule now depends on m;, the order in which the entrepreneur ¢ entered the
markets, the value function representing the value of a player i’s expected payoff
stream can also depend on m; in growing markets. So let us denote by V9(G,, m)
the value of the remaining payoff stream in state (g, G.) to the firm who was (is)
the m’th firm among incumbents to enter he markets. As before the equilibrium

conditions are that

(1 - 7)7%(n,G.,0) = 7(n,G,) < (2.11)

8Note that given that the zero profit constraint is binding there can be no strategic behavior
by the firms to deter entry. This is no longer true when we allow for heterogenous firms.
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Y6 [os(m, Ge)V*(GL) + (1 = p)fy(m, Go)V*(min{G.g;, G}, m)|,

w(n,G,) > 0. (2.12)

for all m < n, and either

(1 —7)74(n,G) — n(n,G) =

Yopus(n, G )V3(G,) + (1 — P)¥g(n, G )V (min{G.,g;, G}, n),

or

m(n,G) =0

where we have made use of the fact that Yg(m,Ge) and V9(mn,G,) are decreasing

in m. In this case, we can show that a somewhat similar result holds:

Proposition 2: Assume that the exit rule is “First in last out.” There
exists g such that for all g > g, there exists 8(g) such that for all § > &6 and for all

G: < g¥Gy the number of firms is given by n(g, G;) = min {ns(ﬁ), C—‘(%E - 1}.

That is, when g is positive and § large enough up to ns(G) firms are willing
to enter the markets even if they were to earn zero profits during the growth stage
of the industry. The intuition is the same: there are large positive profits to be
made by the firms if they make it to the large and very profitable markets. With

this exit rule there can not, however, be more than ns((G) entrants because even
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if we were to reach the state (s,G) no additional firms would obtain credit in the
future. Proof for the proposition is given in the appendix.

An example will help to fix the ideas:

Example:

A numerical example assuming “Equal probability of exit”

G, l 2 4 8 16 32 64 128 | 256 | 512 | 1024

n(g,G.) 1.0 1.9 1 30 | 47 | 7.1 104|151 218 | 31.2 | 445 | 205

n(s,G¢) | 1.0 1.7 1 28 | 42 | 6.1 85 [ 11.2 | 14.1 | 16.9 | 19.0 { 205

9(9.Ge) | 45 { 6.3 | 89 [ 126 17.9 ] 253 | 358 | 50.6 71.6 | 101 | 429

q(s,G:) | 46 | 6.6 | 95 | 138 | 203 | 305 | 47.1 76.1 | 129 ;| 230 | 429

p(g,Ge) | 055 | 042 | 0.32 | 0.26 | 021 | 0.18 | 0.16 | 0.14 0.13 ] 0.12 | 0.14

p(s,G¢) [ 056 [ 0.43 | 0.34 [ 027 | 023 ] 020 | 0.17 | 0.16 0.15 | 0.14 | 0.14

(s,G;) | 0.1 02 | 02|04 06 (09 1.5 | 25 4.5 8.4 16.0

shakeout | 5% | 6% | 7% | 10% | 13% | 19% | 26% | 35% | 46% | 5T% | -

¢e=1b=01,c=01,c=2 F=2,9g=2p=01,6=09,7v=0.3, G = 1024

‘The market size is initially small, demand given by Py =1 —0.1Qy, but grows at a
rate g—1, i.e., 100% per period. For these parameters the positive profit constraint
is always binding in growing markets. The number of firms increases as the market
size increases and there is a shakeout once the growth stops. In this example the

shakeout is larger if the growth stops at a later point in time.
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2.4 A Model with Technological Innovations

In this section we look at a model where there are technological innovations until, at
some random point in time the technological possibilities become fully exhausted.
There are two types of technological innovations: first there are innovations that
increase the demand by increasing the consumers’ valuation for the product. Second
there are technological innovations that merely decrease the costs of production of an
existing product. Empirical evidence cited in Gort and Klepper (1982) suggests that
both kinds of innovations occur in the young and growing markets, suggesting that
they are interrelated. They discuss evidence that the periods of heavy innovation
activity are associated with both increasing demand and a continuously declining
price. In this section we show that similar results to the previous section can be
obtained in competitive markets if the growth of demand is driven by technological
innovations that simultaneously reduce the costs of production and increase the
optimal plant size.?

We assume a similar setting to the previous section in that there are infinitely
many of two types of agents: entrepreneurs and lenders. The entrepreneurs are in-
finitely lived whereas the lenders live only for one period. The entrepreneurs choose
between two technologies, riskless and risky, parametrized by a risk parameter 6.
As before, the lenders’ strategy is to give priority to previous borrowers who have
successfully paid their debt and never to lend to an entrepreneur who has failed on
his debt. The number of entrepreneurs who are issued credit is determined by the
zero profit and the incentive compatibility constraint. We assume that for both the

risky and the riskless technology the costs of production are given by:

9In the previous section increasing entry to growing markets resulted in an increase in compe-
tition which endogenously led to declining prices.



2
C(q) =F+(c+0)q+2q—¢t.

F is the fixed cost, ¢, 6 and ¢ are components of the marginal costs. ¢, reflects
the technological innovations and ¢, = {boy -ere-. } is an increasing sequence of tech-
nological parameters. As mentioned before, we allow for the possibility that ¢,
affects the consumers’ demand in addition to its effect on costs. We assume that
the evolution in ¢, is similar to the evolution of (7; in the previous section. We use
similar notation as before, and denote the state of the economy by (g, ;) where
gt = @¢/de—1. The state of the economy evolves as follows: when the growth state
is ge = g > 1 the next periods state is (g,g¢,) with probability (1 — p) and it is
(s,¢¢) with probability p. s = 1 and the state (s,¢¢) is absorbing. We assume that
there exits some upper bound on ¢ such that ¢, < ¢ where & = ¢ogT for some finite
T Here the technological innovations decrease the costs of production and increase
the optimal plant size.

We assume that the entrepreneurs must borrow the fixed costs F in every
period. The lenders and borrowers can ex ante commit to a monitoring technology
by which the lender can observe the entrepreneurs profits but at a cost of losing
that periods profit. The borrower chooses a quantity q € [0, 0] and the level of risk
in the marginal costs § € {6,,6,}. We assume that 0, = 0, and 6, = 6y > 0 with
probability v and 6, = 6, < 0 with probability (1 — v). We assume that Ef, > 0.

As before we assume that the lenders do not discount the future within the
period that they live and are willing to lend money to entreprenewrs at no cost if they

are sure to receive their money back. It is easy to verify that under these conditions
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the entrepreneurs optimal quantity choice if he chooses the riskless technology is
q° = ¢[p — c]. Let us consider the (interesting) case where the entrepreneurs profit
under the optimal production level is strictly negative if § = 0. The assumption
of competitive lending markets guarantees that this will be the case in equilibrium.
If the borrower chooses the risky technology and 6 = 6, his optimal output is

¢* = ¢[p—c—0.] > ¢*. The associated profits from production are:

p-c-0Ps

T =
2

Because of limited liability, the entrepreneurs payoff is the maximum of 7 and
zero. As before, the entrepreneurs payoff is therefore convex in 6. So by Jensen’s
inequality, other things equal, the entrepreneur prefers variance in 6. He continues
to prefer risk in 6 even if the expected value of 0, is greater than zero, as long as
the variance in 6, is large enough. In fact, in equilibrium the number of firms and
price are such that the expected periodic payoff to the entrepreneur is larger under
the risky technology than under the riskless technology.

As mentioned, we would like to allow for the possibility that the innovations
affect positively the level of demand. Let us therefore assume that the demand is
linear in ¢ for some & > 0. If @ > 0 the demand is increasing in ¢ and if « = 1 it

is linear. Otherwise we assume a constant elasticity of demand, so that:

Q=¢", (2.13)



where 7 is the elasticity of demand.

2.4.1 Stationary Markets

For now let us assume that ¢, is fixed and look at the market equilibria for different
¢. The equilibrium conditions for an equilibrium in which the firms always use the

safe technology are:

w(n,¢) >0 (2.14)
__?1(71’ ‘;i > (1= 7)a(n,¢,0.) + (1 - 7) 67{@’ f ) (2.13)

and a requirement that one of these equations holds as an equality. We can write

the incentive compatibility constraint as

1—16(_16—7) [lp—;] ¢‘FJ 2(1_7)[[p—c;m 4 _n

—~
o/ =Ly plp-cion-0t]| > 225 (2.16)

It is easy to see that m(n,¢) = 0 implies that the left hand side of (2.15)

is zero while the right hand side is strictly positive implying that the incentive
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compatibility constraint does not hold. We therefore conclude that 7* (n,¢) >0
and that the relevant constraint to look is the incentive compatibility constraint.

In equilibrium, therefore, (2.15) holds as an equality. This allows us to solve for
p(¢):*°

oy 201 =891 1) v 2y
p(¢) =c+ ~ N1+u—®u-ﬂ+u—&u—ww%+l

From this equation we can see that p(®) is decreasing in ¢. It is also easy to
see that [p — c]® ¢, the firm’s profit along the equilibrium path, is increasing in ¢.

In fact as ¢ — oo, p converges to

Lo 0= -¢) 1-6(1-7) ) _
PE 7 (1+\J(1—5)(1-7))+"

so that in the limit the changes in profits are proportional to changes in ¢. We have

therefore shown that the profits are larger in markets with better technology. This
corresponds to our earlier result with the model with varying demand: that profits
are larger in larger markets. We now look what happens to the number of firms in

stationary markets as a function of the market size. Equation (2.13) gives us that:
a 1 a -1
p=¢"Q n=¢n(n[p—c]¢) ",

or that :

19Remember that 0, < 0.



We have seen that p decreases in ¢. However the effect of ¢ on n is more complicated.
If @ > 1 so that the technological innovations have a profound effect on demand,
then the number of firms always increases in ¢. If, however, a is zero, so that
the technological innovations affect only the costs, then everything depends on the
elasticity of demand 7 and the magnitude of ¢. In this case we can see that if
n is large then n first increases in ¢ since p decreases in ¢. However as ¢ keeps
increasing p converges to some number and for large ¢ the equilibrium number of
firms necessarily decreases in ¢. For small n, when a < 1, the equilibrium number

of firms decreases in ¢ right from the start.

2.4.2 Growing Markets

Let us now look at the growing markets. As before we denote by g, ,(¢:) the
probability of survival to the next period given that the next period’s state is
(9t+1, 9t+19141). Again we consider two possible exit rules: “Equal probability of
exit” and “First in last out.” Denote by m; the measure of firms that have entered
before firm i and by & the measure of firms that entered the same time as i. As

before, for these exit rules

Vo = (Ges1, Pes1)
Je+1 n(!]t, ¢t.)

and
0 if 12(geq1, Prar) < my
w;,“ = M);"—“ if m4+k > n(ges1, Peer) > my
1 if n(Ger1, dea1) 2 mi+ k

o
[S4]



respectively. That is, if there are several firms that have entered at the same time
and some of these firms have to exit we have assumed “Equal probability of exit”
even when the exit rule is “First in last out.”

As before, we can write the incentive compatibility constraint and the zero

profit constraint for firm 7 in state (g, ¢,) as:

m(n,¢) 20

and

5’7Ei1/’g,+;V(gz+1,¢t+l) 2> (1 - ’Y)Wd("qﬁéc,oL) - 7"("’: ¢z)

Further equilibrium requirement is that one of these equations holds as an equality
for the entrants in the last cohort. Remember that as before 7* = p—-c?¢/2—-F
and = [p — ¢ — 0,.]°¢/2 — F. These equations allow us to recover, by backward
induction, the prices and the number of firms in all growth states.

By increasing g and § we can again make the profits (s, g¢p.) arbitrarily large
in relation to (s, ¢;). Note however that if & < 1 we may at the same time reduce
the number of firms that can stay in the markets in state (s, g¢). This suggests
that for &« > 1 similar results to the previous section can be obtained. For o < 1,
however, the elasticity of demand as well as the exit rule are crucial in determining
the equilibrium number of firms in growing markets and thereby the extent of the
shakeout. For instance when o = 0, in contrast to the case where a > 0, the value
of expected future earnings for an incumbent producer do not necessarily increase

when we increase g. Comparing stationary markets with different ¢ when o = 0 the
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profits of the incumbent firms are proportional to ¢ in the limit, but at the same
time the number of firms, n(s,¢), is inversely proportional to ¢. When o < 1 and
the exit rule is: “First in last out,” larger g may actually decrease the number of
firms in growing markets of any given size.

To conclude, when the industry growth is driven by technological innovations
the path of industry evolution is similar to the previous section if the technological
innovations simultaneously increase the demand for the product and increase the
optimal plant size. By “similar” we mean that even the very extreme results that
profits are always zero in growing markets and there is always a shakeout when
the growth stops are likely to be obtained in this case. The analysis suggests also
that if the technological innovations affect only by reducing costs and increasing
the optimal plant size then the industry evolution would be similar to the previous

section only when 1), the elasticity of demand, is large and ¢ is small.

2.5 Two Types of Entrepreneurs

In this section we study a model where there are two types of entrepreneurs: First
there are entrepreneurs who can use the safe technology just as in the previous
section. Secondly there are entrepreneurs who despite their effort simply can not.
We call these “good” and “bad” entrepreneurs respectively. We assume that the
proportion of bad entrepreneurs among the entrepreneur population is x and that
the proportion of good entrepreneurs is 1 — . The bad entrepreneurs, when using
the safe technology, have only an upside risk in their costs in the sense that when
they are using the safe technology with probability v the costs are higher than

for the good entrepreneurs with the safe technology and with probability (1 — )
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they are the same. The entrepreneurs do not know whether they are good or bad
before they experience a bad cost realization when using the safe technology. Given
these assumptions, there must now be a positive monetary transaction from the
entrepreneur to the creditor in every period whenever the amount of firms is such
that bankruptcy is possible, that is, there must be a nonzero interest rate. We must
also modify the lender’s strategy for the use of the costly monitoring technology.
We assume that they use this technology whenever the entrepreneurs payoff is less
than the minimum of the scheduled interest payment and the lower support of his
profits along the equilibrium path.

In this kind of setting the exit rule is clearly: “First in last out.” In contrast
to the former model there will now be entry and exit both in growing and stationary
markets. In fact, the young and growing markets have a high exit rate in addition
to a high entry rate, as many of the producing entrepreneurs are still bad. In
stationary markets the bad entrepreneurs are weeded out over time and the pool of
entrepreneurs becomes better and better. At this stage, the exit rate as well as the
interest rate slowly decline to zero.

In order to calculate the equilibrium, we need the conditional probability that
an entrepreneur is bad (good) given his credit history. Clearly in an equilibrium
where every entrepreneur attempts to use the safe technology, a failure to pay ones
debt is proof of being a bad type. If, on the other hand, a firm has obtained and paid

his credit back in 7 previous periods, then by Bays rule he is bad with probability:

p(l =)

<1
l—p+pl-7)

AlT) =

In an equilibrium where all entrepreneurs use the safe technology, or try to use it,
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this is also the proportion of bad entrepreneurs in the cohort of entrepreneurs that
entered T periods ago.

Given this, we want to calculate what is the interest rate at which an en-
trepreneur with such credit history would obtain credit, if he does. Denote by r(7)
the interest rate than an entrepreneur who has paid his credit 7 times would have

to pay if he obtains credit. Clearly (1) must satisfy:

(1) = A7)y (F‘ + (1) — m(n, ¢,E)) .

So we have

Ay [F — n¢(n, ¢, E)} v [F — w%(n, d),E)]

r(T) = e .

Characterizing an equilibrium in this case is more difficult than in the previ-
ous case. Here the entrepreneurs incentives are affected besides the growth rate in
the markets by also the probability with which he is good, and possibly the proba-
bilities with which the other incumbent entrepreneurs who have entered before him
are good. If we are dealing with finitely many incumbents, because the zero profit
condition does riot hold for an incumbent who has a good credit rating when pro-
ducing the Cournot quantity, there may be room for him to behave strategically. If
we are dealing with a continuum of entrepreneurs, as in the previous section, these
strategic issues do not arise. For simplicity let us therefore focus on the framework
of the previous section: the case of technological innovations and assume that there

is a continuum of entrepreneurs active in markets of any given size.
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In stationary markets, ¢, = ¢, in every period, in case an entering en-
trepreneur is certain to remain in the markets as long as he pays his debt the

value of his remaining payoffs when choosing the safe technology are:

Ve d) = 36 ((1 = A(0)) + AQ)(L — 7)7] (e, 8) — ()]

=0

Where n; is determined in equilibrium and is typically decreasing in stationary
markets as bad firms exit over time.!! Assuming that there is no exit except for
firms who fail to pay their debt, the number of firms who are active in markets is

given by:

n, = Zt:mf [1 —p+p(l - ’7)‘"’] :

=0

where m. is the number of entrants in period 7. The proportion of good incumbents

in period ¢t is then:

O n T,
e

U

Equilibrium, once again 1s characterized by the zero profit constraint and the
incentive compatibility constraint (for entrants and all cohorts of incumbents). For

an entrant who entered in period 7 the zero profit constraint is:

"'Note that given the exit rule and deterministic evolution of different types of entrepreneurs it
can be shown by a backward induction argument that only entrepreneurs who have a possibility
of remaining in the markets for an infinitely long period of time can ever have an incentive to
choose a safe technology and enter the markets.
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w(ne, @) —r(t—1) >0,
The incentive compatibility constraint for not taking risks is that

Vi (ne,¢,7) 2 (1= 7)w(n, 6,6.) + (1 — 7)8VS  (neer, 6, 7 + 1)

(1 =7 (n,¢,0.) = [1 — ¥t = 7)] 7(n, $) < 6v(1 — At —1))-

i ot 1 [[(1 —At—=TH+1)+AE-T+1( - 'y)T“J (7(ni, ¢) — (i — 7)]

i=t+1

We can see that the incentive compatibility constraint and the zero profit
constraint are relaxed as we decrease 7. Therefore these constraints are binding to
a maximum of one cohort of entrepreneurs. In particular, if they are binding for
entrants then they are satisfied for all incumbent cohorts of entrepreneurs. Also,
if these conditions are satisfied when the number of incumbents is 7, they are also

satisfied when the number of incumbents is less than 77.!2

12The above equations do not take into account the second moral hazard problem - namely that
the firm wants to pay back its entire loan and does not steal the lenders money by claiming that
the cost realization was €. This condition is:

§V3(n, ¢, T) > 1r“(n,¢,0) - .

We have ignored this constraint above because we want to focus on the other moral hazard
problem that we have identified. We therefore have implicitly assumed that the firms experience
a very high disutility [rom stealing.
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In principle these two conditions allow us to calculate the equilibrium number
of entrants, incumbent firms as well as prices over time in stationary markets given
any initial pool of entrepreneurs. First we have to calculate the incentive compati-
bility constraint for all possible proportions of good firms. Then we use backward
induction to figure out what the entry rate is for any particular proportion of bad
entrepreneurs in the first state that there is entry. We can then back to the previous
period and calculate the entry rate in that period and so on.

We can then proceed to the growing markets. Here the exit rule is “First in
last out,” because firms with longer credit history are in a strictly better position
to obtain credit in the future. We can write the incentive compatibility constraint

now as:

Sy(1—-At—1)) E* [’/’ythH(ng, Ge41.T) | Ur,mr, nf,vz,nc]

> (1= 7)7(n, 6, 00) — (1 = YAt — 7)) (1, o).

When the number of firms in any given cohort must be rationed we assume that
the exit rule is “Equal probability of exit.” We have now developed algorithms that
can be used to determine the entire course of industry evolution in terms of number
of firms, entry and exit rates, outputs produced and prices.

We can make a few observations already from the shapes of the incentive
compatibility constraints. Other things equal, an uncertainty over the other in-
cumbents abilities increases an entrants incentives to enter and behave prudently

because it affects the future exit rate and the number of incumbents with better
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credit history in the future periods. Uncertainty over one’s own ability, on the other
hand, reduces firms willingness to behave prudently. As was discovered in the pre-
vious section the technological innovations can result in several types of industry
dynamics depending on the magnitude of «, that is, the magnitude by which the
innovations affect demand, as well as the elasticity of demand. Major difference to
the model of the previous section is that now there is entry and exit in both growing
and mature markets. The latest entrants are most likely to exit (Horvath et. al.,
1996) and there is most entry and exit in young markets (Klepper and Miller, 1996).
As the markets mature and the pool of existing entrepreneurs slowly becomes bet-
ter, the incentives of a new entrant to behave prudently are reduced and the entry
rate to the markets decreases. This observation suggests that the shakeout is now

much more gradual than in the single type of entrepreneur model.

2.6 Conclusion

We studied industry evolution when the entrepreneurs must finance their invest-
ments by borrowing and there is concern over their incentives to take risks. The
demand for industry output was exogenously determined. We assumed that the
demand is first small but growing at a high rate. The demand continues to grow
until, at some random point in time, the markets mature and growth rate is signifi-
cantly reduced. The firms have no saving technology and must borrow the funding
for their investments in every period. The entrepreneurs incentives to take risks are
proportional to their output and the market for lending is competitive. We first
analyzed a market with finitely many firms competing in quantities.

Under these conditions the market evolution resembles that documented by
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the empirical research: e.g. Gort and Klepper (1982). First the number of firms
is small and, due to the lack of competition, the price for industry output is high.
As markets grow the number of firms increases, competition increases and price
falls towards the marginal costs. When markets mature, there is a shakeout and
the number of firms is dramatically reduced. The shakeout occurs because with
lower growth the firms incentives to behave prudently are reduced and many of the
existing firms are denied credit. We then extended the model to a case where the
growth of demand was driven by technological innovations which also decreased the
costs of production and made the optimal plant size bigger. Here we allowed for a
continuum of firms to enter to the markets and assumed two types of entrepreneurs:
“good” and “bad”. The good as well as the bad entrepreneurs had a choice between
two technologies, safe and risky, but the bad entrepreneurs experienced high cost
shocks with a positive probability even when they used the safe technology. For
this case we developed algorithms that allow us to track the industry evolution in
terms of prices, quantities, entry and exit rates and the number of producers. It
was argued that when the technological innovations affect both demand and costs
the industry evolution is similar to the basic model, except that now there is entry
and exit in both growing and static markets. It was argued that the relative exit
rate is highest in the young markets because in these markets the proportion of bad

entrepreneurs is the greatest.
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Chapter 3

Word-of-Mouth Communication

and Community Enforcement

3.1 Introduction

It has long been recognized that community enforcement can make sellers behave
cooperatively even when they meet particular buyers only infrequently and have
a short term incentive to cheat, e.g., to supply low quality or to shirk in a labor
contract. For instance, Klein and Leffler (1981) study the problem of credibly com-
mitting to offer high quality in a model where a continuum of buyers are randomly
matched with several sellers and each seller has a short term incentive to supply
low quality at a lower cost. In their model community enforcement by the buyers,
through a coordinated boycott after observing low quality, provides incentives for
the seller to produce high quality. The results of Klein and Leffler (1981), along
with most of the existing literature on community enforcement, depend upon the

assumption that past quality choices of the seller are public information.



When the number of sellers and buyers is large and particular sellers and
buyers meet only infrequently or only once, the assumption of public information
seems rather demanding. Recently this observation has led to a number of articles
looking at community enforcement with less stringent informational assumptions.
These papers include Milgrom et. al., (1990), Okuno-Fujiwara and Postlewaite
(1995), Kandori (1992) and Ellison (1994). However, partially due to the difficulties
of dealing with private information, all of the above mentioned papers have made
extreme informational assumptions: either complete anonymity of players together
with the assumption that players observe only the actions chosen in their own games,
or alternatively, locally complete information, which allows a player to perfectly
observe the status of his current opponent, based on the opponents past behavior.
See also Greif (1993), Harrington (1995), Greif (1994) and Greif et. al., (1994).

Kandori (1992) and Ellison (1994) study a repeated prisoners’ dilemma in a
large but finite-population random-matching setting, where players are unable to
recognize their opponents. They show that even then there exist sequential equilib-
ria where all players play cooperatively in every period. Cooperation is supported by
community enforcement based on contagious strategies: all players who are cheated
immediately start cheating their opponents, understanding that the whole society
is in a process of switching into non-cooperative actions. In the equilibrium, players
behave cooperatively to avoid initiating a general switch to non-cooperative actions.
An important factor underlying Kandori’s and Ellison’s results is that defection is
a dominant strategy of the stage game. Whether contagious strategies would work
in a repeated random matching game that does not share this property, such as
the buyer seller game we are about to study, is still unknown. In addition, at least

under their informational assumptions, the cooperative equilibria based on conta-
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gious strategies are unstable in the sense that a single “insane” player who does not
cooperate can destroy the good equilibrium for all agents (Ellison, 1994).

Okuno-Fujiwara and Postlewaite (1995) and Kandori (1992) consider games
with local information processing: 1) Each player carries a label observable to her
opponent, 2) when two players are matched they observe each other’s label before
choosing their actions, 3) a player and his partner’s actions and labels today deter-
mine their labels tomorrow. The information processing is “local” in the sense that
the actions chosen by a pair of players are based only on their labels, not on the
entire distribution of labels across the population, and the updating of each player’s
label depends only on the previous labels and the outcome of the stage game. When
the population is large and players are randomly matched, the observability of the
current trading partner’s label and the updating of the labels require the existence
of some efficient information transmission and processing mechanism. This could
be a medieval law judge (Milgrom et. al., 1990) or institutions like credit bureaus
which track the transactions of every agent.

In many real life situations, however, social norms and informal information
transmission mechanisms can replace formal institutions and still facilitate cooper-
ation. In this paper, we present a model of community enforcement that is based
on word-of-mouth communication. The information transmission is highly imper-
fect in the sense that information about each defection spreads only to part of the
player population and defectors can not always be immediately punished. Despite
this, since players can be identified, private reputations evolve. This allows equi-
libria where only defectors are punished; making our equilibria more stable with
respect to “insane” players, who do not cooperate, than those based on contagious

strategies. In fact, when information is privately costly, only some of the sellers can
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cooperate in any equilibrium. Nonetheless, word-of-mouth communication is shown
to be surprisingly efficient in facilitating cooperation.

We assume there are M sellers and M buyers, where M is large but finite
number, and that in each time period t = 0,1, 2, ..., the sellers and buyers are
randomly matched to play a stage game that contains an opportunity for a mutually
beneficial trade. The sellers have a short-term incentive to supply low quality
and will supply high quality only if the gains from maintaining good reputation
outweigh the short-term loss. For simplicity, it is assumed that buyers would not
knowingly purchase low quality at any price. We assume that buyers have networks
of communication that, roughly speaking, work in the following manner: In each
period each buyer observes N trades in addition to his own and N buyers, called
spectators, observe his trade and send him signals regarding his current trading
partner. We can think of these N spectators as friends of the buyer or just people
who happen to pass by. We assume that the identities of the spectators can change
from period to period.

Throughout the paper we consider two kinds of strategy profiles, which differ
in the informativeness of the signals. The strategy profile with the less informative
(actually totally uninformative) signals is equivalent to a model where signalling is
not allowed. For these two strategy profiles we provide sufficient conditions on N
and the discount factor for a sequential equilibrium where good quality is supplied
by all sellers in every period. Assuming the existence of a public randomization
device and high enough discount factor, these conditions can be stated as N > N+
where N* is a constant determined by the population size, discount factor and the
payoff matrix. As one of our main results, we show that with informative signalling

N* is a diminishing fraction of the population size.
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We then study a model where “networking” (i.e., setting up N connections)
is costly. In this case, when M is large, we show that there must be a positive
probability of sellers producing low quality goods in any equilibrium in order to
give buyers an incentive to network. When the costs of networking are below a
threshold value, we find a sequential equilibrium in which sellers initially randomize
between high and low quality and continue to produce high quality if and only if
they produced high quality in the first period. In this equilibrium the probability of
buying low quality goods increases in M and the cost of networking. When the cost
of networking reaches the threshold value, trade collapses because the probability
of low quality goods that would provide agents with sufficient incentive to network
is so large that each buyer no longer wishes to experiment with an unknown seller.

In the existing literature on quality provision, it is assumed that agents in-
stantaneously learn about a seller’s defection, see e.g. Klein and Leffler (1981) and
Allen (1984). In this paper we show that word-of-mouth communication can spread
information rather quickly and make such assumptions reasonable approximations
in some settings. When the population is large and information privately costly,
our results suggest, however, that both high and low quality would be produced in
equilibrium. To further understand the role of institutions in transmitting informa-
tion, as in Milgrom et. al. (1990), we feel it is useful to understand the workings of
informal channels of information transmission. We hope that our formalization of
word-of-mouth communication has interest on its own.

The rest of the paper is organized as follows: Section 2 gives the formal de-
scription of the model. Section 3 discusses players’ strategies and presents sufficient
conditions for sequential equilibria with informative and uninformative signalling,

where high quality is produced by every seller in every period. Section 4 shows
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that with informative signalling as M goes to infinity, trade can be sustained with
buyers networking with a diminishing proportion of otner buyers. Section 5 studies

costly networking and section 6 concludes the paper.

3.2 The Model

There are two finite sets of players M, = {1,2,..., M}, k = S, B. Denote by Ms
the set of sellers and by Mp the set of buyers. We envisage the sellers as being
positioned at fixed locations around a circle, where the locations are numbered
clockwise from 1 to M. We refer to seller i as the seller at location 3. It is assumed
the buyers can identify the sellers by the number of their location, but the sellers
can not recognize the identities of the buyers.!

Let © be the set of all permutations of AMg. In each period £t = 0,1,2, ...,
a permutation g, € © is chosen with uniform probability, independent of previous
realizations. Buyer 0,(i) € Mp is placed at location i to play with seller i € Ms the

following simultaneous move “trade” game:

Buyer ,(i)
B NB
Selleri H 1,1 0,0
L 1+g,-¢ 0,0

where both g and ¢ are taken to be strictly positive numbers. The first (second)

number in each entry indicates the seller’s (buyer’s) payoff. Seller’s actions H and

1The more general assumption that sellers can also recognize the identities of buyers does not
change our results. The two strategy profiles that we consider would be equilibria of such a game
under conditions slightly different from ours.

70



L refer to providing “high-quality” and “low-quality” while buyer’s action B refers
to “buy” and NB to “not buy”. With g and ¢ strictly positive, L is the dominant
strategy for the seller and (L, N B) is the only Nash equilibrium of the trade game.
The sellers and buyers have a common discount factor 6 € (0,1) and their overall
payofls are the discounted sum of payoffs from the trade games.

In each period t = 0,1,2, ..., there is preplay communication among neigh-
boring buyers before the trade games. To be precise, the stage game proceeds as

follows:

1. After 6, is realized. buyer j observes 6,, recognizes the identity of his oppo-
nent, 6;'(j), as well as the identities of his “neighboring” sellers, 6;!(j) +
1,6:'() + 2,...6;'(j) + N, where N < M/2 — 1.234 Let us denote by
Sj(6:) = {67'(j) + k}1<k<n the subset of neighboring sellers, whom buyer
j observes at period t, and by N;(8,) = {6,(6;'(5) + k)} cucn their period
t matches. We call N;(0,) buyer j's neighboring buyers at period t. Also,
let us denote by N:0,) = {0.(67' () — k)}<k<n the subset of buyers, who
observe the interaction between j and 6; '(j) at period t. We call N;(6,) the
spectators to buyer j's game at period t. Notice that the identities of the

spectators, neighboring sellers and buyers depend on ,.

2. Buyer j sends a payoff-irrelevant signal to each of his neighboring buyers

n € N;(0.) and receives a message from each spectator in N;(6:). Let us

2The assumption that buyers observe 0, is made to ease the notation. An alternative assumption
that does not change our results would be that buyer j is able to recognize only the identities of
his opponent 8, l(_7') as well as his neighboring sellers in period ¢.

We also make the assumption that N < A/2 — 1. The extension of our analysis to M/2 <
N < M — 1 is trivial. The case N = M — 1 would then correspond to the game with perfect
observability, while the case N = 0 to the game where each buyer observes only the outcome of
his trade game and the identity of his opponent.

3Sellers are female and buyers are male.

*These locations are of Mod M.



introduce the following notation.

e C = {7,B} : the set of possible signals. We can interpret a signal v or 3

as meaning respectively “Good” or “Bad”.

o mi(f) € {7,8} : the signal from buyer j to buyer ¢ € N;(6,).

e m] € {7,B}" : the N-tuple of the signals from j to each of his neighbor-
ing buyers in N;(6,).

e mu(j) € {7,8}" : the N-tuple of the signals from j's spectators, N;(6,),

to buyer j.

3. Seller 6;'(j) and buyer j play the 2 x 2 simultaneous move trade game de-
scribed above. Denote the outcome (or the realized action profile) of that
game by (a3(6;" (7)), af()), where a3(6;'(s)) € As = {H, L}, aB(j) € Ap =
{B,NB}.

4. In addition to his own outcome, buyer j observes the realized action profiles of
the period ¢ trade games played by the sellersi € S (6) and buyers n € N;(8,).
Denote this observation by 0,(j) = ((af(i), atB(Ht(i)))) € (As %

Ap)V+1,

i€S;(0)u{0, ' G)}

The information that Luyer j receives in period f{ can now be written as
(0:,me(5), 0.(5)). We denote with H'(j) the set of all possible histories for buyer
J up to but not including period t. By convention, let H°(j) = 0. An element
h(j) € H'(j) includes all past realizations of 0,, all past messages to player 7,
m,(5), all past messages from player j, m}, and all past observations of player j,

05(7), where 0 < s < t. Hence ,(j) is:
he(5) = (O, me(3), 4, 00(5)) 2 -
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A pure strategy for buyer j is then a sequence {m, 5{};‘;0, where

™ 1 © x H'(j) — {v,B}"
A

Ox HY(j) x {v,8}" — {B,NB}.

75 (0¢, ht(5)) specifies the N -tuple of signals that buyer j with private history ht(j)
sends to his neighboring buyers n € N;(8,) in period t. b(6,, ht(5),m.(3)) specifies
the choice of action for buyer j in the period ¢ trade game against seller 6;!(j),
when j has private history A‘(j) and he receives signals m(j) in the period ¢t com-
munication stage. Correspondingly, let {i, 5/ }220 denote a behavioral strategy for

buyer j, where
B0 x H'(j) - Afy, B}V

Bl : ©x H'(j) x {,B}¥ — A{B,NBY}.

For seller i we define pure and behavioral strategies as sequences of maps
{8}20 and {57}, where
§:({H,L} x {B,NB})* = {H, L}.

&i: ({H,L} x {B,NB})* — A{H,L).

Note that the assumption that a seller does not recognize the identity of a buyer is
implicit in this notation.

Because of the private histories that players have, the equilibrium concept
that we apply is sequential equilibrium. Sequential equilibrium requires that after
any history player’s equilibrium strategy maximize his (her) expected payoff, taking
as given all other player’s strategies and his beliefs about the signals and actions
taken by all other players in all previous periods. Furthermore, his beliefs should be

“consistent” with the equilibrium strategy profile and private history, in the sense of
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Kreps and Wilson (1982).5 A trivial sequential equilibrium is one where sellers play
L and buyers NB after any history: the repetition of the only Nash equilibrium of
the trade game. We are interested, however, in sequential equilibria that support
the efficient outcome where (H, B) is played by all players in every period.

For the most part we confine our analysis on a particular class of strategy
profiles, which we call “unforgiving”. These strategy profiles require sellers to sell
high quality in period zero (in section 5 with some probability), and sell high quality
thereafter if and only if 1) they have always done so, and 2) buyers have always
purchased their goods. Under the unforgiving strategy profile buyers play B, except
to punish a seller by playing N B when they are informed of her defection. The
strategy profiles are unforgiving in the sense that informed buyers punish a defector
whenever they meet her.

There are two reasons for focusing on these strategy profiles. First, they are
simple: In fact, because of the private information that players have, it is difficult
to imagine other strategies that could support the efficient outcome as a sequential
equilibrium in this game. For instance, it is not obvious whether contagious strategy
profiles, where a seller’s defection affects how buyers treat other sellers, would be
equilibria in this game. Checking the incentives of a buyer to follow such a strategy
on off-the-equilibrium paths is very complicated, because his incentives depend on
his belief about the previous plays, which in turn depend on his private history.®
Strategies with less severe, finite punishments are also difficult to implement because

buyers typically do not know the time of the first defection and therefore cannot

5In Kreps and Wilson (1982), the definition of sequential equilibrium requires the specification
of beliefs system as well as a strategy profile. Because the beliefs system which is consistent with
our strategy profiles is simple, we refer only to the strategy profile when describing a sequential
equilibrium.

8See Kandori (1992) for a discussion on the difficulties of private information.
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synchronize the last period of a punishment phase. Unforgiving strategies avoid
these problems and the buyers incentives are easily shown to be satisfied. The
second reason for focusing on these strategy profiles is that, in the class of non-
contagious strategy profiles (i.e., where one sellers action does not affect how the
other sellers are treated), these strategy profiles provide the maximum punishment
for the seller. This is important because the conditions for the efficient outcome
that we derive then characterize the minimum N that is necessary for the efficient

outcome in any sequential equilibrium based on non-contagious strategy profiles.

3.3 Exogenous Connections and Trade

In this section we provide sufficient conditions in terms of N for a sequential equilib-
rium where (H, B) is played by all players in every period. In our model information
about sellers” behavior may spread through two possible sources, the effectiveness
of which depends on the number of spectators, N. First, by observing the outcomes
of N + 1 trade games in each period, a buyer receives information about N +1
sellers: he observes their current actions and may infer knowledge of their past
defections from the actions of their opponents. Second, the information can be
transmitted through direct communication among neighboring buyers. The effec-
tiveness of direct communication depends, however, on the information content of
the signals.

We now introduce two unforgiving strategy profiles that differ with respect
to the informativeness of the buyer’s signals. For obvious reasons we refer to the
first as the Uninformative Strategy Profile and to the second as the [nformative

Strategy Profile. In all periods t = 0,1, 2...., after 6, is realized:



The strategy for seller i is same under both strategy profiles and is:

(I) In the first period play H. After that, if the outcome in seller i's past

games was always (H, B), play H.

(II) Play L otherwise.

‘The Uninformative Stralegy for buyer 7 is:

(IIT) Signal randomly 7y or B with equal probabilities to all 1 € N;(6,),

irrespective of the private history h,(j).

(IV) If j has ever observed 0; !(j) play L or someone (including himself)

play N B against her, play N B regardless of the messages my (7).

(V) Play B otherwise.
The Informative Strategy for buyer j is:

(IIT)’ If j has ever observed 0; '(n), where n € N;(0.), play L or someone

(including himself) play N B against her, signal 3. Signal v otherwise.

(IV) If j previously observed 6;!(j) play L or someone play NB against
her, or if he received a message B from any of his current spectators,

h € N;(6.), play NB.

(V)’ Play B otherwise.

Under both strategies, in the beginning of each period ¢t each buyer j catego-

rizes sellers into two different status groups based on his private history H(j). If he

has observed a seller play L or someone (including himself ) play N B against her by

period t — 1, he gives her the “Bad” status 8. Otherwise, he gives her the “Good”
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status . During the communication stage in period ¢ (phase 2 of the stage game),
buyer j is given the opportunity to signal to his neighboring buyers n € N;(6,) the
statuses that he has assigned to their opponents 6; (n), and to revise the status
that he assigns to his current opponent by taking into account the signals that he
receives from the period ¢ spectators to his game h € N:(6,).

As can be seen from the conditions (III), (IV) and (V), under the Uninfor-
mative Strategy Profile buyers merely "babble”, disregard their neighbors’ signals
and base their choices of action against their period ¢ opponents on the statuses
that they assigned to them after the period t — 1. So the communication stage is
totally uninformative. Under the Informative Slrategy Profile, on the other hand,
signalling reveals all the relevant information (about receiver’s opponent) of the
senders, given the seller’s strategy. Under this profile each buyer j sends a signal
7 or B to each of his neighboring buyers n € N;(6.), depending on the statuses
that he assigned to their opponents 0; ! (n) after period ¢ — 1. He also fully respects
the messages that his spectators i € N?(0,) send to him before the period ¢ trade
game, and revises the status that he has assigned to his current opponent 6; '(5)
accordingly, basing his period ¢ trade game choice of action on the revised status of
67'(4). Both strategy profiles are unforgiving since once a buyer assigns a particular
seller a status 3, he never upgrades her status to v.

Before proceeding it is convenient to introduce some additional notation.
Take any two time periods #' and t, where ¢ < t. Under the Uninformative Strategy
Profile denote by b the probability that 6.() was among the N + 1 buyers who

observed seller ¢ at period #. That is, let b denote the probability
Pr{ie Sou (00) U671 (0:2))}}
Correspondingly, under the Informative Slrategy Profile denote by b the probability
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that either 6,(7) or some of the N 6,(i)’s time ¢ spectators, h € Ng,(;y(0:), were among

the V 4+ 1 buyers who observed i at period ¢. In this case, b is the probability

Pefic U is@IU0G) H}-

je {8‘ (i)}UN;L (%) (al)

It is straightforward to check that

—_— with the Uninformative Strategy Profile, and

1-—- ( ] with the Informative Strategy Profile
N

For both strategies, note that since 8, is i.i.d., b is time independent and does not
depend on t and #'. Note also that for both strategies b increases in the number
of spectators, N. In the proofs of Propositions 1 and 2 we need the unconditional
probability of 6, () assigning the seller 7 a status v after the period { communication
stage, given that seller 7 has defected in every period ' € { tp,... t = 1}. With our
notation, this probability can be written as (1 — b)t-%0.

We are now ready to state our first two propositions. These propositions
provide the conditions under which the Uninformative and the Informative Strategy
Profiles are sequential equilibria of the random matching game. Notice that under
both strategy profiles (H, B) is played in every period at each location along the

equilibrium path.
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Proposition 1: Define two constants §* and b* as follows:

M+g,, -1
( i)
=11+ M=1.| -
4(1 + g)g( i )
. _9(1—-46)
b= T

i) If T% < 6 < 6%, the Uninformative Strategy Profile is a sequential equilibrium

of the above random matching game if b > b*.

i) If§ > max[-l-f_;j'], there exists constants b, and by, where 0* < b, < by < 1,
such that the Uninformative Strategy Profile is a sequential equilibrium of the
above random matching game if either 6* < b < by or b > by. The constants

by and by are given by

M+g \/M+g2 g1-86) M -1
y _ M (P~ L+ 9) == (=)

L 2(1 +g)

and

M+g \/M+92 gl =8) M—1

— 2 —4(1
b_M+(M)(+g)6(M)

" 2(1 +g)

The condition § > g/(1 + g) is necessary because with & less than this, the

efficient outcome could not be sustained by any equilibrium even with M = 1.7

"When M = 1, our random matching game is equivalent to a two-plaver standard repeated
game with observable actions. In this case, the Uninformative Strutegy Profile, which is identical
with the Informative Strategy Profile, provides the maximum punishment for defection. This
profile supports the efficient outcome as a Nash and a subgame perfect equilibrium if and only if

62>g/(1+g).
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Buyers’ incentives to follow the unforgiving strategy profiles are easily satis-
fied: A buyer should expect his current opponent with status g to play L, regardless
of his beliefs about the outcomes of her previous games, in which case VB is his
best choice of action. If, on the other hand, he assigns her a status v, playing B
is optimal both on and off the equilibrium path given the consistent belief that she
has never defected and will play H. Also the incentives for signalling are trivially
satisfied.

Sellers’ incentives to follow the uninformative strategy profile are character-
ized by two conditions: one preventing her from playing L on the equilibrium path
and one that guarantees that sellers who have defected keep defecting irrespective
of their private history. To give a seller an incentive to play H along the equilibrium
path, the short-term gain from cheating, ¢, must be outweighed by the long-term
loss resulting from the gradual loss of reputation among buyers. Given the buyers’
strategies, this occurs if b (V) is sufficiently large that information about a seller’s
defection spreads quickly enough among the buyers. This results in the condition
that b > b*. On off-the-equilibrium paths, the strategy profile requires sellers to
keep defecting rather than play H in an attempt to slow down the deterioration of
her reputation. This off-the-equilibrium path constraint is satisfied when § is small,
6 < 6°, since the short term gain g from selling low quality will then outweigh
the future reward from trying to maintain a good reputation. When § > 6*, the
condition is satisfied if either b is very large or b is small enough. If b is very large,
b > by, it does not pay to slow down the deterioration of one’s reputation, since
with several informed buyers already playing N B against the seller, all buyers are
soon likely to learn about seller’s bad status anyway. On the contrary, if b is small

enough, b < b, playing L is better than playing H simply because the informa-
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tion about her defections is not spreading very quickly. It can be shown that the
off-the-equilibrium path constraint is always satisfied when b = b*, implying that
by > b*.

This strategy profile is not a sequential equilibrium when b € (br,by). In
proposition 3, however, by using a public randomization device we construct a
sequential equilibrium which supports the efficient outcome for any b greater than

b*.

Proof. When (II) holds a seller has incentive to follow (I) if and only if the following

inequality holds:

1 S l+g

-6 1-(1-0)5 (3:1)

The left-hand side is the payoff from playing H in every period whereas the right-
hand side is the payoff from playing L in every period. Since b must be less than
one, the inequality can hold only when § > g/(1 + g). In that case equation (3.1)

can be written as:

b> b, (3.2)

By the principle of dynamic programming to verify that (II) is optimal, it
is enough to check that a one time switch to H is not profitable after any history
in which the seller has obtained a bad status, i.e., she has played L or some buyer
has played N B against her. We can show that the seller’s incentives to follow (IT)
increase in the number of buyers who are aware of her bad status. Since consistency

requires this number to be at least N + 1 (in states that (II) is concerned with),
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it will be sufficient for us to show that a seller has incentive to follow (IT) when
exactly N + 1 players assign her a bad status.

Define P,(K) as the probability that K +s buyers know about i’s bad status
after period ¢t if ¢ plays H in period ¢ and K players knew about i’s bad status after

the period ¢ — 1. Let @ = K/M. 1t is straightforward to show that:
o K-1
N
M-1
N

and fora < 1,

()
Py(K) = _;[_1 i V1< s <min[N,M ~ K].
(")

Denote with u,(K) = 1 — (K + s)/M the associated conditional probability that
seller 7’s period t + 1 match 6,,(¢) does not know about #’s bad status (after the
period ¢ + 1 communication stage), given that K + s buyers know about i’s bad
status after the period t.

Then, assuming that K buyers are aware of a seller’s bad reputation before

the current period, a seller has incentive to follow (I1) if and only if:

(1 +g)(1 — a) > - 5(1 +g) min{N,Af - K|

1-(1-0)6 —(1"“”1—(1-1))5 2

=0

Py(K)us(K). (3.3)

The left hand side is the payoff from playing L in each of the remaining periods,
whereas the right hand side is the payoff for playing H in one period and then L
thereafter. Realizing that s follows a hypergeometric distribution for s = 1,2,..N,

it can be shown that
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min|N,M - K]

> PK)us(K) = (1— ) +a(l — a)(1 - b) (M”i 1) .

=0

It is now easy to see that equation (3.3) is relaxed as « is increased. The intuition
for this result is quite simple: A seller who is matched with a buyer that is not
aware of his bad status may by playing H keep his reputation among at most N +1
players and benefit from this reputation later. When « is large many of her current
spectators are likely to know about his defection already, which reduces the benefit
to playing H. Since o > b by consistency, it is sufficient to check that equation (3.3)

holds when a = b. Setting a = b and rearranging, equation (3.3) can be written:

W M+g b 1-8gM-1
1+g)M 1+g)6 M =~

This quadratic inequality holds if either § < 6* or if § > 6* and either 0 < b < b,

or by < b < 1. Combined with equation (3.2) this result implies the equilibrium
conditions stated in proposition 1.

(III) is trivially satisfied given (IV) and (V). It is also easy to see that (IV)
and (V) are satisfied given (I),(II) and (III). If buyer j observed his current match,
6;'(5), play L in the past or some buyer play N B against her, he should believe
she will play L by (II); so playing N B is his best response. If he has never observed
6; '(j) play L, nor some buyer play N B against her, then given (I), (II) and (III),
he should believe she will play according to (I) regardless of the messages he has
received. This being the case, B is his optimal choice of action. This establishes

(IV) and (V) and completes the proof. W

As one would expect, the equilibrium conditions are very similar for the

Informative Strategy Profile. In this case, however, it is not possible to state the
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off-the-equilibrium path conditions in terms of b as was true for the Uninformative

Strategy Profile.

Proposition 2: For § > g/(1 + g), the Informative Strategy Profile is a

sequential equilibrium of the above random matching game if

(M—N—l)
N+1 g(1-#6)
> .
1 i > ; (3.4)
N+1
and
(M—N—l M—-2N -2
g 1+2¢ N+1 N+1 -
> 3.

w2 (15 33

" — Ia(veny<an ¥ )
N+1 N +1

where /4 is a function that takes value 1 if A is true and 0 otherwise.

Equation (3.4) concerns on-the-equilibrium path behavior and can be written
as b > b*. Equation (3.5) is the constraint for off-the-equilibrium path behavior.
As before, it is always satisfied when & is small enough and when § is large it is
satisfied when b is either very large or b is small enough. Although the intuition
for both conditions is exactly the same as under the Uninformative Strategy Profile,
the second condition is not exactly the same in terms of b under the two strategy
profiles. This constraint concerns a seller’s possible deviation to H when playing on
off-the-equilibrium paths, and is different for the two strategy profiles because the
dissemination of a seller’s bad reputation when playing H is different in terms of b

under the two strategy profiles.
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Proof. As was shown in the proof of proposition 1, assuming that (II) holds, a
seller has incentive to follow (I) if and only if b > b*. This is stated in equation
(3.4).

Showing that she has incentive to follow (II) when equation (3.5) holds pro-
ceeds much as the proof of proposition 1. Denote with a the probability that seller
i’s period t opponent 6,(i) is aware of i’s bad status after the period £ communi-
cation stage, if K buyers are aware of sellers i’s bad status after the period £ — 1.
Correspondingly, denote with ¢ the probability that 0.(¢) is aware of i's bad status
after the period t communication stage, if K + N + 1 buyers are aware of sellers i’s
bad status after period t — 1. Then

M—K)

N+1
a=1- [{(N+l)5M—K}m

N+1

and

M—K—N—v
N+1
§=1—-Ilowincrm-k) ( v )

N+1

Let P; and u, represent the same probabilities as in the proof of proposition 1.

Seller ¢ has an incentive to follow (II) if and only if:

win[N,M - K]
6((1-a)(1-€) - (1-a)+ PO
(1+g)[(1-a)+ P GEY; >
min[N,M- K]
P,
(l-a)+(1+g) 1_’7‘1_1))6 (3.6)



The left hand side is the payoff from playing L in each of the remaining periods,
whereas the right hand side is the payoff from playing H in one period and then L
thereafter. Seller i’s action makes a difference only when neither i’s opponent 6,(7)
nor any of the spectators to i’s game have assigned the bad status to 7. This happens
with probability (1 — c). In that case, playing L results in a larger payoff by g, but
N +1 new buyers learn about #’s bad status, reducing the probability that ¢ receives
(1+g) in the next period from (1 — ) to (1 — €). If 6.(¢) or some of the spectators
to 7’s game know about 7’s bad status, which happens with probability «, i receives
nothing in that period and her reputation deteriorates similarly irrespective of the
action that he takes.

This inequality can be written as:

9(1 = (1 = b)é)
5(1+g)

It is now straightforward to check that equation (3.6) is relaxed as K increases.

>2&—q (3.7)

Since K' > N by consistency, it is sufficient to check that equation (3.6) holds when
K = N or a =b. Setting a = b and rearranging gives equation (3.5).

If a buyer j has ever observed a seller i € S;(0e) play L or her opponent
play N B against her, j is indifferent between signalling v or 8 to 0.(%), since given
(IT) he expects % to play L in all his future games, including those with j himself,
irrespective of the signal that he sends. So we may assume that he sends a truthful
signal (3 in this case. If j has never observed i's game or if 7 has observed i but
the outcome in i's games were always (H, B) he strictly prefers to send the message
7 instead of 8. Sending the message 8 would result in f,(3) playing NB against
seller ¢, giving her a bad status and making her play L in the future. This would

reduce buyer j's future payoffs from games where he is matched with seller i. This
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establishes condition (III)’. Given (I), (II) and (III)’ conditions (IV)’ and (V)’ are

trivial.

In order to create sequential equilibria that support trade for all b > b*,
let us now extend our basic model to include a public randomization device. The
idea of using a public randomization device to adjust the severity of punishments is
borrowed from Ellison (1994). In particular, we assume that before players choose
their actions in period ¢, they observe a public random variable f, which is drawn
independently from a uniform distribution on [0,1]. Let f € [0,1] and consider
adjusting the Uninformative and Informative Strategy Profiles as follows: In period
t, sellers play according to the original strategies as long as f; < f, but return
immediately to the equilibrium path of the original strategies if f; > f; buyers play
according to the original strategies, except whenever ft > f, at which point they
forget all past actions of sellers and assign each seller status y. Assuming that such

a public randomization device is available, we can state the following proposition.

Proposition 3: For § > g/(1 + g) there exists a function f(6) such that
the adjusted Informative and Uninformnative Strategy Profiles with f = f(6) are a

sequential equilibrium of the random matching game if b > b*, where b* = g(1-46)/6é.

The idea in the proof is that whenever b > b*, we can by an appropriate choice
of f adjust the severity of punishment for a seller so that she becomes indifferent
between playing H (following (I)) and deviating on the equilibrium path. Because
at off-the-equilibrium paths a seller has less incentive to protect her reputation than

on-the-equilibrium path, as her reputation is deteriorating anyway, this indifference
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can be shown to imply that the off-the-equilibrium path condition always holds.

Proof. For any f;, a seller has incentive to follow (I) if and only if

1 > l1+g
1-671-(1-b)f6

) —1py &t
LI
or

1 > l1+g

1-6f = 1-(1-b)f6 (3.8)

The left-hand side of the first inequality is the seller’s payoft from following (I),
while the right-hand side is her payoff from deviating and following (II), as long as
fr < f, and following (I) thereafter. For all § > g/(1 +g) and b > b*, there exists
f(8) € [0,1] such that equation (3.8) holds as an equality when f = f(6). From
now on, let us assume that f = f(6).

A seller who is playing on the equilibrium path is now indifferent between
playing H in every period and deviating. She is also indifferent between playing
H in the current period and then deviating and deviating right away. By playing
H in the current period she can keep her good reputation among N + 1 buyers,
until they, in some way, learn about her defections in the future. Now consider a
seller who is following (II). If her opponent and all the N spectators to her game
happen to assign her a good status, she also can keep her good reputation among
N + 1 buyers by playing H. This reputation, however, is worth less to her than if
she were on the equilibrium path because, with some buyers already assigning her a
bad status, these N + 1 buyers are more likely to learn about her bad status before
playing against her in the future. Since the short term gain from deviating is same

in both cases, we conclude that playing L is optimal off the equilibrium path.
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More formally, consider the sellers incentives to follow (II) in period t when
ft < f(8). By the principle of dynamic programming, it is sufficient to show that
a single-period deviation to H is unprofitable. Let a, Py(K), and u,(K) denote the
same probabilities as in the proof of proposition 1. A seller has an incentive to

follow (II) if and only if:

1+ g)(1— @) — t-1 6
min[N,M - K]
1O+ S )« -
(=) + —— e + 1O - O @)
min[N,M - K|
- 6f(6)(1+ )( > Psus)
(I+g)(l-a) (1-a)+ - . (3.10)

1—(1-0)f(8)s 1= (1-0)f(8)5

We can show that this inequality holds as follows:

(1+g)(1-a) _ (1-q)
T=(1-07@)s _ 1-5/(5)

(1+9)6f(8)(1-a)
1—(1-b)f(6)8 =

(1-ca)+

min|N,M - K]

(1 +g)6f(6)( ZO Psus)

8=

1= (1—=b)f(6)

The first two equalities come from the fact that (3.8) holds as an equality with

(1-a)+

f = f(8). The inequality follows since

min|[N,AM - K] min{N,M - K]
Z Psuss z PSU()=’U0=1—CY.
s=0 s=0
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When f, < f(6) a buyer’s problem is similar to that in propositions 1 and 2
so he is better off following the original strategies. On the other hand, given that
a past defector plays H after f, > f(6) it is optimal for the buyer to assign her a

status vy and treat her like the seller who never defected. W

3.4 Large Population Results

In this section we study how fast N must grow in relation to M in order to sustain
(H, B) as the outcome of the trade game for our strategies. If we denote N*(M) as
the smallest integer /V that satisfies the constraint b > g9(1—-6)/6 (i.e., b > b*), then
given propositions 1,2 and 3, the question can be reformulated as how fast N (M)
grows in relation to M.

If seller 7 has defected in the previous period, the N + 1 buyers who observed
the defection are the only ones who are informed of the defection before the current
period’s trade game starts. Then 0, the probability that seller ¢ meets a buyer who
is informed of her previous defection, is simply (N + 1)/M under the Uninformative
Strategy Profile. With this strategy profile it is clear that N* and M must grow at
the same rate in the limit.

This is not true, however, with the Informative Strategy Profile. In this
strategy profile i's current opponent 0,(i) assigns her a bad status if he observed
this defection or he received an informative signal based on this defection during
the current period’s communication stage. With N spectators to 0.(7)'s game each
of whom observes NV +1 games, 0,(i) obtains information from N2+ 2N + 1 possibly
overlapping games and assigns i a bad status if any of these games was played at

location 4. This suggests that N* may grow more slowly than M. Below we show
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that in order to sustain trade, N* must grow only at a rate VM. To prove this

result formally we need the following lemma.

Lemma 1: Under the Informative Strategy Profile A}im g# =0.

Proof. By the definition of N*(M) we have the following inequalities
(M—-N‘(M)—l) (M—N‘(M))
N+*(M)+1 <-b) < N+*(M)

(N'(:I[) + 1) (N‘IZWJ

First note limsup,,_,, N*(M)/M < 1/2. For the subsequences of N* (M)/M whose

(3.11)

limits are 1/2, the numerator of the right-hand side of the strict inequality in (3.11)
approaches 1 and the denominator goes to the infinity, leading to a contradiction
since b* is assumed to be strictly less than one.

Using Stirling’s formula
V2rnnte ™ < nl < V2rnne "en

the second inequality in (4.1) implies that

1-0")<

(AI _ No)?(A!—N‘)+l

1 0
A,{M-{»%(A,[ _ 2N.)M—2N'+%CG(M—N : (3.12)

Given that limsup,,_ N*/M < 1/2, it is easy to see that the exponential

term that appears at the right-hand side of (3.12) goes to 1 as M approaches infinity.
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The nonexponential term then has to be bounded away from zero for large M. In
what follows we show this implies limp;_ ., N* /M =0.
Let ¢ = N*/M. The nonexponential terms in the right hand side of (3.12)

can now be written as:

( (1 —q)2% )M (1—q)
(1-29)'-% ) (1-2q)V2

Since 0 < ¢ < 1/2 and limsup,,_,__ g < 1/2 the second term of the above expression
is bounded. Furthermore, we can show the first term is strictly decreasing with
respect to ¢ for 0 < ¢ < 1/2 and for that range of g it is one if and only if ¢ = 0.
Thus if limas .o ¢ # 0, the first term is very close to zero for large M, which is a

contradiction. Hence it must be that lim,,_.. N* /M =0.1

Proposition 4: Under the Informative Strategy Profile

. N‘(M)Z
0 <Al{1_r‘n°° T— < oc.

Proof. If we rewrite the inequalities (3.13) using Stirling’s formula we get

(M_Nu_1)2(M—N') (M—?N‘—Q)s
MM(M —2N* = 2)M=2" \ M(M = N+ — 1)?

1
) L N T

e 12(Af -2N* -2) 12Mf
<(1-07) <

(3.13)

(M= NPON) (- \E
MM(M = 2N-)M=2N" \ A7 (AT — 2N7)
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Since the last two terms of both sides of the inequalities (4.3) approach one as
M — oo by lemma 1 and both of the first terms exhibit the same behavior in the

limit, we must have

(M _ N:)Z(M—N‘)
MM (M — oN=)M-2n-

Next we show that 0 <[lim N *2/M < oo in order for (4.4) to hold.

- (1-0)as M - . (3.14)

First of all, note that we can write

(IW _ N.)2(M—N')
MM (M = 2N+ M=28" =

(- )

2

-\2 MN- 5 —aN*2
_(M;_N_) _arq 2%

657 -

»
2

N2 —2N.2
(e+ an) =77 (e + Bp) M

where

Ne ()
= (1= (77=w) -
—Af
. 2N*\ 2w
o= (1-57) " -

Since im0 N*/M = 0, both sequences {an}, {Bar} converge to zero from above.
Now define new sequences {ay}, {bar} such that e = e + qy, €™ = e + Br. We

can then write

N2 2N 2
= ™M ET-~T ~ba gy . (3_15)

(A/[ _ Na)?(A'I—N')
MM(M — 2N+)Af-2N"
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Given (4.4) and (4.5), all that remains to show is that {N*? /M} must con-
verge to some positive number in order for {ay N*2/(M — N*)— b, 2N*2/M} to
converge to In(1—5%). If limy_.o N*2/M = 00, apyN*2 /(M — N*)— by 2N*2 /M ap-
proaches minus infinity as M goes to infinity. This can be easily shown using the fact
that {ap} and {bps} converge to one from above. If limps oo N'2/M = 0, we obtain
another contradiction since ay N*2/(M — N*)— bar2N*2/M — 0 as M — oo. Since

{N*2/M} is bounded, it is straightforward to show limar—oo N*2/M = —In(1-5*). &

3.5 Endogenous Connections

In this section we extend our model by assuming that networking is costly. Let
us say that strategies are non-contagious when only the sellers who have produced
low-quality are punished. When either inviting spectators, N} (0,) , observing neigh-
boring buyers, N; (6;), or both are costly to buyer J, the following result holds:
Proposition 5: In any Nash equilibrium of the random matching game with
costly networking that uses non-contagious strategies, low quality is produced with

positive probability when M > §/[g(1 — 6)]2

Proof. The'proposition is proved by contradiction. Assume that there is a Nash
equilibrium with non-contagious strategies in which every seller produces high qual-
ity with probability one in every period. Buyers then do not have any incentive to
network and the optimal N; must be zero for all buyers j. If, however, Nj is zero
for all buyers and M > §/[g(1 — 6)] all sellers have incentive to unilaterally deviate

and produce low-quality. Contradiction. B

8A similar proposition could be stated allowing for contagious strategies for M > M($, g, £),
where M < oco.
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There clearly exists the equilibrium where N; = 0 for all buyers and every
seller produces low quality. More interestingly, we show that if the costs of net-
working are small enough, there exist sequential equilibria with strictly positive
probability of trade.

Let us concentrate on the case where observing neighboring buyers n €
N; (6,) is costly to buyer j and where buyers are unable to affect the number of
spectators to their game. This assumption corresponds to the idea that buyers net-
work to gather information about their trading environment. An alternative - that
leads to similar results - would be that buyers invited other buyers to their games
in an attempt to obtain information regarding their current opponents. Clearly the
second alternative would make sense only under the Infornative Strategy Profile.
More specifically, let us extend our basic model by assuming that in period zero,
before 6, is realized, all buyers j can invest in N; connections that allow them to
observe the games in N; consecutive locations to their own in every future period.
To obtain /N; connections j must pay Njc, where ¢ > 0, in period zero.

With these assumptions, whenever the costs of networking are less than some
threshold value 2(M), we can find sequential equilibria with slightly modified Infor-
mative and Uninformative Strategy Profiles such that the sellers initially randomize
between high and low quality and produce that level of quality in the future. A
positive probability of low quality goods is necessary to provide buyers with an
incentive to network. This probability tends to increase with M. When the costs of
networking exceed the threshold value (M), trade collapses because the probability
of low quality goods that would provide buyers sufficient incentives to network is

so high that buyers are unwilling to buy from unknown sellers. For simplicity, let
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us confine our analysis to the Uninformative Strategy Profile.

Consider the following modified Uninformative Stralegies:

For the seller %, in all periods t = 0, 1, 2...., after 0, is realized:

(I) In the first period play H with probability 1 — p and L with probability
p. After that, if the outcome in all the trade games where seller 7 played

was (H, B), play H.

(IT) Play L otherwise.

For the buyer j:

(IIT) In period 0, before g is realized, invest in N* — 1 connections with

_ probability  and in N* connections with probability 1 — 7,
and in all periods t = 0,1,2...., after 0, is realized:

(IV) Signal randomly v or 8 with equal probabilities to all n € N;(6,),

irrespective of the private history h,(j).

(V) If j has ever observed 0; ' (5) play L or someone (including himself) play

N B against her, play N B regardless of the messages m,(j).

(VI) Play B otherwise.

Before proceeding, we need some additional notation. If buyer j invested in
Nj; connections, the probability that he observed 6 1(5) at period t, where t! < t, is
(Nj +1)/M. Let us denote this probability by b*(N;).° Then the probability that

buyer j has never observed 6; '(j) until pericd ¢ is simply (1 —b5(NV;))

®More precisely, b°(N;) = Pr(o; ' (j) € S;(0,) U {0;7'(j)}]
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Proposition 6: The modified Uninformative Strategy Profile is a sequential

equilibrium of the above random matching game with

_ (1 —8(1 —b5(N* — 1)) (1 — 6(1 = b5(N*)))
p—cM( 75 )
where
<-=L( €5 (M(1 - 68) + &) )
T M\ D) A = 60 = (V) (@ % M1-68)+6))"

Proof. To have a sequential equilibrium in this extended game for our strategies,

the following three equations must hold:

1 (1 +g) (1-7r)(1+yg)
1=8 1-(1-0e(N*=1))8 " 1— (1—b°(N"))6 (3.16)
. pre ) l1-p 24
NN -1 argman T~ Ta — ey ~ (3.17)
(I-p)+ u-p pe. (3.18)

M1 -6~

A seller is willing to randomize in the initial period between providing high
quality goods forever and providing low quality goods forever if and only if equation
(3.16) holds. The left-hand side of (3.16) is the payoff from providing high quality
goods forever and the right-hand side is the expected payoff from providing low
quality goods forever. To see this, note that the probability that 6,(i) has never
observed ¢ is just (1 — b¢(Np,(s)))t. Given this indifference in the initial period, the
seller who once provided low quality good can be shown to keep on providing low
quality goods; the proof is exactly the same as that of proposition 3. So (I) and
(II) are established.
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Equation (3.17) requires that buyers are willing to randomize between N*
and N* — 1 connections. We can show that the right hand side of equation (3.17)
has a single peak if N; is treated as a positive real number. Hence if the expected
payoff to buyer j is the same with N* and N* — 1, then N* and N* — 1 both solve
J’s maximization problem. Equation (3.17) is therefore satisfied if

24 = pl
(=81 ~te(N")) ~ (T=8(1~bs(N-—1))) " ©

ar

(3.19)

_ (1 —6(1 —b°(N* —1))) (1 = 6(1 — b5(N")))
p=cM ( 75 )

Given that other buyer’s actions do not depend on the messages, (IV) is
obvious. If a buyer has observed his current opponent play L or someone play N B
against her, he should play N B against her given (II). And if a buyer has observed
his current opponent and the outcomes have always been (H, B), he should believe
she will play H and he should play B. If the buyer has never observed his current
opponent, he should believe that she will play # with probability (1 — p). For a
buyer to play B against her rather than give her a bad status by playing N B,

equation (3.18) has to be satisfied. This equation can be rewritten as

M(1—-6)+6
P2ty MO =875

Therefore the modified Uninformative Strategy Profile with p defined by equa-

(3.20)

tion (3.19) is a sequential equilibrium if p satisfies equation (3.20). This happens

whenc<e N
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Several interesting results now follow: First, for ¢ > 0 equation (3.19) re-
quires that p is strictly positive as was shown in proposition 5. L has to be played
with positive probability to provide buyers with the incentive to network. Secondly,
this probability is increasing in M. Under the Uninformative Strategy Profile ap-
proximately proportionally and with Informative Strategy Profile (it can be shown)
less than proportionally. More striking result is the knife edge property of our equi-
libria: If even one more buyer invested in one more connection there would be no
low quality at all (increasing the utility of all buyers and sellers discontinuously).
But networking to reduce production of low quality is a public good and, as usual,
everyone wants to free ride in its production. Because of this, the economy is stuck
in an inefficient equilibrium.

Another interesting observation is that when equation (3.20) fails, trade col-
lapses even when it might be beneficial for buyers to keep trading. This occurs
because a buyer, who considers whether to trade with an unknown seller or to give
her a bad status by playing N B, does not take into account the future trading
opportunities of other buyers with her. With the Informative Strategy Profile there
would still be another externality because of the informative signalling to neighbors.
When choosing the number of locations to observe the buyers would not take into
account the learning by their neighbors, but would only be interested in their own

learning.

3.6 Ceonclusion

In many real life situations particular sellers and buyers trade with each other infre-

quently, or only once. In such instances, when one or both parties have short-term
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incentives to cheat, community enforcement may Le needed to facilitate cooperation
and trade. This paper studied community enforcement in the absence of institutions
to transmit information.

We studied a large population, random matching game between buyers and
sellers, where the sellers have a short-term incentive to cheat and supply low qual-
ity. We studied informal networks of communication as the mechanism that spreads
information about sellers’ behavior and facilitates trade. We looked at both infor-
mative and uninformative signalling and for the latter we showed that high quality
can be sold in a sequential equilibrium with population M where each buyer net-
works with only N*(M) players with limy/_.o N*/M = 0.

We studied the case of costly networking and showed that in this case, when
M is large, low-quality goods must be supplied with positive probability in any
equilibrium to provide buyers with an incentive to network. When the costs of
networking were below a threshold value, we found a sequential equilibrium in which
sellers initially randomize between high and low quality with probabilities (1 — p)
and p respectively and then continue to produce high quality if and only if they
did so in the first period. In this equilibrium p is strictly positive and increasing in

both M and the costs of networking.
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Appendix A

Appendix For Chapter 1

Proof of Proposition 1: We must show that the portfolio manager is willing to follow
this trading rule. To begin with we show that x,;(R,) is increasing in R,. Note that

equilibrium requires

T(R,) .
(R) (A1)

since investments to the portfolio manager flow in until this equation is satisfied.!
Substituting for 7°(R,) from equation (1.3) and rearranging we obtain the following
identity £(R,) = 2 (ka, — k%a?). Differentiating this identity with respect to R,

gives the result:

Z(R,) = m(k — 2k [@ — a >0

C

nvestor i € [0, /] makes a binary decision whether to delegate his unit wealth to the portfolio
manager or not. When making this decision he perceives that the first z¢(R.) investors, other
than himself, are investing through the portfolio manager. In this case his expected profit from
investing are 7°/z, — c. His expected profits from not investing, on the other hand, are zero. In
a rational expectations equilibrium where some but not all investors invest through the portfolio
manager these two must be equal.
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Given the updating of beliefs that we have assumed, for other values of k and p, also
other linear trading strategies can be part of an equilibrium in the overall game.
Nevertheless, by lemma one and equation (A.1) we note that this trading strategy
Y(z:) = m(1 — kau)z, maximizes x,(R,) among linear trading strategies.

We must now show that the portfolio manager is willing to follow this trading
strategy in all periods ¢ and for all z,. The proof proceeds by backward induction.
Since the portfolio manager’s payoff is a constant fraction of the assets under man-
agement the portfolio manager is indifferent between different trading rules that
result in the same level of reputation. In these cases, we have assumed that he
trades according to the linear trading strategy that maximizes the periodic trading
profits. This behavior is anticipated by the market maker and investors. Given this,
and given that only the sign of the trade matters for the portfolio manager’s future
reputation, the portfolio manager essentially chooses y: among three alternatives
¥ € { y*,—y",0}, where y* = m(l — ke,). Since there are no commissions after
period T, we can assume that the portfolio manager follows the trading rule y; =
m(1 — kar)zr in period T. Since this trading strategy maximizes 7¢(Rr) among
linear trading strategies, it also maximizes zr(Rr) among those strategies.

We now move to periods t < T. We will show that portfolio manager’s value
function, representing the portfolio manager’s remaining payoffs from period ¢ on-
wards, increases in R;. Given that the current commission is independent of his
current actions, the portfolio manager then chooses y, € { y*, —y*,0} to maximize
his next period’s reputation. We first show that trading y, = y*z, is optimal in
the event that z, # 0. Note that given the updating of beliefs stated in (3.4), Resq

increases when trading on information.? That being the case, it is optimal for the

2In this event the posterior belief ﬁ, =aR /o =R /(Ra~(1—R,)a) > R,, whereas following
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portfolio manager’s to trade according to this rule when z, # 0 if the value function
at period t + 1, Viy1(Riy1,Se41), is strictly increasing in Ry, for both s,y € {g,b}.
Let V?(R,) denote the value function of the bad portfolio manager and let V?(R,)
be the same for the good portfolio manager. Since Vr(Rr) = cz(Rr) for both types
of portfolio managers, Vr(Rr) is strictly increasing in Ry. For t < T same result
follows for both types of manager’s, since by backward induction, assuming that

the portfolio manager follows his equilibrium strategy, both

VO(Re) = co(Ra) + E [(1 = )V (Rent) + Vi (Ren) | s =], (A-2)
and

VE(Ri) = ca(R) + B [(1~ m)Vi4i(Rerr) + 5V (Rerr) | s = g]

are strictly increasing in R,. To see this, note that all possible reputations R,,; that
may follow at time ¢ + 1 (for different values of z, and a,) at least weakly increase
in R; (equation 1.4) and given our earlier result z(R,) is strictly increasing in R,.
Here the expectation is taken with respect to z, and the public signal a,.

We now want to show that there exists 7 < 1 and k > 0 such that for all
k,p that satisfy p > 5 and k < k the portfolio manager does not churn. For this
we need to define the probability that §, # 0 given that z, = 0 for both s, € {g,b}.
Let a, € {@, a} denote the probability that type s player observes §,. In that case,

Bayes rule gives

all other trades the inequality goes the other way. The result follows since R = ﬁl(l —e— ) +e.
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2k(1 — «)

Yo =Prob [ #0| 2 =0, s] = (1 - 2kay)”

Therefore a type s portfolio manager does not want to churn if:

p7.9¢ St+ ER ’Ys¢ St+1
(1—P+T) /reh (‘Zf(l—f—#)‘*‘f) +.0(1—7) Vel (&) <

(I —a)R(l — & - p) +E)

P(L = Y)Vit (Rl — & — p) + €) + p, Vi1 ( s
- t

seer [((1—2k) +2k(1 — &) R, ) X
=gy (G220 -9) (-c=p)+e)

for all t and R, > ¢. To show that this holds when k is small and p is large we do
the following. We let m — oo while k — 0 so that km is constant. In that event
both 7 and it’s derivative with respect to R, remain bounded from zero, the latter
approaching [@ — a] km. Then also V, remains bounded from zero and infinity and
strictly increasing in R,. Now let also p — 1 and note that as k — 0, vy — 0. With
all these limits taken simultaneously the left hand side approaches Vit (¢) and for
some values k, and 7 the left hand side will be smaller than the valie function at
any of the events that may occur on the right hand side for all ¢t and R, > ¢. The
inequality will then hold, as it will hold also for any k and p that satisfy k < k, and
p 2 P. Since V' is linear in m, for those values of p and k, the inequality will hold

for any positive m. B
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Proof of the expression for volume of trade: Let Y+ = yt + u* and define
Y~ accordingly. The following table lists the events where ¥+ > Y, the expected

value of Y'* in that event, and the probability of the event.

Event ¢ E[Y* |4 Pr[i]

y=y", -y <u<0 v kay*/2m

y=vy*, u>0 Yy +m/2 ka/2

=y uzy B gemr
y=0,u>0 m/2 (1 - 2ka)/2

The second table is the breakdown of events where Y - > Y,

Event j ElY~1|j] Pr(j]
y=y" u< -y mE kalot
y=-y, 0<u<y" y* koy* /2m
y=—-y*, u<0 Yyt +m/2 ka/2
y=0u<0 m/2 (1 - 2ka)/2

The expected trading volume at stage two given ¥,_; can now be written as:

=3 E [Y+ | i] Prli] + 3" E [Y‘ | 4] Prlj]

l“!y‘2 ko 2 m m y‘2
f —|1-9" —(1—-2ka)=—+k *
- + kafy* +m/2] + 2m[l Yy + 5 (1 - 2ka) 5 +hkeyt+ 5
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If we include the volume of trade that takes place in stage five, we obtain the

expression for expected volume of trade, wg, that was given in the text. B

Proof of proposition 3: It is useful to define the following two events: one
where (P, — Pz—1)2 =1 and there is not informed trading, i.e., y, = 0, and the event
where (P, — P¢_1)2 =1 and y, # 0. The probability of the former is easily obtained
as 2k(1 — a;)p, and the probability of the latter as 2ka,. By referring to the tables
that were given when we derived the expression on volume, the expected volumes

of trade conditional on these two events are easily found to be:

E [‘”t [(P.=P1)’ =1, y =0, ‘Pc—l] =m/2

and

Elwe| (P= Pet)* =1, 4 #0, 80y

_ kafm+y + £
11— (1 - 2ka)

1 y32
L ¥ 3 * R
ty 2 [m Tyt 277&]

We can now write:

cov [(PL — P 1) w, | \IIL_,] =

E [(Pz - Pt—1)2wt l ‘I’L—l] -F [(Pz - Pt-l)2 ' ‘I’t—l] E[wt | ‘I’t-ll

1 y*? m
= 2kat§ [m +3y* + ;m] +2k(1 - at)pg
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2m

; 2
~2k(p+ (1 - p)a) [g + ko [33/' + y_”

= ka, [m +[1 - 2k(p+ (1 - p)av)) {Sy' + y_‘2”

2m

+pkm(1l — o) — km(p + (1 - p)a)

2

=ka [3y‘ + y
2m

} [L = 2k(o+ (1 - p)a)] >0
Similarly

cov (P = Pir)2wr] = B [(P. = Pror)w] = E(P. = P, )2Euw,

=Ewkﬂ—ﬂqﬁuwmﬂ—E@kﬂ—&nﬂwmnawpdwmn

1 . y? m
=F [Qkaci [m + 3y* + 2m] +2k(1 — at)p?]

—ERk(p+ (1-p),)] E [722 + ko, [33/‘ + ﬂ“

2m

2m

=FE [kat [m +[1=2k(p+ (1 - p)Ea,)] [33/‘ + y:‘Z”J

+pkmn(l — Ecy) — km(p + (1 - p) Ea,)
2

=F [ka [31/' + J

2m

H 1-2k(p+(1- p)Ea,)] >0

We now proceed to the proof of the last claim in proposition three. Let us
introduce a random variable S, such that S, = 1 when st = gand S; = 0 when

8¢ = b. We can now write the covariance between (P, — Pi.1)? and (P, — P,_,)?

as:



Pr (84, # 0 and & # 0] - Pr [604s # 0| Pr [St # 0]
=4E*E[(p+ (1~ p)la+ Susl@—al)) - (0 + (1 = p) [a + Se[E — a]])]

~4k* [(p+ (1 - p) E[a + Sevola — af))?.

Here we have used the fact that ES, = ES| = ¢/(c + u).3 Using the law of iterated

expectations we have

E (S | St] =Si(1—e—p)+e

E[Set2 | St] = E[E[St42 | Sear] | Se] = E([Se41(1 — ¢ - 1) +el | Si

=S(l—c—p)l+ec(l—c—p)+¢

and more generally that

s—1
E[St+s I St] = .St(l — £ _‘u)s+ Zs(l "‘S"ﬂ)z =

=

. s, £—&(1—-
Sl —e— p)* + °(€+

Using this result and the fact that ES, = ES? we have

3This can be proved by induction.
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cov [(Prys = Prvs-1)?, (P = Prcy)?]

=4F’E[E[(p+ (1 - p) [a + Saf@ — a]]) (0 + (1 — p) [a + Sife — a]]) | 4]

—4k? [(p + (1-p)Ea+ Sia - Q]])]2

=4k2E(p+(1—p) [Q'*‘[ a(l—e—u)3+s_€(1_€_#)s] [ﬁ—gl-)
= J

(p+(1-p)la+ S.fE - af]) - 4k [(P+(1“p) [Q“Liﬁ[a_g]D;z

= 4k%(1 - p)*[@ - of? {E [53(1 ce—pyr il /‘)’} _ (L) 2J

S+ pu

_ %ep(l - p)*la — o]
(€ +p)?

(1-zs—-p)y nu

Proof of Propaosition 4: First, note that

EJ[R) = 2k:ataa—Rt +p [21.: (1-a) ((z—l_%j){‘) +(1- 2k)RcJ +

=l 50— (B0l

[2k@ + 2k(1 — @) + (1 — 2k)] R, = R,
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and that

E'g [RH—I] = E[RH.] I Rt] = E[R;](l — £ — #) +e= Rt(l — & - #) +c.

Similarly as in the proof of proposition three we can use the law of iterated expec-

tations to derive

BlBus | R = Bl — e~ )" + 5ol =& -

t=o0

Using the law of iterated expectations and Jensen'’s inequality we have

cov [(rt2+sl(r¢2] =& ([(T;l+s - E(f;z_*_s][(T? - Edtz]) =

2’C2(1 - p)2E [CYL+3 - Eat“J [Qt - EQL]

= 2k*(1 - p)’ER,E [[cr1s — Bawyy] [ ~ Ecy] | R)]
= 2k*(1 - p)*.
ERE Ham - <€iu[ﬁ - a +Q)J [at - (;1;[5 - a +g)} | RtJ

= 221 - )6 B (Rer - =)ol (r- ;) E-all&]

£ E+pu

= 2k*(1 - p)’[@ — af*-
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e—e(l—e—p)° € £
E AL - -
R‘KR‘(I e-m+ e+ p s+,u) (R‘ s+,u>J>

2%(1 - p)*[a — af?

(s ) (2] o

[N

Proposition 5 follows directly from the definition of o? and the properties of
R, stated in the proof of the proposition four. Proposition 6 follows directly from
the above definitions of conditional variance and trading volume and the fact that

when k£ < 8—"3@ both ¢? and wf are strictly increasing functions of R,.*

Proof of Proposition 7: Let us assume that the short sales constraint is
binding. When it is not, the trading rule that was derived in section three is

optimal. We are looking for a semi linear trading strategy:

0 ifz e {0,-1}
Y = )
y =1
where 7 is chosen to maximize the expected trading profits. Assuming that the

portfolio manager follows this trading rule, the pricing rule of the market maker is

“To prove formally the rather obvious fact that two increasing functions of the same random
variable are positively correlated note the following: let V(z) and ®(z) be strictly increasing
functions. Consider two i.i.d. random variables z and y. Then

E[(z) — ¥(y)][@(z) — ¢@)] > 0

E[¥(z)®(z)] — E¥(z) ED(y) ~ EV(y) Ed(z) + EV(y)Ed(y)

= 2E[¥(z)¥(z)] - 2E¥(z) EY(z) = 2cov[¥, ] > 0.

111



1 ifv,>m

t—1

P[’=F+Z5r+ 0 fg—-m<uy,<m
=0

= if ~m<y<j-m

and®

t
PF=F+3Y 6,
=0

Similar arguments as before show that the expected trading profits for y < 7 are:

po g A3k, kg ] g2
ret =Y | T (1 - ka)2m 2m(1l — ko)’

Given this, we can solve for the optimal trading rule:

m{4 — 3ka)
l—ka

)

We can show that M7, is strictly increasing in R, so, as before, equation
(1.4) implies that z is strictly increasing in R, in both states of the world: ie.,
when there are short sales constraints and when there are not. This together with
beliefs similar to (1.3) imply that the portfolio manager wants to trade when he
receives private information. Similarly as before, when p—land k — 0, to avoid a

loss of reputation the portfolio manager does not want to churn. The formal proof

SNote that while the definition of &, is still b= E (6: | W], the value of this random variable is
now different in the event that there is no public announcement and y, = 0.
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of the above arguments proceeds along the lines of the proof in section three and is
omitted. It is also possible to show that proposition 2 continues to hold and that
all covariances stated in the proposition 3 are strictly positive.

I will now prove proposition seven, taking as given the optimality of the

trading rule stated above. Following the same argument, the expected trading

volume in the event that f =1 and 2, =1 is

m i {
Bl f=1, Zt:l,‘pt—11=—2-+%+ J

We have,

CO’U((Pt - Pt—l),wt) = E(-Pt - Pt—l)wt - E(Pt - Pz—l)Ewt = E(Pz - Pc—l)“-’t

= E[E[(P.~ Poy)we | Re, fi]]

2 2 2 2

-~ ~9 _ ) _
E [kat [% _g ij_} Lm (1—-a)kp _mkp mka(l - p) Prlf, = 1]
4m

=E[kat(g+ﬁ)J Prlf=1]>0m

Proof of Proposition 8: As before, the commission cx(cy) is strictly increasing
in a¢. Total commission is therefore increasing in R, iff o, increases in R,. This
no longer necessarily follows. In period T, with fixed commission, gr = 0 and
ar = Rr(@ — a) + @ and trivially increases in Ry. This need not be the case for

T —1, however. What is important for our strategies is that V., increases in R,
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because then, since ¢* < 1 and therefore @, < &, Viy, increases when trading on
information. Since V¢ = cx(ayr) is strictly increasing in Ry, and gr_; < 1, both
types of managers want to trade on information at T —1 . And similarly as before,
if p is large and k is small, when they are not informed, they do not want to trade.
Since we have a fixed commission, Vi is independent of the managers type.

Now denote by V_, the value of the bad portfolio managers remaining in-
come stream net of disutility of information acquisition, if he invests in informa-
tion acquisition in period T — 1. Denote by V}¥, the same if he does not. The
value of good portfolio manager’s payoff stream is then Vi_, = V/_, +e Clearly

V- =max[V{_,, V¥ ). We can write these as:

VE_1(Rr-1,0) = ca(Rr_1) + 2kVi (ERT' ‘C(:T: =4, 5) @
(1 - 2k) + 2k(1 — @) Ry—, A _
+(1—p)Vr ( (1 2k) + 2= QL)T (1~-c—p) +6> [(1 - 2k) + 2k(1 — @)]

+p(1 = 2k)Vr (Rr_1(1 — ¢ — p) + <)

+p2k(1 — @)Vr (Q_l_f)“f:"l(l —e—p)+ s) —e,
and
VA (Bro1,b) = cn(Rr_y) + 2%Vy (HRT‘ ocom ) o
[(1 — 2k) + 2k(1 — &)] R_ ) )
#0 = (LB B sy 1) (020 + 260 - )
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(1 -&)Rr,

l—-c

+p(1 = 2k)Ve (Rr_1(1 — £ — p) + &) + p2k(1 - o) Vir ( (1-e—p)+ s)

Note that Vr is continuous in Rr. By lemma 1, V¥, > Vi_, and VN =V
when ¢7_; > 0. This equality then determines q*(Rr-1) in that region. So when

¢ >0,

v (537*—1(1 —&—p) +5) _

Qr_

(1= 2k) + 261 ~ &) Rr_y(1—c —p) .
L =e)V ( (1-2k) +2k(1 _TaT—l) +c>
—pVp (Q%(l —&—p) +5) = (aig). (A.3)

Since Vr is strictly increasing in Ry this equation determines ¢*(Rr_;) uniquely
and furthermore, ¢*(Rr_,) is continuous. This follows from the fact that all terms
on the left hand side are strictly decreasing in q and continuous in both q and Ry_;.
Now note that since @ > q, this equation can not hold when Rr_, is sufficiently
close either to one or zero. Therefore ¢*(Rr_,) = 0 when Ry, is close enough
to either zero or one. Similar argument to that in the proof of the proposition
one shows that the portfolio manager does not want to trade when he receives no

information when p is large and k is small. B
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Appendix B

Appendix For Chapter 2

We now derive sufficient conditions for the number of firms to be larger in the
equilibrium in which the firms are producing with the riskless technology than
in the equilibrium in which all firms are using the risky technology. First note
that the number of firms must be smaller in the equilibrium with risky technology
than in an equilibrium with risky technology where the lenders could somehow
persuade the entrepreneurs to pay back their entire profits as interest. We now
derive conditions such that even in this case when the number of firms is n(s, G)
the expected profits in equilibrium are less than zero. By solving the optimization
problem of n entrepreneurs using the risky technology it is easy to show that the

expected profits are:

. G(1-7)

= — f >n
g bn+1—~(n—1) Fiforn2mn

(a-{-'y(n— l)g-)2 (a+'y(n—1)§)2 22

——| -F f '
b(n+1)2 + 7y b(n+l)2 m ylorn<n

=G |(1-7)

L

116



where

7LI=%—(1+7)
(1-7)

In both cases the expected profits are negative when <, ¢ and F are large

enough. The condition on v, € and F for the number of firms to be larger in the

equilibrium with safe technology, in stationary markets, is implicitly defined by
7(n(s,G),7.¢, F) < 0.

Proof of proposition 1: The incentive compatibility constraint is

(1-7)7%n,G,0) - n(n,G) < (B.1)

78 [t (. GOV(G) + (1 = )y (2, GV (min{ Gy, TY)]

c? a—c
. [5 # o 0= M+ Ve~ e - c)J] < (8.2)

T-1
P18 PGV Gy +7 3 |

i=t+1

Jj=t+1

(1 = p)o)* ( 1 ll'g(gj“‘“'Gt)> [7(9.9"Ge) + pbubs (G V* ( g“‘Gt)]J
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y [((1 _ 6)T t ( H wg(gj—c-lc )) Vs( T- th)J

To gain some understanding how this inequality might behave for large g and § we

must write it out more explicitly. We use (2.2) and (2.8) to calculate for V3(Gy).
We obtain:

s _ Gyla-c)? Fo
V(G = 1-8bn+1)2 (1-6)

RS+ T - 2PGUE(L - ) - B+ aFuci

2G'2bcz(1 — §)2 4 AEBIGY? | be2G2(1-8)y

(- (t-ny - +2bct
where
Gy F (1- 6)2G4
= .](1-46)2GH4
J( ) Taa—qy 1-~
and

L G3by2F(1—6)2 (1 6)3GH
B \I(l ot (1 —7)? -7

It is now easy to verify that

. s _ G}l - 7) Gec?(1 — v)2F

Let us now look at (B.2) more carefully if ¥y and 1, were both equal to one. Clearly
s is not, but for the moment assume that both of them are equal to one. In that
event when § — 1, the right hand side of (B.2) approaches
Gec?(1 - v) Gec?(1 — y)2F 7 ! it
K=p TR ; +7 ), ((1-p)é)

t=t+1
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G G (1 - ) \/g“‘Gtcz(l —¥)2F
oy by?

[W(g,g"‘G:) +p [

g7 G (1 - ) \/gT“Gtcz(l — 7)2F
& " by?

+y [((1 - p)6)" [

Note that

4b 4b

t=t+1

P 2 ) [1 + i (- p)ég)i"] S PG - N[+~ p)g]

On the other hand we have that the left hand side of (B.2) reaches its maximum at

_ 27(a —¢)
(I=7)c

n

and is therefore bounded by

G Gl =yPc(a~o)
b dby

This implies that if 1, and 1), were equal to one the incentive compatibility con-

straint could not be binding for large § if

1 +(1—7)(a—c)_ 1
A-p)1=pcz "~ (L=pyp  (1-~p)

g >
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Let g be equal to this number. Given our previous results we are then done if we
can show that when g > g v,(G,) approaches one as § — 1 and that and Vs(G)

=1 for large 6.
Define now # (G,) = \/Gt(a — ¢)2/Fb—1 to be the number of firms such that

when there are 7i (G,) producers in the markets of size Gi(a — bP) competing in
quantities and producing with the riskless technology, the profits of all incumbents
are equal to zero. Clearly, given our non negative profits constraint the number of
firms in state (g, G,) must be less than 7 (G,). Similarly the survival probability to
state (s, G:), ¥s(G,) must then be greater than U= L ()] (((_‘ 7 (3.7), on the other hand
implies that n,(G,) — 7 (G,) as 6 — 1. This implies that ¥s(G.) approaches one as
6 — 1. By backward induction it is then easy to verify that ,(G,) is equal to one

when 6 is high enough. &

Proof of proposition 2: The incentive compatibility constraint is as before:

(a - 5
G [ + — Mt 1) 1) (1-7v)(n+1)ec—v(a - (')]J < (B.3)

T-1

Y6 Yo (G, m)V(G) + v Z [((1 _ p)é-)i—c

i=t+1

( H N (i lG,,m)) [ﬂ(g,gi"Gt) + pbu ('t G, m)V® ( gi'th)]J

j=t+1

[((1 - ( [T v 'a,m)) VS(gT-‘ct)J

j=t+1
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Given the exit rule: “First in last out,” the probability of survival decreases
in m so that if the incentive compatibility constraint holds for m = n(G) it will
hold for all firms that have entered before the m'th entrant. For the n(G)’th entrant
Ys(9°tG¢,m) = 0 for all i < T. His only hope to remain in the markets is that the
growth continues until G. So for the n(G)’th entrant the incentive compatibility

constraint in period ¢ < T is that

[ * b((Z T (L= M+ 1)e~(a - c)]J < (B.4)

T
Glt [((1 ~ P8 ( H V’g(f‘"’@,m)) Ve ( gT_‘Gt)

J=t+1

As before the left hand side is bounded by

1 (1-v)2%*a-c)
wT by '

The right hand side, given our earlier result on the limit of V(G) as § — 1, is, on

the other hand, larger than

,:((1 - 6)T ¢t (_1—[11/) (g7t th,m)) ch(bl;’y_)} ,

when § is large. This means that if 1,(¢?"*~'G,, m) = 1 the incentive compatibility

constraint can not be binding for large § at any ¢ when
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([ )
§29= (c2(1 =Pl 7))
When g > g and when § is sufficiently close to one, up to n(G) firms are willing to
enter the markets and behave prudently, assuming that their profits are greater than
zero in growing markets. However, when #(G,) < n(G) only n(G.) firms can enter
because of the zero profit constraint. We can now verify by backward induction
that 9,(G;,m) = 1 for all G,.

We still have to show that no additional firms would enter. By backward
induction a additional entrant would defect in period T if given credit. Thereby he
would not be issued credit in period 7. Knowing this he would defect also in period
T —1 and T — 2 and so on. Therefore no more than n(G) firms are ever issued

credit. @
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