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Introduction

Financial Intermediation in Endogenous Incomplete Markets:
They play the role of creating assets for agents to invest in
Non-convexities in aggregate production set, such as trading fix costs
(Pesendorfer (95), Bisin (98))
In general, financial intermediaries have a coordination purpose:
obtain resources from consumers and invest them in the productive
sector.
If there are economies of scale in aggregate risk sharing,
intermediaries help coordinate investment.
In this paper, we study a (very simple) model of constrained efficient
incomplete markets, (from min scale constraints)
We also study optimal financial regulation = optimal arrangements
for intermediation (contracts, institutions and rules of competition)
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Introduction

The paper is divided in two parts

1 An optimal mechanism design problem: Abstracting away from
markets, choose optimal

1 span of assets (or technologies)
2 investment portfolio
3 “deposit” insurance for consumers

2 Implementation: Decentralize the optimal allocation with familiar
institutions

1 Broker - Dealers (acting as commercial banks) with free entry
2 Firms (with free entry)

However, this institutions must be regulated in order to implement
the optimal mechanism.
In our simple example, these are quite stark: shut down consumer ↔
firms channel.
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Setup
Households

Diamond-Dygvig model
Continuum set of households I , with measure 1.
One consumption good, which is perishable. Households live for 3
periods t = 0,1,2.
At t = 0, all households are identical, and receive an endowment of
ω > 0 units of t = 0 consumption
Consumers have no endowment in t = 1,2.
Only derive utility from c1,c2
Private Information:

Ex-ante identical households.
At t = 1 a taste shock θ ∈Θ is drawn from a distribution F (θ)
(compact, Banach space)

At t = 1 there is also a publicly observed shock s ∼ Uniform [0,1]
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Setup
Technology

Two types of securities:
Storage (short): Safe, that pays only 1 unit of next period
consumption.
Long assets, or productive technology, that pay off in period 2 only.
For each ŝ ∈ [0,1] there is an asset Aŝ that pays a rate of return rŝ (s)

rŝ (s) =

{
0 if s 6= ŝ

R > 1 if s = ŝ

If invest y in all long technologies equally, then gets Ry w.p.1
This would map directly to classical Diamond-Dygvig model
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Setup
Minimum Scale

Constraint: Minimum scale requirement for investment y (s) in
asset s:

rs (ŝ = s) = R ⇐⇒ y (s)≥M (s)

This constraint is binding in the aggregate; i.e. there is not enough
endowment to invest in all technologies∫ 1

0
M (s) > ω

Acemoglu and Zilibotti (1997): model of endogenous incomplete
markets.
Extra assumptions:

M (s) is weakly increasing (w.l.o.g)
Continuous
M (s) = 0 for all s ∈ [0,δ ] for some δ > 0
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Timeline

t = 0:
agents ex-ante identical, have ω > 0 for investing
investments made in storage (x) and long technologies (y (s))

t = 1 :

Aggregate shocks s (publicly observed) and θi (private) are realized
Agents report types θ̂i and receive consumption c1

(
θ̂i ,s

)
Invest remainder = x− ∫ c1 (θ ,s)dF (θ) to storage technology again

t = 2
Agents consume c2

(
θ̂i ,s

)
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Planners Problem

Planner Problem: Choose optimal “consumption allocation” and
“portfolio plan” to maximize consumers ex-ante expected utility

Consumption Allocation: Functions c1 (θ ,s) ,c2 (θ ,s)
Portfolio Allocation: Investment in short technology x ≥ 0 and in long
technologies (y (s))s∈[0,1]
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Planners Problem
Feasibility: ∫

c1 (θ ,s)dF (θ)≤ x for all s ∈ [0,1] (1)

and∫
c2 (θ ,s)dF (θ)≤Ry (s)+

(
x−

∫
c1 (θ ,s)dF (θ)

)
for all s ∈ [0,1]

Inada Condition: if ∃Θ̂⊆Θ with Pr
(

Θ̂
)
> 0 such that

∂U

∂c1
(c1,0,θ) = ∞ for all θ ∈ Θ̂,c1 ≥ 0

then (1) is not binding, and∫
[c1 (θ ,s) + c2 (θ ,s)]dF (θ)≤ x +Ry (s) for all s ∈ [0,1]
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Planners Problem

W ∗ = max
c1(θ ,s),c2(θ ,s),x ,y(s)

∫ 1

0
ds
∫

U (c1 (θ ,s) ,c2 (θ ,s))dF (θ)

1 Inter-temporal RC: for all s ∈ [0,1] :∫
[c1 (θ ,s) + c2 (θ ,s)]dF (θ)≤ x +Ry (s) (2)

2 IC constraints: for all s ∈ [0,1] and all θ , θ̂ ∈Θ :

U(c1(θ ,s),c2(θ ,s),θ)≥ U(c1(θ̂ ,s),c2(θ̂ ,s),θ) (3)

3 Minimum scale constraints:

x ≥ 0 and y (s)≥M (s) whenever y (s) > 0 (4)

4 Portfolio Budget:

x +
∫ 1

0
y (s)ds ≤ ω (5)
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Separate into two Programs
1 Incentive program: Given output Y ≥ 0:

V (Y ) := max
c1(θ),c2(θ)

∫
U (c1 (θ) ,c2 (θ) ,θ)dF (θ)

∫
[c1 (θ) + c2 (θ)]dF (θ)≤ Y (6)

U(c1(θ ,s),c2(θ ,s),θ)≥ U(c1(θ̂ ,s),c2(θ̂ ,s),θ) for all θ , θ̂ ∈Θ (7)

2 Investment program: Given V (·), choose investments:

W ∗ = max
x ,(y(s))s∈[0,1]

∫ 1

0
V (x +Ry (s))ds (8)

x ≥ 0 and y (s)≥M (s) whenever y (s) > 0 (9)

x +
∫ 1

0
y (s)ds = ω (10)
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Separate into two Problems

Incentive program: Given output Y ≥ 0:

V (Y ) := max
c1(θ),c2(θ)∈C

∫
U (c1 (θ) ,c2 (θ) ,θ)dF (θ)

subject to ∫
[c1 (θ) + c2 (θ)]dF (θ)≤ Y

U(c1(θ ,s),c2(θ ,s),θ)≥ U(c1(θ̂ ,s),c2(θ̂ ,s),θ) for all θ , θ̂ ∈Θ

What is in C ?

1 Hidden trades (Farhi, Golosov and Tsyvinski (2009))
2 Hidden Savings (Allen and Gale 2004)
3 Not in C : incomplete contracts (i.e. not contingent on Y ∼ s)
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Roadmap

Goal: characterize the optimal investment profile.
Steps:

1 Solve Investment Program (8) for general V (·), assuming V (Y ) to
be strictly concave

2 Find conditions on U (c1,c2,θ) and C such that V (Y ) is in fact,
strictly concave.
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Investment Program

Choose
x = storage from t = 0 to t = 1
y (s) = investment in technology As

to solve

W ∗ = max
x ,(y(s))s∈[0,1]

∫ 1

0
V (x +Ry (s))ds

subject to
y (s)≥M (s) for all s : y (s) > 0 (11)

x +
∫ 1

0
y (s)ds = ω (12)
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Investment Program

Problem: Non-convex feasible set
Investment has two margins:

Extensive: which technologies to fund
Intensive: how much

We prove a series of conditions on the shape of the optimal
investment profile

Result 1: If y∗ (s) >M (s) and y∗ (s ′) >M (s ′) =⇒ y∗ (s) = y∗ (s ′)

Result 2: ∃s∗ ∈ (0,1) such that y∗ (s) = y∗ := M (s∗) for all s ≤ s∗

Result 3: ∃ŝ ∈ (s∗,1) such that y∗ (s) = M (s) for all s ∈ [s∗, ŝ]

Result 4: y∗ (s) = 0 for all s > ŝ
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Investment Program

y∗ = M (s∗)

s∗ ŝ
s ∈ [0,1]

M (s)

Figure: Optimal y∗ (s) schedule
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Investment Program
Find optimal cutoffs s∗, ŝ
Storage investment is x∗ = ω− s∗y∗− ∫ ŝs∗M (s)ds

Intensive/Extensive margin tradeoff:
Intensive margin: Given a set of available assets=⇒ optimal to invest
the same amount in all of themselves
Extensive margin: Lower investment in low MS assets to increase
asset span

Pecuniary externality:
A single agent cannot cover the minimum scale of any given asset.
In a decentralized economy with no trading constraints, each agent
takes asset span given
Since she does not affect the set of available assets =⇒ invests the
same in all
In the aggregate, equivalent to a portfolio

y (s) =

{
ỹ for all s ≤ s̃

0 for all s > s̃
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Investment Program

It generates 3 type of states for output:

1 Normal states (s < s∗) : there, intertemporal output is constant and
equal to Y = x∗+Ry∗

2 “Crisis” states (s > ŝ) : no long technology gives return, so Y = x∗

3 Boom states (s∗ < s < ŝ) : output is variable, Y (s) = x∗+RM (s)

When compared to previous case, output is more volatile
But strictly welfare improving.
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Incentive Program

Given output Y ≥ 0:

V (Y ) := max
c1(θ),c2(θ)

∫
U (c1 (θ) ,c2 (θ) ,θ)dF (θ)

subject to ∫
[c1 (θ) + c2 (θ)]dF (θ)≤ Y

U(c1(θ ,s),c2(θ ,s),θ)≥ U(c1(θ̂ ,s),c2(θ̂ ,s),θ) for all θ , θ̂ ∈Θ

Gives optimum (c1 (θ ,Y ) ,c2 (θ ,Y )). Optimal contract is

c∗ = (c∗1 (θ ,s) ,c∗2 (θ ,s)) = (c1 (θ ,x +Ry (s)) ,c2 (θ ,x +Ry∗ (s)))
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Convexity of IC Contracts

ICY =

{
c = (c1,c2) ∈ C :

{
U(c1(θ ,s),c2(θ ,s),θ)≥ U(c1(θ̂ ,s),c2(θ̂ ,s),θ) ∀θ , θ̂
Eθ [c1(θ) + c2(θ)]≤ Y

}

where C is a potential set of extra constraints
Example: access to secondary lending market (Golosov, Farhi and
Tvinsky 2009) with price q = of c2/c1
Agents report type θ̂ to maximize

V
(

θ̂ ,θ
)

= max
c1,c2

U (c1,c2,θ)

s.t :c1 +qc2 ≤ c1(θ̂) +qc2(θ̂)
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Convexity of IC Contracts

Result: If ICY is convex and U (·,θ) is strictly concave =⇒ V (Y ) is
strictly concave.
Problem: In general ICY set is not convex, particularly if extra
constraints added.

Theorem
If U (c1,c2,θ) = g1 (θ)u1 (c1) +g2 (θ)u2 (c2) and C has no extra
constraints =⇒ ICY is convex
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Convexity of IC Contracts with Re-trading Constraints

With re-trading constraints, we need to add more constraints
An equivalent formulation is to directly choose the price q and
Income I

Let v (q, I ,θ) be the indirect utility function for type θ , with demand
functions c1 (q, I ,θ) ,c2 (q, I ,θ)

Incentive problem is

V (Y ) = max
q,I

∫
v (q, I ,θ)dF (θ)

s.t ∫
[c1 (q, I ,θ) + c2 (q, I ,θ)]dF (θ)≤ Y

c1 (q, I ,θ) +qc2 (q, I ,θ) = I for all θ
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Convexity of IC Contracts with Re-trading Constraints

The preferences are Gorman∗ if

v (q, I ,θ) = g (a (q) +b (q,θ) I )

for some function g (·) strictly increasing and concave
Preferences that satisfy this condition:

U = θ ln(c1) + (1−θ) ln(c2)

U =
(
α (θ)cθ

1 + β (θ)cθ
2
) 1

θ

U = a (θ)c1 +b (θ)g (c2)

Theorem
If v (q, I ,θ) = g (a (q) +b (q,θ) I ) then V (Y ) is strictly concave as well.

We will assume that V (Y ) is strictly concave for the rest of this
presentation.
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Decentralization

We propose a decentralization with three distinct sectors:

1 Consumers: Buy (lotteries) over deposit contracts
2 Firms: They manage short and long productive technologies (free

entry)
3 Broker-dealers (or financial intermediaries): They sell contracts, and

invest directly in firms

There is free entry in all sectors (anyone can run a firm or be a
financial intermediary)
Endogenous markets:

Study first equilibria for a given set of contracts and financial
intermediaries
Then determine set of contracts traded in equilibrium
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1) Consumers

Let B be the (finite) set of Broker-Dealers (BD) active.
A contract is c = (c1 (θ ,s) ,c2 (θ ,s))(θ ,s)∈Θ×S that is
incentive-compatible
For b ∈ B , let Cb be the (finite) set of contracts offered by b

Contracts are ex-post exclusive: each consumer can only use one
contract ex-post.
Competition: BDs sell lotteries over contracts, at a price P (b,c)
per lottery unit
Budget constraint for consumers is

∑
b∈B,c∈Cb

P (b,c)× qd (b,c)︸ ︷︷ ︸
=lot. units bought

≤ ω

where qd ∈∆ := simplex over R#{(b,c):b∈B,c∈Cb} (we omit BD
profits, which are 0 in eqm).
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1) Consumers

The value of a contract for each consumer ex-ante is

V (b,c) := Eθ ,s {U (c1 (θ ,s) ,c2 (θ ,s) ,θ)}

Consumer problem is then

max
qd∈∆

∑
b∈B,c∈CB

qd (b,c)V (b,c) s.t. ∑
b∈B,c∈Cb

P (b,c)qd (b,c)≤ ω

Implicit trading constraints needed for consumers:
(a): Contract exclusivity (only trade ex-post with one BD)
(b): Cannot trade ex-post with other consumers
(c): Cannot trade directly with firms
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2) Productive Sector

Technologies: All productive assets Y = {As}s∈[0,1]∪S , where S =
storage technology.
Firm f has access to technology Yf = Aŝ for some ŝ ∈ [0,1] or
Yf = S

Firms need to get financing to manage the asset.
It offers to a potential financiers, a menu of payoffs ρ (y ,s) such that

1 ρ (y ,s) = 0 for all s if y <M (ŝ)

2 0≤ ρ (y ,s)≤ rŝ (s)y

Trading constraint:
(d): Firms cannot have more than one source of financing
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2) Productive Sector

Because agents are atomistic, this implies that they can only ask one
BD
Firm profits are then = rŝ (s)y −ρ (y ,s)

Assumption: Free entry in productive sector
This pushes profits to zero, so in equilibrium

ρ (y ,s) = rŝ (s)y ×1{y ≥M (ŝ)}

Question: Why not just consider them as Arrow-Debreu securities,
and study classical GE?
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3) Broker Dealers
Each BD has an (exogenous, for now) set of available contracts Cb

BD chooses:

1 Its supply of each contract lotteries, qs (b,c)
2 Its investments in firms to fund the contracts expenditures.

In period 1 it has to pay out

e1 (s) = ∑
c∈Cb

qs (b,c)Eθ [c1 (θ ,s)]

which can only be financed by an investment in a firm running short
tech.
In period 2, it has to pay out

e2 (s) = ∑
c∈Cb

qs (b,c)Eθ [c2 (θ ,s)]

which is financed with (a) storage and (b) long technologies
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3) Broker Dealers

Each BD has an (exogenous, for now) set of available contracts Cb

πb = max
qs ,xb ,yb(s)

∑
c∈Cb

P (b,c)qs (b,c)−

xb +
∫ 1

0
yb (s)ds︸ ︷︷ ︸

investments

 (13)

subject to{
e1 (s)≤ x for all s ∈ [0,1]

e2 (s)≤ x− e1 (s) + ρ (y (s) ,s) for all s ∈ [0,1]

Free-entry into BS industry
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Quasi-equilibrium
Given B and C = {Cb}b∈B , a quasi-equilibrium is a tuple z
consisting of

Consumer demand qd

BS supply qs and investment decisions
(
xb,(yb (s))s∈[0,1]

)
Prices P (b,s) and Payoffs ρ (y ,s), such that:

1 qd solves consumer problem given P (b,s)

2 qs and investment decisions
(
xb,(yb (s))s∈[0,1]

)
max πb given prices

P (b,s) and ρ (y ,s)
3 Free-entry: ρ (y ,s) = rŝ (s)y ×1{y ≥M (ŝ)}
4 Resource constraints:

qd (b,c) = qs (b,c) ∀b ∈ B,c ∈ Cb

Eθ [c1 (θ ,s)]≤ ∑b∈B xb ∀s ∈ [0,1]

Eθ [c1 (θ ,s) + c2 (θ ,s)]≤ ∑b∈B xb +R ∑b∈B yb (s) ∀s ∈ [0,1]

∑b∈B xb + ∑b∈B
∫ 1
0 yb (s)ds = ω
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4 Resource constraints:

qd (b,c) = qs (b,c) ∀b ∈ B,c ∈ Cb

Eθ [c1 (θ ,s)]≤ ∑b∈B xb ∀s ∈ [0,1]

Eθ [c1 (θ ,s) + c2 (θ ,s)]≤ ∑b∈B xb +R ∑b∈B yb (s) ∀s ∈ [0,1]

∑b∈B xb + ∑b∈B
∫ 1
0 yb (s)ds = ω

Robert Townsend (MIT) and Juan Xandri (Princeton University)Regulation and Design of Financial Markets December 10, 2018 39 / 48



Quasi-equilibrium
Given B and C = {Cb}b∈B , a quasi-equilibrium is a tuple z
consisting of

Consumer demand qd

BS supply qs and investment decisions
(
xb,(yb (s))s∈[0,1]

)
Prices P (b,s) and Payoffs ρ (y ,s), such that:

1 qd solves consumer problem given P (b,s)

2 qs and investment decisions
(
xb,(yb (s))s∈[0,1]

)
max πb given prices

P (b,s) and ρ (y ,s)
3 Free-entry: ρ (y ,s) = rŝ (s)y ×1{y ≥M (ŝ)}
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Quasi-equilibrium
We write z ∈Q

(
B,{Cb}b∈B

)
as the set of all quasi-equilibria.

Lemma

There always exist a Quasi-Equilibrium, where only one contract(
b̂, ĉ
)
∈ argmax

b∈B,c∈Cb

V (b,c)

is traded in eqm (i.e. qd
(
b̂, ĉ
)

= qs
(
b̂, ĉ
)

= 1), and

P
(
b̂, ĉ
)

= xb̂ +
∫ 1
0 yb̂ (s)ds

Proof.
Constructive, and straightforward

So, in any quasi-equilibrium, only one best-ex ante contract is traded
If two BD b1,b2 are selling the same contract ĉ , then there are two
equilibria
In particular, if c∗ = solution of planner’s problem is offered by some
BD, then FB is implemented!
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)

= xb̂ +
∫ 1
0 yb̂ (s)ds

Proof.
Constructive, and straightforward

So, in any quasi-equilibrium, only one best-ex ante contract is traded
If two BD b1,b2 are selling the same contract ĉ , then there are two
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)

= 1), and

P
(
b̂, ĉ
)

= xb̂ +
∫ 1
0 yb̂ (s)ds

Proof.
Constructive, and straightforward

So, in any quasi-equilibrium, only one best-ex ante contract is traded
If two BD b1,b2 are selling the same contract ĉ , then there are two
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Full Competitive Equilibrium (Makowski 1980)

So far, we took the technology of each BD as given (i.e. the
contracts they propose)
Equivalent to taking the commodity space as exogenous.
What contracts should be chosen to be introduced by banks?
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Full Competitive Equilibrium (Makowski 1980)

Definition (Profitable Deviation)
Take a set of BD B with contracts Cb, and let z be a quasi-equilibrium.
We say c ′ /∈⋃b∈B {Cb} is a profitable deviation if

1 Is incentive compatible
2 ∃z′ ∈ Q

(
B,
{
C ′b
})

where C ′b = Cb for all but b̂, where
C ′
b̂

= {c ′}∪Cb̂, such that

πb̂

(
z′
)
> πb̂ (z)

Definition (FCE)
A Full Competitive Equilibrium (FCE) is a family of contracts {Cb}b∈B
and z such that (1) z ∈Q

(
B,{Cb}b∈B

)
and (2) there are no profitable

deviations
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Weak FCE
Problem: in all quasi-equilibria we have πb (z) = 0

Definition (Weak Profitable Deviation)
Take a set of BD B with contracts Cb, and let z be a quasi-equilibrium.
We say c ′ /∈⋃b∈B {Cb} is a weak profitable deviation if

1 Is incentive compatible

2 ∃z′ ∈Q
(
B,
{
C ′b
})

where C ′b = Cb for all but b̂, where C ′
b̂

= {c ′}∪Cb̂, such
that

1 πb̂ (z
′)≥ πb̂ (z)

2 ∑c∈Cb̂
qs
(
b̂,c ′

)
> ∑c∈C ′

b̂
qs
(
b̂,c ′

)

Definition (Weak FCE)
A Weak FCE is a family of contracts {Cb}b∈B and z such that (1)
z ∈Q

(
B,{Cb}b∈B

)
and (2) there are no weak profitable deviations

Robert Townsend (MIT) and Juan Xandri (Princeton University)Regulation and Design of Financial Markets December 10, 2018 43 / 48



Weak FCE Implementation

Lemma

Take {Cb}b∈B and z ∈Q
(
B,{Cb}b∈B

)
. If c∗ /∈⋃b∈B Cb =⇒(

{Cb}b∈B ,z
)
is not a weak FCE

Proof is trivial: Based on Lemma 3 we know that in any z, the best
contract for consumers corners all the market
c∗ is the best feasible contract, so any BD selling it may get all
market in an equilibrium.

Theorem (Full Implementation)
In any weak FCE, the first best contract c∗ (with corresponding optimal
investment allocation) is implemented.
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Failures of Implementation

Failure 1: Hidden trades, Hidden savings

This reduces the set of incentive compatible mechanisms, and
therefore changes c∗

However, if V (Y ) is still st. concave =⇒ Shape of optimal portfolio
still the same
Market design still implements the second best allocation
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Failures of Implementation
Failure 2: Consumers may directly invest in firms

Firms, once they cover their minimum scale, can now ask for more
external financing
In this case, consumers would benefit from directly investing in
already “open” firms
... but they would invest the same amount in all of them.
No agent would invest in BDs: they would wait for BD to cover MS
In ex-ante problem, this translates into a reservation utility for each
agent
In constrained optimal mechanism, a BD would give the same utility
as direct financing:

y∗ (s) =

{
y∗ = M (s∗) for all s ≤ s∗

0 for all s > s∗

Same reason behind Acemoglu and Zilibotti (1997)
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Failures of Implementation

Failure 3: Contracts are incomplete

What if state s is not (perfectly) contractible? (Allen and Gale
(2004), etc)
In this case, separation between incentive and investment programs
is not possible.
Typically, investment in storage would be larger
However, non-smooth investment in long technologies would still be
optimal (conjecture!)

Failure 4: Please tell me us!
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