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THE RISE IN US WAGE INEQUALITY
• Hello. This is an outline

3

Cumulative wage growth by group, 1963–2017. From Autor (2020)



THE CANONICAL MODEL
• Existing models of wage inequality emphasize direct complementarities 

between technology and skilled labor or capital and skilled labor:


• These models imply rising wages for all, unless … 


• But what does it mean for technology to make some workers less productive?


• Standard model miss possibility that technology substitutes for labor in some 
tasks and sectors—automation or replacement. 

Aℓ ↓

4

y = f(Ah ⋅ h, Aℓ ⋅ ℓ); σ > 1; Ah ↑ • direct complementarities 
with technology


• capital skill complementarity 
and lower capital prices 



LARGE CHANGES IN OCCUPATIONS AND TASKS PERFORMED BY WORKERS 5
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• Decline in jobs intensive in 
routine tasks 

• Not driven by changes in 
college completion or 
changes in workforce 
composition


• Observed within industries 
and sectors (not a corollary of 
decline in manufacturing)


• Visible in all decades 
(exception is sales in 80s)


• And in most OECD countries



LARGE DECLINE IN LABOR SHARE IN SOME SECTORS 6
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Labor share, BLS/BEA data for 1963-2016 • Labor shares: 



• If no changes in 
markups, labor shares 
informative of changes in 
technology


• Karabarbounis and 
Neiman (2014) argue that 
decline seen in most 
countries

sℓ,i =
wagesi

value addedi



IS AUTOMATION AND IMPORTANT DRIVER OF LABOR MARKET TRENDS? 7

from Automation and the Workforce: A firm-level view using the 2019 Annual Business Survey. 



• capital produced from final good 


• supply of labor fixed at 


• Equilibrium given by unique allocation that maximizes  

c = y − ∫𝒯
k(x)/q(x) ⋅ dx

ℓg = ∫𝒯
ℓg(x) ⋅ dx

c
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y = ( 1
M ∫𝒯

(M ⋅ y(x)) λ − 1
λ ⋅ dx)

λ
λ − 1

y(x) = Ak ⋅ ψk(x) ⋅ k(x) + ∑
g

Ag ⋅ ψg(x) ⋅ ℓg(x)

Output

Tasks

Factors’ 
supply & 
Equilibrium

Factor-augmenting technologies

Task-specific technologies

THE TASK MODEL (ACEMOGLU AND RESTREPO, 2022)



THE ALLOCATION OF TASKS AND TASK SHARES 9

Γg =
1
M ∫𝒯g

ψg(x)λ−1 ⋅ dx

Set of tasks 

allocated to g

𝒯g

𝒯g′￼

𝒯k

Task shares, 


(Importance of tasks allocated to )

{Γg}g, Γk

g

Γk =
1
M ∫𝒯k

(ψk(x) ⋅ q(x))λ−1 ⋅ dx



EQUILIBRIUM AND TASK SHARES 10

y = (1 − Aλ−1
k ⋅ Γk)

λ
1 − λ ⋅ ∑

g

Γ
1
λ
g ⋅ (Ag ⋅ ℓg)

λ − 1
λ

λ
λ − 1

wg = ( y
ℓg )

1
λ

⋅ A
λ − 1

λ
g ⋅ Γ

1
λ
g

Output

Wages

sL = 1 − Aλ−1
k ⋅ Γk

Labor 
share

Differences with usual CES: 


1. task shares determine CES shares


2. elasticity of subst.  and , 


3. term on front: roundabout production 

j g σjg ≥ λ



EQUILIBRIUM AND TASK SHARES 11

y = (1 − Aλ−1
k ⋅ Γk)

λ
1 − λ ⋅ ∑

g

Γ
1
λ
g ⋅ (Ag ⋅ ℓg)

λ − 1
λ

λ
λ − 1

wg = ( y
ℓg )

1
λ

⋅ A
λ − 1

λ
g ⋅ Γ

1
λ
g

Output

Wages

sL = 1 − Aλ−1
k ⋅ Γk

Labor 
share

Representation result: 


Conditional on optimal task allocation, 
task shares determine CES shares, 
wages, and labor share


Solving for full equilibrium requires 
finding optimal task allocation.




EFFECTS OF AUTOMATION 12

𝒯g′￼

𝒯k

Rise in capital productivity  or investment technology 
 for capital that can be used at tasks in : reduces 

task share of  by  —task displacement

ψk(x)
q(x) 𝒯g

g d ln Γd
g

Ripple effects on g′￼

TFP increases by 
where cost-saving gains, and 

share of labor  in value added

sL
g ⋅ d ln Γd

g ⋅ πg
πg =

sL
g = g

𝒯g



EFFECTS OF AUTOMATION ON WAGES: NO RIPPLE EFFECTS 13

• To gain intuition start with case with no ripple effects.


• Change in wages due to automation technologies:

∑
g

sL
g ⋅ d ln wg = d ln tfp = ∑

g

sL
g ⋅ d ln Γd

g ⋅ πg

d ln wg =
1
λ

⋅ d ln y −
1
λ

⋅ d ln Γd
g

Productivity 
effects

Direct effect from 
task displacement

• Direct effect of automation is to reduce relative (and in some cases real) 
wages of displaced workers and reduce the labor share. Evidence?



EVIDENCE OF DIRECT DISPLACEMENT EFFECTS 14

• Robots and Jobs: Evidence from US Labor Markets (Acemoglu-Restrepo, 2020)


• Competing with Robots: Firm-level Evidence from France (Acemoglu-Lelarge-Restrepo, 2020)


• Robot Adoption and Labor Market Dynamics (Humlum, JMP)


• Automation and the Labor Share in the Second Machine Age (Cheng-Drozd-Giri-Taschereau-Xia, 2022)


• Technology, Vintage Human Capital, and Labor Displacement: Evidence from Linking Patents with 
Occupations (Kogan-Papanikolaou-Schmidt-Seegmiller, 2022)


• New Frontiers: The Origins and Content of New Work, 1940–2018 (Autor-Salomons-Seegmiller, 2021)


• Not a settled issue! Modern Manufacturing Capital, Labor Demand, and Product Market 
Dynamics: Evidence from France (Aghion-Antonin-Bunel-Jaravel) finds no evidence of 
displacement effects and capital-skill complementarity.



ROBOTS AND JOBS 15

• Measure of robot exposure across 
US commuting zones:

Rz = ∑
i

sE
z,i,1990 ⋅ APRUS

i,93−07

• Instrumented using historical 
differences in industry location 
and advances in Europe (ahead of 
the US in robotics)

RIV
z = ∑

i

sE
z,i,1970 ⋅ APREURO

i,93−07

• APRs:  robots per 1000 workers 
(adjusting for industry expansion)

Δ



ROBOTS AND JOBS 16

• Measure of robot exposure across 
US commuting zones:
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sE
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RIV
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sE
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i,93−07

• APRs:  robots per 1000 workers 
(adjusting for industry expansion)

Δ



ROBOTS AND JOBS 17

• Evidence of displacement effects in 
exposed regions:


- 1 extra industrial robot leads to 3 
fewer manufacturing jobs in 
exposed commuting zone relative 
to others

Δyz,90−07 = β ⋅ RIV
z + controlsz + ϵz



ROBOTS AND JOBS 18

• Evidence of displacement effects in 
exposed regions:


- 1 extra industrial robot leads to 3 
fewer manufacturing jobs in 
exposed commuting zone relative 
to others


- 1 robot per thousand workers 
reduces wages in commuting 
zone by 0.7% relative to others


• See paper for computation of 
aggregate results.

Δyz,90−07 = β ⋅ RIV
z + controlsz + ϵz



EFFECTS OF AUTOMATION ON WAGES: PROPAGATION 19

• Back to full model with ripple effects: how does  change in response to 
indirect effects?

Γ

d ln wg =
1
λ

⋅ d ln y −
1
λ

⋅ d ln Γd
g +

1
λ

⋅
∂ ln Γg

∂ ln w
⋅ stack(d ln wg)

d ln w = (1 −
1
λ

∂ ln Γ
∂ ln w )

−1

⋅ stack(zg)

Propagation matrix Θ

θgj ≥ 0 : Extent to which j competes 
for tasks against g

encodes all 
information on 
how tasks are 
reallocated in 
response to direct 
effects in stack(zg)

direct effects = zg ripple effectsg



• Change in wages due to automation: solve system for {d ln wg}g, d ln y

∑
g

sL
g ⋅ d ln wg = d ln tfp = ∑

g

sL
g ⋅ d ln Γd

g ⋅ πg

d ln wg = ∑
j

θgj ⋅ ( 1
λ

⋅ d ln y −
1
λ

⋅ d ln Γd
j )

Productivity 
effects

Direct and indirect 
effects from task 
displacement

EFFECTS OF AUTOMATION ON WAGES: PROPAGATION 20

• Wages of displaced workers fall when: 


-   small  (so-so automation)


-   close to diagonal (little room for reallocation and high incidence)

πg

Θ



21

• Two special cases:


- workers differ in  but equal  across groupsAg ψg(x)

Θg =
θ θ … θ
θ θ … θ

θ θ … θ

. . .. . .. . . ⇒ d ln wg = d ln tfp > 0

Θg =
θ1,1 0 … 0
0 θ2,2 … 0

0 0 … θGG

. . .. . .. . . ⇒ d ln wg =
1
λ

⋅ θg,g ⋅ (d ln y − d ln Γd
g) ≶ 0

- full market segmentation (groups do not compete for tasks)

EFFECTS OF AUTOMATION ON WAGES: PROPAGATION



• capital produced from final good 


• supply of labor fixed at 


• Equilibrium given by unique allocation that maximizes  

c = y − ∫𝒯
k(x)/q(x) ⋅ dx

ℓg = ∫𝒯
ℓg(x) ⋅ dx

c

22

yi = Ai ⋅ ( 1
Mi ∫𝒯i

(Mi ⋅ y(x)) λ − 1
λ ⋅ dx)

λ
λ − 1

y(x) = Ak ⋅ ψk(x) ⋅ k(x) + ∑
g

Ag ⋅ ψg(x) ⋅ ℓg(x)

Industry 
output

Tasks

Factors’ 
supply & 
Equilibrium

EXTENSION TO MULTIPLE INDUSTRIES

Demand y = (∑
i

α
1
η
i ⋅ y

η − 1
η

i )
η

η − 1



• Change in wages, sectoral output, and GDP due to automation:

EFFECTS OF AUTOMATION ON WAGES: INDUSTRIES 23

d ln pi = ∑
g

sL
gi ⋅ (d ln wg−d ln Γd

gi ⋅ πgi)
0 = ∑

i

sY
i ⋅ d ln pi

d ln wg = ∑
j

θgj ⋅ ( 1
λ

⋅ d ln y +
1
λ

⋅ ∑
i

ωi
j ⋅ d ln ζi −

1
λ ∑

i

ωi
j ⋅ d ln Γd

ji)

• All that is needed for quantification are measures of  (forcing 
variables), estimates of elasticities , and initial shares 

{d ln Γd
gi, πgi}

{λ, η, Θ} {ωi
g, sL

gi, sY
i }

d ln ζi = (λ − η) ⋅ d ln pi



• Change in wages, sectoral output, and GDP due to sectoral shifts:

DIFFERENT FROM OTHER SECTORAL SHIFTS 24

d ln pi = ∑
g

sL
gi ⋅ (d ln wg−d ln Γd

gi ⋅ πgi)−d ln Ai + d ln μi

0 = ∑
i

sY
i ⋅ d ln pi

d ln wg = ∑
j

θgj ⋅ ( 1
λ

⋅ d ln y +
1
λ

⋅ ∑
i

ωi
j ⋅ d ln ζi −

1
λ ∑

i

ωi
j ⋅ d ln Γd

ji)
d ln ζi = (λ − η) ⋅ d ln pi+(λ − 1) ⋅ d ln Ai − d ln μi

• Markups, trade in final goods, and sector-specific changes in TFP affect 
wage structure through sectoral shifters d ln ζi



MEASURING TASK DISPLACEMENT 25

• Assumption: only routine tasks automated and all workers displaced from 
routine tasks in an industry at the same rate.

d ln Γd
gi =

ωR
gi

ωR
i

⋅

revealed comparative 
advantage in routine jobs in 

industry

measures total task 
displacement in 

industry i

• Paper: Use observed  (no markups/monopsony and CD; see paper)


• Today: Use industry-level measures of automation (robots, specialized 
software and machinery) to estimate automation-driven declines 

−d ln sL
i

−d ln sL,d
i

automation-driven
declines in d ln sL

i
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• Data on labor shares for 49 industries 
from the BEA from 1987–2016


• In blue, percent labor share decline


• In orange, part due to specialized 
software and equipment, and 
robotics


• These techs explain 50% of variation 
in labor share decline across 
industries

MEASURING TASK DISPLACEMENT 26



MEASURING TASK DISPLACEMENT 27

• Estimating the component of the labor share decline due to automation



• Compute direct task 
displacement (td) for 500 groups 
(education, gender, experience, 
race, immigrant status)


• Total direct displacement across 
industries:


• Baseline wages by industry and in 
routine jobs from 1980 US Census 


• Routine jobs from ONET as in 
Acemoglu and Autor (2011)

MEASURING TASK DISPLACEMENT 28

tdg = ∑
i

ωi
g ⋅ d ln Γd

gi



WAGE CHANGES AND DIRECT TASK DISPLACEMENT 1980–2016 29

• Key role of direct effects: 10 pp 
increase in direct task displacement 
leads to 16% decline in group wages


• Similar relationship within education 
groups and gender


• Direct task displacement explains 
50% of differences across groups; 
educational dummies only 10% 


• Relationship only for workers in 
routine jobs in automating industries


• Robust to controlling for trade, 
markups, unions, changes in supply…

Δ ln wg,80−16 = β ⋅ tdg + controlsg + ϵg



ESTIMATING THE KEY ELASTICITIES
• Take  from Humlum’s JMP and  from Buera, Kaboski, Rogerson (2015)


• Estimate parametrized version of propagation matrix:

λ = 0.5 η = 0.2

30

εg −
θgj

sL
j

= εj −
θjg

sL
g

,

θgj =
1
2

(εg − εj) ⋅ sL
j + ∑

n

βn ⋅ f(dn
gj) ⋅ sL

j ,

θgg = β,

- Theory 
restrictions

θgj ≥ 0.

- Parametrization
Competition depends 
on similarity along 

{occupations, 
industry, skills} 
n ∈

- Estimation of 
’s and ’sβ ε

d ln wg = β0 −
β
λ

⋅ tdg −
1
λ ∑

j≠g ( 1
2

(εg − εj) ⋅ sL
j + ∑

n

βn ⋅ f(dn
gj) ⋅ sL

j ) ⋅ tdj + υg

εg = ∑
j

θgj,



ESTIMATING THE KEY ELASTICITIES 31

d ln wg = β0 −
β
λ

⋅ tdg −
1
λ ∑

j≠g ( 1
2

(εg − εj) ⋅ sL
j + ∑

n

βn ⋅ f(dn
gj) ⋅ sL

j ) ⋅ tdj + υg



ACCOUNTING FOR GENERAL EQUILIBRIUM EFFECTS 32

A. Prod effect B. +Industry shifts C. +Task displacement D. +Ripple effects

Note: This captures industry 
shifts induced by automation, 
not contribution of all sources 
of sectoral changes



ACCOUNTING FOR GENERAL EQUILIBRIUM EFFECTS 33

Summary of results:
• Explains 48% of observed wage changes


• Explains 80% of rise in college premium and 
60% of rise in post-college premium


• Explains 80% of real wage declines


• Misses wage growth at top (other forces or 
direct complementarities with technology?)


• Increase in GDP of 20%, mean wage of 6%, 
and TFP of 4%



TAKING STOCK 34

• Task models capture possibility that capital or new technology can 
replace workers at certain tasks


• Much of the rise in US wage inequality due to uneven effects of  task 
displacement generated by automation 


• Different from canonical explanations of SBTC:

- emphasizes task displacement and importance of industries and occupations 
above educational levels in mediating its effects


- better fit to data and high explanatory power


- explains lackluster TFP growth and declining real wages



RESEARCH QUESTIONS
• Transitional dynamics: how fast is the reallocation process?


• Does the propagation matrix differ across countries? Perhaps capturing 
differences in retraining systems?


• Adjustment in economies with frictions: unemployment, sticky wages?


• Quantifying the contribution of task displacement effects for OECD countries


• Introducing capital skill complementarity (or comparative advantage of skill labor 
in producing automation equipment.


• Much more to be done in terms of estimation. I see our paper as first step in 
estimating propagation matrix. But I don’t think we fully nailed it and that is ok.


• Implications for within-group inequality?

35


