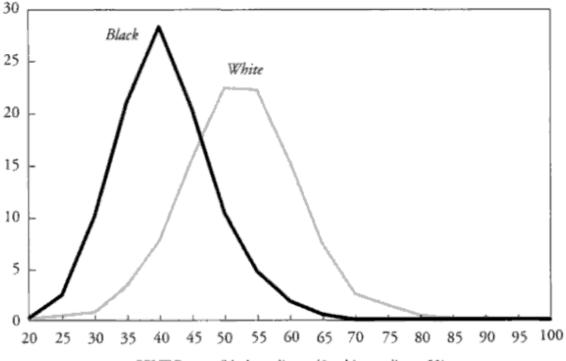
Discrimination and Learning

14.662 Spring 2011 David Autor

Autor and Scarborough 2008


The Tradeoff

 "What is the appropriate balance between anticipated productivity gains from better employee selection and the well-being of individual job seekers? Can equal employment opportunity be said to exist if screening methods systematically filter out very large proportions of minority candidates?"

 Hartigan and Widgor, Fairness in Employment Testing, 1989.

Figure 1-1. Vocabulary Scores for Black and White Three- and Four-Year-Olds, 1986–94

Percent of population

PPVT-R score (black median = 40; white median = 52)

Source: National Longitudinal Survey of Youth Child Data, 1986–94. Black N = 1,134; white N = 2,071. Figure is based on black and white three- and four-year-olds in the Children of the National Longitudinal Survey of Youth (CNLSY) data set who took the Peabody Picture Vocabulary Test-Revised (PPVT-R). The test is the standardized residual, coded to a mean of 50 and a standard deviation of 10, from a weighted regression of children's raw scores on their age in months, age in months squared, and year-of-testing dummies. See chapter 4 for details on the CNLSY and the PPVT-R.

Jencks and Phillips, 1998

Sample Test Questions

- 1. Conscientiousness: "If you think a bit about a problem, you can always find a solution."
- 2. Extroversion: "You hold back from talking a lot in a group."
- 3. Agreeableness (self-control): "You can be rude when you need to be."
- 4. Openness to experience (novelty versus structure; intellect): "It is easy for you to change your plans."
- 5. Emotional Stability (mood, temper): "Sometimes you have negative feelings all day."

			A. Frequ	uencies			
	A. Frequencies Full sample Nontested hires Tested hires Frequency % of total Frequency % of total 33,924 100 25,561 75 8,363 23,560 69.5 18,057 70.6 5,503 6,262 18.5 4,591 18.0 1,671 4,102 12.1 2,913 11.4 1,189 17,444 51.4 13,008 50.9 4,436 16,480 48.6 12,553 49.1 3,927 B. Employment spell duration (days) Full sample Nontested hires Tested hires						
	Frequency	% of total	Frequency	% of total	Frequency	% of total	
All	33,924	100	25,561	75	8,363	25	
White	23,560	69.5	18,057	70.6	5,503	65.8	
Black	6,262	18.5	4,591	18.0	1,671	20.0	
Hispanic	4,102	12.1	2,913	11.4	1,189	14.2	
Male	17,444	51.4	13,008	50.9	4,436	53.0	
Female	16,480	48.6	12,553	49.1	3,927	47.0	
			B. Employment spe	ell duration (days)			
	Full sa	ample	Nonteste	ed hires	Tested hires		
	Median	Mean	Median	Mean	Median	Mean	
All	99	173.7	96	173.3	107	174.8	
	[97, 100]	(1.9)	[94, 98]	(2.1)	[104, 111]	(2.9)	
White	106	184.0	102	183.0	115	187.1	
	[103, 108]	(2.1)	[100, 105]	(2.3)	[112, 119]	(3.6)	
Black	77	140.1	74	138.1	87	145.7	
	[75, 80]	(3.0)	[71, 77.4]	(3.5)	[81.9, 92]	(4.8)	
Hispanic	98	166.4	98	169.3	99	159.5	
-	[93, 103]	(4.6)	[92, 104]	(5.4)	[90, 106]	(6.4)	

Sample includes workers hired between January 1999 and May 2000. Mean tenures include only completed spells (98% spells completed). Median tenures include complete and incomplete spells. Standard errors in parentheses account for correlation between observations from the same site (1,363 sites total). 95 percent confidence intervals for medians are given in brackets.

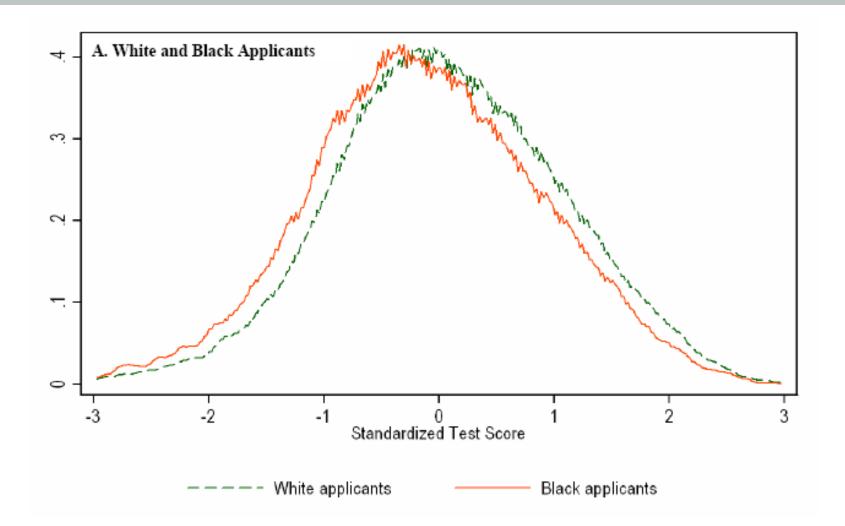


TABLE II
TEST SCORES AND HIRE RATES BY RACE AND SEX FOR TESTED APPLICANT SUBSAMPLE

A. Test scores of applicants ($n = 189,067$)	A.	Test	scores	of	applicants	(n =	= 189,067
--	----	------	--------	----	------------	------	-----------

Percentage in each category

	Mean	SD	Quartile 1: "red"	Quartile 2: "yellow"	Quartiles 3 and 4: "green"
All	0.000	1.000	23.2	24.8	52.0
White	0.064	0.996	20.9	24.5	54.6
Black	-0.125	1.009	27.8	25.2	47.1
Hispanic	-0.056	0.982	24.9	25.6	49.6
Male	0.019	0.955	24.4	24.3	51.3
Female	-0.014	1.033	21.6	25.5	52.9
		D W 4	C1: /	10.005)	

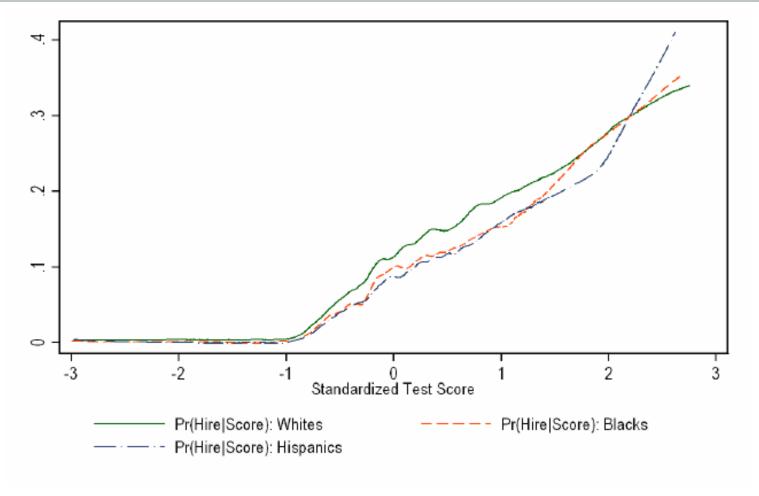
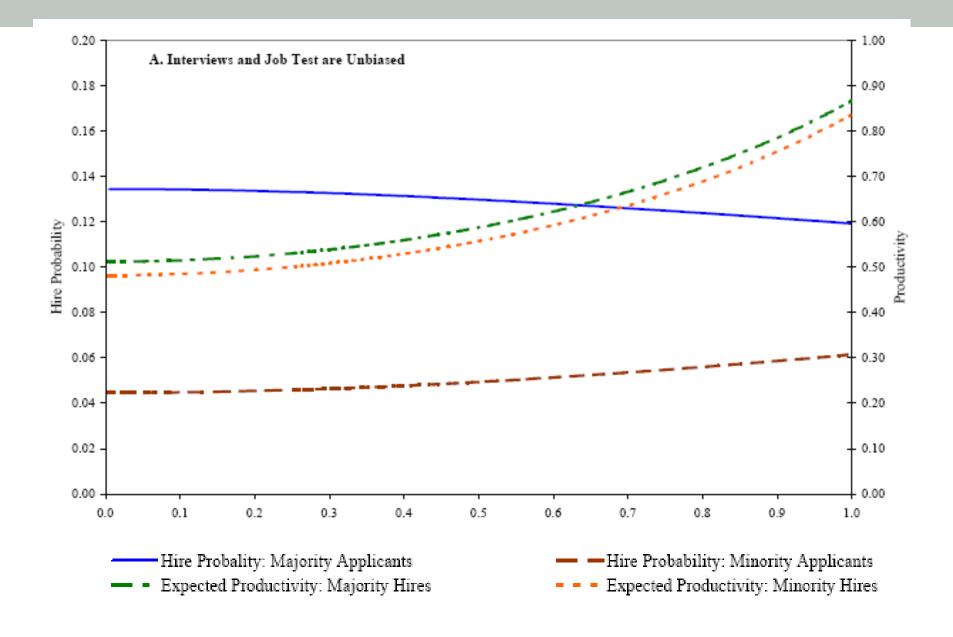
B. Test scores of hires (n = 16,925)

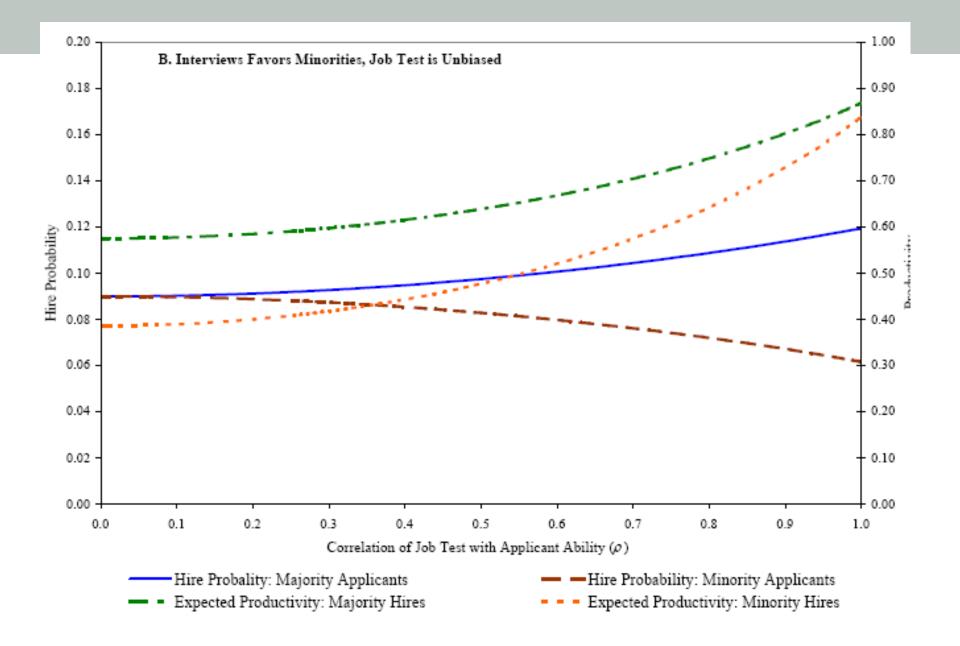
TABLE III
THE RELATIONSHIP BETWEEN APPLICANT CHARACTERISTICS AND TEST SCORES
(DEPENDENT VARIABLE: STANDARDIZED TEST SCORE)

	(1)	(2)	(3)	(4)	(5)
Black	-0.192	-0.183	-0.125	-0.113	-0.113
	(0.008)	(0.007)	(0.008)	(0.008)	(0.008)
Hispanic	-0.121	-0.148	-0.100	-0.093	-0.093
	(0.009)	(0.008)	(0.008)	(0.008)	(0.008)
Male	-0.044	-0.045	-0.052	-0.053	-0.053
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Median income in				0.066	0.062
applicant's ZIP code				(0.015)	(0.016)
Percent nonwhite in				-0.071	-0.071
applicant's ZIP code				(0.023)	(0.023)
State effects	No	Yes	No	No	No
1,363 site effects	No	No	Yes	Yes	Yes
State trends	No	No	No	No	Yes
R^2	0.0070	0.0113	0.0265	0.0269	0.0277
Obs			189,067		

Robust standard errors in parentheses account for correlation between observations from the same site (1,363 sites). Sample includes all applications from August 2000 through May 2001 at sites in treatment sample. All models include controls for the year-month of application and an "other" race dummy variable to account for 25,621 applicants with other or unidentified race. Income and fraction nonwhite for stores and applicants are calculated using store ZIP codes merged to 2000 Census SF1 and SF3 files.

Autor and Scarborough, 2008


Figure I. Conditional Probability of Hire as a Function of Test Score by Race: Locally Weighted Regressions. Sample: All White, Black and Hispanic applicants, June 2000 · May 2001 (n=189,067).

C. Hire rates by applicant group

By	Race and S	ex	By Test Score Decile							
Race/Sex	% Hired	Obs	Decile	% Hired	Obs					
			1	0.07	19,473					
All	8.95	189,067	2	0.06	20,038					
			3	3.96	18,803					
White	10.16	113,354	4	5.65	18,774					
Black	7.17	43,314	5	7.97	19,126					
Hispanic	7.12	32,399	6	10.99	18,264					
_			7	11.71	18,814					
			8	13.76	18,029					
Male	8.59	106,948	9	16.14	19,491					
Female	9.42	82,119	10	20.43	18,255					

Autor and Scarborough, 2008

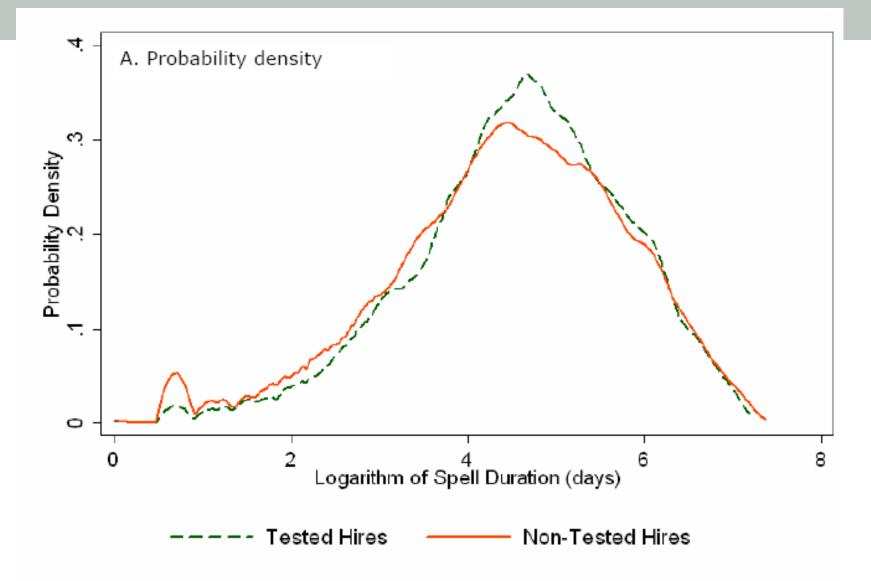


Figure IV. Completed Job Spell Durations of Tested and Non-Tested Hires. Sample: Hires June 2000 - May 2001 with Valid Outcome Data (n = 33,266)

TABLE IV
OLS AND IV ESTIMATES OF THE EFFECT OF JOB TESTING ON THE JOB SPELL DURATION OF HIRES
(DEPENDENT VARIABLE: LENGTH OF COMPLETED EMPLOYMENT SPELL IN DAYS)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			OLS es	timates				2SLS e	stimates	
Employment test			8.9 (4.5)	18.4 (4.0)	18.4 (4.0)	21.8 (4.3)	6.3 (5.1)	14.9 (4.6)	14.8 (4.6)	18.1 (5.0)
Black	-43.5 (3.2)	-25.9 (3.5)			-25.9 (3.5)	-25.8 (3.5)			-25.9 (3.5)	-25.8 (3.5)
Hispanic	-17.5 (4.4)	-11.8 (4.1)			-11.8 (4.1)	-11.7 (4.1)			-11.8 (4.1)	-11.7 (4.1)
Male	-4.2 (2.4)	-2.0 (2.4)			-2.0 (2.4)	-1.9 (2.4)			-2.0 (2.4)	-1.9 (2.4)
Site effects	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
State trends R^2	No 0.0112	No 0.1089	No 0.0049	No 0.1079	No 0.1094	Yes 0.1116	No	No	No	Yes

N=33,266. Robust standard errors in parentheses account for correlation between observations from the same site hired under each screening method (testing or no testing). All models include controls for month-year of hire. Sample includes workers hired January 1999 through May 2000 at 1,363 sites. Instrument for worker receiving employment test in columns (7)—(10) is an indicator variable equal to one if site has begun testing.

TABLE VI
OLS AND IV ESTIMATES OF THE EFFECT OF JOB TESTING ON THE JOB SPELL
DURATION OF HIRES: TESTING FOR DIFFERENTIAL IMPACTS BY RACE
(DEPENDENT VARIABLE: LENGTH OF COMPLETED EMPLOYMENT SPELL IN DAYS)

	(1)	(2)	(3)	(4)	(5)	(6)
	OI	S estimat	es	2SL	S estimat	es
White × tested	13.8	19.7	23.2	12.3	17.0	20.4
	(5.0)	(4.6)	(4.8)	(5.7)	(5.2)	(5.6)
$Black \times tested$	15.4	22.2	23.2	12.4	18.1	18.8
	(6.4)	(5.9)	(6.0)	(7.0)	(6.7)	(6.9)
$Hispanic \times tested$	-1.2	7.0	12.8	-5.6	0.5	6.4
	(8.8)	(7.3)	(7.6)	(9.2)	(7.7)	(8.1)
Black	-44.5	-26.5	-25.8	-44.0	-26.2	-25.4
	(3.8)	(3.9)	(3.9)	(3.9)	(3.9)	(3.9)
Hispanic	-14.0	-8.2	-8.8	-13.1	-7.2	-7.8
	(5.5)	(4.8)	(4.9)	(5.6)	(4.9)	(4.9)
Male	-4.2	-2.0	-1.9	-4.2	-2.0	-1.9
	(2.4)	(2.4)	(2.4)	(2.4)	(2.4)	(2.4)
Site effects	No	Yes	Yes	No	Yes	Yes
State trends	No	No	Yes	No	No	Yes
H_0 : Race interactions jointly equal	0.19	0.15	0.36	0.14	0.08	0.21
R^2	0.012	0.109	0.112			

N=33,266. Robust standard errors in parentheses account for correlation between observations from the same site hired under each screening method (testing or no testing). All models include controls for month-year of hire. Sample includes workers hired January 1999 through May 2000 at 1,363 sites. Instrument for worker receiving employment test in columns (7)–(10) is an indicator variable equal to one if site has begun testing.

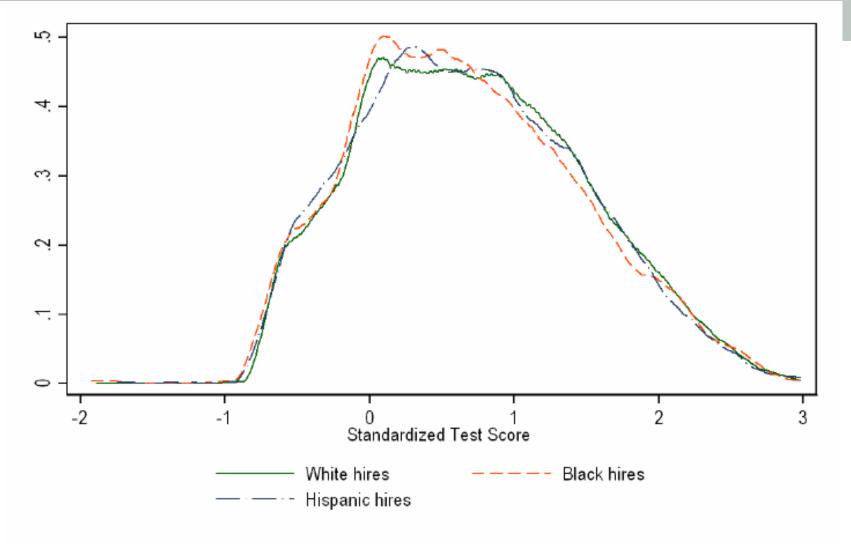


Figure V. Test Score Densities of Hired Workers by Race

TABLE VII

ESTIMATES OF THE EFFECT OF JOB TESTING ON HIRING ODDS BY RACE (PANEL A) AND THE SHARE OF HIRES BY RACE (PANELS B AND C)

(Dependent Variable: Equal to One (Zero) If Hired Worker Is (not) of Specified Race)

	(1)	(2)	(3)	(4)	(5)	(6)				
	Wł	nite	Bla	ack	Hispa	anic				
	Panel A	. Hiring o	dds: 100 ×	fixed effec	ts logit est	imates				
Employment test (logit coefficient)	2.90 (5.63)	2.06 (5.89)	-2.35 (6.77)	-0.13 (7.14)	-2.48 (7.33)	-5.78 (7.62)				
State trends N	No 30,921	Yes 23,957	No 26,982	Yes 26,982	No 22,453	$\frac{\text{Yes}}{22,453}$				
Panel B. Hiring shares: $100 \times \text{OLS}$ estimates										
Employment test (OLS coefficient)	0.41 (0.84)	0.24 (0.89)	-0.27 (0.69)	-0.04 (0.72)	-0.14 (0.62)	-0.21 (0.67)				
State trends N	No 33,924	Yes 33,924	Ño 33,924	Yes 33,924	No 33,924	Yes 33,924				
	Par	nel C. Hiri	ng shares:	$100 \times 2S$	LS estimat	es				
Employment test (2SLS coefficient)	$0.78 \\ (0.95)$	0.69 (1.02)	-0.15 (0.78)	0.09 (0.81)	-0.63 (0.70)	-0.78 (0.77)				
State trends N	No 33,924	Yes 33,924	No 33,924	$\frac{\mathrm{Yes}}{33,924}$	No 33,924	Yes 33,924				

Standard errors in parentheses. For OLS and IV models, robust standard errors in parentheses account for correlations between observations from the same site. Sample includes workers hired January 1999 through May 2000. All models include controls for month-year of hire and site fixed effects. Fixed effects logit models discard sites where all hires are of one race or where relevant race is not present.

TABLE IX

THE IMPACT OF JOB TESTING ON HIRING AND JOB SPELL DURATIONS OF WHITE AND BLACK APPLICANTS UNDER SIX BIAS SCENARIOS:

COMPARING SIMULATION RESULTS WITH OBSERVED OUTCOMES

		Comparing Si	MULATION RESULT	rs with Observe	d Outcomes		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
			Simulati	on Results			
Avg. ability Interview bias Test bias	$egin{aligned} W > B \ ext{Neutral} \ ext{Neutral} \end{aligned}$	W>B Favors W Neutral	W>B Favors B Neutral	W = B Neutral Favors W	W = B Favors W Favors W	W = B Favors B Favors W	Observed
		A. Pro	ductivity: job sp	ell durations in o	days		
Initial tenure gap: $W - B$ ΔW tenure	52.0 (5.1) 18.6 (1.2)	30.1 (5.9) 20.4 (1.1)	80.7 (5.0) 16.8 (1.3)	-13.2 (4.9) 16.8 (1.3)	-41.9 (5.1) 18.6 (1.2)	15.6 (4.5) 16.0 (1.3)	44.9 (3.9) 23.2 (4.8)
ΔB tenure	19.9 (2.7)	19.7 (3.2)	23.1 (2.3)	23.2 (2.3)	20.0 (2.7)	27.3 (2.1)	23.2 (6.0)
$\Delta W - \Delta B$ tenure $\chi^2(3)$ rows 1, 2, 3 P-value	-1.4 (3.0) 2.4 .50	0.7 (3.4) 5.1 .17	$ \begin{array}{r} -6.3 \\ (2.7) \\ 34.0 \\ .00 \end{array} $	$ \begin{array}{r} -6.4 \\ (2.7) \\ 88.1 \\ .00 \end{array} $	-1.4 (3.0) 185.5 $.00$	-11.3 (2.6) 26.6 .00	0.0 (6.2)
		B. Em	ployment shares	and log odds of	hiring		
ΔW emp share \times 100 ΔB emp share \times 100 $\Delta W - \Delta B$ emp share \times 100 $\chi^2(2)$ rows 6, 7 P-value	$\begin{array}{c} -0.97 \\ (0.18) \\ 0.82 \\ (0.15) \\ -1.79 \\ (0.31) \\ 3.4 \\ .33 \end{array}$	-2.38 (0.18) 1.72 (0.15) -4.10 (0.30) 14.9 $.00$	0.86 (0.18) -0.53 (0.16) 1.39 (0.31) 1.0 $.79$	0.86 (0.18) -0.53 (0.15) 1.39 (0.30) 1.0 .79	-0.98 (0.19) 0.82 (0.15) -1.79 (0.31) 3.4 $.33$	2.69 (0.19) -1.88 (0.16) 4.57 (0.32) 15.0 $.00$	$0.24 \\ (0.89) \\ -0.04 \\ (0.72) \\ 0.28 \\ (1.42)$
$\chi^2(5) \text{ rows } 5, 9$ $P\text{-value}$	5.8	C. Omnibus goodn 20.0 .00	ess of fit statistic 35.0 .00	es for productivit 89.2 .00	y and employmer 188.9 .00	11.6 .00	

Autor and Scarborough, 2008

Coate and Loury, 1993

Sequence of Actions

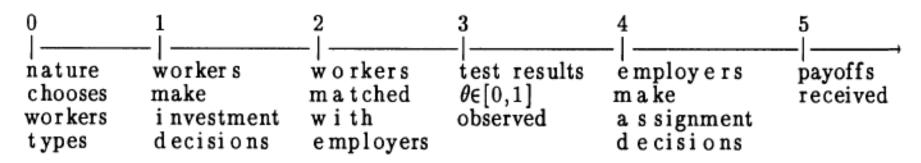


Figure 1. Sequence of Actions

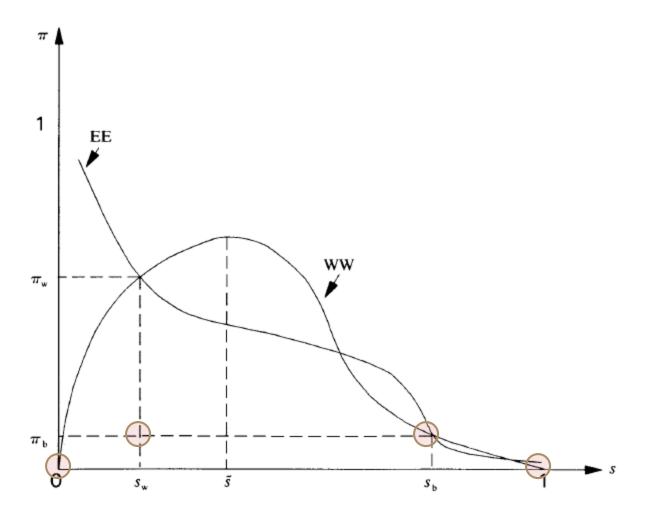


FIGURE 2. AN EQUILIBRIUM WITH NEGATIVE STEREOTYPES AGAINST B'S

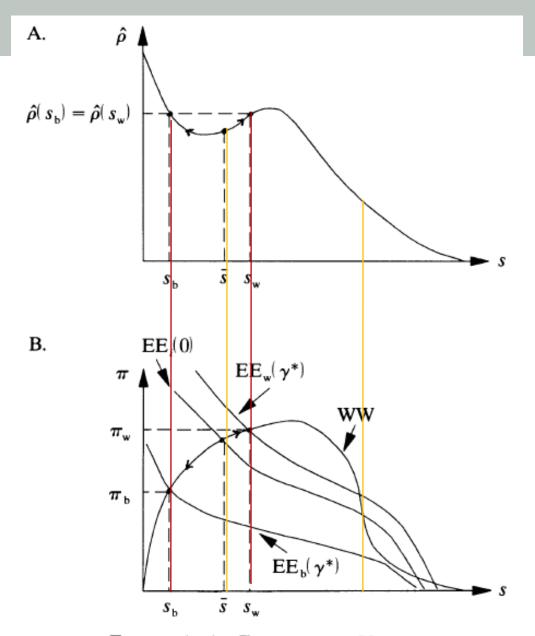


FIGURE 4. AN EQUILIBRIUM UNDER AFFIRMATIVE ACTION WITH NEGATIVE STEREOTYPE ABOUT B'S

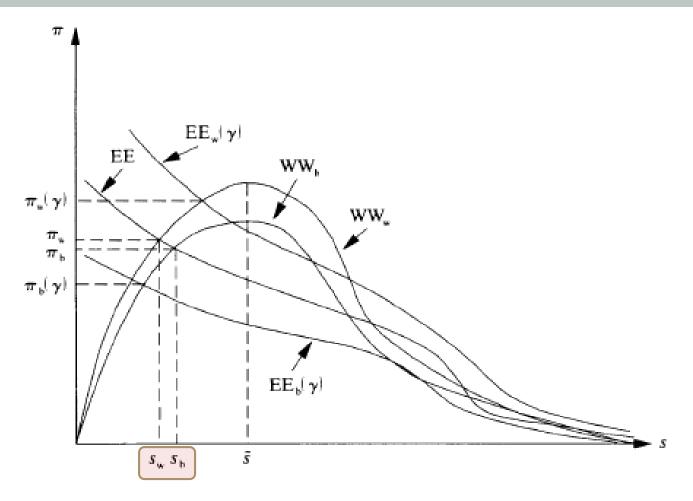


FIGURE 5. AFFIRMATIVE ACTION INCREASES
SKILL DISPARITY IN THE ABSENCE OF
STEREOTYPES

Farber and Gibbons 1998

SUMMARY STATISTICS NLSY

(MEANS AND STANDARD DEVIATIONS)

ALL YEARS OF EMPLOYMENT (1979-1991) BY EXPERIENCE

Experience	N	Wage	Age	Education	Part- Time	Coll. barg	Nonwhite	Female	Married	Marr. & female
0	1169	4.96 (2.02)	22.2 (2.56)	12.5 (2.33)	0.0	.170	.441	.483	.198	.119
1	4589	5.33 (2.33)	22.7 (2.68)	12.9 (2.35)	.132	.165	.415	.506	.202	.124
2	4622	5.90 (2.62)	23.6 (2.67)	13.0 (2.37)	.087	.180	.418	.504	.270	.152
3	4623	6.30 (2.86)	24.6 (2.67)	13.0 (2.39)	.071	.186	.421	.504	.332	.188
4	4182	6.70 (3.13)	25.5 (2.51)	13.1 (2.37)	.090	.186	.413	.505	.387	.213
5	3749	7.01 (3.24)	26.2 (2.38)	13.1 (2.40)	.096	.190	.416	.497	.441	.233
6	3269	7.27 (3.48)	27.0 (2.25)	13.1 (2.36)	.094	.185	.407	.501	.479	.252
7	2740	7.53 (3.62)	27.6 (2.10)	13.1 (2.31)	.093	.191	.397	.490	.510	.262
8	2170	7.77 (3.61)	28.3 (1.97)	13.0 (2.29)	.102	.191	.393	.486	.541	.270
9	1640	7.89 (3.74)	29.0 (1.90)	13.0 (2.29)	.098	.189	.387	.493	.573	.285
10	1230	7.77 (3.54)	29.8 (1.79)	12.9 (2.21)	.104	.196	.412	.496	.566	.281
11	759	7.88 (3.68)	30.6 (1.66)	12.9 (2.17)	.083	.202	.406	.511	.570	.283
Total:	34,742	6.64 (3.21)	25.6 (3.27)	13.0 (2.35)	.092	.184	.412	.500	.386	.207

The numbers in parentheses are standard deviations. The Part-time, Collective bargaining, Nonwhite, Female, Married, and Married & female variables are dummy variables. Wage data are in real 1982–1984 dollars (deflated by CPI). Observations at the time of entry (experience = 0) which are part-time are not included in this analysis. See text for details.

TABLE II
REGRESSION ANALYSIS OF EARNINGS FUNCTION

Independent variable	(1) Mean [sd]	(2) Wage (level)	(3) Wage (level)	(4) Wage (level)	(5) Wage (Level)	(6) Wage (log)
Constant	1.0	-3.5579	-3.8086	-6.0321	-2.7034	0.0873
Constant	1.0	(0.785)	(0.788)	(0.928)	(0.388)	(0.124)
Experience	5.1804	0.4428	0.5054	0.5366	0.2697	0.1012
Experience	[2.502]	(0.102)	(0.103)	(0.100)	(0.069)	(0.013)
Experience squared	33.0953	-0.0178	-0.0185	-0.0178	-0.0198	-0.0027
Experience squared	[29.947]	(0.003)	(0.003)	(0.003)	(0.003)	(0.000)
Education	13.0450	0.6745	0.6938	0.6719	0.4602	0.0989
Eddeanon	[2.349]	(0.061)	(0.061)	(0.059)	(0.024)	(0.007)
Education \times experience	67.5424	-0.0004	-0.0049	-0.0041	0.0172	-0.0026
Education / Caporionec	[35.014]	(0.008)	(0.008)	(0.007)	(0.005)	(0.001)
AFQT residual/100	0.0024		0.6494	0.8734	0.7841	0.1880
	[0.148]		(0.307)	(0.291)	(0.292)	(0.044)
AFQT resid/100 \times experience	0.0189		0.1938	0.1848	0.1922	0.0187
	[0.856]		(0.064)	(0.060)	(0.060)	(0.008)
Lib card residual/10	-0.0002	_	0.2583	0.2130	-0.0579	0.1440
	[0.043]		(1.035)	(0.988)	(0.989)	(0.146)
Lib card resid × experience/10	-0.00011		0.6035	0.6169	0.6448	0.0588
-	[0.248]		(0.205)	(0.192)	(0.192)	(0.026)
Year		yes	yes	yes	no	yes
Education $ imes$ year		yes	yes	yes	no	yes
Other demographic		no	no	yes	yes	yes
R^2		0.215	0.224	0.294	0.289	0.296

The dependent variable is real hourly earnings on the current job (in levels in columns (2)–(5) and in logs in column (6). The mean of the level of earnings is 6.91 (s.d. = 3.30). The mean of the log of earnings is 1.83 (s.d. = 0.448). The numbers in parentheses are White/Huber standard errors computed accounting for the fact that there are multiple observations for each worker. There are 28,984 wage observations on 4970 individuals. Where included, there are ten year dummies for 1981–1990 and interactions of education with each of the ten year dummies. The base year is 1991. The other demographic characteristics, where included, consist of age at entry, a dummy variable for part-time, the interaction of part-time with education, and dummy variables for collective bargaining coverage, race, sex, marital status, and the interaction of sex and marital status.

TABLE III EMPIRICAL COVARIANCE MATRIX OF WITHIN WORKER WAGE RESIDUALS (LEVELS) (STANDARD ERROR)

[CELL SIZE]

	0	1	2	3	4	5	6	7	8	9	10	11
0	2.58											
	(.389)											
	[1169]											
1	1.82	3.85										
	(.379)	(.395)										
	[1081]	[4589]										
2	1.72	2.45	4.81									
	(.391)	(.335)	(.419)									
	[1080]	[4292]	[4622]									
3	1.66	2.45	3.40	5.67								
	(.397)	(.346)	(.372)	(.443)								
	[1092]	[4282]	[4333]	[4623]								
4	1.57	2.32	3.27	4.11	6.83							
	(.400)	(.354)	(.376)	(.399)	(.487)							
	[956]	[3875]	[3936]	[3945]	[4182]							
5	1.45	2.08	2.95	3.82	4.74	7.12						
	(.412)	(.353)	(.382)	(.429)	(.437)	(.519)						
	[834]	[3476]	[3514]	[3540]	[3479]	[3749]						
6	1.67	2.17	3.03	3.75	4.73	5.16	8.42					
	(.444)	(.373)	(.411)	(.426)	(.481)	(.477)	(.562)					
	[705]	[3023]	[3077]	[3078]	[3016]	[3028]	[3269]					
7	1.58	2.01	2.89	3.53	4.36	4.91	6.49	9.14				
	(.527)	(.396)	(.435)	(.450)	(.488)	(.498)	(.563)	(.600)				
	[567]	[2529]	[2589]	[2588]	[2529]	[2520]	[2557]	[2740]				
8	1.40	1.84	2.67	3.11	3.84	4.35	5.88	6.59	9.30			
	(.515)	(.405)	(.449)	(.451)	(.481)	(.504)	(.566)	(.580)	(.628)			
	[419]	[2006]	[2047]	[2051]	[2016]	[1991]	[2017]	[2029]	[2170]			
9	1.04	1.73	2.54	2.75	3.70	3.94	5.38	6.16	7.32	9.97		
	(.522)	(.434)	(.455)	(.464)	(.510)	(.532)	(.586)	(.589)	(.634)	(.699)		
	[316]	[1513]	[1543]	[1548]	[1521]	[1530]	[1519]	[1511]	[1495]	[1640]		
10	0.825	1.35	2.33	2.52	3.22	3.50	4.64	5.29	5.89	6.92	8.97	
	(.518)	(.403)	(.495)	(.480)	(.549)	(.543)	(.599)	(.630)	(.632)	(.640)	(.714)	
	[240]	[1125]	[1154]	[1156]	[1125]	[1133]	[1151]	[1132]	[1105]	[1112]	[1230]	
11	0.566	1.24	2.22	2.17	3.12	2.93	4.41	4.68	5.53	6.33	6.72	10.0
	(.467)	(.466)	(.579)	(.558)	(.619)	(.592)	(.664)	(.656)	(.763)	(.757)	(.766)	(.853)
	[148]	[683]	[704]	[711]	[696]	[695]	[706]	[718]	[676]	[669]	[704]	[759]

Farber and Gibbons, 1998

TABLE IV
OPTIMAL MINIMUM DISTANCE ESTIMATION OF COVARIANCE STRUCTURE MARTINGALE
OVERLAID WITH CLASSICAL MEASUREMENT ERROR NLSY UNBALANCED PANELS
(STANDARD ERRORS IN PARENTHESES)

Name	Parameter	Estimate
Variance of initial unmeasured	σ_1^2	2.0404
expected ability	•	(0.089)
Variance of measurement error	$\sigma_{_{\Phi}}^{2}$	1.5704
	*	(0.058)
Variance of wage innovations	$\sigma^2_{\mu 1}$	0.8634
each period:		(0.080)
	$\sigma^2_{\mu_2}$	0.5986
		(0.082)
	$\sigma^2_{\mu 3}$	0.8748
		(0.096)
	$\sigma^2_{\mu_4}$	0.5522
		(0.094)
	$\sigma^2_{\mu_5}$	1.3158
		(0.141)
	$\sigma_{\mu 6}^2$	0.8263
		(0.146)
	$\sigma^2_{\mu 7}$	0.7643
		(0.161)
	$\sigma^2_{\mu_8}$	0.6568
		(0.200)
	$\sigma^2_{\mu 9}$	0.2891
		(0.265)
	$\sigma^2_{\mu 10}$	0.8894
		(0.476)
χ^2 statistic, structural test:		157
Degrees of freedom		54
p-value of test statistic		1×10 ⁻¹¹
Number of workers		4998

Farber and Gibbons, 1998

Altonji and Pierret 2001

TABLE I
THE EFFECTS OF STANDARDIZED AFQT AND SCHOOLING ON WAGES
Dependent Variable: Log Wage; OLS estimates (standard errors).

Panel 1—Experience measure: potential experience							
Model:	(1)	(2)	(3)	(4)			
(a) Education	0.0586	0.0829	0.0638	0.0785			
	(0.0118)	(0.0150)	(0.0120)	(0.0153)			
(b) Black	-0.1565	-0.1553	0.0001	-0.0565			
	(0.0256)	(0.0256)	(0.0621)	(0.0723)			
(c) Standardized AFQT	0.0834	-0.0060	0.0831	0.0221			
	(0.0144)	(0.0360)	(0.0144)	(0.0421)			
(d) Education *	-0.0032	-0.0234	-0.0068	-0.0193			
experience/10	(0.0094)	(0.0123)	(0.0095)	(0.0127)			
(e) Standardized AFQT st		0.0752		0.0515			
experience/10		(0.0286)		(0.0343)			
(f) Black * experience/10			-0.1315	-0.0834			
-			(0.0482)	(0.0581)			
R^2	0.2861	0.2870	0.2870	0.2873			

TABLE I
THE EFFECTS OF STANDARDIZED AFQT AND SCHOOLING ON WAGES
Dependent Variable: Log Wage; OLS estimates (standard errors).

Panel 1—Exp	perience meas	ure: potential	experience	
Model:	(1)	(2)	(3)	(4)
(a) Education	0.0586	0.0829	0.0638	0.0785
	(0.0118)	(0.0150)	(0.0120)	(0.0153)
(b) Black	-0.1565	-0.1553	0.0001	-0.0565
	(0.0256)	(0.0256)	(0.0621)	(0.0723)
(c) Standardized AFQT	0.0834	-0.0060	0.0831	0.0221
	(0.0144)	(0.0360)	(0.0144)	(0.0421)
(d) Education *	-0.0032	-0.0234	-0.0068	-0.0193
experience/10	(0.0094)	(0.0123)	(0.0095)	(0.0127)
(e) Standardized AFQT *		0.0752		0.0515
experience/10		(0.0286)		(0.0343)
(f) Black * experience/10			-0.1315	-0.0834
•			(0.0482)	(0.0581)
R^2	0.2861	0.2870	0.2870	0.2873

Panel 2—Experience measure: actual experience instrumented by potential experience

Model:	(1)	(2)	(3)	(4)
(a) Education	0.0836	0.1218	0.0969	0.1170
	(0.0208)	(0.0243)	(0.0206)	(0.0248)
(b) Black	-0.1310	-0.1306	0.0972	0.0178
	(0.0261)	(0.0260)	(0.0851)	(0.1029)
(c) Standardized AFQT	0.0925	-0.0361	0.0881	0.0062
	(0.0143)	(0.0482)	(0.0143)	(0.0572)
(d) Education *	-0.0539	-0.0952	-0.0665	-0.0889
experience/10	(0.0235)	(0.0276)	(0.0234)	(0.0283)
(e) Standardized AFQT *		0.1407		0.0913
experience/10		(0.0514)		(0.0627)
(f) Black * experience/10			-0.2670	-0.1739
•			(0.0968)	(0.1184)
R^2	0.3056	0.3063	0.3061	0.3064

TABLE II
THE EFFECTS OF FATHER'S EDUCATION, SIBLING WAGES, AND SCHOOLING ON WAGES
Dependent Variable: Log Wage; Experience Measure: Potential Experience.
OLS estimates (standard errors)

Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(a) Education	0.0511	0.0630	0.0568	0.0659	0.0666	0.0730	0.0704	0.0734
	(0.0160)	(0.0166)	(0.0163)	(0.0167)	(0.0129)	(0.0140)	(0.0130)	(0.0140)
(b) Black	-0.2074	-0.2076	-0.0509	-0.0878	-0.2212	-0.2209	-0.0705	-0.0793
	(0.0276)	(0.0276)	(0.0846)	(0.0871)	(0.0250)	(0.0250)	(0.0668)	(0.0692)
(c) Log of sibling's wage	0.1802	-0.0260	0.1817	0.0010				
	(0.0328)	(0.0913)	(0.0329)	(0.0940)				
(d) Father's education/10					0.0826	-0.0187	0.0829	0.0314
					(0.0366)	(0.1000)	(0.0364)	(0.1030)
(e) Education *	0.0107	0.0012	0.0065	-0.0008	0.0023	-0.0029	-0.0002	-0.0027
experience/10	(0.0131)	(0.0136)	(0.0133)	(0.0136)	(0.0104)	(0.0113)	(0.0105)	(0.0113)
(f) Log of sibling's wage *		0.1796		0.1571				
experience/10		(0.0749)		(0.0770)				
(g) Father's education *						0.0867		0.0441
experience/100						(0.0813)		(0.0841)
(h) Black * experience/10			-0.1311	-0.1004			-0.1270	-0.1194
			(0.0686)	(0.0704)			(0.0541)	(0.0563)
R^2	0.3183	0.3196	0.3191	0.3200	0.2748	0.2750	0.2755	0.2756
Observations	10746	10746	10746	10746	18523	18523	18523	18523
Individuals	1441	1441	1441	1441	2594	2594	2594	2594

Experience is modeled with a cubic polynomial. All equations control for year effects, education interacted with a cubic time trend, Black interacted with a cubic time trend, two-digit occupation at first job, and urban residence. Columns (1)–(4) control for sibling's gender and the log of sibling's wage interacted with a cubic time trend. Columns (5)–(8) control for father's education interacted with a cubic time trend. For these time trends, the base year is 1992. For the models in columns (1) and (5), the coefficients on log of sibling wage and father's education are .1680 and .0357, respectively, when evaluated for 1983. Standard errors are White/Huber standard errors computed accounting for the fact that there are multiple observations for each worker.

TABLE III
THE EFFECTS OF STANDARDIZED AFQT, FATHER'S EDUCATION, SIBLING WAGE, AND SCHOOLING ON WAGES

Dependent Variable: Log Wage; Experience Measure: Potential Experience. OLS estimates (standard errors)

Model:	(1)	(2)	(3)	(4)
(a) Education	0.0505	0.0832	0.0563	0.0780
	(0.0118)	(0.0151)	(0.0120)	(0.0155)
b) Black	-0.1333	-0.1296	0.0454	-0.0284
	(0.0255)	(0.0257)	(0.0609)	(0.0704)
(c) Standardized AFQT	0.0792	-0.0206	0.0789	0.0065
	(0.0145)	(0.0361)	(0.0144)	(0.0413)
(d) Log of sibling's wage	0.1602	0.0560	0.1617	0.0604
	(0.0208)	(0.0352)	(0.0207)	(0.0351)
(e) Father's education/10	0.0362	0.0154	0.0385	0.0295
	(0.0356)	(0.0963)	(0.0354)	(0.0968)
(f) Education *	0.0005	-0.0269	-0.0035	-0.0220
experience/10	(0.0093)	(0.0123)	(0.0094)	(0.0128)
(g) Standardized AFQT		0.0843		0.0614
* experience/10		(0.0285)		(0.0333)
(h) Log of sibling wage *		0.1194		0.1151
experience/10		(0.0393)		(0.0393)
(i) Father's education *		0.0176		0.0055
experience/100		(0.0789)		(0.0794)
(j) Black * experience/10			-0.1500	-0.0861
			(0.0474)	(0.0570)
R^2	0.2991	0.3014	0.3002	0.3016