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Abstract

In the first chapter, we consider the problem of first-best implementation in dynamic,

interdependent-value environments where agents have quasi-linear preferences and

private types are correlated. Our first candidate solution (I.M.) relies on methods

typically seen in games with imperfect monitoring. We derive conditions under which

this approach gives the planner the flexibility to implement efficient mechanisms that

are ex-post budget balanced and collusion proof. If agents are required to make one

final payment after they exit the system, the I.M. mechanism can also satisfy individ-

ual rationality and adapt to finite horizon settings. When such payments cannot be

enforced, but a cyclic monotonicity condition is satisfied, the planner may adopt our

second mechanism (P.A.). This alternative approach employs a technique originally

developed for surplus extraction in static auctions. It allows the planner to align ev-

ery agent’s preferences with his own and implement socially optimal outcomes while

satisfying ex-ante budget balance and individual rationality. Both mechanisms per-

mit the planner to implement any sharing rule when redistributing surplus.

In the second chapter (co-authored with Sambuddha Ghosh), we examine a paradox

of strategic voting. Consider an electorate whose individual rankings of alternative

policies may change between the time they vote for a candidate and the date a policy

is implemented. Rankings may change following common or idiosyncratic shocks.

Voters choose, via a simple majority election, between a candidate who is committed

to one alternative, and an unbiased candidate who implements the ex-post optimum.

We show that, even when idiosyncratic shocks lead to slight changes in rankings, the

unique symmetric pure strategy Nash equilibrium often entails strategic voters choos-

ing the committed candidate. The resulting welfare loss increases with the likelihood

of a common shock.

In the third chapter (co-authored with Konstantinos Rokas), we examine an electoral

framework in which agents can strategically choose when to vote and can observe the
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votes of those who precede them. This is in contrast to the literature on Condorcet’s

Jury Theorem which has limited its attention to simultaneous and sequential voting

games. We show that in a common value setting, such an election aggregates informa-

tion efficiently regardless of the voting rule or the size of the electorate. The proposed

election format ensures that the Jury Theorem obtains for an electorate with differ-

entially informed agents. Under more restrictive conditions, this framework can also

produce the efficient outcome in environments where voters have conflicting interests

or the size of the electorate is uncertain. Finally, we examine the performance of the

election when private signals are multidimensional.
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Chapter 1

Correlation in Dynamic

Mechanism Design

1.1 Introduction

Multi-agent mechanism design has long been a subject of interest for economists, but

the study of dynamic environments has only recently come to the fore. Dynamics can

be critical in a variety of settings. Governments repeatedly elicit the time-varying

preferences of interested parties to optimally adjust the provision of a public good.

Firms regularly consult with their financiers when making sequential investment de-

cisions. Project managers periodically conduct peer reviews to collect information

necessary to incentivize effort in their teams. Legislative committees are interminably

lobbied by special interest groups from whom they try to glean all information criti-

cal for efficient policy-making. Market participants benefit from sharing trade secrets

with their long-term strategic partners, and countries often find themselves commu-

nicating private information when negotiating multi-lateral agreements fraught with

externalities. The primary motivation for this work is therefore to examine a problem

that appears in a multitude of important economic settings.
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Recent papers by Athey and Segal (henceforth, A&S) [4], Bergemann and Valimaki

(henceforth, B&V) [10] and Cavallo, Parkes and Singh [13] examine the mechanism de-

sign problem when player types evolve independently and agents have private values.

Under these conditions, B&V build on the celebrated Vickrey-Clark-Groves mech-

anism to construct an efficient direct mechanism that satisfies dynamic individual

rationality. A&S focus instead on ex-post budget-balanced implementation, extend-

ing the results of d’Aspremont and Gerard-Varet [17] to this setting. In contrast, we

construct mechanisms that implement the first-best allocation in Markovian, inter-

dependent value environments where private types are correlated serially and across

agents. Table 1. below summarizes how our mechanisms differ from those proposed

previously.

In private value settings with independently evolving types, the planner can ac-

curately forecast the future types of agent j without relying on agent i’s reports. In

other words, agent i and the planner always share common beliefs about agent j. In

previous work, this property is instrumental in designing the transfer payments that

incentivize truth-telling. The mechanisms of A&S and B&V cannot implement the

socially optimal allocation when interested parties possess private information about

each other’s types that is not available to the planner. This is an important limitation

as one may easily imagine settings where special interest groups understand the needs

of their rivals better than the planner.
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Values Types I.C.∗ Budget Balance∗ I.R.

A&S Private
Independent

Serially Corr.
Interim Ex-Post Only for large δ

B&V Private
Independent

Serially Corr.
Ex-Post None Ex-Post

I.M. Any
Cross-Corr.

Markov
Ex-Post Ex-Post

†
Ex-Ante

P.A
‡
. Any

Cross-Corr.

Markov
Ex-Post Ex-Ante Ex-Ante

Table 1. I.M.- Imperfect Monitoring, P.A.- Preference Aligning, *= within-period

†=under strict identifiability, ‡=requires cyclic monotonicity

Our first approach, the imperfect monitoring mechanism (henceforth I.M.), ex-

ploits the fact that the future report of agent j serves as an imperfect signal of

whether agent i’s current report was truthful. This feature along with the planner’s

ability to commit intertemporally to state-contingent continuation values permits

him to incentivize truth-telling in agent i via suitably defined lotteries over future

promised values. If an identifiability condition reminiscent of those developed in the

literature on repeated games with imperfect monitoring is satisfied, this mechanism

can implement efficient outcomes in correlated, interdependent-value environments.

The I.M. approach gives the planner several degrees of freedom. Under a stricter

version of the identifiability condition, this flexibility allows I.M. to satisfy a strong

version of budget balance (see Table 1). We can also derive conditions under which the

I.M. approach can implement a collusion-proof mechanism; a quality that is important

in many contexts as coalitions and cartels often distort outcomes.

The I.M. mechanism has two limitations. First, it fails to satisfy dynamic individ-
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ual rationality. Specifically, it does not rule out the possibility of an agent profitably

sending a false report and exitting the mechanism immediately thereafter to avoid

the consequences. Second, due to the nature of its construction, the I.M. does not

adapt naturally to finite horizon settings. Since incentives for truth-telling come from

the threat of low continuation values, the I.M. approach fails to incentivize agents in

the final period of a finite mechanism. Each of these problems can be dealt with if

the planner requires agents to make one final report and payment after they exit the

mechanism. A full rank condition that is strictly more restrictive than the identifia-

bility condition is also necessary for this approach to be feasible.

Alternatively, one may consider adopting the Preference Aligning (or P.A.) ap-

proach which permits the planner to implement first-best outcomes in environments

that satisfy cyclic monotonicity. The P.A. mechanism satisfies dynamic ex-ante in-

dividual rationality and adapts easily to finite horizon settings; it does so even in

the absence of payments and reports from agents who have exitted the system. This

approach employs a technique originally developed by Cremer and McLean (C&M)

[16] to extract surplus in static auctions; it allows the planner to align an agent’s

preferences over future evolution with his own (hence, the name). Using C&M’s con-

struction, one can exploit the correlation in private signals to transform every agent’s

expected continuation value into an affine transformation of the social welfare func-

tion. When combined with transfers that exploit cyclic monotonicity to neutralize

conflicting interests in the stage game, the C&M construction yields a mechanism

that induces truth-telling in the dynamic setting.

Both our mechanisms permit the planner to redistribute excess surplus according

to any sharing rule. This is in particular contrast to the work of B&V who spec-

ify conditions under which all efficient direct mechanisms in independent, private-

value environments distribute surplus according to the marginal contributions of the

agents. Indeed, our mechanisms can also be interpreted as optimal contracts for a
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self-interested principal seeking to extract all the surplus for himself while satisfying

individual rationality.

One issue worth acknowledging is that the P.A. approach, like the auction pro-

posed by Cremer and Mclean, is vulnerable to a recent critique detailed in the work

of Neeman [37]. The P.A. mechanism relies critically on the assumption that an

agent’s beliefs uniquely pin down her preferences. While some consider this an irre-

trievable failing, the assumption is well suited for a number of economic settings and

is commonly seen in applied work; for instance, the use of affiliated private values is

wide-spread in auction theory. Furthermore, as discussed above, the P.A. approach

offers unique insights about this problem that are worth documenting. The I.M.

based mechanism does not fall prey to Neeman’s critique.

Turning to the issue of incentivization in dynamic environments, we should empha-

size that serial correlation in player types severely complicates the planner’s problem.

It is no longer sufficient for the planner to provide incentives at time t for each of

player i’s period-t types, presuming all along that the player’s past reports have been

truthful. Doing so may eliminate profitable one-shot deviations, but leaves the door

open for the player to construct profitable multi-period deviations that involve dis-

torting the planner’s beliefs about the true state over a period of time. We address

this problem within the framework of Markov Decision Processes. With persistent

types, the incentive problem also suffers from a ”curse of dimensionality” since the

planner must take every possible private history into consideration when designing

transfer schemes. The Markov framework, which admits many economically inter-

esting environments, allows us to avoid this difficulty without skirting the issue of

multi-period deviations. With a finite state space and Markovian evolution, the plan-

ner can implement truth-telling by incentivizing all private histories. Agents cannot

then manipulate a planner’s beliefs via elaborate ”double” deviations. The mecha-

nisms we construct may be extended, within limits, to generalized Markov processes
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where conditional on a history of fixed and finite length, the distribution over future

states is independent of the past.

The remainder of this paper is organized as follows. We begin with a short review

of other relevant literature before moving on to a description of the model and the

Sequential-Groves mechanism. Next, we formally define our notions of budget balance

and individual rationality. We then construct the I.M. based mechanism and derive

conditions under which it satisfies individual rationality, ex-post budget balance and

collusion proofness. Finally, we examine the P.A. mechanism and compare the two

approaches before concluding.

1.2 Related Literature

The problem of eliminating ”double” deviations has been studied fairly extensively in

the context of dynamic contracting models with hidden states and unobserved actions

(see Kocherlakota [33]); typically the adverse selection takes the form of hidden sav-

ings or unobservable cash flows. The possibility of profitable multi-period deviations

arises because the planner and agent do not share common beliefs about the future

state. A number of techniques, including for instance the first order method(see

Williams [44], [45]), have been developed to deal with persistent private types. The

imperfect monitoring based approach that we examine is similar in spirit to a tech-

nique first proposed (to the best of this author’s knowledge) by Fernandes and Phelan

and later explored in Doepke & Townsend [19]. They too address the incentive prob-

lem by employing a vector of utility promises for every possible private history.

Another literature worth pointing out in the context of this paper is the work on

common agency first developed by Bernheim and Whinston [11]. In a static setting

where all players are symmetrically informed, they show the existence of an efficient

”truthful” equilibrium where players bid over a menu of allocations and the planner
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simply implements that which maximizes his revenue. This literature is at the far

end of the spectrum from the work by A&S and B&V who assume that players know

nothing about each other’s private values. Our work considers an intermediate prob-

lem where agents possess correlated private information. Bergemann and Valimaki [9]

examine a dynamic version of the common agency setup and conclude that a Markov

equilibrium in truthful strategies is unique if and only if every principal receives her

marginal contribution to the social value as a payoff. In contrast, any division of the

surplus is feasible with our environment.

The work of Aoyagi [2] on collusion in repeated auctions is also indirectly related

to this paper. Aoyagi considers environments in which allocations do not influence

future evolution, but private types may be correlated within a period. He derives

conditions under which bidders may communicate with one another and sustain an

”efficient” coalition that can extract the entire surplus from the seller. This is done by

coordinating on which bidder enters the auction and pays the reserve price. Coalitions

are sustained not with side contracts, but via the threat of punishment. In contrast,

we consider environments where side contracts are permitted and derive conditions

under which there exist direct mechanisms that allow a seller to allocate efficiently,

redistribute surplus among agents and remain immune to collusive behavior while

doing so.

1.3 The Model

Consider a discrete-time infinite horizon framework with N ≥ 2 players and a planner.

At time t, each agent i receives a private signal θi,t that can take one of the ki ≥ 2

values in the set Θi. We refer to the signal vector θt = [θ1,t, θ2,t, . . . , θN,t]
′ as the

state at time t. We use the notation xt to denote the history of the variable x - i.e.

xt = {x0, x1, . . . xt}. Each period, the planner takes an action at ∈ A; this action
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may influence the evolution of the state which follows a law of motion denoted by

Π (θt+1|θt, at) 1. The planner also specifies a transfer pi,t for each player. The action

and transfer determine each agent’s total flow utility which we will assume takes the

quasi-linear form

ui = gi
(
at, θt

)
+ pi,t

The direct flow utility functions, gi (a
t, θt), are bounded; i.e.gi (a

t, θt) ∈ [−∆
2
, ∆

2
].

Quasi linearity is a restrictive assumption, but one that is quite standard in mech-

anism design and public economics. In the absence of quasi-linearity, as in the case

where agents are risk averse, first best implementation is usually no longer possible.

The timing of this mechanism is as follows - every period, agent i observes her

private signal θi,t and makes an announcement θ̂i,t. The planner, who we assume

can credibly commit to an action rule and transfer scheme, determines at and the

vector of transfers pt = [p1,t, p2,t, . . . , pN,t]
′ on the basis of these announcements. The

public history can then be denoted Ht = {θ̂t, at, pt}. An agent’s private history

also includes the sequence of her private signals; we denote agent i’s information set

Hi,t = {θti , θ̂t, at, pt}.

Finally, we will use the notation [x, y] when appending column vectors x and y

to form a matrix and x[i] to denote the component of vector x corresponding to

argument i.

1.3.1 The Planner’s Problem

Suppose that the planner commits to a mechanism M = {at(Ht−1, θ̂t), pt(Ht−1, θ̂t)}∞t=0

and the agents respond in equilibrium by following reporting strategies denoted by

σi : Hi,t−1×θi,t → Θi. We provide a formal definition of equilibrium once all notation

is in place. We adopt the standard utilitarian notion of social welfare which under

1Any action plan {at} uniquely specifies a probability measure over Θ =
∏

Θi. The Tulcea
product theorem gives us the existence and uniqueness of this measure. We refer the reader to A&S
for a more detailed discussion.
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quasi-linear utilities is given by the expected sum of discounted utilities over all

agents in the mechanism. That is, the social welfare at the beginning of period t can

be written as

Wt(Ht−1;M, {σ}i) = E

[
∞∑
s=t

δs−t
N∑
i=1

gi

(
as, θ̂s

)∣∣∣∣∣Ht−1;M, {σ}i

]

As the definition suggests, Wt(Ht−1;M, {σ}i) specifies welfare before the state at

time t has been reported. Agent i’s value from this mechanism at the beginning of

period t (prior to her receiving a private signal) is denoted Vi,t(Hi,t−1;M, [σi, σ−i]).

For notational simplicity, we will drop the dependence on M , and σ in the remainder

of this paper.

It is the planner’s objective to implement the first-best (or surplus maximizing)

action plan. In a complete information setting, the first-best action plan {a∗t}∞t=0 is

defined in terms of the true evolution of the state as shown below

{a∗t}∞t=0 = arg max
{a}∞t=0

N∑
i=1

gi
(
at, θt

)
+ E

[
∞∑

s=t+1

δs−t
N∑
i=1

gi (a
s, θs)

∣∣∣∣∣ θt
]

W ∗
t (Ht−1) and W ∗

t (Ht−1, θt) denote the ex-ante and ex-post period-t social welfare

under the first-best policy, respectively. We will restrict our attention to truth-telling

mechanisms. The planner’s problem is to incentivize truthful revelation by commit-

ting to a suitably defined transfer scheme while simultaneously implementing {a∗t}∞t=0.

We will henceforth call such mechanisms efficient.

Note that, consistent with the literature, we have not included transfer payments

in the definition of social welfare. In other words, our definition of efficiency does

not aspire to any distributive goal. Indeed, as it stands, an efficient mechanism M∗

may result in the planner extracting the entire surplus for himself. Typically, such

mechanisms will not however satisfy a budget balancing condition. In keeping with

the literature, we will continue to maintain a distinction between efficiency and budget

9



balance. A formal discussion of our notion of budget balance appears below.

1.3.2 Equilibrium

We adopt the notion of equilibrium defined in B&V [10]. Consider a mechanism M

and suppose that all agents in the set −i reveal their signals truthfully. There are no

profitable one-shot deviations from truth-telling for agent i if in every period t,

gi
(
at, θt

)
+ pi,t

(
θt
)

+ δVi,t+1(Hi,t) ≥ gi

(
at(θ̃t), θt

)
+ pi,t

(
θ̃t
)

+ δVi,t+1(H̃i,t)

for all θ̃i such that θ̃t = [θt−1, θ−it, θ̃i]. We are using a fairly strong notion of incentive

compatibility. Agent i prefers to tell the truth in every period even after she observes

the announcements of the other players. This is referred to as within-period ex-post

incentive compatibility.

In environments where there is serial correlation in the private signals of individ-

ual players, the absence of profitable one shot deviations does not immediately rule

out the possibility of more complex profitable deviations. An agent may be able to

construct profitable multi-period deviations that involve manipulating the beliefs of

the planner through a sequence of false reports. We will have to be wary about this

complication when we construct efficient mechanisms later in the paper.

One final remark about ex-post implementation is in order. Under this form of

incentive compatibility, the model can be augmented to also include a moral hazard

component. That is, suppose executing the first best action plan required each player

to take an unobservable action, a∗i,t, upon the request of the planner. Suppose further,

that for every action a planner may recommend, there exists a report that an agent can

make which will induce that action; in other words the first best policy is a surjective

mapping from agent i’s reports to allocations. With ex-post incentive compatibility, it

follows immediately then that agents are also obedient; they see no profit in deviating

10



from the planner’s recommended action. Under a weaker form of incentive constraints,

say interim, this would not be true since the planner’s recommended action would

convey information to the player about the private signals of others and obedience

would not be guaranteed.

1.3.3 The Sequential Groves Mechanism

In keeping with the work of Cavallo, Parkes and Singh [13], we refer to the simplest

efficient mechanism as the Sequential Groves Mechanism (SGM)2. This mechanism

implements the first-best action plan under the very general conditions described

above. According to this mechanism, agent i’s transfer at time t is given by

pi,t

(
θ̂t
)

=
∑
j 6=i

gj

(
a∗
(
θ̂t
)
, θ̂t
)

Under this mechanism, if agents have private values (i.e. gi (a
t, θt) = gi (a

t, θti))

and all players in −i are reporting truthfully, it is player i’s best response to do

the same. Intuitively, this is because the transfer scheme eliminates any conflict of

interest between player i and the planner. By reporting the truth, agent i induces

the planner to take the very action that the she would take if she were in control. We

omit a formal proof of this argument as it has appeared previously in the literature.

With general interdependent values, inducing truthful revelation takes a little

more work. The planner must implement the transfer by asking each agent to report

her direct flow utility from the action and then paying each agent a transfer equal

to the sum of everyone else’s utilities. Implementing transfers in this manner was

first suggested by Mezzetti (see [35], [36]), in his work on static mechanisms. It is

worth noting however that his equilibrium concept has been criticized for assuming

that when a player is indifferent, she breaks ties in favor of reporting truthfully.

2A&S refer to this as the Team Mechanism.
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Multi-period deviations do not exist in this mechanism as the transfers do not

involve forming expectations about the future. We will see below that implementing

efficient dynamic mechanisms will typically require the planner to use beliefs about

the distribution over future states to compute continuation values for the players.

The SGM has two important shortcomings. First, it is not budget balanced.

In order to implement this efficient mechanism, the planner has to infuse (n −

1)
∑

j gj

(
a∗
(
θ̂t
)
, θ̂t
)

units of wealth into the mechanism every period. Second, it

does not satisfy participation constraints. If an agent can guarantee herself a higher

value outside the mechanism at any time t, she might prefer to leave. Our focus in

this paper is to construct efficient mechanisms that satisfy these properties which are

discussed at length in the next section.

1.3.4 Budget Balance and Individual Rationality

Before we provide formal definitions of these criteria, a brief discussion is in order.

The literature on static mechanisms typically defines budget balance in its strictest

form as being satisfied when transfers sum to zero in every state,
∑
pi(θ̂) = 0 for all

θ̂. This definition has been the standard in this literature going back to the work of

d’Aspremont and Gerard-Varet [17]. Consider for a moment a weaker definition of

budget balance; one which only requires that the planner not infuse any of his own

wealth into the mechanism; i.e.
∑
pi(θ̂) < 0. If direct flow utilities are bounded

above, a planner can trivially meet this weaker requirement by simply charging every

agent a sufficiently large membership fee at time t = 0 to finance the operation.

This weaker form of budget balance must therefore be coupled with an individual

rationality constraint to be meaningful. On the flip side, a mechanism can trivially

satisfy individual rationality if the planner simply pays a large, flat participation

transfer to every agent to ensure that reservation levels of utility are met, but this

would violate budget balance. It is in this sense that budget balance and individual
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rationality are inextricably linked. When the budget balance constraint takes the

form of an equality, however, one can consider it in isolation.

The strictest form of dynamic budget balance, within period ex-post budget balance,

is satisfied by a mechanism if for all histories and in all states,
∑
pi,t

(
Ht−1, θ̂t

)
=

0. We will also examine a weaker definition, similar to one that appears in Athey

and Miller (A&M) [3]; their definition requires that in every period t, E [
∑
pi,t] =

0. While this is appropriate for environments where player types are drawn from

independent and identical distributions every period, we will employ the following

natural modification in our Markovian setting,

Definition 1 A mechanism satisfies within period ex-ante budget balance if in

every period t,

E

[
N∑
i=1

pi,t+1

∣∣∣∣∣Ht

]
= 0

That is, we assume the presence of a banker who is willing to provide unbounded

insurance as long as the per-period balance of payments is zero in expectation. We

can interpret this condition a participation constraint for the banker; on average,

he need not infuse any wealth into the mechanism, but must absorb all imbalances.

Indeed, mechanisms that satisfy this dynamic constraint do not require the planner

to commit at time t = 0 to continue providing insurance to projects that might

subsequently prove to be financially draining.

We now move to individual rationality. Suppose every agent i could guarantee

herself a constant value of ri at any time t by leaving the mechanism. This is unlike

B&V [10] who define individual rationality in a framework where agents leaving the

mechanism continue to consume the externalities that it generates. Our assumption is

standard in dynamic contract theory. B&V’s unconventional definition of individual

rationality is influenced in part by their focus on finding conditions under which all

efficient mechanisms are marginal contribution mechanisms. Which definition is more
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reasonable is context dependent. The definition adopted by B&V would be suitable

for instance in settings where a government uses reports to determine the level of

a non-excludable public good it should provide or auction off licences that might

influence a rival’s competitiveness in the market.

We formally define our notion of dynamic individual rationality below.

Definition 2 A mechanism is within-period ex-ante individually rational if

for all t, and every i,

E [Vi,t (Hi,t−1)] ≥ ri.

Under the ex-ante constraint, players may only leave the mechanism in period t

before their private signals are realized. Drawing on a poker analogy, players must

ante up (or commit to participating) before they can be dealt a hand.

Finally, we introduce our notion of social rationality.

Definition 3 The first-best policy is socially rational if for all t,

W ∗
t (Ht−1, θt) ≥

N∑
i=1

ri.

That is, the expected social welfare of an efficient mechanism is bounded below by

the value that can be generated by allowing each agent to pursue her outside option.

As we shall see, social rationality will be essential for our mechanisms.

1.4 Markov Decision Processes

Let us continue with our mission to construct efficient mechanisms that satisfy budget

balance and individual rationality in the senses defined above. To do so, we first limit

our attention to a environments that can be classified as Markov Decision Processes

(MDP). As in A&S, this involves imposing additional restrictions:
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(i) The flow utility that each agent receives from the planner’s action gi(a
t, θt)

depends only on contemporaneous variables and can be expressed as gi(at, θt).

(ii) The law of motion follows a Markov Process:

Π
(
θt+1|θt, at

)
= Π (θt+1|θt, at)

Assumption (ii) does not impose any restrictions on the correlation between agent

i’s current private signal, θi,t, and the current or future private signals of agent j. As

we noted in the introduction, this is an important departure from the independence

assumption made in previous work. Agents may well have access to information about

the private types of the other strategic players that is not available to the planner.

Assumptions (i) and (ii) in a finite state space model ensure that for some 0 <

δ < 1, if δ ∈ [δ, 1], the social welfare maximizing policy is a Markov policy and

can be expressed as a∗t = a∗(θt). An optimum Markov policy is called a Blackwell

policy; it induces a Markov chain on the states with transition probabilities given by

Π (θt+1|θt, a∗t ). In such environments, one can construct efficient mechanisms that,

not surprisingly, involve transfer schemes which are also time-invariant. For more

information on MDPs, we refer the reader to [40].

We will also assume for simplicity that off-equilibrium reports are not possible in

this framework. There is no loss of generality in this assumption. One can always aug-

ment our mechanisms with a ”shoot them all” feature that will deter off-equilibrium

reports when the first-best policy does not induce full support over the space of mes-

sages. It is important to note that heavy monetary penalties associated with a ”shoot

them all” mechanism may not be implementable if agent’s may leave after the an-

nouncement stage but before the payments are made. This is not an issue when the

mechanism planner only requires ex-ante individual rationality as we do.
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1.4.1 An Imperfect Monitoring Approach

In dynamic environments, conflicts of interest between the planner and an agent

arise on two fronts. In addition to the misalignment in flow payoffs, the planner

must also account for disagreement among agents regarding the future evolution of

the system. Our first mechanism addresses this two-fold conflict using incentivizing

techniques typically employed in environments with imperfect monitoring. When

private signals are correlated serially in time and across players, future reports can

serve as noisy signals of whether current reports were truthful. The planner can

therefore induce truth-telling in agent i at time t by offering her a set of lotteries over

future continuation value to choose from via her current report.

A little more notation is regrettably unavoidable. Suppose agents in −i report

truthfully at time t so that θ̂−i,t = θ−i,t. For each θ̂−i,t, and for every signal-

announcement pair {θi,t = x, θ̂i,t = y}, consider the K =
∏N

i=1 ki- column vector

of beliefs,

Πxy

(
θ̂−i,t

)
= Π

(
θt+1

∣∣∣[θi,t = x, θ−i,t], a
∗
(

[θ̂i,t = y, θ̂−i,t]
))

This vector represents agent i’s beliefs at time t about the state at time t + 1 when

agents −i report truthfully, agent i with private signal x reports y and the planner

implements the first best policy. Stacking the subset of such vectors that share

the same θ̂−i,t and report θ̂i,t = y, we can construct ki × K matrices of the form

Π
(
θ̂−i,t, a

∗
y(θ̂−i,t)

)
= [Π1y,Π2y, . . . ,Πky]

′ where a∗y(θ̂−i,t) = a∗
(

[θ̂i,t = y, θ̂−i,t]
)

. The

Markov property of the state transitions implies that these matrices do not depend

on t. Our full rank condition is stated below -

Definition 4 (Identifiability) An MDP is identifiable if for each i, θ−i,t, and a ∈

A, the set of vectors S(θ−i,t, a) = {Π (θt+1 |[θi,t, θ−i,t] , a) , ∀θi,t} is linearly indepen-

dent.
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We use the term ”identifiability” since it is this property that allows the planner

to statistically distinguish false reports. Under this condition, all matrices of the form

Π
(
θ̂−i,t, a

∗
y(θ̂−i,t)

)
are full row rank. The reader will recognize that identifiability is

analogous to the individual full rank condition defined by Fudenberg, Levine and

Maskin [28].

To jump start this mechanism at t = 1, we will require that prior to the first

period all agents and the planner share common beliefs about the distribution over

states in the first period, Π (θ1), and that the planner can compute W ∗
1 (H0) correctly.

We can now construct a set of lotteries for each agent i to choose from at time t.

Lotteries are indexed by reports at time t; the payoffs of each lottery are contingent

upon messages received at time t+ 1 and represent the planner’s promised values to

the truthful agent. For each θ̂−i,t, we denote the ki possible lotteries for agent i by

length K column vectors, wi,t+1

(
[θ̂i,t = y, θ̂−i,t]

)
, y = 1, . . . , ki.

To further simplify notation, we use the short hand gi,xy(θ−i,t) to represent agent

i’s period-t direct flow utility when her private signal is x and she reports that it is

y, i.e. gi,xy(θ−i,t) = gi

(
a∗
(

[θ̂i,t = y, θ−i,t]
)
, [θi,t = x, θ−i,t]

)
. If every agent were to

report truthfully at time t, the following relations would hold for each i and θi,t = x,

wi,t

(
θ̂t−1

)
[x, θ−i,t] = gi,xx (θ−i,t) + pi,t

(
θ̂t−1, [x, θ−i,t]

)
+ δVi,t+1(Hi,t) (1.1)

where wi,t

(
θ̂t−1

)
[x, θ−i,t] represents the element of wi,t

(
θ̂t−1

)
corresponding to a

period-t announcement of [x, θ−i,t]. These are typically referred to as the promise-

keeping constraints of the planner.

We solve for the K vector, wi,t+1

(
y, θ̂−i,t

)
using the following system of ki equa-
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tions and K variables -

Π′yy

(
θ̂−i,t

)
wi,t+1

(
y, θ̂−i,t

)
= αi,t+1

(
y, θ̂−i,t

)
δΠ′xy

(
θ̂−i,t

)
wi,t+1

(
y, θ̂−i,t

)
= wi,t

(
θ̂t−1

)
[x, θ−i,t]− gi,xy (θ−i,t) . . .

. . .− pi,t
(
θ̂t−1, [y, θ−i,t]

)
− ε

(1.2)

where ε > 0 and αi,t+1

(
y, θ̂−i,t

)
defined explicitly below represents the expected

continuation value Vi,t+1(Hi,t) for agent i when θt =
[
y, θ̂−i,t

]
. Notice that when

identifiability holds, Πyy

(
θ̂−i,t

)
and Πxy

(
θ̂−i,t

)
are linearly independent and an agent

can expect a continuation value equal to αi,t+1

(
y, θ̂−i,t

)
only when she is reporting

truthfully. For all i, αi,t+1

(
θ̂t

)
≥ ri and satisfies

N∑
i=1

αi,t+1

(
θ̂t

)
= W ∗

t+1(Ht−1,θ̂t) (1.3)

That is, the planner’s promises sum up, in expectation, to the value generated by the

mechanism. It is this feature that will ensure within period ex-ante budget balance

is satisfied. One possible choice is to set

αi,t+1

(
θ̂t

)
= ri + γi

(
W ∗
t+1(Ht)−

N∑
j=1

rj

)
(1.4)

where 0 < γi < 1 and
∑N

i=1 γi = 1 and we define γm = min{γi, ∀i}. Indeed, any

sharing rule, including those that vary proportions stochastically in time, or allocate

less than ri to agent i, can be sustained under this mechanism. As pointed out earlier,

this is in contrast to the marginal contribution mechanisms constructed by B&V for

environments where private types evolve independently. We exclude sharing rules for

which
∑N

i=1 γi < 1 only because these will necessarily violate budget balance.

We can show that with the lotteries specified above it will be ex-post incentive

compatible for agent i to report the truth. Promises made in period t − 1 are kept
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in period t by adjusting the transfer pi,t

(
θ̂t−1, [x, θ−i,t]

)
in (1.1) to make up for any

remaining difference once the direct flow utility and expected continuation value have

been accounted for. This brings us to the first main result.

Proposition 1 If an MDP is identifiable, and the first best policy is socially rational,

there exists an efficient mechanism that satisfies within-period ex-ante budget balance.

Proof. First we note that the construction of the lotteries ensures that there are no

profitable one-shot deviations. This is because for every private signal θi,t = x, and

false report θ̂i,t = y, agent i gets a utility of

gi,xy (θ−i,t) + pi,t

(
θ̂t−1, [y, θ−i,t]

)
+ δΠT

xy

(
θ̂−i,t

)
wi,t+1

(
y, θ̂−i,t

)
= wi,t

(
θ̂t−1

)
[x, θ−i,t]− ε

< wi,t

(
θ̂t−1

)
[x, θ−i,t] = gi,xx (θ−i,t) + pi,t

(
θ̂t−1, [x, θ−i,t]

)
+ δVi,t+1(Hi,t)

The incentive compatibility holds in an ex-post sense within period t; the agent prefers

to report the truth even after observing the reports of the remaining players. The

Markov property ensures that the first best policy is only a function of contempora-

neous reports. Furthermore, the planner does not rely on past reports to compute

lotteries and is therefore immune to any attempts by an agent to distort his beliefs.

Under these condtions, the standard argument applies - if there are no profitable

one-shot deviations, then no profitable multiperiod deviations can exist.

Finally, we check whether within period ex-ante budget balance is satisfied. Ap-

plying the promise keeping constraint,

E

[
N∑
i=1

pi,t+1

(
θ̂t, θ̂t+1

)∣∣∣∣∣Ht

]
= E

[
N∑
i=1

wi,t+1

(
θ̂t

)
[θ̂t+1]− gi,t+1

(
a∗t+1, θ̂t+1

)
. . . −δVi,t+2

(
θ̂t+1

)∣∣∣Ht

]
=

N∑
i=1

αi,t+1

(
θ̂t

)
−W ∗

t+1(Ht) = 0

where the third equality follows from (1.3). This completes the proof.
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A few remarks are in order. First, a planner can redistribute surplus in any

manner he wishes. This is an important observation in light of existing literature.

The work of Neeman demonstrates that full surplus extraction in a static setting with

correlated types is generically impossible. The I.M. approach, however, does not fall

prey to Neeman’s critique and permits full surplus extraction in dynamic, correlated

environments. It also provides an interesting counterpoint to previous work by B&V,

whose mechanisms distribute surplus according to the marginal contributions of the

participants.

For any agent i, the ex-ante continuation value is αi,t+1

(
θ̂t

)
, a quantity that may

be chosen to be no less than her outside option as in (1.4). However, this will not in

general be enough for the I.M. mechanism to satisfy dynamic individual rationality.

In particular, the mechanism we have constructed fails to rule out the possibility of

an agent lying in period t and exitting the mechanism before period t + 1, thereby

avoiding the consequences of her false report. The mechanism as defined, therefore,

only works when participation is mandatory.

One simple technique to deter ”lying and leaving” is to require each agent to

make a deposit with the planner at time 0 which she forfeits if she chooses to exit

prematurely. Since the gains from a one-shot lie are bounded, this deposit can be

made large enough to deter such behavior. This approach is not typically seen in

the literature and we will not employ it. One potential argument against it is that

is requires the planner to keep a portion of the surplus on behalf of the agent’s until

the mechanism ends. Although, this does not have any direct impact on the utility

of the unconstrained, risk neutral agents, one may still consider this undesirable.

The I.M. mechanism also does not adapt readily to finite horizon settings. Since

incentives are provided via lotteries over future promised values, the mechanism is

hard-pressed to induce truth-telling in the final period.

Under a more restrictive version of the identifiability condition, each of the lim-
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itations above can be overcome if agents make one final report and payment after

they leave the mechanism. A ”lie and leave” strategy can be deterred for instance, by

requiring the exitting agent to make one final payment that is contingent on the next

period’s reports of the remaining agents. The exitting agent is also required to report

her type in the period after she leaves; since this report does not affect her payoff

outside the mechanism, we will assume that she reports truthfully. We denote agent

i’s exit payment, to be paid in period t + 1 if she leaves after t, by ei,t+1(θ̂t)[θ̂−i,t+1].

For each [y, θ̂−i,t], we solve for the K−i =
∏

j 6=i kj dimensional vector ei,t+1(y, θ̂−i,t)

using the ki equations,

wi,t

(
θ̂t−1

)
[x, θ−i,t] ≥ gi,xy (θ−i,t) + pi,t

(
θ̂t−1, [y, θ̂−i,t]

)
. . . (1.5)

. . .+ δri + δΠ′
(
θ−i,t+1|[x, θ̂−i,t], a∗(y, θ̂−i,t)

)
ei,t+1(y, θ̂−i,t), ∀x

where it is necessary for ki ≤ K−i. Typically, this condition will require N > 2,

unless ki = k, ∀i. For a solution to exist, we will require a full rank condition over

distributions of the form Π
(
θ−i,t+1|[x, θ̂−i,t], a∗t (y, θ̂−i,t)

)
. Formally, this is given by,

Definition 5 (FR) An MDP is full rank if for each i, θ−i,t,, and a ∈ A, the set of

vectors S(θ−i,t, a) = {Π (θ−i,t+1 |[θi,t, θ−i,t] , a) , ∀θi,t} is linearly independent.

It is easy to see that an MDP which is full rank is also identifiable. We can now

state our result formally.

Proposition 2 If an MDP is full rank, and the first best policy is socially rational,

there exists an efficient mechanism that satisfies within-period ex-ante budget balance

and within-period ex-ante individual rationality.

Proof. Since the FR condition implies identifiability, efficiency and ex-ante bud-

get balance follow from an earlier proposition. An agent’s continuation value after
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reporting truthfully is

Π′yy

(
θ̂−i,t

)
wi,t+1

(
y, θ̂−i,t

)
= αi,t+1

(
y, θ̂−i,t

)
≥ ri.

Under full rank, the system of equations in (1.5) has a solution and the exit payments

are such that a ”lie and leave” strategy is not profitable. Since agent i’s report in the

period after she leaves is truthful, it can be used in the construction of exit payments

for other agents.

Returning to the finite horizon problem, let T denote the final period and suppose

that agents must make reports and payments in period T +1 as well. Suppose further

that agent i’s transfer in period T +1 depends on her period T report and the reports

of −i in period T + 1. As above, let us assume that indifference is always resolved

in favor of truthful revelation. Lotteries over future promises constructed in period

T then take distinct values over K−i states. In keeping with our notation, we denote

these lotteries by K−i vectors of the form wi,T+1(y, θ̂−i,T ); for each θ̂T ,

Π′
(
θ−i,T+1|[y, θ̂−i,T ], a∗(y, θ̂−i,T )

)
wi,T+1

(
y, θ̂−i,T

)
= 0

δΠ′
(
θ−i,T+1|[x, θ̂−i,T ], a∗(y, θ̂−i,T )

)
wi,T+1

(
y, θ̂−i,T

)
= wi,T

(
θ̂T−1

)
[x, θ−i,T ] . . .

. . .− gi,xy (θ−i,T )− pi,T
(
θ̂T−1, [y, θ−i,T ]

)
− ε

Transfers in period T , pi,T

(
θ̂T−1, [y, θ−i,T ]

)
, still satisfy (1.1), although continuation

values are now zero in expectation. The lotteries satisfy ex-ante budget balance in

period T + 1 since the sum of promises equals zero in expectation.

The mechanism we have proposed relies critically on every player’s type evolving

stochastically for all time. If any one player’s type enters an absorbing state after

which it remains constant or evolves deterministically, the reports of that player can

no longer serve to incentivize the rest. Furthermore, if the MDP enters an absorbing

state, the planner need not elicit any information in the future as he can infer it
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himself. The identifiability condition rules out the possibility of agents’ types entering

such absorbing states.

We request the reader to consider for a moment an important class of Markov

decision processes for which evolution is only influenced by the choice of allocation; i.e.

Π (θt+1|θt, at) = Π (θt+1|at). For this class of processes, the identifiability condition is

necessarily violated and the imperfect monitoring approach is ineffective. An example

of this scenario is the dynamic optimal insurance model examined by Doepke and

Townsend [19] where each period agents receive income shocks which are correlated

with past effort choices, but are independent of past income.

Finally, we note that our first proposition above is proved under the assumption

that state transitions follow a Markov process. Our mechanism can, in fact, be

extended, with a suitably redefined full rank condition, to any finite memory process

whose evolution is of the form

Π (θt+1|θt, . . . , θt−h, at, . . . , at−h)

The planner must, in this case, take into account all private histories of length-h

when constructing lotteries. As a consequence, the system of equations (1.2) will

expand to khi equations and K variables. The mechanism cannot be adapted to

memories larger than h = log(K/max(ki)). Within-period budget balance however

will typically not be achievable.

1.4.2 Ex-Post Budget Balance and Collusion Proofness

In environments where a stronger version of the identifiability condition (one that

is distinct from FR) holds, the I.M. mechanism can be improved considerably. The

mechanism constructed above leaves the planner with several unused degrees of free-

dom. These can be employed by the planner to implement within-period ex-post
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budget balance, a condition that eliminates the need for a banker who is willing to

finance temporary imbalances.

Furthermore, if the number of private types is sufficiently ”large”, the planner can

also design a mechanism that is collusion proof; a quality that is often important in

such environments. Inefficiency can arise, for instance, in repeated auction settings

where agents form cartels that can profitably distort outcomes.

As a first step towards these objectives, we define the following stronger notion of

identifiability.

Definition 6 (Strict Identifiability) An MDP satisfies strict identifiability if for

every a ∈ A, the set of vectors S(a) = {Π (θt+1 |θt, a) , ∀θt} is linearly independent.

Each distribution Π (θt+1 |θt, a) is a vector of K elements and there are K vectors

in each set. This condition does not therefore impose any restrictions on N or ki.

Strict identifiability is unlike its weaker counterpart which only requires states that

are single-player deviations apart to be statistically distinguishable under action a.

Ex-post budget balance can now be achieved, if in addition to (1.2), the vectors

{wi,t+1

(
θ̂t

)
, i = 1, . . . , N} are also required to satisfy the following K equations,

N∑
i=1

wi,t+1

(
θ̂t

)
[θ̂t+1] =

N∑
i=1

(
gi,t+1

(
θ̂t+1, a

∗
t+1

))
+ δW ∗

t+2(θ̂t+1), ∀θ̂t+1 (1.6)

for each θ̂t. The combined system, (1.2) and (1.6), is composed of NK variables and∑N
i=1 ki + K equations for each θ̂t. The equations in (1.6) are linearly independent

of each other and if strict identifiablility is satisfied the system has a well-defined

solution whenever ki ≥ 2,∀i and N ≥ 2. We state our next result below.

Proposition 3 If an MDP is strictly identifiable and the first best policy is socially

rational, there exists an efficient mechanism that satisfies within-period ex-post budget

balance.
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Proof. For every θ̂t and a∗
(
θ̂t

)
, strict identifiability ensures that the following(∑N

i=1 ki +K
)
×NK matrix



Π
(
θ̂−1,t, a

∗
(
θ̂t

))
0 . . . 0

0 Π
(
θ̂−2,t, a

∗
(
θ̂t

))
. . . 0

...
...

. . .
...

0 0 . . . Π
(
θ̂−N,t, a

∗
(
θ̂t

))
IK IK IK IK


,where matrices of the form Π

(
θ̂−i,t, a

∗
(
θ̂t

))
are ki×K and IK is the K-dimensional

identity matrix, is full row rank. The combined system of (1.2) and (1.6) can then

be solved for {wi,t+1

(
θ̂t

)
, i = 1, . . . , N}. Finally, ex-post budget balance follows

because for every θ̂t+1,

N∑
i=1

pi,t+1

(
θ̂t, θ̂t+1

)
=

N∑
i=1

(
wi,t+1

(
θ̂t

)
[θ̂t+1]− gi,t+1

(
θ̂t+1, a

∗
t+1

)
− δVi,t+2(Ht+1)

)
=

N∑
i=1

wi,t+1

(
θ̂t

)
[θ̂t+1]−

N∑
i=1

gi,t+1

(
θ̂t+1, a

∗
t+1

)
− δW ∗

t+2(θ̂t+1) = 0

where the first equality follows from (1.1) and the second from (1.6). This completes

the proof.

Of course, this mechanism can also be extended to finite horizons and augmented

to satisfy individual rationality when the FR condition is also met.

We now turn to collusion-proofness. As discussed earlier, this may be a very

desirable property in a number of economic settings. A relatively recent literature on

repeated auctions has examined this problem with a particular focus on understanding

whether limiting the extent of communication between bidders or prohibiting side

contracts can help thwart collusive strategies and allow the planner (or in this case,

seller) to implement efficient outcomes. As we shall see, in the environment we
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consider, the I.M. mechanism renders all coalitions powerless without having to outlaw

any behavior among bidders. Our notion of collusion proofness is defined formally

below.

Definition 7 A mechanism is collusion-proof if there is no subset J of agents such

that (a) all agents in −J follow truth-telling strategies and (b) agents in J can deviate

jointly and secure a higher value for the coalition.

We do not explicitly model the side contracts that sustain the coalition, but will

presume that such contracts will share the spoils among the members of the coalition

so that each of them weakly prefers to collude than tell the truth. Our definition

of collusion-proofness is a natural adaptation of Aumann’s strong equilibrium to en-

vironments with transferable utility. Aumann’s refinement admits only those Nash

equilibria for which there is no coalition that can deviate jointly to give every member

a weakly preferred outcome.

The system in (1.2) specifies a mechanism which is immune to deviations by

individual agents. Let us now consider a subset J composed of m = |J | players where

1 < m ≤ N . Notice that we include collusion of the grand coalition consisting of all

N agents. In order to simplify the exposition, we will limit our analysis to symmetric

environments in which ki = k for all i. We focus as before on first eliminating

profitable one-shot joint deviations. Since colluding players may leave the coalition

after their private signals have been realized, it is natural to adopt ex-post incentive

compatibility as our equilibrium concept.

In any state θt, the players in J can misreport in one of (km − 1) ways; none of

these is preferred to reporting the truth as long as

∑
j∈J

wj,t (θt−1) [θt] ≥
∑
j∈J

{
gj

([
θt, a

∗
t (θ̂J,t, θ−J,t)

])
+ pj,t(Ht−1,θ̂J,t, θ−J,t)

}
. . .

. . .+ δΠT
θJ,tθ̂J,t

(
θ̂−J,t

) ∑
j∈J

wj,t+1

(
θ̂J,t, θ−J,t

) (1.7)
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for all θ̂J,t and where ΠθJ,tθ̂J,t

(
θ̂−J,t

)
is the natural generalization of Πxy

(
θ̂−i,t

)
to

a set J . These ex-post incentive constraints are similar to the second equation in

(1.2). When combined with (1.2) and (1.6), we have system of NkN unknowns and

Nk + kN+
∑N

m=2

(
N
m

)
(km − 1) equations for each θt. A necessary condition for this

system to have a solution is then

(N − 1)kN ≥ N + (k + 1)N − 2N

For any N > 2, there is a k ≥ 2, large enough such that solutions to the system can

exist. We can now state our result.

Proposition 4 For every N > 2, there is an M(N) such that if k > M(N), the

MDP is strictly identifiable and the first best policy is socially rational, there exists

an efficient, collusion-proof mechanism that satisfies ex-post budget balance..

Proof. We begin by restricting our attention to mechanisms that satisfy (1.2) and

(1.6). Collusion proofness introduces
∑N

m=2

(
N
m

)
(km − 1) additional constraints. We

claim that under strong identifiability, the augmented system is linearly indepen-

dent and therefore has a solution. To see this, fix any θt. If the augmented sys-

tem is not linearly independent, there must exist a set of deviations (possibly joint)

{θJ1,t, θJ2,t, . . . , θJm,t} from θt, such that for some non-zero constants d1, d2, . . . , dm ,

∑
i

diΠ (θt+1 |θt, a∗t (θJi,t)) = 0

This contradicts strict identifiability. With strict identifiability, any set of lotteries

that satisfy (1.2) and (1.7) eliminate profitable one-shot deviations. No multi-period

deviations can be profitable since the planner incentivizes every state in each period

to report truthfully. It follows that a collusion proof mechanism satisfying ex-post

budget balance exists.
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The result essentially states that future reports of the truth-telling players can

serve as disciplining devices that deter collusion as long as the number of private

signals k increases with the number of players. In fact for any N > 2, if k ≥ N + 1,

collusion proofness is feasible.

We have used the flexibility of the I.M. approach to implement mechanisms that

satisfy ex-post budget balance and collusion-proofness. Depending on the context,

a planner may seek mechanisms that satisfy other criteria; private signals may be

multi-dimensional or players may require per-period limited liability. Implementing

these might would boil down to introducing additional linear constraints that could

pin down the unused degrees of freedom.

1.4.3 A Preference Aligning Approach

Our exposition thus far has identified two limitations of the imperfect monitoring

approach - its failure to eliminate profitable ”lie and leave” strategies and its inabil-

ity to incentivize agents in finite horizon environments. We could address these in

environments where agents make one final report and payment after they leave the

system. In practice, a planner may have difficulty enforcing such payments. Our

solution to these problems also relied on a full rank condition being satisfied for agent

types after they exitted. This may well be unreasonable in finite horizon settings

where the system ceases to evolve after the final period. Finally, these constructions

rely heavily on indifference being resolved in favor of truth-telling; an assumption

which makes them vulnerable to the same criticism as Mezetti’s work.

The Preference Aligning approach allows us to develop efficient, individually ra-

tional mechanisms which can be adapted to finite horizon settings without relying

on the assumptions noted above. The P.A. mechanism does however, require cyclic

monotonicity.

A generalization of the better known single-crossing condition, cyclic monotonicity
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allows the planner to construct transfers that induce full separation within a stage

game; that is, such transfers alone would make a myopic agent report truthfully. One

can then further augment the transfer to agent i with payments that only depend on

the reports of the remaining agents −i without perturbing the incentives for truth-

telling in the stage game. This addition would allow the planner to exploit the

correlation structure of private signals to align an agent’s preferences over future

evolution with his own. The two step process ensures that the conflict of interests

arising from misalignment of flow payoffs and disagreement over future evolution are

both neutralized. Interestingly, the FR condition is sufficient for this approach.

We will employ a technique first developed by Cremer and Mclean (C&M) [16]

who exploit the correlation of private signals to construct an auction which allows a

seller to extract the full surplus from every bidder. A critical feature of their auction

is that the interim expected utility of every bidder can be set to zero. We exploit

the same principle in our mechanism to first set each agent’s expected payoff equal

to zero in every period. Having done this, one can transform an agent’s continuation

value into a scaled version of the planner’s welfare function.

If the excess surplus generated by the mechanism is large enough, no player finds it

profitable to deviate once and surrender future value by exitting immediately there-

after. In contrast with the I.M. mechanism, the P.A. mechanism does not rely on

”punishing” deviations, in a statistical sense, with lower promised values in the future.

This is why the P.A. mechanism is able to sustain dynamic individual rationality.

Without further delay, let us construct the mechanism. Suppose agents −i report

the truth at every t, so θ̂−i,t = θ−i,t. For each of the ki possible values of θi,t, there

is a corresponding efficient allocation a∗(θi,t, θ−i,t). Suppose further that the planner

can construct action-transfer pairs, {a∗(θ̂t),mi(θ̂t)} such that in the stage game, there

is a fully-separating ex-post equilibrium in which each agent i truthfully reveals her
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type. That is, for every θi,t and θ′i,t,

gi(a
∗(θi,t, θ̂−i,t), [θi,t, θ̂−i,t]) +mi(θi,t, θ̂−i,t) ≥ gi(a

∗(θ′i,t, θ̂−i,t), [θi,t, θ̂−i,t]) +mi(θ
′
i,t, θ̂−i,t)

(1.8)

The action-transfer pairs allow the planner to implement a∗t (.) in the stage game.

We address the question of when such {mi(θ̂i,t, θ̂−i,t)} exist later in the development.

Given these action-transfer pairs, we propose a transfer rule for the dynamic mecha-

nism of the form

pi,t

(
θ̂t;Ht−1

)
= (1− γi)

{
mi

(
θ̂t

)
−Ri

(
θ̂−i,t−1, at−1

)
[θ̂−i,t]

}
+ si(θt, θ̂t) (1.9)

where 0 < γi < 1,
∑N

i=1 γi = 1, and the second term, which we will construct explicitly

below, does not depend on agent i’s period-t report. We will henceforth refer to the

second term as the future-neutralizing transfer. The third term is chosen to satisfy

si

(
θt, θ̂t

)
= (1− δ)ri + γi

(∑
j 6=i

gj

(
a∗(θ̂t), θt

)
− (1− δ)

N∑
j=1

rj

)
(1.10)

The reader will no doubt recognize that si

(
θt, θ̂t

)
is a sharing rule that will help

redistribute excess surplus among the agents. More importantly, si (., .) is an affine

transformation of the total surplus generated in period t. Note that the first and

third terms of the transfer in (1.9) are independent of past history.

The future neutralizing transfer for agent i at time t is constructed as follows.

Suppose the reports of agents −i at time t − 1 are given by θ̂−i,t−1(= θ−i,t−1, under

truth-telling) and at−1 was the allocation chosen in that period. Conditional upon her

private signal at time t − 1, agent i’s beliefs about the period-t signals of agents −i
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is given by a K−i =
∏

j 6=i kj dimensional vector Π
(
θ−i,t|

[
θi,t−1, θ̂−i,t−1

]
, at−1

)
.These

beliefs can be inferred from the Markov decision process. There are ki such distribu-

tions, one for each private signal {θi,t−1 = x}. Stacking these vectors together gives

a ki ×K−i matrix

Π
(
θ̂−i,t−1, at−1

)
= [ Π1

(
θ̂−i,t−1, at−1

)
Π2

(
θ̂−i,t−1, at−1

)
. . . Πki

(
θ̂−i,t−1, at−1

)
]′

where Πx

(
θ̂−i,t−1, at−1

)
≡ Π

(
θ−i,t|[θi,t−1 = x, θ̂−i,t−1], at−1

)
, x = 1, . . . , ki. We note

that agent i’s report at time t − 1 affects the matrix Π
(
θ̂−i,t−1, at−1

)
only through

its influence on the action at−1. The construction of the future neutralizing transfer

will not rely on this report being truthful. We note that under the FR condition

developed earlier, matrices of the form Π
(
θ̂−i,t−1, at−1

)
are full row rank. We recall

that this condition is satisfied only if ki ≤ K−i for all i. Typically, since ki 6= kj, it

will require N > 2.

We now define the future-neutralizing transfer in terms of the following system of

ki equations and K−i unknowns-

Π (θ−i,t−1, at−1)′Ri

(
θ̂−i,t−1, at−1

)
=


E
[
gi(a

∗(θ̂t), θt) +mi(θ̂t)
∣∣∣ [1, θ̂−i,t−1], at−1

]
...

E
[
gi(a

∗(θ̂t), θt) +mi(θ̂t)
∣∣∣ [ki, θ̂−i,t−1], at−1

]


(1.11)

where Ri

(
θ̂−i,t−1, at−1

)
is a vector whose K−i elements are denoted by

{Ri

(
θ̂−i,t−1, a

∗
t−1

)
[θ̂−i,t]}

When FR holds, the system in (1.11) has a solution. By construction, the second

term in the period-t transfer does not depend on θ̂i,t and is influenced by θ̂i,t−1 only
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through at−1; the fact that an agent’s transfers can be computed without relying on

her past reports will play a critical role in eliminating profitable double deviations.

Let us now return to the question of whether action-transfer pairs that implement

truthful revelation in the stage game always exist. A necessary and sufficient condition

for implementability with single-dimensional types is derived by Rochet [41]. This

condition, which has since been termed ”cyclic monotonicity”, is a generalization of

the more widely used Spence-Mirrlees (or single-crossing) condition that is necessary

and sufficient for the implementability of monotonic functions in quasi-linear settings.

For multi-dimensional types, we refer the reader to the work of Bikhchandani et. al

[?]. We state the cyclic monotonicity condition formally below.

Definition 8 (Cyclic Monotonicity) A flow utility function gi(a, [θi, θ−i]) and

first best policy a∗(·) satisfy cyclic monotonicity if for each θ−i and for all finite cycles

θi(0), θi(1), . . . , θi(m) = θi(0), in Θi

m∑
k=0

[gi(a
∗(θi(k), θ−i), [θi(k + 1), θ−i])− gi(a∗(θi(k), θ−i), [θi(k), θ−i])] ≤ 0

If this condition is satisfied, we can construct action-transfer pairs {a∗(θ̂t),mi(θ̂t)}

that satisfy (1.8). We should point out that, in finite horizon environments, the first

best policy will typically not be a stationary one, and cyclic monotonicity will be

required in every period. We are now ready to state the final result of this paper.

Proposition 5 If an MDP is full rank and satisfies cyclic monotonicity, and the

first-best policy is socially rational, there exists an efficient mechanism that satisfies

within-period ex-ante budget balance. If W ∗
t+1(Ht) ≥

∑N
j=1 rj + (N−1)∆

δ
, the efficient

mechanism also satisfies within-period ex-ante individual rationality.

Proof. To begin, we show that there are no profitable one-shot deviations. Consider

an agent i with private signal θi,t = x and suppose that the remaining agents report
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their signals truthfully, θ̂−i,t = θ−i,t. The expected flow utility that agent i receives

at time t+ 1 conditional on a report (potentially false) at time t, θ̂i,t = x′ is given by

E [gi(a
∗(θt+1), θt+1) + pi,t+1 (θt+1)| θt, a∗([x′, θ−i,t])]

= Πx (θ−i,t, a
∗([x′, θ−i,t]))

′
(gi(a

∗(θt+1), θt+1) + pi,t+1 (θt+1))

= E
[
gi(a

∗(θ̂t+1), θt+1) + (1− γi)mi(θ̂t+1)
∣∣∣ θt, a∗([x′, θ−i,t]] ...

...− (1− γi)Πx (θ−i,t, a
∗)′Ri

(
θ̂−i,t, a

∗([x′, θ−i,t])
)

+ E
[
si

(
θt+1, θ̂t+1

)∣∣∣ θt, a∗([x′, θ−i,t]]

= E
[
si

(
θt+1, θ̂t+1

)
+ γigi(a

∗(θ̂t+1), θt+1)
∣∣∣ θt, a∗([x′, θ−i,t]]

= γiE

[
N∑
j=1

gj

(
a∗(θ̂t+1), θt+1

)∣∣∣∣∣ θt, a∗([x′, θ−i,t]
]

+ (1− δ)

(
ri − γi

N∑
j=1

rj

)

Thanks to the future-neutralizing transfer, the expected flow utility in period t+1,

from agent i’s period t perspective, is linear in the total flow utility generated in that

period. The expected continuation value of agent i if he were to revert to telling the

truth after period t, is then given by

Vi,t+1([x, θ−i,t] , a
∗([x′, θ−i,t]) = γiE

[
∞∑

s=t+1

δs−(t+1)

N∑
j=1

gj

(
a∗(θ̂s), θs

)∣∣∣∣∣ θt, a∗([x′, θ−i,t]
]

...+

(
ri − γi

N∑
j=1

rj

)

= ri + γi

(
Wt+1(θt, a

∗([x′, θ−i,t])−
N∑
j=1

rj

)

The agent’s total utility at time t from reporting x′ is given by

(1− γi)
{
gi(a

∗(x′, θ̂−it),
[
x, θ̂−it

]
) +mi

(
x′, θ̂−i,t

)
−Ri

(
θ̂−i,t−1, at−1

)
[θ̂−i,t]

}
+ . . .

. . .+ γigi(a
∗(x′, θ̂−it),

[
x, θ̂−it

]
+ si

(
θt,
[
x′, θ̂−it

])
+ δVi,t+1(x, θ−i,t, a

∗([x′, θ−i,t])
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If cyclic monotonicity is satisfied, truth-telling maximizes the first two terms of

this expression. The third term cannot be influenced by the agent’s report and

therefore does not disturb incentives. When combined, the fourth, fifth and sixth

terms constitute an affine transformation of the planner’s objective function which

is maximized when the first-best allocation is chosen. Since truth-telling induces the

first-best allocation, it follows that no such one-shot deviation is profitable.

Next we rule out the possibility of an agent employing a profitable ”lie and then

leave” strategy. It suffices if for any θi,t = x,

si

(
θt,
[
x′, θ̂−it

])
+ δri ≤ si

(
θt,
[
x, θ̂−it

])
+ δVi,t+1(θt, a

∗
t (θt))

⇒
∑
j 6=i

(gj (a∗(θ′t), θt)− gj (a∗(θt), θt)) ≤ δ

(
W ∗
t+1(θt, a

∗(θt))−
N∑
j=1

rj

)

This condition is satisfied as long as W ∗
t+1(θt, a

∗(θt)) ≥
∑N

j=1 rj + (N−1)∆
δ

.

Multi-period deviations cannot be profitable in this mechanism since the planner

incentivizes every type of each agent to report truthfully. The first-best policy choice

is function of contemporaneous reports alone and the computation of transfers for

agent i does not rely on her past reports. The planner is therefore immune to any

attempts by the agent to distort his beliefs.

Under truthful revelation, agent i’s expected continuation value at time t is given

by

Vi,t+1(θt, a
∗
t (θt)) = ri + γi

(
W ∗
t+1(θt, a

∗(θt))−
N∑
j=1

rj

)
≥ ri

where the inequality follows from social rationality. This proves that ex-ante individ-

ual rationality constraints are met.
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We can now turn to budget balance. The present value of imbalances is given by

E

[
N∑
i=1

pi,t

∣∣∣∣∣Ht−1

]
= E

[
N∑
i=1

(1− γi)
{
mi

(
θ̂t

)
−Ri

(
θ̂−i,t−1, a

∗
s−1

)
[θ̂−i,s]

}
. . .

. . . +si(θt, θ̂t)
∣∣∣Ht−1

]
= E

[
N∑
i=1

−(1− γi)gi(a∗(θ̂t), θt) . . .

. . . +
N∑
i=1

γi
∑
j 6=i

gj,t

(
a∗(θ̂t), θt

)∣∣∣∣∣Ht−1

]
= 0

where the first equality follows from (1.9) and the second equality from (1.10).

This completes the proof.

A number of observations are worth highlighting. First, the P.A. approach allows

the planner to implement almost any sharing rule to redistribute excess surplus. The

only requirement however, is that the proportion of excess surplus allocated to an

agent remain constant for all periods.

Second, if W ∗
t+1(Ht) ≥

∑N
j=1 rj + (N−1)∆

δ
, the planner can also implement within-

period ex-ante individual rationality. Our proof shows that under social rationality, an

agent’s continuation value can always be chosen to be greater than her outside option

and that the additional constraint on W ∗
t+1(Ht) rules out the possibility of profitably

exitting the mechanism after submitting a false report. The additional condition

essentially states that the expected surplus a mechanism can produce starting in any

state is so large that it is not worth surrendering future participation for the bounded

gain from a one time false report. Finally, we note that this mechanism does not

require the planner to extract a final payment from an exitting agent.

The fact that this approach lends itself to finite horizon settings is also easy to
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see. In the final period, denoted t = T , agent i’s flow utility will simply be given by

(1− γi)
{
gi,T (a∗(x′, θ̂−iT ),

[
x, θ̂−iT

]
) +mi

(
x′, θ̂−i,T

)
−Ri

(
θ̂−i,T−1, aT−1

)
[θ̂−i,T ]

}
. . .

. . .+ γigi,T (a∗(x′, θ̂−iT ),
[
x, θ̂−iT

]
) + si

(
θT , θ̂T

)

Since truth-telling maximizes the first two terms, the third term cannot be influenced

by i and the final two terms constitute an affine transformation of the total flow

utility in period t = T , truth-telling is a best response for agent i. Unlike I.M., the

mechanism does not rely on reports from the players made in period T + 1.

As compared to the I.M. approach, the preference aligning method gives the plan-

ner fewer degrees of freedom. As a consequence, we see that this mechanism typically

requires N ≥ 3 and only satisfies ex-ante budget balance. The P.A. approach requires

that the future-neutralizing transfer for agent i be independent of her report. The

lottery Ri

(
θ̂−i,t, at

)
is therefore over the K−i possible reports of agents −i at time

t+1. In contrast, future promised values wi,t+1

(
θ̂t

)
[θ̂t+1] constructed under the I.M.

approach are fundamentally influenced by agent i’s report at time t+ 1 and therefore

lotteries may have distinct payoffs for every one of the K possible reports that can be

received in that period. It is this underlying distinction that makes the I.M. approach

more flexible.

1.5 Future Work

A number of questions remain unanswered. What does weakening the equilibrium to

a Bayesian one have to offer ? Are environments where types are neither independent

nor identifiable doomed ? What additional insights do our mechanisms offer when an

agent exitting the system continues to consume its externalities ? How can first-best

allocations be implemented in non-Markovian environments? Can we subscribe to the

Wilson doctrine and implement efficient allocations using detail-free mechanisms? To
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what extent is it possible to move to decentralized, self-enforcing mechanisms that do

not rely on the presence of a banker or planner ?

One may also investigate optimal mechanism design when players are risk averse.

In such settings, giving incentives for truth-telling will necessarily mean that first-best

implementation is no longer possible. Related work on models of dynamic optimal

taxation and/or insurance which analyzes economies where players try to share risk

and exert efficient levels of effort have recently generated a great deal of interest.

Finding common ground with that work may prove fruitful. These are just a few of the

many questions that can be pursued in the area of multi-player dynamic contracting.
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Chapter 2

Ideologues beat Idealists:

A Paradox of Strategic Voting 1

We’d all like to vote for the best man but he’s never a candidate.

— Frank Hubbard

It is often the case that voters expect to have more information after the election

and before a policy choice is made, as the following hypothetical but plausible scenario

shows. A presidential election is in the offing, and the result hinges on one central

issue — How best to respond to a country that could pose a threat. Voters could be

divided on this issue — some support a direct confrontation (policy-0), while the less

hawkish prefer a diplomatic response(policy 1). Voters are aware that their ranking

of policies could change after elections are held, but before a policy choice is made;

these we call “shocks”. These shocks could be weak or inconclusive; voters then react

to this “idiosyncratic” shock depending on their personalities. However there is a

chance that some very conclusive evidence will come to the fore, either for or against

the said country being a threat, and cause all voters to agree on what the right

policy is ; this we call a “common” shock. If it is proved that the enemy was close

1Co-authored with Sambuddha Ghosh.
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to developing nuclear weapons, then even the pacifist prefer confrontation; similarly,

everybody prefers a diplomatic response when there is no doubt that the adversary

is technologically incapable of mounting a serious military threat. Two candidates

contest on the following platforms. The first, B, is known to prefer policy 0 come

what may; the other, K, is an unbiased candidate who credibly promises to wait until

final rankings are formed after the shocks are received, and to then take the action

that the majority prefer. Who stands a better chance of being voted to power in

a (simple) majority election? One might expect the unbiased candidate to be the

natural choice of the population, especially when there is a significant probability of

a common shock that makes the committed policy bad for all voters: In the case of a

common shock, the unbiased candidate always implements what all voters prefer. We

find, perhaps counter-intuitively, that voters may prefer the first candidate, thereby

committing to a policy rather than waiting to learn their true rankings. This problem

is greatly aggravated when voters are rational and their strategies constitute a Nash

equilibrium or, equivalently, voters base their decision on the scenario where they are

pivotal. This voting equilibrium survives a high chance that new evidence exposes the

committed alternative as being undesirable for all voters, i.e. a high probability of a

common shock away from the policy committed to. Political satirist Frank Hubbard’s

quip, quoted at the start of the paper, could be turned on its head — (Often) we

wouldn’t like to vote for the best man even if he were a candidate!

We emphasize that the electorate is faced with a choice between two candidates,

one of whom always offers a fixed policy from which he derives private benefits, while

the other is one who offers a state-contingent plan. Had the electorate’s choice had

been between two policies in the above environment with shocks to rankings, then

there would have been a positive probability of each policy being the socially optimal

one. What makes our inefficiency quite stark is that the unbiased candidate must,

in any state of the world, implement the policy that maximizes social welfare, but he
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still loses. When voters choose between two policies each voter chooses the one that

he expects to prefer at the next date. As we shall see, this could give rise to inefficient

choices as documented by earlier work discussed later in greater depth. A somewhat

finer reasoning enters into the decision of the voter when he is strategic and must

choose between the two candidates B and K. To evaluate K’s plan the voter must

now take into account not merely his own ranking of policies but others’ rankings and

their equilibrium voting strategies; this is because he needs to keep track of where

the ex-post social optimum will be. This added element leads the pivotal voter to a

new form of inefficiency when he conditions his decision on being pivotal, which fuels

his fear of being in a precarious majority even if that is unconditionally very unlikely.

This point is elaborated in our examples and proofs.

What are the implications of the common shock for our result ? A common shock

captures a situation in which a large number of voters change their rankings in a

correlated fashion, as opposed to independently. 2 This feature enriches the insights

to be gained from our model: Presence of common uncertainty both adds realism and

serves as a test of the robustness of our results. In the event of an common shock,

the unbiased candidate provides perfect insurance to all voters in the electorate and

therefore a high chance of such an event pushes voters away from the suboptimal or

committed candidate. We show that the inefficiency is robust to a high probability of

a common shock. When the committed candidate comes to power, the common shock

exacerbates the degree of social inefficiency as it creates the possibility of the entire

electorate suffering a poor policy choice. On a more reassuring note, in the absence

of common shocks, the probability that an elected committed candidate implements

the socially optimum policy approaches unity for large populations.

The choice between the committed and the unbiased candidate can also be thought

2This can be rationalized as follows - each individual’s utility function is comprised of a private
value component and a common value component. The common shock might significantly alter the
common values component of the utility thereby precipitating a correlated shift in rankings.
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of as the choice between picking a policy immediately and waiting until further infor-

mation makes a more informed choice possible. We show that even with a substantial

chance of a common shock, the electorate might choose to act in haste and do the

former. Examples of public referenda fit this formulation more naturally. In October

1992, the Swedish Nuclear Fuel and Waste Management Company (SKB), an organi-

zation charged with the responsibility of safely disposing nuclear waste, proposed to

conduct a study to determine the feasibility of locating a repository. One of the towns

that seemed worthy of further investigation was Storuman, in northern Sweden. The

proposal polarized the community into those who opposed bringing nuclear waste to

Storuman and those who believed that likely economic benefits made the investiga-

tion worthwhile. The findings of the SKB would not be binding on the city and if

Storuman were deemed feasible it would still be up to the city council to decide, pre-

sumably in keeping with public opinion and the interest of the city, whether to allow

SKB to actually go ahead with building a nuclear waste dump. A 1995 referendum

asked “whether SKB should be allowed to continue the search for a final repository

location in Storuman”. The outcome was an overwhelming ‘no’ (70.5%): the public

opted to reject it outright rather than allow more information to be disclosed by a

scientific study.

In an article published in the Op-Ed section of the L.A. Times, Bruce Schulman

argues that changing sides has been costly in American politics of late. Candidates

spend resources trying to explain away changes in their stand on key issues, from

affirmative action to foreign policy. Even fairly incontrovertible evidence of hav-

ing changed does not dissuade them for arguing otherwise. Schulman suggests that

political candidates do not wish to come across as opportunists who pander to the

electorate for political gain. This line of reasoning has also been explored by Callander

[12] and later by Kartik and McAfee [32], who examine the nature of electoral com-

petition when candidates communicate their types through their choice of platform;
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they assume that the electorate has explicit preferences over unobservable traits such

as candidate character. The results in our paper offer a different explanation for why

political candidates might prefer to commit to an ideology rather than update their

stands as new information becomes available. We argue that in an environment with

changing preferences, the best conceivable flip-flopper, one who adjusts his position

to what is best for society at large, cannot expect to win against an ideologue. Office

seeking candidates might therefore prefer to be perceived as having ideological biases

even when the electorate does not intrinsically value this quality.

The results in this paper also offer insights into the type of candidates who enter

an election. If entering an election is costly and candidates have to choose a plan on

which to run, we show that a unbiased candidate may choose not to enter the race.

In this case, the electorate will not be presented with the option of voting for the best

candidate, as in the tongue-in-cheek quote at the start of the paper.

Our work is closely related to three strands of literature— the first, on status-quo

bias against reforms that are put to vote; the second, on pivotal voting; and the

third, on spatial competition and the median-voter result. The status-quo bias in

reform is well documented — changes that are known to benefit a majority ex-post

are not passed ex-ante because some of the would-be winners under the reform vote

against the reform; see for example Samuelson and Zeckhauser[42]. Fernandez and

Rodrik3 [26](FR) provide a rigorous explanation in the context of trade reforms, to our

knowledge the first that does not appeal to risk-aversion. Their explanation is based

on the identity of the winners within the majority group being unknown at the time of

voting. All voters of a group are ex-ante identical and hence maximize the expected

value of the group, behaving in effect like the representative voter of the group. This

brings us to the second strand of related literature, which uses the concept of pivotal

voting, first introduced in the ‘Theory of Voting ’ by Farquharson[20]. More recently

3Roland Benabou first drew our attention to this paper, and pointed out a very natural link
between our work and theirs.
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this difference has been exploited by Austen-Smith and Banks [5] and Feddersen

and Pesendorfer [24] to analyze information aggregation in elections. The following

comment is intended to avoid legitimate confusion about the role of pivotal voting in

our model. Usually the difference between sincere and pivotal voting arises from the

fact that the private signal of each voter i affects the valuation of other voters j 6= i:

When j is pivotal, he can infer the distribution of signals of other voters i(6= j) and

thus updates his rankings conditional on being pivotal. We consider a model with

private values, i.e. any voter’s ranking of alternatives does not depend on others’

signals or rankings. But, as we just argued, there is no additional information about

voter j’s ranking of policies contained in his being pivotal; so why should his vote

depend on it at all? The paradox is resolved as follows: When voter j is pivotal, he

can infer the probabilities with which the alternative policies will be implemented at

the next date by the unbiased candidate K ; this determines voter j ’s preferences

over the candidates and thereby influences the outcome of the voting. Lastly, our

work may also be linked to models of spatial voting, notably the pioneering work of

Downs and Hotelling. In some senses we provide a framework that argues why the

reverse, in a very loose sense to be described later, of the median voter result might

hold; in our model a candidate with an extreme position beats an unbiased candidate.

The remainder of our paper is organized as follows: Section 1 puts our contribution

in perspective with illustrative examples; Section 2 sets up the model, presents the

decision problems of the sincere and pivotal voters, and characterizes the resulting

equilibria; Section 3 looks at situations where the voting rule at the initial date differs

from that used at the subsequent date; Section 4 provides a discussion of the candidate

entry problem; and Section 5 concludes.
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2.1 Illustrative Examples

Example 1

We begin with an example that captures the logic of FR. To fix ideas, consider two

sectors in an economy — X and Y, with 76 workers in sector in X, and 25 in sector Y.

Workers of sectors X and Y are referred to as type-0 and type-1 voters respectively.

A simple majority election allows voters to choose whether to stick to the status-

quo policy (0) or to implement a reform policy (1). A voter who prefers the policy

implemented gets a utility of 1, while others get 0. The shocks are as follows: With

probability 0.2 there is a common shock that moves all voters to 1; with probability

0.8 there is an idiosyncratic shock that makes each worker of type-0 become a type-1

with probability p independently of the others. The original model of FR does not

have a common shock, but we add it for realism and to facilitate comparison of their

model with ours.

Case 1: p is not too small. If p = .25, the expected number of people who prefer

policy-1 at the next date will be 0.2∗101+0.8(25+0.25∗76) ≈ 56 which is more than

half; so the efficient outcome requires the reform to be passed. But it is not known

who the beneficiaries of reform in sector X will be when there is an idiosyncratic

shock because all individuals in X are ex-ante identical. Therefore the expected gain

to a current type-0 from the reform is 0.2 ∗ 1 + 0.8 ∗ 0.25 ∗ 1 = 0.4, which is less than

the utility from policy-0, 0.8 ∗ 0.75 = 0.6. The type-0 voter prefers policy 0, and the

reform is defeated even though it is welfare improving.

Case 2: p very small, i.e. the idiosyncratic shock is small and does not change the

balance of power. Say, p = .1. The expected number of people who prefer policy-1

at the next date is 0.2 ∗ 101 + 0.8 ∗ (25 + 0.1 ∗ 76) ≈ 46. Then policy-0 maximizes

social welfare and all type-0 voters support it because the gain from the reform is

0.2 ∗ 1 + 0.8 ∗ .1 ∗ 1 ≈ .28; there is no inefficiency.

44



Essentially what each voter does is guard the interests of the group to which he is

most likely to belong at the next date. In the above example each type-0 voter is

more likely to remain a type-0. Starting with a case where type-0’s are in a majority,

this is inefficient if and only if each type-0 is more likely to stay than to switch and

the type-1’s are expected to be in a majority at the next date. Although the model

of FR is not directly comparable to ours, their work essentially points out the above

source of inefficiency.

Note that there is no way for one voter to be pivotal in the framework above.

What if we were to introduce a means by which each voter could be pivotal in the

example above? Suppose that instead of there being exactly 76 and 25 workers in the

two sectors, we have a model in which a worker was randomly chosen by nature to be

of type-0 with probability ≈ 0.75. If type-0’s and type-1’s vote for different candidates

in equilibrium, this assigns a positive probability to each voter being pivotal. Would

this change how a typical voter behaves? Note that the voter in FR knows the

probability that he will prefer each alternative; he votes for that which generates the

highest expected utility. This is a weakly dominant strategy, even when every voter

assigns positive probability to being pivotal. Thus the logic outlined in the above

example works even if each voter can be pivotal.

As we shall see, our framework allows us to distinguish between pivotal and sin-

cere voting. We show that a combination of two features— voting over candidates

instead of policies, and strategic voting — makes the inefficiency more pervasive, al-

though either one alone would not do so. Thus inefficiency may result even when the

probability of switching in response to an idiosyncratic shock p is very small, as the

following example shows.
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Example 2:

Let us now turn to our framework. There are 101 voters, and two alternative policies,

0 and 1. At date-0, the initial date, nature chooses each voter’s type, which is the

policy he ranks higher. Types are drawn independently — type 0 with probability

.75, and type 1 with probability .25; each voter learns his own type. However there

is uncertainty in rankings — voters understand that when it is time to implement

a policy at the next date (date-1), their ranking of policies could be different. Each

voter gets a utility of 1 if his preferred alternative is implemented, and 0 otherwise.

There are two candidates — B, the first one, is known to have private benefits from

implementing policy-0; the second, K, is the unbiased candidate who behaves like the

social-planner and implements the policy that the majority prefers at date-1.

Next period one of two shocks is possible: With probability 0.2, a common shock

causes all voters will switch together towards 1 and with probability 0.8 there is an

idiosyncratic shock and each voter switches independently towards 1 with probability

p = .1 as in case 2 above. We should emphasize here that candidate K is the efficient

choice regardless of the shock.

Case a (Sincere Voting): The utility of a type-0 voter from voting B is 1− 0.2− 0.8 ∗

0.1 = 0.72 , since he gets a utility of 1 as long as he stays a type-0. Unconditionally,

type-0’s are expected to be in the majority at both dates with probabilities close

to 14. So if a type-0 voter is sincere and does not condition on being pivotal, his

probability of agreeing with K is very close to 1, and he votes for him. There is no

inefficiency as in case 2 above.

Case b (Strategic/Pivotal Voting): But the rational voter recognizes that his vote

matters only when he is pivotal. The utility from voting B is still 0.72, because B

chooses a fixed policy. The utility from voting K is now 1− 0.8 ∗ 0.9 ∗ (1− (0.9)50) ≈
4It can be checked that if the type-0’s are in a majority at date-0, they can become a minority

with probability of the order of 10−23.
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0.28. Conditional on the pivotal scenario, the majority will become the minority with

probability close to 1 if there is an idiosyncratic shock. The pivotal type-0 voter then

ends up in the minority if he is not among those who switch. Conditioning on the

knife-edge majority therefore leads him to vote against the reform.

Nature’s draw is almost certain to result in type-0’s being in a majority at date 0;

consequently the inefficient choice B is almost certain. A candidate committed to a

fixed policy beats the unbiased candidate, even though the probability of idiosyncratic

change is very low! If candidate B is elected, the probability that the policy chosen

is bad for the everyone is 0.2; this gives a sizeable lower bound on the degree of

inefficiency5. It might appear at first glance that what the rational voters should try

to guard against is the common shock towards 1, when B proves bad for everybody ;

but the logic of pivotal voting leads to a surprising conclusion.

In the framework of FR, pivotal and sincere voting yield the same results because

voting is over alternative policies not over candidates: Whether or not a voter is

strategic, it is a weakly dominant strategy for him to vote the alternative he prefers in

expectation. The others’ strategies are not relevant given that values are private. The

voter is presented with a choice between lotteries whose outcomes are independent of

other voters’ types and how they vote. As explained in the introduction, our model

also has private values, but the strategic element has bite because a pivotal voter can

infer the types of other voters and therefore what candidate K is likely to do at the

next date.

Inefficiency a la’ Fernandez and Rodrik is possible only when the efficient policy

hurts the current majority on average; we refer to this as the type I inefficiency.

In terms of our model, an idiosyncratic swing in rankings must large enough to

change the balance of power and to reduce the erstwhile majority to a minority.

If p is small then there cannot be any inefficiency. We shall see that, in contrast,

5The majority is most likely to switch only when there is an common shock in favor of policy 1.
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the inefficiency displayed by our pivotal voter is more pervasive— it can happen

even when idiosyncratic shocks are extremely unlikely to change the balance of power

(in expectation). ( As noted earlier, the common shocks tilt all voters towards the

unbiased candidate.) In terms of our results, our main proposition shows that the

inefficiency persists even when the probability p of any voter changing sides is small,

and there is a substantial probability of a common shock, which helps K. We refer to

this as type-II inefficiency.

In summary, our work differs from FR on three counts — model, methodology, and

implications. First, in our model voters choose between candidates rather than policy

alternatives. Since one candidate offers a policy that is conditional on the electorate’s

final rankings of policies, a pivotal voter must take into account the voting strategies

of others; as a consequence he behaves differently from the sincere voter. Finally, from

a substantive point of view the pivotal argument implies that inefficiency remains even

when the “idiosyncratic” shock ( one that does not affect all voters the same way) is

unlikely to precipitate a large change., i.e. p is small.

2.2 The model

We consider a simple two-period model with voters in S = {1, 2, ..., 2n + 1}, (n >

1)and a set of policies A = {0, 1}. At date-0, nature draws each voter’s type t0i ∈ {0, 1}

from a Bernoulli distribution with Pr{t0i = 0} = q > 1/2. The voter’s type on a

particular date specifies the policy he prefers on that date. Elections are held at

date-0 as well. There are two candidates to choose from — B and K. Candidate

B is known to derive private benefits from the policy 0 6, while K is an unbiased

candidate who promises to maximize social welfare. After the elections, each voter’s

type changes according to a stochastic process described below. Once each voter’s

6q > 0.5 is without loss of generality as long as there is a candidate who derives private benefits
from implementing the policy that is favored by the majority at date 0.
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date-1 type t1i is determined, K implements the ex-post social optimum policy if he

has been elected at date-0; if B was elected, he chooses policy 0. If a ∈ A is the policy

implemented at date-1, the utility of voter i is given by

ui(a; t1i ) =

 1 if a = t1i

0 otherwise
.

Figure 1 summarizes the temporal structure of the game.

Figure 2.1: Timeline

Voter’s types change over time as new information is revealed to them. Informative

signals arrive according to the following process. With probability δ, a public signal

favoring one of the policies arrives, forcing everyone to one side; all voters then prefer

policy 0 with probability π or policy 1 with probability 1 − π. With probability µ,

idiosyncratic private signals arrive, leading to independent changes in voters’ rankings.

These signals favor policy 0 with probability φ and policy 1 with probability 1 − φ.

If the signal favors policy 0, each voter of type t0i = 1 (henceforth, type-0) switch

to policy 0 with probability p independently of the others, while the voters of type-

0 stick to their original preferences ; if it supports 1 then all 1 types stay put but

each type-0 changes to 1 with probability p independently of the others. Lastly, no

information arrives with probability 1− δ − µ; in that case we have t1i = t0i∀i . Later

we shall make the simplifying assumption that π = φ ; this is in no way important

for our results and merely permits cleaner algebra and succinct interpretations of the

derived results. In a realistic case, one would expect δ to be small relative to µ-
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it is more likely that individuals do not switch en-masse but rather in response to

information that each voter chooses to interpret as either strong enough to switch to

the other side or too weak to make a difference. All results continue to hold inspite

of the relative magnitudes of δ and µ as long as δ < µ . In the rest of the paper, we

refer to the δ-event as being a common shock, and the µ-event as an idiosyncratic

shock. Figure 2 summarizes the signal structure.

Figure 2.2: Schematic Representation of Changing Types

Each voter’s type at date-0 is private information; everything else, including the

rationality of voters and the stochastic process for the change of types from date-0 to

date-1 is common knowledge. It also seems realistic to say that a voter does not know

the exact types of the others, but has a general sense of the dispersion in opinion.

Since our focus will be on symmetric pure strategy equilibria, assuming types are

private information will allow voters to rationally condition on the pivotal scenario.
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2.2.1 The sincere voter

We use the sincere voter to shed light on the forces that influence the decisions of

a pivotal or sophisticated voter. The sincere voter does not condition on the state

in which he is pivotal, but instead picks the candidate who, given the unconditional

distribution of date-0 and date-1 types, is more likely to agree with him at date-1.

He uses a weakly dominated strategy: when he is not pivotal his vote does not affect

the result, and when he is indeed pivotal, his vote may not coincide with that of

the rational pivotal voter. While falling short of rationality in one of many ways.

the sincere voter provides a very useful benchmark against which to compare the

results for the pivotal voter, and also facilitates comparison with previous work. An

interesting point emerges from the comparison: When all voters are strategic the net

outcome could be worse. As we shall see, the sincere voter can only generate one

of the two forms of inefficiency discussed below. We should also like to remark at

this point that our sincere voter is similar to Harsanyi’s rule-utilitarian voter[31]. A

rule-utilitarian is one who votes according to the rule that maximizes social utility if

everyone else follows the same rule. This concept is further extended by Feddersen

and Sandroni [22], and by Coate and Conlin [14] to include group rule-utilitarians,

who choose the action that is best for the group when everybody in the group follows

it. Our sincere voter chooses like the group-rule utilitarian voter.

Since q > 0.5, the vote of the sincere type-0 voter determines the outcome of the

election in a large population. We find in Proposition 1 below that the type-0 voter

supports K either when (1) type-0’s are expected to be in a majority at date-1 , or

(2) type-1’s are expected to be in a majority at date-1, but the typical type-0 voter

is very likely to switch preferences at the next date i.e. p is ‘high’. The only case in

which he votes B is the one where the majority is likely to be at 1 at the next date

but any given voter is very likely to stay put i.e. p is ‘low’. In other words, he prefers

to commit and safeguard his interests today as he might not have enough support to
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do so at the next date.

Proposition 1 When q ∈ (0.5, 1) and n is large enough, sincere type-0 voters vote

B if and only if q(1− p) < 1/2 and p < 1
2
(1− δ

µ
).

Otherwise they vote K. The sincere type-1 voters always vote K. When type-0

voters support B, the probability that B wins goes to 1 as n→∞.

Proof: The expected utility of a sincere type-0 voter i when B is elected is given

by

Ui(B, 0) = 1− µ(1− φ)p− δ(1− π)

; the second term corresponds to the loss incurred when the voter sways to an id-

iosyncratic 1-signal and the third term is the loss due to an common 1-signal. When

K is elected, the expected utility is

Ui(K, 0) = 1− µ(1− φ)pΛ01 − µ(1− φ)(1− p)Λ10 − µφΠ1

, where Λ01 is the probability that the date-1 majority is at 0 when type-0 voter

i switches to 1 in response to an idiosyncratic 1-shock, Λ10 is the probability that

the date-1 majority is at 1 when voter i ignores the idiosyncratic 1-signal and Π1

is the probability that the majority stays at 1 despite an idiosyncratic 0-signal.7

The three negative terms correspond to the three potential sources of loss under

K. Note that losses can only be incurred under K when idiosyncratic signals ar-

rive. Conditioning on an idiosyncratic 1-signal, the probability that an arbitrary

voter supports policy 0 at date 1 is q(1 − p) for large n. If we define the random

variable X01 ∼ Binomial(2n, q(1− p))as the number of voters (barring one) who sup-

port policy 0 at date-1 following an idiosyncratic 1-signal, then Λ01 = Pr{X01 >

n + 1} = Pr{ 1
2n
X01 >

1
2

+ 1
2n
}. The Weak Law of Large Numbers guarantees that

7Λ01 =
∑2n

j=n+1

(
2n
j

)
θj(1 − θ)2n−j ,Λ10 =

∑n−1
j=0

(
2n
j

)
θj(1 − θ)2n−j ,Π1 =

∑n−1
j=0

(
2n
j

)
ψj(1 −

ψ)2n−j , θ = q(1− p), ψ = q + (1− q)p
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limn→∞ Pr
{∣∣ 1

2n
X01 − q(1− p)

∣∣ < ε
}

= 1for any ε > 0. If q(1− p) > 0.5, there exists

an nlarge enough and an ε > 0so that

Pr

{∣∣∣∣ 1

2n
X01 − q(1− p)

∣∣∣∣ < ε

}
≤ Pr

{
1

2n
X01 >

1

2
+

1

2n

}
≡ Λ01 ≤ 1.

It follows that

q(1− p) > 0.5⇒ lim
n→∞

Λ01 = 1 and lim
n→∞

Λ10 = 0 ; q > 0.5⇒ lim
n→∞

Π1 = 0

For large n and q(1− p) > 0.5, the type-0 voter then votes K, the unbiased candidate

for all δ ≥ 0. When q(1 − p) < 0.5 , the date-1 majority is expected to be at 1

and for large n, Λ01 → 0, Λ10 → 1 and Π1 → 0. The type-0 voter then votes K if

p > 1
2

(
1− δ(1−π)

µ(1−φ)

)
. Under π = φ, this reduces to p > 1

2

(
1− δ

µ

)
.

Let us now turn to the sincere 1-voter. His expected utility from B is given by

Ui(B, 1) = (δπ + µφp)

; he gets a utility of 1 iff he switches to 0 himself, in response to either an idiosyncratic

or an common 0-signal. His utility from K is

Ui(K, 1) = δ + µφpΠ00 + µφ(1− p)Π11 + µ(1− φ)Λ1

, where Πab is the probability that, following an idiosyncratic 0-signal, the majority

is at a when our voter is at b; Λ1is the probability that, following an idiosyncratic

1-signal, the majority is at 1. By arguments similar to the ones made for the sincere

0-voter above,

q > 0.5⇒ lim
n→∞

Π00 = 1 and lim
n→∞

Π11 = 0
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q(1− p) > 0.5⇒ lim
n→∞

Λ1 = 0 ; q(1− p) < 0.5⇒ lim
n→∞

Λ1 = 1.

When q(1 − p) < 0.5 , we can therefore reduce the decision for large n to one of

comparing δπ + µφp with the quantity (δ + µ(1− φ) + µφp) that he gets from K.

Since δ(1−π)+µ(1−φ) > 0, he votes K. When q(1−p) < 0.5, he compares δπ+µφp

from B with δ + µφp from K and votes K. Thus the sincere type-1 voter votes K for

all values of q ∈ (0.5, 1)and all p ∈ (0, 1).

When either (1) q(1 − p) > 0.5, or (2) when q(1 − p) < 0.5and p > 1
2

(
1− δ

µ

)
,

both the type-0’s and 1’s vote K and he wins with probability 1. When q(1−p) < 0.5

but p < 1
2

(
1− δ

µ

)
, the type-0’s vote B while the 1’s vote K; since q > 0.5, B is the

more likely winner; his exact probability of winning is Σ2n+1
k=n+1

(
2n
k

)
qk(1−q)2n−k, which

is greater than 0.5 for all n and tends to 1 as n→∞. �

Figure 3 summarizes the behavior of the type-0 voter for large enough n. In

regions II and IV, the type-0 voter elects K as he expects to remain in the majority if

there is an idiosyncratic shock, and has nothing to lose by voting K; when there is an

aggregative 1-signal, he is better off with K as B would still continue to implement

the alternative 0, which gives B private benefits; with an common 0-signal, both B

and K implement 0. In region I, the date-1 majority is expected to prefer policy 1,

but since p is high each type-0 expects to switch and be in the subsequent majority.

So he votes for K, who always picks the right alternative when there is an aggregative

shock. Finally in region III, the sincere type-0 voter picks the socially suboptimal

candidate B because the majority is likely to prefer 1 at the next date, but given that

p is small he would probably stay put at 0.

The sincere voter is nothing but the representative agent of the group, one who

maximizes the value of the group8. This is easy to see - all agents of a group are ex-

ante identical, and the probabilities that appear in the decision of the sincere voter are

8The sincere voter’s behavior is akin to the notion of group rule utilitarianism introduced by
Harsanyi [31].
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the expected proportions in the decision of the representative agent. The probability

of switching, for example, is now to be interpreted as the expected proportion of

type-0’s who switch when there is an idiosyncratic 1-signal.

Figure 2.3: Voting Behavior of the Type-0 Voter

2.2.2 The pivotal voter

The situation is very different when we require the strategies to constitute a Nash

equilibrium. We conjecture the following Nash equilibrium in pure strategies : each

voter of type-0 votes B, and all type-1’s vote K; then we solve for the range of

parametric values where this is indeed the case.9 Let Ui(c | c0, c1; t0i , piv) denote the

utility of the pivotal voter of date-0 type t0i when he votes for candidate c, the type-0’s

vote for candidate c0 and the type-1’s vote for candidate c1. Consider a pivotal type-0

voter. When he is pivotal the utility of voting for B is the same as that for the sincere

9We ignore trivial equilibria in which all voters support the same candidate. Our focus is on
symmetric equilibria in which all voters of a type vote the same way.
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voter:

Ui(B | B,K; 0, piv) = 1− µ(1− φ)p− δ(1− π)

The utility of voting for K is now different :

Ui(K | B,K; 0, piv) = δ + (1− µ− δ) + µφ+ µ(1− φ)
{

(1− p)n+1 + p
}

Utility from K is 1 whenever there is an common signal, no signal, or an idiosyncratic

0-signal. If an idiosyncratic 1-signal arrives, the type-0 voter gets 1 if nobody switches

or if he himself switches. The pivotal voter prefers B when

Ui(B | B,K; 0, piv) > Ui(K | B,K; 0, piv)⇔ δ(1−π)+µ(1−φ)p < µ(1−φ)(1−p){1−(1−p)n}

(2.1)

Under the assumption π = φ, the condition reduces to

f(p, n) = 1− 2p− (1− p)n+1 >
δ

µ
.

Figure 4 shows how f(p, n) compares to a threshold of δ/µ for different values of

n. Since f(n+ 1, p) > f(n, p) for all p in (0, 1),the range of values of p for which the

committed candidate wins is growing with n; as n↑ ∞, the negative term (1− p)n+1

goes rapidly to 0, and the condition reduces to 1− 2p > δ
µ
⇔ p < 1

2
(1− δ

µ
).10 There

exists a p > 0 satisfying the above if δ < µ, i.e. if the probability of an common

switching signal is less than that of a idiosyncratic signal. The only requirement is

that a signal that causes the entire population to switch to one side is less likely than a

signal that causes voters to switch idiosyncratically, - surely a reasonable assumption.

10If we turn to the case when there is no common shock, i.e. δ = 0, then 0’s vote B if (1−p)n+1 <
1 − 2p. Using a quadratic Taylor series expansion, a sufficient condition for this is 1 − (n + 1)p +
(n+1)n

2 p2 < 1 − 2p, or (n+1)n
2 p < n − 1. i.e. p < 2(n−1)

n(n+1) . For 7 voters, for example, this effect is
observed for p < 1/3. Thus with δ = 0, the bias towards commitment is very much a reality even
with relatively few voters.
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Figure 2.4: Small n behavior

So δ may be quite large, even close to but less than one-half, provided that it is less

than µ.

For n large, (2.1) reduces to

δ(1− π) + µ(1− φ)p < µ(1− φ)(1− p) (2.2)

The LHS of (2.2) is the loss from voting for B and getting him elected - the first

term is the loss when the entire population switches to 1 at date 1, the second is

when voter i responds to an idiosyncratic signal and finds himself on the wrong side

vis-a-vis B. The RHS is the loss when K is elected. Note that the pivotal voter reacts

very differently to the possibility of an idiosyncratic switch depending on who is in

power- B or K. When B is in power, the loss is when voter i himself switches whether

or not others switch. With K in power, i no longer fears switching even if others

don’t; what he fears is staying put when others switch.
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Proposition 2 When q ∈ (0.5, 1) and n is large enough, there exists a Nash

equilibrium with pivotal voters in which all type-0’s vote B and all type-1’s vote K

when p < 1
2
(1 − δ

µ
). B wins with a probability that tends to 1 in large populations.

When p > 1
2
(1− δ

µ
) all voters (type-0 and 1) prefer K to B.

Proof : The argument above shows that for large enough n, the pivotal type-0

voters prefer B if p < 1
2
(1 − δ

µ
) and the type-1 voters conform to the conjectured

equilibrium strategy. Since q > 0.5, the Weak Law of Large Numbers ensures that

almost surely, a majority of voters support 0 on election day and therefore B wins.

Finally to show that the above conjecture indeed gives us a NE, we show that the

pivotal type-1’s will vote K. Expected utility from B is

Ui(B | B,K; 1, piv) = δπ + µφp

, while that from K is

Ui(K | B,K; 1, piv) = (1− µ− δ) + δ + µ(1− φ) + µφ(1− p)n+1 + µφp.

Under µ = φ, type-1 ’s vote K if φ(µ+ δ) < 1, which necessarily holds. �

For large n, there are two forms of inefficiencies illustrated above. The first, which

corresponds to region III of Fig. 3 and is exhibited by both sincere and pivotal voters,

was discussed in Section 2.1. The difference between the sincere and the pivotal voter

is in region IV: the pivotal voter prefers the committed candidate even when, following

an idiosyncratic shock, he expects to remain in the majority. What drives the fear of

the pivotal voter is that his decision is conditional on himself being pivotal, thereby

unraveling the effect of q. In contrast to the decision of the sincere voter for large n,

his decision depends only on the value of p and not that of q. The interaction among

pivotal voters enters through the size of the population: when n is large it is almost

certainly the case that, starting from a pivotal situation, the pivotal 0-type voter will
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be in minority if he does not switch following an idiosyncratic signal. The proposition

below summarizes this.

Proposition 3 When p < 1
2
(1 − δ

µ
) and p < 1 − 1

2q
, sincere voting results in

election of the unbiased candidate, while pivotal voting almost surely results in the

election of the committed candidate. If B wins, he implements a suboptimum policy

with a probability that is bounded below by the probability of an common 1-type shock

δ(1− π) > 0. All sincere voters vote K, whereas the pivotal type-0 and 1 vote B and

K respectively. Thus for large n, B wins with a probability arbitrarily close to unity

if voters are fully rational; K wins if they are sincere.

Remark For all n, not necessarily large, and q > 0.5 the probability of an in-

efficient decision is bounded below by δ(1 − π)/2. This follows since B wins with a

probability bounded below by 0.5 for all n.

Finally, returning to Figure 4 , we note that for small n, it is not the case that

the pivotal type-0’s prefer B for all values of p less than a certain threshold. For very

small p the condition reduces to δ < 0, which is impossible. What is the reason for

this difference? Recall that the pivotal agent’s fear is of being left behind - of not

switching to the other side while at least one other person on his side defects and

destroys a fragile majority. But the fewer the voters the less likely is this fear, and so

the dominant fear is that of an common 1-shock that would render B undesirable for

all voters.

2.3 Varying the Voting Rule

The previous sections proceeded under the assumption that the voting rule used at

date-0 is the same as the decision rule used at date-1 by the unbiased candidate K.

Recall that an interpretation of our framework, one that we mention earlier, is the

choice between acting now or waiting; with this interpretation it is indeed natural to
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suppose that the voting rule at 0 and K ’s rule at 1 are the same. But if we think

of it as an electoral contest, one is naturally led to investigate the properties when

the two rules are different. This section accordingly looks at an m− rule at date 0,

to be defined shortly. In this section, we examine the behavior of the pivotal voter

for a range of such voting rules.11 We shall continue to focus our attention on large

electorates. Suppose now that the committed candidate B and unbiased candidate

K contest in an election where B wins if he receives a fraction m > 1
2

or more of the

votes and K wins otherwise.12

As one would expect, increasing m from 1
2

makes it difficult for B to win, and

helps mitigate the inefficiency generated by the pivotal voter. However the inefficient

equilibrium turns out to be robust in a large range of (m, p) values. To see this, let

us re-examine the conjectured equilibrium in which type-0’s vote B and type-1’s vote

K, and analyze the pivotal type-0 voter’s decision. Recall that q > 0.5 means that in

the symmetric equilibrium the vote of the type-0 voters is the deciding vote. Under

the new voting rule, the pivotal voter conditions on the state of the world in which

k voters are of type-0 , where k
2n+1

< m ≤ k+1
2n+1

. If m(1 − p) > 1
2

and n is large,

by the law of large numbers we know that it is highly likely the majority at date-

1 will remain at 0. The pivotal voter is therefore not conditioning on a precarious

majority and this allays his fear of being left behind while the majority switches

to policy 1 at the next date. Under this condition we thus find that the inefficient

equilibrium conjectured above fails to exist. By providing a buffer between the point

the pivotal voter conditions upon and the simple majority, the m− rule reduces the

type-0 voter’s incentive to protect himself by voting for the committed candidate B.

When the above condition is not met the inefficient symmetric equilibrium survives.

More formally, the utility of the pivotal voter of type-0 when he votes B , given

11At the risk of being redundant, we should like to emphasize that while the voting rule has
been altered, candidate K remains committed to implementing the policy that is preferred by the
majority at date−1.

12A similar analysis with Bas the status quo may also be performed.
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that all 0’s vote B and K ’s vote 1 following the dictates of the equilibrium, is identical

to that in the previous section and is given by

Ui (B|B,K; 0, piv) = 1− µ (1− φ) p− δ (1− φ)

, where we have assumed φ = π for simplicity. The utility of the pivotal voter above

from voting K can be written as

Ui (K|B,K; 0, piv) = δ + (1− µ− δ) + µφ+ µ (1− φ) {pΘ1 + (1− p)Θ0}

, where Θa is the probability that the majority prefers policy a ∈ {0, 1} at date−1,

conditional upon starting at date-0 from a situation in which k+1 voters are of type-

0 and the rest of type-1. The four terms correspond to the situations in which the

pivotal voter i of type t0i = 0 gets a utility of 1 by voting B and thereby electing him.

The first term δ is for an common shock, when all voters agree on the policy and B

implements it ; the next is when no additional information arrives and i continues to

be in a m−supermajority and thus in a simple majority at date-1; the third term is

for the common shock towards 0 , when the majority for 0 is bolstered; the last terms

is for the idiosyncratic shock towards 1— i gets 1 iff he switches and the majority

swings to 1 or if he stays put and so does the majority. Depending on whether p is

large or small relative to the value m , Θ0 or Θ1is much larger than the other in the

limit. Let us first consider the case when p < 1 − 1
2m

. By the Weak Law of Large

Numbers, for any ε > 0,

lim
n→∞

P (|fraction of popln. supporting policy 0 at next date −m(1− p)| < ε) = 1

It follows then that if we choose a small enough ε then limn→∞Θ0 = 1 and limn→∞Θ1 =
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0. Therefore, the utility from voting for K converges to

lim
n→∞

Ui (K|B,K; 0, piv) = 1− µ (1− φ) p

For the pivotal voter to prefer candidate B, it is therefore necessary for δ (1− φ) < 0.

Since this is not true, the conjectured equilibrium does not exist when the electorate

is large and p < 1− 1
2m

.

When p > 1 − 1
2m

, a similar argument gives limn→∞Π0 = 0 and limn→∞Π1 = 1.

The utility from voting for K then converges to

lim
n→∞

Ui (K|B,K; 0, piv) = 1− µ (1− φ) (1− p)

In this case, the pivotal voter prefers voting B when δ < µ(1 − 2p), or equivalently

p < 1
2
(1− δ

µ
). Note that this constraint is identical to the one derived for the simple

majority rule. Figure 5 shows how the pivotal type − 0 voter’s relative preference

for each candidate varies with the parameter p for different m − rules. For each m,

the voter prefers candidate B to K for values of p where the curve lies above 0.

Note that as m→ 1
2

, the inefficiency is possible for smaller and smaller values of p.

When m = 1
2

, any p > 0 can give rise to the inefficient equilibrium for large enough

electorates; this is the content of the previous section.

Proposition 4: The inefficient equilibrium exists for large electorates when 1−
1

2m
< p < 1

2
(1− δ

µ
). The set of values of p which supports the inefficient equilibrium

shrinks as m increases. If m > µ
µ+δ

, the inefficient equilibrium does not exist for any

value of p.

Proof : We have already verified that the pivotal type− 0 voters will conform to the

behavior of the inefficient equilibrium when p is in the range specified. Now we show
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Figure 2.5: Simulation Results for m-Rules with m > 1
2

that the pivotal type− 1′s will vote K. Expected utility from B is

Ui(B | B,K; 1, piv) = δπ + µφp

while that from K is

Ui(K | B,K; 1, piv) = δ + µ(1− φ)Π1 + µφp

Under φ = π, and p > 1− 1
2m
, type− 1 ’s vote K if φ < 1, which necessarily holds.�

It follows immediately from the last inequality in the proposition above that the

inefficient equilibrium cannot arise for the unanimity rule (m = 1). While our frame-

work is not directly comparable to the information aggregation models, it might be

interesting to note that this result contrasts with the inferiority of the unanimity rule

documented previously.
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2.4 Implications for candidate entry : a discussion

So far our work proceeded under the assumption that candidate preferences were

common knowledge. If we now choose to move back one step in time, we might ask

which candidates actually enter an election. Let c > 0 denote the cost of entering an

election; this includes the cost of filing nomination, campaigning, etc. The candidate

could be either one who cares about his legacy and when in office picks the alternative

that the majority prefer, or a partisan who benefits from one of the two alternatives

independently of the electorate’s rankings. Let us consider a simple extension of the

model where q has not been revealed when the candidates decide to enter. Suppose

q is equally likely to be 0.25 and 0.75 and let b denote the benefits from being in

office for any type of candidate. If there is a potential candidate of each type and

b > 2c, then in equilibrium one 0-candidate and a 1-candidate will both choose to

enter. When q = 0.25 the 1-candidate wins with a probability arbitrarily close to 1

for a large enough n ; with q = 0.75 the 0-candidate wins. The legacy candidate will

therefore choose not to enter the fray as his expected gain from entry will fall short of

the cost c > 0 — He cannot win the election irrespective of what value of q is drawn.

As political satirist Frank Hubbard once said, “We’d all like to vote for the best man

but he’s never a candidate”. We see that extreme candidates do better than one who

is completely unbiased and proposes to implement the ex-post majority’s preferred

policy. In a loose sense this hints that gradual resolution of uncertainty might have

something to do with the entry of biased candidates.

2.5 Conclusion

Many papers look at information aggregation in voting and the role of pivotal voting.

They almost always have the feature that voters’ rankings of policies do not change

between the time they vote and the time a policy is implemented. The role of the elec-

64



toral process is to aggregate their private signals. We relax this framework and allow

rankings to change; this leaves the electoral system prone to widespread inefficiency.

This paper illustrates two forms of inefficiency. When voters who are in a majority

today are more likely to be in a minority tomorrow, they oppose social-welfare im-

proving policies. This requires a probability of idiosyncratic switching large enough to

reduce the ex-ante majority to an ex-post minority. Perhaps a large range of electoral

situations is better described by a model in which the probability of voters changing

idiosyncratically is small. This, one might even assert, is the rule rather than the ex-

ception. We should hope that in such a case the inefficiency will be mitigated, if not

eliminated. We argued above that this is not the case — In the unique (informative)

symmetric Nash equilibrium, voters prefer to elect the ideologue rather than elect an

unbiased candidate, who waits for all information to be revealed and thereafter takes

the optimal decision. The key to understanding this paradoxical result is that the

pivotal voter finds himself in a fragile majority that is easily overturned; even though

such a situation is (unconditionally) unlikely, he bases his vote on this situation and

commits to the alternative that he currently prefers. This continues to hold even if

there is a large chance that everybody will dislike the committed candidate’s choice

due to an common shock.
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Chapter 3

Efficient Information Aggregation

in Elections with Differentially

Informed Agents 1

3.1 Introduction

The idea that voting is a means to aggregate private information and ensure a better

collective choice is one that dates at least as far back as Condorcet. An extensive

literature in political economy has since examined the veracity of the so called Con-

dorcet Jury Theorem, according to which a group of imperfectly informed voters is

more likely to select the “better” of two alternatives than any single agent acting

alone.

In this work, we propose and analyze an election format which permits an elec-

torate to exploit the fact that voters may be differentially informed. We consider a

voting framework where voters can choose when to cast their ballot and the inter-

mediate tally of votes is publicly observable. By strategically choosing the time at

1Co-authored with Konstantinos Rokas.
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which they cast their vote, better informed voters can now communicate their signals

to those less sure of themselves. We find that this added flexibility vastly improves

information aggregation in common value environments.

The voting environment described above is not uncommon. Voting in legislatures

and corporate boardrooms is often done by a show of hands and uncertain voters

may delay casting their votes to gauge the level of consensus in the room. Perhaps

the most notable instance of such an election is the manner in which the Democratic

National Party conducts the Iowa caucus. The caucus site is partitioned into sections

according to candidate and for the first thirty minutes after the caucus begins voters

can decide which “preference group” to join. The proportion of voters in each group

then forms the basis for the allocation of delegates to each candidate. We should point

out however, that while these are examples of open voting, the mechanism we examine

can be implemented without compromising the privacy of the voter. Efficiency can

be achieved while preserving anonymity since the only information released publicly

is the intermediate vote count.

Our findings are of particular interest to the ongoing debate on the effects of exit

polls on election outcomes. A recent survey [43] shows that laws pertaining to the

broadcast of exit polls on election day vary considerably across countries. While

most arguments in favor of exit polls are on the grounds of transparency and a

constitutionally mandated freedom of speech, we believe our efficiency results may

be viewed as a novel reason why exit polls (or even official reports of intermediate

results) should be instituted.

In a seminal contribution, Austen-Smith and Banks [5] show that in a common

value setting, simultaneous elections aggregate information efficiently only under

knife-edge conditions. In fact, they aggregate information efficiently under a sim-

ple majority rule if and only if all voters have the same quality of information. The

inefficiency in these elections stems from the fact that in equilibrium, strategic vot-
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ers who condition on being pivotal do not find it rational to vote according to their

signal. In contrast, the election we consider is outcome equivalent to the first best

(that is, the electorate chooses the same outcome as it would choose if all information

were publicly available) regardless of the size of the electorate. Efficiency is obtained

because under mild conditions, there exists an order of voting, which when followed

in equilibrium (i) allows better-informed voters to communicate their signals without

inadvertently deciding the election in favor of the wrong candidate and (ii) reveals all

relevant information while leaving a sufficient number of voters to swing the election

in either direction.

Information aggregation has also been studied in the context of sequential or roll-

call elections where players vote according to a predetermined (exogenously specified)

order. Fey [27], Wit and more recently Ali and Kartik [1] have examined the possi-

bility of bandwagons (or informational cascades) developing in sequential elections.

Dekel and Piccione2 also study sequential voting games but illuminate a different

issue. They prove that any symmetric responsive strategy profile is an equilibrium of

the sequential election if and only if it is also an equilibrium of the simultaneous elec-

tion. This body of work has focussed on inefficiency in sequential voting. In contrast,

we will argue that our proposed election format is less vulnerable to these inefficien-

cies. Two natural equilibrium refinements that allow us to do so; first, we restrict

attention to equilibria that survive the introduction of small costs of voting and sec-

ond we focus on equilibria that are insensitive to the choice of off-equilibrium beliefs.

These characteristics will play a central role in distinguishing efficient equilibria from

others.

Our work also contributes to another strand of the literature on information ag-

2Our work was motivated in part by a quote from Dekel and Piccione, pg. 35 which reads “On
the negative side, it [our result] completely demolishes any hope of obtaining strong conclusions
about endogenous timing...”. While we don’t believe Dekel and Piccione meant to use the phrase
“endogenous timing” as we have in this paper, we would like to thank them for leading us to this
project.
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gregation that begins with Fedderssen and Pesendorfer [25]. Using pivotal voter

arguments, (FP) argue that the unanimity rule, commonly used by juries to protect

the innocent from being convicted, is in fact more likely to result in an incorrect

judgement than the simple majority rule. In defense of the unanimity rule, Coughlan

[15] shows that in a common value setting, adding a pre-play communication phase

(such as a non-binding straw poll3 ) allows all information to be aggregated prior to

the jury’s vote and renders all voting rules outcome-equivalent. We present an alter-

nate solution. Our election achieves first best regardless of the voting rule. We find

that information can be aggregated through the voting process itself, without having

to resort to a cheap-talk phase. This is an important finding for at least two reasons.

First, pre-play communication is not always possible. Voters may be geographically

separated. The electorate may be large. Communicating with every member of the

jury can be costly4. Second, an experimental study conducted by Guarnaschelli and

Palfrey [29] shows that voters do not use the information revealed in a straw poll

correctly and election outcomes can vary with the voting rule. While convincing the

reader that our election design performs better than a straw poll in the lab is outside

the scope of this paper, we hope that in the light of [29], the reader will recognize

the merit in examining alternative voting mechanisms. At the very least, one might

expect that since information in our mechanism is signalled through the costly act of

voting, the quality of aggregation will be different.

We examine several natural extensions. We find that our results generalize to

scenarios where the voter is uncertain about the number of voters. We provide some

insights about this election when there is diversity in voter preferences. Although

progress in this direction has been slow, we are able to provide instances where the

presence of partisans does not prevent our proposed design from achieving efficiency.

3The Republican National Party holds a non-binding straw poll in Ames, IA before the primaries.
4For a more extensive discussion of why relying on communication before voting is not always

appropriate, we refer the reader to Nicola Persico [38].
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Finally, we construct an example that shows how this election format can efficiently

aggregate information even when voters receive multidimensional signals.

3.2 Model

We adopt the framework of Austen-Smith and Banks [5]. Let us consider an electorate

with an odd number of voters indexed by i = {1, 2, ..., n ≥ 3}. The underlying state of

the world may be Left or Right, denoted by ω ∈ {L,R}. The voters must collectively

choose between two alternatives, l and r. We will focus on a common value setting

where all voters prefer to pick the alternative that corresponds to the present state of

the world. Hence, the utility function for every voter is given by U(L, l) = U(R, r) = 1

and U(R, l) = U(L, r) = 0. Unless otherwise specified, our voters dislike both types

of errors equally.

Without loss of generality, we can assume that the prior probability of the state

of the world being L satisfies πL ≥ 1
2
. For now, suppose each voter receives a binary-

valued noisy private signal si ∈ {0, 1} that conveys information about the state of the

world, with pR = P (si = 1|ω = R) ≥ 1
2

and pL = P (si = 0|ω = L) ≥ 1
2
; that is, 0-

signals are more likely when ω = L and 1-signals are more likely when ω = R. Later,

we will consider an information structure where private signals will take one of d+ 1

values that will satisfy the monotone likelihood ratio property (MLRP). With binary

signals, MLRP reduces to pL
1−pL

≥ 1−pR
pR

, which follows immediately from pL, pR ≥ 1
2
.

We refer to the vector s = [s1, s2, . . . sn] as the signal vector.

As discussed in the introduction, our focus in this work is the efficient aggregation

of information in collective decision making. We define efficiency in an election as

follows:

Definition 1 An election format aggregates information efficiently if for every signal

vector the equilibrium outcome when voters are privately informed is identical to the

70



Figure 3.1: Signals and States

outcome when all information is public.

That is, the efficient outcome is the outcome preferred by each and every voter

when all n signals are commonly known. We will adopt the Bayesian Nash Equi-

librium (BNE) concept as our notion of equilibrium. A detailed discussion of the

equilibrium concept appears later in this exposition.

We now define k0 as the number of 0-signals in the vector s, so that k0 =
∑n

i=1(1−

si) where si ∈ {0, 1}, and k∗0(n) as the minimum number of 0-signals necessary for l

to be the utility maximizing choice. k1 and k∗1 can be defined similarly for 1-signals.

The quantity k∗0(n) is defined explicitly through the likelihood-ratio:

β(k0, n) =
P (ω = L|n0 = k0)

P (ω = R|n0 = k0)

=
πLp

k0
L (1− pL)n−k0

(1− πL)pn−k0R (1− pR)k0

The likelihood ratio is a function of the number of signals n and the number of 0-

signals, k0. We suppress the dependence on prior beliefs and the information structure

for notational convenience. Then k∗0(n) is the unique k̃ ∈ [1, n] that satisfies β(k̃ −

1, n) < 1 ≤ β(k̃, n). Such a k̃ need not exist. If β(n, n) < 1, alternative r is

the efficient choice for all signal vectors and we define k∗0(n) = n + 1. Similarly, if
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β(0, n) > 1, alternative l is the efficient choice for all signal vectors and we set k∗0(n) =

0. It is clear that the aggregation problem is nontrivial only when k∗0(n) ∈ [1, n].

The next step is to describe the voting rule. Without loss of generality, we define

the q-rule (1 ≥ q ≥ 1
2
) whereby alternative l is chosen if it receives m = dnqe or more

votes. Consider first a simultaneous election under this rule. In such an environment,

it is rational for voters condition on the pivotal scenario to determine how they should

vote. Conditioning on the pivotal state, each voter infers the distribution of private

signals in the electorate and incorporates this information into her decision. We note

that voters are sincere if they vote according to their private signal - v(0) = l and

v(1) = r. Does a rational voter choose to vote sincerely?

Figure 3.2: Informative voting

Figure 3.2 shows the information that a pivotal voter would infer in a hypothetical

sincere voting equilibrium. If k∗0 < m, the pivotal type-1 voter would prefer to deviate

and vote against her signal. Sincere voting can therefore be sustained in equilibrium

only when k∗0 = m. This reasoning serves as a sketch of the proof for the result in [5]:

Proposition 1 (Austen-Smith and Banks, 1996): Sincere voting in a simul-

taneous election is rational if and only if the q-rule is such that k∗0(n) = m(n). That

is, the efficient outcome is achieved iff k∗0(n) = m(n).

Two points are worth noting about this result. First, electoral rules are typically

written into charters or constitutions well before any elections are held, whereas

the quality of private information available to voters varies from one decision to

the next. Second, the knife-edge condition for efficiency relies critically on a binary
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signal structure. Equivalent conditions do not exist in the finite-signal case. Hence

simultaneous elections with finite electorates are generically inefficient. We will now

examine an election format that successfully addresses these shortcomings.

3.3 Endogenous Timing

Consider the following framework - we partition time into a number of discrete periods

t = 1, 2, 3 . . . and allow voters to choose the period in which to cast their vote. The

intermediate tally of votes is broadcast at the end of each period. Voters are permitted

to abstain. The election ends if no votes are cast for T > 1 consecutive periods5. The

information structure is inherited from the model above.

The new format allows better informed voters to communicate their signals to

others through their vote. Consider an extreme example in which pL = 1
2

and pR = 1,

so that the presence of a single voter with a 0-signal establishes with certainty that

the state of the world is L. Suppose further that the simple majority voting rule is

adopted.

As discussed in the previous section, a simultaneous election cannot aggregate

this information structure efficiently except under knife-edge conditions on n and

πL. In our proposed election format, voters with 0-signals can vote for l in the first

period while others wait. All relevant information regarding the signal vector is then

revealed by the end of the first period and the efficient outcome can be ensured. There

is no risk that such an order of voting will produce in an inefficient outcome as it only

takes one 0-signal to guarantee that the state is L.

This reasoning holds in general. Consider any n, πL, pL, pR and q such that

0 < k∗0(n) < m(n). Figure 3.3 illustrates graphically how the efficient outcome can

be guaranteed if type-0 voters vote first. If the type-0 voters vote for l in the first

5The election format is defined so that number of periods in which voting occurs is determined
endogenously; we show later that this will play an important role in equilibrium selection.
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period, the signal vector is fully revealed at the end of the first period. If the election is

determined after the first period, the outcome must be efficient. If not, the remaining

voters are sufficient in number to swing the election in the direction of the efficient

choice.

Figure 3.3: Sequential voting achieves efficiency

Notice that the order of voting is critical for efficient aggregation of information.

As Figure 3.4 shows, if the type-1 voters vote for r in the first period, they could

produce an inefficient outcome. This problem would occur whenever n − m + 1 ≤

k1 < k∗1 or equivalently whenever k∗0 ≤ k0 < m.

Figure 3.4: The order of voting matters

The following lemma shows that an efficient order of voting always exists. Who

votes first depends on the information structure and on the voting rule. The key
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insight of the proof is that either k∗0 ≤ m or k∗1 = n − k∗0 + 1 < n −m + 1 must be

true, effectively determining the optimal order of voting.

Lemma 1 The following strategy achieves efficiency in a two-period common value

election with binary signals:

• If k∗0(n) < m(n), then type-0 voters vote for l in the first period .

• If k∗0(n) > m(n), then type-1 voters vote for r in the first period.

In both cases, the voters that didn’t vote in the first period learn s perfectly and can

guarantee the efficient outcome by voting in the second period. If k∗0 = m, the order

of voting does not matter.

Proof. Let us consider what happens if the proposed strategy is followed when

k∗0 < m . We observe that k0 is revealed after the first period. If k0 ≥ m then l

has won the election and the outcome is efficient. If k0 < m then the election is not

determined yet. If m > k0 ≥ k∗0, type-1 voters select l in the second period and the

election is determined unanimously in its favor. If k0 < k∗0, the type-1 voters choose

r in the second period and win the election with k1 = n−k0 > n−m votes. In either

case, the efficient outcome is obtained.

Next, we note that k∗1 = n − k∗0 + 1,a relation that follows by definition. Hence,

when k∗0 > m, k∗1 < n − m + 1 where the RHS is the minimum number of votes r

must receive to win the election. Thereafter, an argument similar to the k∗0 < m case

applies. When k∗0 = m, we know that simultaneous voting achieves efficiency.

The lemma gives us an efficient order for every q-rule. This is in stark contrast to

the result in [24] which highlights the inferiority of the unanimity rule in simultaneous

elections.

An important insight regarding the order proposed above follows when we focus

our attention on the simple majority rule. The symmetric voting rule allows us to

directly relate the order of voting to the quality of information. If k∗0 < d0.5ne, the
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efficient order recommends type-0 voters to vote first. In this scenario it follows that

k∗1 = n − k∗0 + 1 > k∗0. The key to efficiency is to convey the maximum amount

of information per vote. In this scenario, type-0 voters can reveal all the relevant

information using a smaller number of votes. With uninformative priors (πL = 0.5),

the condition k∗0 < d0.5ne reduces to pR > pL ≥ 1
2
. When pR > pL ≥ 1

2
, a type-0

voter is better informed (has a more accurate posterior belief) than a type-1 voter.

For a simple majority voting rule, the efficient order therefore coincides with the more

informed type voting first.

We have yet to establish that voters will follow the efficient ordering prescribed in

Lemma 1. Before we do so, a few words regarding our equilibrium concept are in order.

We will focus our attention on pure strategy, symmetric, Bayesian Nash equilibria

(PSBNE) in this paper. Furthermore, while we will continue to study equilibria

where voting is costless, we will limit our attention to those that are vanishing cost

proof, a criterion defined as follows:

Definition 2 An equilibrium σE is vanishing cost proof if for every sequence of costs

{ci} converging to zero there exists a sequence of equilibria σE(i) that converges to

σE.

We are now ready to state our result.

Proposition 2 There exists a PSBNE that is efficient and vanishing cost proof. Fur-

thermore, this equilibrium is insensitive to the choice of off-equilibrium beliefs.

Proof. Suppose without loss of generality that k∗0(n) < m(n). First we note that no

voter has a profitable deviation from the order prescribed in Lemma 1 when voting

is costless. A type-0 voter prefers voting for l to abstaining in the first period since

there is a positive probability that the number of type-0 voters is exactly k∗0(n). In

a common-value setting, no voter has an incentive to deceive the electorate about
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his type. A type-0 voter cannot profit from voting for r in the first period (an off-

equilibrium action) regardless of how off-equilibrium beliefs are chosen. Similarly, a

type-1 voter prefers waiting to voting for l in the first period since there is a positive

probability that k0 = k∗0(n) and depending on off-equilibrium beliefs can at best be

indifferent between voting for r in the first period and waiting until the second. Voters

who wait until the second period do not benefit from deviating from the prescribed

order.

When voting is costly, voters have an incentive to free ride. But for a small enough

cost of voting, the benefit a type-0 voter receives from abstaining is surpassed by the

expected loss from communicating the wrong message. Once k0 is revealed, type-1

voters will mix between voting and abstaining in a proportion that makes each voter

indifferent. Voting spills over into additional periods until the outcome is determined.

It is easy to show that the probability of voting should increase as the cost of voting

goes to zero. We have implicitly assumed here that T = 1 and therefore if nobody

votes in any period, the election ends.

The fact that type-1 voters mix means that the election may not be determined

after the second period. We can show that this does not give the type-0 voters

adequate reason to deviate from voting in period 1 when the cost of voting is small.

Consider the case where an off-equilibrium vote for l in period 2 is believed to come

from a type-0 voter; this off-equilibrium belief maximizes type-0′s incentives to wait.

Now let the likelihood that a type-0 voter is pivotal be denoted ∆ and the probability

that the election is not determined in the second period be denoted Φ(c). A type-0

voter prefers not to wait in period 1 if

(1−∆) + ∆Φ(c)(1− c) > 1− c

⇒ 1− Φ(c) < c
(

1
∆
− Φ(c)

)
where the RHS represents the utility from voting in the first period. Since

77



limc→0 Φ(c) = 0, taking limits of both sides shows that the inequality cannot hold for

small enough c. This completes the proof.

We note that the election format proposed does not prevent voters from coordi-

nating on a pre-determined order of voting based on voter identity. We can refine

away any equilibria that arise in sequential voting environments (including those that

result in bandwagons as in) on the grounds that they are not symmetric. On a more

substantive note, these equilibria are also very sensitive to the choice of off-equilibrium

beliefs (see [1]), a characteristic that sets them apart from the efficient equilibrium

discussed above.

Another property of the efficient equilibrium worth highlighting is vanishing-cost

proofness, a refinement that no simultaneous voting equilibria can survive in our

proposed election format. We see this in the proof of the following result.

Proposition 3 All vanishing-cost proof PSBNE are efficient.

Proof. First we observe that no simultaneous voting equilibrium can be vanishing

cost proof. In any equilibrium of a simultaneous election, the voter influences the

outcome only when she is pivotal. For any positive cost of voting, the rational voter

therefore prefers to wait until the next period before voting. Since the proposed

election format does not have an exogenously specified final period, the option to wait

is always available. It then follows that there is no vanishing-cost proof equilibrium

in which all voters vote simultaneously. In fact, it is easy to see that if more than one

voter is voting in the last period of any vanishing-cost proof equilibrium, the signal

vector has already been revealed.

In a binary signal model, we are then left with symmetric, pure strategy profiles

in which type-0’s and type-1’s vote in separate periods. A feature of an inefficient

order is that there is some type of voter who can determine the election in favor of

the wrong candidate with positive probability. Furthermore, in a binary model, such
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voter types do not benefit from signalling their type (as in Figure 3.4) and therefore

prefer to abstain if voting is costly. This completes the proof.

A limitation of the above result is that it only holds in the binary signal model.

Proposition 2, however, highlights another important property of the efficient equi-

libria - robustness to the choice of off-equilibrium beliefs. It is this feature that will

distinguish the efficient equilibria in general finite signal environments.

3.4 Finite Signals

The existence of an efficient equilibrium can be generalized to more than two signals

if we permit voting to occur over a larger number of periods. Assume that each voter

i receives a noisy private signal si ∈ {0, 1, ..., d}. The signals satisfy the monotone

likelihood ratio property:

Assumption 1 For every s,s′, if s > ś, then P (ś|ω=L)
P (s|ω=L)

≥ P (ś|ω=R)
P (s|ω=R)

Let β(k0, k1, ..., kd, n) be the likelihood-ratio with
∑d

i=0 ki = n. We can generalize

the definition of k∗0(n) above to the unique k̃0 ∈ [1, n] such that:

β(k̃0, 0, 0, ..., n− k̃0, n) ≥ 1 > β(k̃0 − 1, 0, 0, ..., n− k̃0 + 1, n)

It is easy to see that this definition also defines k∗d as k∗d = n − k∗0 + 1. As before if

β(0, 0, 0, ..., n, n) > 1, k∗0(n) = 0 and if β(n, 0, 0, ..., 0, n) < 1, k∗0(n) = n+ 1. In order

to preserve the interpretation of k∗0(n) as being the minimum number of 0-signals such

that l is the efficient choice, we define k∗0(n) in terms of signal vectors of the form

[k0, 0, 0, . . . , kd]. It follows from the MLRP that if β(k̃0, 0, 0, ..., n − k̃0, n) ≥ 1, then

β(k̃0, k1, ..., kd, n) ≥ 1 for all possible signal vectors of the form s =
[
k̃0, k1, . . . , kd

]
.

We then have:
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Proposition 4 There exists an efficient order of voting if the noisy signals satisfy

MLRP and voting can be conducted over any number of periods. This efficient order

can be sustained in a vanishing-cost proof PSBNE.

Proof. The proof for finite signals follows recursively. The argument for binary

signals is given in Lemma 1. We now begin with d + 1 signals and an initial prior

πL. The MLRP provides a natural ranking of signals. We use it to define k∗0(n) as

being the minimum number of 0-signals that make l the efficient choice, regardless of

what the remaining n − k∗0(n) signals are. Similarly, we define k∗d(n) and note that

k∗0(n) + k∗d(n) = n + 1 must hold. It therefore follows that either k∗0(n) ≤ m(n) or

k∗d(n) ≤ n − m(n) + 1 is true. If k∗0(n) ≤ m(n), the type-0 voters vote for l in the

first period and if k∗d(n) ≤ n−m(n) + 1, type -d voters for r in the first period. If the

winner is determined at the end of the first period, the outcome must be efficient. If

the election is still open, the aggregation of signals proceeds as follows. Without loss

of generality, let us assume that the type-0’s voted first and there were k0 < m(n) of

them. At this point, n − k0 voters remain, candidate l requires m(n) − k0 votes to

win and d types of voters are yet to vote. If k0 ≥ k∗0(n), all remaining voters vote for

l in the second period and the election is determined efficiently. If not, we compute

a conditional k∗1(n− k0; k0) which represents the minimum number of 1-signals which

when combined with k0 signals of type-0 identifies l as the efficient choice, regardless

of the remaining n− k0 − k∗1(n− k0; k0) signals. That is, k∗1(n− k0; k0) is the unique

k̃1 ∈ [1, n− k0] such that:

β(k0, k̃1, 0, ..., n− k0 − k̃1, n) ≥ 1 > β(k0, k̃1, 0, ..., n− k0 − k̃1, n)

Since k0 < k∗0(n), we know that β(k0, 0, 0, ..., n−k0, n) < 1. If β(k0, n−k0, 0, ..., 0, n) <

1, then we define k∗1(n− k0; k0) = n− k0 + 1; in this case information aggregation is

complete and r is the efficient choice. The definition of k∗1(n−k0; k0) implicitly defines
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a k∗d(n−k0; k0) and as before the relationship k∗1(n−k0; k0)+k∗1(n−k0; k0) = n−k0+1

must hold. This implies that either k∗1(n − k0; k0) < m(n) − k0 or k∗d(n − k0; k0) ≤

n−m(n) + 1 must be true. The aggregation problem now looks identical to the first

iteration with n− k0, m(n)− k0, k∗1(n− k0; k0) and k∗d(n− k0; k0) replacing n, m (n) ,

k∗0(n) and k∗d(n) respectively. The next voter type to vote and the candidate for whom

they should vote can now be specified as before. This recursive process is repeated

until the election is determined or all d+1 signals have been aggregated. In any case,

no matter when the election ends, the outcome is guaranteed to be efficient. The

argument demonstrating that the efficient order can be sustained in a vanishing-cost

PSBNE follows that in Proposition 2 and is omitted.

The above proposition proves the existence of an efficient order when private

signals can take one of d + 1 values and time can be partitioned into d + 1 periods.

The key insight in this argument is that at each stage we can compute thresholds

k∗i for each of the two extreme signals and determine which one of them should vote

next. This allows us to maximize the information communicated per vote cast. The

efficient order we present is however not unique. It is not difficult to see that for

some signal distributions, it is not necessary to follow the ranking induced by the

MLRP. Relatively less informative signals may vote earlier than more informative

signals without jeopardizing social welfare. In fact, it is also possible to allow more

than one type to vote in the same period while preserving efficiency.

3.5 Inefficient Equilibria

In the finite signal model, it is possible to construct vanishing cost proof PSBNE that

are inefficient. The following example shows one such equilibrium with d + 1 = 3

signals.

Consider an electorate with n = 9 voters and an election with a simple majority
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rule. Voters receive one of three signals si ∈ {0, 1, 2}. Both states are ex-ante equally

likely. We use the notation pJK to denote the probability P (si = K|ω = J). Then

pL0 = 0.51, pL1 = 0.246, pL2 = 0.244, pR0 = 0.003, pR1 = 0.006, pR2 = 0.991. In state

ω = R, an overwhelming majority of voters receive a signal 2, whereas the electorate

has a more diffuse set of types when the state is L . Conditional on signals 0 or 1, the

state is more likely to be L.Following the notation of the previous section, k∗0(n) = 2.

i.e, β(k0 = 1, k1 = 0, k2 = 8, n = 9) < 1 ≤ β(2, 0, 7, 9). Recall that this notation

implies that if 2 or more signals were of type-0, it would efficient for the electorate

to choose alternative l. Similarly k∗1 = 3, i.e. β(0, 2, 7, 9) < 1 ≤ β(0, 3, 6, 9).

We now propose an inefficient equilibrium in two periods. In period 1, voters of

type-0 and type-1 vote in favor of l. If the number of voters who vote in the first

period is greater or equal to 3, the type-2 voters vote for l in the second period.

Otherwise, they vote for R. If this proposed strategy profile were an equilibrium, an

inefficiency would arise whenever the electorate had 2 type-0 voters and the remaining

voters were type-2. This follows from the fact that k∗0 = 2. We now proceed to confirm

that what we have proposed is indeed an equilibrium.

Consider first the type-2 voter’s problem. Suppose he observes k ≥ 3 votes in the

first period. It follows from k∗1 = 3 and the fact that 0-signals are stronger signals

in favor of l that the type-2 voter should vote for L. But what if k = 2 ? One of

three scenarios is possible - the signal profile of the electorate can be (i) (k0 = 2, k1 =

0, k2 = 7) or (ii) (1, 1, 7) or (iii) (0, 2, 7). In cases (i) and (iii) the type-2 voter votes

l and r respectively. In case (ii), she prefers r because β(1, 1, 7, 9) < 1. Moreover, it

can easily be shown that P ((2, 0, 7)|si = 2) < P ((1, 1, 7)|si = 2) + P ((0, 2, 7)|si = 2).

Therefore the type-2 voter does not vote for l unless k ≥ 3 and adheres to the proposed

equilibrium.

Next consider the type-1 voter. Her vote only matters when she is pivotal, i.e.

when the number of type-0’s and type-1’s is exactly equal to 3. Since β(0, 3, 6, 9)

82



≥ 1 and the likelihood ratio in the pivotal scenario must be greater than or equal to

β(0, 3, 6, 9), the type-1 voter has no incentive to deviate from the proposed equilib-

rium. If the type-1 voter adheres to the equilibrium, so does the type-0 voter whose

signal in favor of l is stronger. The arguments from Proposition 2 can be applied to

argue that this equilibrium is vanishing cost proof.

To sustain this equilibrium, we must also specify off-equilibrium beliefs. Suppose

first that any vote for r in the first period is associated with a type-2 voter who could

not wait until the next period for some exogenous reason. In this case, no type-

0 or type-1 voter will deviate and the inefficient equilibrium can be sustained. The

inefficiency arises because types 0 and 1 have no way of distinguishing themselves from

each other and they strictly prefer not to mimic type 2 voters. The off equilibrium

path however can be used as a mechanism for types 0 and 1 to separate. If any vote

in favor of r in the first period is associated with a type-1, for instance, the above

equilibrium breaks down. In this case, the type-1 voter prefers to identify himself by

voting insincerely in favor of r and thereby potentially averting an inefficient outcome.

We observe that while vanishing cost proof PSBNE can be inefficient, all efficient

PSBNE are robust to the choice of off-equilibrium beliefs. Although this is not a

standard refinement used in the signaling literature, we consider it worth highlight-

ing. Typical refinements such as the intuitive criterion or divinity do not eliminate

inefficiency in this framework. An alternative approach would be to employ Farrell’s

[21] notion of “neologism proofness”. The inefficient equilibrium constructed above

exists because voters are limited to a language that is not rich enough to communicate

their types. If the election is augmented so that voters have the option to commu-

nicate cheap messages, inefficient PSBNE will cease to exist. We do not pursue this

alternative so as to distinguish our results from the logic of Coughlan’s work.
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3.6 Partisans

The next question one might ask is how does the proposed mechanism perform when

voters have heterogenous preferences. In the context of our model, the most natural

way to introduce interdependent preferences would be to give each voter a multi-

dimensional type comprised of a preference class and a noisy private signal about the

underlying state. A voter’s preference class is most readily thought of (and indeed

has been defined in this manner in the literature) as the relative disutility she suffers

from each of the two possible errors that are likely to be made in the collective

decision. Differences in relative disutilities between preference classes translate into

differences in threshold values of k∗0(n). A voter who suffers much greater disutility

when r is chosen in state L than when l is chosen in state R will require much

stronger evidence in favor of R before voting for alternative r than a voter who is

unbiased. Unfortunately, such modeling has proved intractable and general results

have been difficult to come by. However, we are able to provide some special cases

where efficiency obtains in environments where voters don’t share the same objectives.

Suppose we define l-partisans as voters who prefer policy l in every state of the

world. A similar definition can be used for r-partisans. This is a special case of the

first modeling of preference heterogeneity - one in which the l-partisans’ disutility

when choosing r in state L is infinite relative to the disutility of choosing l in state R.

Suppose we partition the electorate into l-partisans, r-partisans and unbiased voters.

If the number of l-partisans and r-partisans is known, the efficient outcome can be

achieved. It is worth taking note at this point of how efficiency was defined earlier

in the paper. If the number of l-partisans is large enough to sway the election in

favor of l in every state of the world, that outcome is not a violation of efficiency.

The reasoning behind the efficient outcome when the composition of the electorate

is common knowledge is the following - the partisans would like to mimic the most

informed voters. Since the non-partisan voters know exactly how many partisans there
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are, they can always glean the number of informative votes from the intermediate tally

and ensure efficient aggregation. A formal argument is provided below for the binary

signal model for the sake of simplicity. The result is easily extended to the general

case.

Proposition 5 If voter preferences are common knowledge, there exists a vanishing

cost proof PSBNE that achieves the efficient outcome. This equilibrium is not robust

to the choice of off-equilibrium beliefs.

Proof. Consider an electorate with n voters, kl partisans supporting l and kr par-

tisans supporting r. We define k∗0(n − kl − kr) as the number of 0 signals that

would identify l as the efficient choice for the unbiased voters. Since k∗0(n − kl −

kr) + k∗1(n − kl − kr) = n − kl − kr + 1, either k∗0(n − kl − kr) + kl < m(n) or

k∗1(n − kl − kr) + kr ≤ n −m(n) + 1, must be true. Consider the scenario in which

k∗0(n−kl−kr)+kl < m(n); in this case type-0 voters vote for l in the first period and

type-1 voters follow in the next period. We now require that in equilibrium, type-1

voters commit to subtracting kl from k0, the number of votes cast in the first period

before they decide how to vote. We also assume that off the equilibrium path, type-1

voters believe that any voter who votes for r in the first period must be an r-partisan.

In light of this strategy, the l-partisans strictly prefer to vote for l in the first period.

The type-1 voters do not benefit by deviating from their commitment in a common

value setting. The r-partisans are indifferent about the time at which they vote as

they are not relevant to the aggregation process. No partisan benefits from voting

insincerely. The equilibrium does not survive if voters assign positive probability to

off-equilibrium path votes being informative. The efficient order ensures that infor-

mation is correctly aggregated whenever partisans are not large enough in number to

swing the election in their favor. This happens whenever kl > m(n) or kr > m(n).

A second scenario, one that has been used in the literature, but is not particularly

convincing to the authors is the case where partisan voters act like automatons. That
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is, they vote for their preferred alternative, but do not act strategically in choosing

the time to vote; in other words, they do not actively attempt to deceive unbiased

voters. In this case, unbiased voters can coordinate among themselves and vote in

periods where partisan voters are not present.

3.7 Uncertainty in Population Size

In large elections, the precise number of voters is often unknown. In this section we

examine an environment where the number of voters n is a random variable and all

voters share common beliefs about the size of the electorate. As before, alternative

l is chosen if it receives m(n) or more votes. We will restrict our results to simple

majority rule, where m(n) = dn
2
e, but our results hold for any q-rule. Uncertainty

in n translates to uncertainty in m(n). We will assume si ∈ {0, 1} and that k∗0(n) is

the minimum number of 0-signals necessary for l to be the efficient choice, given that

there are n voters. k∗1(n) is similarly defined.

To simplify our calculations, we will assume that n = 2λ+ 1, where λ is a random

variable that comes from a probability distribution f(λ), with λ ∈ [1,∞)
⋂

Z. This

setting has the convenient property that m(n) = dn
2
e = λ+ 1 for all the values of the

random variable λ.

We now modify our model - time is continuous, but votes are declared publicly at

discrete intervals. That is, a voter can vote at any time t ∈ [0,∞), but intermediate

results are broadcast only at t = 1, 2, 3, ... and so on. A voter can choose in which

period to vote, but cannot choose the exact time - the exact time of her vote is

determined randomly. No two voters vote at the same time. A voter can observe the

results up until the end of the last period as well as the number of voters ahead of her

in the current period. For example, a voter that chooses to vote in period 5 will be

assigned a time to vote t ∈ [5, 6) at random. She will observe the number of voters
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who have voted before her in the current period and the results announced at t = 5.

The voter can always choose not to vote or postpone her vote for later - either at

some random time within the same period or to some future period of her choosing.

Our main result will be make use of the following lemmas:

Lemma 2 If 1
2
≤ pL ≤ pR then for any n, k∗0(n + 2) − k∗0(n) ≤ 1. Similarly, if

1
2
≤ pR ≤ pL then for any n, k∗1(n+ 2)− k∗1(n) ≤ 1.

Proof. Let 1
2
≤ pL ≤ pR, so pL

1−pR
≥ pR

1−pL
≥ 1. For fixed n, let k∗0(n+ 2) = k∗0(n) + µ

and k∗0(n) = k∗0. From the definition of k∗0(n), we have

p
k∗0−1
L (1− pL)n−k

∗
0+1

p
n−k∗0+1
R (1− pR)k

∗
0−1

<
1− πL
πL

≤ p
k∗0
L (1− pL)n−k

∗
0

p
n−k∗0
R (1− pR)k

∗
0

(1)

From the definition of k∗0(n+ 2), we have

p
k∗0+µ−1
L (1− pL)n−k

∗
0+3−µ

p
n−k∗0+3−µ
R (1− pR)k

∗
0+µ−1

<
1− πL
πL

≤ p
k∗0+µ
L (1− pL)n−k

∗
0+2−µ

p
n−k∗0+2−µ
R (1− pR)k

∗
0+µ

⇒ pµ−1
L (1− pL)3−µ

p3−µ
R (1− pR)µ−1

p
k∗0
L (1− pL)n−k

∗
0

p
n−k∗0
R (1− pR)k

∗
0

<
1− πL
πL

≤ p
k∗0+µ
L (1− pL)n−k

∗
0+2−µ

p
n−k∗0+2−µ
R (1− pR)k

∗
0+µ

(2)

If µ ≥ 2 then ( pL
1−pR

)µ−1 ≥ ( pR
1−pL

)3−µ, so
pµ−1
L (1−pL)3−µ

p3−µR (1−pR)µ−1
≥ 1 and (1), (2) give us

1− πL
πL

≤ p
k∗0
L (1− pL)n−k

∗
0

p
n−k∗0
R (1− pR)k

∗
0

≤ pµ−1
L (1− pL)3−µ

p3−µ
R (1− pR)µ−1

p
k∗0
L (1− pL)n−k

∗
0

p
n−k∗0
R (1− pR)k

∗
0

<
1− πL
πL

which is a contradiction. Hence, µ ≤ 1 and k∗0(n + 2) − k∗0(n) ≤ 1 for any n. The

proof for 1
2
≤ pR ≤ pL is similar.

Lemma 3 If 1
2
≤ pL ≤ pR, then for all integers n of the form n = 2λ + 1 with

λ ∈ [1,∞)
⋂

Z we have m(n) ≥ k∗0(n). Similarly, if 1
2
≤ pR ≤ pL, then for all

integers n of the form n = 2λ+ 1 with λ ∈ [1,∞)
⋂

Z we have m(n) ≥ k∗1(n).
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Proof. Let 1
2
≤ pL ≤ pR. Then m(n) = m(2λ + 1) = λ + 1 and, from Lemma 2,

k∗0(n) = k∗0(2λ + 1) ≤ λ + 1, so k∗0(n) ≤ m(n). The proof is similar for 1
2
≤ pR ≤ pL.

Proposition 6 There exists an equilibrium strategy that achieves the efficient out-

come in an election with an unknown number of voters if votes may only be cast one

at a time and intermediate results are announced at discrete intervals.

Proof. Without loss of generality, let 1
2
≤ pL ≤ pR. Assume that all 0-signal voters

vote in the first period for l, and that there are k0 of them. (If 1
2
≤ pR ≤ pL then

1-signal voters will vote in the first period for r.) If k0 ≥ m(n) then the election is

over and the efficient outcome has been achieved, since m(n) ≥ k∗0(n). (Lemma 3)

Suppose k0 < m(n). After the first period, all the remaining voters observe k0, but

they don’t know n. Let n̄ be defined as the smallest odd n̄ = 2λ̄+ 1 with k∗0(n̄) > k0.

From Lemma 2, we know that k0 < k∗0(2λ̄ + 1) ≤ λ̄ + 1. Notice that n̄ is known by

all the remaining voters after the first period. Now, if the remaining n − k0 voters

knew n, then they would like to all vote for r if n ≥ n̄ and for l if n < n̄. In our

equilibrium we will achieve the same result without requiring from the voters to know

n. The idea is as follows: the first λ̄ − k0 ≥ 0 remaining voters vote for l and the

ones remaining after that (if any) vote for r. Then the efficient result will always be

achieved, regardless of the value of n, as r will be the outcome of the election if and

only if n ≥ 2λ̄+1 = n̄. This outcome can always be implemented as voters can always

see how many others voted before them and vote or postpone voting accordingly.

3.8 Multidimensional Signals

Efficient decision-making typically involves evaluating choices according to a variety

of factors. In this section, we consider environments where voters receive multidi-

mensional signals. If these signals can be collapsed into a one dimensional sufficient
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statistic that satisfies the MLRP, proposition 4 establishes the efficiency of our pro-

posed election format. While such a mapping is sufficient it is not necessary for

efficient aggregation. The following example demonstrates how two-dimensional sig-

nals can be aggregated as long as MLRP is satisfied on each dimension.

Suppose that each of the n voters receives a multidimensional signal si = (s1
i , s

2
i ) ∈

{0, 1}2. Consider an information aggregation rule E : {s1, s2, ..., sn} −→ {l, r} as

follows, for given S1(n), S2(n):

E(s1, s2, ..., sn) =

 l, if
∑n

i=1 s
1
i < S1 and s2 =

∑n
i=1 s

2
i < S2

r, otherwise

This aggregation rule can interpreted as one in which the alternative r is preferred

as long as it meets a minimum threshold on at least one of the two dimensions. In the

following figure, the aggregation rule is represented by the solid line that partitions

the signal space into the efficient regions for l and r.

Figure 3.5: Efficient information aggregation with multidimensional signals

Notice that this aggregation rule cannot be implemented using a one-dimensional
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sufficient statistic. To see this, let si = (0, 1) and sj = (1, 0). It is impossible to rank

si and sj; which of the two signals is stronger evidence in favor of alternative l, for

instance, depends on the private signals of the remaining voters. For example, an si is

stronger evidence in favor of r when the remaining signals, when aggregated, produce

a point close to the horizontal portion of the solid line, whereas an sj is stronger

evidence on the vertical boundary delineated by the solid line. Nevertheless, we show

below that our election format can achieve the efficient outcome.

Proposition 7 The proposed election format aggregates the rule E efficiently.

Proof. Assume that S2 < m as in Figure 3.5. The proof for S2 ≥ m will follow by

appropriately adjusting the following argument. We will allow the voters with signal

si = (1, 1) to vote in the first period for r. Suppose there are k(1,1) such voters.

• If k(1,1) ≥ m, then the election is determined, but since k(1,1) ≥ m > S2 the efficient

outcome r has been achieved.

• If k(1,1) < m, then we will allow voters with signal si = (1, 0) to vote in the second

period for r. Suppose there are k(1,0) such voters. If k(1,1) + k(1,0) > S2, then the

efficient outcome is revealed to be r and voters in the next period can vote to ensure

that r is achieved. If, on the other hand, k(1,1) + k(1,0) ≤ S2 then the remaining

voters are of type (0, 0) and (0, 1) and the election has not yet been determined, since

k(1,1) + k(1,0) ≤ S2 < m. But this is just equivalent to the single dimensional problem

presented in Lemma 1.

3.9 Conclusion

We find that allowing voters to choose when to cast their vote can lead to substantial

improvements in the aggregation of information in common value settings. Our results

are of particular relevance for small electorates where simultaneous voting is known

to be inefficient. In future work, we would like to develop a better understanding of
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the performance of our electoral framework when voters have heterogenous prefer-

ences. While recent papers by Austen-Smith and Fedderssen [6] and also by Gerardi

and Yariv suggest that efficiency may be difficult to implement in interdependent

value settings, a complete characterization of the optimal mechanism for information

aggregation in such environments is yet to be found.
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