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ABSTRACT

Welfare Impact of Policy in Incomplete Markets:

Theory and Computation

Sergio Sebastian Turner

2004

Chapter 1 extends the theory of demand to incomplete markets. It starts with smooth-

ness of demand, Slutsky decompositions, and properties of Slutsky matrices. It defines

Slutsky perturbations as perturbations of Slutsky matrices that arise from some symmetric

perturbation of the Hessian of utility. Finally, it identifies Slutsky perturbations as the

solutions to a linear system of equations with budget variables as coefficients.

Chapters 2 and 3 examine the welfare impact of taxation and of financial innovation in

incomplete markets. Taking tax policy or financial innovation policy as primitives, it studies

the generic existence of Pareto improving policy parameters, their computation, and the

size of Pareto improvement. Generic existence obtains if the price adjustment implied by

the introduction of tax rates is sufficiently sensitive to the risk aversion of the economy, and

if both incompleteness and policy parameters outnumber household heterogeneity. Several

known and new tax policies pass this sensitivity test, so does a new financial innovation

policy, all therefore supporting Pareto improvements. It is chapter 1’s identification of

Slutsky perturbations that verifies they pass this test.

Chapter 4 illustrates Pareto improving taxation on current income and asset purchases.

The Pareto improvement following taxes is small. This is bounded above by the improve-



ment following the removal of all future uncertainty, also small.

Chapter 5 synthesizes research on the transfer paradox. It reinterprets Samuelson’s

equivalence of the paradox with instability, as identifying the threshold, the minimum level

of trade beyond which the transfer paradox appears. Although the equivalence is false

in general, and later research focused on qualifying or debunking it, this reinterpretation

generalizes while quantifying the later research.

Chapter 6 documents two Mathematica programs for chapter 4’s example, where utility

is von Neumann-Morgenstern. In the simpler one the state index is a quadratic transforma-

tion of Cobb-Douglas; in the more elaborate one, it is a HARA transformation of CES. To

find Pareto improvements from the envelope theorem, the derivative of demand is needed.

The former has a closed formula for demand, and computes its derivative symbolically

with Mathematica; the latter has not, and computes its derivative instead with chapter 1’s

Slutsky decompositions.
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Chapter 1

Theory of Demand in Incomplete

Markets

1.1 Introduction

I develop the theory of demand for commodities and assets in incomplete markets, given

commodity prices, arbitrage-free yield structures, and contingent incomes.

First, the derivative of demand with respect to commodity prices and yield structure

decomposes into a substitution effect and an income effect, in terms of a Slutsky matrix.

Next, I identify the properties that every Slutsky matrix must satisfy, and conversely

prove that any matrix satisfying these properties must be the Slutsky matrix of some de-

mand.

Then I show that the Slutsky matrix can be perturbed arbitrarily, subject only to

preserving these properties, by perturbing the second derivative of the utility generating

the original Slutsky matrix, while keeping point demand and marginal utility intact.

Finally, I identify these Slutsky perturbations by explicit linear constraints, defined by

1



1.1 Introduction 2

prices and the yield structure. Included also is an algorithm that speeds up the computation

of Slutsky matrices.

These results for incomplete markets demand mirror exactly those for complete markets

derived by Geanakoplos and Polemarchakis (1980). Geanakoplos and Polemarchakis (1986)

were the first to apply these results to the study of generic Pareto improvements with incom-

plete markets. Since they allowed the central planner to decide the agents’ asset portfolios,

they did not need to go beyond perturbations to the Slutsky matrices of demand in spot

markets. To show why weaker interventions may improve welfare, such as anonymous taxes

and changes in asset payoffs, it became necessary to take into account how agents’ portfolio

adjustments cause a further price adjustment. Naturally, this required perturbing demand

in asset markets as well as in spot markets. The lack of a theory of Slutsky perturbations

in incomplete markets remained an obstacle for over a decade1, until a breakthrough by

Citanna, Kajii, and Villanacci (1998), who circumvented it by analyzing the agents’ first

order conditions. Researchers have extended the theory of generic Pareto improvements

with incomplete markets to many policies by applying this first-order approach; see Cass

and Citanna (1998), Citanna, Polemarchakis, and Tirelli (2001), and Bisin et al. (2001).

The results here fill the missing theory of Slutsky perturbations, and allow the study

of generic improvements to recover its original, demand based approach. This has certain

advantages. First, genericity arguments can target directly the demand function instead

of the utility generating it, and the envelope property instead of the first order conditions,

budget identities generating it. Second, to compute the welfare impact of interventions, the

1The exception is Elul (1995).
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policymaker needs to know the derivative of aggregate, not individual, demand. In the first

order approach, he needs to know the second derivative of every individual’s utility, i.e, he

must know the derivative of every individual’s demand. Third, to express the economic

intuitions the economist can appeal to the familiar language of demand theory, instead

of the abstract language of submersions. Fourth, every time the researcher thinks a new

result via Slutsky perturbations, he saves himself the work of implicitly identifying them

via quadratic utility perturbations.

The paper continues as follows. Section 2 defines demand for commodities and assets in

incomplete markets, and lists the basic properties of neoclassical demand. Section 3 defines

the Slutsky matrix. Section 4 focuses on a fixed demand, presenting the properties every

Slutsky matrix must satisfy, and showing that any matrix satisfying these properties must

be the Slutsky matrix of some demand. It also decomposes the derivative of demand into

income and substitution effects, notes the envelope property, and speeds up the computation

of the Slutsky matrix by a recursion. Section 5 focuses on generic demand, defining Slutsky

perturbations and identifying them by linear constraints. Section 6 contains the proofs.

1.2 Demand

The household knows the present state of nature, denoted 0, but is uncertain as to which

among s = 1, ..., S nature will reveal in period 1. It consumes commodities c = 1, ..., C

in the present and future, and invests in assets j = 1, ..., J in the present only. Markets

assign to the household an income w ∈ RS+1++ , to commodity c a price pc· ∈ RS+1++ ,

and to asset j a yield W j ∈ RS+1. We call (pc)C1 = p = (ps) the spot prices and



1.2 Demand 4

(W j)J1 =W = (Ws) the yield structure. The set of budget variables

b ≡ (p,W,w) ∈ B ≡ RC∗++ ×RJ×S+1 ×RS+1++

has some nonempty, open B0 ⊂ B as a distinguished subset, C∗ = C(S + 1).

Demand for commodities and assets is a function σ = (x, y) : B0 → RC
∗

+ × RJ . It

satisfies Walras’ relation if it makes the following an identity throughout B0:

p0sxs −W 0
sy = ws

Alternatively, [p]0 x−W 0y = w with the useful notation

[p] ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·

ps−1 0

ps

0 ps+1

·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C∗×S+1

The interpretation is that, faced with spot prices p and yield structure W , the household

modifies its income w to w+W 0y(p,W,w) by investing in portfolio y(p,W,w), ultimately

financing its state contingent consumption x(p,W,w). Here, a yield structure specifies for

each asset j that a buyer is to collect, a seller to deliver, a value W j
s in state s, and a

portfolio y ∈ RJ specifies how much of each asset to buy (yj ≥ 0) or sell (yj ≤ 0), hence

yielding W 0y. For a different emphasis, we may view the assets as having present price

q ≡ −W0 and future yield W1 ≡ (Ws)s>0.
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1.2.1 Neoclassical demand

For b = (p,W,w) ∈ B, the financeable bundles are

X(b) = {x ∈ RC∗+ | [p]0 x− w ∈ spanW 0}

Each x ∈ X(b) implies a financing y, [p]0 x−w =W 0y, which is unique if W has linearly

independent rows: y = y(x, b). Given a utility function u : RC∗+ → R and b ∈ B0,

suppose the problem

max
x∈X(b)

u(x)

has a unique solution x(b). Then neoclassical demand at b ∈ B0 is defined to be

σ(b) ≡ (x(b), y(x(b), b)). The following hinges on X(b) depending on W 0 only through

its span, and on w only through the component that is orthogonal to spanW 0.

Proposition 1.1. Basic properties Suppose B0 is X-closed: b ∈ B0, b ∈ B,X(b) =

X(b0)⇒ b0 ∈ B0.

• Walras’ relation [p]0 x(p,W,w)−W 0y(p,W,w) = w

• Revealed yield preference If ∆ ∈ spanW 0 with w +∆À 0, then

i) x(p,W,w +∆) = x(p,W,w)

ii) λ(p,W,w +∆) = λ(p,W,w)

where Du0(x(p,W,w)) = [p]λ, should it have a solution, uniquely defines λ(p,W,w) ∈

RS+1.

• Homogeneity x(p,W,w) = x(p, W̃ , w) if spanW 0 = spanW̃ 0.
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We now recall a subset B0 ⊂ B for which x(b) exists, is unique and interior. Existence

obtains if utility is continuous and X(b) compact; it is well known that X(p,W,w) is

compact if and only if W is arbitrage-free, Wλ = 0 for some λ ∈ RS+1++ . Uniqueness

and interiority obtain if utility is strictly quasiconcave in RC∗++ and boundary averse,

u(x) > u(x̃) whenever x ∈ RC∗++, x̃ ∈ ∂RC
∗

+ , thanks to the convexity of X(b). In sum,

neoclassical demand σ = (x, y) : B0 → RC∗++ ×RJ is defined on

B0 ≡ {(p,W,w) ∈ B |W has linearly independent rows, is arbitrage-free}

given the hypotheses on utility of continuity, strict quasiconcavity in RC∗++, and boundary

aversion.

1.3 Slutsky matrices

Assumption 1.1. Debreu’s setting for u:

u is continuous, Cr≥2 in RC∗++

Du(x)À 0 for xÀ 0

D2u(x) is negative definite on Du(x)⊥ for xÀ 0

u(x) > u(x̃) whenever x ∈ RC∗++, x̃ ∈ ∂RC
∗

+

Debreu’s special setting means the above strengthened to ”D2u(x) is negative definite

for xÀ 0.”

All three hypotheses assumed to define interior neoclassical demand are present, save

for strict quasi-concavity in RC
∗

++, which is implied by the first and third ones in Debreu’s

setting.
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Proposition 1.2. Debreu’s setting implies σ = (x, y) : B0 → RC∗++ ×RJ is Cr−1.

Proof. By definition neoclassical demand is the solution to

max u(x) subject to x ≥ 0, [p]0 x−W 0y = w (max)

which exists, is unique, and interior. For now suppose (x, y) ∈ RC∗++ ×RJ is neoclassical

demand at b ∈ B0 iff there is λ ∈ RS+1++ (necessarily unique) such that

F (x, y,λ; b) ≡

⎡⎢⎢⎢⎢⎣
Du0 − [p]λ

Wλ

− [p]0 x+W 0y + w

⎤⎥⎥⎥⎥⎦ = 0 (F)

Then (x, y,λ) is a Cr−1 implicit function of b ∈ B02, if H ≡ Dx,y,λF is surjective:

H =

⎡⎢⎢⎢⎢⎣
D2u 0 −[p]

0 0 W

−[p]0 W 0 0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦ where M ≡

⎡⎢⎣ D2u 0

0 0

⎤⎥⎦ , ρ ≡
⎡⎢⎣ [p]

−W

⎤⎥⎦
(H)

Invertibility follows easily from (F), Debreu’s third condition, and W 0s linearly independent

rows.

We verify the above equivalence for (x, y) ∈ RC∗++×RJ . If it solves (max), the constraint

qualification holds given the linear constraints, so there is λ ∈ RS+1+ such that (F). (This

does not require concavity!) So λ ∈ RS+1++ by Debreu’s second condition. Conversely, if

(F) with λÀ 0 then (x, y) solves (max):

2B0 is open in B with the product topology. For suppose W has linearly independent rows and
Wλ = 0,λ ∈ Rs+1++ . Then some open neighborhood O of W preserves the linear independence and admits,
by the implicit function theorem, a smooth function λ : O→ Rs+1++ solving W̃λ(W̃ ) = 0.
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If it did not there would be x̃, ỹ with u(x̃) > u(x) (so x̃À 0 by boundary aversion

and xÀ 0) and [p]0 x̃−W 0ỹ = w. By the strict quasiconcavity in RC∗++ u(x̃(t)) > u(x)

for all t ∈ (0, 1], where x̃(t) ≡ tx̃ + (1 − t)x, while still x̃(t) À 0, [p]0 x̃(t) −W 0ỹ(t) = w

with ỹ(t) obviously defined. Writing ∆t ≡ x̃(t)− x in a second order Taylor expansion

about t = 0,

u(x̃(t))− u(x) = Du(x)∆t +
1

2
∆0tD

2u(x)∆t + o(k∆tk2)

The orthogonality Du(x)∆t = λ0[p]0∆t = λ0W 0(ỹ(t) − y) = 0 implies ∆0tD
2u(x)∆t < 0

by assumption on D2u, so u(x̃(t))− u(x) < 0 for all t ≈ 0, a contradiction.

Since H is symmetric, so is H−1:

H−1 =

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦, the Slutsky matrices (Slutsky)

To keep track, S, c are symmetric of dimensions C∗+J, S+1, and m is C∗+J ×S+1.

We view ρ as playing the role of prices, since ρ = p0 = p if J = S = 0 (sole budget

constraint).

Having defined Slutsky matrices, we develop demand theory in two parts. First we

treat neoclassical demand for a fixed utility, specifically the Slutsky decomposition, the

properties of Slutsky matrices, their computation, and the envelope property. Then we

treat neoclassical demand for a generic utility, identifying the range of perturbations of

Slutsky matrices that arise from perturbations of the Hessian of utility.

The theory for a fixed utility leads to a general formula for the derivative of equilibrium

welfare with respect to the equilibrium parameters, solely in terms of the equilibrium pa-
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rameters and the Slutsky matrices; it is useful for equilibrium comparative statics. The

theory for a generic utility, in conjunction with this formula, allows us to study generic

equilibrium welfare; it is useful for the study of generic properties of GEI.

1.4 Fixed neoclassical demand

1.4.1 Slutsky decomposition

We decompose demand into substitution and income effects, generalizing Gottardi and Hens

(1999) to multiple commodities and to including the derivative with respect to asset payoffs.

Differentiating the identity F (σ(b),λ(b); b) ≡ 0,

Dp,W,w

⎡⎢⎣ σ

λ

⎤⎥⎦ = −H−1 ·Dp,W,wF = −
⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
⎡⎢⎢⎢⎢⎣
−L 0 0

0 Λ 0

−[x]0 Ψ I

⎤⎥⎥⎥⎥⎦
where

L ≡

⎡⎢⎢⎢⎢⎣
· 0

λsIC

0 ·

⎤⎥⎥⎥⎥⎦
C∗×C∗

Λ ≡ [λ0IJ : ... : λsIJ ]J×J(S+1) Ψ ≡

⎡⎢⎢⎢⎢⎣
y0 0

·

0 y0

⎤⎥⎥⎥⎥⎦
S+1×(S+1)J

In differentiating, we vectorized p,W as

⎡⎢⎢⎢⎢⎣
·

ps

·

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

·

Ws

·

⎤⎥⎥⎥⎥⎦
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Multiplying this out,

Dpσ = S

⎡⎢⎣ L
0

⎤⎥⎦−m[x]0 DWσ = −S

⎡⎢⎣ 0

Λ

⎤⎥⎦+mΨ with Dwσ = m

(decomposition)

so that m is the marginal propensity to demand; also, Dwλ = c.

Let us interpret the decomposition in terms of substitution and income effects. The

second summands are clearly income effects. For Dpσ, the value of demanding x is

[x]0p, so a change in price of ṗ implies a change in relative income of −[x]0ṗ, which

implies a change in demand of −m[x]0ṗ; likewise for DWσ, where the value of demanding

y is ΨW . The first summands are substitution effects in the following sense. Suppose,

given a small change in p,W , that we compensate the household so it can just finance the

(x, y) it is demanding. Then its compensated income and demand would be w(p,W ) ≡

[p]0x −W 0y,σC(p,W ) ≡ σ(p,W,w(p,W )), and the substitution effects be Dpσ
C ,DWσC .

Computing them,

Dpσ
C = Dpσ +Dwσ[x]

0 = S

⎡⎢⎣ L
0

⎤⎥⎦ DWσC = DWσ −DwσΨ = −S

⎡⎢⎣ 0

Λ

⎤⎥⎦
using the chain rule, (decomposition), and Dwσ = m. Hence the substitution effects are

the first summands.

We paraphrase the decomposition to stress the parallel with the traditional one, and

to obtain a version that is convenient for general equilibrium analysis. It says about
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Dq = D−W0 that

Dqσ = S

⎡⎢⎣ 0

λ0IJ

⎤⎥⎦−mΨ0 where Ψ0 =

⎡⎢⎣ y0
0

⎤⎥⎦
S+1×J

Concatenating the expressions for Dpσ,Dqσ,

Dp,qσ = SL+ −m[[x]0 : Ψ0] where L+ ≡

⎡⎢⎣ L 0

0 λ0IJ

⎤⎥⎦
That is,

Dp,qσ = SL+ −mσ̃0 where σ̃ ≡ [[x]0 : Ψ0]0 (GE)

The effect on demand of price changes splits into substitution and income effects, the latter

being the product of the marginal propensity to demand with demand itself. (The notation

”σ̃” expresses that σ, [[x]0 : Ψ0]0 contain the same information, differing only in its display.

σ̃ even suggests the absence of asset markets in the future, since Ψ0 is zero in the

coordinates s > 0.)

1.4.2 Envelope property

Indirect utility v : B0 → R, v(b) ≡ u(x(b)) is derived from demand; inversely says the

envelope property, neoclassical demand is derived from indirect utility.

Proposition 1.3. Indirect utility is Cr−1 in Debreu’s setting, and its gradient Dbv equals

Dpv = −λ0[x]0 DW v = λ0Ψ Dwv = λ0

Thus Dpsv = −λsx0s,DWsv = λsy
0.
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Proof. v is Cr−1 since u, x are, in Debreu’s setting. By the chain rule and (F)

Dbv = Du · Dbx = λ0[p]0 · [Dpx : DWx : Dwx] = ∗. Differentiating Walras’ relation

[p]0x =W 0y + w with respect to

p : [p]0Dpx+ [x]0 =W 0Dpy

W : [p]0DWx =W 0DWy +Ψ

w : [p]0Dwx =W 0Dwy + I

Inserting this and λ0W 0 = 0 from (F), ∗ = λ0[−[x] : Ψ : I].

1.4.3 The Slutsky list of properties

What properties do the Slutsky matrices H−1 have? Convenient notations are

m = Dwσ =

⎡⎢⎣ X
Y

⎤⎥⎦ with
XC∗×S+1

YJ×S+1
ρ ≡

⎡⎢⎣ [p]

−W

⎤⎥⎦
X,Y are the marginal propensities to demand commodities, assets. (H) suggests defining

functions

H(M) ≡

⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦ M(D) ≡

⎡⎢⎣ D 0

0 0

⎤⎥⎦ and H̃(D) ≡ H(M(D))

(functions)

Of course, in (H) we have H = H̃(D2u).

Toward the properties of H−1, we take as given some µ ∈ RS+1 with Wµ = 0. In

Debreu’s setting, we choose the µ = λ in (F); in Debreu’s special setting, we choose µ = 0.

The point is that µ is unrelated to the second derivative D = D2u.

Theorem 1.1. If D is negative definite on ([p]µ)⊥ and symmetric, then H̃(D) is
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invertible, with inverse

Smc ≡

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
for some S,m, c satisfying the

S ρ0S = 0, S is negative definite on ρ⊥, symmetric

m ρ0m = I XW 0 = 0

c cW 0 = 0, c is negative definite on kerX⊥ ∩ µ⊥, symmetric3
(Slutsky list)

Conversely, if (Slutsky list), then Smc is invertible, with inverse H̃(D), for some D that

is negative definite on ([p]µ)⊥ and symmetric.

We stress that the Slutsky list of properties is exhaustive, in that it recovers all that we

assumed about the one thing (D) defining the Slutsky matrices H−1. Any other Slutsky

property must follow from this list; for example, YW 0 = −I from ρ0m = I,XW 0 = 0.

Note that revealed yield preference is manifested infinitesimally in XW 0 = 0, cW 0 =

0, since this results from differentiating (i,ii) in proposition 1.1 with respect to ∆ ∈ spanW 0.

1.4.4 Computation of Slutsky matrices

We can compute Slutsky matrices H−1 faster by exploiting the symmetry and sparseness

of H.

Express H−1 as

S =

⎡⎢⎣ A P

P 0 B

⎤⎥⎦ m =

⎡⎢⎣ X
Y

⎤⎥⎦ ⇒ H−1 =

⎡⎢⎢⎢⎢⎣
A P −X

P 0 B −Y

−X 0 −Y 0 −c

⎤⎥⎥⎥⎥⎦ (*)

3 It is easy to show that kerX⊥ ∩ µ⊥ =W⊥ ∩ µ⊥.
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To keep track, the square A,B, c are symmetric of dimensions C∗, J, S+1, and PC∗×J ,XC∗×S+1, YJ×S+1.

Algorithm 1.1. H−1 exists if D is negative definite, and is recursively computable if D

is symmetric:

D−1

Φ ≡ [p]0D−1[p]

B = (WΦ−1W 0)−1

Y = −BWΦ−1 c = Φ−1 −Φ−1W 0BWΦ−1

P = −D−1[p]Y 0 X = D−1[p]c

A = (I −X[p]0)D−1

Computing D−1 is the most expensive step, which is cheaper with state separable

utility,

u(x) = a(u0(x0), ..., uS(xS)) for some a, (us)s

because then D is block diagonal and its inverse too

D =

⎡⎢⎢⎢⎢⎣
D0 0

·

0 DS

⎤⎥⎥⎥⎥⎦ D−1 =

⎡⎢⎢⎢⎢⎣
D−10 0

·

0 D−1S

⎤⎥⎥⎥⎥⎦ ⇒ Φ is diagonal

The marginal propensity to consume from state s income, Xs ∈ RC
∗
, may be nonzero in

states t 6= s. Extra properties of the Slutsky matrices follow as a by-product; by theorem

5.13, they are implied by the Slutsky list.

Corollary 1.1. Fix D as above. Then B is negative definite, kerP = kerY 0 and
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rankY = J, ker c = kerX, c is negative definite on
¡
WΦ−1

¢⊥, has rank S +1− J, and

c = cΦc. Lastly, ⎡⎢⎣ X
Y

⎤⎥⎦Φc =
⎡⎢⎣ X
0

⎤⎥⎦
meaning that, for marginal income ẇ ∈ spanΦc, marginal demand mẇ is as if asset

markets were absent.

1.5 Generic neoclassical demand

1.5.1 Slutsky perturbations

A Slutsky perturbation is a perturbation of the Slutsky matrices arising from a perturbation

of the Hessian of utility. We want to identify Slutsky perturbations because they are

intrinsic in the study of generic properties of equilibrium in incomplete markets.

More exactly, Slutsky matrices are H−1, where H = H̃(D2u). By continuity of H̃,

H̃(D) is invertible for all close enough D ≈ D2u. If D is symmetric then the difference

∇ = H̃(D)−1 −H−1 is called a Slutsky perturbation. Being symmetric, we write

∇ =

⎡⎢⎣ Ṡ −ṁ

−ṁ0 −ċ

⎤⎥⎦
and identify a Slutsky perturbation with a triple Ṡ, ṁ, ċ. Our main goal is to charac-

terize Slutsky perturbations, without reference to the inversion defining them, in terms of
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individual constraints on ∇:

on Ṡ ρ0Ṡ = 0 and Ṡ is symmetric

on ṁ ρ0ṁ = 0 and ẊW 0 = 0

on ċ ċW 0 = 0 and ċ is symmetric

(constraints)

Each of these independent linear constraints is satisfied by zero.

Theorem 1.2. Slutsky perturbations characterized Given u in Debreu’s setting and

b in B0, consider the Slutsky matrices H−1. Every small enough Slutsky perturbation

∇ satisfies (constraints). Conversely, every small enough perturbation ∇ that satisfies

(constraints) is Slutsky: H−1 +∇ is the inverse of H̃(D) for some D that is negative

definite on Du(x(b))⊥ and symmetric. (Negative definite given u in Debreu’s special

setting.)

Thus Slutsky perturbations are characterized as those that satisfy (constraints), affecting

S,m, c simultaneously or separately. Assuming the veracity of theorem 5.13, a proof is

trivial, if we appeal to

Lemma 1.1. Stability Fix a dimension 0 < d ≤ C∗ for the Grassmanian GC∗,d.

Suppose continuous functions D : K → RC
∗×C∗ , S : K → GC∗,d. If D(x) is negative

definite on S(x), then D(x̃) is negative definite on S(x̃), for all nearby x̃ ≈ x.

Proof. A matrix D is negative definite on a nonzero subspace S iff maxz∈S∗ z0Dz < 0, by

compactness of S∗ ≡ {z ∈ S | z0z = 1}. By hypothesis, ²(x) ≡ maxz∈S∗(x) z0D(x)z < 0,

and by the maximum principle ²(·) is continuous, so ²(x̃) < 0 is an open neighborhood

of x. (To apply the principle, note S∗(·) is a continuous, nonempty, compact valued

correspondence and (x, z) 7→ z0D(x)z a continuous function.)
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Proof. of theorem 1.2. Clearly ∇ = H̃(D)−1−H−1 satisfies (constraints) if both H−1, H̃(D)−1

satisfy (Slutsky list). This hypothesis in turn holds, by the first part of theorem 5.13, if

D2u,D are (1) symmetric and (2) negative definite on ([p]µ)⊥. These conditions hold for

D2u in Debreu’s setting; by definition of a Slutsky perturbation (1) holds for D, and by

stability (S ≡ ([p]µ)⊥) so does (2), if it is small enough.

Conversely, suppose ∇ satisfies (constraints). By the first part of theorem 5.13 H−1

satisfies (Slutsky list), so clearly H−1 + ∇ satisfies (Slutsky list), save perhaps for the

definiteness statements, which by stability (S = ρ⊥, ker(X + Ẋ)⊥ ∩ µ⊥) do hold if ∇

is small enough. By the converse part of theorem 5.13, H−1 + ∇ is invertible, with

inverse H̃(D) for some D that is negative definite on ([p]µ)⊥ and symmetric. Thus

H̃(D)−1 = H−1 +∇ and ∇ is a Slutsky perturbation.

The study of generic properties of GEI entails Slutsky perturbations, that is, it entails

generic Slutsky matrices. It is useful to identify the generic Slutsky matrices, because they

determine the generic comparative statics of market variables and welfare, through their

appearance in the Slutsky decomposition of demand. So what are the generic Slutsky

matrices? What is the range of Slutsky perturbations ∇ = H̃(D)−1−H−1? We answered

this: Any small ∇ that meets explicit linear constraints can be rationalized as a Slutsky

perturbation.

The relevance of this for the study of generic properties of GEI is that genericity can

be argued directly in terms of Slutsky matrices and Slutsky perturbations.
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1.5.2 Rationalizing Slutsky perturbations

Tacit in the previous subsection is that D may be rationalized as D2ũ(x(b)) for some

nearby ũ ≈ u preserving Debreu’s setting and x(b) as neoclassical demand, a well-known

"fact" we now recall.

Definition 1.1. A quadratic perturbation of utility at x ∈ RC∗++ is a pair (ω,∆) consisting

of a Cr≥2 weight function ω : RC
∗

+ → [0, 1] that equals unity in a neighborhood of x

and has compact support in RC
∗

++, and of a symmetric matrix ∆ of dimension C∗. It

operates on functions RC
∗

+ → R as u 7→ u(ω,∆)(x) ≡ u(x) + ω(x)
2 (x− x)0∆(x− x).

Proposition 1.4. Rationalizability of a small symmetric perturbation ∆ of D2u(x).

If u is in Debreu’s setting, so is u(ω,∆t) for all small enough support(ω),t, and then

x is the u−demand at b iff it is the u(ω,∆t)−demand at b. Last but not least,

D2u(ω,∆t)(x) = D
2u(x) +∆t, so that ∂

∂t |t=0 D2u(ω,∆t)(x) = ∆.

Conclusion 1.1. Suppose u belongs in Debreu’s setting and b in B0, and consider

the Slutsky matrices S,m, c at x(b). Then any small enough perturbation to them that

satisfies (constraints), and none other, we can rationalize by a quadratic perturbation u(ω,∆)

of u such that u(ω,∆) preserves Debreu’s setting and demand σu(ω,∆)(b) = σu(b) at b,

and has the perturbed S,m, c for its Slutsky matrices.
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1.6 Proofs

1.6.1 The Slutsky properties

We tie the Slutsky properties to each of three increasingly stringent descriptions of H in

(H):

H =

⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦
(I) the relationship between M, ρ

(II) M =M(D) for some D

(III) D is negative definite on ([p]µ)⊥4

Equivalence 1.1. Fix a matrix ρ.5 Suppose

M is negative definite on ρ⊥ and symmetric, and ρ has no kernel (I)

Then ⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦ (1)

is invertible, with inverse ⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦ (1’)

for some S,m, c satisfying

ρ0S = 0, S is negative definite on ρ⊥, symmetric

ρ0m = I

c is symmetric

(I’)

Conversely, suppose (I’). Then (5.4) is invertible, with inverse (1), for some M satisfying

4We will take µ = λ or 0, according as we are in Debreu’s setting or Debreu’s special setting. (III)
says ”D is negative definite” if µ = 0.

5This does not have to be the particular one in (H).
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(I).

We use the convenient notation

ρ ≡

⎡⎢⎣ ρ1

ρ2

⎤⎥⎦ where
ρ1 = first C

∗ rows of ρ

ρ2 = last J rows of ρ

Equivalence 1.2. Fix ρ with no kernel. Suppose (I) and consider the m, c implied by

Equivalence 1.1. If

M(D)0s last J rows and columns are zero (II)

then

Xρ02 = 0 Y ρ02 = I cρ02 = 0 (II’)

Conversely, suppose (I’) and consider the M implied by Equivalence 1.1. If (II’) then

(II) for some D. Lastly, Y ρ02 = I is redundant in (II’) if ρ2 has linearly independent

rows.

Equivalence 1.3. Fix ρ with no kernel and ρ2µ = 0. Suppose (I) and consider the m, c

implied by Equivalence 1.1; suppose (II). If

D is negative definite on (ρ1µ)
⊥ (III)

then

c is negative definite on kerX⊥ ∩ µ⊥ (III’)

Conversely, suppose (I’) and consider the M implied by Equivalence 1.1; suppose (II’) and
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consider the solution to M =M(D) implied by Equivalence 1.2. If (III’) then (III).

We now apply the Equivalences to our particular case:

M =M(D2u) ρ1 = [p] ρ2 = −W (particular)

Lemma 1.2. Suppose M =M(D) with D negative definite on (ρ1µ)
⊥, where ρ2µ = 0

and ρ2 has linearly independent rows. Then M is negative definite on ρ⊥.

Proof.

[a0 : b0]M

⎡⎢⎣ a
b

⎤⎥⎦ = a0Da
Suppose [a0 : b0] ∈ ρ⊥, that is, a0ρ1 = −b0ρ2. Claim: a ∈ (ρ1µ)⊥. For a0ρ1µ = −b0ρ2µ =

0c So a0Da < 0 unless a = 0 ⇒ b0ρ2 = 0 ⇒ b = 0 given the linearly independent

rows.

Proof. of theorem 5.13. By hypothesis and the lemma, M(D) is negative definite on ρ⊥,

and ρ has no kernel because ρ1 = [p] has none. So by Equivalence 1.1 (I’) holds for

S,m, c u H̃(D)−1. Obviously M(D) satisfies (II), so by Equivalence 1.2 (II’) holds,

with −YW 0 = I redundant since ρ2 = −W has linearly independent rows. Lastly, by

Equivalence 1.3 (III’) holds. That is, (Slutsky list) = (I’, II’, III’) hold.

Conversely, if (Slutsky list) = (I’, II’, III’), then we apply the converse part of the

Equivalences. By Equivalence (1.1) (Smc)=(5.4) is invertible, and the symmetric M

appearing in (1) must by Equivalence 1.2 be M =M(D) for some (necessarily symmetric)

D (recall Y ρ02 = I is redundant), and by Equivalence (1.3) D must satisfy (III).
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1.6.2 Equivalence lemmas

Equivalence 1.1

Proof. Invertibility: Suppose [x0, y0]0 is in the kernel of (1). Then Mx − ρy = 0 and

ρ0x = 0 ⇒ x0Mx = 0 and x ∈ ρ⊥ ⇒ x = 0 ⇒ ρy = 0 ⇒ y = 0 since ρ has no kernel,

as desired. Since (1) is symmetric, so is its inverse, with S, c symmetric. By definition

of inverse,

MS + ρm0 = I −Mm+ ρc = 0

ρ0S = 0 ρ0m = I

Hence ρ0S = 0, ρ0m = I. Turning to S0s semidefiniteness, fix γ and consider γ0Sγ.

Solve ⎡⎢⎣ M −ρ

−ρ0 0

⎤⎥⎦
⎡⎢⎣ a
b

⎤⎥⎦ =
⎡⎢⎣ γ

0

⎤⎥⎦ ≡
Ma− ρb = γ

ρ0a = 0

which is possible by invertibility. Then

γ0Sγ =

(a0M − b0ρ0)Sγ = a0MSγ = a0(I − ρm0)γ =

a0γ = a0(Ma− ρb) = a0Ma

Since a ∈ ρ⊥, by hypothesis on M γ0Sγ = a0Ma < 0 unless a = 0 ⇒ −ρb = γ or γ

∈ spanρ. So if γ ∈ ρ⊥, then γ = 0. That is, S is negative definite on ρ⊥.

Conversely, suppose (I’). Then the invertibility of (5.4) is established similarly as above.
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Since (5.4) is symmetric, so is its inverse

⎡⎢⎣ M −α

−α0 β

⎤⎥⎦
with M,β symmetric. Claim: α = ρ,β = 0. By definition of inverse, MS + αm0 = I

and α0S+βm0 = 0; postmultiplying by ρ and invoking (I’) establishes the claim.c Clearly

ρ0m = I implies ρ has no kernel. Lastly, M is negative definite on ρ⊥: Fix γ and

consider γ0Mγ. Solve

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
⎡⎢⎣ a
b

⎤⎥⎦ =
⎡⎢⎣ γ

0

⎤⎥⎦ ≡
Sa−mb = γ

m0a+ cb = 0

and suppose γ ∈ ρ⊥ ≡ 0 = ρ0(Sa −mb) = −b. That is, Sa = γ and m0a = 0. Since

Mγ = MSa = (I − ρm0)a = a, γ0Mγ = a0Sa. Invoking (I’), we see γ0Mγ < 0 unless

a = ρα for some α ⇒ 0 = m0a = m0ρα = α ⇒ a = 0 ⇒ γ = Sa = 0. Hence M is

negative definite on ρ⊥.

Equivalence 1.2

Proof. By hypothesis, write

M =

⎡⎢⎣ D 0

0 0

⎤⎥⎦
Focusing on the bottom part of MS + ρm0 = I,

0 + ρ2m
0 = [0 : I]

which says Xρ2 = 0, Y ρ2 = I. As for cρ
0
2 = 0: Using −Mm+ ρc = 0, 0 =M [0 : I]0 =
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Mmρ02 = ρcρ02. Since ρ has no kernel, cρ02 = 0.

Conversely, applying (II’) to −Mm+ ρc = 0:

M

⎡⎢⎣ 0

I

⎤⎥⎦ =Mmρ02 = ρcρ02 = 0

This and the symmetry of M imply that M is zero off the northwestern corner.

Lastly, I = ρ0m = ρ01X+ρ
0
2Y , so Xρ02 = 0 implies ρ02 = 0+ρ

0
2Y ρ

0
2 or ρ02(I−Y ρ02) = 0.

If ρ2 has linearly independent rows, I − Y ρ02 = 0.

Equivalence 1.3

Expressing H−1 as in (5.5), by definition of inverse we have:

⎡⎢⎢⎢⎢⎣
A P −X

P 0 B −Y

−X 0 −Y 0 −c

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

D 0 −ρ1
0 0 −ρ2
−ρ01 −ρ02 0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
I 0 0

0 I 0

0 0 I

⎤⎥⎥⎥⎥⎦

AD +Xρ01 = I Xρ02 = 0 Aρ1 + Pρ2 = 0

P 0D + Y ρ01 = 0 Y ρ02 = I P 0ρ1 +Bρ2 = 0

−X 0D + cρ01 = 0 cρ02 = 0 X 0ρ1 + Y
0ρ2 = I

Lemma 1.3. Every z ∈ RC∗ can be expressed as z = Aa +Xb for some a ∈ X⊥, b ∈

kerX⊥.

Proof. Set b = ρ01z, a = Dz−ρ1cb. Then Aa+Xb = A(Dz−ρ1cb)+Xb = (AD)z−(Aρ1)cb+

Xb = (I−Xρ01)z−(−Pρ2)cb+Xb = z−X(ρ01z−b)+P (ρ2c)b = z since from the equations

ρ2c = 0. Now a ∈ X⊥ : X 0a = X 0(Dz − ρ1cb) = cρ01z − (I − Y 0ρ2)cb = c(ρ01z − b) = 0.

To get b ∈ kerX⊥, redefine b = (ρ01z)
∗ where "∗" denotes the orthogonal projection to
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kerX⊥, but keep a as before.

Lemma 1.4. If Sρ = 0, S is negative definite on ρ⊥, symmetric, then A is negative

definite on X⊥.

Proof. Fix a and write ⎡⎢⎣ a
0

⎤⎥⎦ = x+ y ∈ ρ⊥ + spanρ

Since ρ0S = 0, Sρ = 0,

a0Aa = [a0 : 0]S

⎡⎢⎣ a
0

⎤⎥⎦ = x0Sx
By hypothesis on S, a0Aa < 0 unless x = 0 ⇒ [a0 : 0]0 = y = ργ some γ ⇒ 0 = ρ2γ.

If a ∈ X⊥ then 0 = X 0a = X 0ρ1γ = (I − Y 0ρ2)γ = γ ⇒ y = 0⇒ a = 0. That is, A is

negative definite on X⊥.

Proof. of Equivalence 1.3. Suppose throughout ρ2µ = 0. We will appeal twice to the

string

(Xδ)0(ρ1µ) = δ0(X 0ρ1)µ = δ0(I − Y 0ρ2)µ = δ0µ (string)

The third row implies X 0DX = c: X 0DX = cρ01X = c(I − ρ02Y ) = c. For every

δ, δ0cδ = (Xδ)0D(Xδ) = ∗, and Xδ ∈ (ρ1µ)⊥ if δ ∈ µ⊥ by the (string), so ∗ < 0 by

hypothesis on D, unless Xδ = 0 or δ ∈ kerX. If δ ∈ kerX⊥ then δ = 0. That is, c

is negative definite on δ ∈ kerX⊥ ∩ µ⊥.

Conversely, fix z ∈ RC∗ and by lemma 1.3 write z = Aa+Xb with a ∈ X⊥, b ∈ kerX⊥.

Claim: z0Dz = a0Aa+ b0cb. Dz = D(Aa+Xb) = (I − ρ1X
0)a+ ρ1cb = a+ ρ1cb. Thus

z0Dz = (a0A+ b0X 0)(a+ ρ1cb) = a
0Aa+ a0Aρ1cb+ b

0X 0a+ b0X 0ρ1cb = ∗. The second term
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is zero, since the equations say Aρ1c = −Pρ2c and ρ2c = 0, and so is the third one, since

X 0a = 0. So ∗ = a0Aa+ b0(I − Y 0ρ2)cb = a0Aa+ b0cb.c

By lemma 1.4 and a ∈ X⊥, a0Aa < 0 unless a = 0. By hypothesis on c and

b ∈ kerX⊥, b0cb < 0 unless b = 0—so long as b ∈ µ⊥. So to show D is negative

definite on (ρ1µ)
⊥, it suffices that z ∈ (ρ1µ)⊥ ⇔ b ∈ µ⊥. To see this implication, we

take the particular b = (ρ01z)
∗ from the proof of lemma 1.3, and apply (string) twice, with

δ = ρ01z and δ̃ = b: z0ρ1µ = δ0µ = (Xδ)0(ρ1µ) = (Xb)0(ρ1µ) = b0µ (the definition of

b⇒ δ − b ∈ kerX ⇒ Xδ = Xb).

1.6.3 Rationalizability

Lemma 1.5. If u is in Debreu’s setting, then u(x) > sup∂RC∗+
u(x̃) for x ∈ RC∗++.

Proof. Debreu’s last condition implies this holds with ” ≥” instead. But if ”=” at some

x ∈ RC∗++, then by Debreu’s second condition u(tx) < sup∂RC∗+
u(x̃) for all large enough

t ∈ (0, 1), in which case u(tx) < u(x̃) for some x̃ ∈ ∂RC
∗

+ , contrary to ” ≥”.

Proof. of proposition 1.4. Assuming that u(ω,∆) is also in Debreu’s setting, the remainder

is easy:

Given its interiority, x is the u−neoclassical demand at (p,W,w) iff (F) holds at x

and u iff (F) holds at x and u(ω,∆) iff x is the u(ω,∆)−neoclassical demand at (p,W,w).

The first and last equivalences hold because u, u(ω,∆) belong in Debreu’s setting, and the

middle one because Du(x) = Du(ω,∆)(x).

Last but not least, ω ≡ 1 in a neighborhood x ≈ x, where u(ω,∆t)(x) ≡ u(x) + 1
2(x−

x)0∆t(x − x) and D2u(ω,∆)(x) = D
2u(x) + 1

2(∆ +∆
0)t = D2u(x) +∆t, the last equality
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by ∆0s symmetry.

To verify for u(ω,∆) the four conditions in Debreu’s setting, fix ω and write K ≡

support(ω).

First condition. Obvious.

Second and third. These hold with the proviso x ∈ RC∗++\K, since RC
∗

++\K is open

and u(ω,∆) |RC∗++\K= u |RC∗++\K , so we turn to x ∈ K. Both supK
°°Du(ω,∆)(x)−Du(x)°° ,

supK
°°D2u(ω,∆)(x)−D2u(x)°° are bounded since Du(ω,∆)(x),D2u(ω,∆)(x) are continuous

in x and K compact, and homogeneous of degree one in t, hence may be chosen smaller

than any given δ > 0 by replacing ∆ with ∆t for all small enough t > 0. Choosing δ

small enough to make true the implications
°°Du(ω,∆)(x)−Du(x)°° < δ ⇒ Du(ω,∆)(x) À

0,
°°D2u(ω,∆)(x)−D2u(x)°° < δ ⇒ D2u(ω,∆)(x) is negative definite on Du(x)⊥ (appealing

to lemma 1.1 with D(x) ≡ D2u(ω,∆)(x), S(x) ≡ Du(x)⊥), these conditions also hold at

x ∈ K.

Fourth. This holds with the proviso x ∈ RC∗++\K since u(ω,∆) |RC∗++\K= u |RC∗++\K , so

we turn to x ∈ K. By lemma 1.5 ² ≡ u(x) − sup∂RC∗+ u(x̃) > 0. Now suppose that K

is small enough, in that |u(x)− u(x)| < ²
2 for x ∈ K (possible by u0s continuity), and

that the rescaling of ∆ is too, in that |(x− x)0∆(x− x)| < ² for x ∈ K. So for x ∈ K

u(ω,∆)(x) = u(x)+
ω(x)
2 (x−x)0∆(x−x) > u(x)−

²
2 +

ω(x)
2 (−²) ≥ u(x)− ² = sup∂RC∗+ u(x̃) =

sup∂RC∗+
u(ω,∆)(x̃), the latter since u = u(ω,∆) on ∂RC

∗
+ c



1.6 Proofs 28

1.6.4 Computation of Slutsky matrices

As in the proof of Equivalence 1.3, but substituting ρ1 = [p], ρ2 = −W ,

AD +X[p]0 = I XW 0 = 0 A[p]− PW = 0

P 0D + Y [p]0 = 0 −YW 0 = I P 0[p]−BW = 0

−X 0D + c[p]0 = 0 cW 0 = 0 X 0[p]− Y 0W = I

(system)

Proof. of algorithm 1.1. Invertibility is easy. We deduce formulas for A,B, c, P,X, Y

recursively, while imposing A,B, c0s symmetry, which we verify last, and refer to equation

ij as that appearing in row i, column j of the (system). Note Φ ≡ [p]0D−1[p] is

symmetric, negative definite since [p] has no kernel.

Equation 21 holds iff P ≡ −D−1[p]Y 0; equation 31 iff X ≡ D−1[p]c; equation 11 iff

A ≡ [(I −X[p]0)D−1]0. With this definition of X, 12 holds if 32 holds. So far P,X,A

are in terms of Y, c, which we describe in terms of B.

Given this formula for P , 23 holds iff −Y Φ− BW = 0 iff Y ≡ −BWΦ−1. Given

the formulas for X,Y , 33 holds iff cΦ+Φ−1W 0BW = I iff c ≡ Φ−1 −Φ−1W 0BWΦ−1.

Claim: A,P as defined make 13 true. A[p]−PW = D−1(I−[p]X 0)[p]+D−1[p]Y 0W =

∗. Since 33 holds by definition of c, ∗ = D−1(I − [p]X 0)[p] +D−1[p](X 0[p]− I) = 0.

Now define B ≡ (WΦ−1W 0)−1. Note, WΦ−1W 0 is invertible if negative definite,

which it is since Φ−1 is (as the inverse of a negative definite matrix) and W 0 has no

kernel.

Claim: B as defined makes 22, 32 true. 22: −YW 0 = BWΦ−1W 0 = I. 32:

cW 0 = (Φ−1 − Φ−1W 0BWΦ−1)W 0 = Φ−1W 0(I −B ·WΦ−1W 0) = Φ−1W 0(0) = 0.

These definitions solve the system modulo A,B, c0s symmetry, which does exist: B



1.6 Proofs 29

is symmetric indeed, which implies c is, which implies A = D−1(I − [p]X 0) = D−1 −

D−1[p]c[p]0D−1 is.



Chapter 2

Welfare Impact of Taxation in

Incomplete Markets

2.1 Introduction

When asset markets are incomplete, there are almost always many Pareto improving policy

interventions, if there are multiple commodities and households. Remarkably, these policies

do not involve adding any new markets.

Focusing on tax policy, I create a framework for proving the existence of Pareto improv-

ing taxes, for computing them, and for estimating the size of the improvement.

The protagonist is the price adjustment following an intervention. Its role is to improve

on asset insurance by redistributing endowment wealth across states, as anticipated by

Stiglitz (1982). The price adjustment is determined by how taxes and prices affect aggregate,

not individual, demand.

If taxes targeting current incomes are Pareto improving, then they must cause an equi-

librium price adjustment, Grossman (1975). Conversely, I prove that if the price adjustment

30
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is sufficiently sensitive to risk aversion, then for almost all risk aversions and endowments,

Pareto improving taxes exist. I show how to verify this sensitivity test with standard

demand theory, which Turner (2003a) extends from complete to incomplete markets.

To numerically identify the Pareto improving taxes, I give a formula for the welfare

impact of taxes. It requires information on the individual marginal utilities and net trades,

and on the derivative of aggregate, but not individual, demand with respect to taxes and

prices.

To bound the rate of Pareto improvement, I define an equilibrium’s insurance deficit.

Pareto optimality obtains exactly when the insurance deficit is zero. If the tax policy

targets only current incomes, then the implied price adjustment determines the best rate,

by integration against the covariance of insurance deficit and net trades across agents. The

equilibrium’s insurance deficit arises from the agents’ component of marginal utility for

contingent income standing orthogonally to the asset span.

Many different tax policies generically support a Pareto improvement, because they all

pass this one sensitivity test. These policies include (a) taxes on asset purchases, as in

Citanna, Polemarchakis, and Tirelli (2001), (b) lump-sum taxes on current income plus one

flat tax on asset purchases, similar to Citanna, Kajii, and Villanacci (1998) and to Mandler

(2003), (c) asset measurable taxes on capital gains, and (d) excise taxes on current com-

modities, similar to Geanakoplos and Polemarchakis (2002), who emphasize consumption

externality over asset incompleteness.

Some policies fail the sensitivity test and never improve everyone’s welfare. For example,

reallocate current incomes lump-sum and force households to keep original asset demands.
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If utilities are time separable, they keep future commodity demands, inducing utilities for

current consumption. The First Welfare Theorem implies this tax policy is not Pareto

improving. The example flunks the sensitivity test because the future price adjustment is

zero, independently of risk aversion. For another example, for each asset tax purchases and

subsidize sales at the same rate. Then each asset’s price adjusts to offset the tax, and the

final cost of holding a portfolio of assets stays the same. Demand and welfare stay the same.

The example flunks the sensitivity test because the price adjustment is the negative of the

tax, independently of risk aversion.

To ultimately decide whether a tax policy generically supports a Pareto improvement, I

give primitives for the sensitivity of price adjustment. This requires information about the

derivatives of aggregate demand with respect to policy and prices. The price adjustment is

sensitive to risk aversion if there is (1) Full Reaction of Demand to Policy, and (2) Sufficient

Independence of the Reactions of Demand (to Policy and to Prices). That is, if (1) there is

high enough rank in the derivative of aggregate demand with respect to policy, and (2) it is

possible to affect the derivative of aggregate demand with respect to prices while preserving

the derivative with respect to policy, by perturbations to risk aversion. The first example

violates (1); the rank is below the number of households by budget balance. The second

example violates (2); the derivatives are each other’s inverses, whatever the risk aversion.

The existence result for a tax policy, that it supports a Pareto improvement at any

equilibrium, speaks not of every economy but only of a generic economy. At some economies

the endowments are Pareto optimal, so that no price adjustment could lead to a Pareto

improvement; at equilibria of other economies, everyone has the same marginal propensity
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to demand, so that no price adjustment exists.

In turn, to decide whether a tax policy meets primitives (1), (2), I invoke an extension

of Slutsky theory from complete to incomplete markets.

Turner (2003a) develops the Slutsky theory of demand for commodities and assets in

incomplete markets. First, it decomposes the derivative of demand with respect to commod-

ity prices, asset prices, and asset payoffs into an income effect and a Slutsky substitution

effect. Next, it identifies the properties that every Slutsky matrix must satisfy, and con-

versely proves that any matrix satisfying these properties is the Slutsky matrix of some

demand. Finally, it shows that the Slutsky matrix can be perturbed arbitrarily, subject

only to maintaining these properties, by perturbing the second derivative (risk aversion)

of the utility generating the original Slutsky matrix, while preserving demand and the in-

come effect matrix. These results for incomplete markets mirror exactly those for complete

markets derived by Geanakoplos and Polemarchakis (1980).

For some economies, the price adjustment function does not admit any Pareto improving

interventions, even though the equilibrium allocation is not Pareto optimal. By taking

Slutsky perturbations of demand, I show that for almost all nearby economies the price

adjustment function does admit them. Slutsky perturbations are thus the key to why there

exist almost always Pareto improving taxes.

Geanakoplos and Polemarchakis (1986) began the study of generic improvements with

incomplete markets, and introduced the idea of Slutsky perturbations from quadratic utility

perturbations. Since they allowed the central planner to decide the agents’ asset portfolios,

they did not need to go beyond perturbing the Slutsky matrices of commodity demand. To
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show why weaker interventions may improve welfare, such as anonymous taxes and changes

in asset payoffs, it became necessary to take into account how agents’ portfolio adjustments

caused a further price adjustment. Naturally, this required perturbing asset demand as

well as commodity demand. The lack of a Slutsky theory for incomplete markets blocked

contributions for over ten years1, until a breakthrough by Citanna, Kajii, and Villanacci

(1998), who analyzed first order conditions instead of Slutsky matrices. Researchers have

extended the theory of generic improvements with incomplete markets to many policies by

applying this first order approach; Cass and Citanna (1998), Citanna, Polemarchakis, and

Tirelli (2001), Bisin et al. (2001), and Mandler (2003).

The Slutsky approach has certain advantages. First, to compute the Pareto improving

interventions from my formula the policymaker needs to know the derivative of aggregate,

but not individual, demand. In the first order approach the policymaker needs to know

the second derivative of every individual’s utility, i.e., the derivative of every individual’s

demand function. Second, to express the economic intuitions the economist can keep to

the familiar language of demand theory, as in (1), (2), instead of the abstract language of

submersions. Third, every time the researcher thinks a new result via Slutsky perturbations,

he saves himself the work of implicitly reworking demand theory anew via quadratic utility

perturbations.

Turner (2003b) adds to the result on the generic existence of Pareto improving financial

innovation, by Elul (1995) and Cass and Citanna (1998). It argues that if the price adjust-

ment to financial innovation passes the test of sufficient sensitivity to risk aversion, then

1The sole one is Elul (1995).
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generically Pareto improving financial innovation exists. Then Slutsky perturbations reveal

that substitution free financial innovation in an existing asset passes this test indeed.

These results suggest that the reason any policy would generically admit Pareto im-

proving parameter values, be it fiscal, financial or otherwise, is precisely the passing of

the sensitivity test. They also suggest that Slutsky perturbations are useful in discovering

which other policies pass this test.

The paper continues as follows. Section 2 presents a general model of tax policy, and

details several examples of tax policy. Section 3 has the formula for the welfare impact of

taxes. Section 4 obtains the generic existence of Pareto improving taxes from the sensitivity

condition on price adjustment, which it then reinterprets in terms of the Reaction of Demand

to Prices and to Policy. Section 5 summarizes the demand theory in incomplete markets

necessary to check the sensitivity in terms of the Reactions, then section 6 checks it for

the several tax policies. Section 7 estimates the rate of Pareto improvement. Section 8

derives the welfare impact formula, and spells out the notation and the parameterization

of economies.

2.2 GEIT model

Households h = 1, ...,H know the present state of nature, denoted 0, but are uncertain

as to which among s = 1, ..., S nature will reveal in period 1. They consume commodities

c = 1, ..., C in the present and future, and invest in assets j = 1, ..., J in the present

only. Each state has commodity C as unit of account, in terms of which all value is

quoted. Markets assign to household h an income wh ∈ RS+1++ , to commodity c < C
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a price p·c ∈ RS+1++ , to asset j a price qj ∈ R and future yield aj ∈ RS . We call

(p·c)C1 = p = (ps·) the spot prices, q = (q
j) the asset prices, (aj) = a = (as) the asset

structure, and w = (wh) the income distribution, P ≡ R
(C−1)(S+1)
++ × RJ .2 Taxes are

t ∈ T, T some Euclidean space, negative coordinates corresponding to subsidies. The set

of budget variables is

b ≡ (P, a,w, t) ∈ B ≡ P×RJ×S ×R(S+1)H++ × T

and has some distinguished nonempty relatively open subset B0 ⊂ B. B0 is B with

T = {0}.

Demand for commodities and assets d = (x, y) : B0 → R
C(S+1)
++ × RJ is a func-

tion on B0. The demand dh = (xh, yh) of household h depends on own income only,

(xh, yh)(P, a,w, t) = (xh, yh)(P, a,w0, t) if wh = w0h. Tax payment τ : B00×codom(d)→

RS+1×dim(T ) is a function such that τ(b0, d)t is the actual tax payment, if demand and

taxes are d, t. Tax policy (τh)h is anonymous if τh is independent of h, and tax

revenue τ is τ(b0, (d
h)h) ≡ Στh(b0, dh).

An economy (a, e, t, t∗, d) consists of an asset structure a, endowments e, taxes t,

distribution rates t∗, and demands d. For each household h, endowments specify a

certain number ehsc > 0 of each commodity c in each state s, the distribution rates

specify a fraction th∗ > 0 with Σth∗ = 1, and demands specify a demand dh. Let Ω be

the set of (a, e, t, t∗, d).3

2The numeraire convention is that unity is the price of sC,s ≥ 0, which P therefore omits. The addition
to p of the sC,s ≥ 0 coordinates, bearing value unity, is denoted p. We use the notation P = (p, q) ∈ P.

3The appendix spells out the parameterization of demand d.
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A list (P, r; a, e, t, t∗, d) ∈ P×RS+1 ×Ω is a GEIT ↔

P
(xh(b)− eh) = 0

P
yh(b) = 0 r − τ(b0, (d

h(b))h)t = 0

and b ≡ (P, a, (whs = eh0s ps + th∗rs)hs , t) ∈ B0

We say (a, e, t, t∗, d) ∈ Ω has equilibrium (P, r) ∈ P × RS. A GEI is a GEIT with

t = 0.

Under neoclassical assumptions (a, e, 0, t∗, d) ∈ Ω has an equilibrium4, and then the

implicit function theorem gives conditions for a neighborhood of (a, e, 0, t∗, d) to have an

equilibrium.

2.2.1 Neoclassical demand

Consider the budget function βh : B0 ×RC(S+1) ×RJ → RS+1

βh(b, x, y) ≡ (p0sxs −whs )Ss=0 −

⎡⎢⎣ −q0
a0

⎤⎥⎦ y
Demand dh = (xh, yh) is neoclassical0 if T = {0} and there is a utility function

u : R
C(S+1)
+ → R with

u(xh(b)) = max
Xh
0 (b)

u throughout B0

Xh
0 (b) ≡ {x ∈ R

C(S+1)
+ | βh(b, x, y) = 0, some y ∈ RJ}

More generally, demand dh = (xh, yh) is neoclassical if there is a utility function

u : R
C(S+1)
+ → R with

u(xh(b)) = max
Xh(b)

u throughout B0

4Geanakoplos and Polemarchakis (1986).
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Xh(b) ≡ {x ∈ RC(S+1)+ | βh(b0, x, y) + τh(b0, x, y)tb = 0, some y ∈ RJ}5

If taxes tb = 0 are zero, Xh(b) = Xh
0 (b). Thus neoclassical demand restricts to

neoclassical0 demand.

Neoclassical welfare is v : B0 → RH , v(b) = (vh(b)) ≡ (uh(xh(b))).

The interpretation of X is that the cost of consumption x in excess of income w is

financed by some portfolio y ∈ RJ of assets, net of taxes. A portfolio specifies how much

of each asset to buy or sell (yj ≷ 0), and ajs how much value in state s an asset j buyer

is to collect, a seller to deliver.

2.2.2 Four examples of tax policy

We detail T,B0, τh for four tax policies.6

Tax rates on asset purchases t ∈ T = RJ :

τ =

⎡⎢⎣ y0+
0

⎤⎥⎦
B0 = {(P, a,w, t) ∈ B | q + tI ∈ aRS++ for all subsets I , a has linearly independent rows}7

Lump-sum taxes on current incomes plus flat tax rate on asset purchases t0 = (l0, f 0) ∈

5The functions b→ b0,→ tb are (p, q, a, w, t)→ (p, q, a,w, 0),→ t. Here y is defined by x, if a is full
rank.

6For a vector v of reals, v+ is defined by (v+)m = max(0, vm).

7For a subset I ⊂ {1, ..., J} of assets, tI is defined by (tI)j being tj or 0 according as j ∈ I or
not.
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T = RH ×R :

τh =

⎡⎢⎣ 1h0 10y+

0 0

⎤⎥⎦
B0 = {(P, a,w, t) ∈ B | q + f1I ∈ aRS++ for all subsets I, a has linearly independent rows}

Asset measurable tax rates on future capital gains t ∈ T = a0RJ ⊂ RS. Capital gain is

ghs = (p
0
sxs − whs )+. Measurability has every state’s tax rate ts = a

0
sL depending linearly

on the asset payoffs:8

τh =
£
gh
¤

B0 = {(P, a,w, t) ∈ B | q ∈ aRS++, a has linearly independent rows, ts > −1}

Tax rates on net purchases of current commodities t ∈ T = RC−1. (Excise taxes.) Given

endowments9

τh =

⎡⎢⎣ (x0 − eh0)0+
0

⎤⎥⎦
B0 = {(P, a,w, t) ∈ B | q ∈ aRS++, a has linearly independent rows, p0c + tc > 0}

Debreu’s smooth preferences imply neoclassical demand exists, and is smooth in a neigh-

borhood of b if yj , p0sxs − ws, x0c − e0c 6= 0 for all j, s, c. We term active a GEI if it

satisfies these inequalities for every household, in the context of these four examples, or if

all demands are locally smooth, in a general context.

8Occasionally we view g, t as in RS+1 with g0, t0 = 0. For a point g ∈ R(S+1)k, [g] ∈ R(S+1)k×S+1
denotes the matrix whose sth column is gs· ∈ Rk in the sth block and zero in all the other k-blocks.
If k = 1, as here, this is a diagonal matrix with g along the diagonal. See ”aggregate notation” in the
appendix.

9Occasionally we view t as in RC with tC = 0.
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2.3 Welfare impact of taxes

We think of a smooth path t = t(ξ) of taxes through t = 0, and of infinitesimal taxes as

its initial velocity ṫ = ṫ(0). Suppose the active GEI (P, r; a, e, 0, t∗, d) is regular in that

such a path lifts locally to a unique path (P, r; a, e, t, t∗, d) = (P (ξ), r(ξ); a, e, t(ξ), t∗, d)

of GEIT through the GEI. Then welfare is v(b(ξ)) with b(ξ) = (P (ξ), r(ξ); a, (whs =

eh0s ps(ξ) + t
h
∗rs(ξ))

h
s , t(ξ)). Thus taxes impact welfare only via the budget variables they

imply. By the fundamental theorem of calculus the welfare impact is the integral of Dbvh · ḃ,

which by abuse we call the welfare impact. We compute this product in the appendix, using

the envelope theorem for Dbvh and the chain rule for ḃ, where the details of the notation

appear.

Proposition 2.1 (Envelope). The welfare impact v̇ ∈ RH of infinitesimal taxes ṫ at

a regular GEI is

v̇ = (λ)0ṁ ṁ = (th∗ ṙ − τhṫ)h| {z } −zṖ|{z}
PRIV ATE PUBLIC

Here (λ)0 collects the households’ marginal utilities of income across states, and ṁ the

impact on their incomes, private and public. The private one is the impact ṙ on revenue

distributed at rate t∗ ∈ RH net of the impact τhṫ on tax payments, and the public one

is the impact on the value of their excess demands z in all nonnumeraire markets, that

implied by the impact Ṗ on prices.

Policy targeting welfare must account for the equilibrium price adjustment it causes.

The equilibrium price adjustment undoes the excess aggregate demand that policy causes,
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and depends on the reactions of aggregate demand to both policy and prices.

Proposition 2.2 (Revenue Impact). At a regular GEI ṙ = τ ṫ.

This follows from r = τ t, the chain rule, and t = 0 at a GEI. At a regular GEI there

is a price adjustment matrix dP , smooth in a neighborhood of it, such that Ṗ = dP ṫ.

Thus the welfare impact is

dv = (λ)0
¡
(th∗τ − τh)h − zdP

¢

A policy targeting current incomes is (first order) Pareto improving only if taxes cause

a price adjustment. For if τhs≥1ṫ = 0, dP ṫ = 0 then Σ 1
λh0
v̇h = Σ 1

λh0
λh0ṁh = Σṁh0 =

Σ(th∗τ0 − τh0) = 0 so v̇ À 0 is impossible. Next we prove a converse.

2.4 Framework for generic existence of Pareto improving

taxes

We prove the generic existence of Pareto improving taxes, stressing the role of changing

commodity prices over the role of the particular tax policy. Existence follows directly from

a hypothesis on price adjustment. Thus the tax policy is relevant only insofar as it meets

the hypothesis on price adjustment. Then we reinterpret this hypothesis on dP in terms

of primitives, the Reaction of Demand to Prices and the Reaction of Demand to Policy.

Pareto improving taxes exist if there exists a solution to dvṫ À 0. In turn this exists

if dv ∈ RH×dimT has rank H, which in turn implies that tax parameters outnumber

household types dimT ≥ H. The key idea is that if dv = (λ)0(th∗τ −τh)h− (λ)0zdP is rank

deficient, then a perturbation of the economy would restore full rank by preserving the first
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summand but affecting the second one. Namely, if some economy’s dP is not appropriate,

then almost every nearby economy’s dP is.

We have in mind a perturbation of the households’ risk aversion (D2uh)h, which

affects nothing but dP in the welfare impact dv. Now, to restore the rank the risk

aversion must map into (λ)0zdP richly enough. Since this map keeps (λ)0z fixed, we

require that (λ)0z have rank H and that dP be sufficiently sensitive to risk aversion.

Cass and Citanna (1998) gift us the first requirement:

Fact 2.1 (Full Externality of Price Adjustment on Welfare). Suppose asset incom-

pleteness exceeds household heterogeneity S−J ≥ H > 1. Then generically in endowments

every GEI has (λhsz
h
s1)

h≤H
s≤H−1 invertible.

Fact 2.2. At a regular GEI, dP is locally a smooth function of risk aversion; the marginal

utilities λi, tax payments τ i, and excess demands zi are locally constant in risk aversion.

For k ∈ R(S+1)(C−1)+J we say that a commodity coordinate is one of the first (S +

1)(C − 1).

Definition 2.1. At a regular GEI, dP is k-Sensitive to risk aversion if for every

α ∈ Rdim(T ) there is a path of risk aversion that solves k0dṖ = α0.10 It is Sensitive to

risk aversion if it is k-Sensitive to risk aversion for all k with a nonzero commodity

coordinate.

Figure 1

10The appendix spells out a path of risk aversion. Here the dot denotes differentiation with respect to the
path’s parameter.
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Assumption 2.1 (Generic Sensitivity of dP). If H > 1, then generically in endow-

ments and utilities, at every GEI dP is Sensitive to risk aversion.

Figures 2, 3

This assumption banishes the particulars of the tax policy, leaving only its imprint on

dP. Of course, dP is defined only at regular GEI, so implicitly assumed is that regular

GEI are generic in endowments.

Theorem 2.1 (Logic of Pareto Improvement). Fix the tax policy and the desired

welfare impact v̇ ∈ RH . Grant the Generic Sensitivity of dP under dim(T ), S − J ≥

H > 1, C > 1. Then generically in utilities and endowments, at every GEI v̇ is the welfare

impact of some ṫ ∈ T . Hence a nearby Pareto superior GEIT exists.

Proof. We fix generic endowments, utilities from the fact, assumption, and apply transver-

sality to

1

2

3

4

nonnumeraire excess demand equations

γ0(λ)0
¡
(th∗τ − τh)h − zdP

¢
= 0

r − τ t = 0

γ0γ − 1 = 0

Suppose this is transverse to zero and the natural projection is proper. By the transversality

theorem, for generic endowments and utilities, this system of (dim p + dim q) + dim(T ) +

dim r + 1 equations is transverse to zero in the remaining endogenous variables, which

number dim p + dim q + dim r +H. By hypothesis dim(T ) ≥ H, so for these endowments

and utilities the preimage theorem implies that no endogenous variables solve this system—

every GEI has dv with rank H.
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This is transverse to zero. As is well known, we can control the first equations by

perturbing one household’s endowment. For a moment, say that we can control the second

equations and preserve the top ones. We then perturb the third equations and preserve the

top two, by perturbing r as well as numeraire endowments—to preserve incomes whs =

eh0s ps+ t
h
∗rs.We control the fourth equation and preserve the top three, by scalar multiples

of γ. So transversality obtains if our momentary supposition on γ0dv holds:

Write k0 ≡ γ0(λ)0z. Differentiating γ0dv with respect to the parameter of a path of

risk aversion,

α0 =def
d

dξ
γ0(λ)0

³
(th∗τ − τh)h − zdP

´
= −γ0(λ)0z d

dξ
(dP ) = −k0dṖ

since λ, τ i, z are locally constant. We want to make α arbitrary, and we can if dP is

k-sensitive, which holds by assumption if k has a nonzero commodity coordinate. It has:

Full Externality of Price Adjustment on Welfare, C > 1, γ 6= 0 imply γ0(λ)0z is nonzero

in the coordinate m = s1 for some s ≤ H − 1.

That the natural projection is proper we omit. (The numeraire asset structure is fixed.)

We have seen that tax policy targeting current incomes, such as taxes on asset pur-

chases, on net purchases of current commodities, or lump-sum taxes on current incomes,

supports a Pareto improvement only if there is a price adjustment. Conversely, tax policy

generically supports a Pareto improvement if the price adjustment is sufficiently sensitive

to risk aversion. Therefore price adjustment is pivotal.
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2.4.1 Expression for Price Adjustment

Before we can check whether a particular policy meets the Sensitivity of dP to Risk

Aversion, we need an expression for dP. We express dP in terms of the Reaction of

Demand to Prices and the Reaction of Demand to Policy, notions which are well defined at

an active GEI.

Let an underbar connote the omission of the numeraire in each state, define

d : B0 → R
(C−1)(S+1)
++ ×RJ d = Σdh

and the aggregate demand of (a, e, t, t∗) ∈ Ω

da,e,t,t∗(p, q, r) ≡ d(p, q, a, (whs = eh0s ps + th∗r)hs , t)

with domain Pa,e,t,t∗ ≡ {(p, q, r) ∈ P×RS+1 | (p, q, a, (whs = eh0s ps + th∗rs)hs , t) ∈ B0}.11

Now define

∇ ≡ Dp,qda,e,t,t∗ the Reaction of Demand to Prices

∆ ≡ Drda,e,t,t∗ · τ +Dtda,e,t,t∗ the Reaction of Demand to Policy12
(2.1)

Suppose a path of GEIT (P (ξ), r(ξ), a, (eh0s ps(ξ) + t
h
∗rs(ξ))

h
s , t(ξ)) through an active GEI.

Then

da,e,t,t∗(P, r) =

⎡⎢⎣ P eh

0

⎤⎥⎦
11Pa,e,t,t∗ is open, as the preimage by a continuous function of the open B0. Recall the notation P 0 =

(p0, q0).

12Clearly Drda,e,t,t∗ = ΣDwhd
hth∗ .
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is an identity in the path’s parameter ξ. Differentiating with respect to it,

∇Ṗ +Drda,e,t,t∗ · ṙ +Dtda,e,t,t∗ · ṫ = 0

Substituting for ṙ = τ ṫ from the Revenue Impact proposition,

∇Ṗ +∆ṫ = 0

An active GEI is regular if ∇ is invertible. By the implicit function theorem, a regular

GEI lifts a local policy through t = 0 to a path of GEIT through itself, such as the one

just above.

Proposition 2.3 (Price Adjustment). At a regular GEI the Price Adjustment to infin-

itesimal taxes is

dP = −∇−1∆ (dP )

where the Reactions ∇,∆ are defined in (2.1).

2.4.2 Primitives for the Sensitivity of Price Adjustment to Risk Aversion

Given the Logic of Pareto improvement, we want to check whether a policy meets the

Generic Sensitivity of dP . We provide primitives for the Sensitivity of dP , thanks to

expression (dP )13:

dṖ = −∇−1∆̇+∇−1∇̇∇−1∆

13Applying the chain rule to JJ−1 = I gives d
dξ
J−1 = −J−1( d

dξ
J)J−1.
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Recall equation k0dṖ = α0 from definition 2.1. If ∆̇ = 0 and k̃0 ≡def k0∇−1 then the

equation reads k̃0∇̇∇−1∆ = α0. If ∆ has rank dim(T ) then there is a solution β to

β0∇−1∆ = α0 so it suffices to solve k̃0∇̇ = β0. Thus dP is k-Sensitive if (1) ∆ has

rank dim(T ), (2) k̃ is nonzero everywhere, (3) whenever K̃ is nonzero everywhere and

β ∈ R(S+1)(C−1)+J , there is a path of risk aversion that solves ∆̇ = 0, K̃ 0∇̇ = β0. (Take

k̃ = K̃.) Thus Generic Sensitivity of dP follows from the following (independently of the

k̃ defined):

Lemma 2.1 (Activity). If H > 1, generically in endowments every GEI is active and

regular.14

Assumption 2.2 (Full Reaction of Demand to Policy). If C > 1, generically in

utilities and endowments, at every GEI ∆ has rank dim(T ).

Lemma 2.2 (Mean Externality of Price Adjustment on Welfare is Regular).

Generically in utilities, at every regular GEI, whenever k is nonzero in some commodity

coordinate, k̃0 ≡ k0∇−1 is nonzero everywhere.

Assumption 2.3 (Sufficient Independence of Reactions). If H > 1, then generically

in endowments and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and

β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

These primitives for the Generic Sensitivity of dP and the Logic of Pareto Improvement

yield

14We do not argue this relatively simple statement. For these endowments, both ∆ and dP are defined.
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Theorem 2.2 (Test for Pareto Improvement). Fix the tax policy and the desired

welfare impact v̇ ∈ RH . Say the policy passes the Full Reaction of Demand to Policy and

the Sufficient Independence of Reactions under dim(T ), S − J ≥ H > 1, C > 1. Then

generically in utilities and endowments, at every GEI v̇ is the welfare impact of some

ṫ ∈ T . Hence there is a nearby Pareto superior GEIT.

Next we illustrate how to check whether a tax policy passes this test via demand theory

in incomplete markets, as developed by Turner (2003a). We show that the four tax policies

in the introduction pass this test, and therefore generically admit Pareto improving taxes,

owing to the unifying logic of a sensitive price adjustment. At a GEI ∇ will turn out to be

independent of the policy, so we will verify the lemma on the Mean for one and all policies.

2.5 Summary of demand theory in incomplete markets

We must check whether each policy meets the Full Reaction of Demand to Policy and the

Sufficient Independence of Reactions. For this we report the theory of demand in incomplete

markets as developed by Turner (2003a). The basic idea is to use decompositions of ∆,∇

in terms of Slutsky matrices, and then to perturb these Slutsky matrices by perturbing risk

aversion, while preserving neoclassical demand at the budget variables under consideration.

We stress that this theory is applied to, but independent of, equilibrium.
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2.5.1 Slutsky perturbations

Define H : RC
∗×C∗ → RC

∗+J+(S+1)×C∗+J+(S+1) as

H(D) =

⎡⎢⎢⎢⎢⎣
D 0 −[p]

0 0 W

−[p] W 0 0

⎤⎥⎥⎥⎥⎦
where p,W = [−q : a] ∈ RJ×S+1 of rank J are given, and C∗ = C(S + 1). In other

notation,

H(D) =

⎡⎢⎣ M(D) −ρ
−ρ0 0

⎤⎥⎦ where M(D) =

⎡⎢⎣ D 0

0 0

⎤⎥⎦ , ρ =
⎡⎢⎣ [p]

−W

⎤⎥⎦
In showing the differentiability of demand, the key step is the invertibility of H(D2u).

Slutsky matrices are H(D2u)−1. If D is symmetric, so are H(D),H(D)−1 when

defined. Thus we write

H(D)−1 =

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
where S, c are symmetric of dimensions C∗+J, S+1 and m = (mx,my) is C∗+J×S+1.

A Slutsky perturbation is ∇ = H(D)−1 − H(D2u)−1, for some symmetric D ≈ D2u

that is close enough for the inverse to exist. A Slutsky perturbation is a perturbation

of Slutsky matrices rationalizable by some perturbation of the Hessian of utility. Being

symmetric, we write

∇ =

⎡⎢⎣ Ṡ −ṁ

−ṁ0 −ċ

⎤⎥⎦
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and view a Slutsky perturbation as a triple Ṡ, ṁ, ċ. We identify Slutsky perturbations,

without reference to the inversion defining them, in terms of independent linear constraints

on ∇ :

on Ṡ ρ0Ṡ = 0 and Ṡ is symmetric

on ṁ ρ0ṁ = 0 and ṁxW
0 = 0

on ċ ċW 0 = 0 and ċ is symmetric

(constraints)

Theorem 2.3 (Identification of Slutsky perturbations, Turner 2003a). Given u

smooth in Debreu’s sense and b in B0 with t = 0, consider the Slutsky matrices

H(D2u)−1. Every small enough Slutsky perturbation ∇ satisfies (constraints). Conversely,

every small enough perturbation ∇ that satisfies (constraints) is Slutsky: H(D2u)−1 +∇

is the inverse of H(D) for some D that is negative definite and symmetric.

We use only Slutsky perturbations with ṁ, ċ = 0 by choosing Ṡ as follows. A

matrix Ṡ ∈ R(C−1)(S+1)+J×(C−1)(S+1)+J is extendable in a unique way to a matrix Ṡ ∈

RC
∗+J×C∗+J satisfying ρ0Ṡ = 0; we call Ṡ the extension of Ṡ. It is easy to verify that

if Ṡ is symmetric, so is its extension. In sum, any symmetric Ṡ defines a unique Slutsky

perturbation with ṁ, ċ = 0.

2.5.2 Decomposition of demand

The relevance of Slutsky perturbations is that they allow us to perturb demand functions

directly, while preserving their neoclassical nature, without having to think about utility.

This is because Slutsky matrices appear in the decomposition of demand Dp,qd at b

with t = 0 :

Dp,qd
h = ShLh+ −mh · ([xh]0 : yh0) (dec)
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Here Lh+ a diagonal matrix displaying the marginal utility of contingent income

Lh+ ≡

⎡⎢⎣ Lh 0

0 λh0IJ

⎤⎥⎦ Lh ≡

⎡⎢⎢⎢⎢⎣
· 0

λhsIC−1

0 ·

⎤⎥⎥⎥⎥⎦
mh = Dwhd

h, and ([xh]0 : yh0) is the transpose of d
h : 15

[xh]0 =

⎡⎢⎢⎢⎢⎣
· 0 0

0 xh0s 0

0 0 ·

⎤⎥⎥⎥⎥⎦
(S+1)×(C−1)(S+1)

yh0 =

⎡⎢⎣ yh0
0

⎤⎥⎦
S+1×J

Writing (eh0s ps)s as [e
h]0p, we have Dp,q[eh]0p = ([eh]0 : 0), so from (2.1) we have

∇ = ΣDp,qdh +Dwhdh · ([eh]0 : 0)

Inserting decomposition (dec),

∇ = ΣShLh+ −Dwhdh · ([xh − eh]0 : yh0)

Writing zh0 ≡ ([xh − eh]0 : yh0) this reads

∇ = ΣShLh+ −Dwhdh · zh0 (∇)

This decomposition of the aggregate demand of (a, e, t, t∗) ∈ Ω generalizes Balasko 3.5.1

(1988) to incomplete markets.

15We view p as one long vector, state by state, and p, q as an even longer one; (∗ : #) denotes
concatenation of ∗,#.
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One implication of the decomposition is that ∇ is independent of the policy. So let us

now provide

Proof that Mean Externality of Price Adjustment on Welfare is Regular. Consider the man-

ifold of regular GEI and a k that is nonzero in some commodity coordinate. Fix a coor-

dinate n ≤ (S + 1)(C − 1) + J and apply transversality to

nonnumeraire excess demand equations

(k0∇−1)n = 0

This is transverse to zero. The burden of the argument is to control the bottom equation

independently of the top ones. Consider a Slutsky perturbation with ṁ1, ċ1 = 0 and Ṡ
1

symmetric. Then with k̃0 ≡ k0∇−1

d

dξ
(k0∇−1)n = −(k0∇−1∇̇∇−1)n = −(k̃0∇̇∇−1)n

Since ∇−1 is invertible, there is α such that α0∇−1 is the nth basis vector, so it suffices

to solve k̃0∇̇ = α0. From decomposition (∇) ∇̇ = Ṡ1L1+, so we want to solve k̃0Ṡ
1
L1+ = α0

or k̃0Ṡ
1
= α0(L1+)

−1 ≡ β0 for symmetric Ṡ
1
. Since k̃ 6= 0, say k̃p 6= 0. Let column o 6= p

of Ṡ
1
be 1p

βo
k̃p

so that (k̃0Ṡ
1
)o = βo. To preserve symmetry, let column p of Ṡ

1
be βo

k̃p

in coordinate o 6= p and arbitrary x in coordinate p, so that (k̃0Ṡ
1
)·p = Σo6=pk̃o

βo
k̃p
+ k̃px.

We can set this to βp and solve for x since k̃p 6= 0.

By the transversality theorem, for generic utilities in Debreu’s setting, the system of

dim p + dim q + 1 equations is transverse in the remaining dim p + dim q variables. By

the preimage theorem, for these generic utilities every regular GEI with nonzero k has

k̃n 6= 0. Taking the intersection over the finitely many coordinates n, for generic utilities
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every regular GEI with nonzero k has k̃ nonzero everywhere.

2.6 Four policies generically admitting Pareto improving taxes

We check for each policy the Full Reaction of Demand to Policy and the Sufficient Inde-

pendence of Reactions. In computing

∆ = Dtda,e,t,t∗ + (ΣDwhd
hth∗) · τ

we use the following notation for Sh, where Ah, Bh are symmetric of dimensions (C −

1)(S + 1), J :

Sh = [Shp : S
h
q ] =

⎡⎢⎣ Ah Ph

Ph0 Bh

⎤⎥⎦ (Sh)

We can perturb Ph arbitrarily and get a Slutsky perturbation.

Remark 2.1. In checking the Sufficient Independence of Reactions, the Ṡ
h
Slutsky pertur-

bations affect only the Jacobian ∇̇ = ΣṠhLh+ in (∇). Also, we solve k̃0∇̇ = β0 piecemeal,

solving k̃0∇̇p = β0p, k̃
0∇̇q = β0q by splitting β0 = (β0p,β

0
q), ∇̇ = [∇̇p : ∇̇q].

2.6.1 Tax rates on asset purchases

Corollary 2.1 (Citanna-Polemarchakis-Tirelli 2001). Fix the desired welfare impact

v̇ ∈ RH . Assume J, S − J ≥ H > 1, C > 1. Then generically in utilities and endowments,

at every GEI v̇ is the welfare impact of some ṫ ∈ T . Hence there is a nearby Pareto

superior GEIT with tax rates on asset purchases.

Proof. The next lemmas, dim(T ) = J , and the hypothesis J ≥ H enable theorem 2.2.
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The introduction of tax rates on asset purchases amounts to a household specific change

in asset prices. The price of asset j changes for household h exactly when yhj > 0. So

Dtda,e,t,t∗ = ΣDqd
hIh where Ih ∈ RJ×J is a diagonal matrix with entry jj equal to one

or zero according as yhj > 0 or not. Specializing to asset prices, (dec) reads

Dqd
h =

⎡⎢⎣ Ph

Bh

⎤⎥⎦−Dwhdh · yh0
so that

∆q = Σ

⎛⎜⎝
⎡⎢⎣ Ph

Bh

⎤⎥⎦−Dwhdh · yh0
⎞⎟⎠ Ih +Dwhdhth∗ · τ (∆q)

Lemma 2.3 (Full Reaction of Demand to Policy). If C > 1, generically in utilities

and endowments, at every GEI ∆q has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

∆̂qφ = 0

φ0φ− 1 = 0

where the hat omits the last J rows of ∆q. This is transverse to zero. The burden of

the argument is to control the middle equations independently of the top and bottom ones.

We perturb only the Ph, so that d
dξ ∆̂

q = ΣṖhIh. Say φj 6= 0; we make column j of

d
dξ ∆̂

q arbitrary and preserve the others. The GEI is active and asset markets clear, so fix

h with yhj > 0; the j
th column of PhIh = jth column of Ph. So let Ṗh be (akφj )k in

column j and zero in the others, and Ṗ i6=h = 0. Then (ΣṖhIh)φ = a is arbitrary.

By the transversality theorem, generically in endowments and utilities the system of
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dim p+dim q+(S+1)(C−1)+1 equations is transverse in the remaining dim p+dim q+J

variables. By the preimage theorem, for these every GEI is active and has ∆̂q (a fortiori

∆q) with linearly independent columns.

Lemma 2.4 (Sufficient Independence of Reactions). If H > 1, then generically in

endowments and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero in some commodity

coordinate and β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk aversion that solves

∆̇ = 0, k̃0∇̇ = β0.

Proof. Fix generic endowments from the Activity lemma, a GEI with k̃m 6= 0 for some

commodity coordinate m, and follow remark 2.1. For each asset j fix h(j) with yh(j)j < 0,

let Ṗh(j) be 1m
β(S+1)(C−1)+j

k̃m
in column j and zero in the others, and all Ḃh = 0. This

keeps ∆̇ = 0 and equates k̃0∇̇ to β(S+1)(C−1)+j in coordinate (S+1)(C−1)+ j. Having

dealt with all asset coordinates j ≤ J via the Ṗh, we turn to the commodity coordinates

n ≤ (S + 1)(C − 1). Let γ0 = ΣṖh0Lh. From display (Sh) it suffices to choose symmetric

Ȧ1 such that k̃0pȦ
1L1+ k̃0qγ

0 = β0p or k̃
0
pȦ

1 = (β0p− k̃0qγ0)(L1)−1 ≡ α0. Let column n 6= m

of Ȧ1 be 1m αn
k̃m

so that k̃0pȦ
1 equals αn in coordinate n. To preserve symmetry, column

m of Ȧ1 must be αn
k̃m

in row n 6= m and arbitrary x in row m. Then k̃0pȦ
1 equals

Σn6=mk̃n
αn
k̃m
+ k̃mx in coordinate m, which we can equate to αm by solving for x. Having

dealt with all coordinates n, this symmetric Ȧ1 solves k̃0∇̇ = β0. Since A1 does not

appear in ∆, still ∆̇ = 0.
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2.6.2 Lump-sum taxes on current income plus flat tax rate on asset pur-

chases

Corollary 2.2. Fix the desired welfare impact v̇ ∈ RH . Assume S − J ≥ H > 1, C >

1, J > 0. Then generically in utilities and endowments, at every GEI v̇ is the welfare

impact of some ṫ ∈ T . Hence there is a nearby Pareto superior GEIT with lump-sum taxes

on current income plus flat tax rate on asset purchases.

Proof. The next lemmas and dim(T ) = H + 1 enable theorem 2.2.

The part of Dtda,e,t,t∗ relating to the lump-sum taxes l ∈ RH on current income is

−ΣDwh0 d
h1h0, and that relating to the flat tax rate f on asset purchases is ∆q1 where

1 ∈ RJ . Concatenating,

Dtda,e,t,t∗ =
h
−ΣDwh0 d

h1h0 : ∆q1
i

Since the first row of τ is [10 : 10Σyi+],

(ΣDwhd
hth∗) · τ = (ΣDwh0 d

hth∗) · [10 : 10Σyi+]

So

∆w =
h
ΣDwh0

dh(th∗1− 1h)0 : ∆q1 + (ΣDwh0 d
hth∗)(1

0Σyi+)
i

For convenience, we reexpress the lump-sum part ΣDwh0 d
h(th∗1 − 1h)0 l̇h = Σh6=HOh(th∗1 −

1h)0 l̇h with Oh ≡ Dwh0 d
h −DwH0 d

H , to think of only H − 1 parameters (lh)h6=H . Now

dim(T ) = H and

∆w =
h
Σh6=HOh(th∗1− 1h)0 : ∆q1 + (ΣDwh0 d

hth∗)(1
0Σyi+)

i
(∆w)
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Lemma 2.5 (Full Reaction of Demand to Policy). If (S + 1)(C − 1) ≥ H > 1,

generically in utilities and endowments, at every GEI ∆w has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

∆̂wφ = 0

φ0φ− 1 = 0

where the hat omits the last J rows. This is transverse to zero. The burden of the

argument is to control the middle equations independently of the top and bottom ones.

Write φ = (l, f) so that li 6= 0 for some i 6= H or f 6= 0.

If f 6= 0, then we want d
dξ ∆̂

q1 = a arbitrary but d
dξ Ôh = 0, where Ôh ≡ Dwh0x

h −

DwH0
xH , and we can by choosing some h with yh1 > 0 and setting Ṗh to be a

f with

a ∈ R(C−1)(S+1) in column 1 and zero in the others, so that d
dξ ∆̂

q1 = ṖhIh1 = a
f and

d
dξ (∆̂

wφ) = ( ddξ ∆̂
q1)f = a.

If li 6= 0, then we want the ith column of Σh6=HÔh(th∗1− 1h)0 arbitrary:

∗ = d

dξ
Σh6=HÔh(th∗1−1h)01i =

d

dξ

h
(Σh6=HÔhth∗)− Ôi

i
=
d

dξ

h
(Σh6=i,HÔhth∗)− (1− ti∗)Ôi

i
= a

but 3 = d
dξ

³
∆̂q1 + (ΣDwh0

xhth∗)(1
0Σyi+)

´
= 0. From the identification of Slutsky perturba-

tions, we set d
dξDwh0

xh = 0 for all h 6= i, and Dwi0x
i = a

1−ti∗
by setting d

dξDwix
i = aλ

i0

λi0
—a

Slutsky perturbation since λi0W 0 = 0 from the FOC—so that ∗ = −(1− ti∗) ddξDwi0x
i = −a.

Any effect on 3 we can undo, since as just seen we can make d
dξ ∆̂

q1 arbitrary while

preserving the Dwh0x
h.

By the transversality theorem, generically in endowments and utilities the system of
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dim p+dim q+(S+1)(C−1)+1 equations is transverse in the remaining dim p+dim q+H

variables. By the preimage theorem, for these every GEI is active and has ∆̂w (a fortiori

∆w) with linearly columns.

Lemma 2.6 (Sufficient Independence of Reactions). If H > 1, then generically in

endowments and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero in some commodity

coordinate and β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk aversion that solves

∆̇ = 0, k̃0∇̇ = β0.

Proof. The proof of the lemma for ∆q applies verbatim.

2.6.3 Asset measurable tax rates on future capital gains

Corollary 2.3. Fix the desired welfare impact v̇ ∈ RH . Assume J, S−J ≥ H > 1, C > 1.

Then generically in utilities and endowments, at every GEI v̇ is the welfare impact of

some ṫ ∈ T p. Hence there is a nearby Pareto superior GEIT with asset measurable tax

rates on future capital gains.

Proof. The next lemmas, dim(T ) = J , and the hypothesis J ≥ H enable theorem 2.2.

Capital gain is ghs = (p
0
sx
h
s − whs )+. State contingent taxes are asset measurable if

they are a linear function of asset payoffs, t = a0L for some L. The introduction of tax

rates on capital gains amounts to a household specific proportional change in commodity

prices. The prices of state s commodities change in the same proportion exactly when

p0sx
h
s −whs > 0, i.e. ph1 = [p1](I + [th]).16 So Dtda,e,t,t∗ = ΣDp1d

h[p1]I
h where Ih ∈ RS×S

16For φs = p0sxs − whs + gst − a0sy. If gs = 0 then φs reduces to the GEI φs. If gs 6= 0 then
gs = p0sxs − whs so φs = (1 + ts)(p

0
sxs − whs ) − a0sy. At a GEI whs = p0se

h
s + t

h
∗rs with r = 0, so

that φs = (1 + ts)p
0
s(xs − ehs ) − a0sy, as if now prices ps(t) = (1 + ts)ps. In sum, for every s ≥ 1

φs(t) = ps(t)
0(xs− ehs )− a0sy with ps(t) = (1+ t

h
s )ps with ths = ts, 0 according as p0sx

h
s −whs > 0 or not.
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is a diagonal matrix with entry ss equal to one or zero according as p0sx
h
s − whs > 0 or

not. Specializing to period 1 commodity prices, (dec) reads

Dp1d
h =

⎡⎢⎣ Ah1

P 01
h

⎤⎥⎦−Dwh1dh · [xh1]0

so that with the parameterization ṫ = a0L̇

∆p =

⎧⎪⎨⎪⎩Σ
⎛⎜⎝
⎡⎢⎣ Ah1

P 01
h

⎤⎥⎦−Dwh1dh · [xh1]0
⎞⎟⎠ [p1]Ih +Dwhdhth∗ · τ

⎫⎪⎬⎪⎭ a0 (∆p)

Note that at an active GEI for every s there are h, i with p0sx
h
s − whs > 0 > p0sxis − wis.

For with t = 0 the budget equation is p0sx
h
s − whs = a0syh for all h, so Σp0sx

h
s − whs = 0

by asset market clearing.

Lemma 2.7 (Full Reaction of Demand to Policy). If C > 1, generically in utilities

and endowments, at every GEI ∆p has rank dim(T ).

Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

{̂·}φ = 0

φ0φ− 1 = 0

where the hat selects the (s1)s≥1 rows in the bracketed matrix {}, omitting the (sc)s≤S,c6=1

and asset rows. This is transverse to zero. The burden of the argument is to control

the middle equations independently of the top and bottom ones. We perturb only the

(Ah1)s1 ∈ RS(C−1), so that ( ddξ {̂·})s = Σ(Ȧh1)s1[p1]Ih. Say φs 6= 0; the GEI is active so fix

h = h(s) with ghs > 0; for it, the sth column of [p1]Ih = sth column of [p1]. Now let
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(Ȧh1)s1 be (...0 : as
φsps1

10c=1 : 0...), so that (Ȧ
h
1)s1[p1]I

hφ = as, and (Ȧh1)t1 = 0 for t 6= s,

so that Ȧh1[p1]I
hφ = 1sas. Note that Ȧh is symmetric. Finding such h(s) for each s,

ΣsȦ
h
1[p1]I

hφ = a is arbitrary. Thus let Ȧi = 0 for those i distinct from every h(s) to

get d
dξ {̂·}φ = a.

By the transversality theorem, generically in endowments and utilities the system of

dim p+dim q+S+1 equations is transverse in the remaining dim p+dim q+S variables.

By the preimage theorem, for these every GEI is active and has {̂·} (a fortiori {} and

{} a0) with linearly independent columns.

Lemma 2.8 (Sufficient Independence of Reactions). If H > 1, then generically

in endowments and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and

β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Consider generic endowments from the Activity lemma, and follow remark 2.1.

To solve k̃0p∇̇ = β0p we set the Ȧh = 0 so that we seek k̃0qΣṖ
h0Lh = β0p or

(ΣLhṖh)k̃q = βp. For each s there is i = i(s) with capital loss 0 > p0sx
i
s − wis, so we

can fix Ṗ i(s) in coordinates (sc, j)c,j and still preserve ∆̇ = 0; fix Ṗ i(s) in coordinates

(sc, J)c to be βsc
k̃Jλ

i
s
and zero in coordinates (s0c, J)c for s0 6= s, and zero in columns

j < J . Then Li(s)Ṗ i(s)k̃q equals βsc in coordinates (sc)c and zero in (s0c)s0 6=s,c,

so (ΣsL
i(s)Ṗ i(s))k̃q = βp. We let Ṗh = 0 for those h distinct from any i(s), so

(ΣLhṖh)k̃q = βp. Recall ∆̇ = 0 so far.

To solve k̃0q∇̇ = β0q, having fixed the Ṗ
h, we want to solve k̃0qΣḂ

h = β0q− k̃0pΣṖh ≡ γ0 ∈

RJ with the Ḃh being symmetric. Since the latter do not figure in ∆, such as solution

will complete k̃0∇̇ = β0 with ∆̇ = 0. Set Ḃ1 to be diagonal with jth diagonal element
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γj
k̃j

and the other Ḃh6=1 = 0.

2.6.4 Excise taxes on current commodities

Corollary 2.4. Fix the desired welfare impact v̇ ∈ RH . Assume C − 1, S − J ≥ H > 1.

Then generically in utilities and endowments, at every GEI v̇ is the welfare impact of

some ṫ ∈ T. Hence there is a nearby Pareto superior GEIT with tax rates on net purchases

of current commodities.

Proof. The next lemmas, dim(T ) = C − 1, and the hypothesis C − 1 ≥ H enable theorem

2.2.

The introduction of tax rates on net purchases of commodities, given endowments,

amounts to a household specific change in commodity prices. The price of commodity 0c

changes to p0c + tc > 0 exactly when xh0c − eh0c > 0, c < C. So Dtda,e,t,t∗ = ΣDp0d
hIh

where Ih ∈ RC−1×C−1 is a diagonal matrix with coordinate cc one or zero according as

xh0c − eh0c > 0 or not. Specializing to period 0 commodity prices, (dec) reads

Dp0d
h =

⎡⎢⎣ Ah0

Ph00

⎤⎥⎦λh0 −Dwh0 dh · xh00
so that

∆c = Σ

⎛⎜⎝
⎡⎢⎣ Ah0

Ph00

⎤⎥⎦λh0 −Dwh0dh · xh00
⎞⎟⎠ Ih +Dwhdhth∗ · τ (∆p)

Lemma 2.9 (Full Reaction of Demand to Policy). If C > 1, generically in utilities

and endowments, at every GEI ∆c has rank dim(T ).
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Proof. Fix generic endowments from the Activity lemma and apply transversality to

nonnumeraire excess demand equations

∆̂pφ = 0

φ0φ− 1 = 0

where the hat selects the (Sc)c<C rows in (∆p). This is transverse to zero. The burden of

the argument is to control the middle equations independently of the top and bottom ones.

We perturb only the (Ȧh0)Sc,· ∈ RC−1, so that ( ddξ ∆̂p)c = Σλ
h
0(Ȧ

h
0)Sc,·I

h. Say φc 6= 0; since

the GEI is active fix h = h(c) with xh0c− eh0c > 0; we set row ( Ȧh0)Sc,· to be
αc10c
λh0

so that

λh0(Ȧ
h
0)Sc,·I

hφ = αc. To preserve the symmetry of Ȧh, we set (ȦhS)·,0c to be
αc1c
λh0

but this

does not appear in ∆̂p. Setting ( Ȧh0)Sc0,· = 0 for rows c0 6= c, we get λh0(Ȧ
h
0)I

hφ = 1cαc.

Doing so for each c < C,Σcλ
h(c)
0 (Ȧ

h(c)
0 )Ih(c)φ = α is arbitrary. Now set Ȧi = 0 for those

i distinct from all the h(c). Then d
dξ ∆̂

pφ = α is arbitrary with all Ȧk symmetric.

By the transversality theorem, generically in endowments and utilities the system of

dim p+dim q+(C−1)+1 equations is transverse in the remaining dim p+dim q+(C−1)

variables. By the preimage theorem, for these every GEI is active and has ∆̂p (a fortiori

∆p) with linearly independent columns.

Lemma 2.10 (Sufficient Independence of Reactions). If H > 1, then generically

in endowments and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and

β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Fix generic endowments from the Activity lemma, a GEI with k̃m 6= 0 for every

coordinate m, and follow remark 2.1. Fix a commodity coordinate m = sc. Pick h(m)

with x
h(m)
m − ehm < 0, let Ṗh(m) be 1m

β(S+1)(C−1)+j
k̃m

in column j, so that k̃0∇̇ equals
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β(S+1)(C−1)+j in coordinate (S + 1)(C − 1) + j, for all j ≤ J . This Ṗh(m) keeps

∆̇p = 0 because h(m) is a net seller in commodity market m. Having dealt with all

asset coordinates via the Ṗh, we turn to the commodity coordinates n ≤ (S + 1)(C − 1).

Let γ0 = ΣṖh0Lh. From display (Sh) it suffices to choose symmetric Ȧh such that

k̃0pΣȦ
hLh + k̃0qγ

0 = β0p or k̃0pΣȦ
hLh = (β0p − k̃0qγ0) ≡ α0. For column n = s0c0 pick h(n)

with x
h(n)
n − ehn < 0 and let Ȧh(n) be zero everywhere but αn

λ
h(n)

s0 k̃n
in coordinate nn,

and Ȧi6=h(n) be zero in column n, so that (k̃0pΣȦ
hLh)n = αn and still ∆̇p = 0 because

h(n) is a net seller in commodity market n. Doing so simultaneously for all n, we get

k̃0pΣȦ
hLh = α0. This keeps the symmetry of the Ȧh and ∆̇p = 0.

2.7 The insurance deficit bound on the rate of improvement

We bound the rate of Pareto improvement by the equilibrium’s insurance deficit, which

vanishes exactly at Pareto optimality. The bound turns out to be the covariance of the

insurance deficit with the marginal purchasing power.

Recall that the welfare impact is v̇h = λh0dmh where dmh is marginal purchasing

power, for some matrices Σdmh = 0. (dmh = (th∗τ − τh) − zhdP.) Converting marginal

welfare from utils to the numeraire at time 0, marginal utility becomes λh

λh0
, which we rewrite

as λh with λh0 = 1. In this common unit,

dW =
1

H
Σλh0dmh the mean welfare impact

Every household’s marginal utility of future income projects to a common point in the asset
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span,

λh1 = δh + c ∈ a⊥ ⊕ a

by the first order condition, being unique only in its insurance deficit δh. If the mean

insurance deficit is δ = H−1Σδh, then the GEI’s insurance deficit is

∆ = [δ1 − δ : ... : δH − δ]S×H

Note that the GEI is Pareto optimal exactly when ∆ = 017. Computing the mean welfare

impact,

H · dW = Σλh0dm
h
0 +Σλ

h0
1 dm

h
1

= Σdmh0 +Σ(δ
h + c)0dmh

1

= 0 +Σδh0dmh
1 + c

0Σdmh
1

= Σδh0dmh
1

= Σ(δh − δ)0dmh
1

= H · cov(∆, dm1)

since Σdmh = 0. The rate of Pareto improvement is the norm of the functional

dW |dv≥0 .

Remark 2.2. At a regular GEI, the mean welfare impact equals the covariance across

households of the insurance deficit and the marginal purchasing power, dW = cov(∆, dm1).

So the rate of Pareto improvement is bounded above by the norm of this covariance.

17Also, a household’s commodity demand is as though asset markets were complete exactly when δh = 0.
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If the tax policy targets only current income, i.e. τh1, τ1 = 0, then dmh1 = −zh1dP1 and

dW = −cov(∆, z1)dP1

The sole control is the future price adjustment, since the GEI sets the insurance deficit and

net trade. In a nutshell, the mean welfare impact of the sole control is minus the covariance

of insurance deficit and net trade.

2.8 Appendix

2.8.1 Derivation of formula for welfare impact

It is standard how Debreu’s smooth preferences, linear constraints, and the implicit func-

tion theorem imply the smoothness of neoclassical0 demand. In fact, the implicit function

theorem implies smoothness of neoclassical demand in a neighborhood b̃ ≈ b ∈ B, if

neoclassical0 demand is active at b ∈ B0. It is standard also that the envelope property fol-

lows from the value function’s local smoothness, which is the case for vh as the composition

of smooth functions:

Dbv
h = DbL(x, y,λ

h) |(xh,yh)(b)

where b = (p, q, a, wh, t) and

L(x, y,λh) ≡ uh(x)− λh0

⎛⎜⎝[p]0x− wh −
⎡⎢⎣ −q0
a0

⎤⎥⎦ y + τh(b0, x, y)t

⎞⎟⎠
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Thus

Dbv
h = −λh0

³
[xh]0 +Dpτ

ht : yh0 +Dqτ
ht : ∗ : −I +Dwhτht : τh

´
where yh0 =

⎡⎢⎣ yh0
0

⎤⎥⎦
If t = 0

Dbv
h = −λh0

³
[xh]0 : yh0 : ∗ : −I : τh

´
So much for demand theory. Recalling regular GEI from the subsection on the Expression

for the Price Adjustment, dP 0 = (dp0, dq0) exists and

wh = [p]0eh + th∗r ⇒

dwh = [eh]0dp+ th∗dr

= ([eh]0 : 0)dP + th∗τ

using dr = τ from the Revenue Impact proposition.

Thus the welfare impact at a regular GEI is

dvh = Dbv
h · db

= −λh0
³
([xh]0 : yh0) : ∗ : −I : τh

´
·
³
dP : 0 : ([eh]0 : 0)dP + th∗τ : I

´
= −λh0

³
([xh]0 : yh0)dP − ([eh]0 : 0)dP − th∗τ + τh

´
= −λh0

³
zh0dP − th∗τ + τh

´

where zh0 ≡ ([xh − eh]0 : yh0) by definition. In sum,

dvh = λh0
¡
(th∗τ − τh)− zhdP

¢
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2.8.2 Aggregate notation

We collect marginal utilities of contingent income, and denote stacking by an upperbar

(λ)0 ≡

⎡⎢⎢⎢⎢⎣
· 0

λh0

0 ·

⎤⎥⎥⎥⎥⎦
H×H(S+1)

z ≡

⎡⎢⎢⎢⎢⎣
·

zh0

·

⎤⎥⎥⎥⎥⎦
H(S+1)×(S+1)(C−1)+J

Thus

dv = (λ)0
³
(th∗τ − τh)h − zdP

´
To visualize the bracket notation [·] defined in footnote 7, it staggers state contingent

vectors:

[p] ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·

ps−1 0

ps

0 ps+1

·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C(S+1)×S+1

2.8.3 Transversality

A function F :M×Π→ N defines another one Fπ :M → N by Fπ(m) = F (m,π). Given

a point 0 ∈ N consider the ”equilibrium set” E = F−1(0) and the natural projection

E → Π, (m,π) 7→ π. A function is proper if it pulls back sequentially compact sets to

sequentially compact sets.

Remark 2.3 (Transversality). Suppose F is a smooth function between finite dimen-

sional smooth manifolds. If 0 is a regular value of F , then it is a regular value of Fπ

for almost every π ∈ Π. The set of such π is open if in addition the natural projection is
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proper.

A subset of Π is generic if its complement is closed and has measure zero. Write

C∗ = C(S + 1). Here the set of parameters is

Π = O ×O0 × (0, ²)

where O,O0 are an open neighborhoods of zero in RC
∗H , R

C∗(C∗+1)
2

H relating to endow-

ments and symmetric perturbations of the Hessian of utilities. We have in mind a fixed

assignment of utilities, which we perturb by O0 × (0, ²). Specifically, given an equilibrium

commodity demand x by some household and ¤ ∈ R
C∗(C∗+1)

2 ,α ∈ (0, ²) we define u¤,α

as

u¤,α(x) ≡ u(x) +
ωα(kx− xk)

2
(x− x)0¤(x− x)

where ωα : R → R is a smooth bump function, ωα |(−α
2
,α
2
)≡ 1 and ωα |R\(−α,α)≡ 0. In

a neighborhood x ≈ x we have

u¤,α(x) = u(x) +
1

2
(x− x)0¤(x− x)

Du¤,α(x) = Du(x) + (x− x)0¤⇒ Du¤,α(x) = Du(x)

D2u¤,α(x) = D2u(x) +¤

So in an α-neighborhood the Hessian changes, by ¤, but the gradient, demand do not.

For small enough α,¤ this utility remains in Debreu’s setting, so neoclassical demand is

defined and smooth when active.

In the Sufficient Independence of Reactions, the path of risk aversion is identified with
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a linear path (¤h,αh)(ξ) ≡ (¤hξ, kx
hk
2 ) for each household, so that d

dξD
2uh¤,α(x) = ¤h.



Chapter 3

Welfare Impact of Financial

Innovation in Incomplete Markets

3.1 Introduction

When asset markets are incomplete, there almost always exist many Pareto improving policy

interventions. When they are complete, the First Welfare Theorem implies there never

exist any. While the Pareto improvements vanish with the completion of asset markets,

the process of completion itself can be Pareto worsening, as shown by Hart (1975) in an

example and by Elul (1995) and Cass and Citanna (1998) generically.

I create a framework for proving the existence of Pareto improving financial innovations,

and for computing them. The framework requires knowledge of how financial innovation

and prices affect aggregate, but not individual, demand.

Financial innovation is Pareto improving only if causes an equilibrium price adjustment,

Grossman (1975). The effect of the price adjustment is to redistribute wealth across states,

beyond the span of the original assets, according to Stiglitz (1982). Conversely, I prove

70
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that if the price adjustment is sufficiently sensitive to risk aversions, then for almost all

endowments and risk aversions, Pareto improving financial innovations exist. I show how

to verify this sensitivity test with standard demand theory, which Turner (2003a) extends

from complete to incomplete markets.

Substitution-free financial innovation in an existing asset passes the sensitivity test, but

not financial innovation in a new unwanted asset, as first introduced by Elul (1995).

This result on financial innovation mirrors exactly Turner (2003b) on taxation. There,

the sensitivity of price adjustment to risk aversion is sufficient for a tax policy generically

to admit Pareto improving taxes. Many different tax policies generically support a Pareto

improvement, because they all pass this one sensitivity test. These policies include (a)

taxes on asset purchases, as in Citanna, Polemarchakis, and Tirelli (2001), (b) lump-sum

taxes on current income plus one flat tax on asset purchases, similar to Citanna, Kajii, and

Villanacci (1998) and to Mandler (2003), (c) asset measurable taxes on capital gains, and

(d) excise taxes on current commodities, similar to Geanakoplos and Polemarchakis (2002),

who emphasize consumption externality over asset incompleteness.

I give a formula for the welfare impact of financial innovation. It requires information

about the individual marginal utilities and net trades, and about the derivative of aggregate,

but not individual, demand with respect to financial innovation and prices. This information

suffices to numerically identify the Pareto improving financial innovations.

To assess the rate of Pareto impairment, I define an agent’s equilibrium insurance deficit,

the marginal utility for contingent income projected to the orthogonal complement of the

asset span. This is zero exactly when her commodity demand is as though markets were
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complete. The rate of Pareto impairment turns out to be quadratic in the insurance deficits,

and affine in the level of trade and in the proximity to price crashes.

Elul (1995) and Cass and Citanna (1998) show that if there are multiple commodities

and sufficient incompleteness, then typically there is a new asset whose introduction leads

to a nearby Pareto worse equilibrium, and one that leads to a nearby Pareto better equilib-

rium. Their idea is to exploit the same culprit of generic constrained Pareto suboptimality

that Geanakoplos and Polemarchakis (1986) identify. The price adjustment that follows

creates, through the value of excess demands, a new asset with payoffs beyond the yield

span. The main complication is that households are free to demand assets anew after the

financial intervention, whereas Geanakoplos and Polemarchakis’ (1986) intervention sets

asset demands, and the demand theory in Turner (2003a) was developed to address this.

We show that the welfare impact of financial innovation in a new unwanted asset is

always rank deficient, in that its rank is smaller than the household heterogeneity. The

rank deficiency implies that such financial innovation fails the sensitivity test, and we show

exactly how.

3.2 GEI model

Households h = 1, ...,H know the present state of nature, denoted 0, but are uncertain

as to which among s = 1, ..., S nature will reveal in period 1. They consume commodities

c = 1, ..., C in the present and future, and invest in assets j = 1, ..., J in the present

only. Each state has commodity C as unit of account, in terms of which all value is

quoted. Markets assign to household h an income wh ∈ RS+1++ , to commodity c < C
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a price p·c ∈ RS+1++ , to asset j a price qj ∈ R and future yield aj ∈ RS . We call

(p·c)C1 = p = (ps·) the spot prices, q = (q
j) the asset prices, (aj) = a = (as) the asset

structure, and w = (wh) the income distribution, P ≡ R
(C−1)(S+1)
++ × RJ .1 The set of

budget variables is

b ≡ (P, a,w) ∈ B ≡ P×RJ×S ×R(S+1)H++

and has some distinguished nonempty relatively open subset B0 ⊂ B.

Demand for commodities and assets d = (x, y) : B0 → R
C(S+1)
++ × RJ is a func-

tion on B0. The demand dh = (xh, yh) of household h depends on own income only,

(xh, yh)(P, a,w, t) = (xh, yh)(P, a,w0, t) if wh = w0h.

An economy (a, e, d) consists of an asset structure a, endowments e, and demands d.

For each household h, endowments specify a certain number ehsc > 0 of each commodity

c in each state s, and demands specify a demand dh. Let Ω be the set of (a, e, d).2

A list (P ; a, e) ∈ P×Ω is a GEI ↔

P
(xh(b)− eh) = 0

P
yh(b) = 0

with b ≡ (P, a, (whs = eh0s ps)hs ) ∈ B0

We say (a, e) ∈ Ω has equilibrium P ∈ P. Under neoclassical assumptions (a, e) ∈ Ω

has an equilibrium3.

1The numeraire convention is that unity is the price of sC,s ≥ 0, which for this reason is omitted from
the description of P. The addition of the sC,s ≥ 0 coordinates, bearing value unity, is denoted p. We use
the notation P = (p, q) ∈ P.

2The appendix spells out the parameterization of demand d.

3Geanakoplos and Polemarchakis (1986).
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3.2.1 Neoclassical demand

Consider the budget function βh : B ×RC(S+1) ×RJ → RS+1

βh(b, x, y) ≡ (p0sxs −whs )Ss=0 −

⎡⎢⎣ −q0
a0

⎤⎥⎦ y
Demand dh = (xh, yh) is neoclassical if there is a utility function u : R

C(S+1)
+ → R

with

u(xh(b)) = max
Xh(b)

u throughout B0 Xh(b) ≡ {x ∈ RC(S+1)+ | βh(b, x, y) = 0, some y ∈ RJ}

Neoclassical welfare is v : B0 → RH , v(b) = (vh(b)) ≡ (uh(xh(b))). The neoclassical

domain is

B0 = {(P, a,w) ∈ B | q ∈ aRS++, a has linearly independent rows}

Debreu’s smooth preferences imply neoclassical demand exists and is smooth.

The interpretation of X is that the cost of consumption x in excess of income w is

financed by some portfolio y ∈ RJ of assets. A portfolio specifies how much of each asset

to buy or sell (yj ≷ 0), and ajs how much value in state s an asset j buyer is to collect,

a seller to deliver.

3.3 Welfare impact of financial innovation

Financial innovation in an asset structure a is a smooth path t = t(ξ) in RJ×S

through t(0) = 0, defining a(ξ) = a + t(ξ) as a new asset structure. We think of
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infinitesimal financial innovation as its initial velocity ṫ = ṫ(0). Suppose the GEI (P, a, e)

is regular in that equilibrium prices are locally a smooth function of the economy, so that

financial innovation lifts locally to a unique path (P (ξ), a+ t(ξ), e) of nearby GEI. Then

welfare is v(b(ξ)) with b(ξ) = (P (ξ), a+ t(ξ), (whs = e
h0
s ps(ξ))

h
s ). Thus financial innovation

impacts welfare only via the budget variables it implies. By the fundamental theorem of

calculus the welfare impact is the integral of Dbvh · ḃ, which by abuse we call the welfare

impact. We compute this product in the appendix, using the envelope theorem for Dbv
h

and the chain rule for ḃ, where the details of the notation appear.

Proposition 3.1 (Envelope). The welfare impact v̇ ∈ RH of infinitesimal innovation

ṫ at a regular GEI is

v̇ = (λ)0ṁ ṁ = y1ṫ|{z} −zṖ|{z}
PRIV ATE PUBLIC

Here (λ)0 collects the households’ marginal utilities of income across states, and ṁ the

impact on their incomes, private and public. The private one is the impact y1ȧ on

portfolio payoffs, and the public one is the impact on the value of their excess demands z

in all nonnumeraire markets, that implied by the impact Ṗ on prices.

Policy targeting welfare must account for the equilibrium price adjustment it causes.

At a regular GEI there is a price adjustment matrix dP , smooth in a neighborhood

of it, such that Ṗ = dP ṫ. Thus the welfare impact is a differential ṫ→ v̇,

dv = (λ)0 (y1 − zdP ) (3.1)
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Note dv = dv(b) is a function of the budget variables, since v itself is.

We consider two types of financial policy, perturbing an existing asset in a substitution-

free way, and perturbing a new unwanted asset, as in Elul (1995) and Cass and Citanna

(1998). Aggregate demand is provoked by the income effect of one policy, and by the

substitution effect of the other. In either case, financial innovation is parameterized by a

vector subspace ṫ ∈ T = T (b) associated with the equilibrium budget variables b :

dv : T (b)→ RH

3.4 Framework for generic existence of Pareto improving in-

novation

We prove the generic existence of Pareto improving innovations, stressing the role of chang-

ing commodity prices over the role of the particular financial policy. Existence follows

directly from a hypothesis on price adjustment. Thus the financial policy is relevant only

insofar as it meets the hypothesis on price adjustment. Then we reinterpret this hypothesis

on dP in terms of primitives, the Reaction of Demand to Prices and the Reaction of

Demand to Policy.

Pareto improving financial innovation exists if there exists a solution to dvṫ À 0. In

turn this exists if dv ∈ RH×dimT (b) has rank H, which in turn forces us to suppose the

innovation parameters outnumber household types dimT (b) ≥ H. The key idea is that if

dv = (λ)0y1 − (λ)0zdP is rank deficient, then a perturbation of the economy would restore

full rank by preserving the first summand but affecting the second one. Namely, if some

economy’s dP is not appropriate, then almost every nearby economy’s dP is.
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We have in mind a perturbation of the households’ risk aversion (D2uh)h, which

affects nothing but dP in the welfare impact dv. Now, to restore the rank the risk

aversion must map into (λ)0zdP richly enough. Since this map keeps (λ)0z fixed, we

require that (λ)0z have rank H and that dP be sufficiently sensitive to risk aversion.

Cass and Citanna (1998) gift us the first requirement:

Fact 3.1 (Full Externality of Price Adjustment on Welfare). Suppose asset incom-

pleteness exceeds household heterogeneity S−J ≥ H > 1. Then generically in endowments

every GEI has (λhsz
h
s1)

h≤H
s≤H−1 invertible.

Fact 3.2. At a regular active GEI, dP is locally a smooth function of risk aversion; the

marginal utilities λi and excess demands zi are locally constant in risk aversion.

For k ∈ R(S+1)(C−1)+J we say that a commodity coordinate is one of the first (S +

1)(C − 1).

Definition 3.1. At a regular active GEI, dP is k-Sensitive to risk aversion if for

every α ∈ Rdim(T ) there is a path of risk aversion that solves k0dṖ = α0.4 It is Sensitive

to risk aversion if it is k-Sensitive to risk aversion for all k with a nonzero commodity

coordinate.

Assumption 3.1 (Generic Sensitivity of dP). If H > 1, then generically in endow-

ments and utilities, at every GEI dP is Sensitive to risk aversion.

This assumption banishes the particulars of the financial innovation policy, leaving only

its imprint on dP. Of course, dP is defined only at regular GEI, so implicitly assumed is

4The appendix spells out a path of risk aversion. Here the dot denotes differentiation with respect to the
path’s parameter.
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that regular GEI are generic in endowments. Lastly, the requirement that dimT (b) ≥ H

with b arising in equilibrium makes sense only with

Assumption 3.2 (Innovation has a dimension). If S−J ≥ H, then there is an integer

dim such that generically in utilities, at every GEI the vector subspace ṫ ∈ T = T (b)

parameterizing financial innovation has dimension dim . Call it gendim.

Theorem 3.1 (Logic of Pareto Improvement). Fix a financial policy and the desired

welfare impact v̇ ∈ RH . Grant the Generic Sensitivity of dP under gendim, S − J ≥

H > 1, C > 1. Then generically in utilities and endowments, at every GEI v̇ is the welfare

impact of some ṫ ∈ T . Hence financial innovation supports a nearby Pareto superior GEI.

Proof. Fix generic endowments, utilities from the lemma, assumptions, and apply transver-

sality to

1

2

3

nonnumeraire excess demand equations

γ0(λ)0 (y1 − zdP ) = 0

γ0γ − 1 = 0

where dv : T (b)→ RH . Suppose endowments and utilities make this transverse to zero and

the natural projection is proper. By the transversality theorem, for generic such, the system

of (dim p+dim q)+gendim+1 equations is transverse to zero in the remaining endogenous

variables, which number dim p+dim q+dim γ. By hypothesis gendim ≥ H = dim γ, so for

these endowments and utilities the preimage theorem implies that no endogenous variables

solve this system—every GEI has dv with rank H.

This is transverse to zero. As is well known, we can control the first equations by

perturbing one household’s endowment. For a moment, say that we can control the second

equations and preserve the top ones. We then control the third equation and preserve the



3.4 Framework for generic existence of Pareto improving innovation 79

top two, by scalar multiples of γ. So transversality obtains if our momentary supposition

on γ0dv holds:

Write k0 ≡ γ0(λ)0z. Differentiating γ0dv with respect to the parameter of a path of

risk aversion,

α0 =def
d

dξ
γ0(λ)0 (y1 − zdP ) = −γ0(λ)0z

d

dξ
(dP ) = −k0dṖ

since λ, z (hence y1) are locally constant by fact 3.2. We want to make α arbitrary, and

we can if dP is k-sensitive, which holds by assumption if k has a nonzero commodity

coordinate. It has: Full Externality of Price Adjustment on Welfare, C > 1, γ 6= 0 imply

γ0(λ)0z is nonzero in the coordinate m = s1 for some s ≤ H − 1.

That the natural projection is proper we omit. (The numeraire asset structure is fixed.)

Insofar as generically supporting a Pareto improvement, a financial policy need only

imply a sensitive price adjustment, and its particulars are irrelevant.

3.4.1 Expression for Price Adjustment

Before we can check whether a particular policy meets the Sensitivity of dP to Risk

Aversion, we need an expression for dP. We express dP in terms of the Reaction of

Demand to Prices and the Reaction of Demand to Policy.

Let an underbar connote the omission of the numeraire in each state, define

d : B0 → R
(C−1)(S+1)
++ ×RJ d = Σdh
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and the aggregate demand of (a, e, d) ∈ Ω

da,e(p, q) ≡ d(p, q, a, (whs = eh0s ps)hs )

with domain Pa,e ≡ {(p, q) ∈ P | (p, q, a, (whs = eh0s ps)hs ) ∈ B0}.5

Now define

∇ ≡ Dp,qda,e the Reaction of Demand to Prices

∆ ≡ Dada,e the Reaction of Demand to Policy
(3.2)

Suppose a path of GEI (p(ξ), q(ξ), a+ t(ξ), (whs = e
h0
s ps(ξ))

h
s ) through a GEI. Then

da,e(P ) =

⎡⎢⎣ P eh

0

⎤⎥⎦
is an identity in the path’s parameter ξ. Differentiating with respect to it,

∇Ṗ +∆ṫ = 0

A GEI is regular if ∇ is invertible. By the implicit function theorem, at a regular GEI

equilibrium prices P are locally a smooth function of the financial innovation t(ξ).

Proposition 3.2 (Price Adjustment). At a regular GEI the Price Adjustment to infin-

itesimal financial innovation exists,

dP = −∇−1∆ (dP )

5Pa,e is open, as the preimage by a continuous function of the open B0. Recall the notation P 0 = (p0, q0).
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where the Reactions ∇,∆ are defined in (3.2).

3.4.2 Primitives for the Sensitivity of Price Adjustment to Risk Aversion

Given the Logic of Pareto improvement, we want to check whether a policy meets the

Generic Sensitivity of dP . We provide primitives for the Sensitivity of dP , thanks to

expression (dP )6:

dṖ = −∇−1∆̇+∇−1∇̇∇−1∆

Recall equation k0dṖ = α0 from definition 2.1. If ∆̇ = 0 and k̃0 ≡def k0∇−1 then the

equation reads k̃0∇̇∇−1∆ = α0. If ∆ has rank gendim then there is a solution β to

β0∇−1∆ = α0 so it suffices to solve k̃0∇̇ = β0. Thus dP is k-Sensitive if (1) ∆ has

rank gendim, (2) k̃ is nonzero everywhere, (3) whenever K̃ is nonzero everywhere and

β ∈ R(S+1)(C−1)+J , there is a path of risk aversion that solves ∆̇ = 0, K̃ 0∇̇ = β0. (Take

k̃ = K̃.) Thus Generic Sensitivity of dP obtains (independently of the k̃ defined) if:

Lemma 3.1 (Activity). If H > 1, generically in endowments every GEI is regular.7

Assumption 3.3 (Full Reaction of Demand to Policy). If C > 1, generically in

utilities and endowments, at every GEI ∆ has rank gendim .

Lemma 3.2 (Mean Externality of Price Adjustment on Welfare is Regular).

Generically in utilities, at every regular GEI, whenever k is nonzero in some commodity

coordinate, k̃0 ≡ k0∇−1 is nonzero everywhere.

6Applying the chain rule to JJ−1 = I gives d
dξ
J−1 = −J−1( d

dξ
J)J−1.

7We do not argue this standard result. For these endowments, both ∆ and dP are defined.
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Assumption 3.4 (Sufficient Independence of Reactions). If H > 1, then generically

in endowments and utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and

β ∈ R(S+1)(C−1)+J , at every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

These primitives for the Generic Sensitivity of dP and the Logic of Pareto Improvement

yield

Theorem 3.2 (Test for Pareto Improvement). Fix a financial policy and the desired

welfare impact v̇ ∈ RH . Say the policy passes the Full Reaction of Demand to Policy and

the Sufficient Independence of Reactions under gendim, S − J ≥ H > 1, C > 1. Then

generically in utilities and endowments, at every GEI v̇ is the welfare impact of some

ṫ ∈ T . Hence financial innovation supports a nearby Pareto superior GEI.

Next we illustrate how to check whether a financial policy passes this test via demand

theory in incomplete markets, as developed by Turner (2003a). We show that substitution

free financial innovation passes this test, and so generically supports Pareto improvement,

owing to the unifying logic of a sensitive price adjustment. In contrast, financial innovation

in a new unwanted asset never passes this test. At a GEI ∇ will turn out to be independent

of the policy, so we will verify the lemma on the Mean for one and all policies.

3.5 Summary of demand theory in incomplete markets

We must check whether each policy meets the Full Reaction of Demand to Policy and the

Sufficient Independence of Reactions. For this we report the theory of demand in incomplete

markets as developed by Turner (2003a). The basic idea is to use decompositions of ∆,∇

in terms of Slutsky matrices, and then to perturb these Slutsky matrices by perturbing risk
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aversion, while preserving neoclassical demand at the budget variables under consideration.

We stress that this theory is applied to, but independent of, equilibrium.

3.5.1 Slutsky perturbations

Define H : RC
∗×C∗ → RC

∗+J+(S+1)×C∗+J+(S+1) as

H(D) =

⎡⎢⎢⎢⎢⎣
D 0 −[p]

0 0 W

−[p]0 W 0 0

⎤⎥⎥⎥⎥⎦
where p,W = [−q : a] ∈ RJ×S+1 of rank J are given, and C∗ = C(S + 1). In other

notation,

H(D) =

⎡⎢⎣ M(D) −ρ
−ρ0 0

⎤⎥⎦ where M(D) =

⎡⎢⎣ D 0

0 0

⎤⎥⎦ , ρ =
⎡⎢⎣ [p]

−W

⎤⎥⎦
In showing the differentiability of demand, the key step is the invertibility of H(D2u).

Slutsky matrices are H(D2u)−1. If D is symmetric, so are H(D),H(D)−1 when

defined. Thus we write

H(D)−1 =

⎡⎢⎣ S −m

−m0 −c

⎤⎥⎦
where S, c are symmetric of dimensions C∗+J, S+1 and m = (mx,my) is C∗+J×S+1.8

A Slutsky perturbation is of the form ∇ = H(D)−1 −H(D2u)−1, for some symmetric

D ≈ D2u that is close enough for the inverse to exist. A Slutsky perturbation is a

perturbation of Slutsky matrices rationalizable by some perturbation of the Hessian of

8 It turns out that m = Dwd.
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utility. Being symmetric, we write

∇ =

⎡⎢⎣ Ṡ −ṁ

−ṁ0 −ċ

⎤⎥⎦
and view a Slutsky perturbation as a triple Ṡ, ṁ, ċ. We identify Slutsky perturbations,

without reference to the inversion defining them, in terms of independent linear constraints

on ∇ :

on Ṡ ρ0Ṡ = 0 and Ṡ is symmetric

on ṁ ρ0ṁ = 0 and ṁxW
0 = 0

on ċ ċW 0 = 0 and ċ is symmetric

(constraints)

Theorem 3.3 (Identification of Slutsky perturbations, Turner 2003a). Given u

smooth in Debreu’s sense and b in B0 with t = 0, consider the Slutsky matrices

H(D2u)−1. Every small enough Slutsky perturbation ∇ satisfies (constraints). Conversely,

every small enough perturbation ∇ that satisfies (constraints) is Slutsky: H(D2u)−1 +∇

is the inverse of H(D) for some D that is negative definite and symmetric.

We use only Slutsky perturbations with ṁ, ċ = 0 by choosing Ṡ as follows. A

matrix Ṡ ∈ R(C−1)(S+1)+J×(C−1)(S+1)+J is extendable in a unique way to a matrix Ṡ ∈

RC
∗+J×C∗+J satisfying ρ0Ṡ = 0; we call Ṡ the extension of Ṡ. It is easy to verify that

if Ṡ is symmetric, so is its extension. In sum, any symmetric Ṡ defines a unique Slutsky

perturbation with ṁ, ċ = 0.

Now we turn to decompositions of ∆,∇ in terms of Slutsky matrices, which in turn make

up the inverse the Hessian H matrix. One implication is that knowledge of the Hessian

suffices to compute the derivatives of demand functions, enabling numerical comparative
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statics. Another implication is that with the above identification of Slutsky perturbations,

it is possible to perturb demand functions directly, via the Slutsky matrices appearing

in the decompositions. The Slutsky approach to genericity is alternative to the first order

conditions approach of Cass, Citanna, and Villanacci (1998), and avoids implicitly reworking

demand theory at every argument.

3.5.2 Decomposition of demand with respect to prices

The relevance of Slutsky perturbations is that they allow us to perturb demand functions

directly, while preserving their neoclassical nature, without having to think about utility.

This is because Slutsky matrices appear in the decomposition of demand Dp,qd at b : 9

Dp,qd
h = ShLh+ −mh · ([xh]0 : yh0) (dec)

Here Lh+ a diagonal matrix displaying the marginal utility of contingent income

Lh+ ≡

⎡⎢⎣ Lh 0

0 λh0IJ

⎤⎥⎦ Lh ≡

⎡⎢⎢⎢⎢⎣
· 0

λhsIC−1

0 ·

⎤⎥⎥⎥⎥⎦
9Gottardi and Hens (1999) have this in the case C = 1. They do not address or define Slutsky pertur-

bations.
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mh = Dwhd
h, and ([xh]0 : yh0) is the transpose of d

h : 10

[xh]0 =

⎡⎢⎢⎢⎢⎣
· 0 0

0 xh0s 0

0 0 ·

⎤⎥⎥⎥⎥⎦
(S+1)×(C−1)(S+1)

yh0 =

⎡⎢⎣ yh0
0

⎤⎥⎦
S+1×J

Writing (eh0s ps)s as [e
h]0p, we have Dp,q[eh]0p = ([eh]0 : 0), so from (3.2) we have

∇ = ΣDp,qdh +Dwhdh · ([eh]0 : 0)

Inserting decomposition (dec),

∇ = ΣShLh+ −Dwhdh · ([xh − eh]0 : yh0)

Writing zh0 ≡ ([xh − eh]0 : yh0) this reads

∇ = ΣShLh+ −Dwhdh · zh0 (∇)

This decomposition of the aggregate demand of (a, e, t, t∗) ∈ Ω generalizes Balasko 3.5.1

(1988) to incomplete markets.

One implication of the decomposition is that ∇ is independent of the policy.

Proof that Mean Externality of Price Adjustment on Welfare is Regular. See Turner (2003b).

10We view p as one long vector, state by state, and p, q as an even longer one; (∗ : #) denotes
concatenation of ∗,#.
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3.5.3 Decomposition of demand with respect to insurance

There is another decomposition of demand Dad at b with t = 0 :

Dad
h = Sh

⎡⎢⎣ 0

Λh1

⎤⎥⎦−mh · yh1
Here Λh1 is a matrix displaying the marginal utility of contingent income

Λh1 ≡ [λh1IJ : ... : λsIJ ]J×JS

and yh1 is a repeated display of yh : 11

yh1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · 0

y0 · 0

· · ·

0 · y0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
S+1×JS

Specializing to a single asset’s payoff, this reads

Dajd = ΣS
h
jλ
h0
1 −mh1 · yhj (Dajd)

where Shj is column (C − 1)(S + 1)+ j of Sh.

11We view a as one long vector, state by state.
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3.5.4 Preparation for genericity

We investigate for each policy the Full Reaction of Demand to Policy and the Sufficient

Independence of Reactions. In computing

∆ ≡ Dada,e

we use the following notation for Sh, where Ah, Bh are symmetric of dimensions (C −

1)(S + 1), J :

Sh = [Shp : S
h
q ] =

⎡⎢⎣ Ah Ph

Ph0 Bh

⎤⎥⎦ (Sh)

We can perturb Ph arbitrarily and get a Slutsky perturbation.

Remark 3.1. In checking the Sufficient Independence of Reactions, all marginal utilities

λi and excess demands z are automatically fixed by the Ṡ
h
Slutsky perturbations. Their

only effect is on the Jacobian ∇̇ = ΣṠhLh+ in (∇). Also, we solve k̃0∇̇ = β0 piecemeal,

solving k̃0∇̇p = β0p, k̃
0∇̇ = β0q by splitting β0 = (β0p,β

0
q), ∇̇ = [∇̇p : ∇̇q].

3.6 The insurance deficit

In equilibrium, every household’s marginal utility of future income projects to a common

point in the asset span12

λh1
λh0
= uh + c ∈ a⊥ ⊕ span(a)

12This is the same as the decomposition λh1 ∈ a⊥+ ⊕ span(a+) by definition of new unwanted asset.
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We summarize the insurance deficit by

U ≡
∙
... uh ...

¸
S×H

Lemma 3.3 (Insurance deficit in general position). If S − J ≥ H then generically

in endowments, at every GEI every H rows of the insurance deficit U are linearly

independent.13

Proof. Fix K ⊂ {1, ..., S} with cardinality H, and apply transversality to

nonnumeraire excess demand equations

π0U = 0

π0KπK − 1 = 0

where πS\K = 0. Endowments make this transverse to zero. The burden of the argument

is to control the second equations independently of the others. Given t ∈ RH we want

π0u̇h = th, where u̇h ≡ d
dξ Pr a⊥

³
λh1
λh0

´
, via appropriate λ̇

h
, i.e. λ̇

h
must preserve first

order conditions λ̇
h
0q = aλ̇

h
1. Any λ̇

h
is implementable by an endowment perturbation

ėh = ẋh as we show last. If λ̇
h
0 = 0 and 0 = aλ̇

h
1 then first order conditions remain and

∂

∂·

Ã
λh1
λh0

!
=

λ̇
h
1

λh0
− λh1

λh20
λ̇
h
0 =

λ̇
h
1

λh0
so u̇h ≡ ∂

∂· Pr a⊥
Ã
λh1
λh0

!
= Pr a⊥

λ̇
h
1

λh0
=

λ̇
h
1

λh0

So set λ̇
h
0 = 0 and seek λ̇

h
1 with 0 = aλ̇

h
1,π

0 λ̇
h
1

λh0
= th. To find λ̇

h
1, say πs 6= 0, s ∈ K

and set λ̇
h
K to λ̇

h
s =

λh0 t
h

πs
, λ̇
h
t6=s = 0 for t ∈ K so that, thanks to πS\K = 0,

π0 λ̇
h
1

λh0
= th regardless of λ̇

h
S\K . Having set λ̇

h
K , define λ̇

h
S\K as a solution to 0 = aλ̇

h
1 =

13This requires that every J columns of a are linearly independent.
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aK λ̇
h
K + aS\K λ̇

h
S\K , which exists since these are J equations in |S\K| = S − H ≥ J

variables and every J columns of a are linearly independent.

To implement this λ̇
h
, solve D2uh · ẋh = (psλ̇

h
s )s for ẋh, possible by the negative

definiteness of D2uh and the inverse function theorem. Implement this ẋh by setting

ėh = ẋh, while preserving the other equations.

By the transversality theorem, generically in endowments, the system is transverse to

zero in the remaining variables. These are dim p + dim q + dimπ variables and dim p +

dim q +H + 1 equations, with dimπ = H, so the associated zero set is a submanifold of

dimension −1, hence empty. For these endowments EK , the K rows of U are linearly

independent. The intersection of the generic EK over the finitely many such K is generic

still.

3.7 Substitution free innovation in an existing asset

Substitution free innovation in an existing asset satisfies λh01 ȧ
j = 0. We parameterize

financial innovation by T (b) = span(a, U)⊥. Note, ȧj ∈ T (b)⇒ λh01 ȧ
j = 0.

Substitution free innovation provokes only the income effect on demand; formula (Dajd)

implies

∆ · ȧj = Dajd · ȧj = −Σmh
1 · yhj ȧj

That is,

∆ = −Σmh1 · yhj on T (b)

Corollary 3.1. Fix the desired welfare impact v̇ ∈ RH . Assume S − J ≥ 2H;H,C > 1.

Then generically in utilities and endowments, at every GEI v̇ is the welfare impact of
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some ṫ ∈ T. Hence there is a nearby Pareto superior GEI with substitution free innovation

in an existing asset.

Proof. The next lemmas with gendim = S − J −H and the hypothesis S − J −H ≥ H

enable theorem 3.2.

Lemma 3.4 (Generic Dimension of Innovation). If S−J ≥ H, then gendim = S−

J −H. That is, generically in endowments, at every GEI the vector subspace ṫ ∈ T = T (b)

parameterizing financial innovation has dimension S − J −H.

Proof. Lemma 3.3 says that generically in endowments U has rank H, and then span(a, U)0s

dimension is J +H.

Lemma 3.5 (Full Reaction of Demand to Policy). If C > 1, S − J ≥ H > 1,

generically in utilities and endowments, at every GEI ∆ has rank gendim .

Proof. We recall ∆ = −Σmh
1 · yhj has domain k ∈ T (b) = span(a, U)⊥, and take for

granted the very standard result that with H > 1 generically in numeraire endowments,

at every GEI asset j is traded. Taking generic endowments from this result and the

previous lemma’s, we apply transversality to

nonnumeraire excess demand equations³
Σ∇h · yhj

´
k = 0

k0k − 1 = 0

where ∇hS×S selects from mh
1 ∈ RS(C−1)×S only the rows of commodities (s1)s≥1. Utilities

make this transverse to zero. The burden of the argument is to control the middle equations

independently of the top and bottom ones. Say ks≥1 6= 0; we want to perturb arbitrarily
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column s of the parenthetical sum, as d
dξ

³
Σ∇h · yhj

´
= a

ks
, and no other. There is h∗ with

yh
∗
j 6= 0. From the identification of Slutsky perturbations 3.3, we may perturb arbitrarily

any row of mh
∗
x , hence any row of ∇h

∗
, subject only to ṁh∗

x W
0 = 0, where W = [−q : a].

So perturb it as ∇̇h
∗

s = [0 : as
yhj
k0] so that d

dξ

³
Σ∇hs · yhj

´
k = d

dξ

³
∇̇h

∗

s y
h∗
j

´
k = as(k

0k) = as

is arbitrary. Indeed, ∇̇h
∗

s W
0 = 0 since k ∈ T (b) ≡ span(a, U)⊥ ⊂ a⊥.

By the transversality theorem, generically in endowments and utilities, this system is

transverse to zero in the remaining endogenous variables. These number dim p + dim q +

gendim and there are dim p + dim q + S equations, and gendim = S − J − H, so

by the preimage theorem, for these endowments and utilities the associated solution set is

empty—every GEI has Σ∇h · yhj (a fortiori ∆) with linearly independent columns.

Lemma 3.6 (Sufficient Independence of Reactions). Generically in endowments and

utilities, whenever k̃ ∈ R(S+1)(C−1)+J is nonzero everywhere and β ∈ R(S+1)(C−1)+J , at

every GEI there is a path of risk aversion that solves ∆̇ = 0, k̃0∇̇ = β0.

Proof. Fix such a k̃, and follow remark 2.1. Since ∆ = −Σmh
1 · yhj is independent

of the substitution matrices Sh, which is all we perturb, automatically ∆̇ = 0 and

∇̇ = ΣṠ
h
Lh+. Left to solve k̃0∇̇ = ΣṠ

h
Lh+ = β0, we set Ṡ

h6=H
= 0 and so seek to solve

k̃0Ṡ
H
= β0

¡
LH+
¢−1 ≡ β̃

0
. This is made trivial by a diagonal hence symmetric Ṡ

H
, with

Ṡ
H
mm =

β̃m
k̃m
.

3.8 Innovation in a new unwanted asset

Elul (1995) introduces innovation in a new unwanted asset aJ+1 ∈ RS . ”New” means

that it is orthogonal to the existing ones, aaJ+1 = 0, and ”unwanted” that it is orthogonal
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to marginal utilities λh01 a
J+1 = 0 at the GEI. For the economy with this extended asset

structure a+ Elul then defines a GEI. In this extended GEI, the commodities and original

assets retain their prices but the new asset is free. It is a GEI because yhJ+1 = 0, q
J+1 = 0

satisfy the budget identity, and λh01 a
J+1 = 0 the first order conditions, letting households

maximize utility by retaining the original demands and ignoring the new asset. Welfare

remains the same.

We summarize the marginal substitutability of the original assets for the new one

by

S∗ ≡
∙
... ShJ+1 ...

¸
(C−1)(S+1)+J×H

and the marginal utilities for current income by

λ0 =

⎡⎢⎢⎢⎢⎣
λ10 0

·

0 λH0

⎤⎥⎥⎥⎥⎦
H×H

To show that innovation in a new unwanted asset generically supports a Pareto improve-

ment, first we sharpen the welfare impact formula, assuming an extended GEI that is

regular.

3.8.1 Welfare impact of innovation in a new unwanted asset

Theorem 3.4 (Welfare impact of innovation in a new unwanted asset). If the

extended GEI is regular, the welfare impact of innovation ṫJ+1 ∈ RS is

v̇ = (λ)0z∇−1S∗λ0U 0Uω
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where Uω = PrU ṫ
J+1 is the orthogonal projection to the insurance deficit span(U).

Corollary 3.2 (Target insurance deficit). No achievable welfare impact v̇ is lost by

restricting innovation to the insurance deficit, ṫJ+1 ∈ T (b) ≡ span(U). Parameterizing

ṫJ+1 = Uω, dv : T (b)→ RH is

dv = (λ)0z∇−1S∗λ0U 0U (3.3)

We recognize the determinants of the welfare impact. It increases linearly in the excess

demands z, in the proximity ∇−1 of the GEI to singularity, and in the marginal sub-

stitutability S∗ of the original assets for the new one, but quadratically in the insurance

deficit U. If any determinant is zero, the welfare impact is zero. Also, the welfare impact is

zero with equal marginal utilities (say, to λ∗), since 10dv = −λ∗010z∇−1S∗λ0U 0U = 0 by

market clearing 10z = 0.

Proof. Regularity yields formulas 3.1, dP , Dajd. They would simplify to

v̇ = −(λ)0zdP = (λ)0z∇−1DaJ+1d · ṫJ+1

DaJ+1d =
P
ShJ+1λ

h0
1

(*)

if y1ȧ = 0, y
h
J+1 = 0, equalities which do hold. For the last asset is not demanded in the

extended GEI, yhJ+1 = 0, and financial innovation is only in the last asset, ȧj = 0 for

j ≤ J.

By (*) the welfare impact v̇ is additive in the financial innovation ṫJ+1, so we decompose

ṫJ+1 = Uω + na + n⊥ ∈ span(U)⊕ span(a+)⊕ span(a+, U)⊥
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For every household λh1 ∈ span(U) ⊕ span(a+), so that λh01 ṫ
J+1 = λh01 (Uω + na) and

marginal demand

DaJ+1d · ṫJ+1 = DaJ+1d · Uω +DaJ+1d · na

Since the welfare impact v̇ is additive in marginal demand, it is the sum of the welfare

impacts of the separate financial innovations Uω and na; they are (λ)0z∇−1S∗λ0U 0Uω

and 0, as we show next; therefore, v̇ = (λ)0z∇−1S∗λ0U 0Uω + 0.

Claim on Uω: The welfare impact of financial innovation ṫJ+1 = Uω is (λ)0z∇−1S∗λ0U 0Uω.

Given formula (*), it suffices to show DaJ+1d · Uω = S∗λ0U
0Uω. Note, λh01 Uω =

λh0(u
h + c)0Uω = λh0u

h0Uω so that

DaJ+1d · Uω =
X

ShJ+1λ
h
0u
h0Uω = S∗λ0U

0Uω

Claim on na: The welfare impact of financial innovation ṫJ+1 ∈ span(a+) is zero.

At a regular GEI, by definition v̇(na) is the derivative at t = 0 of welfare v(t), along

any path of GEI (p, q, a, e)(t) with two properties: at t = 0 it passes through Elul’s

extended equilibrium with velocity ȧj = 0 for j ≤ J, ṫJ+1 = na, ė = 0. Consider the path

(a(t), e(t)) with aj(t) ≡ aj for j ≤ J, aJ+1(t) ≡ aJ+1+tna, e(t) = e, where (a, e) is Elul’s

extended economy. Define (p(t), q(t)) in the obvious way to make (p(t), q(t), a(t), e(t))

the desired path. Retain p(t) = p, qj(t) = qj for j ≤ J as in Elul’s extended GEI, and

set qJ+1(t) = tΣj≤Jqjφj where na = Σj≤Jajφ
j + aJ+1φJ+1 is the unique expression of

na ∈ span(a+). (The linearity of pricing q̃ at GEI requires q̃(aJ+1(t)) = q̃(aJ+1+ tna) =

(1 + tφJ+1)q̃(aJ+1) + tq̃(Σj≤Jajφ
j) = 0 + tΣj≤Jqjφ

j , given that the unwanted asset aJ+1

is free.) Then commodity prices, yield span, and general equilibrium incomes are the same
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as in the extended GEI; therefore, budget sets, commodity demands, and welfare v(t) are

the same. In particular, commodity markets clear; by Walras’ law and the full rank of the

extended asset structure, asset markets clear too. So this is not only a GEI, but one with

v̇(t) ≡ 0 identically and the two properties in the definition of v̇(na).

The obvious and lengthy part is the second claim, which is moot for the corollary.

Application: Symmetric equilibria experience opposite welfare impacts

Is there a financial innovation ṫJ+1 that is always Pareto improving? Does it have a

magical, numerical description? No! Not even if we specify the utilities, equilibrium prices,

asset structure, commodity demands. We produce two GEI, which are equal in all these

respects, such that essentially any innovation ṫJ+1 is Pareto improving at one if and only

if it is Pareto impairing at the other. The trick is to switch the sign of z in formula (3.3).

Two GEI+,GEI− are symmetric if their prices, asset structures, and commodity de-

mands are common, and if their excess demands are the negative of one another, by every

household in every of the (S +1)C + J markets. An innovation is definite if v̇h 6= 0 for

every h.

Lemma 3.7 (Opposite welfare impacts). Suppose at symmetric extended GEI that the

common S = ΣShLh+ is invertible. If Dwdz ≈ 0 then v̇h+ and v̇h− have opposite signs,

given any definite innovation. So it Pareto improves one GEI if and only if it is Pareto

impairs the other.

Proof. Considering formula (3.3), the determinants λ, S∗, U are functions of the common

prices, asset structure, and commodity demands, as are the S = ΣShLh+ and Dwd that
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appear in the decomposition of the Jacobian (∇). So if Dwdz ≈ 0 where z is one of the

excess demands, then ∇+ ≈ S ≈ ∇− and ∇−1+ ≈ S−1 ≈ ∇−1− , so that Dωv− ≈ −Dωv−

since excess demands differ by a sign.

The lemma makes the nonexistence of an always-Pareto improving financial innovation

essentially equivalent to the existence of symmetric extended GEI with Dwdz ≈ 0, a

triviality.

Lemma 3.8 (Constructing symmetric GEI). A no trade GEI and z ∈ R[(S+1)(C−1)+J ](H−1) ≈

0 define symmetric GEI where the nonnumeraire net trade of h < H is zh = ±zh.

Proof. At a no trade GEI (p, q, a, e) write x, y for the commodity and asset demands.

For h < H define nonumeraire endowments as eh+ ≡ xh − zhnonasset, eh− ≡ xh + zhnonasset,

and define numeraire endowments uniquely by the requirement that, after liquidation of

portfolios yh+ = zhasset, y
h
− = −zhasset, the final income equals the cost of consuming xh.

It is easy to check that (p, q, a, e+), (p, q, a, e−) are symmetric GEI with the claimed net

trades.

The lemma and proposition reveal a whole neighborhood of no trade GEI that are

counterexamples to the existence of a financial innovation that is Pareto improving at both

GEI, let alone every GEI.

Proposition 3.3 (Neighborhood of opposing welfare impacts). Generically in util-

ities, there is an open neighborhood of no trade GEI, closed under symmetry, such any

symmetric pair experiences a welfare impact of opposite sign, household by household, after

any definite innovation.
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Proof. A standard argument shows that generically in utilities, any no trade GEI has S =

ΣShLh+ invertible. Constructing symmetric GEI as in lemma 3.8 yields the neighborhood,

closed under symmetry, and then the conclusion about any symmetric pair follows from

lemma 3.7.

3.8.2 Deficiency of the welfare impact

The welfare impact of financial innovation in a new unwanted is always rank deficient. This

is not clear except by an application of formula (3.3) and the Slutsky decomposition of

demand.

The reason is that the domain of financial innovation, T (b) = soan(U), has rank H

and yet there is one financial innovation which has zero welfare impact. This financial

innovation changes no prices other than the new unwanted asset’s, and then in equilibrium

this price adjusts back to zero, leaving the budget variables hence welfare unchanged.

It follows that financial innovation must not imply a price adjustment generically sensi-

tive to risk aversions. It is easy to see this directly. Indeed, the price adjustment is always

equal to the ”negative” of this financial innovation, and this equality is independent of risk

aversions. Further, we can understand this insensitivity as a violation of one of the primitive

conditions sufficing for sensitivity, namely, a violation of the independence of the Reactions

to Policy and to Prices—one Reaction is the inverse of the other.

Corollary 3.2 states that

dv = (λ)0z∇−1S∗λ0U 0U

where by lemma 3.3 U has rank H, generically in endowments when S − J ≥ H. So
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there exists ω ∈ RH such that 1 = U 0Uω ∈ RH . We show last that the last column of

∇ is precisely S∗λ01. It follows ∇−1S∗λ0U 0Uω = ∇−1S∗λ01 = 1(S+1)(C−1)+J+1 equals a

standard unit vector with support in the last coordinate, corresponding to the new unwanted

asset. Thus

dvω = (λ)0z1(S+1)(C−1)+J+1

= (λ0)

⎡⎢⎢⎢⎢⎣
y1J+1 0

·

0 yHJ+1

⎤⎥⎥⎥⎥⎦
= (λ0)0 = 0

using that yhJ+1 = 0 at Elul’s extended GEI.

It would seem that redefining the extended GEI as in Cass and Citanna (1998) would

circumvent this rank deficiency of the welfare impact. There, the new asset pays off zero in

every state, and the holdings yhJ+1 are arbitrary—not zero as above—but for the last agent

h = H. In our framework, we cannot appeal to this exact trick, because the asset structure

becomes singular and the smoothness of demand from the implicit function theorem is at

stake. Yet we can borrow the spirit of this trick and start theorem 3.1 with yhJ+1 being

arbitrary but for one household, by first changing numeraire endowments. Still, an argument

identical to the above shows dv is rank deficient on the same domain T (b) = span(U),

which by corollary 3.2 is not a restriction of the welfare impact.

Finally, we check the last column of ∇ is S∗λ01. Recall decomposition (dec)

∇ = ΣShLh+ −Dwhdh · zh0



3.9 Appendix 100

where zh0 ≡ ([xh − eh]0 : yh0). The last column of Lh+ is the standard basis vector

λh01(S+1)(C−1)+J+1 scaled by λh0 , so the last column of S
hLh+ is ShJ+1λ

h
0 , which added

across agents gives S∗λ01, by definition of S∗. Further, the last column of zh0 is the

last column of yh0 , which consists of zeros and of the demand for the new unwanted asset,

which is zero too at the extended GEI. So the last column of ∇ is S∗λ01 + 0 = S∗λ01.

3.9 Appendix

3.9.1 Notation

An underbar connotes the omission of the sC, s ≥ 0 coordinates, as in xh; an upperbar

on a price p connotes the addition of sC coordinates with value psC = 1, s ≥ 0.

When differentiating with respect to p, q, a,w, we parameterize these as long vectors:

p =

⎡⎢⎢⎢⎢⎣
·

ps

·

⎤⎥⎥⎥⎥⎦
(C−1)(S+1)×1

q =

⎡⎢⎢⎢⎢⎣
·

qj

·

⎤⎥⎥⎥⎥⎦
J×1

a =

⎡⎢⎢⎢⎢⎣
·

as

·

⎤⎥⎥⎥⎥⎦
SJ×1

w =

⎡⎢⎢⎢⎢⎣
·

wh

·

⎤⎥⎥⎥⎥⎦
H(S+1)×1

3.9.2 Derivation of formula for welfare impact

It is standard how Debreu’s smooth preferences, linear constraints, and the implicit function

theorem imply the smoothness of neoclassical demand. It is standard also that the envelope

property follows from the value function’s local smoothness, which is the case for vh as

the composition of smooth functions:

Dbv
h = DbL(x, y,λ

h) |(xh,yh)(b)
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where b = (p, q, a, wh) and

L(x, y,λh) ≡ uh(x)− λh0

⎛⎜⎝[p]0x− wh −
⎡⎢⎣ −q0
a0

⎤⎥⎦ y
⎞⎟⎠

Thus

Dbv
h = −λh0

³
[xh]0 : yh0 : −yh1 : −I

´
where yh0 =

⎡⎢⎣ yh0
0

⎤⎥⎦ , yh1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · 0

yh0 0

·

0 yh0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
So much for demand theory. Recalling regular GEI from the subsection on the Expression

for the Price Adjustment, dP 0 = (dp0, dq0) exists and

wh = [p]0eh ⇒

dwh = [eh]0dp

= ([eh]0 : 0)dP

Thus the welfare impact at a regular GEI is

dvh = Dbv
h · db

= −λh0
³
([xh]0 : yh0) : −yh1 : −I

´
·
³
dP : ISJ : ([e

h]0 : 0)dP
´

= −λh0
³
([xh]0 : yh0)dP − yh1 − ([eh]0 : 0)dP

´
= −λh0

³
zh0dP − yh1

´
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where zh0 ≡ ([xh − eh]0 : yh0) by definition. In sum,

dvh = λh0
¡
yh1 − zhdP

¢
3.9.3 Aggregate notation

We collect marginal utilities of contingent income, and denote stacking by an upperbar

(λ)0 ≡

⎡⎢⎢⎢⎢⎣
· 0

λh0

0 ·

⎤⎥⎥⎥⎥⎦
H×H(S+1)

y1 =

⎡⎢⎢⎢⎢⎣
·

yh1

·

⎤⎥⎥⎥⎥⎦
H(S+1)×SJ

z ≡

⎡⎢⎢⎢⎢⎣
·

zh0

·

⎤⎥⎥⎥⎥⎦
H(S+1)×(S+1)(C−1)+J

Thus

dv = (λ)0 (y1 − zdP )

To visualize the bracket notation [·] defined in footnote 7, it staggers state contingent

vectors:

[p] ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

·

ps−1 0

ps

0 ps+1

·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C(S+1)×S+1

3.9.4 Transversality

A function F :M×Π→ N defines another one Fπ :M → N by Fπ(m) = F (m,π). Given

a point 0 ∈ N consider the ”equilibrium set” E = F−1(0) and the natural projection

E → Π, (m,π) 7→ π. A function is proper if it pulls back sequentially compact sets to

sequentially compact sets.
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Remark 3.2 (Transversality). Suppose F is a smooth function between finite dimen-

sional smooth manifolds. If 0 is a regular value of F , then it is a regular value of Fπ

for almost every π ∈ Π. The set of such π is open if in addition the natural projection is

proper.

A subset of Π is generic if its complement is closed and has measure zero. Write

C∗ = C(S + 1). Here the set of parameters is

Π = O ×O0 × (0, ²)

where O,O0 are an open neighborhoods of zero in RC
∗H , R

C∗(C∗+1)
2

H relating to endow-

ments and symmetric perturbations of the Hessian of utilities. We have in mind a fixed

assignment of utilities, which we perturb by O0 × (0, ²). Specifically, given an equilibrium

commodity demand x by some household and ¤ ∈ R
C∗(C∗+1)

2 ,α ∈ (0, ²) we define u¤,α

as

u¤,α(x) ≡ u(x) +
ωα(kx− xk)

2
(x− x)0¤(x− x)

where ωα : R → R is a smooth bump function, ωα |(−α
2
,α
2
)≡ 1 and ωα |R\(−α,α)≡ 0. In

a neighborhood x ≈ x we have

u¤,α(x) = u(x) +
1

2
(x− x)0¤(x− x)

Du¤,α(x) = Du(x) + (x− x)0¤⇒ Du¤,α(x) = Du(x)

D2u¤,α(x) = D2u(x) +¤

So in an α-neighborhood the Hessian changes, by ¤, but the gradient, demand do not.



3.9 Appendix 104

For small enough α,¤ this utility remains in Debreu’s setting, so neoclassical demand is

defined and smooth when active.

In the Sufficient Independence of Reactions, the path of risk aversions is identified with

a linear path (¤h,αh)(ξ) ≡ (¤hξ, kx
hk
2 ) for each household, so that d

dξD
2uh¤,α(x) = ¤h.



Chapter 4

Example of Pareto Improving

Taxation

4.1 Introduction

When asset markets are incomplete taxation plays an insurance role. The price adjustment

prompted by a tax change provides each agent with marginal purchasing power unspanned

by available assets.

In the example the Pareto improving taxes are on current income and on asset purchases.

The gist is to engineer each agent’s marginal purchasing power to covary negatively with

his marginal utility of income.

The mean welfare impact of price adjustment equals the covariance between the equi-

librium’s insurance deficits and net trades. The Pareto improvement following taxes is

small, but so is the improvement following the removal of all future uncertainty, i.e. the

replacement of future endowments with their expectation.
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4.2 Economy

Today a Banker and a Farmer face uncertain future weather, which will turn out to be poor,

fair, or good:

   

PRESENT 

trade commodities,
trade assets

FUTURE

assets pay off, 
trade commodities 

bad weather 

fair weather

good weather 

They consume corn c and caviar C in both periods, and trade a bond today, which in

the future will pay off one unit of caviar, whatever the weather turns out to be. Today the

Banker is extremely rich. Future weather will destroy 10% of aggregate supplies, hurting

them symmetrically:

   

PRESENT 

Banker 

FUTURE

Farmer Banker Farmer 

(6,6) (2,2)

(4,4) (4,4)

(6,6)(2,2)

(8,8) (1,1)
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Their preferences are von Neumann-Morgenstern, with a quadratic-Cobb Douglas state

utility,

U(x) =
P
s γsQ(u(xs))

Q(u) = u− β
2u

2

u(c, C) = cαcCαC

the Banker being the one more inclined toward caviar and risk, but sharing with the Farmer

the same impatience and expectation of weather:

αB = (.25, .75) αF = (.75, .25)

βB = .08 βF = .15

γ0 = 1.05 γ1,2,3 =
1
3

where states appear as 0 = today, 1 = poor, 2 = fair, 3 = good.

Each one enjoys corn and caviar equally in every weather, and would be better off by

fully insuring. Full insurance would obtain if each one were to donate half his endowment

to the other, but in fact they do not trade contingent goods with each other. They trade

only income via asset markets, and only in an incomplete way. The only asset is the bond,

so they cannot transfer income across states to mitigate the most crushing contingency.

4.3 Equilibrium

If ps = (psc, 1) are the prices, es = (esc, esC) the endowments, and xs = (xsc, xsC) the

consumptions of corn and caviar in state s, and if each of y units of the bond costs q,

then an agent’s budgets become

p0sxs = ws(y)
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once he elects his insurance (state contingent income) w(y) by trading the bond:

ws(y) = p
0
ses − qy s = 0

ws(y) = p
0
ses + qy s > 0

The problem is to optimize y to then demand as Cobb Douglas and obtain state indirect

utility Q(vs) :

xi(ps, ws) =
αi
psi
ws

v(ps, ws) =
Y
i

µ
αi
psi

¶αi

ws

The equilibrium variables—corn and bond prices—take the following values (identifying

ps, psc ):

p0 = .626965 q = 1.10166

p1 = .38786 p2 = .734826 p3 = 1.3131

In the future, the price of corn rises with the endowment wealth of its natural buyer, the

Farmer. The economy’s future contraction makes the interest rate 1 + r = 1
q negative.

The rich Banker lends by buying the bond yB = 2.1214 = −yF . So their elected insurance

is

B F −→ B F

10.4486 .654325

10.6787 3.96403 9.0607 4.81791

6.7476 11.7572
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and net trades in corn are

B F −→ B F

.734741 −.734741

−3.74192 3.74192 −.917398 .917398

−.715331 .715331

4.4 Taxes

The interesting pattern is that the endowment-richer agent is a net demander of corn in

extreme weather, poor and good. If the price of corn were to rise in extreme weather, wealth

would flow from richer to poorer, netting both better insurance. That is, price adjustment

can improve on the incomplete asset insurance. Taxation is one way of engineering such a

price adjustment.

4.4.1 Welfare impact of taxes

Write t1, t2 for the tax rates on current income and on asset purchases, and distribute tax

revenue evenly. Let

τ i =

⎡⎢⎣ wi0 yi+

0 0

⎤⎥⎦
S+1×2

dPS+2×2 = ((dpsc)s, dq)

be the derivatives of tax payment by agent i and of equilibrium prices, with respect to

these tax rates. (Here y+ = max(y, 0).) Then the derivative of tax revenue is τ = τB+τF .

Let

zi =

⎡⎢⎢⎢⎢⎣
xi0c − ei0c 0 yi

·

0 xiSc − eiSc 0

⎤⎥⎥⎥⎥⎦
S+1×S+2
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be the net demand for contingent corn and for the bond. Then the derivative of indirect

utility is

dvi = λi0dmi

dmi =
¡
1
2τ − τ i

¢
− zidP

where λi ∈ RS+1 is marginal utility of income and dmi ∈ RS+1×2 the derivative of

purchasing power.

4.4.2 Pareto improvement

Normalizing λi → λi

λi0
to quote marginal indirect utility in the numeraire today, it turns

out that

dv =

⎡⎢⎣ dvB
dvF

⎤⎥⎦ =
⎡⎢⎣ −4.49349 .316879

4.69088 −.239745

⎤⎥⎦
which is invertible and so admits a solution to dvi · ṫ = 1—to Banker and Farmer improving

at the same rate. Scaling this solution so that ṫ2 equals 1% of the original bond price,

ṫ =

⎡⎢⎣ .000667669
.0110166

⎤⎥⎦
Then the price adjustment is

Ṗ = dP · ṫ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.251168 −.138526

.222179 .0868223

.277723 .108528

.370298 .144704

−.0504975 −.865367

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ṫ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.00135839

.00110483

.00138104

.00184138

−.00956713

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṗ0c

ṗ1c

ṗ2c

ṗ3c

q̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Indeed, corn prices rise in the future, improving insurance.
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The private and public impacts on the Banker’s purchasing power are

ṁBprivate =

µ
1

2
τ − τB

¶
· ṫ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−5.69438 −1.0607

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ṫ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.0154873

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

ṁB
public = −zBṖ = −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3.74192 ·−.00135839 + 2.1214 ·−.00956713

.734741 · .00110483

−.917398 · .00138104

−.715331 · .00184138

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.0151923

−.000808587

.001262

.00131204

⎤⎥⎥⎥⎥⎥⎥⎥⎦
so marginal purchasing power is

ṁB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.0154873

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.0151923

−.000808587

.001262

.00131204

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−000274584

−.000811764

.00126696

.0013172

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ṁB0

ṁB1

ṁB2

ṁB3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Thus the Banker’s marginal welfare is

v̇B = λB0ṁB =

∙
1 .3133 .373123 .415239

¸
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.000274584

−.000811764

.00126696

.0013172

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= .00049078
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The Farmer’s marginal purchasing power is ṁF = −ṁB and marginal welfare is

v̇F = λF 0ṁF =

∙
1 .776987 .261203 .0634717

¸
⎡⎢⎢⎢⎢⎢⎢⎢⎣

.000274584

.000811764

−.00126696

−.0013172

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= .00049078

In sum, we have a Pareto improvement, equal to the agents as intended.

The marginal welfare is positive-sum even though the marginal purchasing power is

zero-sum. This is thanks to disperse marginal utilities of income. In the Banker’s future,

the largest income loss ṁB
1 = −.000811764 occurs in the state where his marginal utility

of income is lowest λB1 = .3133 and the largest income gain ṁB3 = .0013172 where it

is highest λB3 = .415239. Likewise in the Farmer’s future. That is, for both, marginal

purchasing power covaries negatively with marginal utility of income.

The preceding is a linearization of the Pareto improvement. A calculation of the actual

equilibrium with the same tax rates gives the following marginal welfare in terms of the

numeraire today
∆vB

λB0
= .000134

.304544 = .00044

∆vF

λF0
= .000213

.440828 = .00048

This is a small improvement relative to today’s supply of the numeraire, 9. On the other

hand, utilities are vB = 9.4421, vF = 4.72425 and would be only vB = 9.60662, vF =

5.0783 at an equilibrium of the economy without uncertainty, where future endowments

are replaced by their expectation (4, 4) in every state.
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4.4.3 Relation of welfare surplus to insurance deficits

Though there is an adjustment of current corn and bond prices, it does not contribute to a

Pareto improvement, helping one agent only by hurting another one equally. To emphasize

this point, let us compute the derivative of welfare surplus dW = dvB + dvF in the

common unit of account, the numeraire today. From the first order condition, the marginal

utility for future income λi1 ∈ RS projects to a common point in the asset span a = span1,

λi1 = c+ δi ∈ a+ a⊥

differing across agents only in the insurance deficit δi. This sum and the identity Σdmi =

0 imply

dW = Σλi0dmi

= Σλi0 · dmi
0 +Σλ

i0
1dm1

= Σ1 · dmi
0 +Σ(c+ δi)0dmi1

= 0 + c0(Σdmi
1) + Σδ

i0dmi1

= Σδi0dmi
1

= Σδi0
¡
−zi1dP1

¢
= −

¡
Σδi0zi1

¢
dP1

= −2covariance(δ, z1)dP1

using Σzi1 = 0 for the latter. For a Pareto improvement it is necessary that the surplus be

positive, dW · ṫ > 0. Indeed, the surplus is independent of the adjustment in current corn
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and bond prices dP0, whatever the tax rates. The only control for Pareto improvement

is the future price adjustment dP1, since insurance deficits and net trades are set by the

equilibrium. More precisely, the mean surplus from the only control is minus the covariance

of insurance deficits with future net trades. Of course, Pareto improvement does lend the

current price adjustment dP0 a role, which is to help allocate the positive surplus.



Chapter 5

How Much Trade for the Transfer

Paradox? The threshold computed

5.1 Introduction

Germany’s reparations after World War I provoked a controversy about terms of trade. Did

the reparations improve or worsen her terms of trade? Did the new terms of trade exacerbate

or mitigate her income loss due to reparations? Leontief (1937) showed by example that a

donation could so change terms of trade as to erase the income loss and benefit donor—the

transfer paradox.

Samuelson (1947) noted the regular equilibria exhibiting the transfer paradox were those

unstable with respect to tatonnement. Others confirmed this beautiful characterization of

the transfer paradox, at least with two countries and two commodities; Mundell (1968),

Balasko (1978).

Theorem 5.1 (Samuelson 1947). With two countries and two goods, suppose a regular

equilibrium. Then the local transfer paradox is present if and only if it is unstable.
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Most deemed instability a theoretical curiosity, the situation where demand increases

with prices. By Samuelson’s equivalence, the transfer paradox too became a theoretical

curiosity, and interest in it waned. Accordingly, Samuelson’s equivalence remained the big

result on the transfer paradox, and became the wisdom on the topic.

Almost thirty years later, Gale (1974) showed by example that Samuelson’s equivalence

broke down with a third country.

Theorem 5.2 (Gale 1974). With three Leontief countries and two goods, there is an

example of a stable equilibrium exhibiting the local transfer paradox.

Yet the example failed to shatter the received wisdom, perhaps because Gale never

pointed out its stability, never wrote ”transfer paradox.”

Chichilnisky (1980) discovered the stability of Gale’s example, and further showed its

dependence on the preferences of the countries. That it took so long to detect stability

evidenced how ingrained Samuelson’s wisdom had been—why check, if it must be unstable?

Once advertised, this set off a stampede of research in the early eighties, excited by the

surprising news, by the renewed plausibility of the transfer paradox, and by the chance to

charge at current wisdom.

The stampede mostly split between extending Gale’s counterexample and Chichilnisky’s

analysis, always with two goods. New examples appeared in Polemarchakis (1983), and in

Leonard and Manning (1983) with non-Leontief utilities (two Cobb-Douglas, one quasilin-

ear).1 The analyses (a) relaxed utilities from being Leontief, (b) clarified the role of excess

demands, marginal propensities to consume, and elasticities of excess demand, (c) derived

1Aumann and Peleg (1974) discarded endowments, instead of reallocating them.
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formulas for the welfare impact of small donations in terms of these notions. Yano (1983),

Ravallion (1983), Bhagwati et al. (1983), Dixit (1983) singly managed all these exten-

sions. Retaining Leontief utilities, Geanakoplos and Heal (1983), Polemarchakis (1983),

and Chichilnisky (1983) gave a priori, equilibrium-independent bounds on endowments and

utilities guaranteeing the equilibrium to be unique, globally stable, and consistent with the

transfer paradox. Consensus settled on

• the donor’s trade level being required large enough,

and on this requisite level being increasing in

• 1) the proximity between the donor’s and the recipient’s marginal propensities to

consume

• 2) the substitution effect, explaining the preponderance of Leontief utilities in exam-

ples

In particular, emphasis turned toward the notions in (b) and away from stability.

The remainder focused on the existence question. From Dixit’s (1983) formula Safra

(1984) obtained

Theorem 5.3 (Safra 1984). With more than two countries and with two goods, suppose an

unstable equilibrium where some trading country’s marginal propensity to consume is neither

largest nor lowest. Then there is a stable equilibrium exhibiting the transfer paradox, with

the same equilibrium prices and incomes but less trade.

This was another charge, generalizing Gale’s example to smooth preferences and multiple

countries—curiously, instability did cameo. Earlier, Safra (1983) had argued nonconstruc-
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tively that for almost any equilibrium prices and incomes, there was a compatible economy

exhibiting the transfer paradox. Given any small desired welfare impact and endowment

reallocation, Donsimoni and Polemarchakis (1994) showed more constructively that for al-

most any equilibrium prices and incomes, there was a compatible economy exhibiting the

given welfare impact as the de facto welfare impact of the given reallocation.

Altogether, research after Gale and Chichilnisky sidelined Samuelson’s equivalence more

than the transfer paradox as the theoretical curiosity. If not all targeted what was wrong

with Samuelson’s equivalence, none looked for what was right with it.

We propose a reinterpretation of Samuelson’s equivalence that reaffirms the above con-

sensus. The key idea is that whether an equilibrium is unstable or stable is a precise answer

to whether the trade level is or is not large enough relative to

• 1) the proximity between the donor’s and the recipient’s marginal propensities to

consume

• 2) the substitution effect

To see it, we revisit the classical decomposition of the Jacobian J of aggregate demand

J = S −Σmizi

where S is the sum of the countries’ substitution effects, mi is country i0s marginal

propensity to consume, and zi its excess demand for the nonnumeraire commodities. With

two countries, it reads

J = S −∇z1
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where ∇ = m1 − m2 is the difference between their marginal propensities to consume,

thanks to market clearing z1 + z2 = 0. With two goods, an equilibrium is unstable, by

definition, if J > 0. Thus Samuelson’s equivalence is that the transfer paradox is present

or absent according as J > 0 or J < 0. The threshold is J = 0, i.e. the threshold trade

level z1 is

z1 =
S

∇ (|)

Indeed, this reaffirms the anti consensus, in that the threshold trade level is increasing in the

proximity ∇ between marginal propensities to consume, and in the substitution effect S.

Samuelson’s equivalence encapsulates and quantifies this anti consensus, once reinterpreted.

We show that the threshold reinterpretation generalizes fully to a finite number of coun-

tries and commodities. This requires making sense of the ratio S
∇ with multiple commodi-

ties, when ∇ is no longer a scalar. It requires making sense of the trade level |z| with

multiple countries, when the equality
¯̄
z1
¯̄
=
¯̄
z2
¯̄
as an unambiguous norm is unavailable.

Fixing the price of C commodities and incomes of H countries, implies the aggregate

substitution effect S = ΣSi and the marginal propensities to consume (mi). Discarding

the numeraire, S is negative definite and symmetric, hence defines an inner product on

net trades n ∈ RC−1 of nonnumeraire commodities, (n, n) = n0(−S−1)n, and a norm,

knk =
p
(n, n). If z = (zh) are the equilibrium net trades at the equilibrium prices and

incomes, the trade level is kzk∗ =
q

1
HΣ kzhk

2
.
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What is Samuelson’s threshold in this language? Multiplying (|) by −z1S−1,

z1(−S−1)z1 =
−z1
∇ =

1

∇(−S−1)∇°°z1°° =
1

k∇k

Thanks to market clearing,
°°z2°° = 1

k∇k and

kzk∗ = 1

k∇k (|)

Theorem 5.4 (Samuelson reinterpreted). With two countries and two goods, the thresh-

old for the transfer paradox at regular equilibria is 1
k∇k .

One generalization is to multiple goods C ≥ 2.

Theorem 5.5 (Threshold with multiple goods). With two countries, the threshold for

the transfer paradox at regular equilibria is still 1
k∇k .

With multiple countries, the donor can play the welfare of one recipient against an-

other’s, unboundedly. With just two countries, this is impossible because there is a sole

recipient. For this reason the threshold is no greater than the above. Specifically, for each

country let

∇h = mh − 1

H − 1Σi6=hm
i

With H = 2 clearly ∇1 = ∇. Then

Theorem 5.6 (Threshold bounded above). With H,C ≥ 2 countries and goods,

the threshold for h to be a protagonist in the transfer paradox at regular equilibria is at
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most 1√
H−1k∇hk . So the threshold for the transfer paradox at regular equilibria is at most

minh
1√

H−1k∇hk .

Now we compute the threshold for h to be a protagonist.

Definition 5.1. Fix v̇ ∈ RH with v̇h = 1, 10v̇ = 0, to be interpreted as the welfare impact

of an infinitesimal donation. Then define the numerator

n(v̇) =

¡
ΣS v̇

i
¢2

H − |S| +ΣS v̇
i2 (5.1)

where S ⊂ {1, ...,H}\{h} is as follows. Ordering v̇−h : v̇i1 ≤ ... ≤ v̇iH−1 , S = {i1, ..., in}

for the largest n such that

if i ∈ S −ΣS v̇i
H − |S| ≥ v̇

i

Now define

∇h(v̇) = mh +Σi6=hm
iv̇i

Finally, define2

T h =
r
inf n(v̇)

Hk∇h(v̇)k2 subject to v̇h = 1, 10v̇ = 0

Theorem 5.7 (Threshold computed). With H,C ≥ 2 countries and goods, the

threshold for h to be a protagonist in the transfer paradox at regular equilibria is Th. So

the threshold for the transfer paradox at regular equilibria is minh Th.

It seems impossible to compute T h in general; after all, the program is the ratio of two

2This exists by completeness of the reals, because the objective is bounded below by zero.
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convex functions over a noncompact domain. Of course, given particular equilibrium prices

and incomes, a computer would.

On the other hand, the upper bound is easily seen to come from v̇−h = − 1
H−1 . For the

numerator, note v̇−h ≤ 0 hence S = {1, ...,H}\{h}, and then compute n(v̇) = H
H−1 .

3

Noting also ∇h(v̇) = ∇h,

Th ≤

q
H
H−1√

H
°°∇h°° = 1√

H − 1
°°∇h°°

This gives theorem 5.6. Further, when H = 2 the constraint set v̇h = 1, 10v̇ = 0 is a

singleton, the above v̇−h = − 1
H−1 , and this upper bound is the inf . This gives theorem

5.5.

Our notion of threshold with multiple commodities is Samuelson’s if H = 2, but weaker

if H > 2. It is equal in that no equilibria are paradoxical with trade levels below the

threshold. It is different in that not all equilibria with trade levels beyond the threshold

need be paradoxical, but there exists a sequence of paradoxical equilibria with trade levels

converging from above to the threshold.

5.2 Model

Countries h = 1, ...,H consume commodities c = 1, ..., C, C being the unit of account, in

terms of which all value is quoted. Markets assign prices p ∈ P ≡ R(C−1)++ to commodities

3n(v̇) =
(Σi6=h− 1

H−1 )
2

1
+Σi6=h

³
− 1
H−1

´2
= 1 + (H − 1) 1

(H−1)2 =
H

H−1
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c < C, and incomes w ∈ RH++ to all countries.4 The set of budget variables is

b ≡ (p,w) ∈ B ≡ P ×RH++

and commodity demands xh : B → RC++ depend on own income only, xh(p,w) = xh(p,w0)

if wh = w0h.

The price-income equilibria for total resources r ∈ RC++ are

B(r) =
n
b ∈ B | Σxh(b) = r

o

In an economy, countries’ endowments of commodities make up total resources,

Ω(r) =
n
e ∈ RC×H++ | Σeh = r

o

The equilibria are

E(r) =
©
(p, e) ∈ P ×Ω(r) | (p, e0p) ∈ B(r)

ª

There is a natural projection π : E(r)→ B(r),π(p, e) = (p, e0p) and a b−equilibrium is

one in π−1(b).

Demand is neoclassical if there is a utility uh : RC+ → R solving uh(x(b)) = maxβh(b) u

throughout b ∈ B, where βh(b) =
©
x ∈ RC+ | p0x = wh

ª
. In this case welfare is v(b) =

(vh(b)) = (uh(xh(b))). The point of separating budget variables from the economy is that

welfare is determined by the budget variables, and in turn these are determined by the

4Unity is the price of C, which P omits. The addition to p of the C coordinate with value unity is
denoted p.
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economy in equilibrium. We assume Debreu’s smooth preferences.

5.3 Welfare impact of reallocation

We think of a smooth path e(ξ) through a given economy e = e(0), and of an infinitesimal

reallocation as its velocity ė. Suppose the equilibrium (p, e) is regular in that equilibrium

prices are locally a smooth function of the economy. Then welfare is v(b(ξ)) with b(ξ) =

(p(ξ), e(ξ)0p(ξ)). Thus a reallocation impacts welfare only via the budget variables it implies.

By the fundamental theorem of calculus the welfare impact is the integral of v̇ = Dbv · ḃ,

which by abuse we call the welfare impact. We prefer to quote it not as v̇h, in individual

utils, but in the numeraire, as v̇∗h = v̇h

λh
, where λh = Dwhv

h is the marginal utility of the

numeraire. Roy’s identity gives Dbvh :

Proposition 5.1 (Envelope). The welfare impact v̇ ∈ RH of ė at a regular equilibrium

is

v̇∗ = ṫ− z0ṗ

where ṫ ≡ ė0p is its value, and z ∈ RC×H the countries’ excess demands.5

As we show next, at a regular equilibrium there is a unique price adjustment matrix

dp, smooth in a neighborhood of it, such that ṗ = dpṫ. Thus the welfare impact differential

is

dv∗ = I − z0dp (5.2)

This implies that a reallocation matters for welfare only through its value, not its identity.

5Throughout, an underscore denotes the omission of the numeraire coordinate C.
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Remark 5.1. dv∗ is an operator ṫ 7→ v̇∗ in 1⊥ ⊂ RH .

Indeed, 10ṫ = 10ė0p = ṙ0p = 0 given that aggregate resources are fixed, and 10dv∗ṫ =

(10− 00dp)ṫ = 0 given that total excess demand is zero in equilibrium.

To compute dp, we totally differentiate total nonnumeraire demand

xσ(b) ≡ Σxh(b)

Write

J ≡ Dpxσ((p, e0p))

and suppose a path (p(ξ), e(ξ)) of equilibria. Then

xσ((p, e0p)) = r

is an identity. Differentiating it,

Jṗ+Dwx
σ ṫ = 0

An equilibrium is regular if J is invertible. By the implicit function theorem and Walras’

law, at a regular equilibrium (p, e) equilibrium prices are locally a smooth function of the

economy.

Proposition 5.2 (Price Adjustment). At a regular equilibrium the Price Adjustment is6

dp = −J−1Dwxσ (dp)

6Since demands depend on own income only, Dwx
σ = [Dw1x

1 : ... : DwHx
H ].
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This implies that a reallocation matters for prices only through its value, not its identity.

Substituting into (5.2),

dv∗ = I + z0J−1Dwxσ (dv∗)

This formula generalizes Dixit (1981) from C = 2 and appears in Donsimoni and Pole-

marchakis (1994). Note, the welfare impact v̇∗ of a reallocation equals its value ṫ if there

is no trade z = 0 or if all marginal propensities to consume Dwhx
h agree. (For then

ṫ ∈ 1⊥ implies Dwxσ ṫ = 0.)

If demand is neoclassical, then the Slutsky decomposition Dpx
h = Shλh −Dwhxh· xh0

and the equilibrium incomes e0p imply that Dpxh((p, e0p)) = Shλh−Dwhxh· zh0. Adding,

J = S −Dwxσ · z0 (5.3)

Here the sum S ≡ ΣShλh is symmetric and negative definite, since each summand Shλh

is.

5.4 Definition of threshold

We reinterpret Samuelson’s condition for general C,H, in terms of the requisite trade

level L ∈ R.

Definition 5.2 (Trade levels for a protagonist: Necessary and Sufficient). Fix b ∈

B(r) and the associated S(b) ∈ RC−1×C−1 in (5.3). The norm at b is defined on RC−1

as kak =
√
a · a from the inner product a · b = a(−S−1)b.7 At a b−equilibrium, the trade

7Recall, an inner product is the root of a symmetric, positive definite quadratic form, and indeed −S−1
is positive definite and symmetric, according to the consumer theory of Samuelson.
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level is kzk ≡
q

1
HΣ kzkk

2
. L is b−necessary for h if every regular b−equilibrium

with h a protagonist in the transfer paradox has kzk ≥ L. L is b−sufficient for h

if for every ² > 0 there is a regular b−equilibrium with h a protagonist in the transfer

paradox and kzk ≤ L+ ².

Whenever Ln is necessary and Ls is sufficient, Ln ≤ Ls, so there is at most one

threshold:

Definition 5.3. Call Lh ∈ R the b−threshold for h to be a protagonist if it is both

b−sufficient and necessary for h.

Definition 5.4. Call L ∈ R the b−threshold for the transfer paradox if L = minh Lh.

Remark 5.2. As shown in the introduction, Samuelson’s result with C = H = 2 means

that a threshold exists and equals 1
k∇k—for both to be protagonists and for the transfer

paradox. To fully generalize this, we need to explicitly compute the inverse of the welfare

impact differential.

5.5 The inverse of the welfare impact differential dv∗

Remarkably, the inverse of dv∗ exists and admits an explicit description!

Theorem 5.8 (The inverse of the welfare impact differential dv∗). Suppose the

equilibrium is regular, so that dv∗ is defined. Then it is invertible, with inverse

dv∗−1 = I − z0S−1Dwxσ (dv∗−1)

Proof. We use the decomposition J = S − Dwxσ · z0. By definition, the inverse of dv∗,
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should it exist, is a solution (necessarily unique) to the equations dv∗s = I, sdv∗ = I. We

show that I − z0S−1Dwxσ is such a solution:

dv∗
¡
I − z0S−1Dwxσ

¢
=

¡
I + z0J−1Dwx

σ
¢ ¡
I − z0S−1Dwxσ

¢
= I − z0S−1Dwxσ + z0J−1Dwxσ − z0J−1

¡
Dwx

σz0
¢
S−1Dwx

σ

= I − z0S−1Dwxσ + z0J−1Dwxσ − z0J−1 (S − J)S−1Dwxσ

= I − z0S−1Dwxσ + z0J−1Dwxσ − z0
¡
J−1 − S−1

¢
Dwx

σ

= I

Likewise, the equation
¡
I − z0S−1Dwxσ

¢
dv∗ = I holds.

Remark 5.3. dv−1∗ is an operator ṫ 7→ v̇∗ in 1⊥ ⊂ RH .

This follows from remark 5.1.

5.5.1 A universal example of the arbitrariness of the welfare impact

Donsimoni and Polemarchakis (1994) in the case of general C,H conclude that given any

ṫ, v̇ ∈ 1⊥ satisfying ṫh, v̇h 6= 0 for some h, there exist marginal propensities to consume

Dwhx
h and net trades for which v̇ = dv∗ṫ. Save for Pareto optimality, the welfare impact

of reallocations is arbitrary without knowledge of marginal propensities to consume and of

net trades. Here we sharpen this result: the welfare impact is arbitrary without knowledge

of net trades, even granting knowledge of the marginal propensities to consume. Both in

their construction and in ours, equilibrium prices and incomes are known, but endowments

may be nonpositive.
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Our construction is explicit.

Theorem 5.9 (Universal example of arbitrariness). Fix b ∈ B(r), plus the desired

value ṫ ∈ 1⊥ of the reallocation and its welfare impact v̇ ∈ 1⊥. If ∇(b) ≡ Dwxσv̇ 6= 0,

then the economy e ≡ x(b)− z with excess demands

z =
1

k∇k2
∇(λṫ− v̇)0

and numeraire endowments set by b and the budget identity, defines a regular b−equilibrium

at which v̇ is the de facto welfare impact of λṫ, where λ is any but finitely many values,

unless |J(λ)| is identically zero.

Conversely, the trade level kzk at any regular b−equilibrium where v̇ is the welfare

impact of λṫ is at least °°λṫ− v̇°°
2√

H k∇k

with equality only at the latter equilibrium.

Proof. Nonnumeraire markets do clear: z1 = −1
λk∇k2∇(0 − 0) = 0. So does the numeraire

market: the numeraire endowments imply Walras’ law. Suppose a regular b−equilibrium.

Then v̇ is the welfare impact of λṫ iff dv∗−1v̇ = λṫ :

¡
I − z0S−1Dwxσ

¢
v̇ = λṫ

−z0S−1∇ = λṫ− v̇

−zk0S−1∇ = λṫk − v̇k
(5.4)
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The Cauchy-Schwarz inequality implies
°°zk°° k∇k ≥ −zk0S−1∇ hence

°°°zk°°° ≥ λṫk − v̇k
k∇k

with equality only if zk = αk∇ for some scalar αk. Applying definition 5.2 of kzk ,

kzk ≥

s
1

H
Σ

µ
λṫk − v̇k
k∇k

¶2
=

°°λṫ− v̇°°
2√

H k∇k

To find the α = (αk) achieving equality, substitute z0 ≡ α∇0 in (5.4) to get

α =
−1

∇0S−1∇(λṫ− v̇) =
1

k∇k2
(λṫ− v̇)

Thus dv∗−1v̇ = λṫ follows from

z0 ≡ 1

k∇k2
(λṫ− v̇)∇0

provided this z makes the equilibrium regular, i.e., |J(λ)| invertible:

Now |J | is polynomial in J, which is linear in λ (writing ∆ = Dwxσ ṫ) :

J(λ) = S −Dwxσ · z0 (5.5)

= S − 1

k∇k2
(λ∆−∇)∇0

So |J(λ)| is polynomial in λ, and zero for all but finitely many values, unless it is identically

zero.
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5.5.2 A universal example of the transfer paradox

For each price-income equilibrium, we construct a compatible equilibrium with the transfer

paradox.

Corollary 5.1 (Universal example of the transfer paradox). Fix b ∈ B(r) with

∇(b) ≡ Dwhxh − Dwixi 6= 0. Then a donation from h to i, ṫ = λ(1i − 1h), benefits h

and hurts i and fixes all others’ welfare, v̇∗ = 1h− 1i, for the economy e ≡ x(b)− z with

excess demands

z =
1 + λ

k∇k2
∇(1i − 1h)0

and numeraire endowments set by b and the budget identity, defining a regular b−equilibrium

with the transfer paradox, where λ > 0 is any but finitely many values.

Proof. This follows from theorem 5.9 since ṫ− v̇ = −λv̇∗− v̇∗ = (1+λ)(1i−1h) and |J(λ)|

is not identically zero. For the latter, substitute ṫ = −v̇ in (5.5):

J(λ) = S +
1

k∇k2
(λ∇+∇)∇0

so that J(−1) = S is negative definite and |J(−1)| 6= 0, not the zero polynomial.

Remark 5.4 (Sufficient level of trade). Fix b ∈ B(r) where all marginal propensities

to consume Dwhx
h are distinct. Then

√
2√

Hk∇k is a b−sufficient trade level for the transfer

paradox.

Proof. In example 5.1 kzk = kλṫ−v̇k
2√

Hk∇k and λṫ− v̇ = (1+λ)(1i− 1h), so kzk =
√
2(1+λ)√
Hk∇k .Let

λ& 0.
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Safra (1983) is a predecessor, concluding nonconstructively that ∞ is b−sufficient.

Note, with H = 2 this says that 1
k∇k is sufficient, giving half of Samuelson’s result. In

this example everyone’s welfare is fixed other than the donor and the recipient’s; in contrast,

with H > 2 there are paradoxical equilibria with even less trade, where the donor affects

everyone’s welfare. This is not the threshold with H > 2.

5.6 The threshold for the transfer paradox

Theorem 5.9 states that the trade level at any regular equilibrium where v̇ is the welfare

impact of ṫ is at least kzk ≥ kṫ−v̇k
2√

HkDwxσ v̇k
, with equality achieved. To find the threshold, we

wish to minimize
kṫ−v̇k

2√
HkDwxσ v̇k

subject to the transfer paradox. There is one minimization

for each protagonist. Let h be a protagonist, as above normalizing ṫh ≤ −λ < 0, v̇h = s

then letting λ& 0. We wish to solve

min

°°ṫ− v̇°°
2√

H kDwxσv̇k
subject to ṫh ≤ −λ, v̇h = s, ṫ−h ≥ 0, 10ṫ = 0 = 10v̇ (Ph)

First, we fix a feasible v̇ and solve

min
°°ṫ− v̇°°2

2
subject to ṫh ≤ −λ, ṫ−h ≥ 0, 10ṫ = 0 (5.7)

getting a unique minimizer ṫ = ṫ(λ, v̇) and value n(λ, v̇). Since this value is nonincreasing

in λ, it is minimized at λ = 0. In a second step, we wish to solve

min
n(0, v̇)

H kDwxσv̇k2
subject to v̇h = s, 0 = 10v̇

This only makes sense if Dwxσv̇ 6= 0 for some 0 = 10v̇, which is equivalent to
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Assumption 5.1. Not all marginal propensities to consume mi = Dwix
i are equal

m1 = ... = mH .

We now report n(0, v̇).

Lemma 5.1 (Best donation given welfare impact). Fix v̇h = s, 0 = 10v̇,λ = 0.

Problem 5.7’s value is

n(0, v̇) =

¡
ΣS v̇

i
¢2

H − |S| +ΣS v̇
i2 (5.8)

where, on ordering v̇−h : v̇i1 ≤ ... ≤ v̇iH−1 , S = {i1, ..., in} for the largest n such that

if i ∈ S −ΣS v̇i
H − |S| ≥ v̇

i

Proof. See appendix.

For example, if v̇i6=h = − s
H−1 then S = {1, ...,H}\{h} and n(0, v̇) =

s2

1 +Σi6=h
³

s
H−1

´2
=

s2 H
H−1 .

As above, we normalize s = 1 since positive multiples of (ṫ, v̇) preserve the equation

ṫ = dv−1v̇.

Theorem 5.10 (Protagonist’s threshold). Fix b ∈ B(r) and assumption 5.1. Then

the threshold trade level Th(b) for h to be a protagonist in the transfer paradox at regular

equilibria is

Th(b) =
q
inf n(0,v̇)

HkDwxσ v̇k2
subject to v̇h = 1, 0 = 10v̇ (*)

the numerator being (5.8).

Proof. It is clear that there are no regular equilibria with trade level below this value where

h is a protagonist. Conversely, fix ² > 0; we want a regular equilibrium with trade level at
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most inf +² where h is a protagonist. Let v̇n be a sequence that achives the infimum

T h(b). Let λn =
1
n and consider the donation ṫn = ṫ(λn, v̇n). Then construction (5.9)

gives a b−equilibrium, which may be taken regular by slightly increasing ṫhn, where h is a

protagonist and the trade level squared is exactly

n(λn, v̇n)

H kDwxσv̇nk2

which converges to Th(b)2.

Corollary 5.2 (Threshold for paradox). Fix b ∈ B(r) and assumption 5.1. Then the

threshold for the transfer paradox is minh T h(b).

This is clear since the transfer paradox is present if and only if there is a protagonist.

Remark 5.5. It is hard to make the infimum more explicit, since the objective is the ratio

of two convex functions and the constraint set not compact.

Corollary 5.3 (Protagonist’s threshold bounded above). An explicit upper bound is

Th(b) ≤ 1√
H − 1

°°∇h°°
∇h = mh− 1

H−1Σi6=hm
i being the difference from the mean of all others’ marginal propen-

sities to consume.

Proof. We know v̇i6=h = − 1
H−1 gives n(0, v̇) = s2 H

H−1 =
H
H−1 , and clearly Dwx

σv̇ = ∇h,

so

T h2 ≤
H
H−1

H
°°∇h°°2 = 1

(H − 1)
°°∇h°°2
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Corollary 5.4 (Appearance of protagonist). Fix b ∈ B(r) and assumption 5.1. Then

h is a protagonist in the transfer paradox at some equilibrium with any trade level above

1√
H−1k∇hk .

Corollary 5.5 (Threshold with multiple goods ). Suppose H = 2. Fix b ∈ B(r) and

assumption 5.1. Then the threshold trade level Th(b) for h to be a protagonist in the

transfer paradox is exactly 1

k∇hk .

Proof. When H = 2, the constraint set v̇h = 1, 0 = 10v̇ in (*) is a singleton, namely

v̇i6=h = − 1
H−1 , so the upper bound is the infimum.

Samuelson (1947) is the special case H = 2 = C of this.

5.7 Appendix

5.7.1 Derivation of formula for welfare impact

By Roy’s identity with λh = Dwhv
h,

dvh = λh(−xhdp+ dwh)

In equilibrium wh = eh0p so

dwh = eh0dp+ p0deh

Letting dth = p0deh and substituting,

dv∗h ≡ dv
h

λh
= −xhdp+ eh0dp+ dth = dth − zh0dp
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5.7.2 Minimizing kt− vk22

Fix v̇h = s, 0 = 10v̇. We give the value of the problem for small enough λ ≥ 0 :

min
°°ṫ− v̇°°2

2
subject to ṫh ≤ −λ, ṫ−h ≥ 0, 10ṫ = 0 (5.10)

Using the constraints,

°°ṫ− v̇°°2
2
=

³
ṫh − v̇h

´2
+
°°°ṫ−h − v̇−h°°°2

2

=
³
−10ṫ−h − s

´2
+
°°°ṫ−h − v̇−h°°°2

2

Write x for ṫ−h, y for v̇−h, so that

kx− yk22 =
¡
10x+ s

¢2
+ (x− y)0 (x− y)

with remaining constraints being

−x ≤ 0, 10x ≥ λ

We solve the problem assuming 10x ≥ λ is slack, then check that slackness does hold

at the candidate solution for small enough λ ≥ 0, and conclude it is a bona fide solution for

λ = 0.

By Kuhn-Tucker (with constraint qualification holding by linearity of the constraint),

x ≥ 0 solves the problem iff there is a nonnegative multiplier µ ≥ 0 satisfying comple-
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mentary slackness such that x minimizes L,

L =
¡
10x+ s

¢2
+ (x− y)0 (x− y)− 2µ0x

This being a convex function, its minimum in RH−1 is achieved at DL = 0 :

DL = 2
¡
10x+ s

¢
10 + 2(x− y)0 − 2µ0 = 0

That is,

x = y + µ−
¡
10x+ s

¢
Let S = {i 6= h : xi = 0}. By complementary slackness, this says

if i /∈ S µi = 0 and xi = yi − (10x+ s) > 0

if i ∈ S xi = 0 and µi = −yi + (10x+ s) ≥ 0
(5.11)

The above implies

if i /∈ S yi > 10x+ s

if i ∈ S 10x+ s ≥ yi

We compute 10x+ s now:

10x+ s = ΣSx
i +Σ\Sx

i + s

= 0 +Σ\S
£
yi −

¡
10x+ s

¢¤
+ s

=
¡
Σ\Sy

i
¢
− (H − 1− |S|)

¡
10x+ s

¢
+ s
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Recalling y = v̇−h satisfies 10y = −s, we get Σ\Syi = −s−ΣSyi,

10x+ s = −ΣSyi − (H − 1− |S|)
¡
10x+ s

¢
(5.12)

10x+ s =
−ΣSyi
H − |S|

Therefore S = S(y) satisfies

if i /∈ S yi >
−ΣSyi
H − |S| (5.13)

if i ∈ S −ΣSyi
H − |S| ≥ y

i (5.14)

Lemma 5.2 (identification of S). Order v̇−h : v̇i1 ≤ ... ≤ v̇iH−1 . The above S =

{i1, ..., in} ⊂ {1, ...,H}\{h} for the largest n such that (5.14). In particular, this descrip-

tion is independent of how ties in v−h are ordered.

Proof. Since S ⊂ {1, ...,H}\{h} must satisfy both (5.13), (5.14) it is clear that it includes

the indices corresponding to the |S| smallest elements in v−h, and almost as clear that

enlarging S to S+ = S t {i+} implies yi+ >
−ΣS+y

i

H−|S+| violating (5.14). In other words,

ordering v̇−h : v̇i1 ≤ ... ≤ v̇iH−1 , S is the largest set {i1, ..., in} such that (5.14) holds.

Conversely, S is described by its being the largest set {i1, ..., in} such that (5.14)

holds, and now we show uniqueness. Uniqueness in the description is up to ties in v−h

affecting the ordering v̇i1 ≤ ... ≤ v̇iH−1 of indices. It suffices to show S is closed under

ties. That is, if vin = vin+1 and in ∈ S, we want in+1 ∈ S. Clearly this holds if in is not

the last element of S, so suppose in is the last one. With in+1 /∈ S, it is easy to check

that S+ = S ∪ {in+1} satisfies −ΣS0yi
H−|S+| ≥ y

in+1 hence (5.14), contradicting that n is the
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largest such that (5.14).

Having found S = S(y), the candidate minimizer is described uniquely by substituting

(5.12) in (5.11):

if i /∈ S xi = yi + ΣSy
i

H−|S| > 0

if i ∈ S xi = 0

This candidate minimizer is bona fide if 10x ≥ λ is slack, so for small enough λ ≥ 0 it is

bona fide if 10x > 0, which holds unless S = {1, ...,H}\{h}, i.e. unless

if i ∈ S − s ≥ yi

Adding over S, this implies −s(H − 1) ≥ −s, impossible with H > 1. So for small

enough λ ≥ 0 this is bona fide.

Then the value n(0, y) of the problem is given by S :

kx− yk22 =
¡
10x+ s

¢2
+ΣS

¡
xi − yi

¢2
+Σ\S

¡
xi − yi

¢2
=

µ
−ΣSyi
H − |S|

¶2
+ΣS

¡
0− yi

¢2
+Σ\S

µ
ΣSy

i

H − |S|

¶2
= (H − |S|)

µ
ΣSy

i

H − |S|

¶2
+ΣSy

i2

=

¡
ΣSy

i
¢2

H − |S| +ΣSy
i2
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Picture of Generic Sensitivity of

Price Adjustment to Risk Aversion

140
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Chapter 7

Mathematica Programs

7.1 Note

This documents two Mathematica programs for chapter 4’s example, where utility is von

Neumann-Morgenstern. In the simpler one the state index is a quadratic transformation of

Cobb-Douglas utility; in the more elaborate one, the state index is a HARA transformation

of CES utility. To find the Pareto improving tax rates from the envelope theorem, it is

necessary to compute the price adjustment, and for this in turn to compute the derivative of

demand. The former program has a closed formula for demand, and computes its derivative

symbolically with Mathematica; the latter program has no closed formula for demand, and

computes its derivative instead with chapter 1’s Slutsky decompositions.
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