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Abstract

My dissertation focuses on �exible information acquisition in strategic environ-

ments. "Flexible" means that people choose not only the quantity but also the

qualitative nature of their information. This is modeled by rational inattention

where information acquisition incurs a cost proportional to reduction of entropy.

Hence, people only collect information most relevant to their payo¤s but be ratio-

nally inattentive to other aspects. In strategic environments, people�s incentives to

acquire information are shaped by their payo¤ structures, which depend on others�

strategies. My dissertation addresses the key questions like what information is

acquired and how it a¤ects equilibrium outcomes.

Chapter 1 studies the optimality of securitized debt under �exible information

acquisition. A seller designs an asset backed security and a buyer decides whether to

buy it to provide liquidity. Rather than treating the seller as an insider endowed with

information, we assume no information asymmetry before bargaining. The buyer

has an expertise in �exibly acquiring information of the fundamental. She collects

the most relevant information determined by the "shape" of the security, which

may endogenously generate adverse selection. Hence, the seller deliberately designs

the security in order to induce the buyer to acquire information least harmful to

the seller�s interest. Issuing securitized debt is uniquely optimal in raising liquidity

regardless of the stochastic interdependence of underlying assets. Fixed aggregate

risk and homogeneous information cost are the key factors driving the results.

Chapter 2 studies �exible information acquisition in a coordination game with

binary actions. When information is cheap, this �exibility enables players to acquire

information that makes e¢ cient coordination possible, while also leads to multiple

equilibria. This result contrasts with the global game literature, where information

structure is less �exible and cheap information leads to unique equilibrium with in-

e¢ cient coordination. Moreover, di¤ering from decision problems with information
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acquisition, players could be strictly better o¤ if they can throw away information.

We also go beyond the entropic information cost to highlight the key aspects of

�exibility and how they drive our results.

Chapter 3 examines �exible information acquisition in linear best-response games.

Introducing capacity constraints on information acquisition dampens both people�s

responses and their incentives to acquire information. We show an equivalence be-

tween the games with capacity constraints and the games without such constraints

but having lower strategic externalities.
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Chapter 1

Optimality of Securitized Debt

with Endogenous and Flexible

Information Acquisition 1

1.1 Introduction

Pooling assets and issuing asset-backed securities (ABSs), in particular, issuing a

securitized debt, is a popular way to raise liquidity. For example, commercial banks

pool a large number of individual home mortgages or automobile loans to create

a special purpose vehicle (SPV), which then issues ABSs to �nance the purchase

of these loans. This process can be modeled as the following story. A risk-neutral

seller owns some assets generating uncertain future cash �ows. She is impatient and

wants to raise liquidity by issuing an asset-backed security (ABS) to a risk-neutral

buyer. To raise liquidity, the seller proposes an ABS and its price, and sets it as a

take-it-or-leave-it o¤er. Then the buyer decides whether to accept the o¤er or not.

1This paper was presented at North American Summer Meeting of the Econo-
metric Society, St. Louis, June 2011, and Winter Meeting of American Economic
Association, Chicago, January 2012.
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This simple trading game will serve as a benchmark throughout the chapter, and

will be greatly enriched in order to capture our key ideas featuring the optimality

of securitized debt.

The security design literature has provided insightful viewpoints in investigat-

ing this securitization process as described above. Much of this literature models

sellers as �insiders�who are endowed with private information about the assets,

which makes potential buyers hesitate to provide liquidity due to adverse selec-

tion. In overcoming such adverse selection, this literature considers the possibility

of signaling by sellers, where buyers are passive because they cannot acquire any

information about the assets. Also, various assumptions on information, assets and

feasible securities to be designed are imposed in these models, which lead to various

conclusions on the optimality of di¤erent forms of securities.

This chapter explores another perspective to look into the problem of adverse

selection, which is universal in liquidity provision. Rather than assuming exoge-

nous private information, we consider adverse selection resulted from information

acquisition. A justi�cation to this approach is that, in reality, people can naturally

acquire di¤erent forms of information from di¤erent sources, so that the observed

information asymmetry essentially lies in the ability to acquire information at the

�rst place. While previous models directly assume the information asymmetry as

exogenous, we explicitly model it endogenously. The main �nding of this chapter

is that, when one party of trading, namely, either the seller or the buyer, designs

the contract and her counterparty acquires information about the fundamental, se-

curitized debt should be the uniquely optimal contract for liquidity provision. This

result is not limited to any speci�c case whether the buyer or the seller acquires

information. To streamline the presentation of our entire analysis, we consider the

case where the buyer can acquire information about the assets according to the secu-

rity proposed by the seller in the benchmark model, which endogenously generates

2



adverse selection di¤erent from that in classic security design literature. We follow

Dang, Gorton, and Holmstrom (2010) in treating the buyer as an �expert� who

acquires information accordingly. In reality, buyers involved in ABS transactions

are skillful and sophisticated. Their expertise in assessing investment opportunities

is better modeled by endogenous information acquisition rather than exogenous in-

formation endowment. Here endogeneity means that the agents can choose from a

set of information structures according to their investment opportunities. Taking

this endogeneity into account, sellers design securities generating least incentive for

buyers to acquire information. Dang, Gorton, and Holmstrom (2010) model such

information acquisition through the costly state veri�cation approach, in which buy-

ers either acquire a speci�c signal about the future cash �ows of assets or do not

acquire any information. In other words, the buyer can only choose from two speci�c

information structures. Based on this rigid information acquisition process, Dang,

Gorton, and Holmstrom (2010) show that debt is the least information-sensitive and

thus is an optimal contract to provide liquidity. However, there also exist in�nitely

many other securities, which are called �quasi-debts�, as information-sensitive as

the standard debt contract. Also, it is identi�ed that some restrictive conditions

are required in order to ensure the optimality of these quasi-debts when pooling is

considered. As we discuss below, their non-uniqueness result stems from the rigidity

of information acquisition inhabits the costly state veri�cation approach.

This chapter di¤ers from Dang, Gorton, and Holmstrom (2010) by allowing for

�exible information acquisition, which helps achieve the unique optimality of se-

curitized debt, even if pooling of various assets is taken into account. Similar to

Dang, Gorton, and Holmstrom (2010), we assume no information asymmetry at the

beginning to focus on the adverse selection resulting from endogenous information

acquisition. Given the security backed by the cash �ows and its associated price

proposed by the seller, �exibility enables the buyer to acquire information accord-
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ingly about the underlying assets. Here, speci�cally, �exibility means that the set

of feasible information structures to be acquired by the buyer consists of all condi-

tional distributions of signals on the underlying cash �ows. It captures the ability

of the buyer to allocate her attention in whatever way she wants. Hence, the buyer

chooses not only the quantitative but also the qualitative nature of her information.

We model �exible information acquisition through the paradigm of rational inat-

tention building upon Sims (2003), where any information structure can be acquired

at a cost proportional to reduction of entropy. This cost could result from the re-

quired time or resource to run models, do statistical tests or write reports. Flexi-

bility enables the buyer to acquire payo¤-relevant information accordingly, and the

information cost requires her to optimally acquire such information in both quan-

titative and qualitative aspects. For example, to assess a collateralized debt with

face value $1000 and price $800, a potential buyer would like to analyze data more

carefully to see when the underlying cash �ow possibly varies around $800, but put

less attention to check whether the cash �ow could reach $2000 or not, since any

realization of the underlying cash �ow that is above the face value always generates

$1000 to the buyer. Similar to Dang, Gorton, and Holmstrom (2010), standard

securitized debt is optimal for liquidity provision in our model. But our result is

sharper in the sense that securitized debt is the uniquely optimal one. In Dang,

Gorton, and Holmstrom (2010), only two extreme information structures are avail-

able in the setup of costly state veri�cation but in�nite forms of securities can be

designed, which inevitably results in the indistinguishability of some securities. In

our framework, with help of �exibility, the variety of available information structures

matches the variety of potential securities to be designed, and thus the uniqueness

of the standard securitized debt could be guaranteed. Quasi-debts are no longer

optimal in our model. By reshaping the uneven tail above the price of a quasi-debt

to a �at one, not only the buyer�s information cost could be saved but also poten-
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tial loss of trade from adverse selection could be mitigated. The resulted surplus

could be employed by the seller to make both parties better o¤, and thus ultimately

make a better provision of liquidity possible. Moreover, �exible information acqui-

sition provides a uni�ed framework to analyze securitization of multiple assets. We

show that pooling and issuing securitized debt is uniquely optimal to raise liquidity,

regardless of the stochastic interdependence among the underlying assets and the

allocation of bargaining power.

There are two key factors determining the unique optimality of standard se-

curitized debt. The �rst one is the �xed aggregate risk implicitly speci�ed in the

benchmark trading game in the sense that the total cash �ows owned by the seller

and buyer are invariant with respect to the success or failure of the transaction.

This factor and its underlying mechanism towards the unique optimality of securi-

tized debt does not depend on whether the buyer or the seller acquires information,

as long as the roles of security design and information acquisition are separately

allocated to the two parties of trading. Speci�cally, in our benchmark model, since

the aggregate risk is �xed, information acquisition is not socially valuable, so that

acquiring information is no more than waste of money when both parties are con-

sidered as a unity. Moreover, this trading game with �xed aggregate risk leads to

con�icting interests of the two parties, so that the information acquired by the buyer

makes herself better o¤ but at the expense of the seller through adverse selection,

which further reduces the potential gain from trade. Since the buyer�s incentive to

acquire information is shaped by the o¤er proposed to her, the seller deliberately

designs the ABS to optimally discourage information acquisition harmful to her own

interests. Due to the limited liability, any feasible ABS is bounded above by the

sum of underlying cash �ows. When information cost is not too high, the �exibility

allows the buyer to distinguish between any states with di¤erent payo¤s. Hence the

seller makes the ABS a constant whenever it is o¤ the boundary to discourage in-
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formation acquisition and thus mitigate adverse selection. This consideration gives

rise to a �at tail. In states where the underlying cash �ows are too low to support

such constant, the ABS reaches the boundary and equals the sum of underlying cash

�ows. Therefore, the �at tail and the boundary component constitute a securitized

debt, which is uniquely optimal for liquidity provision. We also use an example with

variable aggregate risk to illustrate the importance of �xed aggregate risk in our

framework. Consider the seller as an entrepreneur that raises funds from the buyer

to take a project with uncertain future cash �ows. They jointly expose themselves

to an aggregate risk if the buyer accepts the o¤er, and are not exposed to such

risk if the o¤er is rejected. In this case, information acquisition could be socially

valuable and the con�icting interests of the two parties could be partly reconciled.

Therefore, the seller could deliberately design a contract to encourage the buyer to

acquire information that helps avoid investing in states where cash �ows are too

low. This increases her bene�t from the trade, and also leads to a more socially

desirable outcome.

Another key factor is the homogeneity in information acquisition. That is, no

state is more special than other states in terms of the di¢ culty of information

acquisition. This feature stems from rational inattention2 and is the reason why

our qualitative result does not depend on the stochastic interdependence among the

underlying assets. Intuitively, if information about some assets is much easier to

acquire than other assets, the �at part of the securitized debt cannot be preserved

in the optimal ABS. We provide an example that illustrates this idea. The above

two factors specify the boundary of our theory.

Finally, the origin of the uniqueness of optimal contract is not only from the

�exibility itself, but from the double-sided symmetry of �exibility. In principle,

2We can achieve the same qualitative results under more general information
costs possessing such property.
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general �exible choice, not necessarily restricted to �exible information acquisition,

enables an economic agent to make state-contingent responses. In other words, the

agent can make a best response in one state, and can make another best response

in another state. Double-sided symmetry of �exibility requires that both parties

engaged in a potential trade are endowed with the same level of �exibility.

How this double-sided symmetry of �exibility works can be seen by compar-

ing our framework to Dang, Gorton, and Holmstrom (2010) and the traditional

models of costly state veri�cation like Townsend (1979). In all these three models,

the contract designer is endowed with �exibility, in the sense that she can assign

state-contingent repayment through designing any form of security. What matters

to shape the di¤erent results regarding uniqueness of the optimal contract relies on

the potential �exibility of the other party who decides whether to accept the o¤er.

In our framework, ex-ante symmetric information in the form of a double-sided ig-

norance prevents the buyer to make a state-contingent choice if she only follows the

traditional costly state veri�cation approach to acquire information. However, the

buyer in our framework is able to choose state-contingent probability of accepting

the o¤er, namely, she can perform �exible information acquisition. In this sense the

buyer enjoys the same level of �exibility as the seller. Given this double-sided sym-

metry of �exibility in our model, the uniqueness of an optimal contract, which is the

standard securitized debt, is guaranteed. In Dang, Gorton, and Holmstrom (2010),

however, the buyer can only follow the traditional costly state veri�cation approach

to acquire information, in which only two options, namely, to acquire a signal or not,

are available. In other words, the buyer in Dang, Gorton, and Holmstrom (2010)

cannot make state-contingent decision. Hence, the desired double-sided symmetry

of �exibility fails and the uniqueness of the optimal contract fails as a consequence.

Interestingly, Townsend (1979) also employs the costly state veri�cation approach

with two options to model information acquisition, namely, to audit or not, but the
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unique optimality of a standard debt still emerges. Why it is this case? Di¤er-

ent from Dang, Gorton, and Holmstrom (2010) and our framework, in Townsend

(1979) the entrepreneur has information advantage over the lender in the sense that

the entrepreneur knows the realized pro�t of the project which the lender does not

know. Thanks to the revelation principle, the lender who acquire information in the

interim stage can decide whether to audit or not in any state based on the truth

told by the entrepreneur who has private information. In other words, although

the lender in Townsend (1979) still only has two options to acquire information as

the buyer in Dang, Gorton, and Holmstrom (2010), such two options in Townsend

(1979) are state-contingent while their counterparts in Dang, Gorton, and Holm-

strom (2010) are not. Therefore, the double-sided symmetry of �exibility is still

established in Townsend (1979), and the uniqueness of the optimal contract, also a

standard debt, is ensured in their model as well.

This chapter proceeds as following. Section 1.2 studies �exible information ac-

quisition in a binary choice problem, which provides a solid foundation for analyzing

players�behavior in the trading game and liquidity provision. Section 1.3 derives

the uniquely optimal contract as the securitized debt in various circumstances and

identi�es the two key driving forces of this result. We conclude and discuss in

Section 1.4.

1.1.1 Relation to the Literature

We model players�information acquisition behavior through the framework of ra-

tional inattention building on Sims (1998) and Sims (2003).3 In applied work,

rational inattention is mainly studied in two cases: the linear-quadratic case (e.g.,

3To learn more about rational inattention, see Sims (2005),Sims (2006), Sims
(2010), Luo (2008), Mackowiak andWiederholt (2011), Van Nieuwerburgh and Veld-
kamp (2009a), Van Nieuwerburgh and Veldkamp (2009b), Paciello (2009), Matejka
(2010), Mondria (2010), Matejka and Sims (2011).
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Mackowiak and Wiederholt (2009)), and the binary-action case. A leading exam-

ple of the latter is Woodford (2009) , where �rms acquire information and then

decide whether to review their prices. Similar to Yang (2011), this chapter also

adopts the binary-action setup in a strategic framework, which is di¤erent from the

single-person decision problem as employed in Woodford (2009). Compared to Yang

(2011) where both players acquire information and move simultaneously, this chap-

ter considers a case in which players move sequentially, and only one party acquires

information that results in information asymmetry. Also, this chapter focuses on a

speci�c security design problem, rather than addresses a general coordination game

as Yang (2011). Together with Yang (2011), our work makes early attempts to

incorporate rational inattention based �exible information acquisition into strate-

gic problems and o¤ers various new results di¤erent from this trend of rational

inattention literature.

This chapter is also closely related to the security design literature, in much of

which sellers are modeled as �insiders�exogenously endowed with private informa-

tion. Sellers�information advantage over buyers results in adverse selection which

further leads to ine¢ cient trade. In order to deal with the adverse selection problem

given that buyers cannot acquire information, sellers want to signal their private

information out in order to partly retrieve e¢ cient trade. In this process, appro-

priate security design matters. This is because signaling is costly, so that to design

a security that is less information sensitive than the original asset could save the

signaling cost, which in turn adds to the pro�t of sellers. This consideration is plau-

sible and insightful results have been well established in literature, but there may

also be other interesting possibilities worth investigating. Also, various assumptions

are imposed in this literature to deliver various results. In this chapter, buyers in

�nancial markets may also actively acquire information, which could result in dif-

ferent interplay between the two parties and di¤erent results of security design, and
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we can get clearer results from a single assumption.

The key di¤erence between our approach and much of the security design lit-

erature could be clearly seen in discussing some of their assumptions and results

in details. Gorton and Pennacchi (1990) shows that splitting assets into debt and

equity mitigates the lemon problem between outsiders and insiders. They directly

assume the existence of debt rather than considering a security design problem. In

DeMarzo and Du¢ e (1999), informed sellers signal the quality of assets to compet-

itive liquidity suppliers through retaining part of the cash �ows. Equity is issued

when the contractible information is not very sensitive to sellers�private informa-

tion. Standard debt is optimal within the set of non-decreasing securities if the

information structure allows a uniform worst case. Biais and Mariotti (2005) stud-

ies the e¤ects of market power on market liquidity. They derive both the optimal

security and trading mechanism through the approach of mechanism design. Debt

contract turns out to be optimal under distributional conditions of underlying cash

�ows. DeMarzo (2005) focuses on the consequences of pooling and tranching. Pool-

ing has an information destruction e¤ect that destroys the seller�s ability to signal

the quality of her assets separately. When tranching is possible, pooling may also

have a risk diversi�cation e¤ect that reduces information sensitivity of the senior

claim. Under speci�c distributional assumptions of the noise structure, DeMarzo

(2005) shows that the risk diversi�cation e¤ect dominates the information destruc-

tion e¤ect as the number of underlying assets goes to in�nity. In this limit case,

pooling and tranching become optimal. These models also restrict their attention

to non-decreasing securities4. Innes (1990) provides a standard motivation for this

constraint. When the security is not monotone, a seller may cheat through borrow-

ing from a third party, reporting a high cash �ow to reduce her repayment and then

4Biais and Mariotti (2005) also assume dual monotonicity, i.e., both the security
and the residual cash �ow are non-decreasing.
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repaying the side loan. The validity of this argument depends on the context. In

the case of publicly traded stocks or bonds, this kind of cheat is unlikely to happen

because it is di¢ cult or even illegal for seller to manipulate the cash �ows. More-

over, when the security is written on multiple underlying assets, even the concept

of monotonicity is not well de�ned. Our framework is free of these limits.

It is also interesting to contrast our work to Axelson (2007). Di¤erent from the

signaling literature of security design as DeMarzo and Du¢ e (1999) and subsequent

work, Axelson (2007) considers a security design problem when the buyer rather

than the seller have private information about the asset. The benchmark model

of Axelson (2007) could be viewed as the case where there is variable aggregate

risk, the seller designs contract and the buyer has information advantage in my

framework, so that it is natural to expect equity rather than debt to be a better

solution to the seller�s �nancing problem. Our framework is di¤erent from Axelson

(2007) in a deeper sense that we view the buyer�s private information as endogenous,

which results from endogenous and �exible information acquisition. Also, as we

emphasized above, our results are more general in the sense that they are not limited

to the case where the buyer is able to obtain private information, but only require

that one party of trading designs contract and the other acquires information.

1.2 Binary Choice with Endogenous and Flexible

Information Acquisition

Before introducing the economic environment of security design problem, we review

the logic of binary choice with �exible information acquisition, which will play a key

role in the following analysis. The readers mainly interested in the security design

problem can skip this section and go back to it when needed.

In our leading example, a buyer faces a take-it-or-leave-it o¤er. She has to
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acquire information and then make a binary choice. We �rst focus on information

structures with binary signals and then show that it su¢ ces to do so.

1.2.1 Decision Problem

Consider an agent who has to choose an action a 2 f0; 1g and will receive a payo¤

u (a; �), where � 2 � � R is an unknown state distributed according to a continuous

probability measure P over �.

The agent has access to the set of binary-signal information structures. In

particular, she observes signals x 2 f0; 1g parameterized by measurable function

m : � ! [0; 1], where m (�) is the probability of observing signal 1 if the true

state is � (and so 1�m (�) is the probability of observing signal 0). The conditional

probability functionm (�) describes the agent�s information acquisition strategy. By

choosing di¤erent functional forms for m (�), the agent can make her signal covary

with fundamental in any way she would like. Intuitively, if her welfare is sensitive

to �uctuation of the state within some range A � �, she would pay much attention

to this event by letting m (�) be highly sensitive to � 2 A. In this sense, choosing an

information structure can be interpreted as hiring an analyst to write a report with

emphasis on your interests. This idea will be made more clear through an example

later in this section.

Quantity and Cost of Information

Following Sims (2003), we measure the quantity of information according to infor-

mation theory building on Shannon (1948). Information conveyed by an information

structure m (�) is de�ned as the expected reduction of uncertainty through observ-

ing signals generated by m (�), where the uncertainty associated with a distribution

is measured by Shannon�s entropy.
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Before observing her signal, the agent�s uncertainty about � is given by Shannon�s

entropy of her prior5

H (prior) = �
Z
�

p (�) ln p (�) d� ,

where p is the density function of prior P 6. After observing signal 1, the agent

forms a posterior of �
m (�) p (�)R

�
m (�0) dP (�0)

and her posterior uncertainty upon receiving signal 1 is measured by her posterior

entropy

H (posteriorj1) = �
Z
�

m (�) p (�)R
�
m (�0) dP (�0)

ln

�
m (�) p (�)R

�
m (�0) dP (�0)

�
d�

= �
Z
�

m (�)R
�
m (�0) dP (�0)

ln

�
m (�) p (�)R

�
m (�0) dP (�0)

�
dP (�) .

Similarly, observing signal 0 leads to a posterior

[1�m (�)] p (�)
1�

R
�
m (�0) dP (�0)

and posterior entropy

H (posteriorj0) = �
Z
�

1�m (�)
1�

R
�
m (�0) dP (�0)

ln

�
[1�m (�)] p (�)

1�
R
�
m (�0) dP (�0)

�
dP (�) .

Then the agent�s expected posterior entropy through choosing information structure

5This is essentially the unique measure of uncertainty given three axioms. See
Cover and Thomas (1991) for detailed discussion.

6Following the convention of information theory, we let 0 � ln 0 = 0. This is
reasonable since limx!0 x � lnx = 0.
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m (�) is

H (posterior)

=

Z
�

m (�0) dP (�0) �H (posteriorj1) +
�
1�

Z
�

m (�0) dP (�0)

�
�H (posteriorj0)

= �
Z
�

m (�) ln

�
m (�) p (�)R

�
m (�0) dP (�0)

�
dP (�)�

Z
�

[1�m (�)] ln
�

[1�m (�)] p (�)
1�

R
�
m (�0) dP (�0)

�
dP (�) .

Let I (m) denote the quantity of information gained through m (�), which equals

the di¤erence between the agent�s prior entropy and expected posterior entropy, i.e.,

I (m) = H(prior)�H (posterior)

=

�Z
�

g (m (�)) dP (�)� g
�Z

�

m (�) dP (�)

��
, (1.1)

where

g (x) = x � lnx+ (1� x) � ln (1� x) .

In information theory, I (m) is called mutual information. It measures the quantity

of information about � that is conveyed by the signal.

Write

M , fm 2 L (�; P ) : 8� 2 �;m (�) 2 [0; 1]g

for the set of binary-signal information structures. Let c :M ! R+ be the cost (in

terms of utility) of acquiring information. We assume that the cost is proportional

to the quantity of information gained, i.e.,

c (m) = � � I (m) , (1.2)

where � > 0 is the marginal cost of information acquisition. It measures the di¢ -

culty in acquiring information. When � = 0, information acquisition incurs no cost
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and the agent can directly observe the true state. When �!1, the agent cannot

acquire any information at all.

It is worth noting that mutual information I (m) measures functionm�s variabil-

ity, which re�ects the informativeness of actions to the fundamental. For example,

when m (�) is constant, the actions convey no information about � and the corre-

sponding mutual information is zero. This is because function g is strictly convex

and thus I (m) is zero if and only if m (�) is constant. Hence, a nice property of our

technology of information acquisition is that there exists information acquisition

if and only if m (�) varies over �, if and only if information cost is positive. Also

note that the "shape" (functional form) of m determines not only the quantity but

also the qualitative nature of information. For instance, an agent can concentrate

her attention to some event through making m (�) highly sensitive to � within such

event. In this sense, our technology of information acquisition is �exible since the

agent can decide both the quantity and quality of their information through freely

choosing from M . It is also worth noting that c (�) is convex, i.e.,

c (t �m1 + (1� t) �m2) � t � c (m1) + (1� t) � c (m2)

for all m1;m2 2 M and t 2 [0; 1]. This convexity is strict when at least one of m1

and m2 is not a constant in �.

Solving Binary Decision Problem with Information Acquisition

Now we are interested in the problem of an agent choosing an information structure

m 2 M and a stochastic decision rule f : f0; 1g ! [0; 1] to maximize her expected
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utility

V (m; f) =

Z
�

8><>: [m (�) f (1) + (1�m (�)) f (0)] � u (1; �)

+ [m (�) (1� f (1)) + (1�m (�)) (1� f (0))] � u (0; �)

9>=>; dP (�)�c (m) .
(1.3)

Without loss of generality, we can let f = f � where f � (1) = 1 and f � (0) = 0. This

simpli�cation is based on the following observation. If we let

m� (�) = m (�) f (1) + (1�m (�)) f (0) ;

then V (m�; f�) � V (m; f). This is because the �rst term of (1.3) remains the

same, while the information cost becomes smaller due to the convexity of c (�).7

Fixing f = f �, we can interpret m as a joint information structure and decision

rule specifying that the agent will take action 1 with probability m (�) in state �.

7A simple proof: the convexity of c (�) implies

c (� �m) = c (� �m+ (1� �) � 0)
< � � c (m) + (1� �) � c (0)
= � � c (m)

for � 2 [0; 1). Without loss of generality, let �f = f (1) � f (0) � 0. Note that if
f (1) = 0 or f (1) = 1 and f (0) = 0, we are done. Let � = �f=f (1). Thus at least
one of f (1) and � is strictly less than 1:Then

c (m�) = c (f (1) � [� �m+ 1� �])
� f (1) � c ([� �m+ 1� �])
� f (1) � ([� � c (m) + 0])
� �f � c (m) < c (m) .

16



Now the agent�s problem is to choose m 2M to maximize

V � (m) =

Z
�

[m (�) � u (1; �) + [1�m (�)] � u (0; �)] dP (�)� c (m)

=

Z
�

m (�) � [u (1; �)� u (0; �)] dP (�)� c (m) +
Z
�

u (0; �) dP (�) .

Since
R
�
u (0; �) dP (�) is a constant that does not depend on m, we can rede�ne

the agent�s objective as

max
m2M

V � (m) =

Z
�

�u (�) �m (�) dP (�)� c (m) ,

where

�u (�) = u (1; �)� u (0; �)

is the payo¤ gain from taking action 1 over action 0. It shapes the agent�s incentive

of information acquisition.

The following lemma characterizes the optimal strategy m for the agent.8

Proposition 1.1 9Let Pr (�u (�) 6= 0) > 0 to exclude the trivial case that the agent

is always indi¤erent between the two actions. Let m 2 M be an optimal strategy

and

p1 =

Z
�

m (�) dP (�)

be the corresponding unconditional probability of taking action 1. Then,

i) the optimal strategy is unique;

ii) there are three possibilities for the optimal strategy:

8We became aware of the related work Woodford (2008) while working on this
paper. Here we use Lemma 2 of Woodford (2008) to characterize the optimal
strategy. To maintain the completeness of our paper, we give a proof in our context.

9We do not have to require � � R. This proposition holds for any probability
space �.
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a) p1 = 1 (i.e., m (�) = 1 almost surely) if and only if

Z
�

exp
�
���1�u (�)

�
dP (�) � 1 ; (1.4)

b) p1 = 0 (i.e., m (�) = 0 almost surely) if and only if

Z
�

exp
�
��1�u (�)

�
dP (�) � 1 ; (1.5)

c) p1 2 (0; 1) if and only if

Z
�

exp
�
��1�u (�)

�
dP (�) > 1 and

Z
�

exp
�
���1�u (�)

�
dP (�) > 1 ; (1.6)

in this case, the optimal strategy m is characterized by

�u (�) = � � [g0 (m (�))� g0 (p1)] (1.7)

for all � 2 �, where

g0 (x) = ln

�
x

1� x

�
.

Proof. See Appendix 1.5.

These results are intuitive. Since the information cost is convex, the agent�s

objective is concave, which gives rise to the uniqueness of the optimal strategy.

In case a), condition (1.4) holds if action 1 is very likely the ex ante best action

and the cost of acquiring information is su¢ ciently high. Hence the agent just

takes action 1 without acquiring any information. Similarly, case b) implies that

if action 0 is ex ante very likely to dominate action 1 and the information cost is
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su¢ ciently high, the agent always takes action 0. In this two cases, marginal bene�t

of acquiring information is less than the marginal cost. Hence the decision maker

chooses not to acquire any information.

In case c), as captured by the two inequalities, neither action 1 nor action 0

is ex ante dominant, thus there is information acquisition and m (�) is no longer a

constant.

In order to get some intuition, consider an extreme case where action 1 is domi-

nant, i.e., the payo¤ gain �u (�) > 0 almost surely. It is obvious that the agent will

always take action 1 regardless of �, the marginal cost of information acquisition.

When neither action is dominant, i.e.,

Pr (�u (�) > 0) > 0 and Pr (�u (�) < 0) > 0 ,

the marginal cost of information acquisition � plays a role.

On the one hand,

lim
�!1

Z
exp

�
���1�u (�)

�
dP (�) = 1 .

Hence Proposition 1.1 predicts that no information is acquired if � is high enough.
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On the other hand, since

lim
�!0

d

d��1

Z
exp

�
��1�u (�)

�
dP (�)

= lim
�!0

Z
exp

�
��1�u (�)

�
�u (�) dP (�)

= lim
�!0

Z
�u(�)>0

exp
�
��1�u (�)

�
�u (�) dP (�)

+Pr (�u (�) = 0) + lim
�!0

Z
�u(�)<0

exp
�
��1�u (�)

�
�u (�) dP (�)

= +1+ Pr (�u (�) = 0) + 0

= +1 ,

we have

lim
�!0

Z
exp

�
��1�u (�)

�
dP (�) > 1 .

A similar argument leads to

lim
�!0

Z
exp

�
���1�u (�)

�
dP (�) > 1 .

Therefore, Proposition 1.1 reads that there must exist information acquisition if

the marginal cost of information is su¢ ciently low. This interpretation coincides

with our intuition that the agent rationally decides whether to acquire information

through comparing the cost to the bene�t of information acquisition.

When neither action is dominant and the marginal cost of information acquisi-

tion takes intermediate values, the agent �nds it optimal to acquire some information

to make her action (partially, in a random manner) contingent on �. This is the case

speci�ed by condition (1.6). Since g0 is strictly increasing, (1.7) implies that m (�),

the conditional probability of choosing action 1, is increasing with respect to payo¤

gain �u (�). This is intuitive. The left hand side of (1.7) represents the marginal

bene�t of increasing m (�), while the right hand side of (1.7) is the marginal cost of
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information when increasing m (�). Therefore, if deciding to acquire information,

the agent will equate her marginal bene�t with her marginal cost of doing so.

An Example

The following example provides some intuition behind the agent�s information ac-

quisition strategy.

Let � distribute according to N (t; 1) and

�u (�) = � .

It is easy to verify that the agent always chooses action 1 (action 0) if and only if

t � ��1=2 (t � ���1=2). In this case, action 1 (action 0) is superior to action 0

(action 1) ex ante (i.e., jtj is large) and the cost in acquiring information is relatively

high (i.e., � is large). Hence it is not worth acquiring any information at all.

Let t = 0, then the agent �nds it optimal to acquire some information. According

to (1.7), the optimal information acquisition strategy m (�) satis�es

�=� = g0 (m (�))� g0
�Z

�

m (�) dP (�)

�
; (1.8)

where

g0 (m) = ln
m

1�m .

Since prior N (0; 1) is symmetric about the origin and payo¤ gain �u (�) is an odd

function, the agent is indi¤erent on average, i.e.,

Z
�

m (�) dP (�) = 1=2 .

21



Hence

g0
�Z

�

m (�) dP (�)

�
= 0

and (1.8) becomes

�=� = ln
m (�)

1�m (�) .

Therefore,

m (�) =
1

1 + exp (��=�) . (1.9)

First note that

lim
�!0

m (�) = a (�) ,

8><>: 1 if � � 0

0 if � < 0
.

Step function a (�) captures the agent�s choice under complete information. In this

case, the agent can observe the exact value of �. When � > 0, the best response is

characterized by (1.9). Since information is no longer free, the agent has to allow

some mistake in her response. The conditional probability of mistake is given by

jm (�)� a (�)j ,

which is decreasing in j�j, the "price" of mistake. Therefore, the agent deliberately

acquires information to balance the price of mistake and the cost of information.

Second, parameter � measures the di¢ culty in acquiring information. Figure

1.1 shows how m (�) varies with this parameter.

When � = 0, information acquisition incurs no cost and the agent�s response is

a step function. She never makes mistake. When � becomes larger, she starts to

compromise the accuracy of her decision to save information cost. Larger � leads

to �atter m (�). Finally, when � is extremely large, m (�) is almost constant and

the agent almost stops acquiring information.
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Figure 1.1: Information acquisition under various information costs

Third, since the agent�s action is highly sensitive to � where slope
���dm(�)d�

��� is
large,

���dm(�)d�

��� re�ects her attentiveness around �. Under this interpretation, Figure
1.1 reveals that the agent actively collects information for intermediate values of the

fundamental but is rationally inattentive to values at the tails. This result coincides

with our intuition. When � is too high (low), the agent should take action 1 (action

0) anyway. Hence the information about � on the tails are not so relevant to her

payo¤. When � takes intermediate values, the agent�s payo¤gain from taking action

1 over action 0 depends crucially on the sign of �. Therefore, the information about

� around zero is payo¤-relevant and attracts most of her attention.

We have been focusing on binary-signal information structures. Next subsection

justi�es this setup.
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1.2.2 Justifying the Binary-signal Information Structure

Generally, an agent can purchase any information structure ((X; �) ; �). Here X is

the set of realizations of the signal, � is a �-algebra on X, and 8� 2 �, � (�j�) is

a probability measure on X. � (�j�) conveys information about state � in the sense

that for any event A � X, � (Aj�) speci�es the conditional probability of A given

�. Before making a decision, the agent can acquire information about the state in

the form of an information structure. An information structure speci�es both the

quantity and qualitative nature of the information.

The binary-signal information structure analyzed above is a special case with

X = f0; 1g and � (1j�) = m (�) (and so � (0j�) = 1 � m (�)). For binary choice

problem with �exible information acquisition, it su¢ ces to restrict our attention

to this special class of information structures. To see this, let ((X; �) ; �) be any

information structure chosen by the agent. Given ((X; �) ; �), the agent optimally

chooses her action rule as a : X ! [0; 1], where a (x) is the probability of taking

action 1 upon receiving signal x. Let

X1 = fx 2 X : a (x) = 1g ;

X0 = fx 2 X : a (x) = 0g ;

and

Xind = fx 2 X : a (x) 2 (0; 1)g :

X1 (X0) is the set of signal realizations such that the agent de�nitely takes action 1

(0). She is indi¤erent when her signal belongs to Xind. Then (X1; X0; Xind) forms a

partition of X. Since the only use of the signal is to make a binary decision, a signal

di¤erentiating more �nely among the states just conveys redundant information and
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wastes the agent�s attention. Hence the agent will not discern signal realizations

within any ofX1, X0 andXind. In addition, because she is indi¤erent between action

0 and 1 upon event Xind, she would rationally pay no attention to distinguish this

event from other realizations. Hence, the agent always play pure strategies upon

receiving her signal. Therefore, the agent always prefers binary-signal information

structures.10

1.3 Security Design with Information Acquisition

1.3.1 Basic Setup

We consider a two-period game with two players. One player is a seller that owns N

assets at period 0. These assets generate veri�able random cash �ows
�!
� 2 � � RN+

in period 111. The other player is a potential buyer holding consumption goods

(money) at period 0. Player i�s utility function is given by

ui = ci0 + �i � ci1; (1.10)

where cit denotes player i�s consumption at period t and �i 2 [0; 1] is her subjective

discount factor, i 2 fs; bg(fs; bg stands for fseller; buyerg). We assume �b > �s to

represent that the seller has a better investment opportunity than the buyer. This

assumption creates the trading demand. Both agents may bene�t from transferring

some goods to the seller at date 0 and compensating the buyer with repayment

backed by the random cash �ows
�!
� at date 1.

Similar to Dang, Gorton, and Holmstrom (2010), we assume no information

10Woodford (2009) has a similar argument that the agent only needs to acquire
a "yes/no" signal.

11Here the assumption of veri�able cash �ows is natural, since we generally have
third parties monitor and collect the underlying loans and distribute the cash �ows
to the holders of asset backed securities.
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asymmetry at period 0 to focus on the adverse selection resulting from endogenous

information acquisition. Hence the two agents start with identical information about
�!
� , which is represented by a full support common prior P over �. Without loss

of generality, we assume that P is absolutely continuous with respect to Lebesgue�s

measure on RN+ .

A security backed by
�!
� , the cash �ows of the N assets, is a mapping s : �! R+

such that 8�!� 2 �, s
��!
�
�
2
h
0;
PN

n=1 �n

i
. A contract (s (�) ; q) is a security s (�)

associated with a price q > 0. Throughout the chapter, we focus on the case where

one player proposes a take-it-or-leave-it contract (s (�) ; q) to her opponent, who then

acquires information and decides whether to accept it. This setup captures the idea

that some agents in the markets of securitized assets are less sophisticated than

others and cannot produce private information about the underlying cash �ows.

This separation between bargaining power and ability of information acquisition

also makes our problem tractable.12

We �rst study the case where the seller designs the contract and the buyer ac-

quires information. We then highlight two key factors driving the unique optimality

of issuing securitized debt. We �nally exchange the bargaining power and the ability

of information acquisition to show the robustness of our main results.

12We would have to study a much more complicated signaling game if the issuer
can produce private information before her proposal. In that case, the set of possi-
ble signals consists of all contracts, which is a functional space. To the best of our
knowledge, this kind of signaling games are rarely studied before. DeMarzo, Kre-
mer, and Skrzypacz (2005) does consider a security design problem where potential
signals are securities. But their approach does not �t our framework of �exible
information acquisition. In the literature, either the informed agent chooses �nite-
dimension signals (e.g., the level of debt in Ross (1977), the retaining fraction of
the equity in Leland and Pyle (1977), etc.), or the issuer designs the security be-
fore obtaining her information (e.g., DeMarzo and Du¢ e (1999), Biais and Mariotti
(2005)).
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1.3.2 Optimal Contract when the Seller Designs

Consider the particular binary choice problem where the agent is a risk neutral

buyer with utility (1.10). Action 1 corresponds to buying the ABS s
��!
�
�
at price q

and action 0 corresponds to not buying. Write ms;q for the buyer�s optimal strategy

when facing contract (s; q). Let

ps;q =

Z
�

ms;q

��!
�
�
dP
��!
�
�

be the buyer�s unconditional probability of accepting the o¤er. The seller thus

enjoys an expected utility

W (s; q) =

Z
�

ms;q

��!
�
�
�
h
q � �s � s

��!
�
�i
dP
��!
�
�
. (1.11)

The seller�s problem is to choose a contract (s; q) satisfying s
��!
�
�
2
h
0;
PN

n=1 �n

i
to maximize W (s; q). Let (s� (�) ; q�) denote the optimal contract and

ps�;q� =

Z
�

ms�;q�

��!
�
�
dP
��!
�
�

be the corresponding probability of trade.

According to Proposition 1.1, there are three possible cases: a) ps�;q� = 1; b)

ps�;q� = 0; and c) ps�;q� 2 (0; 1). We �rst argue that case b) is impossible.

Proposition 1.2 ps�;q� > 0, i.e., trade happens with positive probability.

Proof. We prove by constructing a securitized debt that generates positive expected

payo¤ to the seller. Let � 2
�
�s�

�1
b ; 1

�
and

f (q) =

Z
�

min

 
NX
n=1

�n; ��
�1
s q

!
dP
��!
�
�
.
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Since P is a continuous distribution and ��1�s�
�1
b < 1, there exists q0 > 0 s.t.

Pr

 
NX
n=1

�n � ���1s q
!
> ��1�s�

�1
b

for all q 2 [0; q0]. Hence for any q 2 (0; q0),

f 0 (q) = ���1s

Z
f�!� 2�:PN

n=1 �n����1s qg
1 � dP

��!
�
�

= Pr

 
NX
n=1

�n � ���1s q
!
� ���1s

> ��1�s�
�1
b � ���1s = ��1b .

Note that

f (0) = 0 ,

which implies that

f (q) > ��1b q

for all q 2 (0; q0).

Consider a securitized debt

s
��!
�
�
= min

 
NX
n=1

�n; D

!

with face value D = ���1s q and price q 2 (0; q0). The buyer�s payo¤ gain from

accepting this o¤er over rejecting it is

�u
��!
�
�
= �b � s

��!
�
�
� q. (1.12)
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By Jensen�s inequality,

Z
�

exp
�
��1�u

��!
�
��
dP
��!
�
�

� exp

�
��1

Z
�

�u
��!
�
�
dP
��!
�
��

= exp

 
��1

"
�b �
Z
�

min

 
NX
n=1

�n; ��
�1
s q

!
dP
��!
�
�
� q
#!

= exp
�
��1 [�b � f (q)� q]

�
> exp (0) = 1,

where the last inequality comes from (1.12). Hence according to Proposition 1.1,

ps;q > 0. Then, the seller�s expected payo¤ from this contract is

W (s; q) =

Z
�

ms;q

��!
�
�
�
h
q � �s � s

��!
�
�i
dP
��!
�
�

=

Z
�

ms;q

��!
�
�
�
"
q � �s �min

 
NX
n=1

�n; ��
�1
s q

!#
dP
��!
�
�

�
Z
�

ms;q

��!
�
�
�
�
q � �s � ���1s q

�
dP
��!
�
�

= (1� �) q � ps;q > 0 .

By de�nition, the seller�s expected payo¤through the optimal contract isW (s�; q�) �

W (s; q) > 0. This directly implies ps�;q� > 0 since ps�;q� = 0 always generates zero

expected payo¤ to the seller. This concludes the proof.

The key of the proof is to show that the seller can always enjoy a positive

expected payo¤ through proposing a securitized debt. Hence her optimal contract

must also generate a positive expected payo¤, which can be achieved only through a

successful trade. Although facing adverse selection, the seller always prefers trade.

This is because she owns all bargaining power. She is able to minimize the negative

e¤ect of information acquisition through appropriately designing a contract and
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thus enjoy the bene�t from trade.

According to Proposition 1.2, only case a) and c) are possible. In case a) ps�;q� =

1 and the buyer does not acquire any information. In case c), ps�;q� 2 (0; 1) and the

buyer does acquire some information. We �rst study the seller�s optimal contract

in case a).

Optimal Contract without Inducing Information Acquisition

A direct application of Proposition 1.1 suggests that any contract (s; q) that does

not induce information acquisition must satisfy

E exp
�
���1

h
�b � s

��!
�
�
� q
i�
� 1 ,

i.e.,

q � �� lnE exp
�
���1�b � s

��!
�
��

. (1.13)

Intuitively, the buyer just accepts the o¤er when the price is low enough relative

to the repayment of the security. This inequality must bind for seller�s optimal

contract, otherwise she can bene�t from increasing the price q. Hence, (1.13) reduces

to

q = �� lnE exp
�
���1�b � s

��!
�
��

. (1.14)

Since the contract is always accepted, the seller�s expected payo¤ becomes

Z
�

h
q � �s � s

��!
�
�i
dP
��!
�
�

= q � �s � Es
��!
�
�

= �� lnE exp
�
���1�b � s

��!
�
��
� �s � Es

��!
�
�
.
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Hence the seller�s problem can be formalized as

min
s(�)

� lnE exp
�
���1�b � s

��!
�
��
+ �s � Es

��!
�
�

subject to the feasibility condition

s
��!
�
�
2
"
0;

NX
n=1

�n

#
. (1.15)

Proposition 1.3 If the seller�s optimal contract induces the buyer to always accept

it without acquiring information, it must be a securitized debt

s�
��!
�
�
= min

 
NX
n=1

�n; D
�

!

with price q�, where the face value is determined by

D� = D (q�)

= ���1b � [ln �b � ln �s] + ��1b q� ,

q� > 0 is the unique �xed point of

h (q) = �� lnE exp
 
���1�b �min

 
NX
n=1

�n; D (q)

!!

and the expectation is taken under common prior P .

Proof. See Appendix 1.5.

First note that the face value has a lower bound, i.e.,

D� > ���1b � [ln �b � ln �s] .
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Hence if the maximal cash �ow

sup

(
NX
n=1

�n :
�!
� 2 �

)
� ���1b � [ln �b � ln �s] ,

the optimal security is actually the pool of all assets. This could happen when

the seller has an extremely good investment opportunity relative to the buyer (i.e.,

ln �b � ln �s � 1) or it is too hard for the buyer to acquire information (i.e., � �

1). As a direct implication, when the buyer cannot acquire any information (i.e.,

�!1), the seller just sells the pool of all assets at price

�b � E
"
NX
n=1

�n

#

and enjoys the maximal trading surplus

(�b � �s) � E
"
NX
n=1

�n

#
.

Another interesting observation comes from equation (1.14), which implies

q� = �� lnE exp
�
���1�b � s�

��!
�
��

� �� ln
�
exp

�
���1�b � Es�

��!
�
���

= �b � Es�
��!
�
�
,

where the inequality follows Jensen�s inequality. Since the o¤er induces no informa-

tion acquisition, both parties remain symmetrically informed and the seller should

have charged the buyer �b �Es�
��!
�
�
. However, the seller �nds it optimal to charge

a lower price q� to bribe the buyer not to acquire information.

In the rest of this section, we show that securitized debt remains uniquely optimal

even if there is information acquisition.
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Optimal Contract with Information Acquisition

According to Proposition 1.1, any contract (s (�) ; q) that induces the buyer to ac-

quire information must satisfy

E exp
�
��1

h
�b � s

��!
�
�
� q
i�
> 1 (1.16)

and

E exp
�
���1

h
�b � s

��!
�
�
� q
i�
> 1 , (1.17)

where the expectation is taken according to common prior P . That is, neither

accepting nor rejecting the o¤er is dominant ex ante, and thus the buyer �nds it

optimal to acquire some information.

Given such a contract, Proposition 1.1 prescribes that the buyer�s optimal strat-

egy ms;q is uniquely characterized by

�b � s
��!
�
�
� q = � �

h
g0
�
ms;q

��!
�
��
� g0

�
ps;q
�i
, (1.18)

where

ps;q =

Z
�

ms;q

��!
�
�
dP
��!
�
�

is the buyer�s unconditional probability of accepting the o¤er.

Taking into account of the buyer�s response ms;q, the seller chooses (s (�) ; q) to

maximize her expected payo¤

W (s; q) =

Z
�

ms;q

��!
�
�
�
h
q � �s � s

��!
�
�i
dP
��!
�
�
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subject to (1.16), (1.17), (1.18) and the feasibility condition

s
��!
�
�
2
"
0;

NX
n=1

�n

#
. (1.19)

It is worth noting that both (1.16) and (1.17) should not bind for the optimal

contract, otherwise no information will be acquired according to Proposition 1.1.

Hence, conditional on the fact that the optimal contract does induce information

acquisition, these two constraints could be ignored during optimization.

We derive the optimal contract (s� (�) ; q�) through calculus of variations. That

is, see how the seller�s expected payo¤ responds to the perturbation of her optimal

contract.

Let s
��!
�
�
= s�

��!
�
�
+ � � "

��!
�
�
be an arbitrary perturbation of s� (�). The

buyer�s best response ms;q� (�) is implicitly determined by s (�) through functional

equation (1.18). Hence we need �rst characterize how ms;q� (�) varies with respect

to the perturbation of s� (�).

Lemma 1.1 For any perturbation s
��!
�
�
= s�

��!
�
�
+ � � "

��!
�
�
, the response of

the buyer�s strategy ms;q� (�) is characterized by

dms;q�

��!
�
�

d�

������
�=0

= ��1�b �
h
g00
�
ms�;q�

��!
�
��i�1

"
��!
�
�

+

h
g00
�
ms�;q�

��!
�
��i�1

��1�b
R
�

h
g00
�
ms�;q�

��!
�
��i�1

"
��!
�
�
dP
��!
�
�

�
g00
�
ps�;q�

���1 � R
�

h
g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
� .(1.20)

Proof. See Appendix 1.5.

The �rst term of the right hand side of (1.20) is the buyer�s local response to

"
��!
�
�
. It is of the same sign as the perturbation "

��!
�
�
. When the repayment

increases at state
�!
� , the buyer is more likely to accept the o¤er at this state. The
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second term measures the buyer�s average response to perturbation "
��!
�
�
over

all states. It is straightforward to verify that the denominator is positive due to

Jensen�s inequality. Hence, if on average the perturbation increases her repayment,

the buyer would like to accept the o¤er more often.

Now we can calculate the variation of the seller�s expected payo¤ W (s; q�).

Taking derivative with respect to � at � = 0 for both sides of (1.11) leads to

dW (s; q�)

d�

����
�=0

=

Z
�

dms;q�

��!
�
�

d�

������
�=0

h
q� � �ss�

��!
�
�i
dP
��!
�
�
��s

Z
�

ms�;q�

��!
�
�
"
��!
�
�
dP
��!
�
�
.

(1.21)

Substitute (1.20) into (1.21) and manipulate we get

dW (s; q�)

d�

����
�=0

=

Z
�

r
��!
�
�
� "
��!
�
�
dP
��!
�
�
, (1.22)

where

r
��!
�
�
= ��sms�;q�

��!
�
�
+ ��1�b

h
g00
�
ms�;q�

��!
�
��i�1 �

q� � �s � s�
��!
�
�
+ w

�
(1.23)

and

w =

R
�

h
q� � �s � s�

��!
�
�i h

g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
�

�
g00
�
ps�;q�

���1 � R
�

h
g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
� .

Note that w is a constant that does not depend on
�!
� . Its value is endogenously

determined in equilibrium. Here r
��!
�
�
is the Frechet derivative13 of W (s; q�)

at s�, it measures the marginal contribution of any perturbation to the seller�s

expected payo¤. The �rst term of (1.23) is the direct contribution of perturbing s�

disregarding the variation of ms�;q�

��!
�
�
. The second term measures the indirect

13For the readers not familiar with this concept, just think of Frechet derivative
as the gradient of W (s; q�) at "vector" s. Indeed, the gradient is a special case of
Frechet derivative when #� is �nite.
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contribution through the variation of ms�;q�

��!
�
�
. This expression represents the

chain rule of the calculus of variations.

Let

A0 =
n�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
= 0
o
;

A1 =

(
�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
2
 
0;

NX
n=1

�n

!)
and

A2 =

(
�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
=

NX
n=1

�n

)
:

In regions A0 and A2, s� (�) is bounded by its lower bound and upper bound, respec-

tively. In region A1, s� (�) is o¤ the boundaries. Then fA0; A1; A2g is a partition of

�n
n�!
0
o
. Since s� (�) is the optimal security,

dW (s; q�)

d�

����
�=0

� 0

holds for any feasible14 perturbation "
��!
�
�
. Hence (1.22) implies

r
��!
�
�
8>>>><>>>>:
� 0 if

�!
� 2 A0

= 0 if
�!
� 2 A1

� 0 if
�!
� 2 A2

. (1.24)

14A perturbation " is feasible with respect to s� if 9� > 0, s.t. 8�!� 2 �, s�
��!
�
�
+

� � "
��!
�
�
2
h
0;
PN

n=1 �n

i
.
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Since g is strictly convex, g00 > 0 and (1.24) can be rewritten as

r
��!
�
�
� g00

�
ms�;q�

��!
�
��

= ��sms�;q�

��!
�
�
g00
�
ms�;q�

��!
�
��
+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
8>>>><>>>>:
� 0 if

�!
� 2 A0

= 0 if
�!
� 2 A1

� 0 if
�!
� 2 A2

. (1.25)

Recall that given the optimal contract (s� (�) ; q�), the buyer�s best responsems�;q�

��!
�
�

is characterized by

�b � s�
��!
�
�
� q� = � �

h
g0
�
ms�;q�

��!
�
��
� g0

�
ps�;q�

�i
, (1.26)

where

ps�;q� =

Z
�

ms�;q�

��!
�
�
dP
��!
�
�

is the buyer�s unconditional probability of accepting the optimal contract (s� (�) ; q�).

Then, (1.25)15 together with (1.26) determines the optimal contract (s� (�) ; q�).

Let m = f1 (s) and m = f2 (s) be the two continuous functions implicitly de�ned

by

��s �m � g00 (m) + ��1�b (q� � �s � s+ w) = 0 (1.27)

and

�b � s� q� = � �
�
g0 (m)� g0

�
ps�;q�

��
, (1.28)

respectively. We have f 01 (s) < 0 and f
0
2 (s) > 0 since [m � g00 (m)]

0 > 0 and g00 (m) >

15One may criticize that Equation (1.25) is just the �rst order condition of the
seller�s optimization problem. It only characterizes the critical points. In principle,
we should characterize the largest critical point. However, our argument works for
any critical point and thus our results are immune to this critique.
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0. By de�nition,

ms�;q�

��!
�
�
= f1

�
s�
��!
�
��

implies r
��!
�
�
= 0 .

Also note that ms�;q�

��!
�
�
= f2

�
s�
��!
�
��

for all
�!
� 2 �. Now we can characterize

the optimal security through analyzing f1 and f2 together.

Proposition 1.4 Pr (A0) = 0, where A0 =
n�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
= 0
o
.

Proof. See Appendix 1.5.

This proposition states that constraint s
��!
�
�
� 0 never binds. The logic un-

derlying the proof is that on the boundary s
��!
�
�
= 0, although an increment of

s
��!
�
�
increases the seller�s repayment, it increases the probability of trading even

more. Hence the seller on average gains through deviating from the lower bound-

ary. As its implication, it is not optimal to issue equity residual/call option to raise

liquidity.

For those states in A1, where the limited liability constraint

s
��!
�
�
�

NX
n=1

�n

does not bind either, both

ms�;q�

��!
�
�
= f1

�
s�
��!
�
��

and

ms�;q�

��!
�
�
= f2

�
s�
��!
�
��

must hold. Since f 01 (s) < 0 and f 02 (s) > 0, f1 (s) and f2 (s) intersect at most

once. Hence s�
��!
�
�
should be a constant and the buyer has no incentive to ac-

quire information within region A1. This result coincides with our intuition. If
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the limited liability constraint never binds, the seller would issue a security with

constant repayment to avoid the buyer�s information acquisition. However, once

the underlying cash �ows are too low to support such constant, s�
��!
�
�
reaches the

limited liability boundary and equals
PN

n=1 �n. The next proposition shows that

the optimal security must be a securitized debt.

Proposition 1.5 If the seller�s optimal contract induces the buyer to acquire in-

formation, it must be a securitized debt s�
��!
�
�
= min

�PN
n=1 �n; D

�
�
.

Proof. See Appendix 1.5.

Together with Proposition 1.2 and 1.3, this proposition enables us to conclude

that pooling the assets and issuing a senior tranche is always the uniquely optimal

way to raise liquidity. Pooling is directly derived from the seller�s desire to maximize

liquidity. It has nothing to do with the consideration of risk diversi�cation since both

agents are risk-neutral. The �at tail of the optimal security results from the seller�s

e¤ort to minimize her opponent�s information acquisition. In contrast to the non-

uniqueness result in Dang, Gorton, and Holmstrom (2010), we can show the unique

optimality of debt because of our �exible information acquisition framework. In

Dang, Gorton, and Holmstrom (2010), only two extreme information structures are

available in the setup of costly state veri�cation while in�nite forms of securities can

be designed, which inevitably results in the indistinguishability of some securities. In

our framework, with help of �exibility, the variety of available information structures

matches the variety of potential securities to be designed, and thus the uniqueness

of the standard securitized debt could be guaranteed. Quasi-debts are no longer

optimal in our model. By reshaping the uneven tail above the price of a quasi-debt

to a �at one, not only the buyer�s information cost could be saved but also potential

loss of trade from adverse selection could be mitigated. The resulted surplus could

be employed by the seller to make both parties better o¤, and thus ultimately make
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a better provision of liquidity possible. Moreover, this �exibility also enables us to

show the optimality of pooling and tranching in a broader class of environments

than Dang, Gorton, and Holmstrom (2010) and without assuming a su¢ ciently

large number of underlying assets as in DeMarzo (2005)16.

In addition, while most models in literature are built upon speci�c assumptions

about the cash �ows, our qualitative result does not rely on such distributional

details of underlying assets. Since the stochastic interdependence among the under-

lying assets could be complex and violate such assumptions, our model provides a

better explanation for the prevalence of securitization in �nancial markets.

The security design literature usually assumes Monotone Likelihood Ratio Prop-

erty (MLRP) or similar conditions to guarantee a meaningful result. Our framework

justi�es this assumption through endogenizing the information structure. Accord-

ing to Proposition 1.5, the optimal security s�
��!
�
�
is non-decreasing in the sum of

cash �ows. Proposition 1.1 implies that the best information structure ms�;q�

��!
�
�

is increasing in the payo¤ gain �b � s�
��!
�
�
� q�. Hence ms�;q�

��!
�
�
is also non-

decreasing in the sum of the cash �ows. Therefore, the larger the cash �ows, the

higher the probability that the buyer gets a signal asking her to accept. This can

be interpreted as a generalized MLRP for multi-dimensional states.

To facilitate the analysis, the security design literature usually restrict their

attention to the set of "regular" securities, which are non-decreasing in the under-

lying cash �ows (e.g., DeMarzo and Du¢ e (1999), DeMarzo (2005)). We do not

have such restriction, but show that the optimal security naturally turns out to be

non-decreasing.

Finally, Dang, Gorton, and Holmstrom (2010) get debt contract uniquely opti-

mal when their �xed information cost is zero. This can be viewed as a special case

16DeMarzo (2005) shows that the bene�t of pooling achieves a theoretical maxi-
mum as the number of underlying assets approaches in�nity.
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of our model where marginal cost of information acquisition vanishes.

Understanding the Origin of Uniqueness

For readers familiar with the approach of costly state veri�cation (CSV), a question

naturally arises regarding the uniqueness of the optimal contract. Both Townsend

(1979) and Dang, Gorton, and Holmstrom (2010) employ CSV, why does the former

but not the latter get debt uniquely optimal? In last subsection, we have attributed

the non-uniqueness in Dang, Gorton, and Holmstrom (2010) to the rigidity of CSV.

This argument is correct when comparing Dang, Gorton, and Holmstrom (2010)

to our model, but not fully convincing when Townsend (1979) is also considered.

To fully understand the di¤erent results in Dang, Gorton, and Holmstrom (2010),

Townsend (1979) and our model, we �rst highlight the essence of �exibility. In

principle, general �exible choice, not necessarily restricted to �exible information

acquisition, enables an economic agent to make state-contingent responses. In other

words, the agent can make a best response in one state, and can make another best

response in another state. In all these three models, the contract designer is endowed

with �exibility, in the sense that she can assign state-contingent repayment through

designing any form of security. What matters to shape the di¤erent results regarding

uniqueness of the optimal contract relies on the potential �exibility of the other party

who decides whether to accept the o¤er. Through comparing these three models,

we argue that the origin of the uniqueness is not only from the �exibility itself,

but from the double-sided symmetry of �exibility. Here, double-sided symmetry of

�exibility requires that both parties engaged in a potential trade are endowed with

the same level of �exibility.

In our framework, ex-ante symmetric information in the form of a double-sided

ignorance prevents the buyer to make a state-contingent choice if she only follows

the traditional CSV approach to acquire information. However, the buyer in our
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framework is able to choose state-contingent probability (i.e., m
��!
�
�
) of accepting

the o¤er, namely, she can perform �exible information acquisition. In this sense

the buyer enjoys the same level of �exibility as the seller. Given this double-sided

symmetry of �exibility in our model, the uniqueness of an optimal contract, which

is the standard securitized debt, is guaranteed. In Dang, Gorton, and Holmstrom

(2010), however, the buyer can only follow the traditional CSV approach to ac-

quire information, in which only two options, namely, to acquire a signal or not, are

available. Moreover, ex-ante symmetric ignorance precludes the possibility of con-

ditioning the action on any private information. Hence the CSV makes the buyer in

Dang, Gorton, and Holmstrom (2010) unable to make state-contingent decision. As

a result, the desired double-sided symmetry of �exibility fails and the uniqueness of

the optimal contract fails as a consequence. Interestingly, Townsend (1979) also em-

ploys the costly state veri�cation approach with two options to model information

acquisition, namely, to audit or not, but the unique optimality of a standard debt

still emerges. Why it is this case? Di¤erent from Dang, Gorton, and Holmstrom

(2010) and our framework, in Townsend (1979) the entrepreneur has information

advantage over the lender in the sense that the entrepreneur knows the realized

pro�t of the project which the lender does not know. Thanks to the revelation prin-

ciple, the lender who acquire information in the interim stage can decide whether

to audit or not in any state based on the truth told by the entrepreneur who has

private information. In other words, although the lender in Townsend (1979) still

only has two options to acquire information as the buyer in Dang, Gorton, and

Holmstrom (2010), such two options in Townsend (1979) are state-contingent while

their counterparts in Dang, Gorton, and Holmstrom (2010) are not. Therefore, the

double-sided symmetry of �exibility is still established in Townsend (1979), and the

uniqueness of the optimal contract, also a standard debt, is ensured in their model

as well. Figure 1.2 shows the relation among these three models.
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Figure 1.2: Relation among our model, dang, Gorton & Holmstrom (2010) and
townsend (1979)

This subsection explores the origin of uniqueness of the optimal contract. We

address the optimality of securitized debt in next subsection.

Two Key Factors Driving the Optimality of Securitized Debt

Although our model explains the popularity of securitized debt contracts, it is im-

portant to �gure out the boundary of our theory. In this subsection, we propose

two key factors that drive our results. We show that issuing securitized debt is no

longer optimal in absence of these factors.

The �rst feature of our model is its �xed aggregate risk. Before designing the

contract, the seller has already owned assets
�!
� . Hence the assets owned by the

seller and the buyer as a whole is invariant with respect to the success or failure of

the transaction. This �xed aggregate risk leads to con�icting interests of the two

parties, where any information acquired by the buyer makes herself better o¤ but

hurts the seller�s bene�t through adverse selection. That is, the buyer attempts to
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acquire information that helps her reject the o¤er once the repayment is lower than

the price and accept the o¤er in the opposite case. However, whatever quantity and

quality of information is acquired has nothing to do with their aggregate risk.

The importance of this factor can be seen clearly in our derivation of the optimal

security. Since the buyer�s incentive to acquire information and the seller�s incentive

to design the security are totally shaped by their payo¤ gains from the success

over the failure of the transaction, it makes sense to examine their payo¤ gains.

Conditional on
�!
� , the buyer�s and seller�s payo¤ gains are

�b � s
��!
�
�
� q

and

q � �s � s
��!
�
�
,

respectively. Both these payo¤ gains do not explicitly depend on
�!
� . The future

cash �ows
�!
� can a¤ect their incentives only through the security s

��!
�
�
. This

is the reason that we can de�ne the functions m = f1 (s) and m = f2 (s) rather

than m = f1

�
s;
�!
�
�
or m = f2

�
s;
�!
�
�
in (1.27) and (1.28). The simple shape of

securitized debt comes from this independence of f1 and f2 on
�!
� .

To make our point more clear, we consider a similar problem with variable

aggregate risk. The seller is an entrepreneur who wants to raise capital q to take

a project that generates cash �ow �. The project requires a total investment q,

which is �nanced by a bank as well as the entrepreneur�s own capital q � q. As

before, she designs a security s (�) and proposes a take-it-or-leave-it o¤er (s; q) to

the bank, who is the buyer that acquires information in the present problem. The

entrepreneur�s project gets funded and generates future cash �ow � only if the bank

accepts the o¤er. Hence, the aggregate risk depends on whether the transaction

succeeds. In this case, the buyer�s payo¤ gain remains the same but the seller�s
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payo¤ gain becomes

�s � [� � s (�)]� (q � q) ,

which explicitly depends on �. As a result, we have m = f1 (s; �) rather than

m = f1 (s) and the �at part of the debt is no longer optimal. Even if s (�) is o¤ the

boundaries, the seller would like to �uctuate s (�) to induce the buyer to acquire

some information. In general, information acquisition bene�ts the buyer and seller

as a whole. It prevents the project to be taken when the cash �ow is too low. In

fact, this is a story of consulting. The seller designs a state contingent repayment to

elicit information from the buyer. Their incentives are aligned rather than opposite

to each other.

The second factor that drives our results is homogeneous information acquisition.

That is, no state is more special than other states in terms of the di¢ culty of

information acquisition. This property stems from rational inattention17 and is the

reason why our qualitative result does not depend on the stochastic interdependence

among the underlying assets. Recall the binary decision problem in Section 1.2, the

decision maker�s optimal strategy m is characterized by equation (1.7)

�u (�) = � � [g0 (m (�))� g0 (p1)] ,

where

p1 =

Z
�

m (�) dP (�) .

The right hand side of equation (1.7) is the Frechet derivative18 of information cost.

It does not explicitly depends on �. This is the homogeneity we referred to. As an

17There are many information cost functions satisfying this property. For ex-
ample, any strictly concave and symmetric function g in (1.1) corresponds to an
information cost with this property.

18For the readers not familiar with this concept, just think of the Frechet deriva-
tive as the gradient of the cost function.
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example, homogeneity fails if we replace the term

g0 (m (�))� g0 (p1)

with

g0 (m (�))� g0 (p1) + k (�)

for some non-constant function k (�). In this case, we should de�ne m = f2 (s; �)

instead of m = f2 (s) in (1.28). This dependence re�ects the buyer�s varying dif-

�culties in discerning di¤erent states. Hence the optimal contract may not have a

�at part as in debt.

We use a non-homogeneous information cost to illustrate our idea. Speci�cally,

let � 2 [0; 1] and

c (m) =
�

Pr (� 2 [0; a]) �
�Z

[0;a]

g (m (�)) dP (�)� g
�Z

[0;a]

m (�) dP (�)

��

for some a 2 (0; 1). Hence the state is directly observable for � 2 (a; 1]. For

� 2 [0; a], the buyer can acquire its information at marginal cost �
Pr(�2[0;a]) . Let

�b = 1 and the seller�s optimal contract be (s; q). Given this contract, the buyer�s

optimal strategy is characterized by

s (�)� q = � � [g0 (m (�))� g0 (p1)] if � 2 [0; a] ,

and

m (�) =

�
1 if � 2 (a; 1] and s (�)� q � 0
0 if � 2 (a; 1] and s (�)� q < 0 ,

where

p1 =

R
[0;a]

m (�) dP (�)

Pr (� 2 [0; a]) .
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Figure 1.3: optimal contract under non-homogeneous information cost

For � 2 (a; 1], the buyer accepts the o¤er if and only if s (�)� q � 0, thus we must

have

s (�) = q

for � 2 (a; 1]. Information remains costly in region [0; a], thus a debt contract

is optimal within this region according to our previous argument. However, the

optimal contract on interval [0; 1] is no longer a debt, as shown in Figure 1.3.

1.3.3 Allocation of Bargaining Power

One may wonder if our results are sensitive to the allocation of bargaining power.

The answer is no. This subsection introduces the case where the buyer owns bar-

gaining power and then presents the main results. Due to the similarity between

the two cases, we omit most proofs here.

Suppose the buyer proposes the contract (s (�) ; q) and the seller acquires infor-

mation. Write ms;q for the seller�s optimal strategy. The uninformed buyer thus

enjoys expected payo¤

W (s; q) =

Z
ms;q

��!
�
�
�
h
�b � s

��!
�
�
� q
i
dP
��!
�
�
:
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The buyer�s problem is to choose a feasible contract (s; q) satisfying s
��!
�
�
2h

0;
PN

n=1 �n

i
to maximize W (s; q). Let (s� (�) ; q�) denote the optimal contract

for the buyer and

ps�;q� =

Z
�

ms�;q�

��!
�
�
dP
��!
�
�

be the corresponding probability of trade.

Proposition 1.6 ps�;q� > 0, i.e., trade happens with positive probability.

Proof. See Appendix 1.5.

Proposition 1.7 If the buyer�s optimal contract induces the seller to always accept

it without acquiring information, it must be a securitized debt

s�
��!
�
�
= min

 
NX
n=1

�n; D
�

!

with price q�, where

D� = ���1s � [ln �b � ln �s] + ��1s q� ,

q� is the unique �xed point of

h (q) = � lnE exp

 
��1�s �min

 
NX
n=1

�n; ��
�1
s � [ln �b � ln �s] + ��1s q

!!

and the expectation is taken according to common prior P .

Proof. The proof is very similar to that of Proposition 1.3 and is omitted here.

Proposition 1.8 If the buyer�s optimal contract induces the seller to acquire in-

formation, it must be a securitized debt s�
��!
�
�
= min

�PN
n=1 �n; D

�
�
.
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Proof. The proof is very similar to that of Proposition 1.5 and is omitted here.

Proposition 1.3, 1.5, 1.7 and 1.8 show that the optimal security is always a

securitized debt, no matter who owns bargaining power.19 This result is consistent

with our previous analysis. Exchanging bargaining power does not change the facts

that aggregate risk is �xed and information acquisition is homogeneous.

1.4 Conclusions and Discussions

This chapter studies liquidity provision in presence of endogenous and �exible in-

formation acquisition. In our model, there is no information asymmetry before

bargaining. Also, the buyer has an expertise in acquiring information of the funda-

mental in the manner of rational inattention. She collects the most payo¤-relevant

information according to the contract proposed to her, which may endogenously

generate adverse selection. Hence, the seller deliberately designs the security in or-

der to induce the buyer to acquire information least harmful to the seller�s interest.

It is shown that pooling and issuing securitized debt is the uniquely optimal way to

raise liquidity, regardless of the stochastic interdependence among the underlying

assets and the allocation of bargaining power. Compared to the security design lit-

erature, our results are clearer. We neither restrict our attention to non-decreasing

securities nor impose various assumptions on information structures like MLRP.

Instead, these properties of the optimal security are justi�ed in equilibrium. Our

results are driven by two key factors. The one is the �xed aggregate risk and the

other is homogeneous information cost, without which the securitized debt may not

be optimal.

The role of �xed aggregate risk sheds light on a general classi�cation of informa-

tion, namely, to classify what information is socially valuable and what information

19However, reallocating the bargaining power does a¤ect the face value and price
of the debt, and thus a¤ects the agents�expected payo¤s.
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is not. In particular, �exibility enables economic agents to acquire these two types

of information separately, which results in di¤erent welfare implications of infor-

mation acquisition. At the level of the society, acquisition of information that is

not socially valuable not only wastes social resource but also leads to endogenous

adverse selection, which in turn harms social welfare. Hence, desired organizational

form of the society should deter acquisition of such information. On the contrary,

acquisition of socially valuable information generally increases social welfare and

thus should be encouraged in principle. In our model with �xed aggregate risk,

none of information is socially valuable, so that securitized debt is optimal because

it best deters information acquisition. On the other hand, as the example mentioned

with variable aggregate risk, some certain information is socially valuable as it helps

prevent investing in bad states. Consequently, acquisition of such socially valuable

information should be encouraged, and thus securitized debt may not be the opti-

mal contract. This classi�cation of information also provides a new perspective to

look into the mutual existence of debt and equity, both as popular forms of �nancial

contracts in reality. For start-ups and projects with high risk, issuing equity could

be more desirable because it encourages acquisition of socially valuable information,

which helps to screen projects and control the aggregate risk of the entire society.

In contrast, for mature corporations with robust growth, in which the provision of

liquidity is of the priority, debt could be more desirable as it deters unnecessary

acquisition of information that is not socially valuable. This consideration is partly

consistent with the well-known packing-order theory, and future work may further

unify the life-cycle evolution of capital structure of corporations along the line of

�exible information acquisition.

Under a similar mentality, �exibility also helps revisit the endogenous determina-

tion of capital structure in literature by specializing information acquisition. Given

�exible information acquisition, agents who monitor may have di¤erent incentives
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in acquiring di¤erent information regarding various forms of �nancial contracts.

Hence, di¤erent layers of �nancial contracts in certain capital structure enable a

specialization of information acquisition. In other words, layers of capital structure

correspond to specialized layers of information to be acquired. This specialization

may in turn a¤ect production of information as well as e¢ ciency of monitoring, and

further reshape the optimal capital structure. In this way, it is seen that �exibility

plays an role in determining the capital structure, and more results regarding its

e¤ects on corporate �nance as well as social welfare are to be expected.

1.5 Appendix

Proof of Proposition 1.1.

Proof. Suppose m is an optimal strategy. Let " be any feasible perturbation

function. The payo¤ from the perturbed strategy m+ � � " is

V � (m+ � � ")

=

Z
�

(m (�) + � � " (�)) ��u (�) dP (�)

�� �
�Z

�

g (m (�) + � � " (�)) dP (�)� g
�Z

�

[m (�) + � � " (�)] dP (�)
��

,

where � 2 R, and " is feasible with respect to m if 9� > 0, s.t. 8� 2 �, m (�) + � �

" (�) 2 [0; 1] . Then the �rst order variation is

dV � (m+ � � ")
d�

����
�=0

=

Z
�

" (�) ��u (�) dP (�)

�� �
�Z

�

" (�) � g0 (m (�)) dP (�)� g0
�Z

�

m (�) dP (�)

�
�
Z
�

" (�) dP (�)

�
=

Z
�

" (�) � [�u (�)� � � (g0 (m (�))� g0 (p1))] dP (�) .
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Note that

�u (�)� � � (g0 (m (�))� g0 (p1))

is the Frechet derivative of V � (�) at m. Hence the tangent hyperplane at m can be

expressed as

8><>: em 2M : V � (em)� V � (m) = R
�

�
�u (�)� �g0 (m (�)) + �g0

�R
�
m (�) dP (�)

��
� (em (�)�m (�)) dP (�)

9>=>; .

An important observation: since V � (�) is a concave functional on M , V � is

upper bounded by any hyperplane tangent at any m 2M , i.e., 8m; em 2M ,

V � (em)� V � (m)
�

Z
�

�
�u (�)� � � g0 (m (�)) + � � g0

�Z
�

m (�) dP (�)

��
(em (�)�m (�)) dP (�) .

This inequality is strict when

m 2M o ,Mn fm 2M : m (�) is a constant almost surelyg

and Pr (em (�) 6= m (�)) > 0, since V � (�) is strictly concave on M o. We will use this

observation later in this proof.

The optimality of m requires dV �(m+��")
d�

���
�=0

� 0 for all feasible perturbation ".

Hence we must have

�u (�)� � � (g0 (m (�))� g0 (p1))

8>>>><>>>>:
� 0 if m (�) = 1

= 0 if m (�) 2 (0; 1)

� 0 if m (�) = 0

. (1.29)
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Note that Pr (m (�) = 1) > 0 implies Pr (m (�) = 1) = 1. Otherwise,

p1 =

Z
�

m (�) dP (�) < 1

and for � 2 B = f� 2 � : m (�) = 1g,

�u (�)� � � (g0 (m (�))� g0 (p1)) = �1

since limx!1 g
0 (x) =1. Then " (�) = �1B is a feasible perturbation and

dV � (m+ � � ")
d�

����
�=0

=

Z
�

[�u (�)� � � (g0 (m (�))� g0 (p1))] � " (�) dP (�)

=

Z
B

(�1) � (�1) dP (�)

= +1 ,

which contradicts the optimality of m. Hence we know that Pr (m (�) = 1) > 0

if and only if Pr (m (�) = 1) = 1. By the same argument, we can show that

Pr (m (�) = 0) > 0 if and only if Pr (m (�) = 0) = 1. Therefore, the optimal

strategy m must be one of the three scenarios: a) p1 = 1, i.e., m (�) = 1 a:s:;

b) p1 = 0, i.e., m (�) = 0 a:s:; c) p1 2 (0; 1) and m (�) 2 (0; 1) a:s:.

We �rst search for the su¢ cient condition for scenario c). According to (1.29),

we have

�u (�)� � � (g0 (m (�))� g0 (p1)) = 0 a:s:. (1.30)

By de�nition,

g0 (x) = ln
x

1� x ,
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thus (1.30) implies

m (�) =
p1

p1 + (1� p1) � exp (���1�u (�))
.

Let

M1 =

�
m (�; p) =

p

p+ (1� p) � exp (���1�u (�)) : p 2 [0; 1]
�

(1.31)

and

J (p) =

Z
�

m (�; p) dP (�) ,

then there exists p1 2 [0; 1] such that m (�; p1) 2 M1 � M is an optimal strategy.

Note that J (p1) = p1 is a necessary condition.

Since m (�; p1) 2M1 �M , the original problem is reduced to

max
p2[0;1]

V � (m (�; p)) =
Z
�

�u (�) �m (�; p) dP (�)� c (m (�; p)) .

The �rst order derivative with respect to p is

dV � (m (�; p))
dp

=

Z
�

�u (�) � @m (�; p)
@p

dP (�)

�� �
�Z

�

g0 (m (�; p))
@m (�; p)

@p
dP (�)� g0

�Z
�

m (�; p) dP (�)

�Z
�

@m (�; p)

@p
dP (�)

�
=

Z
�

[�u (�)� � � g0 (m (�; p)) + � � g0 (J (p))] � @m (�; p)
@p

dP (�) .

By de�nition,

�u (�)� � � g0 (m (�; p)) = �� � g0 (p) ,
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thus

dV � (m (�; p))
dp

=

Z
�

[�� � g0 (p) + � � g0 (J (p))] � @m (�; p)
@p

dP (�)

= � � [g0 (J (p))� g0 (p)] �
Z
�

@m (�; p)

@p
dP (�) . (1.32)

Since

@m (�; p)

@p

=

�
p � exp

�
1

2
��1�u (�)

�
+ (1� p) � exp

�
�1
2
��1�u (�)

���2
> 0

for all � 2 �,
dV � (m (�; p))

dp
� 0

if and only if

g0 (J (p))� g0 (p) � 0 .

Since g0 is strictly increasing in its argument, we have

dV � (m (�; p))
dp

� 0

if and only if

J (p) � p .

In order to be a global maximum, m (�; p1) must �rst be a local maximum within

M1. This requires

J (p1) = p1 . (1.33)

But (1.33) is not su¢ cient. The su¢ cient condition for m (�; p1) to be a local max-
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imum within M1 is

9 neighborhood (p1 � �; p1 + �) ,

s.t. J (p) � p for all p 2 (p1 � �; p1]

and J (p) � p for all p 2 [p1; p1 + �) .

Note that

J (0) = 0; J (1) = 1 ,

dJ

dp

����
p=0

=

Z
�

exp
�
��1�u (�)

�
dP (�)

and
dJ

dp

����
p=1

=

Z
�

exp
�
���1�u (�)

�
dP (�) .

Case i): Z
�

exp
�
��1�u (�)

�
dP (�) > 1

and Z
�

exp
�
���1�u (�)

�
dP (�) > 1 .

In this case, J (p) > p for p close enough to 0 and J (p) < p for p close enough to

1. Since J (p) is continuous, the set fp 2 (0; 1) : J (p) = pg is non-empty. For any

p1 2 fp 2 (0; 1) : J (p) = pg, the Frechet derivative at m (�; p1) is

�u (�)� � � g0 (m (�; p1)) + � � g0 (J (p1))

= �u (�)� � � g0 (m (�; p1)) + � � g0 (p1)

= 0

and thus m (�; p1) is a critical point of functional V � (�). Since m (�; p1) 2 M o, the
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observation mentioned above implies

V � (em)� V � (m (�; p1))
<

Z
�

�
�u (�)� � � g0 (m (�; p1)) + � � g0

�Z
�

m (�; p1) dP (�)
��
(em (�)�m (�; p1)) dP (�)

=

Z
�

[�u (�)� � � g0 (m (�; p1)) + � � g0 (J (p1))] (em (�)�m (�; p1)) dP (�)
= 0

for all em 2 M such that Pr (em (�) 6= m (�; p1)) > 0. Hence, V � (m (�; p1)) is strictly
higher than the values achieved at any other em 2M , i.e., fp 2 (0; 1) : J (p) = pg =

fp1g and m (�; p1) is the unique global maximum. This actually proves (1.6).

Case ii): Z
�

exp
�
��1�u (�)

�
dP (�) > 1 (1.34)

and Z
�

exp
�
���1�u (�)

�
dP (�) � 1 . (1.35)

(1.34) implies J (p) > p for p close enough to 0. Note that

d2J

dp2

����
p=1

= �2 �
Z
�

�
exp

�
���1�u (�)

�
� exp

�
�2��1�u (�)

��
dP (�)

= �2 �
�
E exp

�
���1�u (�)

�
� E exp

�
�2��1�u (�)

��
,

where the expectation is taken according to prior P . Since

f (x) = x2

is a strictly convex function, Jensen�s inequality implies

E exp
�
���1�u (�)

�
� E exp

�
�2��1�u (�)

�
.
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The inequality is not strict only if �u (�) =constant almost surely. Since

E exp
�
���1�u (�)

�
� 1 ,

this constant must be non-negative. Moreover, since Pr (�u (�) 6= 0) > 0, this

constant must be strictly positive. Hence

E exp
�
���1�u (�)

�
> E exp

�
�2��1�u (�)

�
and

d2J

dp2

����
p=1

< 0 . (1.36)

Together with (1.35), (1.36) implies J (p) > p for p close enough to 1. Hence there

exists � > 0, s.t. J (p) > p for all p 2 [0; �] [ [1� �; 1].

We claim that J (p) > p for all p 2 (0; 1). If this is not true, let p1 =

sup fp 2 (0; 1) : J (p) � pg. The continuity of J (p) implies J (p1) = p1. Hence

m (�; p1) 2 M o and it is a critical point of functional V � (�). By the same argu-

ment as in Case i), m (�; p1) is the unique global maximum. However, by de�nition,

p1 < 1 � � and J (p) > p for all p 2 (p1; 1). Then V � (m (�; p)) > V � (m (�; p1)) for

all p 2 (p1; 1) since dV �(m(�;p))
dp

is of the same sign as J (p)� p. This contradicts the

unique optimality of m (�; p1). Therefore, J (p) > p for all p 2 (0; 1) and the optimal

strategy cannot be an interior point of M (i.e., it cannot be the case p1 2 (0; 1).)

Then according to our previous discussion, only scenarios a) that p1 = 1 and sce-

nario b) that p1 = 0 are possible. Since we have shown J (p) > p for all p 2 (0; 1),

we know that

V � (m (�; 1)) > V � (m (�; 0)) .

Hence, p1 = 1, i.e., m (�) = 1 a:s: is the unique optimal strategy. This actually

proves (1.4).
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case iii): Z
�

exp
�
��1�u (�)

�
dP (�) � 1

and Z
�

exp
�
���1�u (�)

�
dP (�) > 1 .

In this case, by the same argument as in case ii),m (�) = 0 a:s: is the unique optimal

strategy. This actually proves (1.5).

Now we show that it is impossible to have the case

Z
�

exp
�
��1�u (�)

�
dP (�) � 1 (1.37)

and Z
�

exp
�
���1�u (�)

�
dP (�) � 1 . (1.38)

Since

f (x) = x�1

is strictly convex for x > 0, Jensen�s inequality implies

Z
�

exp
�
���1�u (�)

�
dP (�) �

�Z
�

exp
�
��1�u (�)

�
dP (�)

��1
.

The inequality is not strict only if �u (�) =constant almost surely. If this is true,

(1.37) and (1.38) implies �u (�) = 0 almost surely. This is the trivial case excluded

by our assumption. Hence

Z
�

exp
�
���1�u (�)

�
dP (�) >

�Z
�

exp
�
��1�u (�)

�
dP (�)

��1

and (1.37) and (1.38) cannot be simultaneously satis�ed.

Since cases i), ii) and iii) exhaust all possibilities, for each case, the corresponding
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conditions are not only su¢ cient but also necessary.

The uniqueness of the optimal strategy is proved in each case.

This concludes the proof.

Proof of Proposition 1.3.

Proof. Let s
��!
�
�
= s�

��!
�
�
+ � � "

��!
�
�
be an arbitrary perturbation of the

optimal security s� (�). Let

J (�) = � lnE exp
�
���1�b � s

��!
�
��
+ �s � Es

��!
�
�
.

Taking �rst order variation leads to

dJ

d�

����
�=0

= ��b
h
E exp

�
���1�b � s�

��!
�
��i�1

E
h
exp

�
���1�b � s�

��!
�
��
� "
��!
�
�i
+ �s � E"

��!
�
�

= E

��
�s � �b

h
E exp

�
���1�b � s�

��!
�
��i�1

exp
�
���1�b � s�

��!
�
���

� "
��!
�
��

, E
h
r
��!
�
�
� "
��!
�
�i

. (1.39)

Let

A0 =
n�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
= 0
o
;

A1 =

(
�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
2
 
0;

NX
n=1

�n

!)
and

A2 =

(
�!
� 2 � : �!� 6= �!0 ; s�

��!
�
�
=

NX
n=1

�n

)
:

Then fA0; A1; A2g is a partition of �n
n�!
0
o
. Since s� (�) is the optimal security,

dJ

d�

����
�=0

� 0
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holds for any feasible perturbation "
��!
�
�
. Hence, we have

r
��!
�
�
8>>>><>>>>:
� 0 if

�!
� 2 A0

= 0 if
�!
� 2 A1

� 0 if
�!
� 2 A2

. (1.40)

For any
�!
� 0 2 A0, (1.40) implies r

��!
� 0
�
� 0, i.e.,

�s � �b

h
E exp

�
���1�b � s�

��!
�
��i�1

exp
�
���1�b � s�

��!
� 0
��

= �b

h
E exp

�
���1�b � s�

��!
�
��i�1

exp
�
���1�b � 0

�
= �b

h
E exp

�
���1�b � s�

��!
�
��i�1

,

i.e.,

ln �s � ln �b � lnE exp
�
���1�b � s�

��!
�
��

= ln �b + �
�1q� ,

where the last equality comes from (1.14). Hence,

��1q� � ln �s � ln �b < 0 ,

which is a contradiction. Therefore,

Pr (A0) = 0 . (1.41)

For any
�!
� 0 2 A1, (1.40) implies r

��!
� 0
�
= 0, i.e.,

�s = �b

h
E exp

�
���1�b � s�

��!
�
��i�1

exp
�
���1�b � s�

��!
� 0
��

,
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i.e.,

ln �s = ln �b � lnE exp
�
���1�b � s�

��!
�
��
� ��1�b � s�

��!
� 0
�

= ln �b + �
�1q� � ��1�b � s�

��!
� 0
�
,

where the last equality follows (1.14). Therefore,

s�
��!
� 0
�
= ���1b � [ln �b � ln �s] + ��1b q� (1.42)

is a constant for all
�!
� 0 2 A1.

For any
�!
� 0 2 A2, (1.40) implies r

��!
� 0
�
� 0, i.e.,

�s � �b

h
E exp

�
���1�b � s�

��!
�
��i�1

exp
�
���1�b � s�

��!
� 0
��

= �b

h
E exp

�
���1�b � s�

��!
�
��i�1

exp

 
���1�b �

NX
n=1

�0n

!
,

i.e.,

ln �s � ln �b � lnE exp
�
���1�b � s�

��!
�
��
� ��1�b �

NX
n=1

�0n

= ln �b + �
�1q� � ��1�b �

NX
n=1

�0n ,

where the last equality comes from (1.14). Therefore,

NX
n=1

�0n � ���1b � [ln �b � ln �s] + ��1b q�. (1.43)

Let

D� = ���1b � [ln �b � ln �s] + ��1b q�.
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Then, (1.41), (1.42) and (1.43) imply that

s�
��!
�
�
= min

 
NX
n=1

�n; D
�

!
,

i.e., the optimal security must be a securitized debt.

Finally, let

h (q) = �� lnE exp
 
���1�b �min

 
NX
n=1

�n; ��
�1
b � [ln �b � ln �s] + ��1b q

!!
.

We show that q� > 0 and it is the unique �xed point of h (q).

By (1.14), we have

q� = �� lnE exp
�
���1�b � s�

��!
�
��

= �� lnE exp
 
���1�b �min

 
NX
n=1

�n; D
�

!!

= �� lnE exp
 
���1�b �min

 
NX
n=1

�n; ��
�1
b � [ln �b � ln �s] + ��1b q�

!!
= h (q�) .
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Hence q� is a �xed point of h (q). First note h (0) > 0. Second note that

h0 (q)

=

"
E exp

 
���1�b �min

 
NX
n=1

�n; ��
�1
b � [ln �b � ln �s] + ��1b q

!!#�1

�E

264 exp
�
���1�b �min

�PN
n=1 �n; ��

�1
b � [ln �b � ln �s] + ��1b q

��
�1fPN

n=1 �n���
�1
b �[ln �b�ln �s]+��1b qg

375
�

"
E exp

 
���1�b �min

 
NX
n=1

�n; ��
�1
b � [ln �b � ln �s] + ��1b q

!!#�1

�E
"
exp

 
���1�b �min

 
NX
n=1

�n; ��
�1
b � [ln �b � ln �s] + ��1b q

!!
� 1
#

= 1

and

lim
q!1

h0 (q)

=

"
E exp

 
���1�b �

NX
n=1

�n

!#�1
� E

264 exp
�
���1�b �

PN
n=1 �n

�
� limq!1 1fPN

n=1 �n���
�1
b �[ln �b�ln �s]+��1b qg

375
=

"
E exp

 
���1�b �

NX
n=1

�n

!#�1
� E
"
exp

 
���1�b �

NX
n=1

�n

!
� 0
#

= 0 .

Hence, h (q) has a unique �xed point q� > 0. This concludes the proof.

Proof of Lemma 1.1.

Proof. Taking derivative with respect to � at � = 0 for both sides of (1.18) leads
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to

��1�b � "
��!
�
�
= g00

�
ms�;q�

��!
�
��
�
dms;q�

��!
�
�

d�

������
�=0

�g00 (pb) �
Z
�

dms;q�

��!
�
�

d�

������
�=0

dP
��!
�
�
.

Take integral of both sides and manipulate we get

Z
�

dms;q�

��!
�
�

d�

������
�=0

dP
��!
�
�

= ��1�b

�
1�

Z
�

h
g00
�
ms�;q�

��!
�
��i�1

dP
��!
�
�
� g00

�
ps�;q�

���1
�
Z
�

h
g00
�
ms�;q�

��!
�
��i�1

"
��!
�
�
dP
��!
�
�
.

Combining the above two equations leads to (1.20).

Proof of Proposition 1.4.

Proof. We �rst prove f1 (0) > f2 (0). If not, f1 (s) < f2 (s) for all s > 0. Hence

8�!� 6= �!0 ,

r
��!
�
�
� g00

�
ms�;q�

��!
�
��

= ��sms�;q�

��!
�
�
g00
�
ms�;q�

��!
�
��
+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
= ��s � f2

�
s�
��!
�
��
g00
�
f2

�
s�
��!
�
���

+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
< ��s � f1

�
s�
��!
�
��
g00
�
f1

�
s�
��!
�
���

+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
= 0 ,

where the inequality holds since [m � g00 (m)]0 > 0. Then (1.25) implies s�
��!
�
�
= 0

almost surely. Therefore, there is no trade, which contradicts Proposition 1.2.

65



Now we know f1 (0) > f2 (0). 8
�!
� 2 A0,

r
��!
�
�
� g00

�
ms�;q�

��!
�
��

= ��sms�;q�

��!
�
�
g00
�
ms�;q�

��!
�
��
+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
= ��s � f2 (0) g00 (f2 (0)) + ��1�b (q� � �s � 0 + w)

> ��s � f1 (0) g00 (f1 (0)) + ��1�b (q� � �s � 0 + w)

= 0 ,

where the second equality follows the de�nition that s�
��!
�
�
= 0 for

�!
� 2 A0,

the last equality comes from the de�nition of f1 (s), and the inequality holds since

[m � g00 (m)]0 > 0. This result contradicts (1.25), which states r
��!
�
�
�g00
�
ms�;q�

��!
�
��
�

0 for
�!
� 2 A0. This concludes the proof.

Proof of Proposition 1.5.

Proof. Let (s;m) be the unique intersection of f1 (s) and f2 (s). 8
�!
� such thatPN

n=1 �n < s,

ms�;q�

��!
�
�
= f2

�
s�
��!
�
��
< f2 (s) = f1 (s) < f1

�
s�
��!
�
��

.

Then

r
��!
�
�
� g00

�
ms�;q�

��!
�
��

= ��sms�;q�

��!
�
�
g00
�
ms�;q�

��!
�
��
+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
> ��s � f1

�
s�
��!
�
��
� g00

�
f1

�
s�
��!
�
���

+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
= 0,

where the inequality holds since [m � g00 (m)]0 > 0. According to (1.25), s�
��!
�
�
=PN

n=1 �n for all
�!
� such that

PN
n=1 �n < s.
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For any
�!
� such that

PN
n=1 �n > s, if s

�
��!
�
�
=
PN

n=1 �n, then (1.25) implies

0 � r
��!
�
�
� g00

�
ms�;q�

��!
�
��

= ��sms�;q�

��!
�
�
g00
�
ms�;q�

��!
�
��
+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
= ��s � f2

�
s�
��!
�
��
� g00

�
f2

�
s�
��!
�
���

+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
< ��s � f2 (s) � g00 (f2 (s)) + ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
< ��s � f1

�
s�
��!
�
��
� g00

�
f1

�
s�
��!
�
���

+ ��1�b

�
q� � �s � s�

��!
�
�
+ w

�
= 0 ,

which is a contradiction. Hence Proposition 1.4 implies s�
��!
�
�
= s for all

�!
� such

that
PN

n=1 �n > s.

For any
�!
� such that

PN
n=1 �n = s, s

�
��!
�
�
= s is a direct implication of Propo-

sition 1.4.

Therefore, the optimal security is a securitized debt with face value s, i.e.,

s�
��!
�
�
= min

�PN
n=1 �n; s

�
.

It is also possible that s = 1, i.e., f1 (s) and f2 (s) never intersects. Then the

optimal security

s�
��!
�
�
= min

 
NX
n=1

�n;1
!
=

NX
n=1

�n

is a special securitized debt, i.e., equity. This concludes the proof.

Proof of Proposition 1.6.

Proof. Let � 2
�
�s�

�1
b ; 1

�
and

f (q) = �b � Emin
 

NX
n=1

�n; ��
�1
s q

!
,

where the expectation is taken according to common prior P . Since P is a continuous
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distribution and ��1�s�
�1
b < 1, there exists q0 > 0 s.t.

Pr

 
NX
n=1

�n � ���1s q
!
> ��1�s�

�1
b

for all q 2 [0; q0]. Hence for any q 2 (0; q0),

f 0 (q) = ��b�
�1
s

Z
f�!� 2�:PN

n=1 �n����1s qg
1 � dP

��!
�
�

= ��b�
�1
s � Pr

 
NX
n=1

�n � ���1s q
!

> ��b�
�1
s � ��1�s��1b = 1.

Note that

f (0) = 0 ,

which implies that

f (q) > q

for all q 2 (0; q0).

Consider a securitized debt

s
��!
�
�
= min

 
NX
n=1

�n; D

!

with face value D = ���1s q and price q 2 (0; q0). Since the seller�s payo¤ gain from
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accepting this o¤er over rejecting it is

q � �ss
��!
�
�

= q � �smin
 

NX
n=1

�n; ��
�1
s q

!
� q � �s � ���1s q

= (1� �) � q > 0

for all
�!
� 2 �, the seller will accept this o¤er without acquiring any information.

Hence the buyer�s expected payo¤ from proposing (s (�) ; q) is

W (s; q) = �b � Emin
 

NX
n=1

�n; ��
�1
s q

!
� q

= f (q)� q

> 0 .

By de�nition, the seller�s expected payo¤through the optimal contract isW (s�; q�) �

W (s; q) > 0. This directly implies ps�;q� > 0 since ps�;q� = 0 always generates zero

expected payo¤ to the buyer.
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Chapter 2

Coordination with Flexible

Information Acquisition 1

2.1 Introduction

This chapter studies a coordination game where players can �exibly acquire infor-

mation. Coordination requires common knowledge among the players of the payo¤s.

In practice, players may not be able to observe payo¤s perfectly and so lack such

common knowledge. This imperfection could result from the complex nature of

the environment. The global game literature attempts to model this issue through

allowing players to receive private signals of payo¤s while �xing the information

structure. Accordingly researchers obtain a well-known limit unique equilibrium

which features ine¢ cient coordination (e.g., Carlsson and Damme (1993), Frankel,

Morris, and Pauzner (2003)). This chapter explores another model of the lack of

common knowledge. Rather than equipping the players with exogenous signals, we

allow them to acquire information about the payo¤s through choosing information

1This paper was presented at North American Winter Meeting of the Economet-
ric Society, Denver, January 2011.
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structures. On the one hand, an information structure exclusively speci�es both

the amount of information, which is measured by reduction of Shannon�s entropy,

and the substance of which the information is relevant. Hence, information acqui-

sition is �exible in the sense that the players choose not only the quantity but also

the qualitative nature of their information. On the other hand, in our model, in-

formation acquisition also incurs a cost proportional to the amount of information

acquired. As a consequence, players will focus on the information most relevant

to their welfare and be rationally inattentive to other aspects of the fundamental.

This chapter addresses the following questions centered on �exible information ac-

quisition: what is the information acquired under this �exibility, and how does this

�exibility a¤ect welfare in terms of e¢ ciency of coordination? We also go beyond

the entropic information cost to highlight the key aspects of this �exibility and how

they drive our results.

Throughout the chapter, we use the following story to illustrate our idea. Two

players coordinate in investing in a risky project. The project�s future cash �ow is

driven by a randomly �uctuating fundamental. Each player must decide whether

to invest or not, and her payo¤ depends on her opponent�s action as well as on the

realized fundamental. Given her opponent�s action, a player�s payo¤ from investing

increases in the fundamental. Moreover, given any realization of the fundamental,

a player�s gain from �invest�over �not invest�is strictly higher when her opponent

also invests. Therefore, players�actions are strategic complements. Before making

a decision, each player can independently purchase private information about the

fundamental in the form of an information structure, i.e., the conditional distrib-

ution of her signal given the fundamental. She then takes action according to her

realized signal.

In our benchmark model, the players��exible information acquisition is modeled

through the framework of rational inattention building on Sims (2003). The basic
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idea of rational inattention is that people face informational capacity constraints

de�ned by Shannon�s information theory. That is, there are limited bits that can be

used to reduce the uncertainty of some exogenous variables. We deviate from the

standard setup of rational inattention by replacing the capacity constraint with an

information cost, while maintaining the players��exibility in choosing information

structures. As a result, players can and will collect information most relevant to

their welfare but be rationally inattentive to other aspects of the fundamental.

Speci�cally, there are two factors a¤ecting players�information acquisition strat-

egy. The �rst one is the fundamental e¤ect. Intuitively, given her opponent�s action,

a player is willing to collect information about the fundamental that helps her invest

with high (low) probability in the high (low) states. The second but more interesting

factor is the players�consideration of their opponents�information acquisition. Since

my payo¤ depends on your actions and your actions are motivated by your beliefs,

upon receiving my signal, I attempt to infer not only the fundamental, but also your

signal, your beliefs about my signal, your beliefs concerning my beliefs induced by

my signal, and so on. This reasoning never stops and applies to both players, thus

makes higher-order beliefs of all orders relevant for both players�decisions. More-

over, considering that these higher-order beliefs are ultimately determined by the

information acquired, both players have an incentive to match each other�s informa-

tional choice in order to minimize the probability of miscoordination. As a result,

the strategic complementarity between actions induces coordination motive in infor-

mation acquisition. Indeed, this motive can evolve to coordination in information

acquisition since information acquisition is �exible, especially when information cost

is low. Hence, lowering information cost makes e¢ cient coordination in investing

possible through e¢ cient coordination in acquiring information, while also gives rise

to multiple equilibria due to multiple ways of coordinating information acquisition.

In order to highlight the indispensable mechanism of �exibility, it is instructive
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to contrast the role of information acquisition in our framework from that in an

extended global game model, where players are allowed to endogenously choose the

precision of their information. In this extended model, player i observes her signal

xi = �+ �
�1=2
i � "i, where � is the fundamental, "i is a noise with density f and �i is

the precision of her signal. Player i can purchase more accurate signals by increas-

ing precision �i at some cost. Intuitively, as such cost decreases, players acquire

signals with higher precision. Due to the private nature of such signals, higher pre-

cision weakens players�approximate common knowledge of payo¤s. Hence, in the

limit we attain the ine¢ cient and unique equilibrium commonly seen in standard

global game models. The reason why e¢ cient coordination fails and multiplicity

disappears in this extended global game model lies in its rigidity of information

acquisition. This rigidity is represented by the restriction that players can only pay

equal attention to every possible realization of the fundamental. That is, the distri-

bution of player i�s observational error ��1=2i �"i is invariant in �. As a result, players

only coordinate in choosing the overall precision but cannot coordinate their atten-

tion allocation for di¤erent levels of �. This mechanism of rigidity sharply contrasts

with its counterpart when information acquisition is �exible as discussed above.

An important implication of our approach is that �exible information acquisi-

tion, together with the fact that information is costly, helps players in strategic

circumstances only acquire information valuable for e¢ cient coordination and re-

frain themselves from information harmful to coordination even if information cost

goes to zero, and thus become strictly better o¤ than in the case of rigid information

acquisition; while an agent in a single person decision problem cannot enjoy such

bene�t by doing so. In the extended global game model, an e¢ cient outcome can

not be sustained in any equilibrium, but if players could throw away information

with an explicit commitment device, e¢ ciency could be retrieved in equilibrium. In

contrast, in our framework with �exible information acquisition, since the feasible
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information structure to be acquired is �exible and information is costly, players

can choose the quantitative and qualitative nature of information. Thus they act as

if they commit to throwing away information harmful to coordination. Hence, e¢ -

cient coordination could be supported in equilibrium. In other words, �exibility of

information acquisition creates an implicit commitment device. It should be high-

lighted that this contrast could not be seen in single person decision problems with

information acquisition. This is not only because, literally, single person decision

problems do not involve coordination, but also due to the fact that more informa-

tion is always more desirable disregarding its cost, no matter whether information

acquisition is �exible or rigid.

To explore the essence of �exibility, it is important to �rst focus on the fact that

di¤erent forms of information acquisition could be exclusively captured by di¤erent

schemes of information cost. If information structure is endowed exogenously, it

could be viewed that only this endowed information structure can be acquired at �-

nite cost while all other information structures incur an in�nite cost. If information

acquisition is endogenous but rigid as in the extended global game model described

above, only information structures following the form of x = �+��1=2 � " are associ-

ated with �nite cost. In our benchmark model where information acquisition follows

rational inattention, any information structure is associated with a cost proportional

to the resulted reduction of entropy. In all, analysis on schemes of information cost

covers any consideration on the forms of information acquisition. It is worth noting

that information cost given by rational inattention respects Blackwell�s ordering2,

due to which it su¢ ces for players to only consider binary information structures;

and further features uniform boundedness for those binary information structures,

2An information cost respects Blackwell�s ordering if it assigns lower cost to less
informative information structures. An information structure is less informative
than the other if it can be obtained from the other by adding garbling noise in the
sense of Blackwell (1953).
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which ensures the availability of any such essential information. These two aspects

will help us understand the essence of �exibility.

Having abstracted the two aspects from rational inattention, we next go beyond

the entropic information cost to de�ne the �exibility in our context, and identify its

key aspect driving our results. Information acquisition is �exible if the information

cost respects Blackwell�s ordering and features uniform boundedness for the binary

information structures. Blackwell�s ordering precludes the information structures

that contain information of no potential value. The uniform boundedness speci�es

a common upper bound on the costs of all binary information structures. It guar-

antees the availability of all potentially valuable information structures. We show

that our qualitative results remain valid for any information cost satisfying the �ex-

ibility. On the other hand, information acquisition is rigid if it is not �exible. As

typical examples with rigid information acquisition, standard global game models

and our extended global game model satisfy neither of the two conditions. More

importantly, the second aspect plays the main role in shaping our results. Suppose

the �rst condition holds and thus we can focus on binary information structures,

then for almost any such information structure, we can make it supported in limit

unique equilibrium by assigning in�nite cost to preclude some binary information

structures. Therefore, the rigidity resulted from the violation of the second aspect

leads to the failure of our qualitative results. In this sense, we can interpret the

second aspect in a way that the selection of some speci�c equilibrium could be done

by designing its corresponding rigidity.

This chapter proceed as following. Section 2.2 sets up the model and prepares

some simple facts about information acquisition behavior in equilibrium. In Section

2.3, we characterize the equilibria and gain some intuition through comparative

static analysis. Section 2.4 conveys our main results. It �rst compares our approach

to an extended global game model and explores the origin of the di¤erence. This
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section then compares the welfare implications of �exible information acquisition in

strategic settings and non-strategic settings. It also extends the concept of �exibility

and discuss its essence. Section 2.5 examines e¤ects of public information through

a comparative static analysis with respect to the common prior. We conclude in

Section 2.6 by discussing several extensions of the benchmark model. Most proofs

are relegated to the appendix.

2.1.1 Relation to Literature

Throughout our benchmark model, rational inattention illustrates the �exibility of

players�information acquisition. Sims (1998) pioneers rational inattention to model

price stickiness, where the capacity constraints dampen and delay people�s responses

to shocks. Sims (2003) and Sims (2005) further develop the theory to accommo-

date dynamic programming in both linear-quadratic and non-linear-quadratic cases.

Later Matejka (2010) shows that a perfectly attentive seller sets discrete and rigid

prices to stimulate a rationally inattentive buyer to consume more. Recently, Mack-

owiak and Wiederholt (2009) examine rational inattention in a dynamic stochastic

general equilibrium model. They show that prices respond strongly and quickly to

idiosyncratic shocks but weakly and slowly to aggregate shocks.3

In applied work, rational inattention is mainly studied in two cases: the linear-

quadratic case (e.g., Mackowiak andWiederholt (2009)), and the binary-action case.

A leading example of the latter is Woodford (2009), where �rms acquire information

and then decide whether to review their prices. Compared to the standard "Ss"

model, the data of individual price changes are better explained through a large

information cost. Our model also adopts the binary-action setup.

3To learn more about rational inattention, see Sims (2006), Sims (2010), Luo
(2008), Mackowiak and Wiederholt (2011), Van Nieuwerburgh and Veldkamp
(2009a), Van Nieuwerburgh and Veldkamp (2009b), Paciello (2009), Mondria (2010),
Matejka and Sims (2011).
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The literature of global games has contributed a great deal to our understand-

ing of coordination under incomplete information, but our �ndings vary due to

di¤erent approaches. As introduced by Carlsson and Damme (1993), the approach

of global games is a natural re�nement to remove multiplicity in two-player, two-

action games with common knowledge of payo¤s. In a global game model, players

are not sure about the payo¤s but can make inference according to their privately

observed signals. This uncertainty about payo¤s and other players�beliefs weakens

approximate common knowledge among players, and thus facilitates uniqueness.

For example, when each player observes a private signal equal to the fundamental

plus independent noise, a unique strategy pro�le survives iterative dominance as the

signal noise vanishes Frankel, Morris, and Pauzner (2003). Regaining the predictive

power through removing the multiplicity, global game models are widely applied

in the study of currency attacks Morris and Shin (1998), debt pricing Morris and

Shin (2004) and bank runs Goldstein and Pauzner (2005), etc. All these models are

characterized by their exogenous information structures. Researchers assume the

signals to equal the fundamental plus some independent noise and so players only

passively respond to such signals. Researchers also let the noise vanish while �xing

the additive structure to get the limit unique equilibrium with ine¢ cient outcome.

In other words, exogeneity and rigidity are the key features of global game analysis.

As will be shown, it is this rigidity that leads to the limit uniqueness result.

Another related strand of work is characterized by endogenous but rigid informa-

tion acquisition, for example, Hellwig and Veldkamp (2009) and (Myatt andWallace

2009). In Hellwig and Veldkamp (2009), a continuum of agents purchase from a set

of signals and then play a coordination game. In this model, information acquisition

is endogenous in the sense that players decide which signals to buy according to their

own interests. But information acquisition is still rigid, since signals and fundamen-

tals are assumed to be jointly Gaussian, which renders the signals equal to (the linear
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combinations of) fundamentals plus Gaussian noise. Both Hellwig and Veldkamp

(2009) and our model show that if players�actions are strategic complements, so

are their information choices. However, our research provides di¤erent insight about

the creation of approximate common knowledge and multiplicity. While in Hellwig

and Veldkamp (2009), public noise is assumed in the signals and players have the

option to access such public noise to create approximate common knowledge, in our

approach, the creation of approximate common knowledge comes from the �exibility

of information acquisition. Nothing in the model pushes players towards common

knowledge but it is just their incentive to do so. As a result, while public noise

is necessary to generate multiplicity in Hellwig and Veldkamp (2009), our model

admits multiple equilibria once strategic complementarity exceeds information cost,

no matter whether there is public information. More importantly, players in Hell-

wig and Veldkamp (2009) could potentially bene�t from committing to throwing

away some information, but they are not able to do so due to the setup of rigid

information acquisition; while �exibility in our model ensures that players never ac-

quire such redundant and even harmful information and thus may retrieve e¢ cient

coordination. Myatt and Wallace (2011) consider another setting in which there are

also multiple parametric signals available, and each signal contains a public noise

component and a private noise component. Agents can get access to all signals, but

have to choose the precision for the private component of each signal, subject to a

constraint on the total precision of the private components of all signals. By such a

setting, Myatt and Wallace (2011) o¤er a special interpretation of endogenous in-

formation acquisition on public signal in coordination problems, which preserve the

equilibrium uniqueness in the sense that acquiring more accurate public information

is actually conducted by acquiring more clear private information, and thus does

not lead to the kink in marginal bene�t of public information as that in Hellwig

and Veldkamp (2009). Similar to the contrast between our framework and Hellwig
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Table 2.1: payo¤ matrix conditional on fundamental

invest not invest
invest �; � � � r; 0
not invest 0; � � r 0; 0

:

and Veldkamp (2009), the information acquisition in Myatt and Wallace (2011) is

rigid with respect to my model, and their focus and underlying mechanisms are also

di¤erent.

2.2 The Model

2.2.1 The Basic Environment

We de�ne our game as follows. Two players4 play a coordination game with payo¤s

shown by Table 2.2.1.

Here � is a random state with support � � R; � is called "the fundamental

state" hereafter. The action set of player i 2 f1; 2g is Ai = f0; 1g, where 1 stands

for invest and 0 stands for not invest, respectively. Hence player i�s payo¤ from

taking ai 2 Ai when the state is � and her opponent takes aj 2 Aj is given by

ui (ai; aj; �) = ai � [� � r � (1� aj)] :

Note that r > 0 is the cost of miscoordination. It measures the degree of strategic

complementarity5. Fundamental � is drawn from � according to a common prior P ,

4The "two-player" setup is not as restrictive as it seems. All our results remain
valid when there is a continuum of players if we rede�ne the payo¤ for "invest" as
� � r � (1�m), where m is the fraction of the players that invest. We also discuss
the "n-player" case in Subsection 2.6.3.

5We assume constant strategic complementarity for the sake of simplicity. The
more general case with a state-dependent strategic complementarity r (�) > 0 almost
surely is discussed in Subsection 2.6.4.
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which is a probability measure over �. We assume that P is absolutely continuous

with respect to Lebesgue measure over R.6

This game can be interpreted as a coordination problem. Two players coordinate

in investing in a project with uncertain future cash �ow � 2 �. Player i 2 f1; 2g

must decide whether to invest (ai = 1) or not invest (ai = 0). If both players invest,

each enjoys a payo¤ �. If only one player invests, she receives � � r. The payo¤ to

not invest is normalized to zero, regardless of the other player�s action.

To gain some intuition, note that when information is complete and � 2 [0; r],

there exist two strict Nash equilibria: (invest, invest) and (not invest, not invest).

This multiplicity results from excessive coordination built upon common knowledge

of the fundamental.

Our model focuses on the case of incomplete information. Suppose player i

is equipped with an information structure (Si; qi) that conveys information about

�. Here Si � R is the set of realizations of player i�s signal, and qi (sij�) is the

conditional probability density function of her signal. We assume conditional inde-

pendence between si and sj given � to represent the private nature of the players�

information. Given information structure (Si; qi), player i�s strategy can be rep-

resented by a mapping �i from Si to [0; 1], where �i (si) denotes the probability

of choosing 1 upon observing si 2 Si. Player i�s expected payo¤ given (si; sj; �)

becomes

�i (si) � [� � r � (1� �j (sj))] :
6Note that public information a¤ects the common prior, thus its e¤ects on the

equilibria can be studied through comparative static analysis with respect to the
common prior, as shown in Section 2.5.
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Then we can de�ne

Ui (((Si; qi) ; �i) ; ((Sj; qj) ; �j))

=

Z
�

Z
si

Z
sj

�i (si) [� � r � (1� �j (sj))] qi (sij�) qj (sjj�) dsidsjdP (�) ; (2.1)

as player i�s expected payo¤ with strategy pro�le (�i; �j) under information struc-

ture ((Si; qi) ; (Sj; qj)), i; j 2 f1; 2g, i 6= j.

Now we consider a larger game with �exible information choices: player i chooses

strategy ((Si; qi) ; �i) according to the preference given by (2.1), i 2 f1; 2g. More pre-

cisely, player i acquires information through choosing information structure (Si; qi),

and then takes (mixed) action �i according to her signal si generated by (Si; qi).

The solution concept is Nash equilibrium. It is worth noting that the strategy pro�le

(((Si; qi) ; �i) ; ((Sj; qj) ; �j))

is common knowledge in equilibrium, but the players�beliefs about the fundamental

and others�actions are heterogeneous due to the private nature of their signals.

The conditional density qi (sij�) describes player i�s information acquisition strat-

egy. By choosing di¤erent functional forms for qi (sij�), player i can make her signal

covary with the fundamental in any way she would like. Intuitively, if player i�s

welfare is sensitive to the �uctuation of the fundamental within some range A � �,

she would pay much attention to this event by making her signal si highly correlated

with � 2 A. In this sense, choosing an information structure can be interpreted as

hiring an analyst to write a report with emphasis on your interests.

If information acquisition incurs no cost, player i would like to establish a one-to-

one mapping between si and �, and thus obtain all information of the fundamental.

This makes our problem a trivial one since it is just a coordination game with
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complete information. In practice, however, information acquisition is unlikely to

be free. We study the more interesting case of costly information acquisition. To

do so, we associate each conditional density qi (sij�) with a cost � � I (qi), where

I (qi) =

Z
�

Z
si

qi (sij�) ln qi (sij�) � dsi � dP (�)

�
Z
si

Z
�

qi (sij�) � dP (�) � ln
�Z

�

qi (sij�) � dP (�)
�
� dsi (2.2)

is the mutual information between the two random variables si and �. It measures

the amount7 of information about � conveyed by si.8 The marginal cost of infor-

mation acquisition is � > 0. It re�ects the di¢ culty in acquiring information. By

de�nition, I (qi) is uniquely determined by the functional form of qi (sij�). Indeed,

a functional form of qi (sij�) de�nes a speci�c way of information acquisition. It

determines the qualitative nature of information to be acquired. Di¤erent forms of

qi (sij�) may generate the same value for I (qi), i.e., the same amount of information

may be collected from di¤erent aspects of �. Since information acquisition is costly,

it is not wise for player i to have a signal very informative of all values of �. She

should make it sensitive to the events most relevant to her welfare.

Taking into account of information cost, player i�s payo¤ through taking strat-

egy ((Si; qi) ; �i) is her expected future cash �ow minus her cost of information

7Here the unit of I (qi) is "nat". If "ln" is replaced by "log2", the unit becomes
"bit". Knowing the result of a single toss of a fair coin obtains 1 bit of information.
Since 1 bit equals ln 2 nats, choosing bit or nat as the unit does not make any
di¤erence to our analysis.

8Shannon�s mutual information is a natural measure of information about one
random variable conveyed by another one. In Shannon�s information theory, infor-
mation is de�ned as the reduction of uncertainty, which is re�ected by the di¤erence
between the two terms in formula (2.2). Moreover, it is the uniquely "right" way
to measure information under some intuitive axioms. Cover and Thomas (1991)
provide a detailed discussion of mutual information. However, this speci�c entropic
functional form is not necessary for our qualitative results. The essence is the �exi-
bility in choosing information structures. Subsection 2.4.3 extends our results under
more functional general forms.
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acquisition, i.e.,

Vi (((Si; qi) ; �i) ; ((Sj; qj) ; �j))

= Ui (((Si; qi) ; �i) ; ((Sj; qj) ; �j))� � � I (qi) ; i 6= j: (2.3)

The following de�nition summarizes the game:

De�nition 1 (Costly Information Acquisition Game G (r; �)): Two players

with preference (2.3) play the game through choosing ((Si; qi) ; �i), where Si � R

is the set of realizations of player i�s signal, qi (sij�) is the conditional probability

density of her signal, and �i is a mapping from Si to [0; 1] that de�nes player i�s

action upon receiving signal si 2 Si, i 2 f1; 2g : The equilibrium concept is Nash

equilibrium.

In principle, this problem seems hard to deal with, since players�possible strate-

gies belong to a functional space, and even S1 and S2, the sets of realizations of the

signals, are endogenous. Fortunately, some patterns emerge from the players�opti-

mal information acquisition behavior. They help signi�cantly simplify our problem.

2.2.2 Some Simple Facts About The Equilibria

Suppose ((Si; qi) ; �i) is player i�s equilibrium strategy. Let

Si;I = fsi 2 Si : �i (si) = 1g ;

Si;N = fsi 2 Si : �i (si) = 0g ;

and

Si;ind = fsi 2 Si : �i (si) 2 (0; 1)g :
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Note that Si;I (Si;N) is the set of signal realizations such that player i de�nitely

invests (not invests). Player i is indi¤erent when her signal belongs to Si;ind. Then

(Si;I ; Si;N ; Si;ind) forms a partition of Si. Since the only use of the signal is to make

a binary decision, a signal di¤erentiating more �nely among the states only conveys

redundant information and wastes the players�attention. Hence player i will not

discern signal realizations within any of Si;I , Si;N and Si;ind. In addition, because

she is indi¤erent between the two actions upon event Si;ind, she would rationally pay

no attention to distinguish this event from other realizations. Hence, the players

always play pure strategies upon receiving their signals. Therefore, the players

always prefer binary-signal information structures. Woodford (2008) has a similar

argument that the agent only needs to acquire a "yes/no" signal. To maintain the

completeness of this chapter, we prove the results in our context.

Lemma 2.1 In any equilibrium of costly information acquisition game G (r; �),

#Si = 1 or 2, and Pr (Si;ind) = 0, 8i 2 f1; 2g.

Proof. See Appendix 2.7.

This lemma follows the fact that the information cost given by rational inatten-

tion respects Blackwell�s ordering9 of information structures. That is, more infor-

mative information structures are more expensive. Hence, the players only choose

binary information structures to save their information costs.

Suppose ((Si; qi) ; �i) is player i�s equilibrium strategy. Then it induces a condi-

tional probability function mi from � to [0; 1], such that player i invests with prob-

ability mi (�) when the fundamental equals �. On the other hand, Lemma 2.1 im-

plies thatmi also su¢ ces to characterize player i�s equilibrium strategy ((Si; qi) ; �i).

That is, we can recover ((Si; qi) ; �i) from mi. Speci�cally, in the trivial case

mi (�) = 1 a:s: (or mi (�) = 0 a:s:),

9See Blackwell (1953).

84



let

Si = fsi;Ig , qi (si;I j�) = 1 a:s:, �i (si;I) = 1

(or Si = fsi;Ng , qi (si;N j�) = 0 a:s:, �i (si;N) = 0);

otherwise, let

Si = fsi;I ; si;Ng ,

8� 2 �, qi (si;I j�) = mi (�) , qi (si;N j�) = 1�mi (�) ,

�i (si;I) = 1, �i (si;N) = 0:

Hence, conditional probability functionmi characterizes player i�s strategy ((Si; qi) ; �i).

We can focus on the strategy pro�le (m1;m2) for the equilibrium analysis.

Without any confusion, we can abuse the notation a little to rewrite player i�s

expected payo¤ as

Ui (mi;mj) =

Z
mi (�) � [� � r � (1�mj (�))] �dP (�) , i; j 2 f1; 2g and i 6= j: (2.4)

This expression is derived from (2.1).

Lemma 2.1 also implies that I (qi), the amount of information acquired, is a

functional of mi. Hence we use I (mi) instead of I (qi) hereafter. By (2.2) and

Lemma 2.1, I (mi) has the expression

I (mi) =

Z
[mi (�) lnmi (�) + (1�mi (�)) ln (1�mi (�))] dP (�)

�pIi ln pIi � (1� pIi) ln (1� pIi) ; (2.5)

where

pIi = Pr (ai = 1) =

Z
mi (�) dP (�)
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is player i�s unconditional probability of investing. It is worth noting that mutual

information I (m) measures function m�s variability, which re�ects the informative-

ness of actions to the fundamental. For example, whenm (�) is constant, the actions

convey no information about � and the corresponding mutual information is zero.

This is because the integrand in the �rst term of (2.5) is strictly convex and thus

I (m) is zero if and only if m (�) is constant. Hence, a nice property of our tech-

nology of information acquisition is that there exists information acquisition if and

only if m (�) varies over �, if and only if information cost is positive. Also note that

the "shape" (functional form) of m determines not only the quantity but also the

qualitative nature of information. For instance, a player can concentrate her atten-

tion to some event through making m (�) highly sensitive to � within such event. In

this sense, our technology of information acquisition is �exible since the players can

decide both the quantity and quality of their information through freely choosing

m.

Taking information cost into account, player i�s overall expected payo¤ (in terms

of mi, mj) is

Vi (mi;mj) = Ui (mi;mj)� � � I (mi) , i; j 2 f1; 2g and i 6= j: (2.6)

For the sake of simplicity, the rest of this chapter abstracts away from the story

of costly information acquisition and treats the problem as a two-player game with

preference (2.6) and strategy pro�le (m1;m2). We assume that each player�s strategy

space is L1 (�; P ), i.e., the space of all P -integrable functions on � equipped with

the norm

km1 �m2kL1(�;P ) =
Z
�

jm1 (�)�m2 (�)j dP (�) .
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2.3 The Equilibria of the Game

A Nash equilibrium of the costly information acquisition game is a strategy pro�le

(m1;m2) solving the the following problem:

mi 2 arg maxemi2L1(�;P )
Vi (emi;mj) = Ui (emi;mj)� � � I (emi)

s.t. emi (�) 2 [0; 1] ;8� 2 �;

where L1 (�; P ) is the space of P -integrable functions on �, i; j 2 f1; 2g and i 6= j.

Given player j�s strategy mj, player i�s payo¤ gain from investing over not

investing is

�ui (�) = � � r � [1�mj (�)] .

As shown in Proposition 1.1, this payo¤gain function determines player i�s incentive

to acquire information. Player i acquires information for two reasons. First, she

wants to reduce her uncertainty about the fundamental. Second, she can coordi-

nate her investment decision with her opponent�s through coordinating in acquiring

information. For the second reason, player i should pay attention to the events that

player j pays attention to. If player j never acquires information (e.g., she always

invests), however, this second reason does not exist for player i. In addition, if

the fundamental is very likely to be positive ex ante, the �rst reason does not hold

either. Then player i may �nd it optimal to always invest without acquiring any

information. This in turn con�rms player j�s non-information acquisition strategy

and thus constitutes an equilibrium. Because such non-information acquisition equi-

libria are trivial and not interesting, we will exclude them by imposing the following

assumption and focus on the equilibria with information acquisition.

Assumption: E exp (���1�) > 1 and E exp (��1�) > e��1r, where the expecta-
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tion is taken according to common prior P .10

This assumption is similar to the "limit dominance" assumption in the global

games approach.11 The underlying intuition is that common prior P should not

concentrate within interval [0; r]. Otherwise, the players are commonly con�dent

about the event � 2 [0; r]. Once a player always invests (not invests), the other one

�nds her payo¤ gain very likely to be positive (negative) ex ante and thus loses her

incentive to acquire information. To gain some intuition, note that if the common

prior is N (t; �2), this assumption is equivalent to

�2 > r � � and t 2
�
r � ��1�2=2; ��1�2=2

�
;

if the common prior is a uniform distribution over interval [�A; r + A], then the

assumption holds when A > 0 is large enough. All results that follow are derived

under this assumption, unless otherwise noted.

Proposition 2.1 In equilibrium, player i�s strategy is characterized by

� � r � [1�mj (�)] = � �
�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��
almost surely, (2.7)

where

pIi =

Z
mi (�) dP (�) 2 (0; 1) (2.8)

is player i�s unconditional probability of investing and i; j 2 f1; 2g ; i 6= j.

Proof. Note that

�ui (�) = � � r � [1�mj (�)]

10In Proposition 2.8 and 2.9 of Appendix 2.8, we prove that there exists a pool-
ing equilibrium "mi (�) = mj (�) = 1 almost surely" ("mi (�) = mj (�) = 0 almost
surely") if and only if E exp (���1�) � 1 (E exp (��1�) � e��1r), where the expec-
tation is taken according to common prior P . Therefore, this assumption excludes
all equilibria with no information acquisition.

11See the survey of global game models by Morris and Shin (2001).
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and

E exp
�
��1�ui (�)

�
= E exp

�
��1 (� � r � [1�mj (�)])

�
� E exp

�
��1 (� � r)

�
> 1 ,

where the last inequality follows the assumption E exp (��1�) > e�
�1r. Also note

that

E exp
�
���1�ui (�)

�
= E exp

�
���1 (� � r � [1�mj (�)])

�
� E exp

�
���1�

�
> 1 ,

where the last inequality is just the assumption. Therefore, (2.7) and (2.8) are

direct implications of case c) in ii) of Proposition 1.1.

This result is a direct implication of Proposition 1.1. It reads that a pair

(m1;m2) 2 
� 
 is an equilibrium if and only if it satis�es (2.7) and (2.8). Given

player j�s strategy mj (�), the left hand side of (2.7) is player i�s marginal bene�t of

increasing her conditional probability of "invest". Since � > 0 is the marginal cost

of acquiring an extra bit of information and

�
ln

�
mi (�)

1�mi (�)

�
� ln

�
pIi

1� pIi

��

is the "derivative" of the quantity of information with respect to mi (�), the right

hand side of (2.7) is player i�s marginal cost of increasing mi (�). Then (2.7) reads
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that the marginal cost must equal the marginal bene�t. Also note that

ln

�
pIi

1� pIi

�

is player i�s average odds ratio of "invest" relative to "not invest", while

ln

�
mi (�)

1�mi (�)

�

is her odds ratio conditional on �. Then (2.7) indicates that player j�s strategy mj

shapes player i�s marginal bene�t

� � r � [1�mj (�)] ,

which in turn determines the deviation of player i�s odds ratio from its average level.

Since payo¤matrix (Table 2.2.1) is symmetric and the players�actions are strate-

gic complements, it is natural to expect symmetric equilibria.

Proposition 2.2 All equilibria of the costly information acquisition game are sym-

metric, i.e., Pr (m1 (�) = m2 (�)) = 1.

Proof. See Appendix 2.8.

The strategic complementarity between the players�actions gives rise to their

coordination motive in acquiring information. Due to the private nature of their

information acquisition, they can achieve this coordination only through choosing

the same information structure (i.e., the same m (�)). According to this proposition,

we can use a single function m to represent the equilibrium hereafter.

Corollary 2.1 (m1;m2) is an equilibrium of the costly information acquisition game

if and only if there exists an m 2 
, such that mi (�) = m (�) almost surely for
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i 2 f1; 2g ; and

8� 2 �, � � r � [1�m (�)] = � �
�
ln

�
m (�)

1�m (�)

�
� ln

�
pI

1� pI

��
; (2.9)

where

pI =

Z
m (�) � dP (�) :

Proof. This corollary directly follows Proposition 2.2.

This corollary is a direct implication of Propositions 2.1 and 2.2. It is worth

noting that equation (2.9) summarizes all the previous derivations and is su¢ cient

and necessary for all equilibria of the game. The following two sections conduct

equilibrium analysis through analyzing this equation.

It is easy to verify that the graph

�
(�;m) j� � r � (1�m) = � �

�
ln

�
m

1�m

�
� ln

�
pI

1� pI

���

is central-symmetric12 in the � � m plane about the point (�0; 1=2), where

�0 = r=2� � � ln
�

pI
1� pI

�
: (2.10)

Combining (2.9) and (2.10) leads to

� � �0 = � � ln
�

m (�)

1�m (�)

�
+ r �

�
1

2
�m (�)

�
:

Hence any solution of (2.9) has an expression m (� � �0) and can be indexed by �0,

i.e.,

� � �0 = � � ln
�

m (� � �0)
1�m (� � �0)

�
+ r �

�
1

2
�m (� � �0)

�
: (2.11)

12This symmetry comes from the fact that the strategic complementarity r does
not depend on �.
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In other words, any solution is a translation of function m (�), which is implicitly

de�ned by

� = � � ln
�

m (�)

1�m (�)

�
+ r �

�
1

2
�m (�)

�
:

A solution of (2.9) is jointly determined by its position �0 and its "shape" m (�). It

is worth pointing out that not every �0 2 R su¢ ces to make m (� � �0) a solution

of the game. The position �0 is endogenously determined in equilibrium.

We �rst analyze the "shape" of the equilibrium. The "shape"m (�) is determined

by er , r
4�� , the ratio of strategic complementarity r to marginal cost of information

acquisition �. Figure 2.1 shows how m (�) evolves as er increases.
What information is acquired in equilibrium? According to Lemma 2.1, we can

recover the equilibrium information structure from m (�). Let Si = f0; 1g be the set

of realizations for player i�s signal si. Player i invests if si = 1 and does not invest

if otherwise. This information structure is characterized by conditional probability

Pr (si = 1j�) = m (�). Since the probability of investing is highly sensitive to �

where slope
���dm(�)d�

��� is large, ���dm(�)d�

��� re�ects player i�s attentiveness around �13. Under
this interpretation, Figure 2.1 reveals that players actively collect information for

intermediate values of the fundamental but are rationally inattentive to values at the

tails. This result coincides with our intuition. When � is too high (low), the players

should invest (not invest) anyway. Hence the information about � on the tails is not

so relevant to their payo¤s. When � takes intermediate values, the player�s payo¤

gain from investing over not investing depends crucially on the value of � as well as

its implication of her opponent�s action. Therefore, the information about � in the

intermediate region is payo¤-relevant and attracts most of their attention.

How does information acquisition a¤ect coordination? First, the equilibrium

strategy becomes �atter as � increases. Higher informational cost directly weakens

13
���dm(�)d�

��� ,1 when m (�) is discontinuous at �.
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er < 1 er = 1

er > 1 er !1

Figure 2.1: Evolution of the shape of equilibrium
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players�ability to acquire information. Hence more idiosyncratic errors enter play-

ers�responses. Moreover, expecting that her opponent reacts in a noisier fashion,

the player no longer has as much incentive to coordinate as before. Therefore, the

equilibrium strategy becomes even less decisive.

Second, multiple equilibria might emerge14 as er = r
4�� exceeds unity. As shown

in the low-left subgraph of Figure 2.1, there exist �1 < �2 such that multiple val-

ues of m (�) satisfy (2.11) for all � within [�1; �2]. Note that while the strategic

complementarity between players�actions measures their coordination motive, the

marginal cost of information acquisition re�ects the cost of coordination, since ac-

quiring information is a prerequisite to coordinating investment decisions. Hence,

the condition er = r
4�� > 1 reads that when coordination motive dominates coordina-

tion cost, the players have multiple ways to coordinate their information acquisition,

which leads to approximate common knowledge and thus multiplicity.

Third, Monotonic Likelihood Ratio Property (MLRP), an assumption often

made in applied models with incomplete information, could be violated by our

rationally inattentive players when er = r
4�� > 1.15 When coordination motive ex-

ceeds coordination cost, a player has enough incentive and ability to coordinate

with her opponent�s weird non-MLRP strategy. Therefore, our approach provides

a condition to assess the �tness of MLRP.

Finally, as shown in the low-right subgraph of Figure 2.1, the equilibrium approx-

imates the switching strategy when information cost vanishes. This result coincides

with the equilibria of coordination games with complete information.

When er = r
4�� � 1, there is a unique shape of m (�) to satisfy (2.11). However,

in�nitely many shapes ofm (�) satisfy (2.11) when er exceeds unity. Figure 2.2 shows
14We prove this multiplicity later.
15We say a player�s strategy satis�es MLRP if her conditional probability of in-

vesting increases in the fundamental. In other words, the information structure is
more likely to suggest the players to invest for higher fundamental.
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Figure 2.2: benchmark shapes of equilibria

four benchmark shapes.

De�ne the set of possible shapes of equilibria as

M (r; �) ,
�
m 2 
 : � = � � ln

�
m (�)

1�m (�)

�
+ r �

�
1

2
�m (�)

��
:

Note that

#M (r; �) =

8><>: 1 if er = r
4�� � 1

1 if er = r
4�� > 1

:

Given r and �, an equilibrium m (� � �0) is determined by its shape m 2M (r; �)

as well as its position �0. According to (2.10), the equilibrium condition for �0 is

�0 = r=2� � � ln
� R

m (� � �0) � dP (�)
1�

R
m (� � �0) � dP (�)

�
:
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Hence, searching for an equilibrium with any given shape m 2M (r; �) is equivalent

to looking for a �xed point �0 of the following mapping:

g (�0;m) , r=2� � � ln
� R

m (� � �0) � dP (�)
1�

R
m (� � �0) � dP (�)

�
: (2.12)

It is worth noting that since public information is summarized in common prior

P , equation (2.12) also shows that public information a¤ects the equilibrium only

through changing its position �0 but leaves its shape una¤ected.

As er = r
4�� > 1 allows multiple shapes, a natural question is whether this

multiplicity of possible shapes leads to multiple equilibria. We answer this question

in Section 2.4.

2.4 Private Information Acquisition: Rigidity ver-

sus Flexibility

This section conveys the main results of this chapter. We �rst show that multiple

equilibria emerge when strategic complementarity dominates information cost. We

then contrast this result to that of an extended global game model to illustrate why

rigid and �exible information acquisition play so di¤erent roles. We then show how

and why more e¢ cient coordination could be achieved through �exible rather than

rigid information acquisition. Finally, we go beyond the entropic information cost

to explore the essence of �exibility and its key aspect that drives our results.

Lemma 2.2 For any possible shape m 2 M (r; �), there exists �0 2 R such that

m (� � �0) is an equilibrium.

Proof. See Appendix 2.9.
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This lemma proves the existence of the equilibrium. Moreover, it also provides

a su¢ cient condition for multiple equilibria, as shown in the following proposition.

Proposition 2.3 If er = r
4�� > 1, then the costly information acquisition game has

in�nitely many equilibria.

Proof. As shown in Section 2.3, #M (r; �) =1 when er = r
4�� > 1. Therefore, this

proposition is a direct implication of Lemma 2.2.

This result is consistent with our previous intuition. Since strategic complemen-

tarity exceeds informational cost, multiple ways of information acquisition can be

supported in equilibrium. Flexibility together with relatively low information cost

enables players to achieve approximate common knowledge of payo¤s and actions,

which leads to multiplicity.

Besides the condition for multiplicity, we also enrich our results in Subsection

2.6.1 from the angle of supermodularity. This very property enables us to calculate

the extreme equilibria and show the emergence of multiplicity as informational cost

evolves.

In the rest of this section, we focus on the comparison between �exible and rigid

information acquisition.

2.4.1 An Extended Global Game Model

In order to highlight the indispensable mechanism of �exibility, it is instructive to

contrast the role of information acquisition in our benchmark model from that in

an extended global game model. In this extended model, the players are allowed

to purchase more accurate signals but cannot change any other aspect of the in-

formation structure. Speci�cally, let two players play the game with payo¤ matrix

(Table 2.2.1). The common prior about fundamental � is P . Player i 2 f1; 2g

takes action ai 2 f0; 1g after observing her private signal xi = � + ��1=2i � "i, where
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"i is distributed according to a density function f with full support, E"i = 0 and

V ar ("i) < 1. Here �i represents the precision of player i�s private information.

The cost of acquiring information of precision � is c � h (�), where c > 0 is an

exogenous parameter controlling the di¢ culty of information acquisition and h is

continuous and non-decreasing with h (0) = 0. The information structure is rigid in

the sense that the additive nature of the signal generating process is not adjustable.

Each player�s strategy involves simultaneously choosing a precision �i 2 [0;+1)

and an action rule si : R! [0; 1], which means that player i chooses 1 with proba-

bility si (xi) upon observing xi. We write G (c) for the game with cost parameter

c.

Proposition 2.4 Let (�1 (c) ; �2 (c)) be the precision pair chosen in an equilibrium

of G (c). Then for any � > 0, there exists c > 0, such that for all c < c, �i (c) > �,

i 2 f1; 2g.

Proof. See Appendix 2.9.

This proposition reads that players would like to acquire information of arbi-

trarily large precision if the cost of doing so is arbitrarily small. A well known

result in the literature of global games is that uniqueness is guaranteed if private

information is su¢ ciently accurate relative to public information (e.g., Morris and

Shin (2004)). Proposition 2.4 allows us to retrieve the standard global game result

in this extended model with information acquisition.

Corollary 2.2 For any � > 0, there exists c > 0, such that for all c < c, if strategy

s : R!f0; 1g survives iterated deletion of strictly dominated strategies in game

G (c), then s (x) = 0 for all x � r=2� � and s (x) = 1 for all x � r=2 + �.

Proof. The proof is a direct application of Proposition 2.2 in Morris and Shin

(2001) together with Proposition 2.4. According to Proposition 2.2 of Morris and
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Shin (2001), 8� > 0, 9� > 0, such that the above statement holds for all � > �.

Then Proposition 2.4 shows the existence of c > 0 such that the players acquire

information of precision at least �.

According to Corollary 2.2, all equilibria become approximately the unique

switching strategy

s (x) =

8><>: 0 if x � r=2

1 if x > r=2

when informational cost vanishes. This result is consistent with the standard global

game arguments. That is, lowering informational cost induces more accurate private

signals, which undermines common knowledge and thus facilitates the uniqueness

of the equilibrium. According to Proposition 2.3, however, our model with �exi-

ble information acquisition has an opposite prediction: lowering informational cost

enhances approximate common knowledge and facilitates multiplicity.

How should we understand the sharp discrepancy between these two approaches?

The strategic complementarity between actions generates the coordination motive

in acquiring information. This motive evolves to coordination in information ac-

quisition in our benchmark model with �exibility, especially when information cost

becomes lower. Hence, we recreate approximate common knowledge of the payo¤s

and actions, which leads multiplicity.

In the approach of global games where the private noise is additive to the fun-

damental, the players are restricted to pay equal attention to all possible values of

� in the sense that the distribution of the observational error ��1=2 � " is invariant

with respect to �. As a result, players only coordinate in choosing the overall pre-

cision but cannot materialize their potential motive of coordinating their attention

allocation for di¤erent levels of �. This mechanism of rigidity sharply contrasts with

its counterpart when information acquisition is �exible as discussed above.
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2.4.2 Welfare Implications: Rigidity versus Flexibility

The rigid and �exible information acquisition also di¤er in their welfare implications.

In the extended global game model, the limit unique equilibrium (when c! 0 and

thus � ! 1) is ine¢ cient. Both players would have enjoyed higher payo¤s had

they committed to the most e¢ cient strategy

es (x) =
8><>: 0 if x � 0

1 if x > 0
.

However, this strategy cannot be supported in equilibrium. A player with a signal

just above zero will rationally assign a large probability (close to 1/2) to the event

that her opponent�s signal is negative, and thus be reluctant to invest due to the

corresponding fear of miscoordination. This problem could be solved if they could

commit to forgetting the exact values of their signals but only remembering the

signs. For example, if there exists a third party who observes the signals and only

tells the players the signs of their own signals, each player would �nd it optimal to

invest if and only if her signal is positive. Hence, the players achieve the e¢ cient

coordination through throwing away information with a commitment device. It is

worth noting that, in a trivial sense, the players always throw away some information

since they map the continuous signals to binary actions. However, the key point

here is that, although some information is not re�ected in players�actions, it is still

employed in making inference about others�beliefs and resulting actions. This is the

way information matters, which di¤ers from any other economic resource. Therefore,

"throwing away information" means committing to forgetting such information, i.e.,

refraining from making inference upon such information.

In our benchmark model with �exible information acquisition, however, 8b� 2
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[0; r],

m (�) =

8><>: 0 if � � b�
1 if � > b�

is an equilibrium when informational cost � vanishes. Hence the most e¢ cient

strategy with cuto¤ b� = 0 can be supported in equilibrium. Here, �exible infor-

mation acquisition together with the fact that information is costly helps players

only acquire information valuable for e¢ cient coordination and refrain themselves

from information harmful to coordination even if information cost goes to zero, and

thus could become strictly better o¤ than in the case of rigid information acquisi-

tion. In contrast to the extended global game model where players can only throw

away harmful information with an explicit commitment device, the �exibility in

our benchmark model helps players choose the quantitative and qualitative natures

of their information, through which way they act as if they commit to throwing

away information harmful to coordination. In other words, we can interpret that

an implicit commitment device inhabits the �exibility of information acquisition. It

should be highlighted that this contrast could not be seen in single person decision

problems with information acquisition. This is not only because, literally, single

person decision problems do not involve coordination, but also due to the fact that

more information is always more desirable disregarding its cost, no matter whether

information acquisition is �exible or rigid.

2.4.3 Flexibility: General Information Cost

This subsection goes beyond the entropic information cost to explore the essence of

�exibility and its key aspect that drives our results. To this end, it is important to

�rst focus on the fact that di¤erent forms of information acquisition could be exclu-

sively captured by di¤erent schemes of information cost. For example, if information
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structure is endowed exogenously, it could be viewed that only this endowed infor-

mation structure can be acquired at �nite cost while all other information structures

incur an in�nite cost. If information acquisition is endogenous but rigid as in the

extended global game model described above, only information structures following

the form of x = � + ��1=2 � " are associated with �nite cost. In our benchmark

model where information acquisition follows rational inattention, any information

structure is associated with a cost proportional to the resulted reduction of entropy.

In all, analysis on schemes of information cost covers any consideration on the forms

of information acquisition.

It is worth noting that the information cost given by rational inattention re-

spects Blackwell�s ordering16, due to which it su¢ ces for players to only consider

binary information structures; and further features uniform boundedness for those

binary information structures, which ensures the availability of any such essential

information. According to these two aspects, we generalize the concept of �exible

information acquisition.

De�nition 2 Information acquisition is �exible, if the information cost respects

Blackwell�s ordering and is uniformly bounded over 
.

The condition regarding Blackwell�s ordering precludes the information struc-

tures that contain information of no potential value17, and the uniform bounded-

ness guarantees the availability of all potentially valuable information structures.

Having abstracted the two aspects from rational inattention, we can go beyond the

entropic information cost to show the validity of our main results in more general

settings.

16An information cost respects Blackwell�s ordering if it assigns lower cost to less
informative information structures. An information structure is less informative
than the other if it can be obtained from the other by adding garbling noise in the
sense of Blackwell (1953). See Blackwell (1953) for detailed discussion.

17I.e., non-binary information structures, which contain redundant information.
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Consider a coordination game with payo¤s given by Table 2.2.1. Information

acquisition is �exible, and thus we can focus on 
, the set of binary information

structures. Consider a general information cost � � c (m), where � > 0, c (�) is a

non-negative functional de�ned on 
 and m has the same interpretation as before.

Proposition 2.5 If information acquisition is �exible under c (�) and c (�) is sub-

modular, then multiple equilibria exist when

r

4�
>

2K

min (Pr (� � 0) ;Pr (� � r)) , (2.13)

where K is any uniform bound of c (�) over 
.

Proof. See Appendix 2.10.

This proposition is a generalization of Proposition 2.3 and has the same inter-

pretation. The strategies in 
 can be partially ordered by the pointwise ordering,

under which 
 becomes a complete lattice. Hence, we can prove Proposition 2.5 by

constructing two equilibria close to the largest and smallest equilibria of the game

with complete information (i.e., � = 0), respectively. The submodularity of c (�) is

assumed to guarantee the existence of such equilibria but is not essential18. Here we

�nd that multiple equilibria emerge under a condition similar to that in Proposi-

tion 2.3 regardless of the speci�c functional form of c (�). This proposition supports

our intuition that the �exibility rather than the entropic functional form drives our

result. The entropic information cost is employed in our benchmark model not only

for its meaningful interpretation in information theory, but also because it allows

18Submodularity is not a strange assumption, as the information cost given by
rational inattention is submodular. Adding this assumption relieves us from the
technicalities of searching �xed points in a non-compact space of functions of �.
However, this assumption may not be necessary, since the original problem can
always be approximated by discretizing the domain of �, which leads to a compact
space of functions of � and thus guarantees the existence of �xed points.
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us to obtain a clear condition r > 4�, which intuitively inspires our thinking of the

current problem.

We de�ne that information acquisition is rigid if it is not �exible. The standard

global game models and the extended global game model discussed in previous

subsections are two typical setups with rigid information acquisition. They violate

both conditions in our de�nition of �exibility.

Moreover, it is worth highlighting that the second rather than the �rst condition

in our de�nition of �exibility is essential. Consider the information costs respecting

Blackwell�s ordering, which allows us to focus on 
, the set of binary information

structures. We show that almost any strategy m� 2 
 can be supported in equi-

librium through properly choosing such an information cost featuring some rigidity.

Speci�cally, choose a subset S � 
 such that m� 2 S is the unique equilibrium of

our coordination game when players can choose any member of S without any cost

but have no choice outside S. De�ne an information cost such that c (m) = 1 for

all m 2 
nS and c (m�) � c (m) <1 for all m � S. Then for all � 2 R+, m� is the

unique equilibrium of the coordination game with information cost � � c (m). The

key point here is that restricting the players within subset S physically precludes

some information that is potentially valuable. Therefore, the rigidity caused by the

failure of the second condition, the uniform boundedness, leads to the uniqueness.

2.5 Impacts of Public Information

In our benchmark model, players acquire private information at some cost. We

assume that public information is directly observable without incurring any cost.

Hence public information is common knowledge. It a¤ects players�decisions through

changing the common prior about the fundamental. This section conducts a com-

parative static analysis with respect to common prior P to study the impacts of
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public information. Roughly speaking, if the common prior concentrates within

the intermediate region [0; r], both players are con�dent that the event f� 2 [0; r]g

happens with high probability. As a result, their coordination motive dominates

their concern of �uctuating fundamental and multiple equilibria emerge regardless

of the informational cost.

Proposition 2.6 For any r > 0 and � > 0, the costly information acquisition game

has multiple equilibria if Ee��
�1� � 1 and Ee��1(��r) � 1, where the expectation is

taken according to common prior P .

Proof. See Appendix 2.10.

Under the condition of this proposition, at least both "always invest" (i.e.,

m (�) = 1 almost surely) and "never invest" (i.e., m (�) = 0 almost surely) are

equilibria19. The players �nd it optimal to not acquire any information and co-

ordinate their investment decisions perfectly. We can gain some intuition from a

Gaussian common prior N (t; �2). In this case, it is easy to verify that condition

Ee��
�1� � 1 and Ee��1(��r) � 1

is equivalent to

�2 � r � � and t 2
�
��1�2=2; r � ��1�2=2

�
.

That is, the common prior should have a small dispersion and its probability peak

should be close to r=2. Proposition 2.6 is strong in the sense that the criterion

Ee��
�1� � 1 and Ee��1(��r) � 1

19We prove this result in Proposition 2.8 and 2.9 in Appendix 2.8.
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is uniform for all common priors. To make our result comparable to the standard

global game results, we establish the following corollary:

Corollary 2.3 Let p (�) be a probability density function. Then, for any r > 0,

� > 0 and y 2 (0; r), there exists � > 0 such that for all � > �, the costly infor-

mation acquisition game with common prior �1=2p
�
�1=2 (� � y)

�
(density function)

has multiple equilibria.

Proof. First note that

lim
�!1

�1=2p
�
�1=2 (� � y)

�
= � (� � y) ,

where � (�) is the Dirac delta function. Hence

lim
�!1

Z
�

e��
�1� � �1=2p

�
�1=2 (� � y)

�
d�

=

Z
�

e��
�1� � � (� � y) d�

= e��
�1y

< 1 ,

where the inequality follows the condition y 2 (0; r). Since

Z
�

e��
�1� � �1=2p

�
�1=2 (� � y)

�
d�

is continuous in �, there exists �1 > 0 such that for all � > �1,

Z
�

e��
�1� � �1=2p

�
�1=2 (� � y)

�
d� < 1 .
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By a symmetric argument, we can �nd a �2 > 0 such that for all � > �2,

Z
�

e�
�1(��r) � �1=2p

�
�1=2 (� � y)

�
d� < 1 .

Let � = max
�
�1; �2

�
, then according to Proposition 2.6, the game has multiple

equilibria for all � > �.

Here � represents the precision of public information. Speci�cally, suppose play-

ers have a uniform common prior before any public information. They then observe

a public signal

y = � + ��1=2 � " ,

where " is distributed according to a density function p. This public signal results in

an updated common prior20 with density function �1=2p
�
�1=2 (� � y)

�
. Therefore,

Corollary 2.3 reads that providing public information of high precision leads to

multiplicity. This is consistent with the well known result in the literature of global

games.

Another famous result is that uniqueness is guaranteed if private signals are

su¢ ciently accurate relative to public signals (e.g., Morris and Shin (2004)). Hence,

regarding the uniqueness, the e¤ects of increasing precision of public signals can be

o¤set by increasing the precision of private signals. In the context of our extended

global game model, Corollary 2.2 implies that the e¤ect of increasing precision of

public signals can be o¤set by lowering cost of acquiring private information. In our

benchmark model with �exible information acquisition, however, Proposition 2.3

states that there are always in�nitely many equilibria when er = r
4�� > 1, regardless

of the precision of public information. That is, the e¤ects of public information

and private information acquisition are disentangled. The reason is that when

20We call it a prior since it is formed before players�private information acquisi-
tion.
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information cost is small, players have enough freedom in coordinating their private

information acquisition. This freedom has nothing to do with public information.

Therefore, the entangled e¤ects in global game models also result from the rigidity

implicitly imposed on the information structure.

2.6 Discussion

In this section, we �rst enrich our results through the angle of supermodularity. We

then discuss a related game in which players are endowed with a capacity to acquire

a �xed amount of information at no cost. Finally, we address three extensions to

the benchmark model, i.e., a) n � 2 players; b) state-dependent strategic comple-

mentarity r = r (�); and c) discontinuous payo¤gain (from choosing one action over

the other) with respect to the fundamental and to the proportion of players taking

a speci�c action.

2.6.1 Supermodularity and Extreme Equilibria

The strategy space 
 endowed with the natural pointwise order "�" becomes a

complete lattice. Speci�cally, for any m1;m2 2 
, the order is de�ned as

m2 � m1 if and only if m2 (�) � m1 (�) for all � .

Note that the mutual information I (�) is submodular over strategy space 
, thus

our game is a supermodular one. The set of equilibria of a supermodular game

forms a complete lattice, the supremum and in�mum of which correspond to the

largest and smallest Nash equilibria of the game. We refer the interested readers

to Topkis (1979), Milgrom and Roberts (1990) and Vives (1990) for more details

of supermodular games. Here we utilize this property to calculate the extreme
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� = 0:1 � = 0:2

� = 0:25 � = 0:3

Figure 2.3: extreme equilibria

equilibria of our game. Figure 2.3 shows how multiple equilibria emerge as �, the

marginal cost of information acquisition shrinks.

These graphs show numerical solutions of the game with strategic complemen-

tarity r = 1 and uniform common prior over interval [�0:6; 1:6]. We vary the value

of �, the marginal cost of information acquisition to see how the equilibria evolve.

In the two graphs of the �rst row, r is larger than 4�. Hence we have multiple

shapes for the equilibria. It is clear that multiple equilibria emerge as the largest

and smallest equilibria di¤er from each other. When � increases from 0:1 to 0:2,

the two extreme equilibria get closer, suggesting a tendency to uniqueness. In the
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southwest graph, r equals 4� and thus we have a unique shape. We still have

multiple equilibria, although it is hard to distinguish them from the graph. In the

southeast graph, r is smaller than 4� and we have a unique equilibrium.

2.6.2 Constrained Information Acquisition Game

In the conventional setup of rational inattention models, the decision maker is ca-

pacity constrained. She is able to acquire information up to a given amount without

incurring any cost. This subsection discusses such case. Let � > 0 denote the max-

imal amount of information that players can acquire. By an argument similar to

that of Lemma 2.1, player i�s equilibrium strategy is characterized by a function

mi 2 L1 (�; P ), and an equilibrium is a pair (m1;m2) solving the the following

problem:

mi 2 arg maxemi2L1(�;P )
Ui (emi;mj)

s.t. I (emi) � �;

where i; j 2 f1; 2g, i 6= j.

Since payo¤s are symmetric and players have the same capacity of information

acquisition, all equilibria of this game are symmetric.21 When solving for the equi-

librium, the multiplier for the capacity constraint plays a role similar to �, the

marginal cost of information acquisition in our benchmark model. However, it is

worth highlighting two di¤erences. First, the multiplier is an endogenous variable.

Its value may vary for di¤erent equilibria. Hence, it is di¢ cult to conduct compar-

ative static analysis in this setup. Second, switching strategies could be supported

in equilibrium when � is large enough (e.g., � > ln 2 nats). Since a binary decision

problem requires at most ln 2 nats of information, the capacity constraint does not

bind for large �. This case corresponds to our benchmark model with zero marginal

21This symmetry is proved in an earlier version of this paper and is omitted here.
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information cost, and thus has multiple equilibria.

2.6.3 The Game with Multiple Players

We have focused on a 2-player game, but our arguments also work for games with

multiple players. Suppose now we have n � 2 players. Let N , f1; 2; � � �; ng denote

the set of players. All the other assumptions remain the same, except that player

i 2 N enjoys a payo¤

� � r �
�
1� n0

n� 1

�
from choosing "invest" if the fundamental is � and n0 other players choose "invest".

Obviously, Lemma 2.1 is still applicable here, thus again player i�s strategy can be

characterized by

mi (�) , Pr (player i invest j fundamental = �) :

Given fundamental �, player i�s expected payo¤ from investing is

� � r �
�
1�

P
j 6=imi (�)

n� 1

�
: (2.14)

An equilibrium of this n-player costly information acquisition game is an n-tuple

(m1; � � �mn) solving the the following problem:

mi 2 arg maxemi2L1(�;P )
Vi (emi;m�i) = Ui (emi;m�i)� � � I (emi)

s.t. emi (�) 2 [0; 1] for all � 2 � .

Similar to the argument in Proposition 2.2, we can show that all equilibria are

symmetric. Hence any equilibrium can be represented by a single function m, and

all the remaining arguments in the benchmark model still work here.
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2.6.4 State-dependent Strategic Complementarity

A natural extension of the benchmark model is to allow players�coordination motive

to vary with the fundamental, i.e., r = r (�). Under the condition r (�) > 0 almost

surely, the proof of Lemma 2.2 is still valid if we simply replace r with r (�). Hence

the game only admits symmetric equilibria, and most remaining analysis proceeds

as does in the benchmark model.

2.6.5 Discontinuous Payo¤Gain Function

In our model, the payo¤ gain from investing over not investing is continuous with

respect to the fundamental as well as the opponent�s probability of investing. In

many important applications of global game theory, the payo¤ gain is discontinuous

(e.g., Morris and Shin (1998)). This subsection presents an example to illustrate

this case.

Follow the notation in Morris and Shin (2001), let � (m; �) denote the payo¤

gain of choosing "invest" when the fundamental is � and the opponent chooses

"invest" with probability m. For example, in our benchmark model � (m; �) =

��r �(1�m), and @�
@m
= r represents the strategic complementarity. When � (m; �)

is discontinuous with respect to m and �, @�
@m
= 1 for some (m; �), which implies

an in�nite strategic complementarity. The intuition developed in our benchmark

model suggests multiple equilibria no matter how large is �, as shown in the following

example. The underlying story in our mind is the currency attack model of Morris

and Shin (1998).

There is a continuum of players playing a costly information acquisition game.
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Their payo¤ gain from choosing "attack" is de�ned as

� (m; �) =

8><>: �1 if m < �

1 if m � �
:

The interpretation of this payo¤ gain is as following. When the fundamental of the

currency is weak and too many speculators are attacking, government has to drop

the currency peg and each attacker enjoys one dollar. When the opposite happens,

the currency attack fails and each attacker loses one dollar. A speculator receive

zero if she does not attack.

For the sake of simplicity, we assume a uniform prior over [�A; 1 + A], where

A � 0. Let � > 0 be the marginal cost of information acquisition as before.

We focus on the symmetric equilibria, which can be characterized by a mapping

m : [�A; 1 + A] ! [0; 1]. Since we are interested in equilibria with information

acquisition, we assume

A

1 + 2A
e�

�1
+
1 + A

1 + 2A
e��

�1
> 1 . (2.15)

Then according to Proposition 1.1, any equilibrium satis�es

8� 2 [�A; 1 + A] ; � (m; �) = � �
�
ln

�
m (�)

1�m (�)

�
� ln

�
pI

1� pI

��
; (2.16)

where pI = 1
2�A+1 �

R 1+A
�A m (�) � d�.

Since � (m; �) takes only two possible values, so does m (�) according to (2.16).

Hence the equilibrium strategy can be represented by two numbers m;m 2 [0; 1].

Let SI , f� 2 [�A; 1 + A] : m (�) = mg and SN , f� 2 [�A; 1 + A] : m (�) = mg

denote the region of "attack" with "high" probability and "low" probability, respec-

tively. By de�nition, we have SI � [�A;m] and SN � (m; 1+A]: Then a symmetric
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equilibrium is characterized by m, m, SI � [�A;m] and SN � (m; 1 +A] such that

1 = � �
�
ln

�
m

1�m

�
� ln

�
pI

1� pI

��
; (2.17)

�1 = � �
�
ln

�
m

1�m

�
� ln

�
pI

1� pI

��
; (2.18)

and

pI =
1

2 � A+ 1 � [Pr (SI) �m+ Pr (SN) �m] : (2.19)

Proposition 2.7 This game with discontinuous payo¤ gain has in�nitely many

equilibria for all � > 0.

Proof. See Appendix 2.10.

This proposition con�rms our intuition learnt from the benchmark model. Dis-

continuous payo¤ gain generates in�nite strategic complementarity. Therefore, co-

ordination motive always dominates information cost and in�nitely many ways of

coordinating information acquisition can be supported in equilibrium.

2.7 Appendix

Proof of Lemma 2.1.

Proof. Suppose ((Si; qi) ; �i) is player i�s equilibrium strategy. Construct a new

strategy
��eSi; eqi� ; e�i� with eSi = fsi;I ; si;N ; si;indg such that

8� 2 �;

eqi (si;I j�) =

Z
Si;I

qi (sij�) dsi;

eqi (si;N j�) =

Z
Si;N

qi (sij�) dsi;

eqi (si;indj�) =

Z
Si;ind

qi (sij�) dsi;
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and

e�i (si;I) = 1;

e�i (si;N) = 0;

e�i (si;ind) 2 [0; 1] :

Since player i is indi¤erent between invest and not invest upon Si;ind, we have

Ui (((Si; qi) ; �i) ; ((Sj; qj) ; �j)) = Ui

���eSi; eqi� ; e�i� ; ((Sj; qj) ; �j)� :
However, if #(Si) > 3,

�eSi; eqi� incurs strictly less mutual information than does
(Si; qi), i.e., I (eqi)� I (qi) < 0. The reason is that �eSi; eqi� does not require player i
to discern signal realizations within any of Si;I , Si;N , and Si;ind. Then

vi (((Si; qi) ; �i) ; ((Sj; qj) ; �j))� vi
���eSi; eqi� ; e�i� ; ((Sj; qj) ; �j)�

= Ui (((Si; qi) ; �i) ; ((Sj; qj) ; �j))� � � I (qi)

�Ui
���eSi; eqi� ; e�i� ; ((Sj; qj) ; �j)�+ � � I (eqi)

= � � [I (eqi)� I (qi)] < 0;
i.e., ((Si; qi) ; �i) is suboptimal and cannot be an equilibrium strategy. Hence we

proved that in any equilibrium, 8i 2 f1; 2g, #(Si) � 3, Si;I = fsi;Ig, Si;N = fsi;Ng,

and Si;ind = fsi;indg.

Now we prove 8i 2 f1; 2g, Pr (Si;ind) = 0 (i.e., Pr (si;ind) = 0).

Suppose 9i 2 f1; 2g, Pr (Si;ind) > 0 (thus, Pr (si;ind) > 0). If Pr (si;ind) 2 (0; 1),

then Pr (si;I) > 0 or Pr (si;N) > 0. Without loss of generality, let Pr (si;I) > 0.
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Construct a new strategy
��
Si; qi

�
; �i
�
with Si = fsi;I ; si;Ng such that 8� 2 �,

qi (si;I j�) = qi (si;I j�) + qi (si;indj�) ;

qi (si;N j�) = qi (si;N j�) ;

�i (si;I ; ai = 1) = 1

and

�i (si;N ; ai = 0) = 1 .

Since player i is indi¤erent between invest and not invest upon receiving si;ind, we

have

Ui (((Si; qi) ; �i) ; ((Sj; qj) ; �j)) = Ui
���
Si; qi

�
; �i
�
; ((Sj; qj) ; �j)

�
.

Since Pr (si;I) > 0 and Pr (si;ind) > 0, this new strategy
��
Si; qi

�
; �i
�
incurs strictly

less mutual information then does ((Si; qi) ; �i). Then by the same argument, we

know that ((Si; qi) ; �i) is suboptimal and cannot be an equilibrium strategy.

Now the only possibility is Pr (si;ind) = 1, i.e., player i does not acquire any infor-

mation in equilibrium since she is always indi¤erent between invest and not invest.

Let mi (�) , Pr (ai = 1j�) be the probability that player i invests when fundamen-

tal equals �. Then mi is totally determined by player i�s strategy ((Si; qi) ; �i).

Pr (si;ind) = 1 implies that in equilibrium, Pr (� � r � (1�mj (�)) = 0) = 1, and

9m 2 [0; 1], s.t. player i always invests with probabilitym, i.e., Pr (mi (�) = m) = 1.

Let

F+ = f� 2 �j� � r � (1�m) > 0g ;

F� = f� 2 �j� � r � (1�m) < 0g
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and

B = f� 2 �j� � r � (1�m) = 0g :

Since the common prior P is absolutely continuous with respect to Lebesgue mea-

sure, we have Pr (B) = 0, i.e., Pr (F+) + Pr (F�) = 1. Without loss of generality,

assume Pr (F+) > 0. Construct a new strategy
��eSj; eqj� ; e�j� for player j, s.t.

eSj = f0; 1g ;
eqj (sj = 1j�) = 1 if � 2 F+ [B;
eqj (sj = 0j�) = 1 if � 2 F�

and

e�j (sj = 1) = 1, e�j (sj = 0) = 0 .
Note that 8� 2 F+,

� � r � (1�m) > 0 = � � r � (1�mj (�)) ;

i.e.,

mj (�) < mi � 1 .
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Then we have

Uj

���eSj; eqj� ; e�j� ; ((Si; qi) ; �i)�� Uj (((Sj; qj) ; �j) ; ((Si; qi) ; �i))
=

Z
F+[B

1 � [� � r � (1�m)] � dP (�) +
Z
F�

0 � [� � r � (1�m)] � dP (�)

�
Z
mj (�) � [� � r � (1�m)] � dP (�)

�
Z
F+

[1�mj (�)] � [� � r � (1�m)] � dP (�)

> 0

On the other hand, it is obvious that I (eqj) � I (qj). Therefore,
��eSj; eqj� ; e�j�

strictly dominates ((Sj; qj) ; �j) and thus ((Sj; qj) ; �j) cannot be player j�s equilib-

rium strategy.

Now we proved 8i 2 f1; 2g, Pr (Si;ind) = 0 by contradiction. Together with the

previous result that 8i 2 f1; 2g, #(Si) � 3, it also implies that #(Si) = 1 or 2.

2.8 Appendix

Proof of Proposition 2.2.

Proof. According to (2.7),

8� 2 �,

� � r � (1�m1 (�)) = � �
�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
pI2

1� pI2

��
; (2.20)

� � r � (1�m2 (�)) = � �
�
ln

�
m1 (�)

1�m1 (�)

�
� ln

�
pI1

1� pI1

��
: (2.21)
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(2.20) and (2.21) imply

8� 2 �,�
ln

�
pI2

1� pI2

�
� ln

�
pI1

1� pI1

� �
=

�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
+
r

�
(m2 (�)�m1 (�)) : (2.22)

If pI2 = pI1, (2.22) becomes

8� 2 �,

0 =

�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
+
r

�
(m2 (�)�m1 (�)) ;

and we must have m2 (�) = m1 (�) a:s: since r
�
> 0. Now suppose pI2 6= pI1.

Without loss of generality, let pI2 > pI1. Denote z = ln
�

pI2
1�pI2

�
� ln

�
pI1
1�pI1

�
> 0.

Then (2.22) becomes

8� 2 �,

0 < z =

�
ln

�
m2 (�)

1�m2 (�)

�
� ln

�
m1 (�)

1�m1 (�)

��
+
r

�
(m2 (�)�m1 (�)) ;(2.23)

which suggests that Pr (m2 (�) > m1 (�)) = 1. Let ln
�

m2(�)
1�m2(�)

�
= x (�) and ln

�
m1(�)
1�m1(�)

�
=

y (�). (2.23) implies

8� 2 �, x (�) < y (�) + z:

Note that pIi =
R
mi (�) � dP (�) = Emi (�), i 2 f1; 2g, m2 (�) =

exp(x(�))
1+exp(x(�))

and
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m1 (�) =
exp(y(�))
1+exp(y(�))

, thus

z = ln

�
Em2 (�)

1� Em2 (�)

�
� ln

�
Em1 (�)

1� Em1 (�)

�

= ln

0@E
h

exp(x(�))
1+exp(x(�))

i
E
h

1
1+exp(x(�))

i
1A� ln

0@E
h

exp(y(�))
1+exp(y(�))

i
E
h

1
1+exp(y(�))

i
1A

< ln

0@E
h

exp(y(�)+z)
1+exp(y(�)+z)

i
E
h

1
1+exp(y(�)+z)

i
1A� ln

0@E
h

exp(y(�))
1+exp(y(�))

i
E
h

1
1+exp(y(�))

i
1A :

Take the exponential of both sides of the above inequality, we have

exp (z) <
E
h

exp(y(�)+z)
1+exp(y(�)+z)

i
� E
h

1
1+exp(y(�))

i
E
h

1
1+exp(y(�)+z)

i
� E
h

exp(y(�))
1+exp(y(�))

i ;
i.e.,

E

�
exp (y (�))

1 + exp (y (�) + z)

�
�E
�

1

1 + exp (y (�))

�
> E

�
1

1 + exp (y (�) + z)

�
�E
�
exp (y (�))

1 + exp (y (�))

�
;

i.e.,

Z
exp (y (�1)) dP (�1)

1 + exp (y (�1) + z)
�
Z

dP (�2)

1 + exp (y (�2))

+

Z
exp (y (�2)) dP (�2)

1 + exp (y (�2) + z)
�
Z

dP (�1)

1 + exp (y (�1))

>

Z
dP (�1)

1 + exp (y (�1) + z)
�
Z
exp (y (�2)) dP (�2)

1 + exp (y (�2))

+

Z
dP (�2)

1 + exp (y (�2) + z)
�
Z
exp (y (�1)) dP (�1)

1 + exp (y (�1))
;

i.e.,

Z
[A+B � C �D] � dP (�1) dP (�2)

[1 + exp (y (�1) + z)] [1 + exp (y (�2))] [1 + exp (y (�2) + z)] [1 + exp (y (�1))]
> 0;

(2.24)
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where

A = exp (y (�1)) [1 + exp (y (�2) + z)] [1 + exp (y (�1))] ;

B = exp (y (�2)) [1 + exp (y (�1) + z)] [1 + exp (y (�2))] ;

C = exp (y (�2)) [1 + exp (y (�2) + z)] [1 + exp (y (�1))]

and

D = exp (y (�1)) [1 + exp (y (�1) + z)] [1 + exp (y (�2))] :

Let y (�1) = u and y (�2) = v, then the numerator in the integral becomes

A+B � C �D = [eu � ev]2 [1� ez] < 0;

where the last inequality follows the fact that z > 0. Therefore, the left hand side of

(2.24) is strictly negative, which is a contradiction. Therefore, Pr (m1 (�) = m2 (�)) =

1.

Lemma 2.3 The costly information acquisition game has an equilibrium with at

least one player always investing if and only if E exp (���1�) � 1, where the expec-

tation is taken according to common prior P .

Proof. (Su¢ ciency.) If mj (�) = 1 almost surely, player i�s payo¤ gain from

investing over not investing becomes

�ui (�) = � .

Then according to case a) in ii) of Proposition 1.1,

E exp
�
���1�

�
� 1
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implies mi (�) = 1 almost surely, which in turn con�rms that mj (�) = 1 almost

surely is player j�s optimal strategy. Therefore, we have an equilibrium with both

players always investing.

(Necessity.) Suppose mj (�) = 1 almost surely, but E exp (���1�) > 1. Player

i�s payo¤ gain from investing over not investing is

�ui (�) = � .

According to case b) and c) in ii) of Proposition 1.1, E exp (���1�) > 1 implies

mi (�) < 1 almost surely. Then player j�s payo¤ gain from investing over not

investing becomes

�uj (�) = � � r � [1�mi (�)]

< � almost surely,

which implies

E exp
�
���1�uj (�)

�
> E exp

�
���1�

�
> 1 .

Hence according to case b) and c) in ii) of Proposition 1.1, we �ndmj (�) < 1 almost

surely, which is a contradiction.

Lemma 2.4 In an equilibrium of the costly information acquisition game with one

player always investing, the other player must also always invest.

Proof. By the necessity part of Lemma 2.3, we know that E exp (���1�) � 1.

Then the su¢ ciency part of Lemma 2.3 has already proved that the other player
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must also always invest.

Proposition 2.8 The costly information acquisition game has an equilibrium with

both players always investing if and only if E exp (���1�) � 1.

Proof. This proposition is a direct implication of Lemma 2.3 and 2.4.

Lemma 2.5 The costly information acquisition game has an equilibrium with at

least one player always not investing if and only if E exp (��1�) � e��1r, where the

expectation is taken according to common prior P .

Proof. (Su¢ ciency.) If mj (�) = 0 almost surely, player i�s payo¤ gain from

investing over not investing becomes

�ui (�) = � � r .

Then according to case b) in ii) of Proposition 1.1,

E exp
�
��1 (� � r)

�
� 1

implies mi (�) = 0 almost surely, which in turn con�rms that mj (�) = 0 almost

surely is player j�s optimal strategy. Therefore, we have an equilibrium with both

players always not investing.

(Necessity.) Suppose mj (�) = 0 almost surely, but E exp (��1�) > e�
�1r, i.e.,

E exp (��1 (� � r)) > 1. Player i�s payo¤ gain from investing over not investing is

�ui (�) = � � r .

According to case a) and c) in ii) of Proposition 1.1, E exp (��1 (� � r)) > 1 implies

mi (�) > 0 almost surely. Then player j�s payo¤ gain from investing over not
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investing becomes

�uj (�) = � � r � [1�mi (�)]

> � � r almost surely,

which implies

E exp
�
��1�uj (�)

�
> E exp

�
��1 (� � r)

�
> 1 .

Hence according to case a) and c) in ii) of Proposition 1.1, we �ndmj (�) > 0 almost

surely, which is a contradiction.

Lemma 2.6 In an equilibrium of the costly information acquisition game with one

player always not investing, the other player must always not invest either.

Proof. By the necessity part of Lemma 2.5, we know that E exp (��1�) � e�
�1r.

Then the su¢ ciency part of Lemma 2.5 has already proved that the other player

must always not invest either.

Proposition 2.9 The costly information acquisition game has an equilibrium with

both players always not investing if and only if E exp (��1�) � e��1r.

Proof. This proposition is a direct implication of Lemma 2.5 and 2.6.

2.9 Appendix

Proof of Lemma 2.2.
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Proof. Let m 2 M (r; �) be an arbitrary shape. Let �0 (pI) be de�ned by (2.10)

and

m (�; pI) = m (� � �0 (pI)) .

By de�nition, m (�; pI) satis�es

� � r � (1�m (�; pI)) = � �
�
ln

�
m (�; pI)

1�m (�; pI)

�
� ln

�
pI

1� pI

��
almost surely.

(2.25)

Here pI 2 (0; 1) is treated as an index and m (�; pI) is an equilibrium if and only if

pI =

Z
�

m (�; pI) dP (�) . (2.26)

Therefore, our objective is to show the existence of pI 2 (0; 1) satisfying (2.26).

Step 1. We show Z
�

m (�; pI) dP (�) < pI

for pI su¢ ciently close to 1.

By (2.25),

ln

�
m (�; pI)

1�m (�; pI)

�
� ln

�
pI

1� pI

�
< ��1� almost surely,

i.e.,

m (�; pI) <

pI
1�pI

e���1� + pI
1�pI

almost surely.

Hence it su¢ ces to show

Z
�

pI
1�pI

e���1� + pI
1�pI

dP (�) � pI .
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Let

w =
1

1� pI

and

v (�) = e��
�1� � 1,

then it su¢ ces to show

Z
�

w � 1
v (�) + w

dP (�) � w � 1
w

. (2.27)

Since w > 1 by de�nition, (2.27) becomes

Z
�

1

1 + v (�) =w
dP (�) � 1 . (2.28)

By assumption, Z
�

e��
�1�dP (�) > 1,

i.e., Z
�

v (�) dP (�) > 0 . (2.29)

Hence there exists N > 0 s.t.

Z
�\[�N;+1)

v (�) dP (�) > 0 .

Let

B = max
�
e�

�1N � 1; 1
�
,

then

jv (�)j � B
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for all � 2 [�N;+1). Since

1

1 + x
= 1� x+ x2 + o

�
x2
�

for x close enough to zero, there exists w > 0 s.t.

1

1 + v (�) =w
< 1� v (�)

w
+
2B2

w2

for all � 2 [�N;+1) and w > w. Choose

w > max

 
w;

2B2R
�\[�N;+1) v (�) dP (�)

!
, (2.30)

then

Z
�\[�N;+1)

1

1 + v (�) =w
dP (�)

<

Z
�\[�N;+1)

�
1� v (�)

w
+
2B2

w2

�
dP (�)

= Pr (� � �N) + 2B
2

w2
� Pr (� � �N)� w�1

Z
�\[�N;+1)

v (�) dP (�)

� Pr (� � �N) + 2B
2

w2
� w�1

Z
�\[�N;+1)

v (�) dP (�)

< Pr (� � �N) , (2.31)
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where the last inequality follows (2.30). Hence,

Z
�

1

1 + v (�) =w
dP (�)

=

Z
�\[�N;+1)

1

1 + v (�) =w
dP (�) +

Z
�\(�1;�N)

1

1 + v (�) =w
dP (�)

�
Z
�\[�N;+1)

1

1 + v (�) =w
dP (�) +

Z
�\(�1;�N)

1 � dP (�)

< Pr (� � �N) + Pr (� < �N)

= 1,

where the �rst inequality holds since v (�) for all � 2 (�1;�N) and the last

inequality comes from (2.31). Therefore, (2.28) holds and if we let

pI =
w � 1
w

,

we have Z
�

m (�; pI) dP (�) < pI .

Step 2. We show Z
�

m (�; pI) dP (�) > pI

for pI su¢ ciently close to 0.

By (2.25),

ln

�
m (�; pI)

1�m (�; pI)

�
� ln

�
pI

1� pI

�
> ��1 (� � r) almost surely,

i.e.,

1�m (�; pI) <
1

1 + e��1(��r) pI
1�pI

almost surely.
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Hence it su¢ ces to show

Z
�

1

1 + e��1(��r) pI
1�pI

dP (�) � 1� pI .

Let

w =
1

pI

and

v (�) = e�
�1(��r) � 1,

then it su¢ ces to show

Z
�

w � 1
v (�) + w

dP (�) � w � 1
w

. (2.32)

By assumption, Z
�

e�
�1(��r)dP (�) > 1,

i.e., Z
�

v (�) dP (�) > 0 . (2.33)

Note that (2.32) and (2.33) are the same as (2.28) and (2.29), thus (2.32) can be

proved by the same argument in Step 1. Therefore, we can �nd a p
I
2 (0; 1) s.t.

Z
�

m
�
�; p

I

�
dP (�) > p

I
.

Step 3. Since common prior P is absolutely continuous with respect to Lebesgue

measure over R, Z
�

m (�; pI) dP (�)� pI

is a continuous function of pI 2 (0; 1). Hence Step 1 and Step 2 imply the existence
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of p�I 2 (0; 1) s.t. Z
�

m (�; p�I) dP (�) = p
�
I .

According to (2.10), let

��0 = r=2� � � ln
�

p�I
1� p�I

�
,

then m (� � ��0) is an equilibrium with shape m. This concludes the proof.

Lemma 2.7 Let P be any probability measure over R. A set of functions M �

L1 (R; P ) is relatively compact if M is uniformly bounded and equicontinuous.

Proof. Let B > 0 be the uniform bound and fmng1n=1 � M be a sequence of

functions. Let

AT =

�
�T;�T + 1

T
;�T + 2

T
; � � �; T � 2

T
; T � 1

T
;

�
,

then [1T=1AT is dense in R. Since [1T=1AT is countable, we can list its elements as

f�1; �2; �3; � � �g. Note that the numerical sequence fmn (�1)g1n=1 is bounded, so by

Bolzano-Weierstrass theorem it has a convergent subsequence, which we will write

using double subscripts: fm1;n (�1)g1n=1. Now the numerical sequence fm1;n (�2)g1n=1
is also bounded, so it has a convergent subsequence fm2;n (�2)g1n=1. Note that the

sequence of functions fm2;ng1n=1 converges at both �1 and �2 since it is a subse-

quence of fm1;ng1n=1. Proceeding in this fashion we obtain a countable collection of
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subsequences of our original sequence:

m1;1 m1;2 m1;3 � � �

m2;1 m2;2 m2;3 � � �

m3;1 m3;2 m3;3 � � �

� � � � � �

� � � � � �

� � � � � �

,

where the sequence in the n-th row converges at the points �1; �2; � � �; �n and each

row is a subsequence of the one above it. Hence the diagonal sequence fmn;ng1n=1
is a subsequence of the original sequence fmng1n=1 that converges at each point of

[1T=1AT . Now we show that fmn;ng1n=1 is a Cauchy sequence in L1 (R; P ).

For any " > 0, there exists T0 such that

Pr ([�T0; T0]) � 1�
"

5 �B , (2.34)

where B is the uniform bound such that jm (�)j < B for all � 2 � and m 2 M .

Since M is equicontinuous, there exists T1 > T0 such that 8m 2M , 8�1; �2 2 �,

j�1 � �2j <
1

T1

implies

jm (�1)�m (�2)j <
"

5
.

As AT1 is �nite and fmn;ng1n=1 converges at every point of AT1, there exists n0 2 N

such that

jmn;n (�)�mn0;n0 (�)j <
"

5
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for all n; n0 > n0 and all � 2 AT1. For any y 2 [�T1; T1], there exists � 2 AT1 such

that

jy � �j < 1

T1
,

thus we have

jmn;n (y)�mn;n (�)j <
"

5

and

jmn0;n0 (y)�mn0;n0 (�)j <
"

5
.

Hence for any y 2 [�T1; T1] and n; n0 > n0,

jmn0;n0 (y)�mn;n (y)j

� jmn0;n0 (y)�mn0;n0 (�)j+ jmn0;n0 (�)�mn;n (�)j+ jmn;n (�)�mn;n (y)j

<
3 � "
5

.

(2.35)

Then

kmn0;n0 �mn;nkL1(R;P )

=

Z
�

jmn0;n0 (y)�mn;n (y)j dP (y)

=

Z
[�T1;T1]

jmn0;n0 (y)�mn;n (y)j dP (y) +
Z
�n[�T1;T1]

jmn0;n0 (y)�mn;n (y)j dP (y)

<
3 � "
5
� Pr ([�T1; T1]) +

Z
�n[�T1;T1]

2 �B � dP (y)

� 3 � "
5
� 1 + "

5 �B � 2 �B

= " ,

where the �rst inequality follows (2.35) and the second inequality comes from (2.34).
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Therefore, fmn;ng1n=1 is a Cauchy subsequence of fmng1n=1 in L1 (R; P ) and M

is relatively compact in L1 (R; P ). This concludes the proof.

Proof of Proposition 2.4.

Proof. We prove by contradiction. Suppose the proposition does not hold, then

9i 2 f1; 2g, �i > 0 and a sequence fcng
1
n=1 s.t. limn!1 cn = 0 and 8n; �i (cn) � �i.

We write g� for the density function over signals induced by precision �, i.e.,

g� (x) =

Z
�

�1=2 � f
�
�1=2 (x� �)

�
� p (�) � d�;

and write l� (�jx) for the induced posterior density over �:

l� (�jx) =
�1=2 � f

�
�1=2 (x� �)

�
� p (�)

g� (x)
:

A su¢ cient statistic for a player j�s conjecture over i�s play is the probability she

attaches to player i investing as a function of �, which is a function mi : �! [0; 1].

Let

S , fs Lebesgue measurable : 8x 2 R; s (x) 2 [0; 1]g

and

M�i
,

8><>: m 2 
 : 9� 2
�
0; �i

�
and s 2 S;

s.t. m (�) =
R
x
�1=2 � f

�
�1=2 (x� �)

�
� s (x) � dx for all � 2 �

9>=>; ;
where 
 = fm 2 L1 (�; P ) : 8� 2 �, m (�) 2 [0; 1]g. M�i

contains all player j�s

possible conjectures of player i�s play when �i 2
�
0; �i

�
.

Step 1: We prove that M�i
is relatively compact in 
, i.e., its closure M�i

is

compact.
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Let f 0 denote the derivative of f . f 0 could be a generalized function. Since f 0 is

Lebesgue integrable over R,

Z
y

max (f 0 (y) ; 0) dy <1

and Z
y

max (�f 0 (y) ; 0) dy <1

hold by de�nition. 8m 2M�i
, 8� 2 �,

����dm (�)d�

���� =

����Z
x

� � f 0
�
�1=2 (x� �)

�
� s (x) � dx

����
=

����Z
y

�1=2 � f 0 (y) � s
�
��1=2 � y + �

�
� dy
����

� �1=2 �max
�Z

y

max (f 0 (y) ; 0) dy;

Z
y

max (�f 0 (y) ; 0) dy
�
.

Hence for any " > 0,

j�1 � �2j <
"

�1=2 �max
hR
y
max (f 0 (y) ; 0) dy;

R
y
max (�f 0 (y) ; 0) dy

i
implies

jm (�1)�m (�2)j < "

for all m 2 M�i
, i.e., M�i

is equicontinuous. By de�nition, 8m 2 M�i
, 8� 2 �,

jm (�)j � 1, i.e., M�i
is uniformly bounded. Therefore, according to Lemma 2.7,

M�i
is relatively compact in 
.

If player j chooses
�
�j; sj

�
against conjecture mi, her expected utility is

Vj
�
�j; sj;mi

�
=

Z
xj

sj (xj) �
�Z

�

(� � r � (1�mi (�))) � l�j (�jxj) � d�
�
� g�j (xj) � dxj .
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With an optimal choice of sj this gives

V �j
�
�j;mi

�
=

Z
xj

max

�
0;

Z
�

(� � r � (1�mi (�))) � l�j (�jxj) � d�
�
� g�j (xj) � dxj

=

Z
xj

max

�
0;

Z
�

(� � r � (1�mi (�))) � �1=2j f
�
�
1=2
j (xj � �)

�
p (�) d�

�
� dxj .

(2.36)

Note that lim�!1 �
1=2 � f

�
�1=2 (x� �)

�
= � (x� �), where � (�) is the Dirac

delta function. Then (2.36) implies

V ��j (mi) , lim
�j!1

V �j
�
�j;mi

�
=

Z
xj

max f0; [xj � r � (1�mi (xj))] � p (xj)g � dxj

=

Z
�

max f0; [� � r � (1�mi (�))] � p (�)g � d� . (2.37)

V ��j (mi) is player j�s ex ante expected utility against conjecture mi if she can

always observe the exact realization of the fundamental.

Step 2: We show that 8mi 2 
, 8�j > 0, V ��j (mi) > V
�
j

�
�j;mi

�
.

Note that our assumptions

E exp
�
���1�

�
> 1

and

E exp
�
��1�

�
> e�

�1r

imply that

Pr (� < 0) > 0
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and

Pr (� > r) > 0 ,

respectively. Hence we have

Pr (� � r � (1�mi (�)) > 0)

� Pr (� � r > 0)

> 0

and

Pr (� � r � (1�mi (�)) < 0)

� Pr (� < 0)

> 0 .

Since function max f0; �g is convex, Jensen�s inequality implies that

max

�
0;

Z
�

[� � r � (1�mi (�))] � �1=2j � f
�
�
1=2
j (xj � �)

�
� p (�) d�

�
�

Z
�

max
n
0; [� � r � (1�mi (�))] � �1=2j � f

�
�
1=2
j (xj � �)

�o
� p (�) d�

=

Z
�

max f0; [� � r � (1�mi (�))]g � �1=2j � f
�
�
1=2
j (xj � �)

�
� p (�) d� .(2.38)

Since

Pr
�
[� � r � (1�mi (�))] � f

�
�
1=2
j (xj � �)

�
> 0
�

= Pr (� � r � (1�mi (�)) > 0)

> 0
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and

Pr
�
[� � r � (1�mi (�))] � f

�
�
1=2
j (xj � �)

�
< 0
�

= Pr (� � r � (1�mi (�)) < 0)

> 0

for all xj 2 R, (2.38) holds strictly. Then, (2.36) implies

V �j
�
�j;mi

�
=

Z
xj

max

�
0;

Z
�

[� � r � (1�mi (�))] � �1=2j � f
�
�
1=2
j (xj � �)

�
� p (�) � d�

�
� dxj

<

Z
xj

Z
�

max f0; [� � r � (1�mi (�))]g � �1=2j � f
�
�
1=2
j (xj � �)

�
� p (�) � d� � dxj

=

Z
�

max f0; (� � r � (1�mi (�))) � p (�)g �
Z
xj

�
1=2
j � f

�
�
1=2
j (xj � �)

�
� dxj � d�

=

Z
�

max f0; (� � r � (1�mi (�))) � p (�)g � 1 � d�

= V ��j (mi) ;

where the last equality follows (2.37). Therefore,

8mi 2 
, 8�j > 0, V ��j (mi) > V
�
j

�
�j;mi

�
: (2.39)

Step 3: We prove limn!1 �j (cn) =1.

If this is not true, there exists a �j > 0 and a subsequence fcnkg
1
k=1 � fcng

1
n=1

s.t. limk!1 �j (cnk) = �j.

We �rst show 8�j > 0; 9�0j > 0 and �
�
�j; �

0
j

�
> 0, s.t. 8mi 2M�i

,

V �j
�
�0j;mi

�
� V �j

�
�j;mi

�
> �

�
�j; �

0
j

�
.
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Otherwise, 9�j > 0;8�0j > 0, 8l 2 N, 9ml
�j ;�

0
j
2M�i

, s.t.

V �j

�
�0j;m

l
�j ;�

0
j

�
� V �j

�
�j;m

l
�j ;�

0
j

�
� 1=l .

Hence 8�0j > 0, there exists a m�j ;�
0
j
2 
 and a subsequence

n
lk;�j ;�0j

o1
k=1

s.t.

lim
k!1

m
lk;�j;�0j
�0j

= m�j ;�
0
j

and

V �j

�
�0j;m�j ;�

0
j

�
� V �j

�
�j;m�j ;�

0
j

�
� 0;

sinceM�i
is relatively compact and V �j (�;m) is a continuous functional of m for all

� > 0. However, (2.39) implies that

V �j

�
�0j;m�j ;�

0
j

�
� V �j

�
�j;m�j ;�

0
j

�
> 0

for �0j large enough, which is a contradiction.

Note that V �j (�;m) is continuous in �, hence 9�0j > �j and K 2 N s.t. 8k >

K; 8mi 2M�i
,

V �j
�
�0j;mi

�
� V �j

�
�j (cnk) ;mi

�
> �

�
�j; �

0
j

�
=2 .

Since limn!1 cnk = 0, we can choose k large enough such that

cnk <
�
�
�j; �

0
j

�
2 �
�
h
�
�0j
�
� h

�
�j (cnk)

�� .
Hence we have 8mi 2M�i

,

V �j
�
�0j;mi

�
� cnk � h

�
�0j
�
> V �j

�
�j (cnk) ;mi

�
� cnk � h

�
�j (cnk)

�
;

138



which contradicts the assumption that �j (cnk) is player j�s equilibrium response in

G (cnk). Therefore we prove limn!1 �j (cn) =1.

Step 4: Finally we derive a contradiction to complete the proof. Since 8n; �i (cn) 2�
0; �i

�
, there exists a ��i 2

�
0; �i

�
and a subsequence fcnkg

1
k=1 � fcng

1
n=1 s.t.

lim
k!1

�i (cnk) = �
�
i .

Let mi (�; �i (c)) characterize player i�s equilibrium strategy in G (c). 8k 2 N; 8� 2

�, we have

mi (�; �i (cnk))

=

Z
xi

2664 [�i (cnk)]
1=2 � f

�
[�i (cnk)]

1=2 (xi � �)
�

�1�R
�0(�

0�r�(1�mj(�0;�j(cnk))))�[�i(cnk)]
1=2
f

�
[�i(cnk)]

1=2
(xi��0)

�
p(�0)d�0>0

�

3775 � dxi
and

mj

�
�; �j (cnk)

�
=

Z
xj

2664
�
�j (cnk)

�1=2 � f ���j (cnk)�1=2 (xj � �)�
�1�R

�0(�
0�r�(1�mi(�0;�i(cnk))))�[�j(cnk)]

1=2
f

�
[�j(cnk)]

1=2
(xj��0)

�
p(�0)d�0>0

�

3775 � dxj:
Since 
 is a complete functional space and mi (�; �i) is continuous in �i, i 2 f1; 2g,

there exists
�
m�
i (�) ;m�

j (�)
�
2 
�
 such that limk!1

�
mi (�; �i (cnk)) ;mj

�
�; �j (cnk)

��
=�

m�
i (�) ;m�

j (�)
�
. Especially, as a result of Step 3, 8� 2 �,

m�
j (�) = 1f��r�(1�m�

i (�))>0g
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and

m�
i (�) =

Z
xi

�
�1=2
i �f

�
�
�1=2
i (xi � �)

�
�1nR

�0(�
0�r�(1�m�

j (�)))��
�1=2
i f

�
�
�1=2
i (xi��0)

�
p(�0)d�0>0

o�dxi:

Choose a sequence
�
�0i;nk

	1
k=1

such that

lim
k!1

�0i;nk =1

and

lim
k!1

cnk � h
�
�0i;nk

�
= 0 .

Then

lim
k!1

8><>:
�
V �i
�
�i (cnk) ;mj

�
�; �j (cnk)

��
� cnk � h (�i (cnk))

�
�
�
V �i
�
�0i;nk ;mj

�
�; �j (cnk)

��
� cnk � h

�
�0i;nk

��
9>=>;

=
�
V �i
�
��i ;m

�
j

�
� 0
�
�
�
V ��i

�
m�
j

�
� 0
�
< 0;

where the last inequality follows (2.39). Therefore, for k 2 N large enough,

V �i
�
�i (cnk) ;mj

�
�; �j (cnk)

��
�cnk �h (�i (cnk)) < V �i

�
�0i;nk ;mj

�
�; �j (cnk)

��
�cnk �h

�
�0i;nk

�
;

which contradicts to the assumption that �i (cnk) is player i�s equilibrium response

in G (cnk).

This concludes the proof.

2.10 Appendix

Proof of Proposition 2.6.
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Proof. According to Proposition 2.8 and 2.9 in Appendix 2.8, both "always invest"

(i.e., m (�) = 1 almost surely) and "never invest" (i.e., m (�) = 0 almost surely)

are equilibria. By the way, there may also exist "intermediate" equilibria with

information acquisition. This concludes the proof.

Proof of Proposition 2.7.

Proof. We consider a special class of equilibria with the following form

m (�) =

8><>: m1 if � � m�

m0 if � > m�

,

where m0;m1 2 (0; 1), m0 < m1, m� = � �m0 + (1� �) �m1 and � 2 [0; 1].

Given pI 2 (0; 1), (2.17) and (2.18) imply that

m1 (pI) =

pI
1�pI

pI
1�pI + e

���1

and

m0 (pI) =

pI
1�pI

pI
1�pI + e

��1
.

Let

g (pI) =
1

1 + 2A
[m1 � (m� + A) +m0 � (1 + A�m�)] .

If

g (pI) = pI ,

according to (2.17), (2.18) and (2.19), m1 (pI), m0 (pI),

SI = [�A; � �m0 (pI) + (1� �) �m1 (pI)]

and

SN = (� �m0 (pI) + (1� �) �m1 (pI) ; 1 + A]
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constitute an equilibrium. Now we prove g (pI) has an �xed point in (0; 1) for any

� 2 [0; 1].

Step 1. We show

g (pI) < pI

for pI close to 1.

Since m� � 1,

g (pI) =
1

1 + 2A
[m1 (pI) � (m� + A) +m0 (pI) � (1 + A�m�)]

� 1 + A

1 + 2A
�m1 (pI) +

A

1 + 2A
�m0 (pI) .

Hence it su¢ ces to show

1 + A

1 + 2A
�m1 (pI) +

A

1 + 2A
�m0 (pI) < pI (2.40)

for pI close to 1. Let

w =
1

1� pI
,

v0 = e
���1 � 1

and

v1 = e
��1 � 1 ,

then (2.40) can be rewritten as

1 + A

1 + 2A
� w � 1
w + v0

+
A

1 + 2A
� w � 1
w + v1

<
w � 1
w

. (2.41)

Since pI 2 (0; 1), w � 1 > 0 and (2.41) is equivalent to

1 + A

1 + 2A
� 1

1 + v0=w
+

A

1 + 2A
� 1

1 + v1=w
< 1 . (2.42)
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It su¢ ces to show (2.42) for w large enough.

Choosing w large enough such that

1 + v0=w > 0

and multiplying both sides of (2.42) with (1 + v0=w) (1 + v1=w) lead to

1 +
1 + A

1 + 2A
� v1=w +

A

1 + 2A
� v0=w < 1 + v1=w + v0=w +

v0v1
w2

,

i.e.,

�v0v1
w

<
A

1 + 2A
� v1 +

1 + A

1 + 2A
� v0 . (2.43)

Note that (2.15) implies

A

1 + 2A
� v1 +

1 + A

1 + 2A
� v0 > 0 .

Hence, we can choose w large enough such that (2.43) holds. Therefore, let

pI =
w � 1
w

,

we have

g (pI) < pI .

Step 2. We show

g (pI) > pI

for pI close to 0.
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Since m� � 0,

g (pI) =
1

1 + 2A
[m1 (pI) � (m� + A) +m0 (pI) � (1 + A�m�)]

� A

1 + 2A
�m1 (pI) +

1 + A

1 + 2A
�m0 (pI) .

Hence it su¢ ces to show

A

1 + 2A
�m1 (pI) +

1 + A

1 + 2A
�m0 (pI) > pI ,

i.e.,
A

1 + 2A
� [1�m1 (pI)] +

1 + A

1 + 2A
� [1�m0 (pI)] < 1� pI , (2.44)

for pI close to 0. Let

w =
1

pI
,

v0 = e
���1 � 1

and

v1 = e
��1 � 1 ,

then (2.44) can be rewritten as

A

1 + 2A
� w � 1
w + v1

+
1 + A

1 + 2A
� w � 1
w + v0

<
w � 1
w

. (2.45)

It su¢ ces to show (2.45) for w large enough. Note that (2.45) is the same as (2.41),

thus by the same argument in Step 1, we can �nd a p
I
close to 0 such that

g
�
p
I

�
> p

I
.
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Step 3. Since g (pI) is continuous in pI , there must exist a p�I 2 (0; 1) such that

g (p�I) = p
�
I .

Hence we �nd an equilibrium for the given �. Since we can �nd an equilibrium for

any � 2 [0; 1], there exist in�nitely many equilibria. This concludes the proof.

Proof of Proposition 2.5.

Proof. Given strategy pro�le (mi;mj), player i�s expected utility is

Vi (mi;mj) =

Z
[� � r � (1�mj (�))] �mi (�) dP (�)� � � c (mi) .

Let


� ,
�
m 2 
 :

��m (�)� 1f�>r=4g�� � 1

4

�
.

We �rst show that if player j�s strategy mj belongs to 
�, so does player i�s best

responsemi. The trick is to show that 1f�>r=4g 2 
� strictly dominates any emi =2 
�.

Note that for all � � r=4, we have

� � r � (1�mj (�))

� r=4� r � (1� 1=4)

= �r=2 . (2.46)

For all � > r=4, we have

� � r � (1�mj (�))

> r=4� r � (1� 3=4)

= 0 . (2.47)
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Now we can calculate player i�s expected gain of deviating from 1f�>r=4g to emi =2 
�:

Vi
�
1f�>r=4g;mj

�
� Vi (emi;mj)

=

Z
[� � r � (1�mj (�))] �

�
1f�>r=4g � emi (�)

�
dP (�)

+� �
�
c (emi)� c

�
1f�>r=4g

��
�

Z
[� � r � (1�mj (�))] �

�
1f�>r=4g � emi (�)

�
dP (�)� � �K

=

Z
��r=4

[� � r � (1�mj (�))] � [0� emi (�)] dP (�)

+

Z
�>r=4

[� � r � (1�mj (�))] � [1� emi (�)] dP (�)� � �K

�
Z
��r=4

(�r=2) � (�1=4) dP (�) +
Z
�>r=4

0 � [1� emi (�)] dP (�)� � �K

=
r

8
� Pr (� � r=4)� � �K

> 0 . (2.48)

Here the �rst inequality holds since c (�) is non-negative and uniformly bounded

above by K, the second inequality follows (2.46) and (2.47), and the last inequality

comes from condition (2.13) of this proposition. Inequality (2.48) implies that player

i�s best response to any mj 2 
� must also belong to 
�. Now consider a "smaller"

game with the same payo¤s but a smaller strategy space 
�. Since 
� is a complete

lattice under the natural order and c (�) is assumed to be submodular, this new

game is a supermodular game and must have an equilibrium. Let (mi;mj) be such

an equilibrium. Then (mi;mj) is also an equilibrium of the original game, since 
�

is closed under the best response dynamics.

Similarly, we can construct


� ,
�
m 2 
 :

��m (�)� 1f��3r=4g�� � 1

4

�
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and �nd an equilibrium �
mi;mj

�
2 
� � 
� .

Since


� \ 
� = � ,

(mi;mj) and
�
mi;mj

�
are two di¤erent equilibria of the game. This completes the

proof.
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Chapter 3

Linear Best-response Games with

Flexible Information Acquisition

3.1 Introduction

This chapter examines �exible information acquisition in the linear best-response

games. This class of games have been widely employed in modeling nominal price

adjustment, asset pricing and �nancial crisis, etc.. In most of these models, infor-

mation structures are exogenously given and the agents passively respond to their

endowed signals (e.g., Morris and Shin (2002), Angeletos and Pavan (2007)). Since

people always make decisions according to their information at hand, it makes sense

to investigate what information people acquire and how it a¤ects the equilibrium

outcomes. The current model takes this into account by allowing people to collect

information according to their own interests and the qualities of their information

sources.

The economy consists of a continuum of agents. Each agent enjoys a utility

quadratic in her own action, the economy�s aggregate/average action and a �uctu-

ating fundamental. The agents do not know the exact value of the fundamental
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but share a common prior. Each agent has access to a public information source

and her private information source. She can �exibly acquire information from her

information sources in the manner of rational inattention1 subject to her capacity

constraint. This setup of preference is similar to Angeletos and Pavan (2007). How-

ever, in order to get general results, we use an extended version that accommodates

heterogeneous preferences, information sources and information processing capaci-

ties. In this general setup, we examine the role played by information acquisition.

Information acquisition plays a crucial role in shaping the equilibrium outcomes.

Firstly, the agents face a trade-o¤ between two objectives. One is to match the fun-

damental and the other is to match the aggregate/average action of the economy.

The second objective induces a strategic complementarity among agents�actions,

which leads the agents to pay more attention to the public information source and

be less attentive to the private ones. In other words, the strategic complementar-

ity among actions makes agents� information choices also strategic complements.

Secondly, it is worth noting that if there is no capacity constraint, our game essen-

tially reduces to the game with exogenous information structures where agents just

treat their information sources as the signals in Morris and Shin (2002), Angeletos

and Pavan (2007). Introducing capacity constraints directly dampens the agents�

responses to the information content conveyed by their information sources, since

their responses now contain some information processing errors. In other words, the

capacity constraints weaken the agents�ability to employ information. Moreover,

rationally expecting others�dampened (and thus less e¤ective) responses, an agent

�nds it less attractive to match the economy�s aggregate/average action, since it

makes no sense to match others� information processing errors. Upon these two

e¤ects, we can establish an equivalence between games with and without capacity

constraints, which is the main result of this chapter.

1Chapter 1 introduces rational inattention and the related literature.
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The most related paper is Hellwig and Veldkamp (2009). They introduce endoge-

nous information acquisition into a version of Morris and Shin (2002) static beauty

contest game where the agents can buy information through choosing from a set

of jointly normal distributed signals. Each of these signals is a linear combination

of the fundamentals plus some public and/or private noises, and di¤ers from each

other in the precision. Both Hellwig and Veldkamp (2009) and our model show that

the strategic externality among agents�actions induces the same type of strategic

externalities among agents�information choices. However, in Hellwig and Veldkamp

(2009) adding information choices to the game with strategic complementarity leads

to multiple equilibria even though the corresponding game with exogenous infor-

mation has a unique equilibrium. As a comparison, our model always predicts a

unique equilibrium. This uniqueness comes from the continuous nature of rational

inattention as a modeling technique, while the multiplicity in Hellwig and Veldkamp

(2009) comes from the agents�essentially discrete (binary) decision of whether to

buy the signals that have already been purchased by others.

This chapter proceeds as following. Section 3.2 sets up the model. In Section

3.3, we explore the basic properties of the equilibria. Section 3.4 derives the agents�

information acquisition and establishes the equivalence theorems. It also character-

izes the equilibria. Section 3.5 concludes the chapter. Most proofs are relegated to

the appendix.

3.2 The Model

The economy consists of a continuum of agents indexed by i 2 [0; 1]. Agent i enjoys

a utility

ui = U
i
�
ki; K; �;

�!
�
�
,
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which is quadratic in its arguments. Here ki 2 R is agent i�s action and

K =

Z 1

0

kj � dj

is the aggregate/average action of the economy. The fundamental

�!
� � N

��!
0 ;���

�

is an exogenous n�-dimension payo¤-relevant vector 2 and

�2 =

Z 1

0

(kj �K)2 � dj

denotes the dispersion of the agents�actions. Following the setup of Angeletos and

Pavan (2007), we assume each agent i�s utility function to satisfy

U ik� = U
i
K� = U

i
�� = 0

and

U i�

�
k;K; 0;

�!
�
�
= 0

for all
�
k;K;

�!
�
�
. The last equation means that dispersion has only a second-order

and non-strategic external e¤ect. We also assume U ikk < 0 to guarantee a well

de�ned best response and matrix U ik� non-singular to exclude the trivial case where

some entries of fundamental
�!
� are irrelevant for equilibrium behavior. Note that

ri , �U ikK=U ikk measures the strategic externality between agent i�s action and the

aggregate action. As in Angeletos and Pavan (2007), to guarantee the uniqueness

2The assumption of zero-mean here is not essential since we can always rede�ne
the fundamentals by subtracting its mean.
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of the equilibrium, we assume

Z
jrij � di < 1 .

Here we allow the utility function U i (�) to vary over i 2 [0; 1] to represent the

possible heterogeneity in the agents�preferences.

Information Sources. An information source is a random vector correlated

with the fundamental and thus contains payo¤ relevant information. All the agents

have access to a public information source
�!
f 2 Rnf , which is jointly normal dis-

tributed with the fundamental
�!
� , i.e.

0B@ �!
�

�!
f

1CA � N

0B@�!0 ;
264 ��� ��f

�f� �ff

375
1CA :

Besides the public information source
�!
f , each agent i also has a private information

source �!x i 2 Rnxi satisfying0B@ �!
�

�!x i

1CA � N

0B@�!0 ;
264 ��� ��xi

�xi� �xixi

375
1CA :

Information source �!x i is private in the sense that only agent i has access to it. We

assume that 8i; j 2 [0; 1], i 6= j, �!x i, �!x j and
�!
f are conditionally independent with

respect to the fundamental
�!
� . Then the joint distribution of

��!
� ;
�!
f ;�!x i

�
becomes

0BBBB@
�!
�

�!
f

�!x i

1CCCCA � N

0BBBB@�!0 ;
266664
��� ��f ��xi

�f� �ff �fxi

�xi� �xif �xixi

377775
1CCCCA ;
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where

�fxi , Cov
��!
f ;�!x 0i

�
= �f��

�1
�� ��xi .

Here ��xi and �fxi vary over i 2 [0; 1] to represents the heterogeneity in agents�

information sources.

Information Acquisition. Agent i�s information acquisition is modeled as

choosing a signal �!s i correlated with her information sources

0B@ �!
f

�!x i

1CA. To make
the model tractable, signal �!s i is also assumed to be jointly normal distributed

with agent i�s information sources. Agent i can �exibly acquire di¤erent pieces

of information through varying the covariance matrix between �!s i and

0B@ �!
f

�!x i

1CA,
but her capacity constraint requires that the mutual information between �!s i and0B@ �!

f

�!x i

1CA can not exceed some upper bound �i � 0. Hence, agent i has to ratio-

nally allocate her attention to acquire the information most relevant to her welfare.

Intuitively, she should pay more attention to the sources with higher quality (i.e.

higher correlation with the fundamentals) and rationally ignore others. Moreover,

if her action and the aggregate action are strategic complements (i.e., ri > 0), she

should pay more attention to the information that others pay more attention to. In

other words, there is also some complementarity in information acquisition. Since

�!s i and

0B@ �!
f

�!x i

1CA are jointly Gaussian, �!s i consists of some linear combinations of0B@ �!
f

�!x i

1CA and an information processing error independent with

0B@ �!
f

�!x i

1CA. It is nat-
ural to assume that each agent�s information processing error is independent with

the fundamental, all public and private information sources as well as all others�

information processing errors. This assumption re�ects the private nature of agents�

information acquisition.
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Simpli�cation of Information Acquisition. Without loss of generality, we

can always standardize �!s i to N
��!
0 ; I

�
. Thus agent i�s information choice is char-

acterized by the covariance matrix between �!s i and

0B@ �!
f

�!x i

1CA. Moreover, since

V ar

0B@
0B@ �!

f

�!x i

1CA
1CA =

264 �ff �fxi

�xif �xixi

375
is a symmetric real matrix, there exists some orthogonal matrix Pi such that

V ar

0B@
0B@ �!

f

�!x i

1CA
1CA = P 0i�iPi ,

where �i = diag
�
�i;1; �i;2; � � �; �i;nf+nxi

�
. Let �!z i = �

�1=2
i Pi

0B@ �!
f

�!x i

1CA, then �!z i
� N

��!
0 ; I

�
. Note that �!z i and

0B@ �!
f

�!x i

1CA have the same information content

because one is just an invertible transform of the other. Therefore, I (�!s i;�!z i) =

I

0B@�!s i;
0B@ �!

f

�!x i

1CA
1CA. Later, we will see that this change-of-variable simpli�es our

derivation since we can just focus on �zisi , Cov (�!z i;�!s i) rather than the covari-

ance matrix between

0B@ �!
f

�!x i

1CA and �!s i . The joint distribution of �!z i and �!s i now

becomes 0B@ �!zi
�!s i

1CA � N

0B@�!0 ;
264 I �zisi

�sizi I

375
1CA ;
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and the capacity constraint becomes

I (�!s i;�!z i) = �
1

2
� ln (det (I � �zisi�sizi)) � �i ,

i.e.,

det (I � �zisi�sizi) � exp (�2 � �i) .

In the current model, we call the resulted joint distribution of
��!
� ; f�!s igi2[0;1]

�
the

information structure, which is endogenously determined by the agents�information

choices f�zisigi2[0;1]. It is worth noting that in the extreme case where capacity

�i = 1, the capacity constraint disappears and the agent can directly observe her

information sources. Hence the problem reduces to the classical one with exogenous

information structure, which is a special case of the current model.

Timing of the game. First, each agent i simultaneously chooses �zisi subject

to her capacity constraint, i.e.,

det (I � �zisi�sizi) � exp (�2 � �i) ,

where I ��zisi�sizi should be positive semi-de�nite3; second, each agent i�s private

signal �!s i realizes; third, each agent i takes action ki to maximize her expected

utility according to the realization of �!s i.

This game is solved through backward induction. We �rst analyze the agents�

actions at the third stage. The �rst order condition implies agent i�s unique best

response

ki = Ei

�
ri �K +�!� 0i

�!
�
�
+ �i; (3.1)

3Note that I � �zisi�sizi = V ar (�!z ij�!s i) is positive semi-de�nite.
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where

Ei (�) , E (�j�!s i) ; ri = �
U ikK
U ikk

;�!� i = �
U ik�
U ikk

2 Rn� ; �i = �
U ik (0; 0; 0; 0)

U ikk
:

We omit the derivation here since it is almost the same as Proposition 1 of Angeletos

and Pavan (2007). Here we also normalize �i to zero for all agents, since this term

just changes the level of best responses but has on strategic e¤ect.

Now agent i�s utility function can be rewritten as

U i
�
ki; K; �;

�!
�
�
=

1

2
� U ikk �

h
ki �

�
ri �K +�!� 0i

�!
�
�i2

+Gi
�
K; �;

�!
�
�

, 1

2
�
�
�U ikk

�
�fU i �ki; K;�!� �+Gi �K; �;�!� � ;

where Gi
�
K; �;

�!
�
�
is quadratic in its arguments. Since Gi

�
K; �;

�!
�
�
does not af-

fect any individual agent�s best response,
nfU io

i2[0;1]
(i.e., the parameters fri;�!� igi2[0;1])

su¢ ces to describe the agents�preferences. Therefore, we can just focus on fri;�!� igi2[0;1]
when analyzing the equilibria in the rest of the paper.

Let �!w =
��!
� 0;
�!
f 0
�0
2 Rnw and �!b i =

��!� 0i;�!0 0�0 2 Rnw , where nw = n� + nf .
Then Equation (3.1) can be rewritten as

ki = Ei

�
ri �K +

�!
b 0i
�!w
�
. (3.2)

Taking integral for both sides of the above equation leads to

K = eE (K) + bE (�!w ) ; (3.3)

where eE (�) , Z 1

0

ri � Ei (�) � di

is an average expectation operator, a linear mapping from the space of random
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variables to itself, and bE (�) , Z 1

0

�!
b 0iEi (�) � di

is another average expectation operator that is a linear mapping from the space

of nw-dimensional random vectors to the space of random variables. We call �!w =��!
� 0;
�!
f 0
�0
the state (random vector) of the economy.

Note that any equilibrium aggregate action K should satisfy Equation (3.3).

Once K is given, the individual action ki is determined by Equation (3.2). Hence,

we �rst focus on Equation (3.3). Since �!s i and �!w are jointly normal distributed,

�!s i can be expressed as
�!s i = �i�!w +�!� i +�!� i;

where �i 2 Rnsi�nw , �!� i 2 Rnsi , and �!� i 2 Rnsi is an idiosyncratic Gaussian noise.

Actually, �!� i consists of agent i�s information processing error and the noise in her

private information source. By the de�nition of eE (�), for any random variable K,eE (K) is a function of �!w and f�!� igi2[0;1]. However, since each single agent only

has a zero measure, eE (K) does not depend on any speci�c �!� i . This implies thateE (K) is a function of the state �!w . Similarly, bE (�!w ) is also a function of �!w . Thus
Equation (3.3) implies that the equilibrium aggregate action K must be a function

of the state �!w .

The equilibrium is characterized by the aggregate action K (�!w ), the agents�

information choices f�zisigi2[0;1] and their actions fki (
�!s i)gi2[0;1].

De�nition:
�
K (�!w ) ; f�zisigi2[0;1] ; fki (

�!s i)gi2[0;1]
�
is an equilibrium i¤ 1) 8i 2

[0; 1],

ki (
�!s i) = Ei

�
ri �K +

�!
b 0i
�!w
�
;

2)

K (�!w ) = eE (K (�!w )) + bE (�!w ) ;
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3) 8i 2 [0; 1],

�zisi = arg max
det(I��zisi�sizi)�exp(�2��i)

I��zisi�sizi positive semi-de�nite

E
hfU i �ki (�!s i) ; K (�!w ) ;�!� �i . (3.4)

In our equilibrium, the functional form K (�) is common knowledge. Each agent

cares about the state �!w and the implied aggregate actionK (�!w ) rather than others�

utility functions and strategies. If the utility parameters fri;�!� igi2[0;1] are common

knowledge, we can also de�ne the Bayesian Nash equilibrium. These two de�nitions

generate the same equilibrium strategies. We use the �rst one in the rest of this

paper since the assumptions are weaker (since it does not require fri;�!� igi2[0;1] to

be common knowledge).

3.3 Basic Properties of the Equilibrium Aggre-

gate Action K (�!w )

The de�nition shows that any equilibrium aggregate action K (�!w ) is a solution

of functional equation (3.3). To proceed, we �rst study operator eE (�). Let P

be the probability space on which the random vectors
�!
� ,
�!
f and f�!x igi2[0;1] are

de�ned. Let 
 be the space of all random variables de�ned on P. Hence, 
 is

a vector space and by de�nition eE (�) is a linear mapping from 
 to itself. For

any pair of random variables u and v in 
, de�ne their inner product as hu; vi =

E [u � v]. Hence the induced norm of v is jjvjjrv = [E (v2)]1=2, where the subscript

"rv" stands for "random variable". Then the norm of the operator eE (�) can be
de�ned as jj eE (�) jjop = supjjvjjrv=1 jj eE (v) jjrv = supjjvjjrv=1 j

D eE (v) ; vE j, where the
subscript "op" stands for "operator". Generally speaking, the property of eE (�)
and the resulted solution of Equation (3.3) depend on the underlying information
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structure, i.e., the agents� information choices f�zisigi2[0;1]. We �rst summarize

some important properties of Equation (3.3) that are independent of the information

choices in the following proposition.

Proposition 3.1 Equation (3.3) has a unique solution, which is linear in �!w , i.e.,

9 �!u 2 Rnw , s.t. K (�!w ) = �!u 0�!w .

Proof. For any v 2 
, s.t. jjvjjrv = 1, we have

E [Ei (v)]
2 = V ar [Ei (v)] + (Ev)

2

= V ar (v)� E [V ari (v)] + (Ev)2

= E
�
v2
�
� E [V ari (v)]

� E
�
v2
�
= jjvjj2rv = 1 ,

where the second equality comes form the law of total variance. Thus

jjEi (�) jjop = sup
jjvjjrv=1

jjEi (v) jjrv

= sup
jjvjjrv=1

�
E [Ei (v)]

2�1=2
� 1

and

jj eE (�) jjop = jj
Z 1

0

ri � Ei (�) � dijjop

�
Z 1

0

jrij � jjEi (�) jjop � di

�
Z 1

0

jrij � di < 1 .

Therefore the operator
�
I � eE� (�) is invertible, and the conclusion directly follows

Lemma 3.1 in Appendix 3.6.
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According to this proposition, there exists a unique equilibrium such that the

aggregate action K (�!w ) is linear in �!w regardless of the agents�information choices.

SinceK (�) is continuous in its argument, the measures induced byK (�!w ) and�!w are

mutually continuous. In other words, K (�!w ) is informationally e¢ cient in the sense

that any non-zero probability event about the state �!w corresponds to a non-zero

probability event about the aggregate action K (�!w ).

3.4 Equilibriumwith Flexible Information Acqui-

sition

For any i 2 [0; 1], let

�i = [1� exp (�2 � �i)]
1=2

where �i is agent i�s capacity of information acquisition. Then, given the set of

information sources, the game is characterized by fri;�!� i; �igi2[0;1].

3.4.1 Strategic Incentives in Information Choices

This subsection examines the agents�incentives in acquiring information. In order

to make the expressions simple, we focus on the case of homogeneous preference,

i.e., 8i 2 [0; 1], (ri;�!� i; �i) = (r;�!� ; �). The following argument actually restates the

main result of Hellwig and Veldkamp (2009) in our context.

Let f�1;zisigi2[0;1] and f�2;zisigi2[0;1] be two pro�les of information choices and

f�!s 1;igi2[0;1] and f
�!s 2;igi2[0;1] be the two sets of resulted signals, respectively. Let

V arl (
�!w ) =

Z 1

0

V ar (�!w j�!s l;j) � dj; l = 1; 2 .
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Let

EfU i ��l;zisi ; V arl0 (�!w )�
denote agent i�s expected utility when her information choice is �l;zisi and others�

are �
�l0;zjsj

	
j2[0;1]nfig ; l; l

0 = 1; 2 .

Proposition 3.2 Suppose V ar2 (�!w )�V ar1 (�!w ) is positive semi-de�nite and V ar (�!w j�!s 2;i)�

V ar (�!w j�!s 1;i) is positive semi-de�nite for some i 2 [0; 1]. Then

1) if there is no strategic externality (i.e. r = 0), the value of additional infor-

mation is independent of others�information choices, i.e.,

EfU i ��1;zisi ; V ar1 (�!w )�� EfU i ��2;zisi ; V ar1 (�!w )�
= EfU i ��1;zisi ; V ar2 (�!w )�� EfU i ��2;zisi ; V ar2 (�!w )� ;

2) if there is strategic complementarity (i.e. r > 0), the value of additional

information is increasing in others�information acquisition, i.e.,

EfU i ��1;zisi ; V ar1 (�!w )�� EfU i ��2;zisi ; V ar1 (�!w )�
> EfU i ��1;zisi ; V ar2 (�!w )�� EfU i ��2;zisi ; V ar2 (�!w )� ;

3) if there is strategic substitutability (i.e. r < 0), the value of additional infor-

mation is decreasing in others�information acquisition, i.e.,

EfU i ��1;zisi ; V ar1 (�!w )�� EfU i ��2;zisi ; V ar1 (�!w )�
< EfU i ��1;zisi ; V ar2 (�!w )�� EfU i ��2;zisi ; V ar2 (�!w )� .

The proof is omitted here since it is almost the same as that in Hellwig and

Veldkamp (2009).
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Remark 3.1 A positive semi-de�nite V ar (�!w j�!s 2;i) � V ar (�!w j�!s 1;i) means that

agent i�s information choice �1;zisi is more informative than �2;zisi. Similarly, a

positive semi-de�nite V ar2 (
�!w )�V ar1 (�!w ) means that the information choice pro-

�le f�1;zisigi2[0;1] generates more aggregate information than f�2;zisigi2[0;1]. When

actions are complementary, so is the information acquisition, regardless of whether

acquiring public or private information. For more detailed discussion, please refer

to Proposition 1 of Hellwig and Veldkamp (2009).

3.4.2 Optimal Information Acquisition

This game is essentially static, but it might be better understood in a pseudo-

dynamic way. Let Km (
�!w ) denote the aggregate action in period m. Suppose all

agents are aware of it and naively believe that the functional form Km (�) remains

the same in period m + 1. Then in period m + 1 each agent i chooses her optimal

channel of information acquisition �zisi according to this Km (�). Once the informa-

tion choice pro�le f�zisigi2[0;1] is determined, the two average expectation operatorseE (�) and bE (�) are determined and hence Equation (3.3) generates Km+1 (
�!w ), the

"real" aggregate action in period m+ 1. Note that the optimal information choice

pro�le f�zisigi2[0;1] is changing as the common belief of aggregate action Km (�)

changes, and so do the two average expectation operators. Therefore, the informa-

tion structure of this pseudo-dynamic game endogenously evolves. The equilibrium

de�ned in Section 3.2 is achieved if Km+1 (�) = Km (�) , K (�) is a �xed point of the

above process.

According to Proposition 3.1, the aggregate action in period m is linear in �!w ,

i.e.,

Km (
�!w ) = �!u 0m�!w

for some �!u m 2 Rnw . Let �ww = V ar (�!w ). Since �ww is real and symmetric, there
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always exists some orthogonal matrix eP such that
�ww = eP 0e� eP ,

where e� = diag �e�1; e�2; � � �; e�nw� . Let
�!
� = e��1=2 eP�!w ,

then
�!
� � N

��!
0 ; I

�
also represents the state. To facilitate the derivations, we

change the variables by letting

�!c i = e�1=2 eP�!b i
and

�!
t m = e�1=2 eP�!u m

for all i 2 [0; 1]. Then Equation (3.3) can be rewritten as

Km+1

��!
�
�
= eE �Km

��!
�
��
+ bE ��!� � ,

where

Km

��!
�
�
=
�!
t 0m
�!
� ,

eE (�) , Z 1

0

ri � Ei (�) � di

and bE (�) , Z 1

0

�!c 0iEi (�) � di .

Now we are ready to derive agent i�s expected utility for any given information

choice �zisi.

163



By Equation (3.2), agent i�s best response conditional on his signal �!s i is

ki (
�!s i) = Ei

�
ri �Km

��!
�
�
+�!c 0i

�!
�
�
, (3.5)

thus her expected utility becomes

E
hfU i �ki (�!s i) ; K;�!� �i

= �E
h
ki (
�!s i)�

�
ri �Km

��!
�
�
+�!c 0i

�!
�
�i2

= �V ari
�
ri �
�!
t 0m
�!
� +�!c 0i

�!
�
�

= �
�
ri �
�!
t m +

�!c i
�0
V ari

��!
�
��
ri �
�!
t m +

�!c i
�

, ��!h 0m;iV ari
��!
�
��!
h m;i . (3.6)

In order to calculate V ari
��!
�
�
, we �rst calculate �si�, i.e.,

�si� , Cov
��!s i;�!� 0�

= Cov

0B@�sizi��1=2i Pi

0B@ �!
f

�!x i

1CA ;� �!
� 0

�!
f 0
� eP 0e��1=2

1CA
= �sizi�

�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2 , (3.7)

where the second equality holds since agent i�s information processing error is in-

dependent of the state. Hence,

V ari

��!
�
�
= I � ��si�si�

= I � e��1=2 eP
0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i �zisi�sizi�
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2 .
(3.8)
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Substituting (3.8) into (3.6) leads

E
hfU i �ki; K;�!� �i

= ��!h 0m;iV ari
��!
�
��!
h m;i

= ��!h 0m;i
�!
h m;i

+
�!
h 0m;i

e��1=2 eP
0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i �zisi�sizi�
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;i .
(3.9)

Therefore, according to Equation (3.4), agent i�s problem of information acqui-

sition can be stated as

max
�zisi

E
hfU i �ki (�!s i) ; K (�!w ) ;�!� �i

s.t. det (I � �zisi�sizi) � 1� �2i and I � �zisi�sizi is positive semi-de�nite.

Proposition 3.3 Given the current "belief" Km

��!
�
�
=
�!
t 0m
�!
� , agent i�s optimal

information choice is

�zisi = �i �

�
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;i
jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;ijj
: (3.10)

Proof. This is a direct application of Lemma 3.2 in Appendix 3.7.

Remark 3.2 Proposition 3.3 shows that it is optimal to collect information in a

single dimension, and thus the agent�s signal �!s i is actually a scalar si. This is in-

tuitive. Since the agents can only take actions in one dimension, collecting informa-
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tion other than the optimal direction just wastes their precious capacity. Moreover,

agent i acquires information in the direction speci�ed by Equation (3.10), since this

information is the most relevant to her welfare.

Now we examine how capacity endowment a¤ects agents�welfare. Since �2i =

1 � exp (�2 � �i) is strictly increasing with respect to capacity �i, we can conduct

the welfare analysis with respect to �2i .

Substituting (3.10) into (3.9) leads to an expression of agent i�s expected utility

in �2i :

E
hfU i �ki; K;�!� �i

= ��!h 0m;i
�!
h m;i

+
�!
h 0m;ie��1=2 eP

0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i �zisi�sizi�
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;i
= ��!h 0m;i

�!
h m;i + �

2
i

�!
h 0m;i

e��1=2 eP
264V ar

0B@ �!
�

�!
f

1CA� V ar
0B@
0B@ �!

�

�!
f

1CA j
0B@ �!

f

�!x i

1CA
1CA
375 eP 0e��1=2�!h m;i

= �
�
ri � �!u m +

�!
b i

�0 264V ar (�!w )� �2i �
264V ar (�!w )� V ar

0B@�!w j
0B@ �!

f

�!x i

1CA
1CA
375
375�ri � �!u m +�!b i�

, �
�
ri � �!u m +

�!
b i

�0 �
V ar (�!w )� �2i �Hi

� �
ri � �!u m +

�!
b i

�
, (3.11)

where

Hi = V ar (
�!w )� V ar

0B@�!w j
0B@ �!

f

�!x i

1CA
1CA

represents the information content of agent i�s information sources. This information

content is the maximal information that agent i can extract from her information

sources and it can be achieved only if agent i has in�nite capacity, i.e. �2i = 1.

When her capacity is limited (�2i < 1), agent i can at most acquire �
2
i fraction of

166



this information content, i.e. �2i � Hi. The vector
�
ri � �!u m +

�!
b i

�
represents the

direction of information most relevant to agent i�s welfare and
�
V ar (�!w )� �2i �Hi

�
is her remaining uncertainty about the state vector after acquiring information in

the optimal way. We can also rewrite Equation (3.11) as

E
hfU i �ki; K;�!� �i

= �
�
ri � �!u m +

�!
b i

�0 264�1� �2i � � V ar (�!w ) + �2i � V ar
0B@�!w j

0B@ �!
f

�!x i

1CA
1CA
375�ri � �!u m +�!b i� ;

which suggests that agent i�s maximal expected utility is just a weighted average of

her expected utility with unlimited capacity and that with no capacity, where the

weight �2i 2 [0; 1] is determined by her capacity �i.

3.4.3 Two Equivalence Theorems

This subsection establishes two equivalence theorems among the games. These theo-

rems improve our understanding of the "quadratic-normal" games with endogenous

information acquisition.

De�nition: Given the same state
��!
� 0;
�!
f 0
�0
, two games

�
rl;i;

�!� l;i; �l;i;�!x l;i
	
i2[0;1],

l = 1; 2 are macro-equivalent if 8Km (
�!w ) = �!u 0m�!w , i.e., the two games generate

the same aggregate action Km+1 (
�!w ).

Two macro-equivalent games are observational equivalent at the macro-level.

Since the equilibrium aggregate action is a �xed point of the above iteration, macro-

equivalence implies the same equilibrium aggregate action of the two games. Here

we derive the necessary and su¢ cient condition for macro-equivalence.
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By Equation (3.5) in Subsection 3.4.2, agent i�s best response to her signal si is

ki (
�!s i) = Ei

�
ri �Km

��!
�
�
+�!c 0i

�!
�
�

= Ei

h
ri �
�!
t 0m
�!
� +�!c 0i

�!
�
i

=
�
ri �
�!
t m +

�!c i
�0
Ei

��!
�
�

=
�!
h 0m;i��sisi

=
�!
h 0m;i��si�si�

�!
� +

�!
h 0m;i��si�i , (3.12)

where the fourth equality comes from the de�nition
�!
h m;i = ri �

�!
t m +

�!c i, and the

idiosyncratic noise �i consists of both agent i�s information processing error and the

idiosyncratic noise in her private information source �!x i. Combining Equation (3.7)

and (3.10) implies

�si� = �sizi�
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2

= �i �

�!
h 0m;i

e��1=2 eP
0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i �
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2

jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;ijj
= �i �

�!
h 0m;ie��1=2 ePHi eP 0e��1=2

jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;ijj
, �i �

�!
h 0m;iAi

jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;ijj
(3.13)

168



where we de�ne Ai = e��1=2 ePHi eP 0e��1=2, which is a symmetric matrix. Substituting
(3.13) into (3.12) leads to

ki (
�!s i) =

�!
h 0m;i��si�si�

�!
� +

�!
h 0m;i��si�i

= �2i �
�!
h 0m;i

�
Ai
�!
h m;i

��
Ai
�!
h m;i

�0�!
�

jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;ijj2
+
�!
h 0m;i��si�ii

= �2i �

��!
h 0m;iAi

�!
h m;i

��
Ai
�!
h m;i

�0�!
���!

h 0m;iAi
�!
h m;i

� +
�!
h 0m;i��si�i

= �2i �
�!
h 0m;iAi

�!
� +

�!
h 0m;i��si�i .

Taking integral of both sides of the above equation generates the new aggregate

action

Km+1

��!
�
�
=

�Z 1

0

�2i �
�!
h 0m;iAi � di

�
�!
� +

Z 1

0

�!
h 0m;i��si�i � di

=

�Z 1

0

�2i �
�!
h 0m;iAi � di

�
�!
� . (3.14)

Expressing Km+1 in the original state
�!w =

��!
� 0;
�!
f 0
�0
, we have

Km+1 (
�!w ) =

�Z 1

0

�2i �
�
ri � �!u m +

�!
b i

�0
Hi � di

�
�!w

= �!u 0m
�Z 1

0

ri � �2i �Hi � di
�
�!w +

�Z 1

0

�2i �Hi
�!
b i � di

�0
�!w (3.15)

Let �l =
�
rl;i;

�!� l;i; �l;i;�!x l;i
	
i2[0;1], l = 1; 2 be two games with the same funda-

mental
�!
� and public information source

�!
f . Then Equation (3.15) implies that �1
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and �2 are macro-equivalent i¤

8�!u m 2 Rnw , �!u 0m
�Z 1

0

r1;i � �21;i �H1;i � di
�
�!w +

�Z 1

0

�21;i �H1;i
�!
b 1;i � di

�0
�!w

= �!u 0m
�Z 1

0

r2;i � �22;i �H2;i � di
�
�!w +

�Z 1

0

�22;i �H2;i
�!
b 2;i � di

�0
�!w .

The result is summarized in the proposition below.

Proposition 3.4 Given the same state
��!
� 0;
�!
f 0
�0
, two games �l =

�
rl;i;

�!� l;i; �l;i;�!x l;i
	
i2[0;1],

l = 1; 2 are macro-equivalent i¤: 1)

Z 1

0

r1;i � �21;i �H1;i � di =
Z 1

0

r2;i � �22;i �H2;i � di ;

2) Z 1

0

�21;i �H1;i
�!
b 1;i � di =

Z 1

0

�22;i �H2;i
�!
b 2;i � di .

Here, Hl;i re�ects the information content of agent i�s information sources in game

�l, and
�!
b l;i =

��!� 0l;i;�!0 �, l = 1; 2.
Proposition 3.4 shows that our economy�s macro behavior is detail-free. The

equilibrium does not depend on the speci�c structure of private information sources,

capacity constraint, or utility functions. As a special case, game �1 = fri;�!� i; �i;�!x igi2[0;1]
is macro-equivalent to �2 =

�
ri � �2i ; �2i � �!� i; 1;�!x i

	
i2[0;1]. Therefore, adding capac-

ity constraint is equivalent to reducing the magnitude of strategic externality (i.e.,

jrij � jri � �2i j) and agents�sensitivity to the fundamentals (i.e., jj�!� ijj � jj�2i � �!� ijj).

This result can be better understood from the concept of micro-equivalence below.

De�nition: Given the same state
��!
� 0;
�!
f 0
�0
and the same pro�le of private

information sources f�!x igi2[0;1], two games �l =
�
rl;i;

�!� l;i; �l;i
	
i2[0;1] , l = 1; 2 are
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micro-equivalent i¤ 8Km (
�!w ) = �!u 0m�!w , 8i 2 [0; 1],

E

264k1;i;m+1j
0B@ �!

f

�!x i

1CA
375 = E

264k2;i;m+1j
0B@ �!

f

�!x i

1CA
375 .

Two games are micro-equivalent if their corresponding agents� (i.e. the two

agents with the same index) responses to the shocks are e¤ectively identical. Here

two actions are "e¤ectively identical" if they only di¤er in their idiosyncratic noise

terms. Now we derive the necessary and su¢ cient condition for the micro-equivalence

between two games.
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For any Km (
�!w ) = �!u 0m�!w =

�!
t 0m
�!
� , by Equation (3.12) we have

E

264ki;m+1j
0B@ �!

f

�!x i

1CA
375

= E

264�!h 0m;i��sisij
0B@ �!

f

�!x i

1CA
375

=
�!
h 0m;i��siE [sij�!z i]

=
�!
h 0m;ie��1=2 eP

0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i �zisi�sizi
�!z i

=
�2i

jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;ijj2

��!h 0m;ie��1=2 eP
0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i �
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2�!h m;i
�!
h 0m;i

e��1=2 eP
0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i
�!z i

= �2i �
�!
h 0m;ie��1=2 eP

0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i
�!z i

= �2i �
�
ri � �!u m +

�!
b i

�00B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i
�!z i .

Note that the term

0B@ ��f ��xi

�ff �fxi

1CAP 0i��1=2i
�!z i only depends on the information

sources, which are identical for the two games. Hence, two games are micro-

equivalent i¤8i 2 [0; 1] and 8�!u m 2 Rnw , �21;i�
�
r1;i � �!u m +

�!
b 1;i

�
= �22;i�

�
r2;i � �!u m +

�!
b 2;i

�
, where

�!
b l;i =

��!� 0l;i;�!0 0�0. The result is summarized in the following proposition.
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Proposition 3.5 Given the same state
��!
� 0;
�!
f 0
�0
and the same pro�le of private

information sources f�!x igi2[0;1], two games �l =
�
rl;i;

�!� l;i; �l;i
	
i2[0;1] , l = 1; 2 are

micro-equivalent i¤ 1)

r1;i � �21;i = r2;i � �22;i ;

2)

�21;i � �!� 1;i = �22;i � �!� 2;i .

Particularly, �1 = fri;�!� i; �igi2[0;1] , a game with capacity constraints (thus also en-

dogenous information acquisition), is micro-equivalent to �2 =
�
ri � �2i ; �2i � �!� i; 1

	
i2[0;1],

which is a game with exogenous information structure.

Proposition 3.5 establishes an equivalence among the games that are very dif-

ferent at �rst glance. It clearly shows how capacity constraints (hence, endogenous

information acquisition) a¤ect the outcomes of the game. There are two e¤ects

here. The �rst one is a "dampening e¤ect". Because of the capacity constraint,

agent i can not e¤ectively respond to all the information content contained in her

information sources. Part of her response is ine¢ cient in that it comes on her infor-

mation processing errors. Parameter �!� i in game �1 measures agent i�s sensitivity

to the fundamentals and �i 2 [0; 1] characterizes her capacity constraint. If instead,

we believe that agent i has in�nite capacity, then the equivalence theorem requires

us to also believe that she has a smaller sensitivity �2i � �!� i to correctly explain her

expected actions. �2i � �!� i in game �2 re�ects this dampening e¤ect.

The second e¤ect is called "(less) coordination e¤ect", which is "derived" from

the dampening e¤ect. Parameter ri measures the strategic externality between agent

i�s action and the aggregate action. Compared to the benchmark case ri = 0, agent

i responds more (less) to the public information source when her action is strategic

complementary (substitutable) to others�. Thus the public information source serves

as a coordination device. However, adding the capacity constraint weakens agent
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i�s ability to coordinate by reducing the e¤ectiveness of her response. Furthermore,

rationally expecting others�dampened (and thus less e¤ective) responses, agent i

�nds it less attractive to coordinate with others, since it makes no sense to match

others� information processing errors. Therefore, adding capacity constraint not

only reduces the agents�ability to coordinate, but also reduces their incentive to do

so. This (less) coordination e¤ect is best re�ected by the comparison between ri in

game �1 and ri � �2i in game �2.

3.4.4 Equilibrium Analysis

This subsection characterizes the equilibrium. Once the aggregate action is deter-

mined, all the information choices and individual actions are also determined. Thus

we focus on deriving the equilibrium aggregate action in this subsection.

As discussed before, the equilibrium aggregate action K
��!
�
�
=
�!
t 0
�!
� is a �xed

point of Equation (3.14), i.e.,

�!
t 0
�!
� =

�Z 1

0

�2i �
�!
h 0m;iAi � di

�
�!
�

=

�Z 1

0

�2i �
�
ri �
�!
t +�!c i

�0
Ai � di

�
�!
�

=
�!
t 0
�Z 1

0

ri � �2i � Ai � di
�
�!
� +

�Z 1

0

�2i � Ai�!c i � di
�0�!
� .

This equation should hold for any realization of
�!
� , thus we must have

�
I �

�Z 1

0

ri � �2i � Ai � di
��
�!
t =

�Z 1

0

�2i � Ai�!c i � di
�
: (3.16)

The property of Equation (3.16) mainly depends on matrix

�Z 1

0

ri � �2i � Ai � di
�
.
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By Lemma 3.3 in Appendix 3.8, 8i 2 [0; 1], all the eigenvalues of Ai belong to [0; 1]

and the maximal one is 1. Thus jjAijj = 1 and

jj
�Z 1

0

ri � �2i � Ai � di
�
jj �

Z 1

0

jjri � �2i � Aijj � di

=

Z 1

0

jrij � �2i � jjAijj � di

=

Z 1

0

jrij � �2i � di

<

Z 1

0

jrij � di < 1 .

Hence, matrix �
I �

�Z 1

0

ri � �2i � Ai � di
��

is invertible and in equilibrium
�!
t is uniquely determined by

�!
t =

�
I �

�Z 1

0

ri � �2i � Ai � di
���1�Z 1

0

�2i � Ai�!c i � di
�

(3.17)

According to the de�nition that �!c i = e�1=2 eP�!b i, �!t = e�1=2 eP�!u , �!� = e��1=2 eP�!w and

Ai = e��1=2 ePHi eP 0e��1=2, we can express Equation (3.17) in the original state vector
�!w =

��!
� 0;
�!
f 0
�0
as

�!u =
�
�ww �

�Z 1

0

ri � �2i �Hi � di
���1�Z 1

0

�2i �Hi
�!
b i � di

�
(3.18)

Now we summarize the results in the proposition below.

Proposition 3.6 Let � be a game characterized by fri;�!� i; �i;�!x igi2[0;1]and
�!w =��!

� 0;
�!
f 0
�0
, then � has a unique equilibrium characterized by 1) (aggregate action)

K (�!w ) = �!u 0�!w , where

�!u =
�
�ww �

�Z 1

0

ri � �2i �Hi � di
���1�Z 1

0

�2i �Hi
�!
b i � di

�
(3:18)
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�!
b i =

��!� 0i;�!0 �0;
2) (information choice)

8i 2 [0; 1] , �zisi = �i �

�
�1=2
i Pi

0B@ �f� �ff

�xi� �xif

1CA�ri � �!u +�!b i�

jj��1=2i Pi

0B@ �f� �ff

�xi� �xif

1CA�ri � �!u +�!b i� jj
(3.19)

where Equation (3.19) comes from substituting
�!
h i = e�1=2 eP �ri � �!u +�!b i� into

Equation (3.10) of Proposition 3.3 ;

3) (individual action)

8i 2 [0; 1] , ki (si) = Ei
�
ri �K (�!w ) +

�!
b 0i
�!w
�
,

where Ei (�) , E (�jsi).

Compared to the multi-equilibria result of Hellwig and Veldkamp (2009), under

the similar condition
R 1
0
jrij � di < 1, our framework admits a unique equilibrium in

a general setup, regardless of the heterogeneity in preferences, information sources

and capacities. Two reasons explain this di¤erence. The �rst one is the continuous

nature of information choices in our model. The agents can continuously allocate

their attention to di¤erent information sources. In Hellwig and Veldkamp (2009),

however, even though after eliminating the discreteness in the information choices,

the agents still face a "yes or no" problem of either paying the additional atten-

tion to the information others paid attention to, or to the information that others

ignored. This very discontinuity leads to the multiplicity in their model. The sec-

ond reason is that the information processing errors are in nature private in our

rational inattention approach. This private noise facilitates the uniqueness of the
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equilibrium.

3.5 Conclusion

We examine information acquisition in a class of quadratic-normal games through

the approach of rational inattention. We show that adding capacity constraint

essentially reduces not only the agents�ability to coordinate but also their incentive

to do so. Through two equivalence theorems, we show that the games with capacity

constraints are observational equivalent to the games with higher level of strategic

externalities but having no capacity constraints. For future research, it might be

interesting to compare the game in this chapter where the action space is continuous

to the game with discrete action space in Chapter 2. This comparison may further

our understanding of the formation of (approximate) common knowledge.

3.6 Appendix

Lemma 3.1 LetW be a space of nw-dimensional random vectors de�ned on prob-

ability space P. A mapping K : Rnw ! Rnk satis�es

8�!w 2W, K (�!w ) = eE (K (�!w )) + bE (�!w ) ; (3.20)

where eE (�) = R RiEi (�) di, bE (�) = R BiEi (�) di are two average expectation oper-
ators, Ei (�) is the expectation operator of agent i, and Ri 2 Rnk�nk , Bi 2 Rnk�nw

are two matrices. If

8�!w 2W; K0 (
�!w ) = eE (K0 (

�!w )) implies 8�!w 2W; K0 (
�!w ) = �!0 ; (3.21)
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then the solution K (�) is unique and linear in its argument, i.e. 9 a unique U 2

Rnk�nw , s.t. K (�!w ) = U�!w .

Proof. Let �l 2 R, �!w l 2W, l 2 f1; 2g. Since K (�) satis�es (3.20), we have

K (�1 � �!w 1 + �2 � �!w 2) = eE (K (�1 � �!w 1 + �2 � �!w 2))+ bE (�1 � �!w 1 + �2 � �!w 2) (3.22)

and

�l �K (�!w l) = �l � eE (K (�!w l)) + �l � bE (�!w l) ; l 2 f1; 2g :

By de�nition, both eE (�) and bE (�) are linear operators, thus
�1 �K (�!w 1) + �2 �K (�!w 2) = �1 � eE (K (�!w 1)) + �2 � eE (K (�!w 2)) + �1 � bE (�!w 1) + �2 � bE (�!w 2)

= eE (�1 �K (�!w 1) + �2 �K (�!w 2)) + bE (�1 � �!w 1 + �2 � �!w 2) :

Combining the above equation and (3.22) leads to

K (�1 � �!w 1 + �2 � �!w 2)� [�1 �K (�!w 1) + �2 �K (�!w 2)]

= eE (K (�1 � �!w 1 + �2 � �!w 2)� [�1 �K (�!w 1) + �2 �K (�!w 2)]) ;

then by condition (3.21), we haveK (�1 � �!w 1 + �2 � �!w 2)�[�1 �K (�!w 1) + �2 �K (�!w 2)] =

0, i.e. K (�1 � �!w 1 + �2 � �!w 2) = �1 �K (�!w 1)+�2 �K (�!w 2). Therefore, K (�) is a linear

mapping, i.e. 9 U 2 Rnk�nw , s.t. K (�!w ) = U�!w .

Suppose K1 (�) and K2 (�) are two solutions of Equation (3.20), then by the

linearity of eE (�), 8�!w 2W; K2 (
�!w ) �K1 (

�!w ) = eE (K2 (
�!w )�K1 (

�!w )). Therefore,

condition (3.21) implies that K2 (
�!w ) �K1 (

�!w ) = �!0 , i.e. the solution of Equation

(3.20) is unique.

Remark 3.3 Condition (3.21) holds i¤ the operator
�
I � eE� (�) is invertible, where
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I is the identity operator. If
�
I � eE� (�) is not invertible and Equation (3.20) has

a solution, then it has in�nitely many solutions.

3.7 Appendix

Lemma 3.2 Let
�!
b 2 Rnz and �!b 6= �!

0 . Let M be the space of all real matrices

with nz rows, then � �
�!
b =jj�!b jj solves the problem below:

max
�zs2M

�!
b 0�zs�sz

�!
b

s.t. det (I � �zs�sz) � 1� �2, (3.23)

and I � �zs�sz is positive semi-de�nite;

where � 2 [0; 1].

Proof. * I ��zs�sz is a real and symmetric matrix, ) 9 orthogonal matrix P s.t.

I � �zs�sz = Q0DQ , where D is a nz � nz diagonal matrix with diagonal entries

d1 d2 � � � dnz . Actually, d1 d2 � � � dnz are the eigenvalues of I � �zs�sz

and
nzY
j=1

dj = det (D) = det (I � �zs�sz), thus Inequality (3.23) becomes
nzY
j=1

dj �

1� �2. Also note that dj � 0 , j = 1; 2; � � �; nz, since I ��zs�sz is positive de�nite.

On the other hand, I � Q0DQ = �zs�sz is positive semi-de�nite, i.e. all of its

eigenvalues �j , j = 1; 2; � � �; nz are non-negative. Let � be an arbitrary eigenvalue

of I �Q0DQ , then we have

0 = det (� � I � I +Q0DQ) = det ((�� 1) � I +Q0DQ)

= det ((�� 1) �QQ0 +D) = det ((�� 1) � I +D)
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i.e. the eigenvalues of I�Q0DQ can be expressed as �j = 1� dj , j = 1; 2; � � �; nz.

Since �j � 0 , we have dj � 1 , j = 1; 2; � � �; nz.

Thus

�!
b 0�zs�sz

�!
b =

�!
b 0 (I �Q0DQ)�!b = jj�!b jj �

�
Q
�!
b
�0
D
�
Q
�!
b
�

and max�zs2M
�!
b 0�zs�sz

�!
b is equivalent to minD;Q

�
Q
�!
b
�0
D
�
Q
�!
b
�
.

Now we restate the optimization problem as

min
D;Q

�
Q
�!
b
�0
D
�
Q
�!
b
�

s.t. Q0Q = I ,
nzY
j=1

dj � 1� �2 and dj 2 [0; 1] , j = 1; 2; � � �; nz.

Let Q0 =
�
�!q 1 �!q 2 � � � �!q nz

�
, then

�
Q
�!
b
�0
D
�
Q
�!
b
�
=

nzX
j=1

dj �
��!q 0j�!b �2

Since Q is orthogonal, we have �!q 0j�!q k = � (j; k) , where � (j; k) =
�
1 if j=k
0 otherwise

	
,

i.e. �!q 1 �!q 2 � � � �!q nf+n� form an orthonormal basis ofR
nz . Thus

Pnz
j=1

��!q 0j�!b �2 =
jj�!b jj2.

Then

�
Q
�!
b
�0
D
�
Q
�!
b
�
=

nzX
j=1

dj � (�!q j�!e )2 � min
j=1;2;���;nz

dj � jj
�!
b jj2

*
nzY
j=1

dj � 1 � �2 and dj 2 [0; 1], j = 1; 2; � � �; nz, ) minj=1;2;���;nz dj � jj
�!
b jj2 �

�
1� �2

�
� jj�!b jj2 . Therefore,

�
Q
�!
b
�0
D
�
Q
�!
b
�
�
�
1� �2

�
� jj�!b jj2 . Note that this

minimum can be obtained if and only if 9j s.t. dj = 1��2 ,
��!q 0j�!b �2 = jj�!b jj2 and
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8k 6= j , dk = 1, �!q 0k
�!
b = 0 . Without loss of any generality, let d1 =

�
1� �2

�
and

�!q 01
�!
b = jj�!b jj . Since 8j; k , �!q 0j�!q k = � (j; k) , we have �!q 1 =

�!
b =jj�!b jj .

Let �!q l =
�
Ql1 Ql2 � � � Ql;nz

�0
, l = 1; 2; � � �; nz, then Q can be expressed

by (Qlj)nz�nz . Thus the (l; k) entry of matrix Q
0DQ is

(Q0DQ)lk =
nzX
j=1

dj �Qjl �Qjk

=
�
1� �2

�
�Q1l �Q1k +

nzX
j=2

dj �Qjl �Qjk

Note that dj = 1 , j = 2; 3; � � �nz and
Pnz

j=1Qjl �Qjk = � (l; k) 4 , we have

Q0DQlk =
�
1� �2

�
�Q1l �Q1k +

nzX
j=2

Qjl �Qjk

=
�
1� �2

�
�Q1l �Q1k + � (l; k)�Q1l �Q1k

= � (l; k)� �2 �Q1l �Q1k

)

(�zs�sz)lk = (I �Q0DQ)lk

= � (l; k)� � (l; k) + �2 �Q1l �Q1k

= �2 �Q1l �Q1k

i.e.

�zs�sz = �
2 � �!b �!b 0=jj�!b jj2

* rank (�zs�sz) = rank
��!
b
�!
b 0
�
� rank

��!
b
�
= 1 and it is obvious that

�zs�sz 6= 0 ,) rank (�zs�sz) = 1 .
4Because the columns of an orthogonal matrix also form an orthonormal basis

of Rnz .
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) 9 �1 �2 � � � �ns and
�!
t 2 Rnz , jj�!t jj = 1 s.t.

�zs =
�!
t

�
�1 �2 � � � �ns

�
=

�
�1 �

�!
t �2 �

�!
t � � � �ns �

�!
t

�

)
nsX
j=1

�2j �
�!
t
�!
t 0 = �zs�sz = �

2 � �!b �!b 0=jj�!b jj2

)

nsX
j=1

�2j = tr

 
nsX
j=1

�2j �
�!
t
�!
t 0

!
= tr

�
�2 � �!b �!b 0=jj�!b jj2

�
= �2 � �!b �!b 0=jj�!b jj2 = �2

)
�!
t
�!
t 0 =

�!
b
�!
b 0=jj�!b jj2

Let
�!
t =

�
t1 t2 � � � tnz

�0
and

�!
b =

�
b1 b2 � � � bnz

�0
. t21 = b

2
1=jj
�!
b jj2

implies that t1 = �b1=jj
�!
b jj , then t1 � t2 = b1 � b2=jj

�!
b jj2 implies t2 = �b2=jj

�!
b jj . By

the same argument we have tj = �bj==jj
�!
b jj , j = 1; 2; ���; nz. Thus

�!
t = ��!b =jj�!b jj .

Since the sign of �j is changeable, we just let
�!
t =

�!
b =jj�!b jj . Since all the columns

of the optimal �zs are parallel to each other, we can just let �zs = � � �!b =jj�!b jj

without any loss of generality.

182



3.8 Appendix

Lemma 3.3 8i 2 [0; 1], let

Ai = e��1=2 ePHi eP 0e��1=2 = e��1=2 eP
264V ar (�!w )� V ar

0B@�!w j
0B@ �!

f

�!x i

1CA
1CA
375 eP 0e��1=2 ,

then all the eigenvalues of Ai belong to [0; 1] and the maximal one is 1.

Proof. First note that

Hi =

0B@ ��f ��xi

�ff �fxi

1CAP 0i��1i Pi
0B@ �f� �ff

�xi� �xif

1CA ,

thus

Ai = e��1=2 eP
0B@ ��f ��xi

�ff �fxi

1CAP 0i��1i Pi
0B@ �f� �ff

�xi� �xif

1CA eP 0e��1=2
is positive semi-de�nite and all its eigenvalues are non negative. Let � be any

eigenvalue of Ai, i.e,

0 = det (� � I � Ai)

= det
�
� � eP 0e� eP �Hi�

= det (� � V ar (�!w )�Hi)

= det

0B@� � V ar (�!w )�
264V ar (�!w )� V ar

0B@�!w j
0B@ �!

f

�!x i

1CA
1CA
375
1CA

= det

0B@(�� 1) � V ar (�!w ) + V ar
0B@�!w j

0B@ �!
f

�!x i

1CA
1CA
1CA (3.24)
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Since V ar (�!w ) is strictly positive de�nite and V ar

0B@�!w j
0B@ �!

f

�!x i

1CA
1CA is positive

semi-de�nite, � � 1 > 0 implies that Equation (3.24) does not hold. Thus all the

eigenvalues of Ai can not exceed 1. If ��1 = 0, left side of Equation (3.24) becomes

det

0B@0 � V ar (�!w ) + V ar
0B@�!w j

0B@ �!
f

�!x i

1CA
1CA
1CA

= det

0B@V ar
0B@�!w j

0B@ �!
f

�!x i

1CA
1CA
1CA

= det

0B@V ar
0B@
0B@ �!

�

�!
f

1CA j
0B@ �!

f

�!x i

1CA
1CA
1CA

= det

0BBBB@
V ar

0B@�!� j
0B@ �!

f

�!x i

1CA
1CA 0

0 0

1CCCCA = 0

thus � = 1 is the maximal eigenvalue of Ai.
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