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Abstract

The Supplementary Appendix contains proofs of some results stated in the paper “Uni-

form inference in autoregressive models” by Anna Mikusheva. In particular, it provides a

proof of a statement about strong approximation, proofs of Lemmas 11 and 12 from the pa-

per about the asymptotic approximations for scheme of series. It also proves results stated

in Remarks 2, 3 and 4 for AR(1) processes with a linear time trend. Section 5 proves the

validity of parametric and non-parametric grid bootstrap procedures for AR(p) processes

with at most one root close to the unit circle. Section 7 contains an extensive Monte-Carlo

study of finite sample properties of discussed methods. We keep notations introduced in

the paper.

1 An arbitrary variance.

This section contains the proof of the result stated in section 2.3 of the paper.

Let Ỹ = (ỹ1, ..., ỹT ) be a sample from an AR(1) process defined by an equation

ỹj = x̃j + c; x̃j = ρx̃j−1 + ε̃j, j = 0, ..., T, x̃0 = 0. (1)

Assumptions A1. Let (ε̃j,Fj) be a martingale difference sequence with E(ε̃2
j |Fj−1) =

σ2 and supj E(|ε̃j|r|Fj−1) < ∞ a.s. for some 2 < r ≤ 4.

Note, that if the variance of error terms σ2 is known, then the process yj = ỹj/σ

is an AR(1) process with errors εj = ε̃j/σ satisfying the set of Assumptions A from

the paper, and all inferences could be made using the three methods discussed in the

paper.

Let êj = ỹµ
j − ρ̂OLS ỹµ

j−1 be the OLS residuals. Let us define an estimator of σ2 to

be a sample variance of the OLS residuals: σ̂2 = 1
T

∑T
j=1 ê2

j . Despite of the fact that
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the estimator ρ̂OLS of the AR coefficient is biased toward zero, the estimator σ̂2 of

the variance is uniformly consistent.

Let us define studentized statistics (S̃, R̃) in the following way

(S̃, R̃) = (
1√

g(T, ρ)σ̂2

T∑
j=1

ỹµ
j−1ε̃j,

1

g(T, ρ)σ̂2

T∑
j=1

(
ỹµ

j−1

)2
).

Lemma 1 (Lemma 3 from the paper) Let us consider a model (1) with error

terms satisfying the set of Assumptions A1, then for every ε > 0

lim
T→∞

sup
σ>0

sup
ρ∈ΘT

P

{∣∣∣∣
σ̂2

σ2
− 1

∣∣∣∣ > ε

}
= 0.

Any statistic ϕ(Ỹ , T, ρ) = φ(S̃, R̃, T, ρ) for φ ∈ H , is uniformly approximated by

the corresponding statistic ϕ1 = φ(S, R, T, ρ), where the pair (S, R) is defined for the

process yj = ỹj/σ. In particular, the three methods discussed in the paper could be

used to make inferences.

Proof of Lemma 1. We note that êj − ε̃µ
j = (ρ̂OLS − ρ)ỹµ

j−1. As a result,

σ̂2 =
1

T

T∑
j=1

(
ε̃µ

j

)2
+ (ρ̂OLS − ρ)2 1

T

T∑
j=1

(
ỹµ

j−1

)2
+ 2(ρ̂OLS − ρ)

1

T

T∑
j=1

ỹµ
j−1ε̃j

σ̂2

σ2
− 1 =

(
1

T

T∑
j=1

(
εµ

j

)2 − 1

)
+ 3

1

T

(
1√

g(T,ρ)

∑
j yµ

j−1εj

)2

1
g(T,ρ)

∑
j

(
yµ

j−1

)2

It is easy to see that all four terms converge to zero in probability uniformly over

ρ ∈ ΘT and uniformly over all values of σ2 > 0.

From the definition of the class of functions H we have

P
{
|φ(S,R, ρ)− φ(S̃, R̃, ρ)| > x

}
≤ P {|R| < C}+ P

{
Mc(|S − S̃|+ |R− R̃|) > x

}
.

From the uniform approximation of R by RN and Lemma 10 from the paper we know

that R is uniformly separated from zero. It is easy to note that S̃ − S = S
(

σ2

bσ2 − 1
)

and R̃ − R = R
(

σ2

bσ2 − 1
)
. By combining these facts with uniform consistency of the

variance estimator we receive the statement of the lemma.
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2 About strong approximation

Lemma 2 Let (εj,Fj) be a martingale difference sequence satisfying the set of As-

sumptions A. Let Sj =
∑j

i=1 εi be partial sums. Then we can construct a sequence

of processes ηT (t) = 1√
T
S[tT ] and a sequence of Brownian motions wT on a common

probability space so that for every ε > 0 we have

sup
0≤t≤1

|ηT (t)− wT (t)| = o(T−1/2+1/r+ε) a.s.

Proof of Lemma 2. According to Lemma 6.2 from Park and Phillips (1999) con-

ditions of the lemma imply the existence of an increasing sequence of stopping times

{τi}i≥1 and a Brownian motion w(·) defined on the same probability space such that

{Sj} =d {w(τj)} and sup1≤j≤T

∣∣∣ τj−j

T δ

∣∣∣ → 0 a.s. as T →∞, for any δ > 2/r.

Similar to the proof of Theorem 2.2.4 in Csörgő and Révész (1981) it is easy to

show that sup0≤s≤T
|w(τ[s])−w(s)|
T δ/2

√
log T

→ 0 a.s. It implies that for every ε > 0

sup
0≤t≤1

|w(τ[tT ])/
√

T − wT (t)|
T−1/2+1/r+ε

→ 0 a.s.,

where wT (t) = w(tT )/
√

T . We define ηT (t) = w(τ[tT ])/
√

T , it completes the proof of

Lemma 2.

3 AR(1) model with a linear time trend.

This subsection shows that all results could be generalized to a model with a linear

time trend. We prove statements of Remarks 2 and 3 from the paper. Let us consider

a processes yj = a + bj + xj, where xj = ρxj−1 + εj. Then the modified test statistics

are

(Sτ , Rτ ) =

(
1√

gτ (T, ρ)

T∑
j=1

yτ
j−1(yj − ρyj−1),

1

gτ (T, ρ)

T∑
j=1

(yτ
j−1)

2

)
,

where yτ
t denotes the detrended version of yt: yτ

j−1 = yj−1−y−
PT

i=1(yi−1−y)iPT
i=1(i−T+1

2
)2

(j− T+1
2

).

The normalizing function is calculated as the following mathematical expectation

gτ (T, ρ) = Eρ

∑T
j=1(y

τ
j−1)

2. Then the pair (Sτ , Rτ ) is invariant with respect to the

values of constants a and b.
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Let (Sτ,N , Rτ,N) be the corresponding detrended version of the statistics generated

in a model with normal errors.

Lemma 3 Assume that we have an AR(1) model with a linear trend and error terms

satisfying the set of Assumptions A. Then for any function φ ∈ H we have that

lim
T→∞

sup
ρ∈ΘT

sup
x
|P{φ(Sτ , Rτ , T, ρ) < x} − P{φ(Sτ,N , Rτ,N , T, ρ) < x}| = 0.

Proof of Lemma 3.

Our proof follows the framework suggested in Lemma 2 of the paper. We start

with checking Conditions 2 and 3 of Lemma 2 from the paper.

gτ (T, ρ) = E




T∑
j=1

(
yµ

j−1 −
(

j − T + 1

2

) ∑T
i=1 yµ

i−1i∑T
i=1(i− T+1

2
)2

)2

 =

= g(T, ρ)− E
(
∑T

i=1 yµ
i−1i)

2

∑T
i=1(i− T+1

2
)2

It is easy to see that uniformly over BT we have limT→∞ supρ∈BT

∣∣∣gτ (T,ρ)
g(T,ρ)

− 1
∣∣∣ = 0.

We note that

Sτ (T, ρ) =

√
g(T, ρ)

gτ (T, ρ)
S(T, ρ)−




∑T
i=1 yµ

i−1i√
gτ (T, ρ)

√∑T
i=1(i− T+1

2
)2




∑T
i=1 εµ

i i√∑T
i=1(i− T+1

2
)2

.

We can see that the term
PT

i=1 yµ
i−1i√

gτ (T,ρ)
√PT

i=1(i−T+1
2

)2
converges to zero in probability uni-

formly over BT by taking the mathematical expectation of its square and using Cheby-

shev’s inequality. The term
PT

i=1 εµ
i i√PT

i=1(i−T+1
2

)2
is asymptotically normal. In the proof of

Theorem 1 in the paper we showed that the distribution of S(T, ρ) is asymptotically

approximated by the standard normal distribution uniformly over BT . It implies that

Condition 2 of Lemma 2 from the paper is satisfied for the pair of statistics Sτ and

Sτ,N .

It is easy to see that

Rτ (T, ρ) =
g(T, ρ)

gτ (T, ρ)
R(T, ρ)− 1

gτ (T, ρ)

(
∑T

i=1 yµ
i−1i)

2

∑T
i=1(i− T+1

2
)2

.
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Since the second term converges to zero in probability uniformly over BT , we have

that Condition 3 of Lemma 2 from the paper is satisfied for statistics Rτ and Rτ,N .

At the end we are checking the closeness of the pairs (Sτ , Rτ ) and (Sτ,N , Rτ,N) in

the proximity to the unit root. From the discrete integration by parts it is easy to

see that
∣∣∣∣∣

1

T 3/2

T∑
j=1

εjj − 1

T 3/2

T∑
j=1

eT,jj

∣∣∣∣∣ =

∣∣∣∣∣
1

T

T∑
j=1

ηT

(
j

T

)
− 1

T

T∑
j=1

wT

(
j

T

)∣∣∣∣∣ ≤

≤ sup
0≤t≤1

|ηT (t)− wT (t)| 1
T

T∑
j=1

1 = o(T−1/2+1/r+ε) a.s.

By simple algebraic transformations we have

1

T

T∑
j=1

yτ
j−1ε

τ
j =

1

T

T∑
j=1

yj−1εj −
(

1

T 3/2

T∑
j=1

yj−1

) ∑T
j=1 εj√
T

−

−
(

1

T 5/2

T∑
j=1

yj−1j − 1

T 5/2

T∑
j=1

yj−1
T + 1

2

)(
1

T 5/2

T∑
j=1

εj−1j − 1

T 5/2

T∑
j=1

εj−1
T + 1

2

)
T 3

∑
(i− T+1

2
)2

.

By using statements d) and f) of Lemma 4 from the paper we can see

sup
ρ∈ΘT

1

(1 + ρ)T + 1

∣∣∣∣∣
1

T

T∑
j=1

yτ
j−1ε

τ
j −

1

T

T∑
j=1

zτ
j−1e

τ
j

∣∣∣∣∣ = o(T−1/2+1/r+ε) a.s.

Similarly,

1

T 2

T∑
j=1

(
yτ

j−1

)2
=

1

T 2

T∑
j=1

(yj−1)
2 −

(
1

T 3/2

T∑
j=1

yj−1

)2

−

−
(

1

T 5/2

T∑
j=1

yj−1j − 1

T 5/2

T∑
j=1

yj−1
T + 1

2

)2

T 3

∑
(i− T+1

2
)2

.

From statements e) and f) of Lemma 4 from the paper we have

sup
ρ∈ΘT

∣∣∣∣∣
1

T 2

T∑
j=1

(
yτ

j−1

)2 − 1

T 2

T∑
j=1

(
zτ

j−1

)2

∣∣∣∣∣ = o(T−1/2+1/r+ε) a.s.

Since we have supρ∈A+
T

T 2

gτ (T,ρ)
= O(T 1−α), Condition 1 of Lemma 2 from the paper is

satisfied for 3
4

+ 1
2r

< α < 1.

Q.E.D.
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Let the local to unity statistics be

(Sτ,c, Rτ,c) =

(
1√
gτ (c)

∫ 1

0

Jτ
c (x)dw(x),

1

gτ (c)

∫ 1

0

(Jτ
c (x))2dx

)
,

where Jτ
c (x) = Jc(x)−∫ 1

0
(4−6r)Jc(r)dr−x

∫ 1

0
(12r−6)Jc(r)dr, gτ (c) = E

∫ 1

0
(Jτ

c (x))2dx.

Lemma 4 Assume that we have an AR(1) model with a linear trend and the error

terms satisfying the set of Assumptions A. Then for any function φ ∈ H we have that

lim
T→∞

sup
ρ∈ΘT

sup
x
|P{φ(Sτ , Rτ , T, ρ) < x} − P{φ(Sτ,c(T,ρ), Rτ,c(T,ρ), T, ρ) < x}| = 0,

where c(T, ρ) = T log(ρ).

Proof of Lemma 4 It is enough to show that

lim
T→∞

sup
ρ∈ΘT

sup
x
|P{φ(Sτ,N , Rτ,N , T, ρ) < x} − P{φ(Sτ,c(T,ρ), Rτ,c(T,ρ), T, ρ) < x}| = 0.

We check that conditions of Lemma 2 from the paper are satisfied. By simple

algebraic manipulation we have:

Jτ
c (x) = Jµ

c (x)− 6(1/2− x)

∫ 1

0

(1/2− r)Jµ
c (r)dr.

It is easy to see that E
(∫ 1

0
(1/2− r)Jµ

c (r)dr
)2

≤ 1
c2

. As a result, we have

limc→−∞ 1
g(c)

E
(∫ 1

0
(1/2− r)Jµ

c (r)dr
)2

= 0, and limc→−∞
∣∣∣ g(c)
gτ (c)

− 1
∣∣∣ = 0.

By using Chebyshev’s inequality we can also note that 1√
g(c)

∫ 1

0
(1/2−r)Jµ

c (r)dr →p

0 as c → −∞. It implies that

Sτ,c =

√
g(c)

gτ (c)
Sc − 6√

gτ (c)

∫ 1

0

(1/2− x)dw(x)

∫ 1

0

(1/2− r)Jµ
c (r)dr ⇒ N(0, 1)

and

Rτ,c =
g(c)

gτ (c)
Rc − 1

gτ (c)

(
6

∫ 1

0

(1/2− r)Jµ
c (r)dr

)2

→p 1 as c → −∞.

As a result, Conditions 2 and 3 of Lemma 2 from the paper are satisfied for the pairs

(Sτ,c(T,ρ), Rτ,c(T,ρ)) and (Sτ,N , Rτ,N).
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Now we check Condition 1 of Lemma 2 for the detrended pairs.

1

T 5/2

T∑
j=1

zµ
j−1(j −

T + 1

2
) =

1

T

T∑
j=1

zj−1√
T

(j − T+1
2

)

T
=

=

∫ 1

0

(
[tT ]

T
− 1

2

) ∫ t

0

e
c
T

([Tt]−[Ts]−1)I

{
s ≤ [Tt]

T

}
dw(s)dt =

=

∫ 1

0

∫ 1

s

(
[tT ]

T
− 1

2

)
e

c
T

([Tt]−[Ts]−1)I

{
s ≤ [Tt]

T

}
dtdw(s).

Similarly,
∫ 1

0
(t− 1/2)Jµ

c (t)dt =
∫ 1

0

∫ 1

s
(t− 1/2)ec(t−s)dtdw(s). As a result,

E

(
1

T 5/2

T∑
j=1

zµ
j−1(j −

T + 1

2
)−

∫ 1

0

(t− 1/2)Jµ
c (t)dt

)2

=

=

∫ 1

0

(∫ 1

s

(
[tT ]

T
− 1

2

)
e

c
T

([Tt]−[Ts]−1)I{s≤ [Tt]
T
}dt−

∫ 1

s

(t− 1/2)ec(t−s)dt

)2

ds ≤ const (log(ρ))2.

Taking into account that supρ∈A+
T

T 2

gτ (T,ρ)
= O(T 1−α), and limt→∞ supρ∈A+

T

T 2gτ (c(T,ρ))
gτ (T,ρ)

=

1, we have

lim
T→∞

sup
ρ∈AT

P

{∣∣∣∣∣
1√

gτ (T, ρ)T 3/2

T∑
j=1

zµ
j−1j −

1√
gτ (c(T, ρ))

∫ 1

0

(t− 1/2)Jµ
c (t)dt

∣∣∣∣∣ > x

}
= 0.

It is easy to receive that

lim
T→∞

sup
ρ∈AT

P

{∣∣∣∣∣
1√

gτ (T, ρ)T 1/2

T∑
j=1

eµ
j−1j −

1√
gτ (c(T, ρ))

∫ 1

0

(t− 1/2)dw(t)

∣∣∣∣∣ > x

}
= 0.

We note that

Sτ,N(T, ρ) =

√
g(T, ρ)

gτ (T, ρ)
SN(T, ρ)−

(
1√

gτ (T, ρ)T 3/2

T∑
j=1

zµ
j−1(j −

T + 1

2
)

)
×

×
(

1√
gτ (T, ρ)T 1/2

T∑
j=1

eµ
j−1(j −

T + 1

2
)

)(
T 3

∑T
j=1(j − (T + 1)/2)2

)

Sτ,c(T,ρ) =

√
g(T, ρ)

gτ (T, ρ)
Sc(T,ρ) − 6

(
1√

gτ (c(T, ρ))

∫ 1

0

(t− 1/2)Jµ
c (t)dt

)
×

×
(

1√
gτ (c(T, ρ))

∫ 1

0

(t− 1/2)dw(t)

)
,
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and

Rτ,N(T, ρ) =
g(T, ρ)

gτ (T, ρ)
RN(T, ρ)−

−
(

1√
gτ (T, ρ)T 3/2

T∑
j=1

zµ
j−1(j −

T + 1

2
)

)2 (
T 3

∑T
j=1(j − (T + 1)/2)2

)2

,

Rτ,c(T,ρ) =
g(T, ρ)

gτ (T, ρ)
Rc(T,ρ) −

(
6√

gτ (c(T, ρ))

∫ 1

0

(t− 1/2)Jµ
c (t)dt

)2

.

Since in Theorem 2 of the paper we proved that Condition 1 is satisfied for the pairs

(Sc(T,ρ), Rc(T,ρ)) and (SN , RN), we have

lim
T→∞

sup
ρ∈AT

P
{∣∣Sτ,N(T, ρ)− Sτ,c(T,ρ)

∣∣ +
∣∣Rτ,N(T, ρ)−Rτ,c(T,ρ)

∣∣ > x
}

= 0.

As a result, all conditions of Lemma 2 from the paper are satisfied.

Q.E.D.

4 Hansen’s bootstrap.

This section proves some of results stated in Section 5 of the paper. Lemma below

(stated in the paper as Lemma 11 ) shows that the normal approximation in stationary

region holds uniformly for arrays of random errors.

Lemma 5 (Lemma 11 in the paper) Let {εT,j; j = 1, ..., T ; T ∈ N} be a triangu-

lar array of random variables, such that for every T variables {εT,j}T
j=1 are i.i.d. with

distribution FT . Assume that yT,j = ρyT,j−1 + εT,j. Then for any sequence ρT such

that T (1− ρT ) →∞ we have

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
|ρ|≤ρT

sup
x

∣∣∣∣∣P
{

1√
g(T, ρ)

T∑
j=1

yT,j−1εT,j < x

}
− Φ(x)

∣∣∣∣∣ = 0,

and, for every ε > 0,

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
|ρ|≤ρT

P

{∣∣∣∣∣
1

g(T, ρ)

T∑
j=1

y2
T,j−1 − 1

∣∣∣∣∣ > ε

}
= 0;

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
|ρ|≤ρT

P

{∣∣∣∣∣
1√

g(T, ρ)
√

T

T∑
j=1

yT,j−1

∣∣∣∣∣ > ε

}
= 0.
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Proof of Lemma 5 This statement is a generalization of the main result of Giraitis

and Phillips (2004) for arrays, where the distribution of error terms is allowed to be

different for different sample sizes. First, we check the statement for variables that

possesses a bounded fourth moment. Then we apply truncation method to the case

when variables may have infinite fourth moment.

Assume that r = 4. Let us define variables Xj = 1√
g(T,ρ)

yT,j−1εT,j and V 2
j =

∑j
i=1 E(X2

i |Fi−1) = 1
g(T,ρ)

∑T
j=1 y2

T,j−1. Then from Corollary to Theorem 1 in Hall

and Heyde(1981), it follows that

sup
x

∣∣∣∣∣P
{

1√
g(T, ρ)

T∑
j=1

yT,j−1εT,j < x

}
− Φ(x)

∣∣∣∣∣ ≤ C

(
T∑

j=1

E|Xj|4 + E
(
V 2

T − 1
)2

)
,

where C is an absolute constant.

We should note that

sup
|ρ|≤ρT

T∑
j=1

E|Xj|4 = sup
|ρ|≤ρT

C1
T

g(T, ρ)2
Ey4

T,j−1 ≤ sup
|ρ|≤ρT

C2
T

g(T, ρ)2(1− ρ2)2
=

= sup
|ρ|≤ρT

CT(
T − 1−ρ2T

1−ρ2

)2 ≤
CT(

T − 1−ρ2T
T

1−ρ2
T

)2 ≤
C(

1− 1
T (1−ρ2

T )

)2

1

T
→ 0,

where C1 is a constant depending on M , C2 is a constant depending on M and K, C

is a constant depending on M , K and a sequence ρT .

Now let us estimate the second summand.

E(V 2
T − 1)2 =

1

g(T, ρ)2

(
T∑

j=1

(y2
T,j−1 − Ey2

T,j−1)

)2

=

=
1

g(T, ρ)2

(
T∑

j=1

(y2
T,j−1 − Ey2

T,j−1)
2 + 2

T∑
j=1

j∑
i=1

ρ2(j−i)(y2
T,i−1 − Ey2

T,i−1)
2

)
≤

≤ 1

g(T, ρ)2

C

1− ρ2

(
T∑

j=1

(y2
T,j−1 − Ey2

T,j−1)
2

)
≤

≤ 1

g(T, ρ)2

C

1− ρ2

(
T∑

j=1

j∑

k=1

ρ4(j−k)Eε4

)
≤ 1

g(T, ρ)2

C

1− ρ2

T

1− ρ4

The last expression converges to zero uniformly over {|ρ| < ρT}, this completes the

proof of asymptotic normality for the case when variables have a bounded fourth

9



moment. It also proves the uniform convergence of 1
g(T,ρ)

∑T
j=1 y2

T,j−1 to one in prob-

ability. The last statement of the Lemma can be checked by showing that

lim
T→∞

sup
|ρ|<ρT

E

(
1√

g(T, ρ)
√

T

T∑
j=1

yT,j−1

)2

= 0

and applying Chebyshev’s inequality.

The proof for the case when variables can have an infinite fourth moment follows

from the truncation argument of the proof of Lemma 2.1(part b) in Giraitis and

Phillips (2004).

Lemma 6 (Lemma 12 in the paper) Let {εT,j; j = 1, ..., T ; T ∈ N} be a triangu-

lar array of random variables, such that for every T the variables {εT,j}T
j=1 are iid

with cdf FT ∈ Lr(K, M, θ). Then we can construct a process ηT (t) = 1√
T

∑[Tt]
j=1 εT,j

and a Brownian motions wT on a common probability space in such a way that for

every ε > 0 we have

lim
T→∞

sup
FT∈Lr(K,M,θ)

P{ sup
0≤t≤1

|ηT (t)− w(t)| > εT−δ} = 0,

for some δ > 0.

Proof of Lemma 6. By Skorohod representation for every T there exists an

increasing sequence of stopping times τT,1 ≤ τT,2 ≤ ...τT,T such that:

1. {w(τT,j)− w(τT,j−1)}T
j=1 =d {εT,j}T

j=1;

2. ςT,j = τT,j − τT,j−1 are iid positive random variables with mean EςT,j = µ2(FT )

and E|ςT,j|r/2 ≤ Crµr(FT ).

Let us define the process ηT (t) = w(τT,[tT ]/T ). Let aT be a sequence of non-random

positive numbers. Then

P

{
sup

0≤t≤1
|ηT (t)− w(t)| > εT−δ

}
≤ P{ sup

0≤t≤1
sup

0≤s≤aT

|w(t + s)− w(t)| > εT−δ}+

+P{ sup
0≤t≤1

∣∣∣τ[Tt]

T
− t

∣∣∣ > aT}.

From Lemma 1.2.1 in Csörgő and Révész (1981) it follows that:

P{ sup
0≤t≤1

sup
0≤s≤aT

|w(t + s)− w(t)| > εT−δ} ≤ C

aT

e
− 1

3

„
ε

Tδ√aT

«2

10



The right hand side of the last inequality converges to zero for the sequence aT = T−γ

if γ > δ. As a result, it is enough to prove that

lim
T→∞

sup
FT∈Lr(K,M,θ)

P

{
sup

0≤t≤1

∣∣∣τT,[Tt]

T
− t

∣∣∣ > T−γ

}
= 0

for some γ > 0. We can note that

lim
T→∞

sup
FT∈Lr(K,M,θ)

P

{
sup

0≤t≤1

∣∣∣τT,[Tt]

T
− t

∣∣∣ > T−γ

}
≤

≤ lim
T→∞

sup
FT∈Lr(K,M,θ)

P

{
sup

0≤j≤T
|τT,j − jµ2(FT )| > T 1−γ

}
+

+ lim
T→∞

sup
FT∈Lr(K,M,θ)

P
{|µ2(FT )− 1| > T−γ

}
.

The last term converges to 0 by definition of the class Lr(K, M, θ) if γ > θ.

From the results of Montgomery-Smith (1993) there exists an absolute constant

c > 0 such that

P

{
sup

1≤j≤T

∣∣∣∣∣
j∑

i=1

ςT,i − jµ2(FT )

∣∣∣∣∣ > T 1−γ

}
≤ cP

{∣∣∣∣∣
T∑

i=1

ςT,i − Tµ2(FT )

∣∣∣∣∣ >
T 1−γ

c

}
.

By applying Theorem 27 from Petrov (1975, ch.9) we have

P

{∣∣∣∣∣
T∑

i=1

ςT,i − Tµ2(FT )

∣∣∣∣∣ >
T 1−γ

c

}
≤ Crµr(FT (YT ))

(
TT−(1−γ)r/2 + T−6(1−γ)T 7−r/2

)
.

If we choose 0 < δ < γ < min{(r/2 − 1)/6, (r/2 − 1)2/r} then we will receive the

required convergence.

Q.E.D.

Lemma below proves the result stated in Remark 4 of the paper.

Lemma 7 Assume that we have an AR(1) model with a linear trend and the error

terms satisfying the set of Assumptions A. Let yT,j = ρyT,j−1 + εT,j, where εT,j are

i.i.d. random variable with distribution function F res(x|ΣT , ρ) which is an empirical

distribution function of residuals. Then for any function φ ∈ H we have that for

almost all realizations of error term Σ

lim
T→∞

sup
ρ∈ΘT

sup
x
|P{φ(Sτ , Rτ , T, ρ) < x} − P{φ(Sτ,∗, Rτ,∗, T, ρ) < x|Y }| = 0,

where the pair of statistics (Sτ,∗, Rτ,∗) are detrended statistics for the sample Y ∗ =

(yt,1, ..., yT,T ).

11



The proof consists of two steps. First, we show that

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
ρ∈ΘT

sup
x
|P{φ(Sτ , Rτ , T, ρ) < x} − P{φ(Sτ,∗, Rτ,∗, T, ρ) < x}| = 0.

(2)

On the second step we check that for almost all realizations of error term Σ there are

constants K(Σ) and M(Σ) such that F res
T (·|Σ, ρ) ∈ Lr(K, M, θ).

Assume that FT ∈ Lr(K, M, θ). According to Lemma 6 from the Supplementary

Appendix, there exists almost sure approximation of partial sum process by a sequence

of Brownian motions. Following the proof of Lemma 3 from this Appendix it is easy

to prove that

lim
T→∞

sup
ρ∈AT

P
{∣∣Sτ,N(T, ρ)− Sτ,∗∣∣ +

∣∣Rτ,N(T, ρ)−Rτ,∗∣∣ > x
}

= 0,

that is, Condition 1 of Lemma 2 from the paper is satisfied.

The only thing that needed to be proved is uniform convergence of the distribution

of the statistic Sτ,∗ to the standard normal uniformly over BT and uniform convergence

in probability of the statistic Rτ,∗ to one over BT .

From the proof of Theorem 3 from the paper it follows that

lim
T→∞

sup
FT∈Lγ(K,M,θ)

sup
ρ∈ΘT

sup
x
|P{S∗(T, ρ) < x} − Φ(x)| = 0,

and limT→∞ supFT∈Lγ(K,M,θ) supρ∈ΘT
P{|R∗(T, ρ)− 1| > ε} = 0 for every ε > 0.

It is enough to show that

lim
T→∞

sup
ρ∈ΘT

P





∣∣∣∣∣∣

∑T
i=1 yµ

T,i−1i√
gτ (T, ρ)

√∑T
i=1(i− T+1

2
)2

∣∣∣∣∣∣
> x



 = 0,

and

lim
T→∞

sup
ρ∈ΘT

∣∣∣∣∣∣
P





∑T
i=1 εµ

T,ii√∑T
i=1(i− T+1

2
)2

> x



− Φ(x)

∣∣∣∣∣∣
= 0.

The first can easily be checked by Chebyshev’s inequality. For the proof of the

second one can check conditions of Theorem 1 in Hall and Heyde (1981). As a result,

Conditions 2 and 3 of Lemma 2 are satisfied. According to Lemma 2 from the paper

the uniform approximation (2) holds for the detrended statistics.
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Now we turn to the second step of the proof. We check that the residual based

bootstrap produces FT that belongs to Lr(K, M, θ) class. We define the destribution

function F res
T (x) = 1

T

∑T
j=1 I{bej≤x}, where êj are residuals from the regression of yj on

a constant, linear trend j and yj−1. Then µr(FT ) = 1
T

∑T
j=1(êj)

r.

The first condition of the class is trivially satisfied. For the third condition we

have:
1

T

T∑
j=1

|êj|r ≤ Cr
1

T

T∑
j=1

∣∣êj − ετ
j

∣∣r + Cr
1

T

T∑
j=1

|ετ
j |r.

Let us consider each term separately. The second term is bounded a.s. due to the

Strong Law of Large Numbers. We note that êj − ετ
j =

PT
i=1 εiy

τ
i−1PT

i=1(y
τ
i−1)2

yτ
j−1.

1

T

T∑
j=1

∣∣êj − ετ
j

∣∣r =
1

T

∣∣∣∣∣

∑T
j=1 εjy

τ
j−1∑T

j=1(y
τ
j−1)

2

∣∣∣∣∣

r T∑
j=1

|yτ
j−1|r ≤

= const
1

T

∣∣∣∑T
j=1 εjy

τ
j−1

∣∣∣
r

(∑T
j=1(y

τ
j−1)

2
)r/2

= const
1

T

(
Sτ (T, ρ)√
Rτ (T, ρ)

)r

= op(T
−1+ε)

for every ε > 0.

Now, we check the second condition for the residual based bootstrap:

1

T

T∑
t=1

(êt)
2 − 1 =

1

T

T∑
t=1

(ετ
t )

2 − 1 + 3
1

T

Sτ (T, ρ)2

Rτ (T, ρ)
.

The last expression converges a.s. to zero with a non-trivial speed since E|εj|r < ∞
for r > 2.

Q.E.D.

5 Uniform inferences in AR(p) models.

5.1 About AR(p) models.

In this section we consider an AR(p) model with at most one root close to the unit

circle. Let us consider an AR(p) model in ADF form:

yt = ρyt−1 +

p−1∑
j=1

αj∆yt−j + εt, (3)

13



where error terms satisfy the set of Assumptions C.

Assumptions C. Let {εt}∞t=1 be i.i.d. error terms with zero mean Eεt=0, unit

variance Eε2
t = 1 and finite forth moments Eε4

t < ∞.

We restrict ourselves to processes with at most one root close to the unit circle.

The process (3) could be described by equation a(L)yt = εt, where a(L) = 1 −
ρL−∑p−1

j=1 αj(1− L)Lj. Let us have the following representation of the polynomial:

a(L) = (1 − µ1L) · · · · · (1 − µpL), where |µ1| ≤ |µ2| ≤ · · · ≤ |µp| < 1. Let us fix

0 < δ < 1. For every ρ ∈ (0, 1) we define a set Rρ to be a set of all possible values of

the nuisance parameter α = (α1, ..., αp−1) such that |µp−1| < δ.

The lemma below demonstrates some properties of an AR(p) process with at most

one root close to the unit circle.

Lemma 8 Assume that a(L) = (1− µ1L) · · · · · (1− µpL), where |µ1| ≤ |µ2| ≤ · · · ≤
|µp−1| < δ < 1. Let 1−L

a(L)
=

∑∞
j=0 cjL

j, then

a)
∑∞

j=0 |cj| < C1(δ);

b) for γj =
∑∞

i=0 cici+j we have
∣∣∣∑∞

j=0 γj

∣∣∣ < C2(δ);

c) for Γi,j,k =
∑∞

t=0 ctct+ict+jct+k we have
∣∣∣∑∞

i=0

∑∞
j=0

∑∞
k=0 Γi,j,k

∣∣∣ < C3(δ),

where Ci(δ) are constants depending only on δ and p, but not on the value of the

roots.

Proof of Lemma 8.

a)

(1− L)

(1− µ1L)...(1− µpL)
= (1− L)

( ∞∑
j=0

µj
1L

j

)
...

( ∞∑
j=0

µj
pL

j

)
=

= (1− L)
∞∑

j=0


 ∑

k1,k2,...,kp:
P

i ki=j

µk1
1 µk2

2 ...µkp
p


 Lj.

As a result, we have

cj =
∑

k1,k2,...,kp:
P

i ki=j

µk1
1 µk2

2 ...µkp
p −

∑

k1,k2,...,kp:
P

i ki=j−1

µk1
1 µk2

2 ...µkp
p =

= −(1− µp)
∑

k1,k2,...,kp:
P

i ki=j−1

µk1
1 µk2

2 ...µkp
p +

∑

k1,k2,...,kp−1:
P

i ki=j

µk1
1 µk2

2 ...µ
kp−1

p−1 .
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∞∑
j=0

|cj| ≤ |1− µp|
( ∞∑

j=0

|µ1|j
)
· ... ·

( ∞∑
j=0

|µp|j
)

+

( ∞∑
j=0

|µ1|j
)
· ... ·

( ∞∑
j=0

|µp−1|j
)
≤

≤ 1

(1− δ)p−1

( |1− µp|
1− |µp| + 1

)
≤ const(δ),

it ends the proof of part a).

b) ∣∣∣∣∣
∞∑

j=0

γj

∣∣∣∣∣ ≤
∞∑

j=0

|γj| ≤
∞∑

j=0

∣∣∣∣∣
∞∑
i=0

cici+j

∣∣∣∣∣ ≤

≤
∞∑

j=0

∞∑
i=0

|ci||ci+j| ≤
( ∞∑

i=0

|ci|
)2

≤ C2(δ)

c) The proof is totally similar to that of part b).

Lemma 9 Let us have two AR(p) processes yt = ρyt−1 +
∑p−1

j=1 αj∆yt−j + εt, and

zt = ρzt−1 +
∑p−1

j=1 βj∆zt−j + εt, where error terms εj are i.i.d. standard normal

random variables. Then we have:

a) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

Eρ(yt−zt)2

V ar(yt)
≤ C(δ)‖α− β‖2;

b) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

Eρ(∆yt−∆zt)2

V ar(∆yt)
≤ C(δ)‖α− β‖2;

c) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

∣∣∣V ar(yt)
V ar(zt)

− 1
∣∣∣ ≤ C(δ)‖α− β‖;

d) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

∣∣∣V ar(∆yt)
V ar(∆zt)

− 1
∣∣∣ ≤ C(δ)‖α− β‖;

e) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

Eρ(y2
t−z2

t )2

(V ar(yt))
2 ≤ C(δ)‖α− β‖2;

f) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

Eρ(∆yt∆yt−j−∆zt∆zt−j)
2

(V ar(∆yzt))
2 ≤ C(δ)‖α− β‖2;

g) supρ∈[0,1) supα∈Rρ
supβ∈Rρ

Eρ(yt∆yt−j−zt∆zt−j)
2

(V ar(∆yt))
2 ≤ C(δ)‖α− β‖2.

Here we have ‖α−β‖ = maxi |αi−βi|. The constant C(δ) depends only on δ and the

order of the process p.

Proof of Lemma 9.

a) First of all, we can note that any complex root has a complex conjugant. Since

we restrict ourselves to at most one root close to the unit circle, then if there is such

a root it must be real.

Let us introduce polynomials a(L) = 1 − ρL −∑p−1
j=1 αj(1 − L)Lj−1 and b(L) =

1− ρL−∑p−1
j=1 βj(1−L)Lj−1 = (1−µ1L)...(1−µpL). Then we have a(L)yt = εt, and
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b(L)zt = εt. We can note that

yt − zt =

(
1− a(L)

b(L)

)
yt =

L(1− L)f(L)

(1− µ1L)(1− µ2L)...(1− µpL)
yt =

=
(1− L)f(L)

(1− µ1L)(1− µ2L)...(1− µpL)
yt−1,

where f(L) = f0 + f1L + ... + fp−2L
p−2, fj = (αj+1− βj+1), and maxj |fj| = ‖α− β‖.

We also assume that |µ1| ≤ |µ2| ≤ ... ≤ |µp−1| < δ < 1.

Let (1−L)f(L)
(1−µ1L)(1−µ2L)...(1−µpL)

=
∑∞

j=0 djL
j, then yt− zt =

∑∞
j=0 djyt−j−1. It is easy to

show that

V ar(yt − zt) ≤
( ∞∑

i=1

|di|
)2

V ar(yt).

We can note that
∑∞

j=0 |dj| ≤ (p − 2)‖α − β‖∑∞
j=0 |cj|, where cj are defined as in

Lemma 8. The statement of part a) follows from the statement a) of Lemma 8.

b) Proof is absolutely similar to that of a) and follows from the fact that ∆yt −
∆zt =

(
1− a(L)

b(L)

)
∆yt.

c) We have a(L)
b(L)

yt = zt. Using the same reasoning as before we receive:

V ar(zt) ≤
(∑

i

|fi|
)2

V ar(yt), where
a(L)

b(L)
=

∑
i

fiL
i.

It’s easy to see that fi = di for i ≥ 1, and f0 = d0 + 1, where di are defined in the

proof of part a) of Lemma 9. Then

V ar(zt)

V ar(yt)
− 1 ≤ (

∑
i

|di|+ 1)2 − 1 ≤ C(δ)‖α− β‖.

Similarly, V ar(yt)
V ar(zt)

− 1 ≤ C(δ)‖α− β‖, that gives us statement c).

Proof of part d) is analogous to that of part c).

e) It is easy to note that

E
(
y2

t − z2
t

)2 ≤
√

E (yt − zt)
4
√

E (yt + zt)
4.

By reasoning similar to one in the proof of part a): E (yt − zt)
4 ≤ (

∑∞
i=0 |di|)4

Ey4
t ,

where di are defined in the proof of part a). We also have E (yt + zt)
4 ≤ (

∑∞
i=0 |gi|)4

Ey4
t ,
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where a(L)+b(L)
b(L)

=
∑

i giL
i. It is easy to see that gi = di for i ≥ 1 and g0 = d0 + 2. As

a result,

E
(
y2

t − z2
t

)2 ≤
( ∞∑

i=0

|di|
)2 ( ∞∑

i=0

|gi|
)2

Ey4
t ≤ const(δ)‖α− β‖2Ey4

t .

The only thing left to check is that expression
Ey4

t

(Ey2
t )2

is bounded.

Let yt =
∑

i hiεt−i, then Ey4
t =

∑
h4

i Eε4
t + (

∑
i h

2
i )

2(Eε2
t )

2 ≤ (
∑

i h
2
i )

2(Eε4
t +

(Eε2
t )

2) = (Ey2
t )

2
(
1 +

Eε4
t

(Eε2
t )2

)
. That finishes the proof of part e).

Proofs of parts f) and g) are similar to the proof of part e).

5.2 Estimation of the nuisance parameters.

Let us have a sample Y = (y1, ..., yT ) from the process (3) with at most one root close

to the unit circle. We should note that the parameter α = (α1, ...αp−1) is a nuisance

parameter for the hypothesis H0 : ρ = ρ0. As a result, it is impossible to construct

an exact confidence interval for the parameter ρ even if we deal with an AR(p) model

with normal errors.

As a part of a procedure of testing that the sum of AR coefficient is equal to ρ,

we calculate an estimate α̂(ρ) of the nuisance parameter α as the OLS estimate in a

regression model with the null hypothesis imposed:

yt − ρyt−1 =

p−1∑
j=1

αj∆yt−j + εt, (4)

that is, we regress yt − ρyt−1 on ∆yt−1, ..., ∆yt−p+1.

Lemma 10 Assume that we have an AR(p) process defined by equation (3) with error

terms satisfying the set of Assumptions C.

Let us define Yt(ρ) = yt − ρyt−1, and Xt = (∆yt−1, .., ∆yt−p+1). Let α̂(ρ) be

the OLS estimate of α in the regression of Yt(ρ) on Xt. Then α̂(ρ) is a uniformly

consistent estimate of α, that is, the following convergence holds:

lim
T→∞

sup
ρ∈[0,1)

sup
α∈Rρ

Pρ {‖α− α̂‖ > ε} = 0 for every ε > 0. (5)
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Proof of Lemma 10. Let X = (X ′
1, ..., X

′
T )′ and ΣT = (ε1, ..., εT )′. Then

α̂− α =

(
1∑T

t=1 V ar(∆yt)
X ′X

)−1
1∑T

t=1 V ar(∆yt)
X ′ΣT .

We prove two statements: 1PT
t=1 V ar(∆yt)

X ′ΣT →p 0 uniformly, and 1PT
t=1 V ar(∆yt)

X ′X →p

A uniformly, where det(A) is uniformly bounded away from 0.

The first statement can be received by noting that E
[

1PT
t=1 V ar(∆yt)

∑T
t=1 ∆yt−1εt

]2

=

1PT
t=1 V ar(∆yt)

→ 0 uniformly, since V ar(∆yt) ≥ V ar(εt).

For the proof of the second statement we note that ∆yt =
∑∞

i=0 ciεt−i, where the

coefficients cj are defined in Lemma 8. Then E[∆yt∆yt−j] = γj =
∑∞

t=0 ctct+j.

Let us consider the covariance of the following form

covt,s,j = E(∆yt∆yt−j − E∆yt∆yt−j)(∆ys∆ys−j − E∆ys∆ys−j).

It is easy to see that

E(∆yt∆yt−j∆ys∆ys−j) = γ2
j + γ2

|t−s| + γ|t−j−s|γ|t−s+j| + Eε4Γj,t−s,t−s+j,

where γj and Γi,j,k are defined in Lemma 8. Then

covt,s,j = γ2
|t−s| + γ|t−j−s|γ|t−s+j| + Eε4

∞∑
i=0

ci−tci−t+jci−sci−s+j.

After applying Lemma 8 it is easy to show that
∑T

s=1

∑T
t=1 |covt,s,j| ≤ C(δ)T. As a

final step we can note that

E

[
1∑T

t=1 V ar(∆yt)

T∑
t=1

(∆yt∆yt−j − E∆yt∆yt−j)

]2

≤
∑T

s=1

∑T
t=1 |covt,s,j|(∑T

t=1 V ar(∆yt)
)2 ≤

const(δ)

T

It ends the proof of the Lemma 10.

5.3 Grid bootstrap

To perform a test that the sum of AR coefficient is equal to ρ we calculate the

conventional t-statistic t(ρ, y1, ..., yT ) for this hypothesis in the regression model (3).

We also calculate estimates α̂(ρ) of the nuisance parameters α as in Lemma 10. Then
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we compare the calculated conventional t-statistic t(ρ, Y ) with a critical value function

q(ρ, T, α̂(ρ)), which depends on the tested value ρ of the parameter of interest, on the

estimated nuisance parameter, and on the sample size.

The confidence set for the parameter ρ is constructed as a set of values for which

the corresponding hypothesis is accepted

C(Y ) = {ρ : q1(ρ, T, α̂(ρ)) ≤ t(ρ, Y ) ≤ q2(ρ, T, α̂(ρ))}. (6)

We consider two sets of critical value functions: the one received by parametric grid

bootstrap, which is a generalization of Andrews’ (1993) method, and that received

by Hansen’s (1999) non-parametric grid bootstrap. In the parametric grid bootstrap

critical value functions are quantiles of the distribution of the t-statistic t(ρ, Z) in the

model

zt = ρzt−1 +

p−1∑
j=1

α̂j(ρ)∆zt−j + et, (7)

where error terms et are independently normally distributed with zero mean and unit

variance. In the non-parametric grid bootstrap we simulate critical value functions

as quantiles of the distribution of the t-statistic in the model (7) with i.i.d. error

terms distributed according to the empirical distribution of the demeaned residuals

from regression (4).

Below we prove the validity of both procedures. The proofs are based on the

uniform approximation of the unknown distribution of the t-statistic t(ρ, Y ) provided

by the distributions calculated via parametric and non-parametric grid bootstraps.

To formulate the results let us introduce some notations. Let statistics S and R

be defined by

S(Y, ρ, α, T ) = G(ρ, α)−1/2Ỹ ′ε, R(Y, ρ, α, T ) = G(ρ, α)−1/2Ỹ ′Ỹ G(ρ, α)−1/2,

where Ỹt = (yt−1, ∆yt−1, ..., ∆yt−p+1), Ỹ = (Ỹ ′
1 , ..., Ỹ

′
T )′, ε = (ε1, ...εT )′, and G(ρ, α) =

diag
(∑T

t=1 V ar(yt),
∑T

t=1 V ar(∆yt), ...,
∑T

t=1 V ar(∆yt)
)

. Then the t-statistic for test-

ing the hypothesis that the sum of AR coefficients equals ρ is

t(Y, ρ, α, T ) = l′1R
−1(Y, ρ, α, T )S(Y, ρ, α, T )/

√
l′1R−1(Y, ρ, α, T )l1,

where l1 = (1, 0, ..., 0).
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5.4 Parametric grid bootstrap

5.4.1 Parametric grid bootstrap for AR(p) processes with normal errors

In the case of AR(1) process with normal error terms the parametric grid bootstrap

(Andrews’ method) provides an exact confidence interval for the autoregressive co-

efficient ρ. As it was mentioned before the generalization of the method to AR(p)

models is not exact even if the error terms are normally distributed, because the

approximating distribution employs an estimate of the nuisance parameter, rather

then the true value of the nuisance parameter. We prove that the procedure provides

a uniform approximation of the unknown distribution of the t-statistic in a model

with normal errors as long as the estimate of the nuisance parameter is uniformly

consistent.

Theorem 1 Let us have two AR(p) processes yt = ρyt−1 +
∑p−1

j=1 α∆yt−j + εt, and

zt = ρzt−1+
∑p−1

j=1 α̂j∆zt−j +εt, where error terms εj are independent standard normal

random variables. Assume that the parameter α̂ uniformly converges to α as the

sample size increases, that is convergence (5) holds.

Then we have the following uniform approximations:

a) limT→∞ supρ∈[0,1) supα∈Rρ
Pρ {|S(Y, ρ, α, T )− S(Z, ρ, α̂, T )| > ε} = 0;

b) limT→∞ supρ∈[0,1) supα∈Rρ
Pρ {|R(Y, ρ, α, T )−R(Z, ρ, α̂, T )| > ε} = 0;

c) limT→∞ supρ∈[0,1) supα∈Rρ
Pρ {|t(Y, ρ, α, T )− t(Z, ρ, α̂, T )| > ε} = 0.

Proof of Theorem 1.

By combining a), b), c), and d) of Lemma 9 with Chebyshev’s inequality we have

Pρ {|S(y, ρ, α, T )− S(z, ρ, α̂, T )| > ε} ≤ C(δ)

ε2
‖α− α̂‖.

Parts c), d), e), f), and g) of Lemma 9 combined with Chebyshev’s inequality give

Pρ {|R(y, ρ, α, T )−R(z, ρ, α̂, T )| > ε} ≤ C(δ)

ε2
‖α− α̂‖.

Using the uniform consistency of the nuisance parameter estimate (5) we receive

statements a) and b) of Theorem 1.
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The statement c) follows from parts a) and b), continuity of ratio function, and

the fact, that statistic R is uniformly separated from 0.

Q.E.D.

5.4.2 Parametric grid bootstrap. Approximation in the near unity region.

To prove that the parametric grid bootstrap is an asymptotically valid procedure for

constructing confidence sets in models with non-normal errors we employ the same

idea as in Chapter 2 of the paper. We divide the set of values of ρ into two subsets.

One of two subsets is increasing, while the second subset is contracting toward the

unit root with a speed slower than 1/T as the sample size T increases. Over the

first subset the standard normal distribution provides the uniform approximation of

the unknown distribution of the t-statistic. We receive an approximation over the

second set via constructing an AR(p) process with the same AR coefficients and

normal errors, such that the t-statistics for this process is uniformly close to the

initial t-statistic. It allows us to state that the distribution of the t-statistic for an

AR(p) process is uniformly approximated by the distribution of t-statistic for an

AR(p) process with the same AR coefficients, but with normal errors. Given that the

parametric grid bootstrap works for models with normal errors we receive the validity

of the procedure for models with non-normal error terms.

Lemma 11 Assume that Y = (y1, ..., yT ) is a sample from an AR(p) process de-

scribed by equation (3) with error terms satisfying the set of Assumptions C.

Let zt be an AR(p) process with normal errors:

zt = ρzt−1 +
k∑

j=1

αj∆zt−j + et, et ∼ i.i.d.N(0, 1), t = 1, ..., T.

Then there exists a completion of the initial probability space and the realization of

process zt on this probability space such that, for every δ > 0 we have

a) supρ∈(0,1) supα∈Rρ
supj=1,...,T

∣∣∣ yj√
T
− zj√

T

∣∣∣ = o(T−1/4+δ) a.s.;

b) supρ∈(0,1) supα∈Rρ
supj=1,...,T

∣∣∣yT,j√
T

∣∣∣ = O(1) a.s.;

c) supρ∈(0,1) supα∈Rρ

∣∣∣ 1
T

∑T
j=1 yj−1εj − 1

T

∑T
j=1 zj−1ej

∣∣∣ = o(T−1/4+δ) a.s.;

d) supρ∈(0,1) supα∈Rρ

∣∣∣ 1
T 2

∑T
j=1 y2

j−1 − 1
T 2

∑T
j=1 z2

j−1

∣∣∣ = o(T−1/4+δ) a.s.;
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The statistic S(Y, ρ, α, T ) is a p-dimensional vector. Let S1(Y, ρ, α, T ) = l′1S(Y, ρ, α, T )

be the first component, while S(2...p)(Y, ρ, α, T ) be the (p− 1)- dimensional vector con-

sisting of the last p− 1 components of the vector S(Y, ρ, α, T ). Then,

e) supρ∈AT
supα∈Rρ

supx |S1(Y, ρ, α, T )− S1(Z, ρ, α, T )| = o(1) a.s.;

f) supρ∈AT
supα∈Rρ

supx

∣∣P{S(2...p)(Y, ρ, α, T ) > x} − P{ξ > x}∣∣ = o(1),

where ξ ∼ N(0, Γ).

The statistic R(Y, ρ, α, T ) is a p × p-dimensional matrix. Let R11(Y, ρ, α, T ) =

l′1R(Y, ρ, α, T )l1 be the left upper corner element of R(Y, ρ, α, T ). Let R1,(2...p)(Y, ρ, α, T )

be the (p−1)- dimensional vector consisting of the elements of the first column of the

matrix, excluding the first element. We denote R(2...p),(2...p)(Y, ρ, α, T ) the right low

square (p− 1)× (p− 1) sub-matrix of R(Y, ρ, α, T ). That is,

R(Y, ρ, α, T ) =


 R11 R′

1,(2...p)

R1,(2...p) R(2...p),(2...p)


 .

Then,

g) supρ∈AT
supα∈Rρ

supx |R11(Y, ρ, α, T )−R11(Z, ρ, α, T )| = o(1) a.s.;

h) supρ∈AT
supα∈Rρ

P{
∣∣R1,(2...p)(Y, ρ, α, T )

∣∣ > x} = o(1) for any x > 0;

i) supρ∈AT
supα∈Rρ

P{
∣∣R(2...p),(2...p)(Y, ρ, α, T )− Γ

∣∣ > x} = o(1) for any x > 0;

Finally,

k) limT→∞ supρ∈AT
supα∈Rρ

supx |P{t(Y, ρ, α, T ) > x} − P{t(Z, ρ, α, T ) > x}| = 0.

Here a set AT of parameters ρ is defined by AT = {ρ ∈ (0, 1) : |1 − ρ| < T−1+ε} for

a sufficiently small ε > 0. All limits are taken as T increases to infinity.

Proof of Lemma 11.

In the proof the word “uniformly” always mean “uniformly over ρ ∈ AT and

α ∈ Rρ”.

a) We can find a probability space with a realization of the partial sum process

ηT (t) and a sequence of Brownian processes wT (t) on it such that sup0≤t≤1 |ηT (t) −
wT (t)| = O(T−1/4+δ) a.s. As before we define the realization of error terms to be the

normalized increments of the corresponding processes:

εj√
T

= ηT

(
j

T

)
− ηT

(
j − 1

T

)
,

ej√
T

= wT

(
j

T

)
− wT

(
j − 1

T

)
.
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Let us define a sequence of numbers dj by the equality 1
a(L)

=
∑∞

j=0 djL
j. Then the

sequence cj = dj − dj−1 is the same as in Lemma 8. We have

yt =
t∑

j=0

djεt−j =
t∑

j=0

(dj − dj−1)ηT

(
t− j

T

)
=

t∑
j=0

cjηT

(
t− j

T

)

and

zt =
t∑

j=0

djet−j =
t∑

j=0

(dj − dj−1)wT

(
t− j

T

)
=

t∑
j=0

cjwT

(
t− j

T

)
.

Then by using statement a) from Lemma 8 we receive

sup
ρ∈(0,1)

sup
α∈Rρ

sup
j=1,...,T

∣∣∣∣
yT,j√

T
− zT,j√

T

∣∣∣∣ ≤

≤
(

sup
ρ∈(0,1)

sup
α∈Rρ

∞∑
j=0

|cj|
)

sup
0≤t≤1

|ηT (t)− wT (t)| = O(T−1/4+δ) a.s.

It ends the proof of the part a).

b)

sup
ρ∈(0,1)

sup
α∈Rρ

sup
j=1,...,T

∣∣∣∣
yT,j√

T

∣∣∣∣ ≤
(

sup
ρ∈(0,1)

sup
α∈Rρ

∞∑
j=0

|cj|
)

sup
0≤t≤1

|wT (t)| = O(1) a.s.

c)

1

T

T∑
j=1

yj−1εj − 1

T

T∑
j=1

zj−1ej =
T∑

j=1

∆yj−1√
T

ηT

(
j

T

)
−

T∑
j=1

∆zj−1√
T

wT

(
j

T

)
−

−
(

1√
T

T∑
j=1

ηT (j/T )εT,j − 1√
T

T∑
j=1

wT (j/T )eT,j

)
+

+

(
yT,T (ρ)√

T
ηT (1)− zT,T (ρ)√

T
wT (1)

)

Let us consider the first term:

sup
ρ∈(0,1)

sup
α∈Rρ

∣∣∣∣∣
T∑

j=1

∆yj−1√
T

ηT

(
j

T

)
−

T∑
j=1

∆zj−1√
T

wT

(
j

T

)∣∣∣∣∣ =

= sup
ρ∈(0,1)

sup
α∈Rρ

∣∣∣∣∣
T∑

j=1

∑
i ciεj−i√

T
ηT

(
j

T

)
−

T∑
j=1

∑
i ciej−i√

T
wT

(
j

T

)∣∣∣∣∣ ≤

≤
(

sup
ρ∈(0,1)

sup
α∈Rρ

∑
i

|ci|
)

max
i

∣∣∣∣∣
T∑

j=1

εj−i√
T

ηT

(
j

T

)
−

T∑
j=1

ej−i√
T

wT

(
j

T

)∣∣∣∣∣ = o(T−1/4+δ) a.s.
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According to part c) of Lemma 3 from the paper the following asymptotic equality

has place:

∣∣∣∣∣
1√
T

T∑
j=1

ηT (j/T )εT,j − 1√
T

T∑
j=1

wT (j/T )eT,j

∣∣∣∣∣ = o(T−1/4+δ) a.s.

From the parts a) and b) of Lemma 11 it is easy to receive that

sup
ρ∈(0,1)

sup
α∈Rρ

∣∣∣∣
yT,T (ρ)√

T
ηT (1)− zT,T (ρ)√

T
wT (1)

∣∣∣∣ = o(T−1/4+δ) a.s.

The last three limits give us statement c).

d) The statement is easily follows from parts a) and b):

sup
ρ∈(0,1)

sup
α∈Rρ

∣∣∣∣∣
1

T 2

T∑
j=1

y2
j −

1

T 2

T∑
j=1

z2
j

∣∣∣∣∣ ≤

sup
ρ∈(0,1)

sup
α∈Rρ

≤ sup
j

∣∣∣∣
yj√
T
− zj√

T

∣∣∣∣
(

sup
j

∣∣∣∣
yj√
T

∣∣∣∣ + sup
j

∣∣∣∣
zj√
T

∣∣∣∣
)

= o(T−1/4+δ) a.s.

e) The statistic S(Y, ρ, α, T ) is a p - dimensional vector the first component

l′1S(Y, ρ, α, T ) =
PT

t=1 yt−1εt√PT
t=1 V ar(yt)

of which may have non-standard behavior.

We note that
∑T

t=1 V ar(yt) = T
∑∞

j=0 d2
j , where yt =

∑∞
j=1 djεt−j. It is easy to

notice that
∑∞

j=0 d2
j ≥ C(δ) 1

1−ρ
. Then

1√∑T
t=1 V ar(yt)

(
T∑

t=1

yt−1εt −
T∑

t=1

zt−1et

)
≤

≤ C(δ)
√

T (1− ρ)

(
1

T

T∑
t=1

yt−1εt − 1

T

T∑
t=1

zt−1et

)
=

=
√

T (1− ρ)o(T−1/4+δ) = o(1) a.s.

uniformly over the set AT . It gives us that there exists realization of processes yt

and zt on the same probability space such that l′1S(Y, ρ, α, T ) and l′1S(Z, ρ, α, T ) are

almost surely uniformly close to each other over the set AT .

f) We can note that

∆yt = −(1− µp)yt−1 + Yt,
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where (1 − µ1L)...(1 − µp−1L)Yt = εt is a stationary process with all roots strictly

outside 1/δ circle. It is easy to see that

E


(1− µp)

∑T
t yt−jεt√∑T

t V ar(yt)




2

= (1− µp)
2 → 0 uniformly over AT .

As a result, we have that the sequence
(1−µp)

PT
t yt−jεt√PT

t V ar(yt)
converges in probability to zero

uniformly over AT .

We need to check that

Γ−1/2 1√
T

T∑
t=1

(Yt−1εt, ..., Yt−p+1εt)
′ ⇒ N(0, Ip−1),

where Γ = E [(Yt−1, ..., Yt−p+1)(Yt−1, ..., Yt−p+1)
′] and the convergence is taking place

uniformly over all possible processes with roots outside the 1/δ circle. The statement

follows from the Central Limit Theorem for martingale - differences.

g) From the definition of the statistics we have R11(Y, ρ, α, T ) = 1PT
j=1 V ar(yj)

∑T
j=1 y2

j−1

and R11(Z, ρ, α, T ) = 1PT
j=1 V ar(zj)

∑T
j=1 z2

j−1 .

From the statement d) of Lemma 11 we receive uniformly over AT

|R11(y, ρ, α, T )−R11(z, ρ, α, T )| ≤ T (1− ρ)

∣∣∣∣∣
1

T 2

T∑
j=1

y2
j−1 −

1

T 2

T∑
j=1

z2
j−1

∣∣∣∣∣ =

= T (1− ρ)o(T−1/4+ε) = o(T−1/4+2ε) = o(1) a.s.

The last inequality holds if ε < 1/4.

h) Since ∆yt = −(1 − µp)yt + Yt, where the process Yt is defined by equation

(1− µ1L)...(1− µp−1L)Yt = εt. Then

T∑
j=1

yj∆yj−1 = (1− µp)
T∑

j=1

y2
j +

T∑
j=1

yjYj.

We have

1

T 3/2
(1− µp)

T∑
j=1

y2
j = (1− µp)

√
T

1

T 2

T∑
j=1

y2
j ≤ (1− µp)

√
T

(
max

j=1...T

∣∣∣∣
yj√
T

∣∣∣∣
)2

=

= O((1− µp)
√

T ) = O(T−1/2+ε) a.s. uniformly over AT .
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We note that
∑T

t=1 V ar(yt) ≥ CT 1
1−ρ

;
∑T

t=1 V ar(∆yt) ≥ T. As a result,

T 3/2√PT
t=1 V ar(yt)

√PT
t=1 V ar(∆yt)

≤
√

T (1− ρ) and

1√∑T
t=1 V ar(yt)

√∑T
t=1 V ar(∆yt)

(1− µp)
T∑

j=1

y2
j = O(T−1/2+3/2ε) a.s. (8)

Now let us turn to the second term. First of all we note that yt =
∑

j djεt−j and

Yt =
∑

j d∗jεt−j, where

|dj| =
∣∣∣∣∣∣

∑

k1+...+kp=j

µk1
1 ...µkp

p

∣∣∣∣∣∣
≤

j∑

l=0

lkδl|µp|j−l ≤ |µp|j
∞∑

l=0

lk
(

δ

|µp|
)l

≤ C|µp|j.

The constant C depends on δ but not on µp or other roots. The inequality holds

if |µ1| ≤ ... ≤ |µp−1| < δ, and ρ ∈ AT for sufficiently large T such that |1 − µp| <

1−ρ
(1−δ)k−1 < 1− (δ + ε) for some fixed ε > 0.

Similarly, |d∗j | =
∣∣∣∑k1+...+kp−1=j µk1

1 ...µ
kp−1

p−1

∣∣∣ ≤ Cδj.

We have that

E(yT YT yT−jYT−j) = Eε4
t

∑
i

didi+jd
∗
i d
∗
i+j +

(∑
i

did
∗
i

)2

+

(∑
i

did
∗
i+j

)(∑
i

d∗i di+j

)
+

(∑
i

d∗i d
∗
i+j

)(∑
i

didi+j

)
.

By using inequalities for dj and d∗j we can get |E(yT YT yT−jYT−j)| ≤ C1 + C2
|µp|jδj

1−|µp| .

As a result,

E

(
T∑

t=1

ytYt

)2

≤ T

T∑
j=1

|E(yT YT yT−jYT−j)| ≤ C1T
2 + C3

T

1− |µp| .

By using Chebyshev’s lemma we have uniformly over AT :

sup
ρ∈AT

sup
α∈Rρ

P





∣∣∣∣∣∣
1√∑T

t=1 V ar(yt)
√∑T

t=1 V ar(∆yt)

T∑
j=1

yjYj

∣∣∣∣∣∣
> x



 ≤

≤ 1− ρ

T 2
(C1T

2 + C3
T

1− |µp|) = O(T−1+ε)

By joining the last inequality with (8) we receive statement h) of the Lemma.
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i) We use the fact that ∆yt = −(1− µp)yt−1 + Yt, where Yt is defined in the proof

of statement f).

1

T

T∑
t=1

∆yt∆yt−j =
(1− µp)

2

T

T∑
t=1

ytyt−j−

−(1− µp)

T

T∑
t=1

(yt−1Yt−j + yt−j−1Yt) +
1

T

T∑
t=1

YtYt−j. (9)

As in the proof of part h) we can show that (1−µp)

T 3/2

∑T
t=1 ytyt−j = O(T−1/2+ε) a.s.

uniformly over AT . It gives us (1−µp)2

T

∑T
t=1 ytyt−j = O(T−1+2ε) = o(1) a.s uniformly

over AT .

As in the proof of part h) we can show that 1√
V ar(∆yt)

√
V ar(yt)

∑T
t=1(yt−1Yt−j +

yt−j−1Yt) converges in probability to zero uniformly overAT . Given that

√
V ar(∆yt)

√
V ar(yt)

T
(1−

µp) = o(1) uniformly, we conclude that the second term in (9) uniformly converges

to zero in probability.

The only thing left is to prove that 1
T

∑T
t=1 YtYt−j uniformly converges in proba-

bility to E(YtYt−j). For this statement we show that E
(

1
T

∑T
t=1 YtYt−j − E(YtYt−j)

)2

converges uniformly to zero, and then we use Chebyshev’s inequality.

We already showed that Yt =
∑∞

j=0 d∗jεt−j with |d∗j | ≤ Cδj.

E(Y0Y0−jYsYs−j) = Eε4
∑

i

d∗i+jd
∗
i d
∗
si+jd

∗
s+i +

(∑
i

d∗i d
∗
i+j

)2

+

+

(∑
i

d∗i d
∗
i+s

)2

+

(∑
i

d∗i d
∗
i+s+j

) (∑
i

d∗i d
∗
i+s−j

)

|cov(Y0Y0−j, YsYs−j)| ≤ Eε4

∣∣∣∣∣
∑

i

d∗i+jd
∗
i d
∗
si+jd

∗
s+i

∣∣∣∣∣ +

+

(∑
i

d∗i d
∗
i+s

)2

+

∣∣∣∣∣
∑

i

d∗i d
∗
i+s+j

∣∣∣∣∣

∣∣∣∣∣
∑

i

d∗i d
∗
i+s−j

∣∣∣∣∣ ≤ Cδ2s.

As a result,

E

(
1

T

T∑
t=1

YtYt−j − E(YtYt−j)

)2

≤ 1

T 2

T∑
t=1

T∑
s=1

|cov(YtYt−j, YsYs−j)| ≤ C

T
,

where C depends only on δ and p.
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k)Since matrix R(Y, ρ, α, T ) is asymptotically uniformly close in probability to the

matrix

R̃(Z, ρ, α, T ) =




1PT
t=1 V ar(zt)

∑T
t=1 z2

t 0′

0 Γ


 ,

where 0 is a zero p× 1 vector. Then R−1(Y, ρ, α, T ) is asymptotically uniformly close

in probability to the matrix

R̃−1(Z, ρ, α, T ) =




1PT
t=1 z2

t

∑T
t=1 V ar(zt) 0′

0 Γ−1


 ,

here we used that
PT

t=1 z2
tPT

t=1 V ar(zt)
is uniformly separated from zero in a sense of Lemma

13 from the paper. Given the fact that S1,(2...p)(Y, ρ, α, T ) is asymptotically uniformly

normally distributed we have that

t(Y, ρ, α, T ) = l′1R
−1(Y, ρ, α, T )S(Y, ρ, α, T )/

√
l′1R−1(Y, ρ, α, T )l1

is uniformly close in probability to
R−1

11 (Z,ρ,α,T )S11(Z,ρ,α,T )√
R−1

11 (Z,ρ,α,T )
. The last expression is equal

to
PT

t=1 zt−1et√PT
t=1 z2

t

and it is asymptotically uniformly close in probability to t(Z, ρ, α, T ).

It ends the proof of Lemma 11.

5.4.3 Parametric grid bootstrap. Approximation in the stationary region.

Lemma 12 Assume that Y = (y1, ..., yT ) is a sample from an AR(p) process defined

by equation (3) with error terms satisfying the set of Assumptions C. Let us define

a set BT = {ρ ∈ (0, 1) : 1 − ρ > CT−1+ε} for arbitrary small ε > 0. Let Υ be the

correlation matrix for a random vector Xt = (yy−1, ∆yt−1, ...∆yt−p+1). Then

a) limT→∞ supρ∈BT
supα∈Rρ

P {|R(Y, ρ, α, T )−Υ| > ε} = 0 for every ε > 0;

b) limT→∞ supρ∈BT
supα∈Rρ

supx |P{a′S(Y, ρ, α, T ) < x} − Φ(x)| = 0, for any p-dimensional

vector a such that a′Υa = 1;

c) limT→∞ supρ∈AT
supα∈Rρ

supx |P{t(Y, ρ, α, T ) < x} − Φ(x)| = 0.

Proof of Lemmma 12. The proof is totally analogous to that of Lemma 2.1

and 2.2 from Giraitis and Phillips (2004). Since we assumed the existence of a finite

forth moment, we do not need to use the truncation argument.
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a) As before we use that yt =
∑∞

j=0 djεt−j and |dj| ≤ C|µp|j, where C depends

only on δ and p. We have

|cov(y2
0, y

2
s)| ≤ Eε4

t

∞∑
i=0

d2
i d

2
i+s +

( ∞∑
i=0

didi+s

)2

≤ C

(1− µp)2
|µp|2s.

As a result,

1

T 2V ar2(yt)
E

(
T∑

t=1

y2
t − TV ar(yt)

)2

≤ 1

TV ar2(yt)

T∑
s

|cov(y2
0, y

2
s)| ≤

≤ C
1

TV ar2(yt)(1− µp)3
≤ C

T (1− µp)
→ 0.

It gives us

lim
T→∞

sup
ρ∈BT

sup
α∈Rρ

P

{∣∣∣∣∣
1

TV ar(yt)

T∑
t=1

y2
t − 1

∣∣∣∣∣ > ε

}
= 0 for every ε > 0. (10)

Similarly since ∆yt =
∑∞

j=0 cjεt−j and |cj| ≤ Cδj we have:

|cov(yt∆yt−j, yt+s∆yt+s−j)| ≤ Eε4
t

∞∑
i=0

cidi+jci+sdi+j+s +

( ∞∑
i=0

cici+s

)( ∞∑
i=0

didi+s

)
+

+

( ∞∑
i=0

cidi+j+s

)( ∞∑
i=0

ci+sdi+j

)
≤ C

(1− |µp|) |µp|sδs.

1

T 2V ar(yt)V ar(∆yt)
E

(
T∑

t=1

yt∆yt−j − Tcov(yt, ∆yt−j)

)2

≤

≤ 1

T V ar(yt)V ar(∆yt)

T∑
s

|cov(yt∆yt−j, yt+s∆yt+s−j)| ≤

≤ C
1

TV ar(yt)(1− |µp|) ≤
C

T
→ 0.

It gives us

lim
T→∞

sup
ρ∈BT

sup
α∈Rρ

P

{∣∣∣∣∣
1

T
√

V ar(yt)
√

V ar(∆yt)

T∑
t=1

yt∆yt−j − corr(yt, ∆yt−j)

∣∣∣∣∣ > ε

}
= 0.

(11)

In the proof of step b) of Lemma 10 we showed that

lim
T→∞

sup
ρ∈BT

sup
α∈Rρ

P

{∣∣∣∣∣
1

T

T∑
t=1

∆yt∆yt−j − cov(∆yt, ∆yt−j)

∣∣∣∣∣ > ε

}
= 0 for every ε > 0.

(12)
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Putting together equations (10), (11) and (12) we receive statement a) of the lemma.

b) Let a is a p-dimensional vector such that a′Υa = 1. We consider the sequence

of random variables

ξt,T =
1√
T

a′diag(V ar(yt), V ar(∆yt−1), ..., V ar(∆yt−p+1))
−1/2Xtεt. (13)

In order to prove that
∑T

t=1 ξt,T converges to N(0, 1) as the sample size increases we

need to check three conditions:

1) E(ξt,T |Ft−1) = 0;

2)
∑T

t=1 E(ξ2
t,T |Ft−1) converges uniformly in probability to 1;

3)
∑T

t=1 E(ξ2
t,T I|ξt,T |>ε|Ft−1) converges uniformly in probability to 0.

The first condition is trivially satisfied since (ξt,F({εi}t
i=−∞)) is a martingale

- difference sequence. For the second condition we note that
∑T

t=1 E(ξ2
t,T |Ft−1) =

a′R(y, ρ, α, T )a that according the part a) of Lemma 12 converges to 1.

We check the third condition:

E

(
T∑

t=1

E(ξ2
t,T I|ξt,T |>ε|Ft−1)

)
≤ ε−2E

(
T∑

t=1

E(ξ4
t,T |Ft−1)

)
=

= ε−2 1

T 2

T∑
t=1

E(a′diag(V ar(yt), V ar(∆yt−1), ..., V ar(∆yt−p+1))
−1/2Xt)

4 =

=
ε−2

T
E

(
a1

yt−1√
V ar(yt−1)

+ a2
∆yt−1√

V ar(∆yt−1)
+ ... + ap

∆yt−p+1√
V ar(∆yt−p+1)

)4

.

It is enough to show that E

(
yt−1√

V ar(yt−1)

)4

< C and E

(
∆yt−1√

V ar(∆yt−1)

)4

< C, that can

be shown easily.

c) By applying part a) and part b) of the Lemma with a = Υ−1l1√
l′1Υ−1l1

to the formula

t(y, ρ, α, T ) =
l′1R

−1(y, ρ, α, T )S(y, ρ, α, T )√
l′1R−1(y, ρ, α, T )l1

we receive the statement c).

5.4.4 Parametric grid bootstrap. Main theorem.

The validity of the parametric bootstrap procedure is stated in the theorem below.
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Theorem 2 Assume that the process yt is an AR(p) process defined by equation (3)

with error terms satisfying the set of Assumptions C. Let zt be an AR(p) process

with normal errors defined by equation (7), where α̂(ρ) is the OLS estimates in a

regression model (4). Then the distribution of the t-statistic based on the process yt

could be uniformly approximated by the distribution of t-statistic based on the process

zt:

lim
T→∞

sup
ρ∈(0,1)

sup
α∈Rρ

sup
x
|P{t(Y, ρ, α, T ) > x} − P{t(Z, ρ, α̂, T ) > x}| = 0.

As a result, the set defined by (6) with qi(ρ, T, α̂(ρ)), i = 1, 2 being quantiles of the

distribution of t(Z, ρ, α̂, T ), is an asymptotic confidence set for ρ.

Proof of Theorem 2. Let a process ξt is defined as AR(p) process with the same

coefficients as yt with normal errors

ξt = ρξt−1 +
k∑

j=1

αj∆ξt−j + et, et ∼ iidN(0, 1), t = 1, ..., T.

It follows from the Lemmas 11 and 12 that

lim
T→∞

sup
ρ∈[0,1)

sup
α∈Rρ

sup
x
|P{t(y, ρ, α, T ) < x} − P{t(ξ, ρ, α, T ) < x}| = 0.

Theorem 1 states that

lim
T→∞

sup
ρ∈[0,1)

sup
α∈Rρ

sup
x
|P{t(ξ, ρ, α, T ) < x} − P{t(z, ρ, α̂(ρ), T ) < x}| = 0,

as long as α̂(ρ) is a uniformly consistent estimator of α. The uniform consistency was

received in Lemma 10. It ends the proof of the theorem.

5.5 Non-parametric grid bootstrap

The non-parametric grid bootstrap procedure uses an approximation of the unknown

distribution of the t-statistic t(Y, ρ, α, T ) by the distribution of the t-statistic t(Z, ρ, α̂, T ),

where zt is an AR(p) process defined by (7) with error terms having distribution FT .

We consider FT being an empirical distribution function of the residuals from the

regression (4). The distribution function FT (Σ, ρ0, ρ, α) depends on the realization of
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error terms of the process yt, on the coefficients ρ and α of the process yt, and on the

null value ρ0 tested.

The validity of Hansen’s grid bootstrap is proven in the same way as we proved

it for AR(1) given the validity of Andrews’ method.

Theorem 3 Assume that the process yt is an AR(p) process defined by equation (3)

with error terms satisfying the set Assumptions C. Let zt be an AR(p) process defined

by equation (7), where α̂(ρ) is the OLS estimates in a regression model (4). Assume

that the errors et of the process zt are i.i.d. with the distribution function FT .

1)

lim
T→∞

sup
ρ∈(0,1)

sup
α∈Rρ

sup
FT∈L4(K,M,θ)

sup
x
|P{t(Y, ρ, α, T ) > x} − P{t(Z, ρ, α̂, T ) > x}| = 0.

2) Let for almost all realizations of error terms Σ = {ε1, ..., εj, ...} there exist

constants K(Σ) > 0,M(Σ) > 0 and δ > 0 such that for all ρ ∈ ΘT

FT (Σ, ρ, ρ, α) ∈ L4(K, M, θ),

then

lim
T→∞

sup
ρ∈(0,1)

sup
α∈Rρ

sup
x

∣∣Pρ{t(Y, ρ, α, T ) > x} − P ∗
ρ {t(Z, ρ, α̂, T ) > x|Σ}

∣∣ = 0 a.s.

That is, the bootstrap provides a uniform asymptotic approximation for almost all

realization of error terms.

Let C(Y ) be a set defined by equation (6) with qi(ρ, T, α̂(ρ)) = qi(ρ, T, α̂(ρ)|Y ), i =

1, 2 being quantiles of the distribution of the statistic t(Z, ρ, α̂, T ), given the realization

of Y . Then the set C(Y ) is an asymptotic confidence set.

3) Let F err
T be an empirical distribution function of the residuals from the re-

gression (4). Then for almost all realizations of error term Σ there exist constants

K(Σ) > 0,M(Σ) > 0 and δ > 0 such that F err
T ∈ L4(K,M, θ).

Proof of Theorem 3

According to Lemma 15 from the paper there exist realizations of a partial sum

process and a sequence of Brownian motions such that

lim
T→∞

sup
FT∈Lr(K,M,θ)

P{ sup
0≤t≤1

|ηT (t)− w(t)| > εT−δ} = 0.
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In the part k) of Lemma 10 from the Supplementary Appendix we proved that having

such realizations of the processes leads to a uniform approximation in the near unity

region.

In the proof of part a) of Lemma 12 we showed that for any element ξ of the matrix

R(y, ρ, α, T ) − Υ we have that E(ξ)2 ≤ C
T (1−ρ)

, where C is a constant that depends

only on p, δ M and K. It implies that for every sequence of sets BT = [−ρT , ρT ] such

that T (1− ρT ) →∞ we have

lim
T→∞

sup
ρ∈BT

sup
α∈Rρ

sup
FT∈L4(K,M,θ)

P{|R(y, ρ, α, T )−Υ| > x} = 0 for any x > 0.

Let ξt,T be defined by equation (13). Then according to Corollary to Theorem 1 from

Heyde and Hall (1991) we have

sup
x

∣∣∣∣∣P{
T∑

t=1

ξt,T > x} − Φ(x)

∣∣∣∣∣ ≤ C

(
T∑

t=1

E(ξt,T )4 + E(a′R(y, ρ, α, T )a− 1)2

)
.

In the proof of part b) of Lemma 11 we showed that the first term is less than

C/T where C depends only on p, δ M and K. As a result, we have convergence of

the distribution of a′S(y, ρ, α, T ) to N(0, 1) uniformly over BT and uniformly over

FT ∈ L4(K,M, θ). It finishes the proof of part 1.

The proof of part 2) is exactly the same as the proof of Theorem 3 from the paper.

3) Let Xt be defined as in Lemma 9, then êt = εt + (α− α̂(ρ))′Xt. We have

µ2(F
err
T )−1 =

(
1

T

T∑
t=1

ε2
t − 1

)
+2(α−α̂(ρ))′

1

T

T∑
t=1

εtXt+(α−α̂(ρ))′
1

T

T∑
t=1

XtX
′
t(α−α̂(ρ))

From Lemma 9 we know that α̂(ρ) is a uniformly consistent estimate of α. According

to Law of Large Numbers 1
T

∑T
t=1 ε2

t − 1 → 0 a.s., 1
T

∑T
t=1 εtXt → 0 a.s., and

∑T
t=1 XtX

′
t is bounded a.s. As a result, we have convergence of µ2(F

err
T ) − 1 to zero

almost surely. The third condition of the class L4(K,M, θ) can be checked in a similar

way.

6 Subsampling.

In this section we clarify some technical details of the proof of subsampling invalid-

ity(Theorem 4 of the paper).
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First, we note that local to unity asymptotic results (Phillips (1987)) were estab-

lished for processes starting from zero whereas for subsampling we need to make a

different assumption about initial condition.1 If |ρ| < 1, the initial variable z0 is nor-

mally distributed with mean a
1−ρ

(here a is the value of the intercept) and variance

1
1−ρ2 . When ρ = 1, the initial value is an arbitrary constant. The Lemma below

follows the line of reasoning proposed in Elliott (1999) and Elliott and Stock (2001).

Lemma 13 Let uj = ρuj−1 + ej, u0 = 0 with errors ej being i.i.d. standard normal.

Let us define zj = ρj ξ√
1−ρ2

+ uj, where ξ ∼ N(0, 1) is distributed independently of

{ej}∞j=1. Let

tµ =

∑T
j=1 zµ

j−1ej√∑T
j=1(z

µ
j−1)

2

We consider ρ = 1 + c/T for some c < 0. Let Kc(s) = Jc(s) + ecs√−2c
ξ, where Jc is an

Ornstein-Ulenbeck process independent on ξ. Let

Kµ
c (s) = Kc(s)−

∫ 1

0

Kc(t)dt = Jµ
c (s) +

ξ√−2c

(
ecs − 1− ec

−c

)

stay for the demeaned version of Kc. Then

tµ ⇒
∫ 1

0
Kµ

c (t)dw(t)√∫ 1

0
(Kµ

c (t))2 dt
as T →∞.

Proof. All asymptotic convergence statements below hold simultaneously.

It is easy to see that

1

T

T∑
j=1

zj−1ej =
1

T

T∑
j=1

uj−1ej +
ξ√

1− ρ2

1

T

T∑
j=1

ρj−1ej ⇒

⇒
∫ 1

0

Jc(t)dw(t) +
ξ√−2c

∫ 1

0

ecsdw(s) =

∫ 1

0

Kc(s)dw(s).

For the denominator we have

1

T 2

T∑
j=1

z2
j−1 =

1

T 2

T∑
j=1

(
uj−1 + ρj−1 ξ√

1− ρ2

)2

=

1I thank to Don Andrews and Patrik Guggenberger for pointing this out to me.
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=
1

T 2

T∑
j=1

u2
j−1 + 2

ξ√
1− ρ2

1

T 2

T∑
j=1

ρj−1uj−1 +

(
ξ√

1− ρ2

)2
1

T 2

T∑
j=1

ρ2(j−1)

We know that 1
T 2

∑T
j=1 u2

j−1 ⇒ ∫ 1

0
J2

c (t)dt (Phillips, 1987). We can notice that

1
T (1−ρ2)

→ 1
−2c

and 1
T

∑T
j=1 ρ2(j−1) = 1−ρ2T

T (1−ρ2)
→ 1−e2c

−2c
. The next observation is

1

T 3/2

T∑
j=1

ρj−1uj−1 =
1

T 3/2

T∑
i=1

ei

(
T∑

j=i

ρjρj−i

)
=

1

T 3/2

T∑
i=1

eiρ
i 1− ρ2(T−i)

1− ρ2
=

=
1

(1− ρ2)T 3/2

T∑
i=1

eiρ
i − ρT

(1− ρ2)T 3/2
uT ⇒ 1

−2c
(

∫ 1

0

ecsdw(s)− ecJc(1)).

As a result,

1

T 2

T∑
j=1

z2
j−1 ⇒

∫ 1

0

J2
c (t)dt+2

ξ√−2c

1

−2c
(

∫ 1

0

ecsdw(s)− ecJc(1))+

(
ξ√−2c

)2
1− e2c

−2c
.

We can notice that

∫ 1

0

K2
c (s)ds =

∫ 1

0

(Jc(s) +
ξ√−2c

ecs)ds =

=

∫ 1

0

J2
c (s)ds + 2

ξ√−2c

∫ 1

0

(Jc(s)e
cs)ds +

(
ξ√−2c

)2 ∫ 1

0

e2csds.

Consider in more details the integral below:

∫ 1

0

(Jc(s)e
cs)ds =

∫ 1

0

(

∫ s

0

ec(s−t)dw(t)ecs)ds =

∫ 1

0

ect(

∫ 1

s

e2c(s−t)ds)dw(t) =

=
1

−2c

∫ 1

0

ect(1− e2c(1−s))dw(t) =
1

−2c
(

∫ 1

0

ecsdw(s)− ecJc(1)).

So, we have

1

T 2

T∑
j=1

z2
j−1 ⇒

∫ 1

0

K2
c (t)dt.

Now let us move to a model with demeaning. What will change in our results?

For the numerator we have:

1

T

T∑
j=1

zµ
j−1ej =

1

T

T∑
j=1

uµ
j−1ej + u0

1

T

T∑
j=1

(ρj−1 − 1− ρT

T (1− ρ)
)ej ⇒

⇒
∫ 1

0

Jµ
c (t)dw(t) +

ξ√−2c

(∫ 1

0

ecsdw(s)− 1− ec

−c
w(1)

)
=

∫ 1

0

Kµ
c (t)dw(t).
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We handle denominator in a similar way:

1

T 2

T∑
j=1

(zµ
j−1)

2 =
1

T 2

T∑
j=1

(
uµ

j−1 + (ρj−1 − 1− ρT

T (1− ρ)
)

ξ√
1− ρ2

)2

=

=
1

T 2

T∑
j=1

(uµ
j−1)

2+2
ξ√

1− ρ2

1

T 2

T∑
j=1

ρj−1uµ
j−1+

(
ξ√

1− ρ2

)2
1

T 2

T∑
j=1

(ρj−1− 1− ρT

T (1− ρ)
)2.

Similarly to above we can receive that

1

T 2

T∑
j=1

(zµ
j−1)

2 ⇒
∫ 1

0

(Kµ
c (t))2 dt.

Finally we get

tµ ⇒
∫ 1

0
Kµ

c (t)dw(t)√∫ 1

0
(Kµ

c (t))2 dt
.

QED.
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Figure 1: 2.5% and 97.7% quantiles of statistic tcK . Quantiles are based on simulated t-

statisics for AR(1) processes with a constant and stationary initial distribution for values

of AR parameter ρ = 1 + c/T local to unity. Number of simulations 5000. Sample size

T = 300, normal errors.

The quantiles of the distribution of tcK =
R 1
0 Kµ

c (t)dw(t)qR 1
0 (Kµ

c (t))
2
dt

has not been reported in

literature. So, we have to simulate critical values. We also show that for at least one
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c < 0, if we use equitailed interval based on the distribution of tcK , whereas the true

variable is normal, then the coverage will be smaller than declared.

We simulated quantiles and coverage for −c = 0.05, 0.1, 0.5, 1, 2, 4, 10, 15, 20, 25.

The simulation are based on samples of size T = 300. We performed 5000 simulations.

The results are reported in Figures 1 and 2.
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Figure 2: Coverage of equitailed intervals based on the distribution of tcK , whereas the true

distribution is standard normal. Based on simulated quantiles as in Figure 1.

The second technicality we address in this Appendix is related to the rate of

mixing coefficients decay for summands in empirical cdf.

Lemma 14 Given the assumptions made in Section 6 of the paper we have

lim
T→∞

sup
x

∣∣∣∣∣∣
LT,b(x)− P





∫ 1

0
Kµ

c (s)dw(s)√∫ 1

0
(Kµ

c (s))2ds
< x





∣∣∣∣∣∣
= 0 in probability.

Proof. We follow the lines of the proof of Theorem 3.1 of Romano and Wolf (2001)

substituting their statistic for the corresponding t-statistic. The only thing we need

to check is that
1

T

T−bT∑

h=1

αT,bT
(h) → 0 as T →∞,
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where αT,bT
(h) are strong mixing coefficients for an array of variables {tj(bT )}T−bT

j=1 .

The α- mixing coefficient αT,bT
(h) is not exceeding the α- mixing coefficients for a set

of subsamples {z1, ..., zb} and {zh+1, ..., zh+b}, where zj is a Gaussian AR(1) process

with AR coefficient ρ = 1+c/bT . The latter is not bigger than the α-mixing coefficient

αz(h− bT ) for the process z.

We use a statement proved below that αz(h) ≤ ρh. Then

1

T

T−bT∑

h=1

αT,bT
(h) ≤ 1

T

T−bT∑

h=1

min{1, ρh−bT
T } = C

1

(1− ρT )T
→ 0 as T →∞.

The last hold since (1− ρT )T →∞.

Lemma 15 Let zt = ρzt−1 + ut be a stationary Gaussian AR(1) process, then

αz(h) ≤ ρh

Proof. From definition of mixing coefficients we have αz(h) ≤ ρz(h). Here ρ-mixing

coefficient ρz(h) is the maximum correlation between the variables measurable with

respect to the two σ− algebras. According to Kolmogorov and Rozanov (1960), it is

enough to restrict attention to linear functions of the variables {zj}j≤t and {zj}j≥t+n.

According to Ibragimov (1970) (see formula (4.2)),

ρ(n) = sup
ϕ,ψ

|(ϕeinλ, ψ)f | = sup
ϕ,ψ

∣∣∣∣
∫ π

−π

ϕ(λ)ψ(λ)einλf(λ)dλ

∣∣∣∣ ,

where f(λ) =
∑∞

k=−∞ eikλρ|k| is a spectral density function, ϕ and ψ are polynomials

of eiλ with condition ‖ϕ‖f = ‖ψ‖f = 1. Here we use (ϕ, ψ)f =
∫ π

−π
ϕ(λ)ψ(λ)f(λ)dλ.

Let ϕ(λ) =
∑L

k=0 ake
ikλ and ψ(λ) =

∑K
j=0 bje

ijλ, then

∣∣∣
∫ π

−π
ϕ(λ)ψ(λ)einλf(λ)dλ

∣∣∣
‖ϕ‖f‖ψ‖f

= ρn

∣∣∣∣∣∣

∑
k,j akbjρ

k+j

√
(
∑

k,k′ akak′ρ|k−k′|)(
∑

j,j′ bjbj′ρ|j−j′|)

∣∣∣∣∣∣
.

Let us define matrices A = (ρ|i−j|)i,j and B = (ρi+j−2)i,j. Then

ρ(n) = ρn sup
a,b

∣∣∣∣
a′Bb√

a′Aa
√

b′Ab

∣∣∣∣ ,
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here a = (a0, a1, ..., aM) and b = (b0, ..., bM), M = max{L,K}. We also define a

matrix

L =




√
1− ρ2 0 0 ... 0 0

−ρ 1 0 ... 0 0

0 −ρ 1 ... 0 0
...

...
... ...

...
...

0 0 0 ... −ρ 1




.

Then LAL′ = diag(1−ρ2, 1−ρ2, ..., 1−ρ2) = Ã, and LBL′ = diag(1−ρ2, 0, ..., 0) = B̃.

Let ã = (L′)−1a and b̃ = (L′)−1b, then

ρ(n) = ρn sup
a,b

∣∣∣∣
a′Bb√

a′Aa
√

b′Ab

∣∣∣∣ = ρn sup
ea,eb

∣∣∣ã′B̃b̃
∣∣∣

√
ã′Ãã

√
b̃′Ãb̃

= ρn sup
ea,eb

∣∣∣ã0b̃0

∣∣∣
√

(
∑

ã2
k)(

∑
b̃2
k)

= ρn.

7 Simulations.

We performed a small simulation study to assess the extend to which asymptotic re-

sults are reflected in finite samples. The study is intended to answer several questions

listed below:

• check finite sample performance of the three procedures validity of which was

proven in the paper;

• explore a sensitivity of the described methods to non-symmetry or heavy-

taileness of distribution of error terms;

• compare the accuracy of the three methods;

• assess the size distortion of subsampling: whether it is as extreme as predicted

by asymptotic results of Andrews and Guggenberger (2006);

• examine how coverage properties of subsampling intervals depend on block size

and for what range of AR coefficients it is safe to use subsampling.

We start with the first group of questions concerning the three methods we pro-

vided proofs for. We simulate AR(1) model with a linear trend since this is the setup
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εi ∼ χ2
4 − 4 εi ∼ χ2

4 − 4

Andrews Stock Hansen Andrews Stock Hansen

ρ = 0.3 0.95 0.97 0.97 0.96 0.96 0.96

ρ = 0.5 0.96 0.96 0.96 0.96 0.96 0.96

ρ = 0.7 0.97 0.96 0.96 0.96 0.95 0.95

ρ = 0.8 0.97 0.96 0.96 0.96 0.95 0.95

ρ = 0.9 0.97 0.96 0.96 0.97 0.96 0.96

ρ = 0.95 0.97 0.96 0.96 0.96 0.97 0.96

ρ = 0.99 0.95 0.95 0.95 0.96 0.96 0.95

ρ = 1 0.95 0.96 0.96 0.96 0.95 0.96

Table 1: Coverage of Andrews’(1993), Stock’s (1991) and Hansen’s grid bootstrap (1999)

intervals for the AR coefficient in AR(1) model with a linear trend yt = a + bt + xt;xt =

ρxt−1 + εt. Sample size equals 120.

εi ∼ ARCH(0.3) εi ∼ ARCH(0.85)

Andrews Stock Hansen Andrews Stock Hansen

ρ = 0.3 0.89 0.88 0.90 0.70 0.72 0.73

ρ = 0.5 0.92 0.89 0.90 0.72 0.72 0.73

ρ = 0.7 0.93 0.90 0.91 0.73 0.76 0.77

ρ = 0.8 0.93 0.91 0.92 0.77 0.79 0.80

ρ = 0.9 0.94 0.92 0.92 0.83 0.84 0.85

ρ = 0.95 0.95 0.94 0.94 0.85 0.88 0.87

ρ = 0.99 0.96 0.95 0.95 0.90 0.90 0.92

ρ = 1 0.95 0.95 0.95 0.91 0.91 0.93

Table 2: Coverage of Andrews’(1993), Stock’s (1991) and Hansen’s grid bootstrap (1999)

intervals for the AR coefficient in AR(1) model with a linear trend yt = a + bt + xt;xt =

ρxt−1 + εt. Sample size equals 120.
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where the distortions are most pronounced. We used normal errors, errors having cen-

tered χ2 distribution with 4 and 8 degrees of freedom, and errors following ARCH(1)

process with parameter 0.3 and 0.85. Those specifications are taken from Andrews

(1993). We use sample size T = 120, as a typical one for macroeconomic time series.

We performed simulations for ρ equals to 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99 and 1. This

range of values of ρ covers some values in stationary region, in close proximity to

the unit root, as well as in intermediate range. Number of simulations is equal 1000.

Some of results are reported in Tables 1 and 2.

All three methods achieved 95% coverage for an AR(1) model with linear trend

and normal errors for all values of ρ we checked (we did not report these results

in the tables). Table 1 is intended to show that all methods seems to be robust

towards asymmetry and heavy-taileness of distribution of error terms. We should

also note that there is no strong leader among the three methods. In Table 2 we

allowed conditional heteroscedasticity. Strictly speaking our proofs do not allow for

heteroscedasticity. We can see that the methods failed in this setup, and the coverage

may fall as low as 70%.

Now we turn to subsampling. According to our results reported in Section 6 of the

paper, the subsampling procedure fails to provide asymptotically correct confidence

sets. According to Andrews and Guggenberger (2006) the asymptotic coverage is as

low as 26% for an AR(1) with a linear time trend. We would like to know to what

extend these asymptotic results are reflected in finite samples.

According to the proof of Theorem 4 from the paper, a bad coverage is expected

for intermediate values of ρ. Romano and Wolf (2001) provided some simulations

regarding the coverage of subsampling intervals, but for a very restricted set of values

of ρ ∈ {0.6, 0.9, 0.95, 0.99, 1}. We repeat their exercise for a wider range of ρ’s and for

several different sample sizes T = 120, T = 240, T = 480, T = 960. For each sample

size we try several block sizes. For T = 120 and T = 240 we use the same set of

block sizes as used in Romano and Wolf. For T = 480 and T = 960 we use block

sizes b that approximately follow the rule proposed in Romano and Wolf: b = cT 1/2,

c ∈ [0.5, 3]. For all simulations we used a model with normal homoscedastic errors
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Figure 3: Coverage of equitailed subsampling intervals with nominal level 95%. AR(1)

model with a linear time trend, normal errors. Number of simulations =1000.
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only. All results are summarized on Figure 3.

First of all, we should note that subsampling undercovers for quite a wide range

of ρ’s. However, the amount of undercoverage is not as extreme as predicted by

Andrews and Guggenberger (2006). One more interesting aspect could be noted - the

size property of the procedure becomes worse as the sample size increases! According

to the intuition of Theorem 4 from the paper, the size distortion becomes pronounced

when T/bT is large, that can only be true for large sample sizes. As for the right

choice of block size, there is no clear leader: for different range of ρ’s and for different

T different block sizes serve better.

One main conclusion of our simulation study is that we do not recommend subsam-

pling procedure to be used in empirical study to make inferences about the persistence

of a time series.

REFERENCES

Andrews D.W.K. (1993): Exactly Median-Unbiased Estimation of First Order

Autoregressive/Unit Root Models, Econometrica, 61(1), 139-165.

Andrews and Guggenberger (2006)
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