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Mechanism Design and Information Design

I "Basic" Mechanism Design:
I Fix an economic environment and information structure
I Design the rules of the game to get a desirable outcome

I Information Design
I Fix an economic environment and rules of the game
I Design an information structure to get a desirable outcome



Mechanism Design and Information Design

I "Basic" Mechanism Design:
I Can compare particular mechanisms..

I e.g., �rst price auctions versus second price auctions

I Can work with space of all mechanisms...

I without loss of generality, let each agent�s action space be his
set of types...revelation principle

I e.g., optimal mechanism

I Information Design
I Can compare particular information structures

I Linkage Principle: Milgrom-Weber 82
I Information Sharing in Oligopoly: Novshek-Sonnenschein 82

I Can work with space of all information structures

I without loss of generality, let each agent�s type space be his
set of actions......revelation principle



Information Design: Some Leading Cases

1. Uninformed information designer (or "mediator"):
I Myerson: "Bayesian games with communication" (one piece of
expanded mechanism design: also "collective choice
problems")

I Incomplete Information Correlated Equilibrium literature of the
1980s and 1990s (Forges 93)

2. One player (a "receiver") and an informed information
designer (or "sender")

I "Bayesian Persuasion": Kamenica-Gentzkow 11 and large and
important literature inspired by it

3. One player and uninformed designer: very boring

4. Many players and an informed information designer



Setup

I Maintained Environment: Fix players 1,...,I ; payo¤ states Θ;
prior on states ψ 2 ∆ (Θ)

I Basic Game G : (Ai , ui )i=1..,I where ui : A�Θ ! R

I Information Structure S : (Ti )i=1..,I and π : Θ ! ∆ (T )



Information Designer�s Problem

I Decision rule σ : T �Θ ! ∆ (A) is obedient for (G ,S) if, for
all i , ti , ai and a0i ,

∑
a�i ,t�i ,θ

ui ((ai , a�i ) , θ) σ (ajt, θ)π (tjθ)ψ (θ)

� ∑
a�i ,t�i ,θ

ui
��
a0i , a�i

�
, θ
�

σ (ajt, θ)π (tjθ)ψ (θ) ;

Obedient decision rule σ is a Bayes correlated equilibrium
(BCE). Characterizes implementability.

I Information designer with payo¤ v : A�Θ ! R picks a
Bayes correlated equilibrium σ 2 BCE (G ,S) to maximize

VS (σ) � ∑
a,t ,θ

ψ (θ)π (tjθ) σ (ajt, θ) v (a, θ) .



Information Design: Three Interpretations

1. Literal: actual information designer with ex ante commitment

2. Informational robustness: family of objectives characterize set
of attainable outcomes

3. Metaphorical: e.g., adversarial / worst case



Revelation Principle

I We implicitly restrict the information designer to give players
information only action recommendations

I But allowing the information designer to send richer signals
would not have allowed the information designer to induce
implement extra outcomes

I standard arguments not reviewed here establish this.



One Uninformed Player: Benchmark Investment Example
I a �rm is deciding whether to invest or not:
I binary state: θ 2 fB,Gg, bad or good
I binary action: a 2 fInvest, Not Investg
I payo¤s

bad state B good state G
Invest �1 x
Not Invest 0 0

with 0 < x < 1
I prior probability of each state is 12
I �rm is uninformed (so one uninformed player)
I information designer (government) seeks to maximize
probability of investment (independent of state)

I leading example of Kamenica-Gentzkow 11: will return to KG
and concavi�cation



Decision Rule

I pθ is probability of investment, conditional on being in state θ

bad state B good state G
Invest pB pG
Not Invest 1� pB 1� pG

I interpretation: �rm observes signal = "action
recommendation," drawn according to (pB , pG )



Obedience Constraints

I if "advised" to invest, invest has to be a best response:

�1
2
pB +

1
2
pG x � 0,

pG � pB
x

I if "advised" to not invest, not invest has to be a best response
I but because x < 1, investment constraint is binding one
I always invest (pB = 1 and pG = 1) is not a BCE
I the "full information equilibrium" has invest only in good
state (pB = 0 and pG = 1)



Bayes Correlated Equilibria
equilibrium outcomes (pB , pG ) for x = 0.9
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I always invest (pB = 1 and pG = 1) is not a BCE
I the full information equilibrium has invest only in good state
(pB = 0 and pG = 1)



Information Design

I recommendation maximizing the probability of investment:

pB = x , pG = 1

I best BCE
B G

Invest x 1
Not Invest 1� x 0

I Optimal for government to obfuscate, partially pooling good
state and bad state



One Informed Player

I Firm receives a signal which is "correct" with probability
q > 1/2.

I Formally, the �rm observes a signal g or b, with signals g and
b being observed with conditionally independent probability q
when the true state is G or B respectively:

bad state B good state G
bad signal b q 1� q
good signal g 1� q q



I As before, except distribution over states θ 2 fB,Gg changes
in response to �rm�s signal t 2 fb, gg;

I A decision rule is then a quadruple
�
pbB , p

b
G , p

g
B , p

g
G

�
.

I For example, if �rm�s own information is su¢ ciently noisy, or
q � 1

1+x , there is still a binding investment constraint for
each signal, e.g.,

pgG �
1� q
q

pgB
x
.

(if the good signal is good enough, can get investment with
probability 1)

I the interesting question: what if we project
�
pbB , p

b
G , p

g
B , p

g
G

�
back into ex ante behavior

�
pbB , p

b
G , p

g
B , p

g
G

�
? e.g.

pG = qp
g
G + (1� q) p

b
G



One Informed Player: Bayes Correlated Equilibrium

equilibrium set (for x = 0.9 and q = 0.5, 0.575, 0.7 and 0.875)
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Two Firms

I payo¤s almost as before....

θ = B I N
I �1+ ε �1
N 0 0

θ = G I N
I x + ε x
N 0 0

I ...up to ε term
I assume that information designer (government) wants to
maximize the sum of probabilities that �rms invest....

I if ε = 0, problem is exactly as before �rm by �rm; doesn�t
matter if and how �rms�signals are correlated

I we will consider what happens when jεj � 0 (so the analysis
cannot change very much)

I will now have pro�le of action recommendations depending on
the state



Two Firms: Strategic Complementarities

I If ε > 0, optimal rule is

θ = B I N
I x+ε

1�ε 0
N 0 1�x�2ε

1�ε

θ = G I N
I 1 0
N 0 0

I the probability of any one �rm investing is still about x ..
I binding constraints are still investment constraints, slackened
by having simultaneous investment...

x + ε

1� ε
(�1+ ε) + x + ε � 0

I ....so signals are public



Two Firms: Strategic Substitutes

I If ε < 0, optimal rule is

θ = B I N
I 0 x + ε

N x + ε 1� 2x � 2ε

θ = G I N
I 1 0
N 0 0

I the probability of any one �rm investing if the state is bad is
still about x ....

I binding constraints are still investment constraints, slackened
by having minimally correlated investment...

(x + ε) (�1) + x + ε � 0

I ....and signals are private
I .....and as "uncorrelated" as possible



Preferences over Correlation of Players Actions

I We assumed information designer had no intrinsic preferences
over correlation of actions but simply wanted correlation for
instrumental reasons: with strategic complements, positive
correlation relaxed obedience constraint; with strategic
substitutes, negative correlation relaxed obedience constraints.
(see also Perego, Mathevet and Taneva (2017)).

I Arieli and Babichenko (2016), Meyer (2017) study intrinsic
preferences over correlation



Other Objectives and a Benevolent Information Designer

I In one �rm case, if government had the same objective as the
�rm, he would always give them full information...

I But in the two �rm case, a benevolent government
maximizing the (joint) pro�ts of the two �rms might still
manipulate information in order to correct for externalities and
coordinate behavior

I In game

θ = B I N
I �1+ ε+ z �1
N z 0

θ = G I N
I x + ε+ z x
N z 0

benevolent government will behave as an investment
maximizing government if z is large enough



Concavi�cation: Example
I recall example

bad state B good state G
Invest �1 x
Not Invest 0 0

with 0 < x < 1
I if �rm assigns probability q to good state,

I optimal decision rule is

A� (q) =

8<:
{Invest}, if q > 1

1+x
{Invest, Not Invest}, if q = 1

1+x
{Not Invest}, otherwise

I the induced probability of investment is

v (q) =
�
1, if q � 1

1+x
0, otherwise



Concavi�cation: General One Player Case

I single player u : A�Θ ! R

I information designer v : A�Θ ! R

I de�ne player�s decision rule A� : ∆ (Θ)! 2A/?

a� (q) = argmax
a2A

∑
θ

q (θ) u (a, θ)

I de�ne designer�s indirect utility over posteriors ev : ∆ (Θ)! R

ev (q) = max
a2A�(q)∑θ

q (θ) v (a, θ)



Concavi�cation: General

I concavi�cation of f the in�num of the concave functions
exceeding f

I de�ne bv to be the concavi�cation of the designers indirect
utility ev

THEOREM:

max
σ2BCE (G ,S )

VS (σ) = bv (ψ)



Concavi�cation

I We �rst described two step procedure for solving information
design problem (with one or many players):

1. Characterize all implementable decision rules
2. Pick the designer�s favorite

I Concavi�cation procedure (with one player)
[Aumann-Maschler 95 and Kamenica-Gentzkow 11] is in
principle a short cut

I Identify information designer�s utility for every belief of the
single player

I Identify utility from optimal design by concavi�cation,
identifying information design only implicitly

I Many player generalization: Mathevet al 16
I Always nice interpretation, sometimes (but not always) useful
in solving information design problem



Application 1 - Information Sharing: Strategic Substitutes

I Classic Question: are �rms better o¤ if they share their
information?

I Consider quantity competition when �rms uncertain about
level of demand (intercept of linear demand curve) with
symmetry, normality and linear best response; two e¤ects in
con�ict:

1. Individual Choice E¤ect: Firms would like to be as informed as
possible about the state of demand

2. Strategic E¤ect: Firms would like to be as uncorrelated with
each other as possible



Application 1 - Information Sharing

I Classic Question: are �rms better o¤ if they share their
information?

I Consider quantity competition when �rms uncertain about
level of demand: individual and strategic e¤ects in con�ict

I Resolution:
I For large enough price sensitivity (and thus strategic
substitutability), strategic e¤ect wins and no information is
optimal

I For low enough price sensitivity (and thus strategic
substitutability), individual choice e¤ect wins and full
information is optimal

I For intermediate price sensitivity, there is a non-trivial trade-o¤
and it is optimal to have �rms observe noisy signals of
demand, but with uncorrelated noise and thus conditionally
independent signals, and thus signals which are as uncorrelated
as possible conditional on their accuracy



Application 2 - Aggregate Volatility: Wacky Designer
Objective

I Classic Question: can informational frictions explain aggregate
volatility?

I Consider a setting where each agent sets his output equal to
his productivity which has a common component and an
idiosyncratic component

I again with symmetry and normality.... common component θ
with variance σ2; idiosyncratic component εi with variance τ2;
θi = θ + εi

I Which information structure maximizes variance of average
action?



Application 2 - Aggregate Volatility
What information structure maximizes variance of average action?

I suppose that each agent observes a confounding (c.f., Lucas
72) signal si = λεi + (1� λ) θ without noise...

I optimal action is

(1� λ) σ2 + λτ2

(1� λ)2 σ2 + λ2τ2
si

I variance of average action is maximized when

λ =
σ

2σ+
p

σ2 + τ2

and maximum variance of average action is 
σ+

p
σ2 + τ2

2

!2



Application 2 - Aggregate Volatility

What information structure maximizes variance of average action?

I "optimal" information structure has a confounding (c.f.,
Lucas 72) signal si = λxi + (1� λ) y without noise...

I as σ ! 0:
I "optimal" weight on idiosyncratic component goes to 0
I agents put a lot of weight on their signal in order to put a
non-trivial weight on their idiosyncratic component

I in the limit, the common component becomes a payo¤
irrelevant but common "sentiments" shock:

I this was actually a non-strategic problem: logic can be
extended to strategic setting

I can then be embedded in a richer setting (Angeletos La�O 13)



Application 3 - First Price Auction: Information Shrinking
BCE, Adversarial Information Designer, Robust Predictions
and Partial Identi�cation

I Example: Two bidders and valuations independently and
uniformly distributed on the interval [0, 1]

I Plot: (expected bidders�surplus, expected revenue) pairs
I green = feasible pairs, blue = unknown value pairs, red =
known value pairs



Application 3 - First Price Auction

1. Known value case (red region) is subset of unknown value
case (blue region)

2. Robust Prediction:

2.1 revenue has lower bound � 1/10
2.2 lower bound (w.r.t. �rst order stochastic dominance) on bids

3. Partial Identi�cation: Winning bid distribution =) Lower
bound on Value Distribution (w/o identifying private vs.
common values)



Designer Access to Players�Information

I We want to assume that information designer knows the state
θ...

I ...but what should we assume about what information designer
knows about players�information? Consider three scenarios:

1. Omniscient Designer: the designer knows all players�
information too...[maintained assumption so far]

2. Communicating Designer: the designer can condition his
announcements about the state only on players�reports of
their types

3. Non-Communicating Designer: the designer can tell players
about the state but without conditioning on players�
information



Back to One Informed Player: Communicating Designer

I as before, �rm observes a signal t 2 T and government makes
a recommendation to invest ptθ as a function of reported
signal t and state θ

I incentive constraint: add truth-telling to obedience
I to insure truth-telling, di¤erences in recommendations must
be bounded across states



Communicating Designer
I adding truth-telling constraints...(x = 0.9, q = 0.7)
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I communicating (red), omniscient (pink)



Communicating Designer

probablity of investment in bad state
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I if there is a large discrepency in recommendations, then �rm
has an incentive to misreport his signal

I e.g., at maximum investment BCE (top right), �rm with good
signal is always told to invest; �rm with bad signal is given
useful information

I might as well mis-report good signal as bad signal to get
information



Non-communicating designer

I �rm observes his signal
I government o¤ers a recommendation, independent of the
signal, depending on the true state

I In our example, communicating and non-communicating
designer can attain the same set of outcomes;

I Kotolin et al show this in a more general - but still restrictive -
class of environments

I alternative interpretation: �rms can communicate publicly not
privately to large audience



Taxonomy

Single
Agent

Many
Agent

Uninformed
Designer

Many
Agent
Informed
Designer

Omniscient � Bayesian
Solution

BCE

Communicating
Kolotilin
et al

Communication
Equilibrium

.

Non
Communicating

KG
informed
receiver

Strategic
Form

Correlated
Equilibrium

.



Mechanism Design and Information Design

I Myerson Mechanism Design:
I Dichotomy in Myerson (1991) textbook

I Bayesian games with communication (game is �xed)
I Bayesian collective choice problems (mechanism is chosen by
designer)

I both combined in Myerson (1982, 1987)

I Truth-telling (honesty) and obedience constraints always
maintained

I "information design" = "Bayesian games with
communication" � truth-telling + informed information
designer/mediator



Incomplete Information Correlated Equilibrium
I Decision rule σ : T �Θ ! A is incentive compatible for
(G ,S) if, for each i , ti and ai , we have

∑
a�i ,t�i ,θ

ui ((ai , a�i ) , θ) σ (ajt, θ)π (tjθ)ψ (θ) (1)

� ∑
a�i ,t�i ,θ

ui ((δ (ai ) , a�i ) , θ) σ
�
aj
�
t 0i , t�i

�
, θ
�

π (tjθ)ψ (θ) ;

for all t 0i and δi : Ai ! Ai .

I Decision rule σ : T �Θ ! A is join feasible for (G ,S) if
σ (ajt, θ) is independent of θ, i.e., σ (ajt, θ) = σ

�
ajt, θ0

�
for

each t 2 T , a 2 A,and θ, θ0 2 Θ.
I Solution Concepts:

I Bayes correlated equilibrium = obedience
I Communication equilibrium = incentive compatibility (and
thus obedience) and join feasibility

I Agent normal form correlated equilibrium involves additional
feasibility constraints.



Adversarial Equilibrium Selection
I Suppose that an information designer gets to make a
communication Φ : T �Θ ! ∆ (M); new game of
incomplete information (G ,S ,Φ)

I Write E (G ,S ,Φ) for the set of Bayes Nash equilibria of
(G ,S ,Φ) and write V �S (Φ, β) for the information designer�s
utility

I We have been studying the maxmax problem

max
C
max

β
V �S (Φ, β)

using a revelation principle argument to show that this equals

max
σ2BCE (G ,S )

VS (σ)

I The maxmin problem

max
C
min

β
V � (S ,Φ, β)

does not have a revelation principle characterization



Adversarial Equilibrium Selection
I Starting from (G ,S), suppose that an information designer
gets to make an expansion Φ : T �Θ ! ∆ (M); new game of
incomplete information (G ,S ,Φ)

I Write E (G ,S ,Φ) for the set of Bayes Nash equilibria of
(G ,S ,Φ) and write V �S (Φ, β) for the information designer�s
utility

I We have been studying the maxmax problem

max
C
max

β
V �S (Φ, β)

using a revelation principle argument to show that this equals

max
σ2BCE (G ,S )

VS (σ)

I The maxmin problem

max
C
min

β
V � (S ,Φ, β)

does not have a revelation principle characterization



Adversarial Equilibrium Selection Example

I two �rms with payo¤s

θ = B I N
I x , x �1, 0
N 0,�1 0, 0

θ = G I N
I x , x x , 0
N 0,�1 0

I probability of state G is q < 1� x
I player 1 knows the state, T1 = fb, gg;

π (g jG ) = π (bjB) = 1
I player 2 knows nothing, T2 = f?g
I information designer wants to induce investment in the worst
equilibrium



Adversarial Equilibrium Selection Example

I consider the communication with
M1 = M2 = f0, 1, 2, ....g [ f∞g

I let

π (0, 0jG , g) = 1

π (m1,m2jB, b) =

8<: q
1�q x

m1+m2 ,
if m1 � 1
and m2 = m1 � 1 or m1

1� qx
1�x , if m1 = m2 = ∞



Adversarial Equilibrium Selection Example

good state 0 1 2 � k � ∞
0 1 0 0 � 0 � 0
1 0 0 0 � 0 � 0
2 0 0 0 � 0 � 0
� � � � � � � �
k 0 0 0 � 0 � 0
� � � � � � � �
∞ 0 0 0 � 0 � 0



Adversarial Equilibrium Selection Example

bad state 0 1 2 � k � ∞
0 0 0 0 � 0 � 0
1 q

1�q x
q
1�q x

2 0 � 0 � 0
2 0 q

1�q x
3 0 � 0 � 0

� � � � � � � �
k 0 0 0 � q

1�q x
2k � 0

� � � � � � � �
∞ 0 0 0 � 0 � 1� qx

1�x



Adversarial Equilibrium Selection Example

unconditional distribution 0 1 2 � k � ∞
0 q 0 0 � 0 � 0
1 qx qx2 0 � 0 � 0
2 0 qx3 0 � 0 � 0
� � � � � � � �
k 0 0 0 � qx2k � 0
� � � � � � � �
∞ 0 0 0 � 0 � 1� q

1�x



Adversarial Equilibrium Selection Example

I now player 1 observing m1 assigns probability 1
1+x to player 2

observing m1 � 1 and probability x
1+x to player 2 observing m1

I now player 2 observing m2 assigns probability 1
1+x to player 1

observing m2 and probability x
1+x to player 1 observing m2 + 1

I type 0 of player 1 has dominant strategy to inve
I knowing this, it is a weakly dominant strategy for type 0 of
player 2 to invest

I now, by induction, invest is unique action surviving iterated
deletion of weakly dominated strategies for all types k 6= ∞

I thus not invest survives iterated deletion with probability

1� q
1� x



Adversarial Equilibrium Selection Example

I we can get arbitrarily close to this probability replacing weak
with strict deletion

I so there is an equilibrium of an information structure where
the probability that both players invest can be reduced
arbitrarily close to

q
1� x

I can show that this is best information structure
I if x > 1, we could have guaranteed investment everywhere
I bound improves to

q(1+ x)
1� x

if player 1 does not know the state



Adversarial Equilibrium Selection

I this argument: see Kajii-Morris 97; Hoshino 17, Inostroza and
Pavan 17,

I other arguments: see Carroll 15, Taneva et al 16,



Multi-Stage Game

I "Information Design in a Multi-Stage Game" by Makris and
Renou

I two players and two stages
I player 1 chooses a1 2 fT ,Bg in the �rst stage; player 2 is
inactive

I player 2 chooses a2 2 fL,Rg in the �rst stage; player 1 is
inactive

I payo¤s:
L R

T 2, 2 0, 1
B 3, 0 1, 1



Multi-Stage Game

I what if an information designer can sent information to the
players?

I in this complete information case, relevant information is
payo¤ irrelevant and about player 1�s action

I with no information, unique Nash equilibrium (B,R)
I if player 2 told player 1�s action, Stackleberg outcome (T , L)



Multi-Stage Game

I can also induce
� 1
2 ,
1
2

�
distribution on (B, L) and (T , L):

I player 1 receives
�
1
2 ,
1
2

�
distribution on signals t or b

I player 2 receives signal l if and only if (T , t) or (B, b) played
in the �rst period, otherwise signal r

I equilibrium for players to follow "recommendations"

I in fact, can get exactly convex combination of utility pro�les
(1, 1) , (2, 2),(2.5, 2)



Multi-Stage Game

I n players and T stages
I at each stage t, state θt is drawn, player i receives signal
sit 2 Sit and chooses an action ait 2 Ait

I probability pt of state θt and signal pro�le st at period t
depends on all past actions signals and states

I payo¤ depends on realized states and actions
I this is base game



Expansions

I Now suppose that players observe addition signals
I At stage t, player i recieves additional signal mit 2 Mit

I The joint probability πt of state θt and signal pro�le (st ,mt )
at period t depends on all past actions signals (including
additional ones) and states

I expanded game



Admissible Expansion

I no causal e¤ects: conditonal on past actions, signals and
states, the probability πt of current states and signals does
not depend on past additional signals, and coincides with pt

I additional signals at each stage are measurable with respect to
past and current states and signals, past actions and past
additional signals



Bayes Correlated Equilibria

I Bayes correlated equilibria: set of admissible expansions where
additional signals are action recommendations and obedience
is satis�ed

I The set of outcomes that can be induced by Bayes Nash
equilibria in an admissible expansion equals the set of Bayes
correlated equilibria



Compare Communication Equilibria

I Traditional study of multi-stage games with communication:
add an uninformed mediator, who receives reports from
players and makes perhaps correlated recommendations

I Set of possible outcomes: communication equilibria required
to satisfy truth-telling as well as obedience

I The set of communication equilibria of expansions will also
induce the set of BCE



Re�nements

I Traditional to impose sequential rationality in multi-stage
games

I Myerson 1986: sequential communication equilibria
I Can de�ne analogous sequential Bayes correlated equilibria
and show equivalence between:

I sequential Bayes correlated equilibria
I outcomes reached by sequential equilibria in an expansion
I outcomes reached by sequential communication equilibria in an
expansion



Trembling Designer

I Like sequential communication equilibrium, sequential BCE
requires the designer to tremble

I Gap between BCE and sequential BCE? Price discrimination
example but are there more?



Sequential Information Design
I Doval and Ely (2016) "Sequential Information Design"
I public good contribution game:

C NC
C vθ � c , vθ � c vθ � c , vθ

NC vθ, vθ � c 0, 0

where 0 < vL < c < vH
I probability of state H is p
I if pvH + (1� p) vL > c , three Nash equilibria: pure equilibria
where one player contributes and mixed equilibrium where
each contributes with probability

α =
pvH + (1� p) vL � c
pvH + (1� p) vL

I information designer wants to maximize expected total
contribution...

I ...so if α � 1
2 , the designer�s preferred Nash equilibria would

be mixed equilibrium



Information Design

I Static information design. In best BCE, both players always
contribute in the low state. In the high state both contribute
with probability more than 1

2 with one always contributing.
I Better two stage mechanism:

I reduce probability that player 1 contributes, while increasing
the probability that player 2 contributes in the high state.

I in static mechanism, this would remove the incentive of the
player 1 to contribute

I but if player 1 moves �rst, can tell player 2 not to contribute if
player 1 does not do so

I this gives the best two stage mechanism

I Better three stage mechanism:
I randomize over who is �rst mover
I slack in second mover�s obedience constraint in the two stage
mechanism means there are gains from doing so



Best BCE

I In best BCE, both players always contribute in the low state.
In the high state both contribute with probability more than 1

2
with one always contributing.

I Better sequential mechanism:
I reduce probability that player 1 contributes, while increasing
the probability that player 2 contributes in the high state.

I in static mechanism, this would remove the incentive of the
player 1 to contribute

I but if player 1 moves �rst, can tell player 2 not to contribute if
player 1 does not do so

I this gives the best two stage mechanism



General Question

I Fix basic game specifying actions and payo¤ states
I Construct extensive form with arbitary information and order
of moves

I Admissible extensive form: no delegation, know own action,
no commitment

I Question: which outcomes (distributions over actions and
states) can be induced by some equilibrium and some
admissible extensive form?



Canonical Mechanism

I Pick an order to approach players
I Sequentially provide them with information
I The optimal outcome can always be obtained in a canonical
mechanism



Optimal Canonical Mechanism in Example

1. Pick a player to move �rst at random

2. Ask him to contribute with some probability conditional on
the state

3. Ask second mover to contribute with some probability
conditional on the recommendation and action of the �rst
mover

4. No contribution requested if the �rst mover does not follow
recommendation

5. First mover contributes with probability 1 in low state, second
mover always contributes with probability 1

6. First mover contributes with probability

min
�
1, 1� 2c � pvH + (1� p) vL

cp

�
in the high state. This is the maximum probability consistent
with obedience.



Ordering Information

I Fix two information structures S =
�
(Ti )

I
i=1 ,π

�
and

S 0 =
�
(T 0i )

I
i=1 ,π

0
�

I Information structure S� =
�
(T �i )

I
i=1 ,π

�
�
is a combination

of S and S 0 if
I T �i = Ti � T 0i for each i
I margT π� = π and margT 0 π� = π0

I Information structures S is individually su¢ cient for S 0 if

∑
t 0�i

π�
��
t 0i , t

0
�i
�
j (ti , t�i ) , θ

�
is independent of (t�i , θ)



Key Properties of Individual Su¢ ciency

I Reduces to Blackwell�s order in the one player case.
I But noise must depend on θ

I Information structures S and S 0 are individually su¢ cient for
each other if and only if they correspond to the same subset
of the universal type space.



Ordering Information

I Intuition: more information for the player imposes more
constraints on the information designer and reduces the set of
outcomes she can induce

I Recall Auction Example
I Say that information structure S "is more incentive
constrained than" (= more informed than) S 0 if it gives rise to
a smaller set of BCE outcomes than S 0 in all games

I in one player case, this ordering corresponds to Blackwell�s
su¢ ciency ordering

I in many player case, corresponds to "individual su¢ ciency"
ordering

I Bergemann-Morris 16, see also Lehrer et al 10 and 11



Nice Properties of Individual Su¢ ciency Ordering

I Reduces to Blackwell in one player case
I Transitive
I Neither implies nor implied by Blackwell on join of players�
information

I Two information structures are each individually su¢ cient for
each other if and only if they share the same higher order
beliefs about Θ

I S is individually su¢ cient for S 0 if and only if giving extra
signals to S 0 equals S plus an appropriate correlation device


	Introduction
	General Setup
	Omniscient Persuasion Examples
	One Uninformed Player
	Two Uninformed Players

	Concavification
	Applications
	Information Designer without Access to Players' Information
	Adversarial Equilibrium Selection

	Mechanism Design in Multi-Stage Games
	Sequential Information Design
	Ordering Information

