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Abstract

In single person decision problems, pointwise convergence of prior probabilities is sufficient
to ensure continuity of equilibrium payoffs, since the set of states where conditional probabilities
are badly behaved has small probability in the limit. But in many person decision problems -
t.e. games - this argument breaks down: because of strategic interaction, arbitrarily small prob-
ability events matter. We show that “almost uniform convergence” of conditional probabilities

is necessary and sufficient for continuity of payoffs.

1. Introduction

The paper studies the lower-hemicontinuity of equilibria of incomplete information games with
respect to the information structure. To describe the closeness of information structures, we fix a
countable state space, a game on that state space and a group of individuals’ information partitions.
Consider a sequence of probability distributions P* on the state space which converges pointwise
to some limit distribution P*°. Each P* completes the description of the information structure. So

the continuity question becomes the following: in what additional sense must P* converge to P



to guarantee that for any equilibrium of the game under P, there is a nearby equilibrium of the
game under P*,

As a beachmark, consider first the special case of a single person game, i.e. a decision problem
under uncertainty. If the individual’s conditional probabilities under P* are close to those under
P, then actions which are optimal given P will be almost optimal given P*. Butas bk — o0, the
set of states where the individual’s conditional probabilities vary significantly from those under P°
becomes raurbitrari}y small. Thus there is continuity of payoffs in the following sense: for sufficiently
large k and for any decision rule optimal under F®, there is another decision rule which is almost
optimal under P* which gives almost the same (ex ante) expected utility. So pointwise convergence
is already strong encugh to guarantee payoff continuity.

It might appear that a similar logic would work in general - i.e. many person - games. Because
of strategic interaction, however, arbitrarily small events may matter in games. Suppose player
’s conditional probabilities are badly behaved on a small event Ey. I player 2 has a good reason
to believe that player 1 will behave very differently on a small event E;, then player 2 may also
want to behave differently on another event F,, and then player 3 may want to behave differently
on £3, and so on. Although £y may be a small event, the union of this chain of events may be a
large event. So not only must the probability of the set of states where conditional probabilities are
badly behaved go to zero as k — co, but also the whole union of the chain of events must become
a small event,

Roughly speaking, the latter condition is equivalent to what we term “almost uniform con-
vergence of conditional probabilities”. The main result of this paper shows that almost uniform
convergence of conditional probabilities is necessary and sufficient for payoff continuity.

We will discuss the significance of the “almost” qualifier and give an outline of the paper below.
But it will be useful to first put this continuity result in the context of a recent literature on “almost
common knowledge”. Rubinstein’s (1989) electronic mail game showed that small probability
events could have large consequences because of strategic interaction. Morris, Rob and Shin (1993)
' characteﬁzeé the properties of an information system which allowed small probability events to
have large consequences. Carlsson and van Damme (1993) show that arbitrarily small amounts of

noise lead to a discontinuity of the type described above. These results are important because they



~ suggest that in strategic environments, economic models are not robust to their common knowledge
assumptions. We would like to characterize what the relevant notion of closeness of information
systems is for strategic environments.

Monderer and Samet [MS] (1990) and Stinchcombe (1988) have carried out an analogous ex-
ercise where they fix the prior probability measure and vary the information partitions. In some
framework, the exercise we carry out must be a corollary of their exercises {and/or vica-versa).
Indeed both the general structure of our argument and a number of steps in our proofs are directly
inspired by MS. Hewever; we believe our approach is intuitive and of independent interest. In the
concluding discussion, we speculate on the exact relation.

The péper is organized a.s .foll-ows. In section 2, we introduce notation for the information
system and incomplete inférzr;atién games. We also give two key lemmas eonfirming that closeness
of conditional probabiﬁt;ieé 1s the necess&ry- and sufficient condition for strategies which are optimal
under the limit distribution té Be almost optimal under any distribution close enough to the limit.

In section 3, we consider a strong notion of continuity of actions. We say that there is continuity
of actions if every equilibrivm under the limit distribution is an ¢-equilibrium close to the limit.
We show that uniform convergence of conditional probabilities is necessary and suflicient for such
continuity. This result is of interest because it demonstrates why uniform convergence of conditional
probabilities is important; and it is independent of the number of players, i.e. the uniformity of
convergence is necessary even when there is only one player and thus no strategic concerns.

In section 4, we consider a weaker notion of payoff continuity. We say there is continuity of
payoils if for every equilibrium under the limit distribution, there is an g-equilibrium close {o the
Limit which gives approximately the same ex ante payoffs, We show that if there is cnly one player,
pointwise convergence is sufficient. But an example demonstrates that pointwise convergence is
not sufficient if there is more than cne player. On the other hand, another example demonstrates
that uniform convergence of conditional probabilities is not necessary. What is required is that
the set of states where conditional probabilities are well-behaved not only has high probability in
the limit, but also is common p-belief, for some p close to 1, with high probability: that is, with
high probability everyone believes with probability at least p that all conditional probabilities are

well-behaved, everyone helieves with probability at least p that everyone believes it, and so on ad



infinitum. Thus we review results of Monderer and Samet (1988) characterizing commeon p-belief,
give a formal definition of almost uniform convergence and show that it is necessary and sufficient
for continuity of payoffs.

In the concluding section 5, we discuss some properties of almost uniform convergence, the
significance of various assumptions, the possibility of uncountable state space extensions and the

relation to the Monderer and Samet (1990) topology.

2. Preliminaries

Fix a countable state space . There is a finite set of individuals 7 = {1,..,7}. Individual i € 7
has information partition Q; of . Write Qi{w) for the unique element of Q; containing state w.
We will be concerned with a sequence of countably additive probability distributions, P*. We write
P for alirit distribution. We consider games where PF represents players’ common prior on the
state space to study continuity properties of equilibria as & — oc.

We assume PF[Qi(w)] # 0, forallw e Q,ie T,k = 1,2...,co. Under this restriction conditional

probabilities are well defined with

Pk{E ey Q,(w)}
PHQiw)] -

This restriction is not innocuous, but it makes our analysis very clear and we believe that the

PHEIQi(w)] =

benefits exceed the loss of generality. Denote by P the set of all countably additive probability

measures that satisfy this restriction,

2.1, Convergence

A minimal requirement for any general statements about the continuity of the equilibria of incom-
plete information games will be that P* [w] converges to P [w] at every w € Q; that is, P¥ — P>
pointwise. Throughout the paper we restrict attention to sequences which satisfy this property.

Let us summarize some implications of pointwise convergence of probability measures in P.

Fact 1. If P¥ .+ P pointwise, then



(i) for any & > 0, there is a finite set E* such that P> [E*] > 1 -6, PFIE*] > 1 — ¢ and
| P¥[E*} — P> [E*]| < § for all large enough k. |

(ii) P* —» P> weakly.
(iii} if E¥ is an increasing sequence of events with :l:lg1 E% = (}, then P* {Eki — 1.

(iv) PFEIQi(w)} — PR{E|Q{w)] for every E and w.

We shall omit the straightforward proof. We just note that the countable additivity is crucial
in (i) and {iii} and so is P®{Q{w)] > 0 in (iv).

The limit behavior of conditional probabilities will play an important role. Fact 1(iv) showed
that pointwise convergence of P¥ ensures pointwise convergence of conditional probability P*[w|Q(w)].
It is important that this is not true for uniform convergence, Le. the condition that P* [w] — P [u]
uniformly in w does not necessary imply P*[w]Qi(w)] — P> [w]|Qi(w)] uniformly in w (as examples
1 and 2 of section 4 will show). This is because although P~[Q:{w)] > 0 holds for all w, it may
be the case that P* [(:(w)] is not bounded away from zero i.e., there is a sequence w¥ such that

P [Qg(wk)é = 0. So the following concept is not implied by pointwise convergence, even in P.

Definition 1. { Uniform convergence of conditional probabilities [UCCP]) Conditional probabilities

converge uniformly if for every § > 0, there exists K such that
| PHEIQw)] - PIEIQiw)]| < 8, forall ECQwe R, i€T, and k > K. (2.2)

When (2.2) holds, we shall write P* — P> UCCP.

2.2. Incomplete Information Games

Definition 2. An I player incomplete information game [A, u] fixes, for each player i, a finite set

of actions, A;, and a payoff function, u; : AXQ — R, where A= Ay X+ X Aj and v = {uy, ..., uf}).

An element a; of A; is called an action. A (mixed) strategy for player 7 is a @;-meéasurable
function oy : 1 — A{A;), where A(A;) is the set of all probability measures on A;. We denote by

o: (a;jw) the probability that action @; is chosen given w under o;. A strategy profile is a function



o= (a;}fﬂ where o; is a strategy for player i. We denote by ¢ (ajw) the probability that action

profile a is chosen given w under o, Write o_; for (o;} 245 write Z; for player i’s mixed strategies

and £ = Xy X.. X Xy. The payoff of strategy profile 5 for player ¢ under P is given by the expected

utility; thatis, 35 3= w;(a,w)o (aw)P* [w]. Abusing notation, we shall write 3° w; (0, w) P* [w]
weElacA; w&ll

when no confusion should arise. With the natural linear structure and the pointwise convergence,

the set ¥ is convex and compact.
Definition 3. A strategy o; is e—optimal at w under P* given o if for all a; € A,
2= (i (o(w,@) = ui ({a, omi(w)} W) PF W' [Qilw)] > —¢ (2.3)
W Qi {w) '
Thus an action which gives a payoff significantly below the best response may be played with
positive probability in an g-oplimal mixed strategy. But there it must be played with low proba-

bility. The following fact (used by Monderer and Samet {1990)) is a straightforward consequence

of the definitions.

Fact 2. If a pure strategy that assigns action a; to w is not £1-optimal at w under P* given o, then
action a; is played with conditional probahbility no more than £ in any e3-optimal mixed strategy

o; at w under P* given o; that is, o; (a;lw) < 2

Definition 4. A strategy o; is e—optimal if it is e—optimal at every w. Strategy profile o is an

g-equilibrium for [A, u] under P* if each o; is e—optimal given .

This definition requires interim e-optimality of mized strategies. In section 5.2, we discuss how
the results of the paper change completely with anr ez anie notion, but would remain unchanged if
pure strategy g-optimality was required.

By convention, “optimal” means 0-optimal and “equilibrium” means 0-equilibrium. The fol-

lowing is a consequence of Debreu {1952}):

Fact 3. There exists an equilibrium in any game where the set of strategies is non-empty, compact

and convex and each payoff function is continuous, and guasi-concave in o;.



2.3. e-Optimalily and Conditional Probabilities

If o; is optimal under P> given o at w, then intuitively o; will be £-optimal under P* given ¢ at w
if conditional probabilities are “close” at w . To make this idea formal, it is useful first to identify

those states w where conditional probabilities under P* are similar to those under P, Formally:

A6y = {w : [Pk{E]Q,-(w)] - P”[EIQ,’(&J)}E < é, for all events £ C Q}
Also write A%(8) =0 AR
This é-conditional agreement set does not depend on the choice of game; that is, it is a property
of the “infcrrﬁé,tion system”, rather than of any particular game. Note also that A¥(§) is a Q;
measurable set by construction. The convergence notions we discussed in the previcus section are

related to the limit behavior of the é-conditional agreement set as follows.

Lemma 1. If P¥ — P> pointwise, then for any § > 0, as k — oo, P*[A¥(#)] — 1 foralli € T and
thus PRAK(8)] = 1.

Lemma 2. P* — poo UCC? if and only if for each § > 0, there exists K such that for allk > K,
A& = Q.

Proof. Lemma 2 follows from the definitions. For Lemma 1, observe that by facts 1(i) and 1(iv),

for each ¢ and w, there exists a finite event Ef{w) and integer K;(w) such that for all k> Ki{w),

P*[B; (w) Q)] > 1 - §
P [} (@) 1Qi(w)] > 1-
Epk [Ef (w)}N E|Qiw)] - PR EHw)NE !Q;(w}]l <Eforall ECQ
Thus, for all & > K;(w) and F C Q, we have
PG - P Bl < |P* B (@) 0 B1Qi(w)] ~ P [E(w) N E|Qi(w)]
|P*I\Ez () [Qu(w)])] + 1P [R\EF () 1Qi(w)]

< §
Thus @ € A¥6) for all & > K;(w) and P*[A%(8)] > P*[{w : Ki(w) < E}] — 1 as k — oo, by
Fact 1{81). O



Intuitively, if o; is optimal against o._; under P5°, then if w € A¥ (&) occurs, o; will not do so
badly against o_; under P*, since by the definition of AF (), player i’s beliefs are close to those
under P*°, But notice that there is .a.n inessential source of discontinuity due to the fact that any
affine transformation of the utility function does not change preferences over strategies but does
change utility levels and hence the bound £ which measures differences of utility level, We avoid

this by requiring a bound on the payofls. We say that a game [A4, u] is bounded by M if
fuila,w) —u(a',w)] < M, foralle,d’ € A,i€Z,and w € Q.

Lemma 3. If game [A, u] is bounded by M and o; is optimal given o under P, then o; is 26M -
optimal given o under P* at all states in A¥(6).

Preof. Suppose o; is optimal given ¢ under P that is, for all a; € A;, w € Q;

2 (u (o0 ~ i ({a, 0-i(w")},w)) P [0 1Qu(w)] 2 0 (24)

weQi{w)
Fix arbitrary a;, and w € A¥(8). Let Ay = {w’ € A¥(&) : PP |Qi(w)] — P [ ]Qi(w)] > 0}
and Ay = A%(8)\ A; . Then:

= }(u; (o(w'),w’) — s ({as, oi(w)} , ) P* [’ |Qi(w)]

w e {w
= ¥ (w(e@)w) - w({a,o_dw)}, ) P W |Q:w)]
' €Q i{w}
+ 2 (@) w) — (e (@)} u) {P*11Qu(w)] — P> [’ |Qu(w )]}

Now the first term in the expression above is non-negative by (2.4). Now for the second term, note

that w € A%(§) implies @; {w) C AF(8), so:

£ (0,6 = i ({on i)} ) { P 01 - P21 10 }

w'eQi(w

> - ¥ M{PFIQw)] - P~ wQuw)]}
w'eQi{windy
- B M{PWQuw)] - PFIQuw)]}
. wEQ{w)ndg
= —M{PF[A1]Q: ()] - P [A1]Qi (W)]) = M{P™ [As]Q; ()] — P* [As]Q; ()]}
> —26M '



where the last inequality follows by the definition of AF (§), and this proves the lemma. O
Lemma 3 is tight in the following sense.

Lemma 4. Supposew ¢ AF(8). Then there exists a game [A, u] bounded by 1 and an equilibrium

o of [A,u] under P>, such that o;{w) is not e-optimal at w given o under Pk for anye < 4.

Proof. © w ¢ A¥6) bmplies that there exists an event E with
PEIQi(w)] - PPLEIQi(w)] > ¢ (2.5)

Fix any ¢ < 8§ We will construct a simple decision problem, where i's optimal action at w
under P is not e-optimal under P*. A decision problem is a special case of a game where players’
. paféﬁ"s do not depend on other players’ actions (thus we may omit mention of a_; in ¢’s decision).

 Consider a game [A, u] with 4; = {a, 3} and u;(e,w') = 0 for all W’ € §, and

1= PRLEIQi(w)], Hw' € En@i(w)
u(f,w) = { —Pe[E[Q:(w")], ife €(ME)NQ:i{w)
0, if w' ¢ Qi(w)
For j # i, set u; = 0. The decision problem is bounded by 1. An optimal strategy for 1 under P
is o:(w'} = a, for all W € {1, since both @ and 3 give expected payoff 0 at every state. But at state

w under P%, this is not £ optimal, since

- k fw _ poo Hw
E ?&i(ﬁ,w')Pk[w'|Qg(w)} P [E[Q=( )] {1 P EE]Q{ }]}

ST — {1 - PHEIQuw)} P[EIQiw)]
= PHEIQi(w)] - P[EIQiw)]
> 6,by (2.5)
> e



3. Continuity of Actions

It is useful to consider a rather strong notion of continuity of actions. This will demonstrate
why uniform convergence matters. The action continuity theorem will also be independent of the
number of players. It is therefore a nseful benchmark for understanding what goes wrong with

payoff continuity with more than one player.

Definition 5. Sequence PF satisfies Approximate Lower hemicontinuity of Actions JALA] if for
every £ > 0 and M > 0, there exists K such that the following property holds for allk > K:

For any game [A,u] bounded by M, if o is an equilibrium of [A,u] under P* then o is an

e-equilibrium of [A,u] under P*.

In particular, o; is required to be c-optimal not merely with high probability, but with prob-
ability one. Bound M can be set to be, say, 1, without loss of generality. But notice the bound
M is chosen independent of the choice of game, so that ALP is a concept of uniform convergence
with respect to games. This is appropriate for us since we want to characterize the convergence

properties of information systems independently of the choice of game.

Theorem 1. Suppose P¥ — P> pointwise. Then P* satisfies ALA if and only if P¥ — P>

UCCP, i.e., there is uniform convergence of conditional probabilities.

Proof. Foranye>0and M > 0,set § =¢/2M and let ¢ be any equilibrium of the P game.
I UCCP holds, then (by lemma 2) AF(6) = Q for all 7 and all sufficiently large k. But now lemma
3 ensures that ¢; is e-optimal for all ¢ at all states.

To prove the converse, we must show that whenever UCCP fails, we can find some ¢ > 0 and
M > 0, such that there are an infinite number of k for which there exists a game [A*, u¥] bounded
by M, an equilibrinm of of [A¥,u*] under P, such that of(w) is not e-optimal at some state
w* under P*. But note that if uniform convergence fails, then (by lemma 2) there exists £ > 0
such that for infinitely many k, A¥(g) # Q. Setting M = 1 and choosing any w* and i* such that

w* € B\ A% (g), lemma 4 proves the existence of the required game [A%, u*] for each k. O

16



4. Countinuity of Payoffs
The following is the key continuity property we shall study.

Definition 6. Sequence PF satisfies Approximate Lower hemicontinuity of Payoffs [ALP] if for
every e > 0, n > 0, and M > 0, there exists K such that the following property holds for allk > K:
For any game [A, v, bounded by M, if ¢ is an equilibrium of [A,u] under P°°, then there is a

strategy profile o' which is an e-equilibrium of [A, u] under P*, such that

Maz |5 (w(0'(@),0) - w(o(@)w) Pl < g (4.1)
' well
In words, ALP holds if for any equilibrium o under P*°, there exists an s-equilibrium o' under

P* guch that ez anie difference in utility level between o and o under P* is close for all individuals.
Remarks.

i. The closeness is uniform in games; like ALA, ALP describes uniform convergence with respect

to games.

2. Since the difference is measured with respect to ex ante utility level, we can replace P* with

P> a5 long as we are concerned with a pointwise convergent sequence.

3. Since the Nash equilibrium correspondence is not lower hemicontinuous with respect to pay-
offs, we must restrict ourselves to an approximate notion of continuity (i.e. allowing for

g-equilibria}. Consider the following example. Suppose with probability 1 — £, payoffs are

given by:
L R
v 1,1 8,0
D 0,0 0,0
With probability &, payoffs are given by:

L R

v 1,1 1,0

"D 01 0,0

11



Now consider the incomplete iﬁformation game where neither player has any information. When
€ = 0, there is an equilibrium where players choose (D, R). But for any € > 0, the unique equilibrium
has both players choosing (U, £}. Thus there is no hope of getting an exact lower hemicontinuity
result. Presumably we could replace our main result with an exact lower hemicontinuity result for

generic payoifs.

4.1, Single Person Decision Problems

To understand when ALP obtains, let us start with single player games. Single player games are

of course simple decision problems. In single player games, we naturally omit reference to o_;.

Theorem 2. Suppose P* — P> pointwise and I = 1. Then ALP holds.

Proof. Fixany e > 0, n > 0, and M > 0. By lemma 3, for any game bounded by M, and
strategy o3 optimal under P*, gy is e-optimal under P* at all states in A¥(3%). By lemma I,
there exists K such that P* [Ai‘ (2—5}2)} > 1— & and thus P* [ﬂ \A{c (-5%-{-)} < 5, forall k> K.

Fix any such & and let gj(w) = oy(w) for all w € A¥{(3%7), and any optimal strategy otherwise.

< pF {Q\A’; (ﬁ)} M <y

Now ¢’ is e-optimal under PF and

2 (1 (01(w),w) — u (03(w), @) PFlw]

wed

This result is meant to be just an illustration of the potential problem. In fact, the result follows
immediately from the theorem of maximum where o is the choice variable and P is exogenous
parameter, since the set of strategies is compact (with respect to pointwise convergence) and the
utility function is continuocus in ¢ and P with pointwise convergence. In particular, it also holds
when £ = 0. If I > 1, this analogy fails since o_; is endogenously determined, which indicates that

the many person case is more delicate.

4.2. Many Person Counterexample

‘We shall start with an example which shows that poirtwise convergence is not sufficient for ALP

in many player games, Suppose there are two ﬁiayers, Row (R} and Column (). Each observes

12



a non-negative integer, with probability under P* given by the following table {where R observes

the integer on the row, and C observes the column) where of is a constant, o € (0, 1):-

1 P 3 . n—1 7

0
0 3 lot faf gt (1)"o* (1) ot
1 0 Hi1-oM H1-ob 0 0 0
2 0 0 EH(1-a*) &H(1-aF) 0 0
3 0 0 0 L(1~ o) 0 0
n—1 0 0 0 o (177 (1-ab) D" (- ak)
n G 0 0 0 0 (1) @ -at)

As k — oo, of — 0, so that we have a limit distribution P°:

0 1 2 3 n—1 n

0 1 0 0 o0 0 0

1 01 Lt oo 0 0

2 00 £ & 0 )

3 00 0 % 0 0
n-100 0 0 AR A
n 00 0 0 (}G (2)2"‘

The example is an elaborafion of the coordinated attack problem in the computer science
literature {see Halpern {1986)) and the electronie mail game of Rubinstein (1982) {although we do
not have an elegant interpretation of the information structure in terms of messages lost!]. This

information sysfem can be formally represented as follows:

Example 1. T = {R,C}; @ = R2; Qi{(np,nc)) = {(rk,nf) : nf = ni}; PE[(0,0)] = ;
Pr,m)] = (1) ok, PRy m)] = (1) - ab), PH(ryn+ )] = ()77 (1 o), for al

13



n > 1; P*w] = 0, otherwise; where a* — 0; P<[(0,0)] = §; P=[(n,n)] = ( )%, Pe[(n,n+1)] =

2
n+1
(2)2 * ; Pelw] = 0, otherwise.

Note that P*[w] — P®[w] uniformly with tespect to @ and P¥w]Qi(w)] — P*[w|Qi(w)] point-
wise. But uniform convergence of conditional probabilities fails. For example, writing h(n,k) =

P¥[(n,n)|@c({n, n)}], we have (for n > 2)

h{n, k) = - e 5
e ) e @

Now as k& — oo, afF — 0 and so A(n, k) — ! (for any fixed » > 2}. But as n — o0, h{n,k) — 0
(for any fixed -k).

The ALP property fails in this example. Consider the following game. Each player has two
possible actions A; = {D, §} (P for dangerous, § for safe). When R observes a message other than

0, payofls are given by
D S

D 2,2 -14,1 (4.2)
s i,-10 1,1
On the other hand, when R observes 0, payoffs are given by

b s
D -10,-10 —10,1 (4.3)

S 1,-10 I,1
There is an equilibrium under P with o;{(ng,n¢)) = 5, if n; = 0; 6i({nr,nc)) = D,in: >0
(for i = R and C’), which yields ex ante utility £ (1 - a") 2)+1 (1 + ak) (1) = & — & for player
R under Pt a.nd which tends to - as k — o0o. But as we argue below, if ¢ is less than g—, any
g-equilibrium has the property that D is chosen with less than probabzlity 5 at every state by both
players. So any c-equilibrium yields at most % for each player (if payoffs are given by (4.2}, then
each player gets at most 1(2) + (1) = %; if payoffs are given by (4.2}, then each player gets at

most 1). Since 2 > 4, ALP fails.

Tete < § and ¢ be any e—equilibrium strategy for Pk,

14



1. First we claim that at any state w = (nr, n¢) for each player i, if the conditional probability of the

opponent choosing D is less than g-, then player ¢’s expected payoff to choosing D is at most —%; that

ig, if 5 o; (Dlw) PF 0@ ((nr.ne))] < -gf, then 5 u; (D, 05 {w)) PFlul@Qi ((ng, ne)) £
weQi{{namg)y weQi{(nrmc)}

—2. This is obviously true if payoffs are given by (4.3); if payoffs are given by (4.2), then

%(2)-{—% (~10) = —% is the most that can be hoped for. On the other hand, at any state (ng, ng) for

each player ¢, choosing S yields 1 for sure. Soif 3 o; (Dlw) P* [w|Q; ((rr,ne))) < I, then
we€Qi({nzme)) ‘
the pure strategy D is not I—optimal against o; at (nr,n¢), hence by fact 2, o; (D|(ngr,nc)) <

£ 59 _1
53 < BT &

2. Now suppose that player { assigns probability at least % to his opponent player j choosing action
D with probability less than %; that is, P* {{w 105 (Dlw) < %}IQ:‘ (W)} > 2. Then he assigns
probability at most Z (= 2 + 1(1}) to his opponent choosing D. Thus {by step 1) he chooses D
with probability at most 1.
3. If C observes 0, she knows that B has cbserved 0 and thus that payoffs are given by (4.3}). Thus
for either player, the pure strategy D is not 11—optimal and so 6; (D](0,7;)) < 5 < i by fact 2,
foreach j £i.
4. Notice that P*{(0,n¢) |@c ((nr,nc))] T 1 for all rR, as ng — oo, Fix N such that

VP:"V[{D,ng) Q¢ ({(nr,ne))} > & for all ne > N and all np.
5. By steps 2,3, and 4, o¢ (D|(ngr,nc)) < § for all ng > N, and for all ng.
6. Note that when R observes ng # 0, he assigns probability I to the event of C observing n¢
greater than ng. Thus by step 5, if np > N — 1, P* [{o’g (Dlw) < %}IQR(W)] > 1. So, again by
steps 2 and 4, we have o (D} (ng,n¢)) < & for all ng > N ~ 1, and for all nc.
7. Note that when C observes ng # 0, he assigns probability at least % to R observing either
ng = 0 or ng = ng. Thus by steps 3 and 6,if ng > N — 1, P* [{O’R (Dlw) < %H Qc (w)] > 1. So,
again by steps 2 and 4, we have o¢ (D] (n_R,ng)) < % for all ng > N — 1, and for all ng.
8. The argument of steps 6 and 7 can be iterated to ensure that o;(D|(ng,nc)) < £ for every
{(ng,ng) forboth i = C, R. '

Morris, Rob and Shin (1993).examine more general forms of this type of “infection” argument.

However, it is not the case that any failure of uniform convergence of conditional probabilities



implies @ failure of ALP. We know from theorem 2 that if there is one individual and pointwise
convergence, then ALP must hold even when UCCP fails. Consider the following example. Suppose
now there is only one individual, Column, who again observes a non-negative integer. But she does

not observe another, binary, signal which is either Up or Down, Suppose Pk is given by

¢ 1 ' 2 e n

U taf Hi-of)1-1) Hi-oF)l-r)r -1 =)
D Hi-ef) ldt(-9) lof (1 - q)q lak(1 - q)¢"!

where 1 > ¢ > r > 0 and 0 < a < 1. P* converges pointwise to a limit distribution P*:

0 1 2 o n
U 0 i1~r) 3{1-ryr Hi—rymt
D i 0 0 0

This can be represented formally as foﬂows:

Example 2. T = {C}. © = {U,D} x Ry . Qo((5,n)) = {(Uyn),(D,n)} for all (S,n) € Q.
Let PE[(U,0)] = io* and P*[(D,0)] = (1 — oF); let PH(U,n)] = (1 - oF)(1 — r)r"tand
PF[(D,n)] = La*(1 — g)g~'or all » > 1, for some 1 > ¢ > r > 0; where a® — 0 as k — oo; let
P [(U,n)]=L(1 —r)r" L foralln > 1, P2 [(D,0)] = 1, and P> [w] = 0 otherwise.

Again P*[w} — P*[w] uniformly with respect to {} and PFw|Qi(w)] = P®w|Qi{w)] pointwise,
~ but not uniformly: P* (U, )Qc((U,n))] = F(1-a*)(Q-r)rn?

T i(-ak)(1-r)rnid bak(i—g)gn?

though Po[{U,n)|Qc({U,n))] =1, forall n > 1.

— 0 (as n — o0), even

The sequence P¥ of example 2 fails uniform convergence of conditional probabilities but satisfies
ALP by theorem 2. So the ALP property is weaker than uniform comvergence of conditional
probability, but stronger than pointwise convergence. We shal] characterize ALP in the next section,
which is the main result of the paper, but it is useful to ask why the argument of Theotrem 2 does
not work with many players. '

Say I = 2. By lemma 3, for any equilibrium ¢ under P, 5;is ¢ = 26 M coptimal given o under

P* at w € AF(6) for both i. We would like to find of that coincides with oy on Af{§), and is

i6



optimal against o, outside A% (§). Intuitively, if the probability P* [A'j (é)] were sufficiently high,
this construction would yield a s-equilibrium. But since A% (6) # A5 (6) in general, o3 need not
.‘b-e e—optimal against ¢f. But if the conditional probability of the event A% (8) is close enough to
one at w, then o3 will be 2¢—optimal against o} since oy = of on A¥(§). A symmeﬁric argument
works for player 2. Thus we would require not oﬁly that the prior prébabiiity of A5(§) be high,
but also that the conditional probability each individual attaches to the event A¥(4) is high at
all w € A¥{5). Recall that UCCP implies that the conditional probability of A% (4) is 1 for large
enough & {lemma 2), but clearly this is not necessary.

An alternative construction would be the following. Suppose there existed a high probability
event E ¢ AX(e) such that at all states in E, 1 assigned high probability to both E and Af(g).
Then setting of = o; on event £ and anything optimal ouiside E would generate a 2¢—equilibrium
by the same argument as above. But for readers familiar with Monderer and Samet’s (1989} notion
of common p-beliel, the existence of such an event E is eguivalent to the requirement that, for some
p close to oné, the event A% (§) is common p—belief with high probability. Thus we shall first give

a brief review the idea of common p—belief. -

4.3. Bellef Operators

Define belief operators on events as follows. Let

BPM(E) = {w : PF[E|Qi{w)] > p}

BPF(E) is the set of states where, given prior probability P*, individual i believes event E with

probability at least p. Note that by construction, whenever E is @; measurable, we have:

BPMENF) = En BPF(F) (4.4)

4.3.1. Commeon p-Belief

Define an “everyone believes” operator by
BP*(E)=n BPHE
PH(E) =0 BP*(E)
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From (4.4} we have:
 BMMEYCE (4.5)

ifE 2'21 E;, where each E; is ¢J; measurable.
1

Also define a “common p-belief” operator by
kB = I
cri(E) = 0 [B2H]"(B)

Definition 7. An event E is common p-belief under P* at state w if w € CP*(E).

From {4.5} and by the definition of CP*, it follows that:

CPH(B) = B2k (CPH(E)) = 0 BPH(CPH(B)) (46)

Monderer and Samet {1989) used (4.6) to show a relation between the iterative notion of common
p-belief and the following fixed point notion. Tt thus generalizes the well-known connection between

iterative and fixed point notions of knowledge (Aumann (1976)).
Definition 8. Event E is p-evident under P¥ if E ¢ BI*(E),
Note that in particular, CP*{E) is p-evident.

Theorem 3 (Monderer and Samet (1988)). Event £ is common p-belief under P* at state w
if and only if there is an event F, p-evident under P*, withw € F C Bﬁ’k(E).
" 4.4. Almost Uniforim Convergence

The discussion at the end of the section 4.2 suggests the following weakening of uniform convergence:
Definition 9. (Almost Uniform Convergence of Conditional Probabilities [AUCCP]) Conditicnal

probabilities converge almost uniformly, if for each § > 0 and p € [0, 1), there exists K such that
forallk > K,

P*crk (ak@))] 2 p (4.7)
We write P¥ — P> AUCCP.
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Ei{a,ﬁlbleriﬂfaﬂed this pro:perty. For a,ny fixed § > 0, for any p < 1, and & sufficiently large,
A’f;(é) = @ and AE(8)is of the form '{(’n}z,nc) :ng < N}; now for any p dlose to 1, BD'F (Af(ﬁ)) =
{{nr,ne) : Max{ﬁé,né} VS N —-I}; {Bi”kr (Aﬁ(ﬁ)) = {(nr,n¢) : Maz{np,nc} < N ~ 2};
[B2*]" (A5(6)) = {(nr, n0) : Maz{ng,nc} < N = n}; and so CP+ (AK(8)) =8 .

But example 2 satisfied this i);operty since CP*[AK(8)] = BRF (Ag(ﬁ)) = AE(8) = {(S, ny:n> N}‘(é)},
where N¥{8) — oo as i<‘;—> oo; thus limg_qe PF [Cpfk (Af(é))} = limg o0 PF gAé,{é)] = 1.

4.5. Main Result

Theorem 4. Suppose.Pk — P* pointwise. Then P* satisfies ALP if and only if PF — P>
AUCCP.

Proof. Suppose AUCCP holds. Fix § > 0 and p € [0,1) arbitrarily. Choose k such that
PE[crk (AR(8))] 2 p. Write F = €% (AX(8)) and F; = BP*(F). By (456), F =0 F and so
F C F; by {4.5) F C A¥(6). So the following hold:

PFIFP|Quw)] 2 pifwe F, (4.8)

PPUEAFYQiw)]<1-pifwe F (4.9)

(4.8) is true by definition of BP*(F); (4.9) is immediate from (4.4),(48)and F :iQI Fi.

Fix any game bounded by M, and let ¢ be any equilibrium of the game under P*, Now
consider any strategy profile o’ with ol(w) = oy{w) for all  and w € F;. Pick any w € F. Since
F C AL (8), by Lemwa 3, o} is 26M optimal against o at any w € F; that is,

Z (u; ({oi (W), on; (W} ,0) —us ({0, 0 (W)} ,w) P* Qi {(w)] > —28M for any a; € 4
w'eQi(w)

(4.10)
Givenw € F, ¢/ ; # o_; occurs with probability less than 1—p by (4.9). Since the game is bounded
by M, we have 7

Sl (ot (@), 0 @)} 1) - s ({0 @), 0% ()}, 0) | P* [1Qi ()] < (1 - p) M (4.11)
w'€Q:{w) :
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(4.10) and {4.11) imply that of is 26 M + (1 — p) M cptimal against o' at any w € F}.

Now consider the constrained game (under P¥) wher;e each player i is exogenously required to
choose g;{w) on Fj, but is free to choose any aciion outside F:. An equilibrium o* of the modified
game exists by fact 3. By the argument above, o* is an (26M + (1 — p)M)-equilibrium of the
actual game. Moreover, o* = o on F, which occurs with probability more than p under P* by
comstruction and (4.8), hence the ex ante utility difference is at most (1 ~ p) M. So we have ALP
by choosing § sufficiently small and p sufficiently close to one.

To establish the converse, we must show that if AUCCP fails, there exist ¢ > 0, 7 > 0 and
M > 0 such that for infinitely many k, it is possible to construct a game [A*, u*] bounded by M
and an equilibrium o* of [A*, u¥] under P>, such that for every c-equilibrium, o', of [AF, u*] under
Pk, Maz i 3 (u,- (o'{w),w) — u; (cr’“(w},w)) Pk ]

€T lwen

Suppose P¥ — P AUCCP does not hold; that is, there exist § > 0, p < 1 such that for

> 1.

infinitely many k,

P* [CP”“ (AE(&))] <p

Then, by (4.8), for infinitely many k, there exists an individual f {k) € T such that

Pty (o7 (k)] <372

On the other hand, by lemma 1, there exists K such that for every k > X,
1 -
k k 3 P
Prle\A%w©)] < 5
From these two expressions, we have that for infinite many &,

P [k (crk (AR@)) U (\As )] <1- 1524 2 o1- 2R aa)

Thus
k g N k i-p
P\ Bz, (07 (aK®))) nAbw®)] > =7 (4.13)
Fix any such k. We shall construct a game with the required property for this k. By definition

of A¥(6), we can construct a set valued function H; : Q\A%(8) — 29 such that for all w, we
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have (i) Hi{w') = ; (w) for all ' € Q (w), (i) Hi(w) Q (Lv) and (iif}) P*[H{(w)|Q:(w)] —
P H(w)|Qi(w)] > 8.
Now consider the foHowmg game {4, u]. For each pla,yer i, let A; = {24, 2z;}. Define payoffs as

follows
g, if -3 = L4,
wi ({26, 0.} ) = ifa z_;, for all w
~4, ifa_; £z ;, forall w
Pe(Q\H(w))[Q:(w)] ;ifwe NA¥S)and we Hi{w), for all a_;
wi{{z;, 0}, w) =< —poo [Hi(w)|G(w)] 1if o € Q\NAK(S) and w ¢ Hi(w) , for all a_;

-1, ; otherwise.

Payoffs are bounded by 5, a,nd the payoff to playing z; is —4 times the conditional probability
that there is at least one plaver who does not play z..;. Notice that the payoff to playing 2; does

not depend on the others’ strategies at all. If w € N\ A}(§ ); the payoff to z; in the P* game is:

& A w w e {w lw
S (o} ) Pl sy = | P ITQ] PO\ ) @i
WEQi(w) ~ P [(Q\H:(w)) [Qi(w)] P [Hi{w) [Qi(w)]
PHH(w) 1Qi(w)] ~ P> [Hi{w) |Q:{w)]

in the P°° game, the payoff to z; is 0.
Claim 1. Every ¢ choosing z; at every w is an equilibrium of the P> game.

This is clear since given that everyone else plays zi, payolfs under P™ are 0 for z;, but z yields

(p—1) <0 on AF($) and 0 on Q\ A%(6).

Claim 2. Fix any ¢ < M@'n[g, 3—;—2], and let o be any e-equilibrium of [A,u]. Then at all states
in Q\Bf ok f\{ ok (Af(é))) » player i chooses ¢; with probability no greater than 3; that is, if

we Q\Bf’k (C?’J‘ (Af(ﬁ))) s then oy (2w} < 1
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We show this in several steps. Let & be any c-equilibrium under P¥.

Step 1. Choose any w € Q\Af(é) Then under o, the pure strategy of choosing z; is not §—optimal
at w for ¢, since choosing z; yields non-positive utility where as the payoff to choosing z is
P ()|@i(w)] — P[Hi{w)|Q:(w)} > 6. Thus by fact 2, o (z:ilw) < £ < §. Thus ifw € Q\AK(6),
w € Q\A%(é) for some j and o; (z;]w) < % for that j. .

Step 2. Choose any w € Q\Bf"k(!s.ﬁ(é)); by definition of BP'*, i assigns conditional probability less
than p to the set A¥(6) and thus more than 1 —p to Q\Af(ﬁ). By step 1, for ¢, at w, the conditional
probability of the event where some j plays 2; under ¢ is less than % if Q\A%(8) occurs, so at w, i’s
conditional probability of the event where some j does not play z; under ¢ is more than 1 (1 - p).
~ So the pure strategy of choosing z; yields at most —4 - 3 (1~ p) = ~2(1 ~ p), whereas the payoff
to choosingrz; yiéids at least —(1 — p). This shows that z; is not (1 — p)-optimal at w, so by fact
2, 0; (z:}w) < 7% < 1. But now for any w € Q\B2F(A(5)), w € Q\BE* (Af(é)) for some j and

I-p
o (z;lw) < & for than j.

Step 3. The claim is proved by iterating the -argument of step 2. Consider the set £} \ [Bf‘k] : (Af(&)} =
a\Br* (B2* (AX())). Replacing AK(6) with BZ*(AX(6)) in Step 2, we find that for all w €
Q\B,f’k (Bg’k(Af(é,))), o;j{z;lw) < 3 for some j. Iterating, we have for all n, for all w €
k23
Q\[Bﬁ'k] (Aﬁ(é)) ,0;5(zj}w) < £ for some j. Since Crk (Af(é)) :ngi {Bf’kr (Af(é)), we have
that for all w € Q\C?”‘ (Ai(&)) , 0;{z;jlw) < % for some j. Finally, w € Q\Bf’k (Cp’k (Af(ﬁ)))
implies o; (z;jw) < L.
Let ¢ be any £ -equilibrium. H w € (ﬂ \Bf,%(’;} (CP'k (Af(é)))) n A‘;i(k)(ﬁ), by claim 2,
T (k) (xf(k} ]w) <% 5o Y upy (o{w),w’) P* {w’ le(k)(w)] < —%ﬁ. But now (writing =

‘ W' €Q f(ky(w)
for the strategy profile where each player ¢ always chooses z;) we have

Maz i © (uilo(w),w) - v (z,w)) P {w]. 2 IWZG:Q (810 ((@"), ) — 5qe) (,0)) P[]

wEil
> 2P [ \py (0n* (a59)) ) 0 Ao )]
> =2 by (4.13)

So by setting € < Min[%, 1—“213}, M=5ad < Q—}Fﬁ, we have shown that ALP fails. O
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5. Discussion

5.1. Almost uniform convergence

How strong is almost uniform convergence? The strength comes from requiring both uniformity of
convergence and requiring it not only for prior probabilities hut also for conditional probabilities.
A slight weakenmg comes from not requiring fully uniform convergence but only that the set of
well- behaved states are common p-belief for some p close to 1, with high ex ante probability. The
“almost common knowledge” literature, and example 1, suggest that common p-belief is sometimes
“a, very stringent requirement. |
There are circumstances where almost uniform convergence of conditional probabilities is equiv-
Va,_rlent.to pointwise convergence of prior probabilities. Since pointwise convergence implies uniform

convergence of conditional probabilities on a finite state space, we have:

Corollary 1. If PF — p> pomtw:se and {} is finite, then U(‘CP holds and thus AUCCP, ALA
and ALP hold.

Fudenberg and Tirole {1992, page 567) shc;w a closely related result: for a finite state space, if
. P*E]— 1 as k — oo and payoffs aiél' always common knowledge in E, then a version of ALP holds.
Our result makes clear why finiteness is:-key in such results: finiteness implies that all convergence
is ‘uniform with respecf to states,

We know by theorems 2 and 4 that if there is only one individual, almost uniform convergence
of conditional probabilities must be equivalent to pointwise convergence of prior probabilities. But

let us briefly show this directly.

Lemma 5. If P — P and [ = 1, then AUCCP and thus ALP hold,

Proof. Fix 6 > 0 and p < 1. 7= 1, then CP*(E) = BP¥(E) and so P* [CP”“(A’:(E))] =
Pk [BYH(AJ(6))]. PHASONBIH(AK@)] < 125 PH~ Ak(6)] = HIEALAN,
PHBIH(AK(6))] 2 PHAK(S) N BE*(AK(8))] = PHAKE)] - P’“[Af(6)\3$”"{A§(5))]

k &
> PRARE - Z (1-F {’: fen) _ P k{‘%i(;?]_p . By lemma 1, pointwise convergence implies

P*[A%(8)] = 1 as k — oo, so that P* [Cp'k(Af(é))] > p for sufficiently large k. O
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In fact, it is straightforward to give a generalization of both corollary 1 and lemma 5 which
shows that as long as at most one individual has an infinite number of information sets in his

partition, then pointwise convergence implies AUCCP and thus ALP.

5.2. Aliernative Notions of e~Optimality

An ex ante definition of (mixed strategy) e-optimality would require that for all { € 7 and ol €y,

2 (wi{o(w),w}~ ui ({ol(w), o-dw)} ,w)) P* ] > —¢

) well
Pointwise convergence would be sufficient for ALP if we used ex ante e-optimality in the ALP

definition. But an interim notion is more natural in an incomplete information game. Notice that
the results of this paper do not séem to parallel any general payoff continuity results for games
because the interim e-optimality notion is special to incomplete iﬁformation games. A working
paper version of Monderer and Samet (1989) emphasized the difference between ex ante and interim
notions of c-optimality.
A pure strategy definition of (interim) e-optimality would say that a strategy o; is z—optimal
at w under P* given o if for all ¢; such that o;(a;) > 0 and all al € A;,
> (e o) —ui ({al, 0i(w)} o)) P* [ [Qi(w)] 2 —¢ (5.1)
w'€Qi(w)
Our results are true as stated under this alternative definition. Indeed, the proofs are considerably

simpler.

5.3. Alternative Notions of Closeness of Payoffs

The main result of the paper is sensitive to the precise formulation of the notion of continuity. But
the techniques would generalize quite easily to alternative formulations. For example, if the notion

of closeness in the definition of ALP (i.e. equation (4.1)) was replaced with the following notion

> (i (o' (w), w) — v (o{w),w)) P* ]| < 7, for someie T
weR
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- then we would have to alter the key equation {4.7) in the definition of almost uniform conver-

. gence to require . -

P* [Bg”k (C’P'k (Ai(ﬁ)))] > pfor somet €T

The main theorem would then hold for almost the same proof.

5.4. Uncourtable case

The insights of this paper ;ivould appear to be applicable to préblems with continuous signals and
' thus uncountable state spaces. Carlsson and van Da,mme. (199_3) study the equilibria of 2-player
2-action games where each player obsé;vés payoffs with a sm:all amount of noise. With no noise,
some of the complete information ‘g'a;z-n-es would <ha,ve-two strict Nash equilibria. But with positive
but arbitrarily small noise, the unique (Bayesian) egqailibrium iza.s each player only choosing the
“risk dominant of the two strict Na;éh'equiiibria. Thié resuiii‘;l_v;'-ould appear to be analogous to our
theorem 4: there is weak convergéﬁée of the pri(-n-' proba,bility Iﬁeésures (as the noise goes to zero);
ALP fails; and, for the “canonical” choice of conditional probébility, almost uniform convergence
of conditional probabilities fails.

The technical problem with generalizing to uncountable state spaces was our requirement that
PHQi(w)] was always strictly positive. This allowed us to ignore problems of the indeterminate
conditional probabilities; for instance, the 6-agreement set A¥ (§) will depend on the choice of con-
ditional probabilities. In Kajii and Morris (1994), we develop an uncountable state space analogue
of Monderer and Samet’s (1989) characterization of common p-belief, where belief operators act
on classes of equivalent events. Roughly speaking, it is shown that there is no loss of generality in
fixing any conditional probabilities, once it is understood that any statement on w means that the
statement is true with probability one. Thus the extension of the results of this paper would require
only a careful checking of measurability conditions and regularity conditions ensuring existence of

equitibrium.
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5.5. Embedding: Changing Priors versus Changing Partitions

The standard way of comparing information structures is to fix the probability distributicn on
the state space and vary individuals’ information partitions. Monderer and Samet [MS] (1990)
and Stinchcombe {1988) have given céntinuity results for Bayesian equilibria and characterized
topologies on information structures in that framework. The MS result also had to do with a
high ex amte probability of the set of states where conditional probabilities are close. What is the
contribution of our approach?

. We believe that our changing 'priors approach is more intuitive because notions of closeness of
priors are easier to understand that notions of closeness of information partitions. But more im-
portantly, we believe that both exercises must be equivalent and that the versatile and analytically

--simple approach of this paper captures quite generally the issue of the closeness of information
systems. There should be a general equivalence relation between a model written as a comparison
of information partitions with fixed prior and our framework {and probably vica versa).

But to establish the formal, mathematical meaning of “equivalence” is beyond the scope of this
paper. Sc we shall just give a general recipe to compare different partitions in our framework.

An information structure is a tuple (S, 7, (P;)) where:

¢ S is a countable state space

e 7 is a countably additive probability measure on .

o P: is a partition of §, for each agent i = 1,..., I.

An information structure (Q, P, (F;)) is said to be in canonical form if
1. = 8 X §1 X --- %X §7 where each §; = ®.

2. for each i, F; = {{(s0, .., 87} 1 5_; € Q_;} 1 5; € 55}

In canonical form (02, P, (7)), a state w € Q is generated according to P, and agent i observes
the ith coordinate of w. Notice that in canonical form, there is no choice of partition, and the

difference in information is captured completely by the prior P.
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For a given information structure (S, 7, (7)), define an information structure (@, P,(F;)) in

‘canonical form as follows:

2 =Sx8x--+x§
\—-——v—-——/

I times

o Plw]= P[(s0,51,81)] = 7 (56) - 7 [s1]P1 (50)] - -+ - - 7 [s1]P1 (s0)]

where for any s € 5, P;(s) denotes the member of partition P; that contains s, and.

7—‘—% ifsg € P(s;
7 [si|Pi(so)] = { Tileoy B0 (s:)

§ otherwise.

So m [so]P; (s:)] is the (natural) conditional probability of sy when agent i learns that a state in

.partition P (s;} has bgen realized. In wards_, P is generated by a two stage process where nature

first chooses a “true” state sg accor&ing ta w, and then it chooses a “signal” s; for each player {

according to the conditional probability given sg. Since Y5, 7 5ils0] = 1, P is a countably additive

probability measure on 2, and by construction,

Ddusm=sy PRl wlso]
P{Qi(w)] 7 [P: (s0)]

This construction is intended to demonstrate that our representation captures a canonical form.

P30]Q: (w)] = 7 [so| ]

~ Actually translating our results - for example, into the framework of Monderer and .'Sé,met {1990)
-g-sv}duld no doubt be rather complicated. 'In_ particular, when looking at results about games, we
must be careful to keep track of payoff relevant states. In the definition of ALP, the continuity
is required for all games defined on €. A more general construction might consider only games

depending on some partition representing payoff-relevance.
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