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Abstract

In many settings, individuals imitate their peers’ public decisions for one or

both of two reasons: to adapt to a common fundamental state, and to conform

to their peers’ preferences. In this model, the fundamental state and peers’

preferences are unknown, and the players learn these random variables by ob-

serving others’ decisions. With each additional decision, the public beliefs about

these unknowns become more precise. This increased precision endogenously

increases the desire to conform and can result in decisions that are uninforma-

tive about a player’s preferences or perceptions of the fundamental state. When

this occurs, social learning about peers’ preferences and fundamentals ceases

prematurely, resulting in inefficient decisions. In line with findings from social

psychology, I show that interventions aimed at correcting misperceptions of

peers’ preferences may lead to more efficient decision-making in settings where

interventions aimed at correcting misperceptions of the fundamental state may

have no effect.
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1 Introduction

Substance abuse is an important public health concern and greatly contributes to mor-

tality rates across the world (cf. Sheikh et al., 2018). For decades public health officials

educated adolescents on the cost of substance abuse, but these “initial attempts at pre-

vention were ineffective because they focused primarily on lecturing students about the

dangers and long-term health consequences of substance use” (Griffin and Botvin, 2010).

These attempts failed because they assumed an “individual-oriented” (Prentice and Miller,

1993) cognitive model about their participants: individuals’ decisions about substance use

were imagined to be based purely on anticipated health outcomes for the individual. In

contrast, informing students about their peers’ true preferences towards substance use was

much more effective: Schroeder and Prentice (1998) found that undergraduates who learned

their peers’ preferences towards alcohol reduced their consumption by 40 percent compared

to those who were informed about just the health costs. Schroeder and Prentice (1998) call

this a “peer-oriented” cognitive model.

Public health research rationalized this finding by noting that many individuals overes-

timate how much their peers enjoy alcohol (cf. Prentice and Miller, 1993). This mispercep-

tion, combined with a desire to conform, motivated people to partake in substance abuse.

Such phenomena are pervasive. Political endorsements (Loury, 1994; Geiger and Swim,

2016), female labor force decisions (Bursztyn et al., 2020a), and corporate board decisions

(Westphal and Bednar, 2005; Chang et al., 2019) are interpreted as influenced in similar

ways. Across these examples, inefficiencies may arise from two sources: misperceptions of

the private benefits of such decisions and misperceptions of peers’ attitudes towards these

decisions.

In this paper, I provide a general framework that explains how these two mispercep-

tions interact, why they hence may both persist, and why some interventions may be more

successful than others. In the model, a community of agents attempts to learn two initially

unknown variables: a fundamental state (which could be the health costs of substance

abuse) and their peers’ average preference type. Learning occurs both privately and so-

cially. Privately, each individual receives a signal about the fundamental state and his own

preference type, which is informative about his peers’ preference types because they are

drawn from the same population distribution. Further, the players may be able to learn the

unknown variables by observing the decisions of their peers. In line with the social learning

literature (cf. Banerjee, 1992; Bikhchandani et al., 1992), I ask: Given an infinite sequence

of decisions, can the public correctly infer these two unknown variables? In answering this

question, I depart from the “individual-oriented” model and explicitly model the desire to

conform. This approach generates new predictions regarding the success or failure of social
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learning. Additionally, in cases where social learning fails, it provides novel insights into

optimal interventions.

Formally, each individual seeks to maximize a utility function that combines their private

utility with a conformist utility component. Their private utility is determined by how well

their decision adapts to their private preference type and the fundamental state. Their

conformist utility, on the other hand, is determined by the exogenous conformity concerns

(a parameter common to all individuals) multiplied by the gap between how the community

perceives their preference type and the true average preference type of the community.

While the exogenous conformity concerns is constant over time, the endogenous reputational

penalty from choosing decisions different from one’s peers’ decisions changes as the public

beliefs about the fundamental state and average preference type become more precise. I

refer to this endogenous reputational penalty as the “effective conformity concerns.”

The key mechanism potentially preventing social learning is that once the effective con-

formity concerns are sufficiently large, an individual is unable to adapt to his preference type

without incurring a large reputational penalty. Further, because adaptation to a player’s

private signal about the fundamental state might be attributed to a player’s preference

type, such adaptations are similarly discouraged. Therefore, when the effective conformity

concerns are large enough each decision is independent of a player’s private information.

This independence implies that no new information is publicly learned in the current period,

resulting in an identical situation for the next period, and, by induction, for all subsequent

periods. As a result, if the effective conformity concerns ever become sufficiently large, all

subsequent players will pool on inaccurate perceptions of the fundamental state and of the

average preference type.

Finally, interventions to improve efficiency are needed primarily when social learning

fails. Because social learning fails when the effective conformity concerns are large, then

when interventions are needed, they should target conformity concerns (via information

about the average preference type) as opposed to adaptation loss (via information about

the fundamental state).

In Section 3, I first analyze a benchmark static model where players have common

knowledge about both the fundamental state and their peers’ average preference type but

differ in their own preference types, as described above. In this benchmark, exogenous

conformity concerns are still a parameter shared by all individuals, however in this static

benchmark there is no learning, implying that the effective conformity concerns are equal

to the exogenous conformity concerns. In this scenario, conformity concerns place a penalty

on the degree to which players adapt to their preference types (cf. Bernheim, 1994). I show

that all players choose the same decision independent of their preference types if and only if
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the conformity concerns exceed a given threshold (Proposition 1).1 This benchmark shows

how, when conformity concerns are significant, an individual’s decisions may cease to reflect

their true preferences.

In Section 4, I analyze the complete model where conformity concerns interact with

uncertainty about the fundamental state and the average preference type. The necessary

and sufficient condition for “social learning to occur” (i.e., for the players to learn asymp-

totically the fundamental state and the average preference type) is that there exist infinitely

many periods of a decision rule with revelation. This condition requires that the decision

rule involves revelation when the beliefs about the fundamental state and the average pref-

erence type are arbitrarily precise. As a result, a necessary condition for social learning to

occur is that the conformity concerns must be less than the threshold for revelation in the

benchmark (Lemma 2).

Unsurprisingly, when exogenous conformity concerns are sufficiently small, this places

an upper bound on the effective conformity concerns. Consequently, if exogenous conformity

concerns are sufficiently small, learning occurs regardless of prior beliefs. Finally, I show that

when the exogenous conformity concerns are intermediate, the learning outcome depends

on the initial beliefs (Proposition 2).

When exogenous conformity concerns are such that learning fails in the limit, the players

face three inefficiencies. First, the players are unable to adapt to their preference types.

Further, the players’ decisions are based on imprecise beliefs about both the fundamental

state and the average preference type of their peers.

Given these two imprecise beliefs, Section 5 analyzes the different effects of peer-oriented

interventions, which inform players about their peers’ preference types (e.g., how “cool”

substance abuse is thought to be by others), versus individual-oriented interventions, which

inform players about the fundamental state (e.g., the health costs of substance abuse).2

If individuals had no desire for conformity, they would disregard peers-oriented interven-

tions entirely. In such a scenario, an individual-oriented intervention would always be the

preferred approach. However, in such situations interventions are, arguably, not needed;

if there were no desire for conformity-then, asymptotically, the players would eventually

learn the fundamental state. For this reason, I compare the effect of peer-oriented and

individual-oriented interventions based on their ability to break a pooling equilibrium when

1In Bernheim (1994), equilibria with partial revelation may exist. I discuss the difference between
my benchmark and the environment in Bernheim (1994) in Section 6.2. Reassuredly, in Bernheim
(1994) when conformity concerns are sufficiently high, the unique equilibrium is also fully pooling.

2Throughout, I assume that interventions are credible. See Benabou and Tirole (2024) for an
analysis where the party conducting the intervention has differing preferences from the community
resulting in a commitment problem.
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the exogenous conformity concerns are high.

When exogenous conformity concerns are high, I show that if the beliefs about the fun-

damental state and the average preference type are uncorrelated, then individual-oriented

interventions can never break a pooling equilibrium. Intuitively, players may deviate from

past decisions for one of two reasons: first, if a player’s signal implies the fundamental

state differs from the public beliefs; second, if a player’s preference type motivates a differ-

ent decision from his peers’ decisions. Importantly, because deviations are only partially

ascribed to a player’s preference type, imprecise beliefs about the fundamental state en-

courage adaptation, implying that individual-oriented interventions increase the effective

conformity concerns and will not break a pooling decision rule.

In contrast, peer-oriented interventions may break a pooling outcome. There are two

competing effects of a peer-oriented intervention. First, when players are unsure what the

average preference type is, their own preferences serve as an informative signal. Given that a

player wants the public perception of his preference type to be close to the average preference

type, choosing a decision that is responsive to his own preference type is optimal; hence, a

non-pooling equilibrium will exist. The competing force is that if a player is unsure what

the average preference type of the population is, then the population is also uncertain of

that player’s preference type. The latter uncertainty implies that the population’s inference

about that player’s preference type places a greater weight on his decision rather than the

prior. I show that if the uncertainty about the fundamental state is large, the competing

effect is stronger, and thus peer-oriented interventions may break a herd. Generalizing the

definition in Bikhchandani et al. (2021), the pooling equilibrium is “fragile” to peer-oriented

interventions but not to individual-oriented interventions (Proposition 4). Moreover, even

when neither intervention can break a pooling equilibrium, the peer-oriented intervention

may have a more substantial impact on the decision players pool on (Proposition 5). This

is because a peer-oriented intervention enables players to pool on a more efficient decision.

My findings are consistent with several key studies (e.g., Schroeder and Prentice, 1998;

Bursztyn et al., 2020a; Gulesci et al., 2023) advocating for peer-oriented interventions in

situations with significant conformity concerns. Furthermore, my research provides a mech-

anism supporting Sunstein’s (2019) argument that sharing information about others’ pref-

erences can lead to the revelation of true beliefs and preferences. As Sunstein notes, this

process “unleash[es]” people, allowing them to “reveal what they believe and prefer,” ulti-

mately facilitating the discovery of “preexisting beliefs, preferences, and values.”

Further, in my model, before a peer-oriented intervention, the players will have incorrect

beliefs about the true average preference type of the group. This misperception is referred

to as “pluralistic ignorance” in the social psychology literature, which is summarized below
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in Section 1.1. This literature notes that a primary source of pluralistic ignorance is a failure

to recognize and adapt to changes to the groups’ preferences. Motivated by this finding, I

consider an extension where the underlying preference types of the population change over

time and show that conformity concerns exacerbate the lag between the public beliefs and

true preference types (Proposition 6).

Finally, the paper explores three further extensions that provide robustness checks for

the main analysis. These extensions show that the qualitative features of the analysis do

not depend on the following assumptions: short-run players (Proposition 7), linear decision

rules (Proposition 8), or Gaussian random variables (Proposition 9).

As I elaborate below, this paper provides a new rationale for why social learning fails:

conformity concerns. When conformity concerns are sufficiently small, the results from the

earlier literature continue to hold and discrete actions or boundedly informative signals

may prevent social learning. However, for higher (but, importantly, non-infinite) values

of the conformity concerns social learning will fail due to the conformity concerns. In

such settings, my model delivers predictions consistent with the empirical literature about

effective interventions, whereas the social learning literature without conformity concerns

would conjecture that individual-oriented interventions are always optimal.

1.1 Related Literature

This paper is related to three strands of literature: models of social learning, models of

decision-making with reputational concerns, and the empirical literature about pluralistic

ignorance and interventions. After presenting my results, I will connect my findings to the

empirical literature in Section 4.3 and Section 5.

This paper is closely related to the literature on social learning. In this literature, social

learning is the process in which players learn about their environment through their peers’

decisions. Social learning is said to occur when asymptotically the players make optimal

decisions. For instance, Banerjee (1992) and Bikhchandani et al. (1992) study models where

players sequentially receive information and make a decision. If a sequence of past deci-

sions is informative about the signals those players received, then players may rationally

choose to stop utilizing their own signals, causing social learning to stop. In contrast, for

the quadratic-loss environment I consider Lee (1993) shows that continuous decisions are

a sufficient condition for social learning to occur.3 Further, an implication of Kartik et

al. (2024) is that with quadratic-loss payoffs, “directionally unbounded beliefs,” which the

3More generally, Ali (2018) shows that if preferences are “responsive,” defined as every distinct
belief having a distinct optimal action, then social learning occurs.
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Normal distribution satisfies, is sufficient for social learning.4 I allow for both responsive

decisions and directionally unbounded beliefs, and yet find that social learning can fail in

the presence of conformity concerns. In contrast, the social learning literature has docu-

mented other obstacles to social learning such as costs of acquiring information (cf. Burguet

and Vives, 2000; Chandrasekhar et al., 2018), misspecified priors (cf. Bohren, 2016; Frick

et al., 2020), non-bayesian updating (cf. Golub and Jackson, 2010), changing fundamen-

tals (cf. Dasaratha et al., 2023), or differential observability assumptions (cf. Banerjee and

Fudenberg, 2004; Arieli and Mueller-Frank, 2019).

Further, this paper relates to the literature on reputational concerns. This literature

typically analyzes settings where an agent takes an observable decision attempting to both

(i) adapt the decision to a signal and (ii) make the observer think the agent is a “good

type”. In Scharfstein and Stein (1990), an agent wants to be perceived as competent, and

in Morris (2001), an agent wants to be perceived as un-biased.5 In both these papers, and

most of the literature on reputational concerns, there is a single observer viewing the player’s

decision and the preferences of this observer are common knowledge.6 In contrast, I focus on

environments where the decision-maker has multiple observers and the ideal perceived type

for the decision-maker is different for each potential observer, implying that the sender has

single-peaked preferences over the receiver’s beliefs. A subset of the reputation literature

analyzes such preferences: Bernheim (1994), Loury (1994), Manski and Mayshar (2003),

Austen-Smith and Fryer Jr (2005), Kuran and Sandholm (2008), Michaeli and Spiro (2015),

and Tirole (2023). Further, I explicitly utilize the definition of conformity developed and

modeled in Bernheim (1994). However, in all these papers, the interaction is static and the

lone decision-maker maximizes over the distribution of observers. Instead, in my dynamic

analysis there will exist aggregate uncertainty over the distribution of observers that will

be partially resolved as the game unfolds. When this uncertainty is not fully resolved, the

players conform to incorrect perceptions of their peers, a finding not present in the literature

on reputational concerns.

There is a literature that considers the effect of reputation and coordination on social

4Relatedly, Smith and Sørensen (2000) show that if preferences are monotone and the state of
the world is binary a non-zero probability of an arbitrarily precise signal is sufficient for efficient
social learning to occur.

5Braghieri (2021); Angeli et al. (2022) provides empirical support for the prediction in Morris
(2001) that political correctness may render speech uninformative.

6There are many papers which analyze different settings, but have the same feature: there is a
known type the agent wants to be perceived as. See Canes-Wrone et al. (2001); Ely and Välimäki
(2003); Ottaviani and Sørensen (2006); Braghieri (2021); Rappoport (2022). Ely and Välimäki
(2003) is especially relevant as Ely and Välimäki (2003) show that when players are sufficiently
patient, the unique equilibrium is a pooling equilibrium. I show a similar result in Subsection 6.1,
however the mechanisms are different.
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learning. For instance, Smith et al. (2021) shows contrarianism behavior should be rewarded

for efficient informational herding. With conformity concerns, not only is contrarianism not

rewarded, it is actively punished, resulting in inefficient learning. Additionally, Angeletos

et al. (2007) considers an environment where players may receive benefits from coordinating

on similar decisions. These are distinct from conformity concerns: a player’s preferences

over how his preference type is perceived.7 This distinction results in different predictions

for asymptotic learning and allows for the possibility of peer-oriented interventions.

The impact of conformity concerns on social learning is considered in Li and Van den

Steen (2021) and Fernández-Duque (2022). In both models, players can either publicly

support or oppose an issue. An individual’s support for a particular decision is influenced

by two factors: their personal preference type and their perception of social approval.

These models are different from my work because in those papers (i) there is uncertainty

about only the players’ preference types, not the fundamental state of the world, and (ii)

decisions and preference types are binary. Distinction (i) allows my work to discuss when an

individual-oriented or a peer-oriented intervention is preferred. Distinction (ii) allows my

work to predict a failure in social learning where previous work would not because the social

learning literature without conformity concerns already predicts failures in social learning

with discrete decisions. However, with conformity concerns, herding occurs with continuous

decision-making. To see why, note that even a mild adaptation to one’s private information

may be met with an extreme change in reputation, preventing players from utilizing the

continuous decision set.

Finally, this paper also contributes to a century of literature on “pluralistic ignorance,”

which refers to the systematic misperception of peers’ preferences. For a review within

economics see Bursztyn and Yang (2022) and within social psychology see Miller (2023).

This literature suggests that peer-oriented interventions (i.e., ones that correct pluralistic

ignorance) are preferred in a variety of settings: substance abuse (cf. Schroeder and Prentice,

1998), female labor force participation (cf. Bursztyn et al., 2020a), and religious norms (cf.

Gulesci et al., 2023). My paper provides a general framework that develops a prediction that

is consistent with these applied literatures: pluralistic ignorance arises and peer-oriented

interventions are needed when conformity concerns are high.

7Bernheim (1994) provides a discussion of the difference between “popularity” concerns where
each player’s preferred decision is similar to his peer’s decision and “conformity” concerns where
each player’s preferred decision is shaped by how his preference type is perceived. Bernheim (1994)
shows popularity concerns yield vastly different equilibria than conformity concerns: for instance,
popularity concerns will result in strictly monotone decision rules whereas conformity concerns result
in pooling. Importantly, for popularity concerns there should be no difference between private and
public decisions, whereas in Bursztyn et al. (2019, 2020b); Braghieri (2021), and many others we see
differences.
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The rest of the paper is organized as follows. Section 2 describes the model, equilibrium

assumptions, and defines relevant terms. Section 3 analyzes a benchmark of the model with

common knowledge. Section 4 contains the main analysis. Section 5 extends the model

to include interventions and additional determinants of pluralistic ignorance. Section 6

contains the three robustness extensions. Finally, Section 7 concludes and the Appendix

contains proofs for all statements not shown in the text.

2 Model

Consider a community whereby, each period, a player makes a decision attempting to

adapt to his private information and private preference type while possessing conformity

concerns. The first subsection describes this set-up and the second subsection discusses the

equilibrium refinements used throughout the analysis.

2.1 Model Description

Players: There is an infinite sequence of short-run players, t ∈ 1, 2, . . . . Each player,

t, observes the public history, ht, (which will be specified after defining the utility), and

his private information, and then chooses a decision at ∈ R in period t. The players

possess uncertainty about both a common fundamental state, θ ∼ N(0, τθ), and the average

preference type of the group, µ ∼ N(0, τµ).
8 Each player’s private information includes a

private signal st = θ+ ϵt and his private preference type vt = µ+ νt. I assume ϵt and νt are

independent within and across periods, and that both are Gaussian random variables with

a mean normalized to zero and a variance normalized to one.

Utility: Each player’s utility has two components. First, the player wants to adapt

his decision, at, to a combination of the fundamental state and his preference type. The

weight of the fundamental state, γt ≥ 0, is publicly observable and discussed further below.

Second, while each player observes his own preference type, the player prefers the public’s

perception of his preference type to be close to the average within the community, which

represents the conformity concerns.9 Define by ϕ(b|ht, at) the probability distribution over

a player’s preference type b that take decision at given the history of previous decisions.10

8The Gaussian assumption allows for clean comparative statics and to solve the model with
uncertainty about both the preferences of others and the fundamental state. The benchmark in
Section 3 where θ, µ are common knowledge holds for any distribution of vt, as discussed in Section
6.2. Section 6.3 discusses generalizations of the learning framework to other distributions.

9I show in Proposition 10 in Appendix B that one would get qualitatively similar results if,
throughout the analysis, each player wanted his perceived preferences to be c units higher than µ.

10There are two distinct reasons why previous decisions impact the inference function. First,
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Further, for now, ϕ(·) is unconstrained off-path. The total utility for player t is thus,

ut(at; vt, st|ht) := −Eθ,µ

(
(at − γtθ − vt)

2 − κ

∫
(b− µ)2ϕ(b|ht, at)db

∣∣vt, st, ht). (1)

The first term in the expectation states that the player wants to choose a decision close

to a linear combination of the fundamental state and his preference type. The second term

is the conformity term, scaled by κ ≥ 0. The term within the parenthesis is a reduced-form

representation of conformity: player t wants the community’s perception of his preference

type, b, to be close to the true average preference type of the community, µ. Given that

the loss function is quadratic, one can show that from the stand-point of which decisions

are taken, this is equivalent to player t preferring that such an inference be close to that of

a randomly drawn preference type in the community.11

Information: I assume that the public history takes the form ht = {γ1, a1, . . . , γt−1, at−1, γt}.
This assumption states that there is full observability of the decisions and when they were

made. Given this assumption, one can interpret the γt’s as commonly observed time fixed-

effects determining whether the fundamental state or one’s preference type is comparatively

more important. These time fixed effects are modeled as (i) γt ≤ 1 ∀ t, and (ii) there being

an m ∈ N such that γt+m = γt and γt+1 ̸= γt. These assumptions are only necessary in

the analysis with uncertainty about θ and µ. Without these assumptions there is only one

“moment condition” for the players to separately infer θ and µ, potentially resulting in

incomplete learning. However, in Section 9.4.4, I show that such learning outcomes are not

locally stable, and this assumption removes their existence.12

I analyze Perfect Bayesian Equilibria (cf. Fudenberg and Tirole, 1991) satisfying the

following requirements each period, and I will discuss each requirement below.

1. Linearity: Decisions are a linear combination of the public’s beliefs about θ, the

public’s beliefs about µ, a player’s private signal, and a player’s preference type.

2. Social Optimality: The players always play the linear equilibrium that maximizes

total surplus.

previous decisions impact the equilibrium perception about θ, and thus a player may choose a higher
decision due to a higher perception of θ rather than higher preferences. Second, previous decisions
impact the equilibrium perception of the average preference type, which impact the equilibrium
perception of a given player’s preference type.

11Both interpretations correspond to Bernheim (1994) when µ is common knowledge.
12These learning outcomes resemble the confounded learning outcomes in Smith and Sørensen

(2000). Unlike Smith and Sørensen (2000), these outcomes are not locally stable. Intuitively, what
this assumption states is that players may place different weights on the fundamental state, e.g.,
at the end of the semester with respect to drinking or during election cycles in political speech
examples.
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2.2 Equilibrium Selection:

Linearity: The restriction to linear equilibria is common when studying the normal learning

model as it allows for greater tractability. Generally, this assumption is with loss of gener-

ality. Despite this, I show in Section 6.2 that when the distribution of preference types has

full support and there is no uncertainty over θ (the fundamental state) or µ (the average

preference type), the only equilibria with revelation which satisfy D1 from Cho and Kreps

(1987) are the linear equilibria. Upon adding uncertainty over θ, through signals st, one

must add distributional assumptions to ensure linearity is without loss. To see why, note

that at will be a function of vt + γtE(θ|st, vt), and thus the public inference of vt will be

based on the sum vt+γtE(θ|st, vt). If this inference is non-linear, then generally the decision

rule will be non-linear. In the Gaussian case, this inference is linear, and in Appendix B, I

prove that the only equilibria with revelation that satisfy D1 remain linear. Similarly, upon

adding uncertainty over µ, if player t’s inference about µ is non-linear in his preference

type, vt, then generally the equilibrium will be non-linear. Again, the Gaussian assumption

ensures that the inference is linear, and in Appendix B, I show that this assumption implies

that the only equilibria satisfying D1 with revelation are linear.

Social Optimality: I assume that for each period, t, the equilibrium decision rule in

period t maximizes the expected surplus out of all linear decision rules in period t.13 This

refinement is identical to one where the sequence of equilbria across periods maximizes the

discounted expected surplus of the players from the class of linear equilibria in all periods.

This refinement implies the players utilize a decision rule with revelation whenever one

exists. Intuitively, players always prefer the linear equilibrium with revelation to pooling

on any decision, a∗. In the revealing equilibrium, each type can always choose a∗, and that

they do not implies they have a weak preference to not. Further, the conformity loss is

independent of the equilibrium chosen by Bayes Plausibility.

These criterion prescribe a unique decision rule in all periods, t. Thus, I refer to the

unique Perfect Bayesian Equilibrium satisfying these conditions as the signaling equilibrium.

3 Common Knowledge Benchmark

This section analyzes the impact of conformity on decision-making and mutes uncer-

tainty about the fundamental state and the preferences of others. To do so, I assume θ and

13Without the social optimality refinement, then for any sequence of values x1, . . . , there exists an
equilibrium where all players pool on xt in period t. Such equilibria are removed by this requirement.
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µ are common knowledge, and, without loss of generality, are both equal to zero.14 Further,

without uncertainty, there is no time dependence, thus it is without loss of generality to

consider the decision rule of a player with preference type v. A signaling equilibrium re-

quires that this decision rule is linear in v. Given linearity, there are two cases: a constant

and a strictly increasing decision rule. If the decision rule is constant, then this decision

rule is defined as “fully-pooling.” Further, for any fully-pooling decision rule, there exist

off-path beliefs that deter any deviations from the pooling decision.

Any decision rule, a(v) that is non-constant is defined as “revealing” and is determined

by v̂(a) = αa + β, which was defined as the posterior expectation of a player’s preference

type given his decision. The necessary and sufficient condition for these beliefs to constitute

an equilibrium is that given v̂(a), the decision rule that maximizes a players utility, a(v),

must result in a consistent conjecture of v̂(a). The first-order condition for the decision rule

given a conjecture v̂(a) = αa+ β is:

a− v + κα(αa+ β) = 0 ⇐⇒ v = (1 + κα2)a+ καβ. (2)

Further, these beliefs constitute an equilibrium if and only if:

1 + κα2 = α and β = καβ. (3)

It is immediate that β = 0 is a solution to the latter equality, and, further, it is the

unique solution for any α that solves the former. While one can solve the former equality,

Figure 1 provides intuition why an equilibrium with revelation cannot exist for high values

of conformity concerns. Figure 1 depicts as a function of the conjectured slope of the

beliefs, α, the resulting beliefs from the best response, 1+κα2, for two different values of κ.

Further, note that Figure 1 also provides intuition for why the fully-pooling decision rule is

an equilibrium. In the pooling equilibrium, the slope of the decision rule is zero, implying

that the slope of the beliefs (i.e., the inverse of the decision rule) is infinity. Finally, the best

response to such beliefs is to choose the pooling decision, which will generate such beliefs

in equilibrium.

14As a result of θ being common knowledge, the players disregard their signals st, which removes
any need for distributional assumptions about the signals. This simplified analysis is similar to that
of Bernheim (1994). Section 6.2 examines this environment without assuming linearity and offers a
comprehensive comparison with the findings of Bernheim (1994).
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Figure 1: Existence of Linear Equilibria with Revelation

The x-axis represents a conjectured slope of the posterior beliefs of the community given a decision,
v̂(a). The y-axis depicts the beliefs that result from the best response of the players to such a
conjecture as stated in Equation (3). In Blue is the best response when the conformity concerns are
high (κ = .4) and in Red the best response when the conformity concerns are low (κ = .2).

Figure 1 provides complementary reasons why no equilibrium with revelation exists

for high values of κ. Intuitively, (i) as the conformity concerns increase, the players must

conform more resulting in a lesser slope of a(v). As v̂(a) is the inverse of a(v), then the slope

of v̂(a) is high. Further, (ii) the players cannot conform too much while still maintaining an

equilibrium with revelation. If this occurred, then the slope of a(v) must be small, implying

a large slope of v̂(a). If the conjectured slope is too large, the players have a large incentive

to conform as their decision greatly impacts their reputation. Combining these intuitions,

if the conformity concerns are high then (i) dictates that the slope of v̂(a) must be large,

but (ii) dictates that such slopes cannot constitute an equilibrium.

Finally, when the conformity concerns are low enough that an equilibrium with revela-

tion exists, then three different linear Perfect Bayesian Equilibria exist. As the conformity

loss is fixed across the equilibria and equal to κ multiplied by the variance of v, we can focus

on the adaptation loss. Further, a lesser slope of v̂(a) corresponds to a greater slope of a(v),

implying that the equilibrium with the lowest slope of v̂(a) results in the best adaptation

loss. Therefore, the social optimality refinement pins down a unique signaling equilibrium.

Proposition 1 (Commonly Known Environment)

13



There exists a threshold value, κc.k., such that the unique signaling equilibrium as defined

in Section 2.2 is characterized by the following decision rule:

a(v) =


1+

√
1−4κ
2 v if κ ≤ κc.k.

0 if κ > κc.k.
, (4)

where κ denotes the weight on conformity. Given this decision rule,

u(v) =

−1−
√
1−4κ
2 v2 if κ ≤ κc.k.

−v2 − κ if κ > κc.k.
. (5)

This proposition summarizes the intuitions from the figure. First, the degree to which a

player adapts to his preference type is decreasing with respect to the conformity concerns,

κ. To see this, note that when κ = 0, a(v) = v and as κ increases up to the threshold

κc.k., a(v) = v/2. The reason for this decrease is that each player has an added incentive

to conform when the conformity concerns increase. Finally, when the incentive to conform

becomes sufficiently high, i.e., κ > κc.k., there is no decision rule with revelation and the

signaling equilibrium is fully pooling. Importantly, such fully-pooling decision rules provide

no information about a player’s private information, and this observation will be key in the

main analysis.

4 Analysis

This section begins with an analysis of the complete model where the players learn

both the fundamental state and the average preference type of their peers while possessing

conformity concerns. I show that the players learn the fundamental state if and only if

they learn the average preference type of their peers. Further, such learning fails whenever

the conformity concerns are sufficiently high and occurs whenever the conformity concerns

are sufficiently low. The second subsection presents additional comparative statics about

the asymptotic utility and the asymptotic precision of the beliefs about the fundamental

state and show that both of these terms are decreasing in κ. In doing so, I assume away

uncertainty about the population’s average preference type and analyzes how the players

learn the fundamental state.15 Incorporating both dimensions of uncertainty allows for

predictions that neither uni-dimensional learning model will produce. However, doing so

15Further, in Subsection 5.5, I conduct an analysis where the fundamental state is common knowl-
edge, but the average preference type, µ, is uncertain. In that analysis, conformity concerns prevent
the players from learning µ, and provides similar comparative statics.
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complicates the analysis by requiring a joint update in the posterior beliefs each period. In

the final subsection, I relate the findings of my baseline theoretical model to the empirical

and qualitative literatures discussed in Section 1.1.

Before delving into the analysis, I define notation that appears throughout. Given the

Gaussian set-up, the joint distribution of the public beliefs about θ and µ at any time t

remain jointly Gaussian.16 Define θ(t) = E(θ|ht) and µ(t) = E(µ|ht).17 These random

variables have the following joint distribution:

(
θ(t)

µ(t)

)
∼ N

(θ̄(t)
µ̄(t)

)
,

(
τθ,t ρt

√
τθ,tτµ,t

ρt
√
τθ,tτµ,t τµ,t

)−1
 . (6)

As is common, it will be convenient to work with the precision matrix, defined as the inverse

of the variance matrix in the above equation. Below, I introduce definitions.

Definition 1 (Social Learning)

Social learning about fundamentals occurs (respectively, fails) if and only if θ(t) →p θ (re-

spectively, θ(t) ̸→p θ). Social learning about preferences occurs (respectively, fails) if and

only if µ(t) →p µ (respectively, µ(t) ̸→p µ).

In the signaling equilibrium, the inference function, ϕ(b, ht, at), will be Gaussian, the

mean of which will be denoted as v̂(at) =
∫
b · ϕ(b, ht, at). Within the quadratic set-up the

variance of ϕ(b, ht, at) and the variance of µ are independent of the decision taken. These

observations allow for the following simplification of the utility function up to some constant

ct as stated below.

ut(at; vt, st|θ(t), µ(t), γt) :=−Eθ,µ

(
(at − γtθ − vt)

2
∣∣∣θ(t), µ(t), vt, st)

− κEθ,µ

((
v̂t(at)−E(µ)

)2∣∣∣θ(t), µ(t), vt, st)− ct. (7)

The first term is the adaptation loss. The second term is the squared difference from the

expectation of player t’s preference type and the average preference type of the population,

and the final term is the variance stemming from the uncertainty over µ and θ. Given this

utility, I define the following.

Definition 2 (Asymptotic Utility and Adaptation Loss)

16Notably, while the prior beliefs about θ and µ in period 1 are independent, in any subsequent
period, the beliefs about θ and µ are dependent as both condition on the same sets of decisions.

17Throughout, θ(t), µ(t) are sufficient statistics for the probability distribution determining the
players’ beliefs at a given point in time. As a shorthand, I therefore refer to these random variables
as “the beliefs.”
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The asymptotic utility is lim
t→∞

E
(
ut(at; vt, st|θ(t), µ(t), γt)

)
. The asymptotic adaptation loss

is lim
t→∞

E
(
− (at − γtθ − vt)

2
)
.

Throughout I provide results discussing both notions of asymptotic efficiency. However,

the comparative statics for one notion of asymptotic efficiency coincide with the comparative

statics for the other because the difference in these terms is the expected conformity loss

which is pinned down by Bayes plausibility.

4.1 Determinants of Social Learning

This subsection analyzes the complete model where the players attempt to socially learn

θ and µ as described in Section 2.1. To analyze this environment, I consider an arbitrary

period, t. Recall that the beliefs about θ and µ follow a bivariate normal distribution.

These beliefs are sufficient statistics for the sequence of past decisions, a1, . . . , at−1, and the

relative weights on the fundamental state in each period γ1, . . . , γt−1 in a linear equilibrium.

To analyze the signaling equilibrium, fix any equilibrium that is not fully pooling and

a conjecture for v̂t(at) = αtat + βt, where the consistent conjectures for αt and βt will, of

course, depend on the beliefs at period t. In this equilibrium, player t’s first-order condition

for his decision rule is:

at(1 + κα2
t ) = γtE

(
θ | θ(t), µ(t), st, vt

)
+ vt + καtβt + καtE

(
µ | θ(t), µ(t), st, vt

)
. (8)

Such an equilibrium exists if the posterior expectation of vt given such a decision rule is

consistent with the equilibrium conjecture of v̂(at) = αtat + βt. Given the distributional

assumptions, one can write this posterior expectation as follows,

E
(
vt | at(1 + κα2

t )
)
:= at(1 + κα2

t ) · s̃(αt, κ, θ(t), µ(t)) + ι(αt, κ, βt, θ(t), µ(t)), (9)

where s̃(·) will be thought of as determining the sensitivity of the decision rule to vt and

ι(·) as determining the intercept. Thus the necessary and sufficient condition for a signaling

equilibrium to involve revelation is whether there exist an αt and βt which satisfy,

(1 + κα2
t )s̃(αt, κ, θ(t), µ(t)) = αt (10)

ι(αt, κ, βt, θ(t), µ(t)) = βt. (11)

These equations resemble those in Equation (3) where, in that benchmark, s̃(·) = 1 and

ι(·) = καtβt. Similar to that benchmark, whenever there exists a solution to Equation (10),

there will exist a unique solution to Equation (11), thus shifting the focus to Equation (10).
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Further, Equation (10) is independent of βt. Finally, the sensitivity, s̃(·), is independent of
the means of the beliefs, θ(t), µ(t). This independence arises because the sensitivity captures

how variation in the decision corresponds to variation in a player’s preference type, which

is independent of the mean beliefs in a linear equilibrium. The following lemma formalizes

this intuition and provides additional properties of the learning process.

Lemma 1 Fix κ, {γt}, and initial beliefs about θ and µ. Social learning about fundamentals

occurs if and only if social learning about preferences occurs. Further, whether or not

social learning about fundamentals occurs (symmetrically, preferences) is independent of

the realizations of at.

The intuition behind the first statement in the lemma is that if the players socially learn

θ, the players must have observed infinitely many periods of informative decisions. Given

the knowledge of what θ is, the players can use these infinitely many periods to infer µ and

vise versa. Since the conditions for social learning about preferences and fundamentals are

identical, for brevity, I will refer to social learning as when the players socially learn both

the preferences and fundamentals. Further, the second statement formalizes the intuition

that whether an equilibrium involves revelation is determined only by the sensitivity in the

conjectured type as a function of the decision. Importantly, that the sensitivity is influenced

by the precision of the beliefs in a given period is exactly why the effective conformity

concerns, corresponding to the endogenous reputational penalty of adaptation, change over

time. Adaptation imposes a change in one’s perceived preference type determined by the

sensitivity, and the conformity loss is equal to κ multiplied by this sensitivity. To build

intuition, if the beliefs about θ are sufficiently imprecise, each player will put comparatively

more weight on his signal st. As the decision rule now puts a larger weight on st than vt,

the sensitivity will be lower because variation in at will be ascribed to a player’s signal as

opposed to his preference type. In contrast, if the players are sufficiently certain about θ and

µ, then each player effectively disregards his signal and his preference type when computing

the posterior expectations of θ and µ, implying that the right-hand side of Equation (8) is

approximately equal to vt and that the sensitivity is approximately equal to 1. One can use

this intuition to generate the following lemma, providing a sufficient condition for a failure

in asymptotic learning.

Lemma 2 (Sufficient Condition for Failure of Social Learning)

If κ > κc.k., social learning about fundamentals and preferences fails for any initial beliefs

about the fundamental state and average preference type.

This lemma states that when the conformity concerns exceed the threshold for revelation

in the common knowledge environment, the players are unable to socially learn θ or µ. To
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gain intuition, note that by Lemma 1 an equilibrium with revelation exists if and only

if there exists an α which solves Equation (10). That κ > κc.k. = 1/4 implies that if

the sensitivity were equal to one (or within an ϵ window of 1), then there would exist no

solution, as the left-hand side of Equation (10) would be strictly greater than the right-hand

side for any α. Hence, for a signaling equilibrium with revelation to exist, the sensitivity

cannot converge to one. Further, for social learning to occur, there must exist infinitely

many periods of revelation even as the beliefs converge to the truth. However, if the beliefs

converge to the truth, the right-hand side of Equation (8) converges to vt, implying that the

sensitivity converges to 1, yielding a contradiction. As a result, when κ > κc.k. the beliefs

do not converge and the players face three inefficiencies in the limit. First, as the players

use a pooling decision rule in the limit, the players are unable to adapt to their preference

types. The subsequent two inefficiencies stem from the players utilizing a pooling decision

rule based on inaccurate perceptions of both θ and µ.

Given Lemma 2, it suffices to analyze κ < κc.k.. First note that for any κ < κc.k.,

there exist initial beliefs such that social learning succeeds. To see why, note that for

sufficiently precise beliefs about θ and µ, the noise stemming from adaptation to changes in

the perceptions of θ or µ is sufficiently small. As a result, for any ϵ, there exist sufficiently

precise beliefs about θ and µ, such that the sensitivity in the decision to vt is less than 1+ϵ.

By Equation (10), an equilibrium with revelation exists if and only if 1 + κα2
t multiplied

by the sensitivity is equal to αt. Since κ < κc.k., one can increase the left-hand side by ϵ

(corresponding to an increase in κ) and there will still exist a solution. Hence, for sufficiently

precise beliefs, there will exist an equilibrium with revelation. Further, as the beliefs in the

subsequent period will be more precise, the next period will involve revelation, and by

induction, all subsequent periods. Finally, the assumed time fixed-effects in γt imply that

the players can separately identify θ and µ.18 This intuition implies that if κ < κc.k., there

exist sufficiently precise beliefs for which social learning will succeed. The following lemma

formalizes this intuition.

Lemma 3 (Existence of Social Learning)

Fix {γt} and κ < κc.k.. There exists an open set of initial beliefs such that social learning

about preferences and fundamentals occurs.

The question now turns to whether κ < κc.k. is a sufficient condition for social learning

for all possible initial beliefs. Intuitively, for social learning to fail, there must exist a period

in which the signaling equilibrium is pooling. That the signaling equilibrium is pooling is

18As discussed in Footnote 12, without this assumption the beliefs may converge to an unstable
learning outcome.
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equivalent to there not being a solution to 1 + κα2
t multiplied by the sensitivity in the

decision rule to vt equaling αt (at a high level, the effective conformity concerns being

larger than the conformity concerns). As one example of why this may occur, note that

given a sequence of high decisions each player is unsure if the decisions were high due to a

high fundamental state or high average preference type. If the player has a low preference

type, he updates that the fundamental state must be comparatively high. If this inference

is sufficiently strong, the sensitivity in the posterior expectation of vt given a change in

the decision may be greater than one. When this sensitivity is strictly greater than one,

the condition for the existence of an equilibrium with revelation is strictly tighter than

κ < κc.k.. As a result, there may exist an open set of initial beliefs such that social learning

about both preferences and fundamentals fails, despite κ < κc.k.. The following proposition

formalizes this logic and unifies the previous lemmas.

Proposition 2 (Characterization of Long-Run Learning)

There exists a threshold κ ∈ (0, κc.k.) such that:

1. If κ ≤ κ, then for any initial beliefs, social learning about preferences and fundamen-

tals occurs.

2. If κ ∈ (κ, κc.k.), then there is an open set of initial beliefs such that social learn-

ing about preferences and fundamentals occurs. Further, there exists an open set of

parameter values for which social learning about preferences and fundamentals fails

despite κ ∈ (κ, κc.k.).

3. If κ > κc.k., then for any initial beliefs, social learning about preferences and funda-

mentals fails.

The first statement can be seen by analyzing the condition for the existence of a signaling

equilibrium with revelation. If κ is sufficiently small, then for any prior beliefs one can show

that the conformity concerns are sufficiently small such that there exists an equilibrium with

revelation in every period. Further, the third result is a direct consequence of Lemma 2. The

second result states that when the conformity concerns take an intermediate value social

learning may occur or fail. That social learning may occur is a consequence of Lemma 3.

That social learning may fail is due to the effective conformity concerns being larger than

the conformity concerns when there is a sufficiently strong negative correlation between the

beliefs about θ and µ.

This section shows that the condition for social learning-about either fundamentals or

the preference types-depends on an intuitive fundamental: the magnitude of conformity

concerns.19 I discuss this finding in the context of the empirical literature in Section 4.3.

19At this level of generality, the learning outcomes are not monotone in κ. For instance, a
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4.2 Comparative Statics

In the previous subsection the players possess uncertainty about both a fundamental

state and the average preference type of others. Allowing for both types of uncertainties

allows for the comparison between interventions addressing misperceptions of the prefer-

ences of others and misperceptions about the fundamental state in Section 5. However, the

finding that social learning about fundamentals occurs if and only if conformity concerns

are sufficiently small continues to hold absent uncertainty about the preferences in the pop-

ulation. Further, the analysis absent such uncertainty allows for additional comparative

statics about the long-run behavior of the players.

In this subsection, I assume, µ, the average preference type of the community is common

knowledge and without loss of generality equal to zero. Further, as the learning problem

has only one dimension of uncertainty, one can normalize γt = 1 without loss of insights

(see Footnote 12). As such, a sufficient statistic for the history is the current public belief

about θ, θ(t) ∼ N(θ̄(t), τθ,t).

The evolution of θ(t) uniquely determines the equilibrium behavior of the players. Fur-

ther, as argued in Section 4.1, the mean of θ(t), θ̄(t), does not influence whether or not an

equilibrium will be revealing nor the degree of revelation. Thus, the equilibrium dynamics

are determined by the precision of θ(t), τθ,t. In this simplified model, the effect of greater

uncertainty about θ is that deviations in the decision are increasingly ascribed to st as

opposed to vt. As a result, the greater the uncertainty, the lesser the effective conformity

concerns. These intuitions combine to generate the following proposition.

Proposition 3 (Social Learning when Average Preference Type is Known)

Fix any prior beliefs about θ and let µ be common knowledge. Social learning about funda-

mentals occurs if and only if κ ≤ κc.k.. Further, when κ > κc.k. the long-run precision of

the beliefs τθ(κ) := lim τθ,t(k) < ∞ is decreasing in κ. Finally, the asymptotic adaptation

loss and asymptotic utility of the players is decreasing in κ with a discontinuity at κ = κc.k..

This proposition shows that conformity concerns impacts not only the binary outcome of

social learning, but also the degree of asymptotic learning. The intuition behind this result

is that uncertainty about θ, in this simplified environment, always decreases the effective

conformity concerns. As a result, if the equilibrium involves revelation in the environment

with common knowledge, then the equilibrium is revealing in all periods with uncertainty

about θ. This implies that if κ ≤ κc.k., the players learn θ for any initial beliefs. In contrast,

marginally higher value of κ alters whether the decision rule places marginally more weight on
st or vt, which results in differential beliefs in the subsequent period. In either analysis with only
one dimension of uncertainty, the learning outcomes are strictly monotone with respect to κ.
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if κ > κc.k., then in the common knowledge environment the players cannot adapt to their

private information. As social learning necessitates adaptation even as the beliefs become

arbitrarily precise, the players necessarily stop adapting to their private information before

learning occurs.

Further, when the conformity concerns are higher, the players switch to the pooling

equilibrium earlier. Given this earlier switch, an increase in κ when κ > κc.k. results in

pooling on less accurate perceptions of the fundamental state, ultimately resulting in both

a worse asymptotic adaptation loss and a worse asymptotic utility. In contrast, for κ ≤ κc.k.,

the asymptotic utility of the players converges to that in the common knowledge benchmark.

Finally, the discontinuity at κ = κc.k. occurs because the players can adapt to their private

type in the limit if and only if κ ≤ κc.k.. The following figure showcases this intuition, by

plotting the asymptotic adaptation loss as a function of κ in both the benchmark (blue)

and the dynamic model (red).
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Figure 2: Asymptotic Adaptation Loss

In Blue is the asymptotic adaptation loss in the benchmark. In Red is the asymptotic adaptation loss
when the players have common knowledge about µ, the average preference type of their peers, but
have prior θ ∼ N(0, 1) about the fundamental state. These two functions coincide when κ ≤ κc.k.

but differ for higher values of conformity concerns. The difference between these two functions is
due to the players pooling on θ̄(t), which will not equal θ, when the players fail to socially learn θ.

This simplified model showcases how conformity concerns impede efficient learning.

Despite the players having access to continuous decisions and sufficiently informative signals,

the players fail to learn the fundamental state for any prior beliefs when the conformity

concerns are sufficiently high. Further, in addition to the extensive margin of whether the
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beliefs perfectly converge to the truth, the conformity concerns effect the intensive margin of

the precision of the beliefs: the greater the conformity concerns, the more imprecise beliefs

the players ultimate harbor.

4.3 Applied Relevance

My model has predictions for both the asymptotic efficiency of decisions and whether

the players will learn the average preference type of their peers. I now argue that my

predictions are more consistent with the empirical literature than the existing theoretical

literature discussed in Section 1.1.

Determinants of Efficient Decisions: In my analysis, the magnitude of conformity

concerns are the main predictor for whether decisions will be asymptotically efficient. In

contrast, the social learning literature predicts that continuous decisions or unboundedly

informative signals are sufficient for asymptotic efficiency. I now review the empirical liter-

ature in support of my predictions.

Continuous Decisions: As discussed in Lee (1993), examples of successful social learning

include financial markets and business forecasting where investment decisions are continu-

ous. The literature notes that despite a potential for initial erroneous mistakes and herding,

that firms asymptotically learn whether a given asset is valuable. In contrast, my model

predicts that the conformity concerns must be low for efficient decisions asymptotically.

Returning to the case study of financial markets, one might think the conformity concerns

are low relative to the financial stakes. Given these low conformity concerns, my model

produces a similar prediction to the historical literature. However, if decisions are contin-

uous, but the conformity concerns are high, such as alcohol consumption (cf. Prentice and

Miller, 1993), drug use (cf. West and O’Neal, 2004), and many others, then in line with my

model, we see more inefficiencies and worse beliefs amongst the community.

Unboundedly Informative Signals: The social learning literature defines a signal as un-

boundedly informative signals if with positive probability the player is arbitrarily certain of

the optimal decision after observing one’s private signal. If these signals occur, then even

if the players are herding on a wrong decision, when such a signal occurs, the player who

received such a signal will break the herd and choose the correct decision. This observa-

tion is in contrast to the famous conformity experiment in Asch (1953). Participants were

grouped and shown a series of lines, then asked to identify the one matching a reference

line. Unbeknownst to the participants, the experimenters planted an actor into the group

to deliberately provide incorrect answers. Without the actors, success exceeded ninety-nine

percent, but with the actors, over seventy-five percent of participants conformed. The so-
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cial learning literature predicts that individuals should not copy the actor because each

individual can identify the correct answer. In contrast, my model predicts that if confor-

mity concerns are large, the individuals will copy the actor’s incorrect decision.20 Finally,

Franzen and Mader (2023) replicated the original study and found that monetary incentives

decrease the probability of conformity by 13 percentage points. Consistent with my model,

these incentives increase the importance of adaptation, resulting in less conformity.

Pluralistic Ignorance: My model predicts that “pluralistic ignorance” can arise in

equilibrium. Pluralistic ignorance is defined as, “a situation in which group members sys-

tematically misestimate their peers’ attitudes” (Miller, 2023). In a review article, Bursztyn

and Yang (2022) document that such misperceptions lead to inefficient social norms and are

rampant, occurring in a wide range of environments: political movements, macroeconomic

expectations, vaccination status, and many others.

The extent of pluralistic ignorance corresponds to the magnitude by which individuals

systematically misestimate the preference types of their peers, for a given realization of

their peers true preference types.21 In the model, if the public beliefs about µ converge to

the truth, then (tautologically) every player correctly predicts the average preference type.

In contrast, if the public beliefs do not converge, then there exists uncertainty about µ,

implying that each player’s estimate of µ combines both the public beliefs about µ and his

preference type, vt, which is predictive about µ. In such cases, the distribution of estimates

will be non-degenerate, and with a probability equal to one, will not be perfectly centered

around µ. Further, the greater the uncertainty in the public beliefs, the more likely such

beliefs are centered around the prior beliefs about µ as opposed to the true value. Thus, one

can view the uncertainty about the public beliefs about µ (the inverse of τµ,t) as describing

the expected degree of pluralistic ignorance.

While there exist numerous behavioral explanations for pluralistic ignorance, the model

presented in this paper provides an additional explanation: the desire for conformity ne-

cessitates “self-censorship in public discourse” (cf. Loury, 1994), resulting in insufficient

information for others to gauge the views of the public.22

20In my model, decisions are continuous. However, one could alter my model to consider discrete
decisions, and indeed one would find that players would conform even in the presence of unboundedly
informative signals.

21In the model, µ(t) is an unbiased estimator for µ. However, the object of interest is the gap
between µ(t) and µ for a given realization of the preferences, µ. One may object that, in practice,
µ(t) is greater than µ in every school in the context of alcohol (rather than being unbiased). However,
all these students observe similar sets of celebrities on social media or television, implying that the
beliefs across schools should not be viewed as independent samples.

22This theory finds empirical backing in Braghieri (2021) which documents that participants are
likely to skew their answers to politically sensitive questions in the direction of public support when
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5 Policy Interventions

In this section, I first review two case studies about interventions. Next, I extend the

model to analyze informational interventions and show that when conformity concerns are

high, interventions addressing misperceptions of the average preference type outperform

interventions addressing misperceptions of the fundamental state. Finally, motivated by

the literature in social psychology on pluralistic ignorance, I extend the model to consider

changing preference types and connect this finding to peer-oriented interventions.

5.1 Empirical Examples

In this subsection I detail two empirical studies about interventions from social psychol-

ogy and economics, respectively.

Case 1: Alcohol Use on Campus: Prentice and Miller (1993) conducted a survey

amongst Princeton undergraduates to show that students over-estimate their peers’ pref-

erences towards alcohol by 32 percent and that such misperceptions are correlated to the

over-consumption of alcohol on campus.23 Given the results in Prentice and Miller (1993),

Schroeder and Prentice (1998) causally tested whether these misperceptions are the pri-

mary cause of excessive drinking on campus as opposed to potential misperceptions of the

deleterious health consequences of excess drinking. To do so, the authors divided incoming

college students into two groups. The first group received information about the health

effects of alcohol consumption (θ in my model), and the second group received information

about their peers’ preferences towards alcohol (µ in my model). At the end of the semester,

students were surveyed about their drinking behavior, and the intervention targeting mis-

perceptions of peers’ preferences reported 40 percent less drinking than the intervention

addressing health consequences.

Case 2: Women Working Outside the Home: A recent randomized experiment

from Bursztyn et al. (2020a) finds that, in the context of Saudi Arabia, the vast majority of

these answers are public and that such skewing decreases the information from any given statement.
In contrast to Braghieri (2021), I allow for uncertainty about the direction of the public support. For
instance, college students may be uncertain how “cool” drinking is. Allowing for such uncertainty
allows for a tighter connection with the case studies regarding pluralistic ignorance.

23Prentice and Miller (1993) even notes, “Princeton reunions boast the second highest level of
alcohol consumption for any event in the country after the Indianapolis 500,” implying that such
perceptions are sufficiently strong to continue a decade after graduation at a reunion and have
deleterious outcomes for the community.
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young married men privately support women working outside the home (WWOH) and sub-

stantially underestimate support by other similar men. Further, the low levels of WWOH,

suggests that such misperceptions may be impeding efficient behavior. The authors then

randomly assign information about the correct perceptions of one’s peers to the participants

and show that correcting the misperceptions increases men’s willingness to have their wives

work by 36 percent. In a final step towards showing that misperceptions of peers’ prefer-

ences are the main inhibitor of efficient decision-making, Bursztyn et al. (2020a) consider

whether misperceptions about the fundamental state may be the root cause, noting, “if so

many people, in fact, support WWOH then there are probably many firms willing to hire

women for jobs outside the home” (p. 3018). They show that information about preferences

of their peers caused no updated inference in the number of jobs for women, consistent with

the fact that the effect is not caused through updated beliefs about the fundamental state.24

5.2 Modeling Interventions

I consider four different types of interventions composed of the intersection of whether

the information shared with individuals is made common knowledge and whether the infor-

mation is about the fundamental state or the average preference type.

Before analyzing “common-knowledge” interventions, I analyze “private interventions.”

One can think of a private intervention as giving player t access to additional information;

however, such information is private and is not accounted for by the community when

inferring player t’s preference type given his decision. Without formally stating the result,

one can see that such an intervention has no ability to break a pooling equilibrium nor

influence which decision the players pool on. To see why, suppose player t is told the value

of the fundamental state, θ. Given that each player wants to match his decision to the

fundamental state, player t has an identical incentive to adapt to θ as a hypothetical player

who received a signal whose implied posterior mean of θ matches the fundamental state.

Further, since the signal distribution has full support, and the hypothetical player cannot

adapt to such information, neither can player t. Thus, the equilibrium in period t remains

identical. Finally, as such information was private information to player t, and no change in

24Bursztyn et al. (2020a) include a model with a few key differences to mine. First, in Bursztyn et
al. (2020a) agents are endowed with incorrect beliefs about their peers’ preference types. In contrast,
these misperceptions arise in equilibrium in my model. Second, in Bursztyn et al. (2020a) decisions
are discrete, whereas my paper shows learning may fail for continuous decisions. Finally, my model
allows for misperceptions about θ and µ and gives conditions when information about µ is preferred.
In contrast, in Bursztyn et al. (2020a) θ (which can be viewed as the economic benefits of WWOH)
is common knowledge and the only possible interventions are about µ.
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behavior occurs in period t, then no change in behavior follows for any subsequent periods.25

Given the stark irrelevance result for private interventions, I now focus on common

knowledge interventions. In the standard framework absent interventions, the public history

at time t is ht = {γ1, a1, . . . , γt−1, at−1, γt}, namely the sequence of past decisions and

the environments in which such decisions were chosen. I consider an intervention where

information is released before period t, but after at−1. Such an intervention leaves the prior

histories unchanged (and further the prior sequence of events remains unchanged as each

player is short-lived). This information could be about either θ or µ, which will be referred

to as individual-oriented and peer-oriented interventions, respectively.

5.3 The Effects of Interventions

I begin with a definition of when a signaling equilibrium with pooling is fragile. I call

a pooling decision rule “fragile” to an individual-oriented intervention with n pieces of

information if there exists a hypothetical public disclosure of n i.i.d. signals about θ that

are distributed identically to st which cause the equilibrium in period t to be non-pooling

when it would otherwise be pooling. Similarly, it is fragile to a peer-oriented intervention

with n pieces of information if n i.i.d. signals to vt causes an equilibrium to be non-pooling

when it would otherwise be pooling. This definition mirrors the definition of fragility in

Bikhchandani et al. (2021) but is augmented to allow for a signal about µ.

Proposition 4 (Fragility)

The following are true:

1. If κ < κc.k., for any pooling equilibrium there exists an N such that the pooling

equilibrium is fragile to both an individual-oriented intervention and to a peer-oriented

intervention with n ≥ N pieces of information. Further, after either intervention,

social learning about fundamentals and preferences occurs.

2. If κ > κc.k., for any n ∈ N ∪ ∞, an individual-oriented intervention (respectively,

peer-oriented intervention) with n pieces of information will never result in social

learning about µ (respectively, θ).

3. If κ > κc.k. and the correlation between the beliefs about θ and µ is equal to zero,

the equilibrium is never fragile to an individual-oriented intervention with n pieces

of information but may be fragile to a peer-oriented intervention with n pieces of

information.

25In support of this theory, Tevyaw et al. (2007) shows that the magnitude of the reduction in
alcohol use was 3 times larger on average for group-level interventions than individual-level inter-
ventions.
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The intuition behind the first result is that if κ < κc.k., then when there is complete

information the signaling equilibrium involves revelation. Further, that the equilibrium

is pooling despite a κ < κc.k. is necessitated by a strong negative correlation between the

beliefs about θ and µ. When this correlation is strong, each player negatively updates about

θ given his preference type, vt. As a result, when the correlation is negative, changes in

vt cause a smaller change in at, increasing the reputational penalty from adapting to one’s

private information (as this is increasingly ascribed to vt). A sufficiently large amount of

information about either θ or µ will weaken the negative correlation in the beliefs about θ

and µ, allowing the players to adapt to private information once more.

The second result says that if the conformity concerns are high, then giving information

about only one dimension of uncertainty will be unsuccessful in spurring social learning. The

proof for this result is precisely Proposition 2, which states that, for any prior beliefs about

θ and µ, the players’ beliefs about θ and µ cannot converge to the truth. The implication of

this result is that even if a social planner designs a perfect individual-oriented intervention,

the players will necessarily continue to pool on inaccurate perceptions of µ.

Finally, the intuition for the final result comes from the different effects of these inter-

ventions on the effective conformity concerns. If there is no correlation between the beliefs

about θ and µ the first-order condition defining a player’s decision in Equation (8) simplifies

to:

at(1 + κα2) = γtE(θ|θ(t), st) + vt + καE(µ|µ(t), vt). (12)

An individual-oriented intervention always decreases the weight players place on st, thus

making the decision rule more sensitive to vt. This increased sensitivity implies that increas-

ing the information about θ magnifies the effective conformity concerns and thus cannot

break a pooling equilibrium.

In contrast, a peer-oriented intervention has two effects. First every players wants to

be perceived as the average preference type. Consequently, when τµ,t is low, players with

different preference types will have different perceptions of what the average preference type

is. Intuitively, if each player has different perceptions of the population’s average, then each

player will adapt his decision to his preference type because doing so will ensure the public

perception of his preference type will be in line with the population’s average. This logic

implies that when τµ,t is low, the players have an added incentive to adapt.

The countervailing force is that when τµ,t is low, the uncertainty over a given player’s

preference type is also high. As is standard in signaling games, when the uncertainty over

a given player’s preference type is higher, the same player has a greater incentive to signal,

and thus a lower incentive to adapt.
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Note that the relative value of τθ,t has no affect on the first force but does effect the

latter. To see why τθ,t impacts the latter force, note that when τθ,t is high, each decision

is mostly determined by a player’s preference type, vt, and not their signal, st. As the

decision is primarily a function of vt, a sufficiently precise signal of vt is generated. This

precise signal implies the community’s inference about a player’s preference type is less

sensitive to changes in the prior, such as an increase in τµ,t. As a result, when τθ,t is

high, increasing τµ,t has a comparatively small effect on the community’s inference about a

player’s preference type and a comparatively large effect on the player’s inference about the

community’s average preference type. Finally, increasing τµ,t makes the player’s inference

about the community’s average preference type less sensitive to the player’s own preference

type, which gives that player a lower incentive to adapt to their private information. This

intuition is seen in Figure 3 below: when τµ,t > τθ,t (respectively, τµ,t < τθ,t) an increase in

τµ,t causes a change to a revealing equilibrium (respectively, pooling equilibrium).

Figure 3: When the Signaling Equilibrium Involves Revelation

In the figure, the x-axis corresponds to τθ,t, the public precision of the fundamental state, and
the y-axis corresponds to τµ,t, the public precision of the average preference type. The shaded
region corresponds to when the signaling equilibrium involves revelation. The non-shaded region
corresponds to when the signaling equilibrium is pooling. In the figure κ = γt = 1, which correspond
to the weight of conformity and the relative value players place on adapting to the fundamental state.

However, even if neither a peer-oriented intervention nor an individual-oriented inter-

vention break a pooling equilibrium, these interventions will influence which decision the

players pool on. To gain intuition into the forces behind the change, I consider the following

situation: suppose the equilibrium in period 1 was revealing and thereafter the decision rule

is pooling. Recall a1 denotes the decision chosen in period 1. This decision influences what
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the pooling decision will be in period 2, a∗, where for simplicity I assume γ2 = 1 to derive:

a∗(a1) = E(θ|a1) +E(µ|a1). (13)

Further, recall that a1 is a linear combination of both player one’s private signal about θ,

s1, and player one’s preference type, v1, yielding:

a1 = λθs1 + λvv1, (14)

where λ denotes such weights. I now consider the following intervention where the public

history is adapted to be either h2(θ) = {a1, γ1, θ} or h2(µ) = {a1, γ1, µ} and analyze

the change in the pooling decision rule that follows. Suppose that the players utilize the

decision-rule in Equation (14), resulting in a pooling decision rule denoted by a∗(a1) as in

Equation (13) for all subsequent periods.

Proposition 5 (Interventions)

Denote by ∆(θ) (respectively, ∆(µ)) as the difference between the new decision the players

pool on compared to a∗. Then,

∆(µ) = µ

(
1− λθλv

1+2τθ
1+τθ

λ2θ +
τθ

1+τµ
λ2v

)
+ αµa1 (15)

∆(θ) = θ

(
1− λθλv

1+2τµ
1+τµ

λ2v +
τµ

1+τθ
λ2θ

)
+ αθa1, (16)

for some constants αθ, αv.

To understand the expressions above, let us now consider the effect of an individual-

oriented intervention revealing θ, where a symmetric analysis occurs for µ. Upon revealing θ,

the updated equilibrium perception of θ is θ. Further, the players re-evaluate the perception

of µ as a function of both θ (the second term in the parentheses of Equation (16)) and a1.

The object of interest is how much the players decision changes with respect to µ. One can

see that given information that θ is positive (respectively, negative) the players update that

µ is negative (respectively, positive). Further, this update could be larger in magnitude than

the update about the value of θ. Specifically, these cases occur when τµ is small (i.e., the

players are uncertain about their peers’ true preferences). Such a counter-update provides

one rationale why the individual-oriented interventions have a small (if not negative) effect

on behavior.
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5.4 Designing Effective Interventions

While both interventions have their merits in different circumstances, the model predicts

differential effectiveness. In the model, when conformity concerns are large, the players enter

into a pooling equilibrium based on inaccurate perceptions of their peers’ preference types

and the fundamental state. Proposition 4 suggests that peer-oriented interventions may

be preferred due to their ability to break a pooling equilibrium. Further, Proposition 5

suggests that even a perfect individual-oriented intervention alone may fail to shift the

pooling decision in the direction of efficiency.

These predictions are broadly consistent with the results in Schroeder and Prentice

(1998) and Bursztyn et al. (2020a) for two reasons. First, interventions addressing misper-

ceptions of the average preference type are preferred. Second, in both settings conformity

concerns are arguably high. If instead conformity concerns were low (or in the limit equal to

zero), then similar to the theoretical literature, the optimal intervention would be individual-

oriented. When the conformity concerns are low, knowledge of the average preference type

is less decision-relevant and individual-oriented interventions allow the players to reach an

efficient decision faster.

5.5 Changing Preferences and Peer-Oriented Interventions

The social psychology literature notes that “a society’s perception of itself tends to lag

behind actual changes in people’s private beliefs and values,” and argues this lag necessitates

peer-oriented interventions to improve decision-making (Miller, 2023). To address these

phenomena, I generalize the main model to allow µ to be time dependent and follow an

autoregressive process parameterized as,

µ∗(t) = ρµ∗(t− 1) + (1− ρ)ψt, (17)

where ψt is independent across time and distributed as N(0, τµ), with τµ being the same τµ

as in Section 2 where µ ∼ N(0, τµ). Making this equivalence allows the ex-ante uncertainty

about µ∗(t) to be equal to that of µ for all t. The first implication of changing preference

types is that switches to pooling decision rules are temporary.

In the primary analysis, once the players switch to a pooling decision rule, the players

pool for all subsequent periods. However, given the changing average preference type, if the

players pool in all subsequent periods, the public beliefs eventually converge back to beliefs

where revelation occur. Finally, in this extension, the players utilize the decision rule with

revelation for arbitrarily many periods and θ remains fixed, implying that it is without loss

to assume that θ is common knowledge and fixed at zero when analyzing the asymptotic
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behavior of the community. The following proposition analyzes the asymptotic behavior of

the players as a function of the conformity concerns.

Proposition 6 (Shifting Preferences)

Suppose µ follows an autoregressive process as defined in Equation (17) and denote by τµ,t

the precision about the public beliefs about µ∗(t) in period t. The signaling equilibrium in

period t involves revelation if and only if

τµ,t <
κc.k.

κ− κc.k.
. (18)

As a result, there exists a threshold κ∗ ∈
(
κc.k., κc.k. · (τµ + 1)/τµ

)
such that

1. If κ ≤ κ∗ the signaling equilibrium involves revelation in all periods and τµ,t → τ(ρ).

Further, τ ′(ρ) < 0 and limρ→0 τ(ρ) = ∞.

2. If κ ∈
(
κ∗, κc.k.(τµ + 1)/τµ

]
the signaling equilibrium involves revelation (i.e., the

precision in the beliefs is less than the right-hand side of Equation (18)) for infinitely

many periods and the players pool for infinitely many periods (i.e., the precision in

the beliefs is greater than the right-hand side of Equation (18)), and τµ,t does not

converge.

3. If κ > (τµ + 1)/τµ, the signaling equilibrium is pooling in all periods and τµ,t = τµ in

all periods.

Before analyzing the asymptotic results, let us build intuition for when the signaling

equilibrium in period t involves revelation. Note that in any equilibrium with revelation

a player’s preference type is fully revealed in equilibrium, thus τµ,t does not impact the

posterior beliefs about a player’s preference type. As a result, the only effect of an increase

in τµ,t is that each player’s beliefs about µ places less weight on vt. As each player wants

his perceived preference type to equal µ, and thus chooses a decision which is responsive

towards his beliefs about µ, an increase in τµ,t decreases each player’s incentive to respond

to vt. Such a force is seen in Equation (18), which notes that as τµ,t increases the condition

on κ for an equilibrium with revelation to exist becomes more stringent.

Given Equation (18), it is immediate that if κ ≤ κc.k., then the signaling equilibrium

would involve revelation for all periods. If the signaling equilibrium involved revelation for

all periods, τµ,t would monotonically increase to a constant τ(ρ) <∞, implying the players

have imprecise beliefs about µ∗(t). Note that the players can never perfectly infer µ∗(t)

because µ∗(t) changes each period. Thus the condition for an equilibrium with revelation

in all periods is determined by κ∗, which binds Equation (18) when τµ,t = τ(ρ).
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When the conformity concerns are greater than this value but small enough such that

the equilibrium involves revelation in period 1, the players oscillate between a decision rule

with revelation and pooling in the limit. This occurs because as more periods with revela-

tion occur (respectively, pooling), the beliefs become more precise (respectively, imprecise),

eventually necessitating a pooling (respectively, revealing) equilibrium. As a result, the be-

liefs do not converge, but rather oscillate around the value τµ,t which binds equation (18).

This value is decreasing in κ, implying that higher values of the conformity concerns implies

worse beliefs in the limit, and these worse beliefs are caused by a greater number of periods

utilizing a pooling equilibrium.26 Finally, if the conformity concerns are large enough that

the players pool in period 1, then, by induction, the players pool in all periods.

What this proposition implies is that, all else equal, groups who have stronger weights

on conformity concerns wait longer to adapt to the underlying conditions. This result is

broadly consistent with the social psychology literature on pluralistic ignorance and how

norms change. In a review article, Miller (2023) states, “widespread changes in private

attitudes change are not sufficient for social norm change. The group’s recognition that its

collective attitudes have changed is also necessary. Without this recognition, norm change

will be impeded.” One can interpret this through the model as follows: if the players are

pooling in period t on a low decision due to a low belief µ∗(t), despite a high value for vt+1

signaling a change in private attitudes has occurred, this change is not sufficient to change

the decision rule. Rather, enough periods must pass for the group to be certain that their

collective attitudes have changed.

Such a process where the players utilize a responsive decision rule for some number of

periods before switching to a pooling decision rule and vice versa, is also in line with the

psychology literature on changing norms. For instance, Miller and Prentice (1994) sug-

gest that one major source of pluralistic ignorance is a “conservative lag” whereby opinions

change but not decisions. This can be viewed as the periods in which the players utilize

a pooling decision rule despite µ∗(t) changing. As µ∗(t) has changed over this time frame,

the subsequent player’s decision differs from what the previous pooling decision was. Such

a change exemplifies the “liberal leap” also described in Miller and Prentice (1994).27 This

extension shows how groups that have higher conformity concerns will have greater de-

grees of pluralistic ignorance and adapt slower to changes in private attitudes. Finally,

26A precise characterization of the asymptotic distribution of τµ,t when κ > κ∗ is challenging
because τµ,t evolves according to a non-continuous discrete dynamical system.

27The economics literature produces similar findings. For instance, an immediate implication of
the model is that when the autoregressive process is more volatile, the players will spend less periods
in the pooling decision rule. This result is in line with Giuliano and Nunn (2021), which shows that
populations in uncertain climates have less persistent norms.
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note that changing preference types are an additional motivation behind the peer-oriented

interventions considered in Section 5.2. Without these interventions, the social norms will

lag behind the true attitudes in the population, causing inefficiencies.

6 Extensions

In this section I consider three extensions that serve as robustness checks for the assump-

tions in the main analysis. First, a common assumption in the social learning literature

is that each player is short-lived. While long-lived players traditionally are able to ob-

serve more signals, and thus make more efficient decisions absent conformity concerns, the

conformity concerns are amplified through a ratchet effect. Second, I show that when off-

path beliefs satisfy D1 from Cho and Kreps (1987), non-linear decision rules fail to exist in

the benchmark environment in Section 3. Finally, I discuss how the results of the model

generalize to alternative distributional assumptions with non-linear decision rules.

6.1 Long-Lived Players

This subsection analyzes the incentives of a longer-lived player. To model such a phe-

nomena, I continue to index time by t ∈ {0, 1, . . . }, but label the players by i ∈ {0, 1, . . . }.
I denote by t(i) the first period in which player i appears. Further, each player, i, continues

onto the next period with uniform probability p and with probability 1 − p is replaced by

player i+1. Each player has a discount factor δ < p, which includes both the probability of

continuation and inter-temporal discounting. The model in the primary analysis considers

p = 0, and as a result δ = 0, and each player makes a single decision. When the players are

long-lived, the utility for player i is as follows:

ut(i) + δut(i)+1 + δ2ut(i)+2 + . . . . (19)

This game featuring persistent private information entails well-known non-trivial modeling

choices. Assuming θ is common knowledge greatly simplifies the analysis. Further, once θ

is assumed to be common knowledge, it is without loss of generality to consider θ = 0.

The final simplification I make is a restriction to the following class of equilibria that

mimic the characterization in the primary analysis. In period t(i), player i utilizes a linear

decision rule. If there exists a linear decision rule with revelation, such a decision rule is

utilized in period t(i). As player i’s preference type is then fully revealed on-path, in all

subsequent periods player i utilizes a pooling decision rule as determined by the posterior

mean of player i’s perceived preference type. On path, this corresponds to player i’s true
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preference type and is hence socially optimal. When there does not exist a revealing linear

decision rule that constitutes an equilibrium in period t(i), the decision rule is fully pooling

in period t(i). As no new information is learned, period t(i)+1 is equivalent to t(i), and thus

a pooling decision rule will be used in period t(i) + 1, and by induction, for all subsequent

periods for player i. Note that this set of equilibrium refinements prescribes a unique

decision rule for each player because the pooling decision rule is always an equilibrium.

Given the equilibrium selection, the trade-off for player i in period t(i) is that a higher

decision today allows for a higher decision to be taken in all subsequent periods because

a higher decision increases the perception of player i’s preference type. However, the per-

ception being higher also implies a higher conformity loss in all subsequent periods. The

following proposition states how this trade-off changes as the discount factor, δ, increases.

Proposition 7 (Long-Lived Players)

When players are long-lived with a discount factor, δ, have a conformity weight, κ, and θ

is common knowledge, then an equilibrium with revelation exists if and only if:

κ < κc.k.(1− δ)
τµ,t + 1

τµ,t
, (20)

where τµ,t denotes the precision about the public beliefs about the average preference type.

To understand this expression, first note that when δ = 0 the condition for an equilib-

rium is equivalent to the condition in Proposition 6. Let us now turn to how the discount

factor, δ, affects the condition. To understand why an increase in δ increases the effective

conformity concerns, note that, in equilibrium, choosing a marginally more conforming de-

cision in period t(i) has only a second-order effect on the adaptation loss in all subsequent

periods. Recall, in equilibrium, player i’s preference type is correctly inferred, and thus

the decision in all future periods is vi. If player i selected a marginally more conforming

decision, this deviation would generate only a second-order loss in adaptation in subsequent

periods, as the adaptation loss is quadratic. However, a marginally more conforming deci-

sion in period t(i) has a first-order impact on the conformity loss in all subsequent periods.

Thus, an increase in the discount factor effectively scales the conformity concerns, as there

is no future benefit to adaptation; however, there is a greater future benefit from conformity.

Proposition 7 generates the stark prediction that the degree of misperceptions about

the average preference type, µ, is shaped by the players’ discount factor. Ignoring integer

constraints, the players cease utilizing decision rules with revelation when τµ,t binds Equa-

tion (20). Solving Equation (20) implies that when the players’ discount factor is higher,

the players learn less about µ. This result adds a competing force to those suggested by the

social learning literature. In that literature, long-lived players have an ability to observe
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more data and thus make more accurate decisions. This extension highlights that when

conformity concerns are present, long-lived players might make worse decisions.

6.2 Non-Linear Equilibria

The main analysis analyzed signaling equilibria: linear and socially optimal Perfect

Bayesian Equilibria. This subsection shows that while non-linear Perfect Bayesian Equilib-

ria may exist, they do not satisfy the D1 refinement from Cho and Kreps (1987).28 This

refinement states that off-path beliefs are concentrated on the types who have the largest in-

centive to deviate to such a decision. As in Section 3, when θ and µ are common knowledge

it suffices to consider a static version of the game and drop any time-dependence. Further,

Equation (1) reduces to:

u(v, a) = −(a− v)2 − κ

∫
b2ϕ(b, a)db. (21)

In doing so, I first restate the definition of a “central pooling equilibrium” from Bernheim

(1994). A central pooling equilibrium is an equilibrium in which a(v) = c ∀v ∈ [v, v̄] where

v ≤ 0 ≤ v̄ and a(v) is strictly monotone when v /∈ [v, v̄]. The lemma below shows that any

equilibrium which satisfies D1 is a central pooling equilibrium.

Lemma 4 (Class of Equilibria)

Any equilibrium satisfying D1 is a central pooling equilibrium. In this equilibrium, a(v) =

c∗ ∀v ∈ [v, v̄] where v ≤ 0 ≤ v̄. Further, for v /∈ [v, v̄] a(v) is continuously differentiable

with a derivative that satisfies:

a′(v) =
κv

v − a(v)
> 0. (22)

For the proof, I refer the reader to Theorem 3 in Bernheim (1994). The intuition behind

the result is that the D1 refinement implies that the decision rule is monotone. Given a

monotone decision rule, one can show that the D1 refinement further implies that a jump

discontinuity cannot arise outside of a central pool. Finally, outside the central pool one

can show strict monotonicity of the decision rule, which implies a well-defined inverse of

the decision rule. This inverse can be substituted in for ϕ(b, a) to generate the differential

equation in the lemma.

28Cho and Kreps (1987) define D1 for signaling games. Their definition applies to my setting if one
views the reputation as stemming from the player interacting with one randomly drawn member
of the community who gives the player a reward in accordance with this community members’
perception of the player’s preference type.
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The primary difference relative to Bernheim (1994) is that I assume that the support of

the distribution of v equals the real line whereas Bernheim (1994) assumes the support of v

equals a bounded interval. As such, the solution to Equation (22) must exist over the real

line in my setting, but need only exist over a bounded interval in Bernheim (1994).29 As

there are multiple solutions to the differential equation (cf. Figure 1), one cannot rule out

non-linear equilibria with an equilibrium uniqueness result. To do so necessitates solving

the differential equation in Equation (22) in closed form, which is done in Appendix A to

prove the following proposition.

Proposition 8 (Non-existence of Non-Linear Equilibria)

Any equilibrium satisfying D1 is linear.

This result gives support for the restriction to linear equilibria in the main analysis.

Further, this result implies that if κ > κc.k., no equilibrium with revelation satisfies the D1

refinement.

6.3 General Distributions

Throughout the analysis I focused on the Gaussian distribution which allowed for closed-

form solutions and precise comparative statics. In this subsection, I will discuss to what

extent these results generalize to different distributions. Recall that the analysis in the

previous subsection, which assumed no uncertainty over the fundamental state θ, or the

average preference type µ, allowed for any distribution over vt, the preference type of player

t, with a continuous density with support equal to the real line. In that analysis the

equilibrium is pooling if and only if the conformity concerns, κ, exceed κc.k..

The environment with general distributions and both dimensions of uncertainty is in-

tractable.30 Therefore, I will conduct two separate analyses, each focusing on a different

dimension of uncertainty. In this subsection I will provide the intuition for the case where

θ is common knowledge and the players are learning µ, and Appendix B contains a parallel

29In Bernheim (1994), the decision rule from this differential equation is non-linear and equilibria
with partial revelation exist. The reason for the stark difference is that Bernheim (1994) considers
a bounded support of v. If, for example, 1 is the supremum of the support, then the definition of
a central pooling equilibrium implies that the player with v = 1 has his preference type revealed in
equilibrium, and thus might as well choose his preferred decision. Hence, the differential equation
in Bernheim (1994) has an initial condition of a(1) = 1. In the setting with an infinite support, no
player chooses a(v) = v outside the central pool, which generates different conditions for equilibrium
existence. This distinction is further discussed in Appendix B.

30In Section 9.4, I detail the analytical challenges that arise when both factors are present. In-
tuitively, the differential equations governing the decision rules transform into partial differential
equations, significantly complicating the analysis.
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analysis when θ is uncertain and µ is known. Recall that the analysis when θ is common

knowledge with the Gaussian assumptions is contained in Section 5.5 when ρ = 0 or Section

6.1 when δ = 0. In both analyses, when players have more uncertainty about µ, the players

can coordinate on an equilibrium with revelation for higher values of κ. This can be used

to show that a higher κ implies the players switch to a pooling equilibrium with less precise

beliefs and, thus, ultimately harbor these less precise beliefs. This subsection analyzes to

what extent this point relies on the properties of the Gaussian distribution.

When the distributions of µ and vt are Gaussian, the public beliefs about µ at time t will

satisfy µ(t) ∼ N(µ̄(t), τµ,t), for some mean µ̄(t) and precision τµ,t. Further, the updating

rule for the conditional expectation of µ given the realization of vt has the following closed-

form expression as shown in the utility of player t below:

−(at − vt)
2 − κ

(
v̂t(at)−

vt + µ̄(t)τµ,t
1 + τµ,t︸ ︷︷ ︸
E(µ|vt)

)2
. (23)

Here, the constant equal to 1 is the precision of player t’s preference type relative to µ.

Uncertainty over µ (i.e., a lower value of τµ,t) gives player t an additional incentive to

respond to vt, which implies a higher threshold value of κ for the existence of an equilibrium

with revelation when τµ,t is higher. This point does not rely on the Gaussian assumption.

Let us consider any full support and atomless distribution of vt. Further, I denote by

gt(vt|a1, . . . , at−1) = E(µ|vt, a1, . . . , at−1), which, with an abuse of notation, will be denoted

as gt(·). Given this notation, the generalization of the differential equation in Equation (8),

which describes the decision rule in any equilibrium with revelation satisfying D1, is:

a′t(vt) =
κ
(
vt − gt(vt)

)
vt − at(vt)

. (24)

Equipped with this differential equation, one can show the following result.

Proposition 9 (General Distributions with θ known)

Denote by it := infx g
′
t(x) ≤ supx g

′
t(x) := st, where gt(x) = E(µ|x, a1, . . . , at−1). There

exists an equilibrium with revelation that satisfies D1 if the conformity concerns, κ, satisfy

κ ≤ κc.k.

1− it
. (25)

Further, no equilibrium with revelation satisfies D1 if

κ >
κc.k.

1− st
. (26)
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This proposition gives a separate necessary and sufficient condition for the existence

of an equilibrium with revelation. In the Gaussian analysis, gt(vt) is linear which implies

st = it. When st = it, these necessary and sufficient conditions coincide, implying these

bounds are tight. The basic insight is that an equilibrium with revelation exists if and

only if the differential equation in Equation (24) has a solution. For a solution to exist,

at(vt) must never exceed vt to ensure that the denominator is non-zero. Further, a higher

value of conformity concerns, κ, uniformly increases the solution to the differential equation

in Equation (24) given any initial condition. For this reason, when κ is sufficiently low

(respectively, high) an equilibrium with revelation exists (respectively, does not exist).

This proposition also characterizes the effect of uncertainty about µ on the degree of

revelation. One can view both st and it as measures of the degree of uncertainty. Similar

to the Gaussian analysis, this greater population uncertainty gives an added incentive for

the players to adapt to their private information and ultimately increases the cutoff κ∗.

As a result of this proposition, one can recover similar results to the main analysis.

Namely, whenever the beliefs become sufficiently precise relative to the conformity concerns,

the players switch to a pooling equilibrium based on imprecise perceptions of µ. In the

Gaussian analysis, st = it and these values follow a deterministic process. This determinism

implied a monotone relation between κ and the asymptotic uncertainty about µ. In this

general analysis, such a claim need not be true.31 However, the result that pluralistic

ignorance exists in all equilibria if and only if κ exceeds κc.k. continues to hold. To see

why, note that if κ < κc.k. the sufficient condition for the existence of an equilibrium always

holds, and thus with an infinite number of periods with revelation, the players learn the

true average. In contrast, if κ > κc.k., then there must exist sufficiently precise beliefs such

that the necessary condition for equilibrium existence fails to hold.

7 Conclusion

This paper studies how conformity concerns impact social learning and what interven-

tions are effective when social learning fails. To do so, I enrich a standard model of social

learning by adding: (i) a player’s desire to adapt to not only a fundamental state but also his

private preference type, (ii) an assumption that players have conformity concerns over how

the community perceives their private preference type, and (iii) an assumption that there is

aggregate uncertainty about the distribution of private preference types in the population.

I show that as the players’ beliefs about the fundamental state become more precise, the

31Further, at this level of generality equilibria with partial revelation may exist and maximize the
expected utility of the players.
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equilibrium penalty experienced by a player who adapts to his private information or his

private preference type increases, creating endogenous self-censorship. Further, I show that

if the initial conformity concerns are sufficiently high, the endogenous self-censorship not

only dampens but eliminates the player’s adaptation, resulting in a switch from a revealing

to a pooling equilibrium in finite time. Such a switch to pooling implies that forever after the

players hold imprecise beliefs about both the fundamental state and the preference types

of their peers; the latter is a common finding in social psychology, defined as pluralistic

ignorance. Not only are the players pooling (and thus unable to adapt to their private pref-

erence types), they pool on an inefficient decision based on these imprecise beliefs. Finally,

information about the fundamental state has a lower ability than information about peers’

preferences to break a pooling equilibrium. My theoretical result that providing informa-

tion about the preferences types of one’s peers is more effective than information about

the fundamental state provides a framework to formalize intuitions extensively discussed

empirically in social psychology and economics.

This paper introduced a theoretical methodology that can be used to analyze pluralis-

tic ignorance and how decisions change upon dispelling pluralistic ignorance. I hope this

framework can be used to analyze related topics in the social sciences. For instance, related

to pluralistic ignorance, there is a large literature on “false polarization” whereby individ-

uals of two distinct subgroups will incorrectly perceive the preferences of the two groups

as further apart than reality. Further, related to interventions addressing pluralistic igno-

rance, there exist numerous empirical and qualitative studies on “risky and cautious shifts,”

whereby upon learning whether the members in their group have risky (respectively, cau-

tious) opinions, the opinions of the group will shift to be more polarized than the opinions

of the group members themselves (cf. Sunstein, 2009).
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8 Appendix A

Proof of Proposition 1. Solving Equation (3) proves the existence of κc.k. and the results

when κ ≥ κc.k.. Finally, the equilibrium with revelation is Pareto superior to the pooling

equilibrium, which completes the proof.

Proof of Lemma 1. Fix a given period t and a conjectured linear belief αtat + βt. The

first-order condition given a conjectured belief of αtat + βt is equal to Equation (8). The

normality assumption implies that the conditional expectation of both θ and µ will be

linear in both vt and st with an intercept. Using this observation, then for some exogenous

constants, c1,t, . . . , c6,t,

at(1 + κα2
t ) = καtβt + c1,t + c2,tαtκ+ st(c3,t + καtc4,t) + vt(1 + c5,t + καtc6,t). (27)

Simplifying implies,

at(1 + κα2
t )− καtβt − c1,t − c2,tαtκ

c3,t + καtc4,t
= st + vt

1 + c5,t + καtc6,t
c3,t + καtc4,t

. (28)

Given this sufficient statistic, the posterior belief about vt is,

E
(
vt|ht, at

)
= c7,t + c8,t(αt, κ)

at(1 + κα2
t )− καtβt − c1,t − c2,tαtκ

c3,t + καtc4,t
, (29)

where c8,t(αt, κ) ̸= 0 is determined by both the prior beliefs and the conjectured equilibrium

slope αt. In equilibrium, the conjecture must be consistent implying the right-hand side of

Equation (29) must equal αtat + βt. This equality is stated below:

c8,t(αt, κ)(1 + κα2
t ) = αt(c3,t + καc4,t) (30)

c7,t(c3,t + καtc4,t) + c8,t(αt, κ)(−καtβt − c1,t − c2,tκαt) = βt(c3,t + καtc4,t). (31)

44



Note that for any solution to Equation (30), there exists a solution to the equation for βt.

This is because one can simplify Equation (31) to,

βt

(
c3,t + καtc4,t + καtc8,t(αt, κ)

)
= c7,t(c3,t + καtc4,t) + c8,t(αt, κ)(−c1,t − c2,tκαt). (32)

One can simplify the coefficient on βt above as follows:

c3,t + καtc4,t + καtc8,t(αt, κ) = c8,t(αt, κ)
(1 + κα2

t )

αt
+ καtc8,t(αt, κ)

= c8,t(αt, κ)(
1

αt
+ 2αtκ), (33)

where the first equality comes from Equation (30). Finally, as c8,t(αt, κ) ̸= 0 and in any

equilibrium with revelation αt ̸= 0, a unique solution for βt always exists.

Thus, the necessary and sufficient condition for an equilibrium with revelation is Equa-

tion (30). Finally, all of the terms in this equation are independent of the means of the

prior beliefs (c1,t and c2,t) and only condition on the precision matrix.

The proof of this first result implies that the realizations of at have no impact on whether

or not beliefs converge, because in the Gaussian learning model, the realizations of at effect

only the mean. Denote by τt the precision matrix of the beliefs at time t with the following

parametrization.

τt =

(
τ1,t τ2,t

τ2,t τ3,t

)
. (34)

The beliefs update as follows in any equilibrium with revelation,

τ1,t+1 = τ1,t + ϕt

τ3,t = τ3,t + 1− ϕt

τ2,t = τ2,t +
√
(1− ϕt)ϕt

ϕt =
(c3,t + καc4,t)

2

(c3,t + καtc4,t)2 + (1 + c5,t + καtc6,t)2
. (35)

Further, θ(t) →p θ if and only if:

lim
τ3,t

τ1,tτ3,t − τ22,t
→ 0, (36)

namely the variance about θ converges to zero. If this variance converges to zero, however,

then c3,t, c4,t, and c5,t (how st impacts the conditional expectation of θ, how st impacts
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the conditional expectation of µ, and how vt impacts the conditional expectation of θ,

respectively) all converge to zero. Further, c6,t (how vt impacts the conditional expectation

of µ) remains weakly positive. As a result, if θ(t) →p θ and µ(t) ̸→p µ, then ϕt → 0.

However, if ϕt → 0 and there exist infinitely many periods with revelation, then τ3,t >

τ1,t > 0 implying

lim
τ1,t

τ1,tτ3,t − τ22,t
→ 0, (37)

namely the variance about µ converges to zero. This convergence implies µ(t) →p µ.

Similarly, if µ(t) →p µ, but θ(t) ̸→p θ, then c5,t, c6,t and c4,t, but c3,t remains bounded

away from zero. As a result, ϕt converges to a constant, ϕ ∈ (0, 1). Hence,

0 < lim
τ3,t

τ1,tτ3,t − τ22,t
< lim

(ϕ+ ϵ)τ1,t
τ1,tτ3,t − τ22,t

. (38)

However, θ(t) →p θ implies the outer limit converges to zero, and as a result so too does

the inner limit.

Proof of Lemma 2. I proceed by contradiction. Note that Lemma 1 implies θ(t) →p θ ⇐⇒
µ(t) →p µ. Hence, we may suppose by contradiction that θ(t) →p θ and µ(t) →p µ.

For the beliefs to converge, infinitely many periods of a decision rule with revelation

must occur which is equivalent to Equation (30) holding for infinitely many periods. This

implies (i) Equation (30) must hold as t → ∞, θ(t) →p θ, and µ(t) →p µ. Further, (ii)

because κ > κc.k., there exists an ϵ > 0 such that,

(1 + κα2)− α > ϵ ∀α ≥ 0. (39)

Combining (i) and (ii), it must be that

lim
c8,t(αt, κ)

c3,t + καtc4,t
̸→ 1. (40)

However, recall that this ratio in Equation (40) is defined by the following equation, as can

be seen by manipulating Equation (28).

c9,t +
c8,t(αt, κ)

c3,t + καtc4t t
(c3,t + καtc4,t) + vt(1 + c5,t + καtc6,t)

)
= E(vt|st(c3,t + καtc4,t) + vt(1 + c5,t + καtc6,t)), (41)

for some constant c9,t. Finally, because the beliefs converge, then c3,t, c4,t, c5,t, and c6,t
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converge to zero implying that the right-hand side converges to E(vt|vt). This implies that

the limit in Equation (40) does converge to 1, which derives our contradiction.

Proof of Lemma 3. It is sufficient to show that in every period the equilibrium involves

revelation. To do so, we must show that there exists a solution to Equation (30). First, one

can show that as αt → ∞ the left-hand side is greater than the right-hand side, implying

that a sufficient condition is that there exists conjectured beliefs where,

c8,t(αt, κ)(1 + κα2
t ) < αt(c3,t + καtc4,t). (42)

Further, as κ < κc.k., upon setting αt = 2 implies that a sufficient condition is

c8,t(2, κ)

c3,t + 2κc4,t
≤ 1 + ϵ. (43)

However, for any ϵ this inequality holds for sufficiently precise beliefs about θ and µ, because

(i) the left-hand side is continuous with respect to the variance matrix of the public beliefs

about θ, µ, (ii) the left-hand side is equal to one when the variance matrix is equal to zero.

(i) and (ii) imply that there exists sufficiently precise beliefs where such a condition holds

for not only those beliefs but any beliefs more precise.

Proof of Proposition 2. The proof of statement (3) is a direct consequence of Lemma 2 and

the proof of statement (2) is a direct result of Lemma 3.

The proof of statement (1) is as follows. I claim that s̃(0, 0, θ(t), µ(t)) < 1 − ϵ is a

sufficient condition, where s̃(·) is as defined in Equation (10). This condition is sufficient

as (i) the left-hand side of Equation (10) is larger as α→ ∞ (ii) that such a solution holds

when κ = 0, and (iii) the condition is continuous with respect to κ.

When κ = α = 0, Equation (8), simplifies to:

γtE(θ|θ(t), µ(t), st, vt) + vt. (44)

Further, given the definition of s̃(α, κ, θ(t), µ(t)) in Equation (9), Equation (44) has a sen-

sitivity strictly less than 1− ϵ for any beliefs concluding the proof.

The proof of the final statement, whereby there exist an open set of parameter values

where the beliefs do not converge, despite κ < κc.k. can be seen by noting that Equation

(30) is cubic in αt. One can further show that because the coefficient on the term α3
t is

negative the signaling equilibrium involves revelation if and only if there exists a positive

root. Further, by Descartes rule of signs, there may be either zero or two positive roots.

Hence, the necessary and sufficient condition for a positive solution to exist is for there to
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exist three roots. Further, for any cubic polynomial A+Bx+Cx2+Dx3, there exist three

real roots if and only if

(−27 ·D2 ·A2 + 18 ·B · C ·D ·A− 4 ·D ·B3 − 4 · C3 ·A+B2 · C2) ≥ 0. (45)

Hence it suffices to show that the Equation (45) is strictly negative despite κ < κc.k..

As such an expression is continuous, demonstrating that this expression may be strictly

negative will prove the results. Further, upon simplifying this expression one can find a

precision matrix of the form in Equation (34), where Equation (45) is negative when γ = 1

and κ = .9κc.k..32

Proof of Proposition 3. This analysis uses τϵ and τvind to denote the precision of a player’s

signal and precision of a player’s preference type, which were normalized to one in the main

analysis by assuming that the variance of ϵt and νt were equal to one. A linear decision rule

can be written as,

at = βtθ̄(t) + αt

(
vt +E(θ|θ(t), st)− θ̄(t)

)
.

at − βtθ̄(t)

αt
=
(
E(θ)− θ̄(t)

)
+ vt

=
(τθ,tθ̄(t) + τϵst

τθ,t + τϵ
− θ̄(t)

)
+ vt

=
τϵ(θ − θ̄(t) + ϵt)

τθ,t + τϵ
+ vt, (46)

for some slope αt and intercept βt. Note that the left-hand side can be computed given at

and yields vt plus a Gaussian random variable τϵ(θ−θ̄(t)+ϵt)
τθ,t+τϵ

. Next, note that θ− θ̄(t) and ϵt

are mean zero, hence the random variable (at − βtθ̄(t))/αt − vt is mean zero. Further, its

precision is,

(
τθ,t + τϵ
τϵ

)2(
τθ,tτϵ
τθ,t + τϵ

) =
τθ,t(τθ,t + τϵ)

τϵ
, (47)

as the first term notes θ− θ̄(t)+ ϵt is scaled by τϵ
τϵ+τθ,t

. Hence, the precision is scaled by the

reciprocal of such a constant squared and the second term is the precision of θ − θ̄(t) + ϵt.

Therefore,

v̂t =
at − βtθ̄(t)

αt

τθ,t(τθ,t + τϵ)

τθ,t(τθ,t + τϵ) + τvindτϵ
:=

at − βtθ̄(t)

αt
τ̃t. (48)

32Mathematica code available upon request.
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Given v̂t, one can compute the first-order condition for player t:

at −E(θ)− vt + κ
(at − βtθ̄(t))τ̃

2
t

α2
t

= 0

⇐⇒ at(1 +
κτ̃2t
α2
t

) = E(θ) + vt + κ
βtθ̄(t)τ̃

2
t

α2
t

= θ̄(t) +
E(st − θ̄(t))

τθ,t + τϵ
+ vt + κ

βtθ̄(t)τ̃
2
t

α2
t

= θ̄(t)(1 + κ
βtτ̃

2
t

α2
t

) + vt +E(θ)− θ̄(t). (49)

Thus,

at = θ̄(t)
1 + κ

βtτ̃2t
α2
t

1 +
κτ̃2t
α2
t

+
vt +E(θ)− θ̄(t)

1 +
κτ̃2t
α2
t

. (50)

Finally, the conjecture must be correct in equilibrium implying,

βt =
1 + κ

βtτ̃2t
α2
t

1 +
κτ̃2t
α2
t

⇐⇒ βt = 1 (51)

αt =
1

1 +
κτ̃2t
α2
t

⇐⇒ α2
t − αt + κτ̃2t = 0. (52)

Given this decision rule, an equilibrium with revelation exists if and only if κτ̃t ≤ 1/4.

Further, τ̃t is monotone in τθ,t which implies that social learning about fundamentals occurs

if and only if κ ≤ κc.k.. When κ > κc.k. the players switch to a pooling equilibrium when

κτ̃t < 1/4. As a result, fixing any prior beliefs, the limit of τ̃t is monotone decreasing in κ,

implying the limit of τθ,t(κ) is monotone decreasing in κ.

I now prove the comparative statics regarding the asymptotic adaptation loss and utility.

When κ ≤ κc.k., the asymptotic adaptation loss and utility converges to that of the com-

mon knowledge benchmark where the comparative statics with respect to κ were already

established. When κ > κc.k. the adaptation loss, in the limit, is equal to,

E(θ + vt − θ̄(t))2 = E(v2t ) +
1

τθ,t
. (53)

Further, given the comparative static with respect to κ of τθ(κ), it follows that the adap-

tation loss is decreasing in κ. Finally, the asymptotic utility is equal to the asymptotic

adaptation loss plus the conformity loss, and the conformity loss is mechanically decreasing
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in κ which proves the result.

Proof of Proposition 4. The proof of the first statement is a direct consequence of the proof

of statement 2 of Proposition 2.

The proof of the second statement can be seen by the third statement of Proposition 2

when n is finite. If n is infinite, then the proof follows from either of the uni-demnsional

uncertainty analyses in Proposition 3 when ρ = 0 or Proposition 7 when δ = 0.

The proof of the third statement contains two parts. The proof that a pooling equi-

librium may be fragile to a peer-oriented intervention is provided in Figure 1 which shows

that an increase in τµ,t may break a pool. The proof that an increase in τθ,t never breaks a

pooling equilibrium can be seen by noting that when there is no correlation in the beliefs

of θ and µ, Equation (8) reduces to

at(1 + κα2) = γtE
(
θ | θ(t), st

)
+ vt + καβ + καE

(
µ | µ(t), vt

)
, (54)

due to independence. One can now see that uncertainty about θ decreases s̃(α, κ, θ(t), µ(t))

in Equation (10). Finally, as argued in Lemma 3 as α→ ∞ the left-hand side is greater than

the right-hand side, hence the necessary and sufficient condition is whether there exists an α

such that the left-hand side is less than the right-hand side. As s̃(α, κ, θ(t), µ(t)) uniformly

decreases when uncertainty about θ is decreased, one can see that a decrease in uncertainty

about θ will never break a pooling equilibrium.

Proof of Proposition 5. The players pool on a∗ = E(θ)+E(µ) where both expectations are

derived from the decision of player 1. Player 1 chooses a1 as follows:

a1 = λθE(θ|s1) + λvE(µ|v1) (55)

= λθ
(
θ +N(0, 1 + τθ)

)
+ λv

(
µ+N(0, 1 + τµ)

)
. (56)

As a result, a∗ is a linear function of a1. Now consider an individual-oriented intervention

where θ is revealed. One must compute E(µ|a1, θ) by noting:

a1 − λθθ

λv
= µ+N(0, 1 + τµ) +

λθ
λv
N(0, 1 + τθ). (57)

As a result,

E(µ | a1) =
a1−λθθ

λv

(
1

1+τµ
+ (λθ

λv
)2 1

1+τθ

)−1

τµ +
(

1
1+τµ

+ (λθ
λv
)2 1

1+τθ

)−1 =
a1 − λθθ

λv

1

1 + τµ

(
1

1+τµ
+ (λθ

λv
)2 1

1+τθ

) . (58)
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Simplifying the posterior expectation of µ produces the result in the proposition. Further,

a symmetric calculation occurs when considering an individual-oriented intervention.

Proof of Proposition 6. Note that when θ is common knowledge the condition for the exis-

tence of a revealing equilibrium reduces to a function κ∗(τµ,t) whereby a decision rule with

revelation exists if and only if κ < κ∗(τµ,t) (for a proof, set δ = 0 in the characterization in

Proposition 7).

The threshold κ∗ is determined by the value of κ that binds Equation (18) when τµ,t =

maxt′ τµ,t′ := τ∗ in an equilibrium where every period involves revelation. As τµ,t < τµ/ρ
2

and ρ > 0, then κ∗ > κc.k..

Statement (1) and (3) follow immediately from the criterion for when the decision rule

in period t involves revelation.

Finally, statement (2) follows from noting that when κ > κ∗, the equilibrium must have

infinitely many periods of pooling. If the equilibrium had finitely many periods of pooling,

then consider the final period of pooling. After this period, there will exist a period where

the precision is τ∗. Further, as κ > κ∗, the decision rule must involve revelation in this period

deriving a contradiction. Similarly, if there are only finitely many periods of revelation, then

after all the periods of pooling, τµ,t → τµ. However, at this point, the decision rule must

involve revelation. Finally, that there are infinitely periods of pooling and infinitely many

periods of revelation implies τµ,t is not Cauchy and thus does not converge.

Proof of Proposition 7. As in the proof of Proposition 3, I will denote by τvind the precision

of νt which was normalized to one, where νt was defined to satisfy vt := µ + νt. Further,

sufficient statistics for the decision rule in period t are the current mean and precision of

µ(t) which are denoted as µ̄(t) and τµ,t. I will now consider whether the decision rule for

player i can involve revelation in period t(i), which will be denoted as t for the rest of the

proof. A linear equilibrium with revelation, when it exists, is of the form,

at = αtvi + βt. (59)

The public perception of vi given at is equal to (at − βt)/αt. Therefore, one can write the

utility as a function of at as follows,

ui(at) =− (at − vi)
2 − κ

(at − βt
αt

− µ̄(t)τµ,t + viτvind
τµ,t + τvind

)2
− δ

1− δ

(at − βt
αt

− vi
)2 − δ

1− δ
κ
(at − βt

αt
− µ̄(t)τµ,t + viτvind

τµ,t + τvind

)2
, (60)

where the first line denotes the payoffs in period t given player i’s perception of µ and the
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second line denotes the continuation payoff in all subsequent periods. One can now take a

first-order condition to generate:

0 = at − vi +
κ

αt

1

1− δ

(at − βt
αt

− µ̄(t)τµ,t + viτvind
τµ,t + τvind

)
+ αt

δ

1− δ

(at − βt
αt

− vi
)
. (61)

Finally, in equilibrium, the beliefs are correct which implies vt = (at − βt)/αt. Simplifying

the remaining terms implies:

0 = at − vi +
κ

αt

1

1− δ

(
vi −

µ̄(t)τµ,t + viτvind
τµ,t + τvind

)
= at − vi +

κ

αt

1

1− δ

viτµ,t − µ̄(t)τµ,t
τµ,t + τvind

⇐⇒ at = vi
(
1− κ

αt

1

1− δ

τµ,t
τµ,t + τvind

)
+

κ

αt

1

1− δ

τµ,tµ̄(t)

τµ,t + τvind
. (62)

In equilibrium, αt must equal the coefficient on vi in the decision rule:

αt = 1− κ

αt

1

1− δ

τµ,t
τµ,t + τvind

⇐⇒ αt =
1±

√
1− 4κ 1

1−δ
τµ,t

τµ,t+τvind

2
. (63)

Further, note that given αt, the solution to βt is uniquely determined by Equation (62).

Hence, a solution exists if and only if the condition in the text holds because this condition

corresponds to the term in the square root being non-negative.

Proof of Lemma 4. This is precisely Theorem 3 in Bernheim (1994).

Proof of Proposition 8. The proof of this Proposition is a direct consequence of Proposition

11 in Appendix B.

Proof of Proposition 9. First note that by an identical argument to Bernheim (1994) all

equilibria must be central pooling. Given a central pooling equilibrium, Equation (24)

characterizes the equilibrium outside of the central pool.

Let us begin showing that if κ exceeds the threshold in the proposition no solution

to the differential equation exists for any initial condition, and, as a direct consequence,

no equilibrium with revelation exists. To do so, one can differentiate Equation (24) and
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determine,

a′′t (vt) =
−κ
(
vt − gt(vt)

)(
1− a′t(vt)

)(
vt − at(vt)

)2 +
κ
(
1− gt(vt))

vt − at(vt)

⇐⇒
(
vt − gt(vt)

)
a′′t (vt) = a′t(vt)

(
1− g′t(vt)−

a′t(vt)
(
1− a′t(vt)

)
κ

)
. (64)

Further, for any value x ≥ 0, x(1− x)/κ ≤ (1/4)/κ and given the condition on supx g
′
t(x),

one can show that for any κ greater than 1/4(1− st) there exists an ϵ3 > 0 such that,

(
vt − gt(vt)

)
a′′t (vt) ≥ a′t(vt)ϵ3 ⇐⇒ a′′t (vt) ≥

a′t(vt)ϵ3
vt

, (65)

where the final inequality comes from noting that gt(vt) ≥ 0 for positive values of vt. Let

a0(vt) be the decision rule that binds differential inequality in Equation (65) and satisfies

at(v̄t) = a0(v̄t), where v̄t denotes the supremum of the central pool.

One can use the Picard-Lindelöf Theorem to show a0(vt) has a unique solution up to

this initial condition. This solution satisfies

a0(vt) = c1v
1+ϵ3
t + c2, (66)

where c1 > 0. However, one can show that

at(vt) = at(v̄t) +

∫ ∫
a′′t (vt) ≥ a0(v̄t) +

∫ ∫
a′′0(vt) = c1v

1+ϵ3
t + c2. (67)

This inequality implies that at(vt) > vt for a positive value of vt which is a contradiction

because the players always have an incentive to choose a mildly more conforming decision

and receive both a better adaptation loss and a better conformity loss.

Now I will show that if κ is less than the condition provided in Proposition 9 an equi-

librium with full revelation exists. To do so, first note that there always exists a vt such

that vt = gt(vt), by Bayes Plausability. To see why, note that if there existed two values

v′t and v
′′
t such that v′t > gt(v

′
t) and v′′t < gt(v

′′
t ) then by continuity there exists a value vt

where vt = gt(vt). So for no solution to exist, up to symmetry, it must be the case that

v′t > gt(v
′
t) for all values of vt. By monotonicity of the integral, E(vt) > E

(
gt(v

′
t)
)
= E(µ)

which is a contradiction of Bayes Plausability. As a similar argument could be made if

instead v′t < gt(v
′
t) for all values, there must exist a value v∗t such that v∗t = gt(v

∗
t ). I will

now show that if κ satisfies the condition in the proposition there exists an equilibrium with

full revelation where at(v
∗
t ) = v∗t . To do so, I will use Carathéodory’s existence theorem.

To be able to apply this theorem to Equation (24) the decision rule, at(vt) must never
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cross vt except for v∗t so that the implicit function in Equation (24) is continuous on its

domain. I will analyze the differential equation to the right of v∗t and a symmetric analysis

occurs to the left. A sufficient condition for at(vt) < vt is that a
′
t(vt) ≤ 1/2 for all vt ≥ v∗t .

Taking Equation (24), this condition can be stated as

2κ
(
vt − gt(vt)

)
≤ 1

2

(
vt − at(vt)

)
⇐= 2κ

(
vt − gt(vt)

)
≤ 1

2

(
vt − v∗t

)
⇐⇒ κ ≤ 1

4

1

1− gt(vt)−v∗t
vt−v∗t

. (68)

Finally, the expression in the denominator of Equation (68) can be simplified as follows to

generate the condition in the proposition:

gt(vt)− v∗t
vt − v∗t

≥ gt(v
∗
t ) + it(vt − v∗t )− v∗t

vt − v∗t
= it. (69)

Applying this inequality to Equation (68) finishes the proof.

9 Appendix B: Online

This section details extensions then analyzes the equilibria that satisfy D1 and Pareto-

Optimality. I begin this analysis when θ, µ are common knowledge. Such an analysis holds

for a general class of distributions. Next, I detail how one can extend the results to allow

for learning about these two random variables.

9.1 Extensions

Let us begin with an analysis with conformist preferences where individuals want their

perceived preference type to be c units higher than the average in the population. Further,

I consider the environment of Section 3 without uncertainty allowing us to drop any time-

dependence. A player with preference type v’s utility is,

−(a− v)2 − κ
(
v̂(a) + c

)2
. (70)

Proposition 10 (Shifted Preferences)

Suppose the preferences of the players are as in Equation (70), then in the linear equilibrium

where v̂(a) = α · a+ β, α is independent of c.
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This result shows that while choosing a value c ̸= 0 will lead to different equilibrium

decisions, the level of adaptiveness remains the same. This result can easily be generalized to

show that the results regarding social learning are not sensitive to this exact parametrization

of conformity concerns.

Proof of Proposition 10. One can conjecture equilibrium beliefs of v̂(a) = αa + β. Given

these conjectures the first-order condition of a player is,

a− v + κα(αa+ β + c) = 0 ⇐⇒ v = (1 + κα2)a+ κα(β + c). (71)

In equilibrium the conjectures are correct which implies,

α = 1 + κα2 and β = κα(β + c). (72)

One can note the solution to α is independent of c, and if a solution for α exists, there will

always exist a solution for β.

9.2 Sufficiency of Linear Equilibria

Throughout this subsection the only distributional assumptions that are needed about

v are that (i) the distribution admits a continuous density and (ii) the support of the

distribution is the real line.

Let us first begin with equilibria that satisfy D1. As detailed in the text, Bernheim

(1994) implies that Equation (8) must hold outside the central pool. Given this result, one

can show the following Proposition.

Proposition 11 (Linear Equilibria)

Any equilibrium that satisfies D1 has an empty central pool. On either side of the empty

central pool, the decision rule is characterized by a = αv where α takes one of two possible

values: 1−
√
1−4κ
2 , 1+

√
1−4κ
2 which exist if and only if κ ≤ 1/4, where κ denotes the weight

on conformity. However, there always exists a fully-pooling decision rule in which all types

take the same decision.

Proof of Proposition 11. As mentioned in the text, there always exists the fully pooling

decision rule where the central pool is the entire domain. Hence, let us consider central

pooling equilibria with central pools that are not the entire domain. Without loss of gen-

erality let us assume v̄ < ∞, and an identical characterization follows if v > −∞. The

55



first-order condition implies:

a− v + κv̂(a)v̂′(a) = 0. (73)

Substituting a = x and ay(x) = v̂(x) to Equation (73) yields,

0 = x− xy(x) + κxy(x)
(
y(x) + xẏ(x)

)
⇐⇒ ẏ(x) =

−1 + y(x)− κy(x)2

κxy(x)
. (74)

This simplification is well defined because the denominator is non-zero for all x outside the

central pool. Next, if the equilibrium decision rule is linear, then ẏ(x) = 0 ∀ x. Further, if
ẏ(x) = 0 for some x, one can calculate the ÿ(·) as,

ÿ(x) =
−y(x)2(kxẏ(x) + 1) + ky(x)3 + xẏ(x) + y(x)

kx2y(x)2
=

−y(x)2 + ky(x)3 + y(x)

kx2y(x)2

= − ẏ(x)
x

= 0. (75)

Equation (75) implies if ẏ(x) = 0 for any x, then ẏ(x) = 0 ∀ x. Thus any non-linear solution

satisfies the following integral expression derived by re-arranging Equation (74):∫
ẏ(x)κy(x)

−1 + y(x)− κy(x)2
=

∫
−1

x
⇐⇒

− log(1− y(x) + κy(x)2)

2
+

log(1 + 1+2κy(x)√
1−4κ

)− log(1− 1+2κy(x)√
1−4κ

)

2
√
1− 4κ

+ c = − log(x), (76)

where c is the constant of integration. If κ = 1/4, then Equation (76) is ill-defined and

thus all solutions are necessarily linear. Further, assuming κ < 1/4, any non-linear solution

satisfies the following equalities:

log

(√
1− y(x) + κy(x)2 ·

(1− 1+2κy(x)√
1−4κ

1 + 1+2κy(x)√
1−4κ

) 1
2
√
1−4κ

)
= log(ecx) (77)

⇐⇒
√
1− y(x) + κy(x)2 ·

(1− 1+2κy(x)√
1−4κ

1 + 1+2κy(x)√
1−4κ

) 1
2
√
1−4κ

= ecx (78)

⇐⇒ (1− y(x) + κy(x)2)
(1− 1+2κy(x)√

1−4κ

1 + 1+2κy(x)√
1−4κ

) 1√
1−4κ

= x2ec. (79)

Recall that the map a(v) is defined on (v̄,∞) and thus one can consider the limit of the

above equation as x→ ∞. The right-hand side of the equation diverges as x→ ∞ implying
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the left-hand side must also diverge. However, if y(x) is bounded, then both the first and

second terms of the left-hand side will remain bounded. Therefore, one can assume that y(x)

is unbounded. By definition, then v/a(v) is unbounded. However, if v/a(v) is unbounded,

then there must exist a player for which ϵ less conformity is preferred.

Thus no non-linear solution exists when κ < 1/4. If instead κ > 1/4, then the simplifi-

cation to Equation (76) is

1

2
log
(
1− y(x) + κy(x)2

)
+

tan−1
(
2ky(x)−1√

4k−1

)
√
4k − 1

+ c = log(x). (80)

As argued above, y(x) must be bounded. However, this implies the left-hand side of the

above equation cannot diverge, but the right-hand side necessarily diverges. As no non-

linear solution exists for any κ, the only solutions to the differential equation outside the

central pool are linear. I will now show that the central pool is empty.

Equation (3) shows that the linear equilibria must satisfy:

α(1− α) = κ ⇐⇒ α =
1±

√
1− 4κ

2
. (81)

Thus for a central pooling equilibrium to exist one must find a∗, v, v̄ such that the player

with preference type v̄ is indifferent between a∗ and αv̄. I consider the case where a∗ ≤ 0

and an identical argument holds if a∗ ≥ 0.33 Note that the conformity loss following a∗

is at best zero. Fixing the slope of the linear decision rule a(v) = αv, then the following

inequality must hold:

−(v̄ − a∗)2 ≥ −(1− α)2v̄2 − κv̄2, (82)

where the left-hand side is an upper bound on the utility in the central pool and the right-

hand side is the utility in the linear equilibrium. One can notice that v̄2 cancels out and

that for the solutions to α such an inequality never holds. Given that such an inequality

cannot hold, the central pool must be empty in any equilibrium with revelation.

While Proposition 11 implies that multiple equilibria with revelation exist, only one

equilibrium is Pareto optimal. Note that the conformity loss is identical across the equi-

libria by Bayes Plausibility. Hence, the equilibrium that maximizes utility is the one that

minimizes the adaptation loss. In the class of linear equilibria, this corresponds to the

33One can use v analogously to v̄. If v was negative infinity, then the equilibrium could not satisfy
D1 as no beliefs satisfying D1 following a∗ − ϵ would prevent a player with an arbitrarily negative
preference type from deviating.

57



equilibrium with the highest slope (as all the slopes are strictly less than one). These

refinements select a unique equilibrium as stated in Proposition 1 in the text.

9.3 Generalized Distributions

Subsection 6.3 analyzed the impact of conformity concerns on social learning about µ

when θ was common knowledge for a general class of distributions. This subsection will

analyze the impact of conformity concerns on social learning about θ when µ is common

knowledge for a general class of distributions.

Suppose each player has a preference type vt ∼ F where F admits a continuous and

differentiable density f(·) with support equal to the real line and mean normalized to zero.

Further, denote by ωt the player t’s posterior beliefs about θ in period t after observing st. I

will assume the distribution of ωt admits a continuous and differentiable density. The only

decision relevant information for the player is vt+ωt := ṽt and it is without loss to consider

equilibria that only condition on the sum. Further, by an identical argument to Bernheim

(1994), the only equilibria satisfying D1 are central pooling equilibria as a function of ṽt.

Let us detail the conformity concerns in this general framework. As previously noted,

outside the central pool the decision rule will be strictly increasing in ṽt which implies the

existence of an inverse. Denote by x an arbitrary decision where a−1(x) = ṽt, then the

conformity loss upon choosing the decision x is

κ
(
ṽt − h1

(
ṽt
))2

+ κh2
(
ṽt
)
. (83)

Note that a player has concerns over the second moment of their perceived preference type.

This second moment has two components the mean and the variance. The mean of the

perceived preference type is simply ṽt less h1
(
ṽt
)
, where h1(t) is defined such to make such

an equality hold. Without uncertainty, h1(ṽt) = 0, however, in general h1(ṽt) ̸= 0 because a

high value of ṽt may stem from either a high value of vt or a high value of ωt. Further, h2(ṽt)

represents the impact of the variance of players with different preference types choosing the

same decision on the conformity loss. Formally, h1
(
ṽt
)
= ṽt − E(vt|vt + ωt = ṽt) and

h2
(
vt|vt + ωt = ṽt)

)
= Var(vt|vt + ωt = ṽt).

Rather than dealing with the distributions of vt and ωt, I will work with h1(·) and h2(·).
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Differentiating the utility function in Equation (83) implies

0 = 2(at − ṽt) + 2κ
(
ṽt − h1(ṽt)

) 1

a′(ṽt)

(
1− h′1(ṽt)

)
+
κh′2(ṽt)

a′(ṽt)

⇐⇒ a′(vt) =
κ
((
ṽt − h1(ṽt)

)(
1− h′1(ṽt)

)
+ 1

2h
′
2(ṽt)

)
at − vt

. (84)

However, such an expression has a similar formulation to Equation (24) in Proposition 9.

One can replace gt(vt) in Equation (24) with the expression in Equation (84).

9.4 Generalized Results With Social Learning

The first two subsubsections show that linearity is implied by D1 when either µ or θ

are common knowledge, respectively. The third subsubsection discusses the difficulty with

both dimensions of uncertainty. The final subsubsection discusses the learning outcomes if

γt = 1 in all periods.

9.4.1 Learning About the Fundamental State:

In this extension, I assume µ is common knowledge, and without loss of generality equal

to zero. By induction, it suffices to consider the incentives of an arbitrary player and thus

drop any time dependence. Here, θ ∼ N(0, τθ) and v ∼ N(0, τµ), resulting in the following

utility for player 1:

−(a− θ − v)2 − κ

∫
ϕ(b, a)b2db. (85)

Proposition 12 (Linear Equilibria without Population Uncertainty)

The only equilibria with revelation that satisfy D1 are the linear equilibria.

Proof of Proposition 12. As θ + v is the only decision-relevant variable for the players it is

without loss to consider decision rules such that a is a function of the sum alone. Note

that in any equilibrium in which a is a function of θ + v, an identical proof to Bernheim

(1994) can be used to show that D1 implies central pooling. Finally, note that outside the

central pool if a(x) = a∗, then the equilibrium inference given a∗ is a Gaussian random

variable with mean τθ
τθ+τµ

x and a fixed variance. Given the quadratic loss framework the

variance is irrelevant in determining which decision to take outside the central pool. Hence,

the decision outside the central pool is chosen to maximize,

−(a− v − θ)2 − κ
τθ

τθ + τµ
ã−1(a)2, (86)
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given a conjectured decision rule ã(·).
However, note that this is an identical framework as the framework assuming θ is com-

mon knowledge if one defines κ̃ = κ τθ
τθ+τµ

. Given Proposition 11, outside the central pool

the decision rule must be linear. All that remains to show is that the central pool is empty.

Suppose by contradiction, a non-empty central pool existed with pooling decision a∗ ≤ 0

and a pool determined by v, v̄. In this equilibrium, the player with preference type v̄ must

be indifferent between αv̄ and a∗. As the linear equilibrium can be extended to be an

equilibrium over the entire real line, the player with preference type v̄ prefers choosing αv̄

where ϕ(b, αv̄) ∼ N( τθ
τθ+τµ

v̄, 1
τθ+τµ

) to choosing a = 0 where ϕ(b, 0) ∼ N(0, 1
τθ+τµ

). Finally,

note that choosing the pooling decision incurs a worse adaptation loss than a = 0 in the

linear equilibrium (as a∗ ≤ 0), a worse conformity loss (as a1 = 0 generates the ideal mean

perceived preference type), and a worse variance as the equilibrium variance is higher in

the pool. Finally, note if instead a∗ > 0, one can utilize an identical argument with v to

derive a contradiction.

9.4.2 Learning About the Preferences of Others:

Let us now consider an alternative environment in which θ = 0 is common knowledge,

but there exists aggregate uncertainty over the average preference type of the population,

µ. By induction, we can again drop any time dependence. Note that v is the only decision-

relevant private information, implying a is a function of v alone. Moreover, a player’s utility

is:

−(a− v)2 − κ

∫ (∫
ϕ(b, a)(b− µ)2db

)
f(µ | v)dµ. (87)

As in the proof of Proposition 3, I will denote by τvind the precision of v conditional on a

realization of µ. I can now characterize the equilibria which satisfy D1.

Proposition 13 (Linear Equilibria with State Uncertainty)

The only equilibria that satisfy D1 off-path are the linear equilibria.

Proof of Proposition 13. Again, using a proof identical to Bernheim (1994), one can show

that D1 implies central pooling. Outside the central pool, a player’s preference type is fully

revealed. Hence, the loss function outside the central pool is:

−(a− v)2 − κ

∫ (
v−1(a)− µ

)2
f(µ | v)dµ. (88)

However a player’s equilibrium perception of µ is a Gaussian distribution with a mean

of
τvind

τvind+τµ
v and a fixed variance. Given the quadratic-loss framework, the variance is
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additively separable from the decision rule and can be ignored when considering which

decision to take outside the central pool. Let us recall the notation v̂(a) to denote the

expected perceived preference type given decision a. Thus, the optimization reduces to

choosing an a which maximizes,

−(a− v)2 − κ
(
v̂(a)− τvind

τvind + τµ
v
)2
. (89)

One can differentiate to derive,

a− v + κ
(
v̂(a)− τvind

τvind + τµ
v1

)
v̂′(a) = 0. (90)

Further, in equilibrium v̂(a) = v, and thus,

a− v + κ
(
v − τvind

τvind + τµ
v
)
v′(a) = 0. (91)

However, this expression is identical to Equation (73) with a rescaling of κ. Thus the only

differential equations that satisfy such a constraint are linear. Further, by an identical intu-

ition to Proposition 11, the central pool must be empty in any equilibrium with revelation.

These results imply any equilibrium with revelation that satisfies D1 is linear.

9.4.3 Learning About Both the Preferences of Others and the Funda-

mental State:

This analysis is qualitatively different to the previous analysis. Now at is a function of

two-dimensional private information: st, vt. Thus, the equilibrium decision rule in general

will be determined by a partial differential equation. Further, for any conjectured non-linear

decision rule, ϕ(b, at) will be non-Gaussian. As one must integrate ϕ(b, at) to determine the

conformity loss, one cannot solve (let alone, write down) the partial differential equation in

closed form as was done for the differential equation in Proposition 11.

9.4.4 Unstable Confounded Learning Outcomes

Given the updating rule in Equation (35), there is a possibility that despite an equi-

librium with revelation in every period that social learning fails. For instance, if at =

λst + (1− λ)vt in every period, the players’ will never be able to disentangle θ and µ. The

following proposition formalizes this intuition.

Lemma 5 If there exists infinitely many periods of revelation, the variance matrix of the
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belief, Σt, either converges to the zero-matrix or Σt converges to(
c1 −√

c1c2

−√
c1c2 c2

)
(92)

for c1, c2 > 0.

Proof of Lemma 5. Suppose that Σt ̸→p 0, then Lemma 1 implies that θ(t) ̸→p θ and

µ(t) ̸→p µ. Further, for all t, at is a linear combination of st and vt plus a constant. As a

result, for all t a sufficient statistic for at is,

λtst + (1− λt)vt, (93)

for some constant λt ∈ (0, 1). If λt does not converge, then there exist two different conver-

gent subsequences that converge to λ1, λ2, respectively. By the law of large numbers then

the players learn λ1θ+ (1− λ1)µ and λ2θ+ (1− λ2)µ. However, as λ1 ̸= λ2 the players can

separately learn θ and µ. Thus, because the beliefs do not converge, λt must converge.

If λt converges, then ϕt from Equation (35) necessarily converges to an interior value.

Further, ρt is equal to the negative square root of τ22,t/(τ1,tτ3,t) as stated below:

ρt = −

√
(
∑t

i=1

√
ϕt(1− ϕt))2

(
∑t

i=1 ϕt)(
∑t

i=1 1− ϕt)
. (94)

As ϕt converges, one can re-write ρt asymptotically as follows,

ρt = −

√
t2 limϕt(1− ϕt) + o(t2)

t2 limϕt(1− ϕt) + o(t2)
→ −1. (95)

Finally, the variance of θ and µ are each bounded and decreasing sequences, and thus both

variances converge completing the proof.

I will call the above such beliefs “confounded learning outcomes.” In this model, such

beliefs are not asymptotically stable because after a small perturbation (such as decreasing

the variance of θ) the beliefs will never return to this confounded learning outcome. Gen-

erally for such outcomes to be stable, there must exist multiple preference types who have

opposing preferences (cf. Smith and Sørensen, 2000). By introducing γt, this ensures that

if the signaling equilibrium involves revelation in each period then λt does not converge.
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