

MACROECONOMIC IMPLICATIONS OF COVID-19: CAN NEGATIVE SUPPLY SHOCKS CAUSE DEMAND SHORTAGES?

GUERRIERI + LORENZONI + STRAUB + WERNING
(BOOTH) (NWU) (HARVARD) (MIT)

Say's Law (misquoted!)

Say's Law (misquoted!)

"Supply creates its own Demand"

Say's Law (misquoted!)

"Supply creates its own Demand"

▶ Today...

Say's Law (misquoted!)

"Supply creates its own Demand"

▶ Today...

Can negative supply shock create a demand shortage?

Say's Law (misquoted!)

"Supply creates its own Demand"

▶ Today...

Can negative supply shock create a demand shortage?

Pandemic, debate over...

Say's Law (misquoted!)

"Supply creates its own Demand"

▶ Today...

Can negative supply shock create a demand shortage?

- Pandemic, debate over...
 - Supply vs Demand shock?

Say's Law (misquoted!)

"Supply creates its own Demand"

▶ Today...

Can negative supply shock create a demand shortage?

- Pandemic, debate over...
 - Supply vs Demand shock?
 - Monetary Policy Easing + Fiscal Stimulus?

Say's Law (misquoted!)

"Supply creates its own Demand"

▶ Today...

Can negative supply shock create a demand shortage?

- Pandemic, debate over...
 - Supply vs Demand shock?
 - Monetary Policy Easing + Fiscal Stimulus?

Goal: simple theory for insights

+
policy implications

	Complete Markets	Incomplete Markets
Single Sector	NO (Standard)	
Multiple Sectors		

	Complete Markets	Incomplete Markets
Single Sector	NO (Standard)	NO! (New)
Multiple Sectors		

	Complete Markets	Incomplete Markets
Single Sector	NO (Standard)	NO! (New)
Multiple Sectors	POSSIBLE	

	Complete Markets	Incomplete Markets
Single Sector	NO (Standard)	NO! (New)
Multiple Sectors	POSSIBLE	EVEN MORE POSSIBLE

INTUITIONS

- Single Sector (Representative Agent)
 Negative supply shock = Positive news (relative to today!)
- Single sector + Incomplete Markets
 - Incomplete markets helps...
 - ... but in extreme case, workers that lose income stop consuming...
 - ...workers in unaffected sector consume same as before at same interest rate

INTUITIONS

- Multisector...
 - > 50% drop for everyone ≠ 100% for half sectors (Nick Rowe)
 - poor substitution across sectors (e.g. food at home and durables or entertainment)
- Multisector + Incomplete Markets
 - Incomplete markets further helps case

OTHER RESULTS...

Fiscal Policy

- may be less effective per dollar spent
- but may still be optimal!

Going Deeper...

- mobility + supply chains
- business exit (restaurants → clothing stores)
- labor hoarding vs. job-match destruction perfect insurance

DEMAND VS SUPPLY

- Demand vs. Supply terminology...
 - not always clear, meanings differ...
 - ...supply shock lowers demand, but...
 ...more than supply? excess demand?
- Taste shock = Supply shock both give drop buyer/seller gains from trade...

DEMAND VS SUPPLY

- Demand vs. Supply terminology...
 - not always clear, meanings differ...
 - ...supply shock lowers demand, but...
 ...more than supply? excess demand?
- Taste shock = Supply shock both give drop buyer/seller gains from trade...

DEMAND VS SUPPLY

- Demand vs. Supply terminology...
 - not always clear, meanings differ...
 - ...supply shock lowers demand, but...
 ...more than supply? excess demand?
- Taste shock = Supply shock both give drop buyer/seller gains from trade...

- Today: Demand deficiency...
 - natural (flex price) interest rate (full employment) falls
 - holding fixed interest rate: recession

SINGLE SECTOR

TAKE #1 COMPLETE MARKETS

SINGLE SECTOR

TAKE #1 COMPLETE MARKETS

	Complete Markets	Incomplete Markets
Single Sector	?	
Multiple Sectors		

PREFERENCES AND TECHNOLOGY

Preferences

$$\sum_{t=0}^{\infty} \beta^t U\left(c_t\right)$$

- lacktriangleright Fixed endowment of labor (supplied inelastically) \overline{n}
- Technology

$$Y_t = N_t$$

- MIT shock...
 - t=0 temporary reduction labor supply (e.g. shutdown)

$$\overline{n}$$
 (1 - ϕ) \overline{n}

- t=1,2,3... back to normal, flexible price allocation
- ▶ Flexible price equilibrium (natural) interest rate...

$$1 + r_0 = \frac{1}{\beta} \frac{U'\left((1 - \phi)\overline{n}\right)}{U'\left(\overline{n}\right)} > \frac{1}{\beta}$$

... equilibrium with fixed interest rate (e.g. ZLB)

$$U'(c_0) = \beta \frac{1}{\beta} U'(\overline{n})$$

- MIT shock...
 - t=0 temporary reduction labor supply (e.g. shutdown)

$$\overline{n}$$
 (1 - ϕ) \overline{n}

- t=1,2,3... back to normal, flexible price allocation
- ▶ Flexible price equilibrium (natural) interest rate...

$$1+r_0 = \frac{1}{\beta} \frac{U'\left((1-\phi)\overline{n}\right)}{U'\left(\overline{n}\right)} > \frac{1}{\beta} \quad \text{interest rate rises}$$

... equilibrium with fixed interest rate (e.g. ZLB)

$$U'(c_0) = \beta \frac{1}{\beta} U'(\overline{n})$$

- MIT shock...
 - t=0 temporary reduction labor supply (e.g. shutdown)

$$\overline{n} \longrightarrow (1-\phi)\overline{n}$$

- t=1,2,3... back to normal, flexible price allocation
- Flexible price equilibrium (natural) interest rate...

$$1+r_0 = \frac{1}{\beta} \frac{U'\left((1-\phi)\overline{n}\right)}{U'\left(\overline{n}\right)} > \frac{1}{\beta} \quad \text{interest rate rises}$$

... equilibrium with fixed interest rate (e.g. ZLB)

$$U'\left(c_{0}
ight)=etarac{1}{eta}U'\left(\overline{n}
ight)$$
 excess demand

Proposition. Single-sector + Complete Markets

Rise natural rate
+ Increase excess demand

- Intuition...
 - negative supply shock = good news shock
 - agents want to borrow, not save

- Intuition...
 - negative supply shock = good news shock
 - agents want to borrow, not save

Up Next: Can Incomplete Markets Save Us?

SINGLE SECTOR

TAKE #2 INCOMPLETE MARKETS

SINGLE SECTOR

TAKE #2 INCOMPLETE MARKETS

	Complete Markets	Incomplete Markets
Single Sector	NO	?
Multiple Sectors		

Budget constraints

$$c_{it} + a_{it} \le w_t n_{it} + (1 + r_{t-1}) a_{it-1}$$

lacktriangle Fraction μ face borrowing constraint (results generalize)

$$a_{it} \ge 0$$

Euler for unaffected + unconstrained

$$U'(c_{i0}) = \beta (1 + r_0) U'(c_{i1})$$

Market clearing

Budget constraints

$$c_{it} + a_{it} \le w_t n_{it} + (1 + r_{t-1}) a_{it-1}$$

lacktriangle Fraction μ face borrowing constraint (results generalize)

$$a_{it} \geq 0$$

Euler for unaffected + unconstrained

aggregating

$$U'(c_{i0}) = \beta (1 + r_0) U'(c_{i1}) \rightarrow U'(\mathbf{c}_0) = \beta (1 + r_0) U'(\mathbf{c}_1)$$

Market clearing

Budget constraints

$$c_{it} + a_{it} \le w_t n_{it} + (1 + r_{t-1}) a_{it-1}$$

lacktriangle Fraction μ face borrowing constraint (results generalize)

$$a_{it} \geq 0$$

Euler for unaffected + unconstrained

aggregating

$$U'(c_{i0}) = \beta (1 + r_0) U'(c_{i1}) \rightarrow U'(\mathbf{c}_0) = \beta (1 + r_0) U'(\mathbf{c}_1)$$

Market clearing

$$\mathbf{c}_1 + \mu \phi \overline{n} = \overline{n}$$

$$\mathbf{c}_0 = (1 - \phi)\overline{n}$$

Budget constraints

$$c_{it} + a_{it} \le w_t n_{it} + (1 + r_{t-1}) a_{it-1}$$

lacktriangle Fraction μ face borrowing constraint (results generalize)

$$a_{it} \geq 0$$

Euler for unaffected + unconstrained

aggregating

$$U'(c_{i0}) = \beta (1 + r_0) U'(c_{i1})$$
 $U'(\mathbf{c}_0) = \beta (1 + r_0) U'(\mathbf{c}_1)$

Market clearing

$$\mathbf{c}_1 + \mu \phi \overline{n} = \overline{n}$$

$$\mathbf{c}_0 = (1 - \phi)\overline{n}$$

$$1 + r_0^* = \frac{1}{\beta} \frac{U'((1 - \phi)\overline{n})}{U'((1 - \mu\phi)\overline{n})} \ge \frac{1}{\beta}$$

Natural rate rises!

Proposition. Single-sector + Incomplete Markets Rise natural rate Negative Supply Shock

Increase excess demand

Proposition. Single-sector + Incomplete Markets

Negative
Supply Shock
Rise natural rate
Horrease excess demand

- Again... why?...
 - negative supply shock = good news shock
 - agents want to borrow, not save
 - at best if they can't they consume zero...
 - same as dropping out which is neutral

INCOMPLETE MARKETS

Proposition. Single-sector + Incomplete Markets

Rise natural rate
+
Supply Shock
Increase excess demand

- Again... why?...
 - negative supply shock = good news shock
 - agents want to borrow, not save
 - at best if they can't they consume zero...
 - same as dropping out which is neutral

Lose a producer, lose a consumer... it's a wash! へ(ツ)_/

TAKE #1 COMPLETE MARKETS

TAKE #1
COMPLETE MARKETS

	Complete Markets	Incomplete Markets
Single Sector	NO	NO
Multiple Sectors	?	

$$\sum_{t=0}^{\infty} \beta^{t} U\left(c_{1t}, c_{2t}\right)$$

$$U\left(c_{1t}, c_{2t}\right) = \frac{1}{1 - \sigma} \left(\phi^{\rho} c_{1t}^{1-\rho} + (1 - \phi)^{\rho} c_{2t}^{1-\rho}\right)^{\frac{1-\sigma}{1-\rho}}$$

$$Y_{jt} = N_{jt}$$

$$\sum_{t=0}^{\infty} \beta^{t} U\left(c_{1t}, c_{2t}\right)$$

$$U\left(c_{1t}, c_{2t}\right) = \frac{1}{1 - \sigma} \left(\phi^{\rho} c_{1t}^{1-\rho} + (1 - \phi)^{\rho} c_{2t}^{1-\rho}\right)^{\frac{1-\sigma}{1-\rho}}$$

$$Y_{jt} = N_{jt}$$

$$c_1^* = Y_1^* = \phi \overline{n}$$

$$c_2^* = Y_2^* = (1 - \phi) \overline{n}$$

$$p^* = 1$$

Steady State

$$\sum_{t=0}^{\infty} \beta^t U(c_{1t}, c_{2t})$$

$$U(c_{1t}, c_{2t}) = \frac{1}{1 - \sigma} \left(\phi^{\rho} c_{1t}^{1-\rho} + (1 - \phi)^{\rho} c_{2t}^{1-\rho} \right)^{\frac{1-\sigma}{1-\rho}}$$

$$Y_{jt} = N_{jt}$$

$$c_1^* = Y_1^* = \phi \overline{n}$$
 $c_2^* = Y_2^* = (1 - \phi) \overline{n}$
 $p^* = 1$

$$c_{10} = Y_{10} = n_{10} = 0$$

Steady State

Asymmetric MIT shock

$$1 + r_t \equiv (1 + i_t) \frac{P_{2t}}{P_{2t+1}}$$

Real Interest Rate (for good 2)

$$1 + r_t \equiv (1 + i_t) \frac{P_{2t}}{P_{2t+1}}$$

Real Interest Rate (for good 2)

$$U_{c_2}(c_{1t}, c_{2t}) = \beta(1 + r_t)U_{c_2}(c_{1t+1}, c_{2t+1})$$

$$1 + r_t \equiv (1 + i_t) \frac{P_{2t}}{P_{2t+1}}$$

Real Interest Rate (for good 2)

$$U_{c_2}(c_{1t}, c_{2t}) = \beta(1 + r_t)U_{c_2}(c_{1t+1}, c_{2t+1})$$

$$1 + r_0 = \frac{1}{\beta} \frac{U_{c_2}(0, c_2^*)}{U_{c_2}(c_1^*, c_2^*)}$$

Natural rate after shock

$$1 + r_t \equiv (1 + i_t) \frac{P_{2t}}{P_{2t+1}}$$

Real Interest Rate (for good 2)

$$U_{c_2}(c_{1t}, c_{2t}) = \beta(1 + r_t)U_{c_2}(c_{1t+1}, c_{2t+1})$$

$$1 + r_0 = \frac{1}{\beta} \frac{U_{c_2}(0, c_2^*)}{U_{c_2}(c_1^*, c_2^*)}$$

Natural rate after shock

$$(1-\phi)^{\frac{\rho-\sigma}{1-\rho}} < 1$$

Interest Rate Falls

Proposition. Multiple Sectors + Complete Markets

Negative Supply Shock

Lower natural rate
+
deficient excess demand

$$\frac{1}{\sigma} > \frac{1}{\rho}$$

TAKE #2 INCOMPLETE MARKETS

TAKE #2
INCOMPLETE MARKETS

	Complete Markets	Incomplete Markets
Single Sector	NO	NO
Multiple Sectors	POSSIBLE	?

$$1 + r_0 = \frac{1}{\beta} \frac{U_{c_2}(0, \mathbf{c}_{20})}{U_{c_2}(\mathbf{c}_{11}, \mathbf{c}_{21})}$$

Unconstrained agents

$$\mathbf{c}_{20} = (1 - \phi)\overline{n}$$

$$\mathbf{c}_{11} = \phi (1 - \phi \mu) \, \bar{n}, \quad \mathbf{c}_{21} = (1 - \phi) (1 - \phi \mu) \, \bar{n}.$$

$$1 + r_0 = \frac{1}{\beta} (1 - \phi)^{\frac{\rho - \sigma}{1 - \rho}} (1 - \phi \mu)^{\sigma}$$

$$1 + r_0 = \frac{1}{\beta} \frac{U_{c_2}(0, \mathbf{c}_{20})}{U_{c_2}(\mathbf{c}_{11}, \mathbf{c}_{21})}$$

Unconstrained agents

$$\mathbf{c}_{20} = (1 - \phi)\overline{n}$$

$$\mathbf{c}_{11} = \phi (1 - \phi \mu) \, \bar{n}, \quad \mathbf{c}_{21} = (1 - \phi) (1 - \phi \mu) \, \bar{n}.$$

$$1 + r_0 = \frac{1}{\beta} (1 - \phi)^{\frac{\rho - \sigma}{1 - \rho}} (1 - \phi \mu)^{\sigma}$$

Proposition. Multiple Sectors + Incomplete Markets

Negative Supply Shock

$$\sigma^{-1} > \frac{1-\mu}{1-\phi\mu} \cdot \rho^{-1} + \frac{\mu(1-\phi)}{1-\phi\mu}$$

complete markets

complete markets

Incomplete Markets

complete markets

Incomplete Markets

NOTE: No "Paradox of Toil"

BINGO!

	Complete Markets	Incomplete Markets
Single Sector	NO (Standard)	NO! (New)
Multiple Sectors	POSSIBLE	EVEN MORE POSSIBLE

$$G_t + T_{1t} + T_{2t} = 0$$

$$G_t + T_{1t} + T_{2t} = 0$$

- Government spending G
- Ul Transfers: from 1 to 2

$$G_t + T_{1t} + T_{2t} = 0$$

- Government spending G
- Ul Transfers: from 1 to 2

Proposition. Multiple Sectors + Incomplete Markets

$$\frac{n_{20}}{\overline{n}} = \frac{G_0}{\overline{n}} + \mu \frac{T_1}{\overline{n}} + (1 - \phi \mu) (1 - \phi)^{\frac{1}{\sigma} \frac{\rho - \sigma}{1 - \rho}}$$

$$G_t + T_{1t} + T_{2t} = 0$$

- Government spending G
- ▶ UI Transfers: from 1 to 2

Proposition. Multiple Sectors + Incomplete Markets

$$\frac{n_{20}}{\overline{n}} = \frac{G_0}{\overline{n}} + \mu \frac{T_1}{\overline{n}} + (1 - \phi \mu) (1 - \phi)^{\frac{1}{\sigma} \frac{\rho - \sigma}{1 - \rho}}$$

- ▶ G multiplier = 1
- ▶ T multiplier = Avg MPC
- No 2nd round Keynesian Cross operating!

Figure 1: How negative supply shocks can lead to demand shortages

— Case with equal inter- and intra-temporal elasticities —

Figure 1: How negative supply shocks can lead to demand shortages

— Case with equal inter- and intra-temporal elasticities —

Figure 1: How negative supply shocks can lead to demand shortages

— Case with equal inter- and intra-temporal elasticities —

HOBILITY + DEMAND CHAINS

LABOR MOBILITY

lacksquare Suppose a fraction lpha of workers can move sectors

LABOR MOBILITY

Complete markets

LABOR MOBILITY + INCOMPLETE MARKETS

LABOR MOBILITY + INCOMPLETE MARKETS

Rises or Falls with α ?

BUSINESS EXIT CASCADES

ENDOGENOUS BUSINESS ACTIVITY

From 2 sectors to continuum of varieties

$$C_t = \left(\int c_{jt}^{1-\rho} dj \right)^{1/(1-\rho)}$$

Monopolistic competition generates profits

$$\Pi_{jt} = \rho N_{jt}$$

- Each variety produced by separate representative worker who also own that variety
- Key: businesses only active when

$$\Pi_{jt} > v_{jt} \quad \sim \Upsilon(v)$$

Random fixed cost

Chosen so that all firms are active in steady state

DEMAND AND BUSINESS EXIT

- lacksquare Shock as before: Shut down mass ϕ of businesses
- lacksim Mass $\hat{\phi}_0$ of inactive businesses = endogenous
- Two equilibrium conditions
 - Demand for labor in active sectors

$$\frac{N_0}{\overline{n}} = (1 - \hat{\phi}_0)^{\frac{\rho}{\sigma} \frac{1 - \sigma}{1 - \rho}}$$

Assume incomplete markets

Keynesian supply shock regime

Supply of active sectors

$$1 - \hat{\phi}_0 = (1 - \phi) \Upsilon(\rho N_0)$$

DEMAND AND BUSINESS EXIT CASCADES

DEMAND AND BUSINESS EXIT CASCADES

BUSINESS EXIT MULTIPLIER

Simple functional form

$$\Upsilon(\upsilon) = \left(\frac{\upsilon}{\rho \overline{n}}\right)^{\eta}$$

 η = elasticity of business exit to demand

$$\log \frac{N_0}{\overline{n}} = \underbrace{\frac{1}{1 - \eta \frac{\sigma^{-1} - 1}{\rho^{-1} - 1}}}_{\text{firm exit multiplier}} \underbrace{\frac{\sigma^{-1} - 1}{\rho^{-1} - 1} \log(1 - \phi)}_{\text{firm exit multiplier}}$$

POLICY IMPLICATION: SUBSIDIZING LABOR

- Imagine we subsidize wage bill with some ~ au>0
 - e.g. employer-side payroll tax cut
- Result:

$$\log \frac{N_0}{\overline{n}} = \frac{1}{1 - \eta \frac{\sigma^{-1} - 1}{\rho^{-1} - 1}} \frac{\sigma^{-1} - 1}{\rho^{-1} - 1} \left(\log(1 - \phi) + \eta \log(1 + \tau)\right)$$

Amplified effect due to business exit multiplier

Helps businesses stay afloat!

- Can get similar result for monetary policy:
 - lower rates keep businesses in business
 - "business exit channel"

LABOR HOARDING VS JOB WORKER MATCH DESTRUCTION

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$
 Destroy Matches

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$
 Destroy Matches

$$-w + \frac{1}{R}V_1 \ge 0$$

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$
 Destroy Matches

$$-w + \frac{1}{R}V_1 \ge 0$$
 Labor Hoarding

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$
 Destroy Matches

$$-w+rac{1}{R}V_1\geq 0$$
 Labor Hoarding Perfect Insurance!

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$
 Destroy Matches

$$-w+rac{1}{R}V_1\geq 0$$
 Labor Hoarding Perfect Insurance

$$V_0 = \max\{-w + \frac{1}{R}V_1, 0\}$$

$$-w + \frac{1}{R}V_1 < 0$$
 Destroy Matches

$$-w+rac{1}{R}V_1\geq 0$$
 Labor Hoarding Perfect Insurance!

OPTIMAL POLICY

HEALTH + MACRO

OPTIMAL POLICY

Add public health dimension

$$\sum_{t=0}^{\infty} \beta^t \left(U\left(c_{1t}, c_{2t}\right) + h_t \right)$$

 Health depends on private behavior and on aggregates (externality)

$$h_t = H(c_{1t}, n_{1t}, Y_{1t}, \xi_t)$$

- Three sources of inefficiency...
 - health externality (as in Eichenbaum-Rebelo-Trabandt)
 - lack of insurance
 - involuntary unemployment

PUBLIC HEALTH AND MACRO POLICIES

- Start with no public health policy...
 - Private decisions to limit consumption in sector 1
 - consumption dominates labor: involuntary unemployment!
- Remark 1: Unemployment may not be socially inefficient! (reduce labor further)
- lacktriangle Keynesian Wedge vs. Pigouvian Externality H_{Y_1}
- Remark 2 (complementarity): Shutdown of sector 1 optimal, but can cause KSS, so we need to lower $\,r_0\,$
- Remark 3 (optimal policy): With incomplete markets targeted transfers hit three birds with one stone
 - Provides insurance
 - lacktriangle Raises natural rate (important if at ZLB): may not need to raise $\,r_0$
 - Makes public health policy more desirable

PUBLIC HEALTH AND MACRO POLICIES

- Start with no public health policy...
 - Private decisions to limit consumption in sector 1
 - consumption dominates labor: involuntary unemployment!
- Remark 1: Unemployment may not be socially inefficient! (reduce labor further)
- lacktriangle Keynesian Wedge vs. Pigouvian Externality H_{Y_1}
- > Remark 2 (complementarity): Shutdown of sector 1 optimal, but can cause KSS, so we need to lower $\,r_0\,$
- Remark 3 (optimal policy): With incomplete markets targeted transfers hit three birds with one stone indeed first best...
 - Provides insurance
 - lacktriangle Raises natural rate (important if at ZLB): may not need to raise $\,r_0$
 - Makes public health policy more desirable

PUBLIC HEALTH AND MACRO POLICIES

- Start with no public health policy...
 - Private decisions to limit consumption in sector 1
 - consumption dominates labor: involuntary unemployment!
- Remark 1: Unemployment may not be socially inefficient! (reduce labor further)
- lacktriangle Keynesian Wedge vs. Pigouvian Externality H_{Y_1}
- > Remark 2 (complementarity): Shutdown of sector 1 optimal, but can cause KSS, so we need to lower $\,r_0\,$
- Remark 3 (optimal policy): With incomplete markets targeted transfers hit three birds with one stone indeed first best...
 - Provides insurance
 - lacktriangle Raises natural rate (important if at ZLB): may not need to raise $\,r_0$
 - Makes public health policy more desirable

THREE WAY COMPLEMENTARITY!

CONCLUSIONS

	Complete Markets	Incomplete Markets
Single Sector	NO (Standard)	NO! (New)
Multiple Sectors	POSSIBLE	EVEN MORE POSSIBLE

Thank You!

EXTRA SLIDES

ABSTRACT FROM UNCERTAINTY...

- Uncertainty: well understood, clear mechanism, potential relevant and complement to what we do...
- But, pandemic + lockdown...
 - relatively front-loaded shock
 - uncertainty endogenous?
 - uncertainty on duration: not deliver recessionary effects
 - some uncertainty increases demand: toilet paper
- If story is uncertainty or future dip, then after we bottom out: recovery should be swift

DEMAND VS SUPPLY

- Demand vs. Supply terminology...
 - not always clear, meanings differ...
 - ...supply shock lowers demand, but...
 ...more than supply? excess demand?
- Taste shock = Supply shock ≠ Demand shock both give drop buyer/seller gains from trade...

- Today: Demand deficiency...
 - natural (flex price) interest rate (full employment) falls
 - holding fixed interest rate: recession

DEMAND VS SUPPLY

- Demand vs. Supply terminology...
 - not always clear, meanings differ...
 - ...supply shock lowers demand, but...
 - ...more than supply? excess demand?
- Taste shock = Supply shock ≠ Demand shock both give drop buyer/seller gains from trade...

- Today: Demand deficiency...
 - natural (flex price) interest rate (full employment) falls
 - holding fixed interest rate: recession