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1. Introduction

Consider the following sequence of numbers. Individual 1's expectation of random
variable X; individual 2's expectation of individual 1's expectation of X; 1's
expectation of 2's expectation of 1's expectation of X; and so on. Samet (1998a)
showed that if the individuals have a common prior on a �nite state space, then this
seqeuence will converge to the same number (which will be equal to the expectation
of X contingent on public information). Furthermore, such convergence will occur
for all random variables X only if their beliefs are derivable from a common prior.
Samet's argument exploits the fact that such iterated expectations can be rep-

resented by a Markov process. In this note, we show how similar techniques can
be used to provide a partial characterization of a weaker convergence property.
Consider the following sequence of numbers. Individual 1's expectation of ran-
dom variable X; 1's expectation of 2's expectation of 1's expectation of X; 1's
expectation of 2's expectation of 1's expectation of 2's expectation of 1's expec-
tation of X; and so on. Thus we are looking at those iterated expectations that
begin and end with individual 1. Using the Markov characterization of iterated
expectations, one can show that such convergence is equivalent to showing that,
from any initial conditions, a certain Markov process converges to a certain long
run distribution.
In this note, I show by example that convergence may fail if there are �nite

state, but individuals' priors have disjoint supports. I show that any sequence
may result on an in�nite state space but with disjoint supports. A �nal example
shows that convergence may fail with an in�nite state space and a common prior,
as long as the prior is improper.
Various su�cient conditions for convergence based on well-known properties of

Markov processes are reported. On a �nite state space, convergence occurs if there
is a common support. On an in�nite state space, a su�cient condition is that for
every event measurable with respect to individual 1's information, there exists
" > 0 such that either that event or its complement have the property that 1's
expectation of 2's probability of that event is at least ". This condition is always
true with continuous densities on a continuum state space that are uniformly
bounded below.



2. The Main Question: Iterated Expectations from One

Player's Perspective

Fix a measure space (
;F). Individual i has a prior measure Pi and a sub �-�eld
Fi. For any measurable random variable X, we write

E1 (X) = E
Pi [Xj Fi] .

Let
f (X) = E1 (E2 (X))

We are interested in identifying conditions under which fk (E1 (X)) converges for
all random variables X. I.e., for any X, there exists an F1-measurable random
variable X�

1 such that f
k (E1 (X)) [!] ! X�

1 [!] for all !.

3. Three Counterexamples

Three counterexamples show a failure of the sequence
�
fk (E1 (X))

	1
k=0

to con-
verge under di�erent assumptions.

3.1. Example 1

The �rst example shows that we may fail to get convergence with �nite types but
disjoint supports in the individuals' prior beliefs.


 = f!1; !2; !3; !4g
Q1 = (f!1; !2g f!3; !4g)
Q2 = (f!1; !3g f!2; !4g)

P1 =

�
1

2
; 0; 0;

1

2

�
P2 =

�
0;
1

2
;
1

2
; 0

�
Here, individual i's �-�eld is generated by partition Qi. Let

X = (x1; x1; x2; x2) .

Observe that since X is Q1-measurable, we have

E1 (X) = X.

2



Now
E2 (X) = (x2; x1; x2; x1)

and
E1 (E2 (X)) = (x2; x2; x1; x1) .

Thus

(E1E2)
2k E1 (x) = (x1; x1; x2; x2)

(E1E2)
2k+1E1 (x) = (x2; x2; x1; x1)

for all k = 0; 1; ::::

3.2. Example 2

The second example shows how the sequence
�
fk (E1 (X))

	1
k=0

may take any value
in R1, with countably in�nite types and disjoint supports.


 = f!1; !2; :::g
Q1 = (f!1g ; f!2; !3g ; f!4; !5g ; :::::)
Q2 = (f!1; !2g ; f!3; !4g ; :::)
P1 =

�
"; 0; " (1� ") ; 0; " (1� ")2 ; 0; " (1� ")3 ; :::

�
P2 =

�
0; "; 0; " (1� ") ; 0; " (1� ")2 ; 0; " (1� ")3 ; ::

�
Now consider any random variable

X = fx1; x2; x2; x3; x3; :::::g
Observe that since X is Q1-measurable, we have

E1 (X) = X.

Now
E2 (X) = (x2; x2; x3; x3; x4; ::::)

and
E1 (E2 (X)) = (x2; x3; x3; x4; x4; ::::) .

Thus
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(E1E2)
k E1 (x) = (xk+1; xk+2; xk+2; xk+3; xk+3; ::::)

for all k = 0; 1; ::::
Thus �

fk (E1 (X))
	1
k=0

[!1] = fx1; x2; x3; ::::::g .

3.3. Example 3

A �nal example shows how we may fail to get convergence with uncountably
in�nite types and a common (but improper) prior.


 = f!1; !2; :::g
Q1 = (f!1g ; f!2; !3g ; f!4; !5g ; :::::)
Q2 = (f!1; !2g ; f!3; !4g ; :::)

P1 = P2 =

 
1;

�

1� �;
�

�

1� �

�2
;

�
�

1� �

�3
; :::

!

where � > 1
2
. Now consider any random variable

X = fx1; x2; x2; x3; x3; :::::g
Observe that since X is Q1-measurable, we have

E1 (X) = X.

Now

E2 (X) = (�x2 + (1� �)x1; �x2 + (1� �)x1; �x3 + (1� �)x2; �x3 + (1� �)x2; ::::)

and

E1 (E2 (X)) =

0@ �x2 + (1� �)x1;
�2x3 + 2� (1� �)x2 + (1� �)2 x1;
�2x3 + 2� (1� �)x2 + (1� �)2 x1; ::::

1A .
Now consider an increasing sequence of integers 1 = n1 < n2 < ::: and let

X (!) =

�
0, if n2k+1 � ! < n2k
1, if n2k � ! < n2k+1
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for all k = 0; 1; :::
For any �xed ", one can choose n1 and k1 such that

fk1 (E1 (X)) [!1] < "

(independent of n2; n3; ::::). One can then choose n2 and k2 such that

fk2 (E1 (X)) [!1] > 1� "

(independent of n3; n4; ::::). One can choose n3 and k3 such that

fk (E1 (X)) [!1] < "

(independent of n4; n5; ::::). And so on.

4. Discrete State Spaces

Let 
 be a countable set. Each individual's information can be represented by a
partition Qi. Each individual has a prior Pi. We allow for the possibility that Pi
is improper, but require that each element in i's partition has �nite probability
(so conditional probabilities will be well-de�ned). We can label the elements of
i's partition by the natural numbers, so that Qi = (Qi1; Qi2; ::::). Now we can
write pi (n;m) for the ex ante probability that i assigns to 1 observing Q1n and 2
observing Q2m. Thus

pi (n;m) =
X

!2Q1n\Q2m

Pi (!) .

Write pi (mjn) for the condition probability that i assigns to j observing Qjm if
he has observe Qin.
Let Ni be the number of elements of i's partition (Ni may equal 1). Let

M i be the Ni � Nj matrix whose (n;m)th element is pi (mjn). Clearly, this is a
Markov matrix.
Let

M =M1M2

be the N1 � N1 product of these two matrices. Notice that M is also a Markov
process, with (n; n0)th element equal to

N2X
m=1

p1 (mjn) p2 (n0jm) .
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Now observe that any Q1-measurable random variable X can be naturally repre-
sented as a N1-vector x (with the interpretation that the xn is the realization of
X on the event Q1n).
But now if

x = E1 (X) ,

we have that
fk (E1 (X)) =M

kx.

Proposition 4.1. fk (E1 (X)) converges everywhere for all X if and only if the
sequence of Markov matrices Mk converges.

The Markov process corresponding to example 1 deterministically jumps from
one type to the other. Thus there are cycles in iterated expectations. The Markov
process corresponding to example 2 deterministically moves up states monoton-
ically (and never converges or cycles). The Markov process corresponding to
example 3 is a biased random walk.

Corollary 4.2. If either player has a �nite number of types and there is a common
support, then fk (E1 (X)) converges everywhere for all X.

The corollary follows from properties of Markov matrices.
Observe that example 1 fails the su�cient condition because there is not com-

mon support, while examples 2 and 3 fail because both individuals have an in�nite
number of types.

5. The General Case

In general, we de�ne a transition function Q : 
�F1 ! [0; 1] by

Q (!;Z) =

Z
!02F

P2 [Zj!0]P1 [!0j!] d!0.

Thus Q (!; �) is a measure on (
;F1) for all ! 2 
 and Q (�; Z) is F1-measurable
for all Z 2 F1.
Transition process Q describes a Markov process on (
;F1). We write Qn

for the Markov process generated by n transitions. Now we have the following
condition
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ConditionM . There exists " > 0 and integer N � 1 such that for any Z 2 F1,
either QN (!;Z) � " for all !; or QN (!;Zc) � " for all !.
Stokey and Lucas (1989) show that this condition allows a contraction mapping

argument that can be used to show the existence of a unique invariant measure
with exponential convergence to that measure. Thus we have:

Proposition 5.1. If condition M is satis�ed, then fk (E1 (X)) converges every-
where for all X.

An easy su�cient condition for condition M is:
ConditionM1. There exists " > 0 such that for any Z 2 F1, eitherQ (!;Z) � "

for all !; or Q (!;Zc) � " for all !.
We can interpret this condition in the special case of continuous densities. Let


 = [0; 1]2 with ! = (!1; !2). Let Fi be generated by i observing !i only and let
fi be individual i's prior density. Now

Q (!;Z) =

Z
!22[0:1]

Z
!012[0;1]

f2 [!
0
1j!2] f1 [!2j!1] d!01d!2.

A su�cient condition for this to satisfy M1 is that f2 [!1j!2] is uniformly
bounded below. In this case, there exists " > 0 such that

Q (!;Z) =

Z
!22[0:1]

Z
!012Z

f2 [!
0
1j!2] f1 [!2j!1] d!01d!2 �

Z
!012Z

"d!01.

We can no doubt weaken condition M and still get our convergence. An open
question is whether convergence is necessary with proper common priors.

6. Samet's Question Revisited: The Common Prior and Or-

der Independent Convergence

We look at iterated expectations from 1's perspective, and asked when fk (E1 (X))
converges for all random variablesX. I.e., for anyX, there exists an F1-measurable
random variable X�

1 such that f
k (E1 (X)) [!] ! X�

1 [!] for all !. Of course, we
could also de�ne

g (X) = E2 (E1 (X))
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and ask when, for any X, there exists an F2-measurable random variable X�
2

such that gk (E2 (X)) [!] ! X�
2 [!] for all !. If we have convergence from each

individual's perspective, we can then ask if the limits are the same for the two
players, i.e., X�

1 = X
�
2 . This is the problem that Samet solved for the �nite case.

Another characterization of the common prior for the �nite case is that two
individuals have a common prior, for all X, E1 (X) � 0 and E2 (X) � 0 implies
E1 (X) = 0 and E2 (X) = 0 (Morris (1994)). This result extends to the in�nite
case only under some compactness assumptions (Feinberg (2001), Samet (1998b),
Ng (1998)). Presumably, these in�nite characterizations and the results in this
paper could be used to provide an in�nite state analogue of Samet (1998a).
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