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Iterated Expectations

v

Alice's expectation of random variable f

v

Bob's expectation of Alice's expectation of f

v

Charlie’s expectation of Bob's expectation of Alice’s
expectation of f

> ...etc...



Samet 1998a

Samet (1998a) "lterated Expectations and the Common Prior
Assumption" showed that

1. All such sequences of iterated expectations converge to a
constant

2. The following two statements are equivalent:

> A collection of agents’ beliefs satisfy the belief-consistency
(a.k.a., common prior assumption)

» The limit of iterated expectations is independent of the
sequence of agents



This Talk

1. Review Samet 1998a
2. Present two results about limit under weaker conditions:

2.1 if we fix a external state space O, limit of iterated expectations
of @-dependent random variables is order-independent if and
only if beliefs satisfy (weaker) expectation-consistency
condition

2.2 limit depends only on last agent in the sequence if and only if
beliefs satisfy higher-order expectation-consistency

3. One motive for extensions: resolves/clarifies paradox about
iterated expectations interim foundation for common prior
assumption?

4. Another (more substantive) motive later....



Setup

v

v

\4

v

v

Finite agents | = {1, .., n}
Finite State Space ()
Agent i's information partition P;
» Write P; (w) for the unique element of P; containing w
Belief type function t; : 3 — A (Q) with
> t; measurable w.r.t. P;
> t; (w) has support within P; (w)
Assumptions of convenience:
» Each t; (w) has full support within P; (w)

» Meet of P; consists of whole state space (no non-trivial
common knowledge events)



Random Variables and Priors

» A random variableis f : ) — R

» For a measure p € A (Q)), write
pf =) p(w)f(w)
w

for the expectation of f
» Now i's expectation of f is E;f (w) :=t; (w) f
» E;f is a random variable
> A prior for agent i is a convex combination of his interim
beliefs, i.e., for some weights a; € A (P;),

pi= Y. & (P)t(P;)

P;eP;



Iterated Expectations

v

A sequence of agentsisamapc:{0,1,2,...} —/

v

An |—sequence is sequence in which each agent appears
infinitely often

v

For any sequence o, write

S (ko) = Es(k—1)Er(k—2)---Eo(1)Ev(0)

v

Observe that S (k; ) : R®® — R (i.e., maps random
variables into random variables)



Convergence

There is convergence to a deterministic limit along sequence o if
S (k,o)

converges to some limit operator
S (00,0)

and S (o0, 0) .f is constant (i.e., non-random) for all f.



Samet 1998a part 1: Convergence

THEOREM. (Samet 1998a part 1). There is convergence to a
deterministic limit along every [-sequence.
INTUITION / IDEA OF PROOF:

» Suppose that we fixed a sequence of all players and looked at
o corresponding to repetitions of the sequence

» Each application of sequence of expectation operators
"averages" across types

» Corresponds to a Markov process on () and has a
deterministic limit (the ergodic distribution)

» More general /-sequences bounded by this repeated cycle



Samet 1998a part 2: Characterizing the Limit

Definition
There is full order-independence if S (o0, o) .f is independent of ¢
for every random variable f.

Definition
There is belief-consistency if there exists prior p such that p is a
prior for each agent.

This is an interim expression of the common prior assumption.

THEOREM (Samet 1998a part 2). Full-order independence and
belief-consistency are equivalent.



Common Prior Assumption Interim Foundation

» The common prior assumption is often assumed in settings
where there is not a natural meaningful prior stage: e.g.,
universal type space, common knowledge foundation of
correlated equilibrium.

> (1990s debate) So what is the interim meaning of the
common prior assumption? (Gul, Aumann, Dekel and Gul....)

» Samet has two papers on this topic in 1998 GEB:

» no trade (Feinberg 2000; Morris 1994; Samet 1998b)
> iterated expectations (Samet 1998a)



But paradox about iterated expectations characterization?

» Two complaints about no trade characterization:
1. self-referential?
2. lacks natural interpretation of the common prior?

> But iterated expectations foundation suggests a paradox?

» common prior assumption (a.k.a. belief consistency) depends
on all beliefs (including 1's beliefs about how 2 and 3's beliefs
are correlated)

> iterated expectations should depend on strictly less information

(shouldn't include 1's beliefs about how 2 and 3's beliefs are
correlated?)

» Resolution of paradox: higher order expectations about what?



Higher Order Beliefs/Expectations about What?

» Samet (1998) concerns all random variables on a fixed finite
type space

» Mertens and Zamir (1985) started from a fixed set of
"external states" (parameters) ® and use state space as a way
of representing beliefs and higher orders beliefs about ©;
suppose that we analogously considered expectations about
®-dependent random variables and higher-order expectations
about such random variables.

> Formally, let © be an arbitrary partition of ()

» Write mQ for collection of random variables measurable with
respect to arbitrary partition Q



Iterated Expectation "Universal Vector Space"

> Increasing collections of random variables corresponding to
kth order iterated expectations

» First order expectations random variables:
VI ={Ef|f € mO}
> k 4 1th order expectations
\/,-k+1 = {E,-f‘ fe m\/jk for somej}

» Write V® for the limit of the VX

1 1
» universal space of higher-order expectations is "smaller" than
corresponding Mertens-Zamir space



Order-Independence

Definition
There is order-independence if S (o0, 0) .f is independent of ¢ for
every f € m@

Definition
Beliefs are expectation-consistent if there exists priors p; for the
agents such p;f = p;f for all f € V|° for some k.

PROPOSITION 1. There is order-independence if and only if
beliefs are expectation-consistent.



Discussion

» Expectation-consistency weakens belief-consistency because...

> no restrictions on beliefs about "redundant" (in Mertens-Zamir
higher order belief sense) states

» even if no belief-redundant states, no restrictions on some
events in space not relevant for higher order expectations

> no restrictions on 1's beliefs about the correlation of 2 and 3's

» consider common knowledge of heterogeneous priors case



Weaker versions of order-independence

> Any interesting cases where order-independence fails?

> At least two interesting cases where order-independence fails
but the limit depends only on the last agent in the sequence:

> two agent case
» common knowledge of heterogeneous priors

» We study this....



Higher-Order-Independence

Definition

There is higher-order-independence if S (o0, ) .f is independent of
o(k), k=1,2,..

Let V,-"" C V/® be the set of vectors corresponding to i's
expectations about some other agent's expectations (and in
particular excluding i's first order expectations of ®@-measurable
random variables...)

Ve ={Ef| fey v}

Definition
Beliefs are higher-order expectation-consistent there exists priors p;
for the agents such p;f = p;f for all /,j and f € V|° for some k.

PROPOSITION 1. There is higher-order-independence if and
only if beliefs are higher-order expectation-consistent.



Proof of Proposition 2: Higher-Order
Expectation-Consistency implies Higher-Order
Independence

v

Assume higher-order expectation-consistency with priors p;

v

Fix any /-sequence o

v

Write / (o) for measure corresponding to limit of iterated
expectations for sequence o

Enough to show that /(0) f = py(o)f for all f € m®

v



Higher Order Expectation-Consistency implies
Higher-Order-Independence

» By definition of prior..

Po0)f = Po(0)Ev(o)f

» By higher-order expectation-consistency (since

» and so



Higher-Order Expectation-Consistency implies
Higher-Order Independence

> Replacing f with E;(o)f and moving labels, we have
Po0)f = Po(2) Ev(1)Ev(o)f

> lterating gives...

for each k and



Higher-Order-Independence implies Higher-Order
Expectation-Consistency

» Assume higher-order-independence
» We must construct p; with p;jg = p;jg for all i, j and g € V,f"
> Let pj = S (o0, 0) E; for arbitrary o (i.e., independent of o)



Higher-Order-Independence implies Higher-Order
Expectation-Consistency

> Any g € V,-°° can be written as

for some finite sequence o

v

Enough to show that pjg = / (¢) E;g is independent of ¢ and
i

v

But substituting above expression

pig = 1(0) EiEy (k) Ex(k—2) - Eo() f

v

Higher-Order Independence = does not depend on ¢ or i
except though o (1)

» So pig = pjg forall i, jand g € V,f" for some k



Next Talk: Linear Best Response Games on a Network

> Let f € mO
» Each agent i sets his action a; equal to
(1-B) Eif + BE; (Z I'(ij) Ei3j>
J#i

where each a; € mP;
» I'is a (irreducible) network (= Markov matrix)



Iterated Average Expectations and Rationalizable Play

> Let
Ai(0,T) =E

and

Ai(k+1T) = _le"(i,j)Aj(k,F)

» Unique rationalizable action in game is
oo

Y BKA (k. T) f

k=0

» As B — 1, unique rationalizable action converges to
Aj (00, T) f (if defined) for each i



Preliminary Results

» Each A; (k,T') converges to deterministic limit A (co,T’)
independent of J...
» A(co,T) is a implicit common prior
> Belief-consistency implies that limit is independent of
I'(immediately from Samet 98a)

> in fact, expectation-consistency is sufficient
» and equal to expectation under "common priors"...

» "De-Coupling": Higher-order belief-consistency implies
A (OO, F) = Ze; (F) Pi
i
for some p; where e; (I') are network centrality weights,

e (T) = Zej ()T, i)

» Ben will tell you more results...
» | will mention subtleties in establishing these preliminary
results as corollaries of properties of Samet /-sequences...



Forward versus Backward Looking lterated Expectations

v

Samet 98a looked at "backward looking" iterated expectations

S (ko) = Es(k—1)Er(k—2)---Eo(1)Ev(0)

v

We could have looked at forward looking version....

F (k,0) = Ey(0)Eo(1)+-Eo(k—2) Eo(k-1)

v

Obviously does not converge: in case of complete
information....
F(k o) = Ep(k-1)

v

Our iterated average expectations are forward looking.....



Stochastic Interpretation of Iterated Average (Forward
Looking) Expectations

» Pick sequence of players using T, i.e., fix 0 (0) and draw ¢ (1)
according to I' (/, -) and so on...

» Now A, (k,T') equals IE,F (k, o) where o (0) = i and we pick
(forward) sequence ¢ as above



Iterated Average Backward Looking Expectations

Fix another network T
Let

v

v

R; (o,f) —E

v

Let R; <k + 1,1~"> be j's expectation of R; (kf) where j is
picked according to T

Thus R; (k,T') equal [E;S (k, o) where ¢ (0) = i and we pick
(backward) sequence o according to Markov process I'

v



Iterated Average Expectations

» Corresponding to T, the time reversal of I' defined by

~ .. @Iy QN
T(i,j)= AN T
(i.J) o (T)
where ¢; (I') are the agents’ network centralities
> Limiting behavior of A; (k,T) and R; (k,T') are related

» higher-order-independence (=higher-order
expectation-consistency) implies

A(eo,T) =Y e ()R <oo,f>

» This is de-coupling

> Other results (convergence, network independence) can also
be proved using this connection



Takeaways?

» Samet (1998a) is a remarkable and important result
» Higher-order expectations should be studied with the
seriousness of higher-order beliefs?

» Syntactic approach and universal space? Interpretation of
order-independence is subtle.....

» Universal belief space of Mertens and Zamir (1985) is the
"right" space for studying rationalizable behavior (Dekel,
Fudenberg and Morris (2007)); universal expected space is the
right space for studying linear best response games / or
perturbations of smooth games...

> Network defines a natural way of generating an implicit
common prior
» Markov process view of beliefs insight is invaluable
» In studying expectations, natural (as in next talk) to use
Markov process on union of types instead of state space / type
profiles... removes redundancies and provides unified analysis

of networks and incomplete information, see Morris (2000)
"Contagion" building on Monderer and Samet (1989)....
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