Higher Order Expectations

Ben Golub and Stephen Morris Harvard University and Princeton University

Beliefs and Economic Behavior: A Research Conference in Honor of Dov Samet June 2018

Iterated Expectations

- Alice's expectation of random variable f
- ▶ Bob's expectation of Alice's expectation of *f*
- ► Charlie's expectation of Bob's expectation of Alice's expectation of *f*
- ...etc...

Samet 1998a

Samet (1998a) "Iterated Expectations and the Common Prior Assumption" showed that

- All such sequences of iterated expectations converge to a constant
- 2. The following two statements are equivalent:
 - A collection of agents' beliefs satisfy the belief-consistency (a.k.a., common prior assumption)
 - The limit of iterated expectations is independent of the sequence of agents

This Talk

- 1. Review Samet 1998a
- 2. Present two results about limit under weaker conditions:
 - 2.1 if we fix a external state space Θ , limit of iterated expectations of Θ -dependent random variables is order-independent if and only if beliefs satisfy (weaker) expectation-consistency condition
 - 2.2 limit depends only on last agent in the sequence if and only if beliefs satisfy higher-order expectation-consistency
- 3. One motive for extensions: resolves/clarifies paradox about iterated expectations interim foundation for common prior assumption?
- 4. Another (more substantive) motive later....

Setup

- Finite agents $I = \{1, ..., n\}$
- Finite State Space Ω
- Agent i's information partition \mathcal{P}_i
 - Write $P_i\left(\omega\right)$ for the unique element of \mathcal{P}_i containing ω
- ▶ Belief type function $t_i : \Omega \to \Delta(\Omega)$ with
 - $ightharpoonup t_i$ measurable w.r.t. \mathcal{P}_i
 - $t_i(\omega)$ has support within $P_i(\omega)$
- Assumptions of convenience:
 - Each $t_i(\omega)$ has full support within $P_i(\omega)$
 - Meet of P_i consists of whole state space (no non-trivial common knowledge events)

Random Variables and Priors

- ightharpoonup A random variable is $f:\Omega \to \mathbb{R}$
 - ▶ For a measure $p \in \Delta(\Omega)$, write

$$p.f = \sum_{\omega} p(\omega) f(\omega)$$

for the expectation of f

- ▶ Now *i*'s expectation of *f* is $E_i f(\omega) := t_i(\omega) f$
- $ightharpoonup E_i f$ is a random variable
- ▶ A *prior* for agent *i* is a convex combination of his interim beliefs, i.e., for some weights $\alpha_i \in \Delta(\mathcal{P}_i)$,

$$p_{i} = \sum_{P_{i} \in \mathcal{P}_{i}} \alpha_{i} (P_{i}) t_{i} (P_{i})$$

Iterated Expectations

- ▶ A sequence of agents is a map σ : $\{0, 1, 2,\} \rightarrow I$
- ► An *I*—sequence is sequence in which each agent appears infinitely often
- **For any sequence** σ , write

$$S(k; \sigma) = E_{\sigma(k-1)} E_{\sigma(k-2)} \dots E_{\sigma(1)} E_{\sigma(0)}$$

• Observe that $S(k; \sigma) : \mathbb{R}^{\Omega} \to \mathbb{R}^{\Omega}$ (i.e., maps random variables into random variables)

Convergence

There is convergence to a deterministic limit along sequence σ if

$$S(k, \sigma)$$

converges to some limit operator

$$S(\infty, \sigma)$$

and $S(\infty, \sigma)$. f is constant (i.e., non-random) for all f.

Samet 1998a part 1: Convergence

THEOREM. (Samet 1998a part 1). There is convergence to a deterministic limit along every *I*-sequence.

INTUITION / IDEA OF PROOF:

- ightharpoonup Suppose that we fixed a sequence of all players and looked at σ corresponding to repetitions of the sequence
- Each application of sequence of expectation operators "averages" across types
- ightharpoonup Corresponds to a Markov process on Ω and has a deterministic limit (the ergodic distribution)
- ▶ More general *I*-sequences bounded by this repeated cycle

Samet 1998a part 2: Characterizing the Limit

Definition

There is full order-independence if $S(\infty, \sigma)$.f is independent of σ for every random variable f.

Definition

There is belief-consistency if there exists prior p such that p is a prior for each agent.

This is an interim expression of the common prior assumption.

THEOREM (Samet 1998a part 2). Full-order independence and belief-consistency are equivalent.

Common Prior Assumption Interim Foundation

- ► The common prior assumption is often assumed in settings where there is not a natural meaningful prior stage: e.g., universal type space, common knowledge foundation of correlated equilibrium.
- ▶ (1990s debate) So what is the interim meaning of the common prior assumption? (Gul, Aumann, Dekel and Gul....)
- ► Samet has *two* papers on this topic in 1998 GEB:
 - no trade (Feinberg 2000; Morris 1994; Samet 1998b)
 - iterated expectations (Samet 1998a)

But paradox about iterated expectations characterization?

- ► Two complaints about no trade characterization:
 - 1. self-referential?
 - 2. lacks natural interpretation of the common prior?
- But iterated expectations foundation suggests a paradox?
 - common prior assumption (a.k.a. belief consistency) depends on all beliefs (including 1's beliefs about how 2 and 3's beliefs are correlated)
 - iterated expectations should depend on strictly less information (shouldn't include 1's beliefs about how 2 and 3's beliefs are correlated?)
- Resolution of paradox: higher order expectations about what?

Higher Order Beliefs/Expectations about What?

- ► Samet (1998) concerns all random variables on a fixed finite type space
- Mertens and Zamir (1985) started from a fixed set of "external states" (parameters) Θ and use state space as a way of representing beliefs and higher orders beliefs about Θ; suppose that we analogously considered expectations about Θ-dependent random variables and higher-order expectations about such random variables.
- lacktriangle Formally, let Θ be an arbitrary partition of Ω
- ▶ Write mQ for collection of random variables measurable with respect to arbitrary partition Q

Iterated Expectation "Universal Vector Space"

- ► Increasing collections of random variables corresponding to kth order iterated expectations
- First order expectations random variables:

$$V_i^1 = \{ E_i f \mid f \in m\Theta \}$$

 \triangleright k+1th order expectations

$$V_i^{k+1} = \left\{ E_i f \mid f \in mV_j^k \text{ for some } j \right\}$$

- Write V_i^{∞} for the limit of the V_i^k
- universal space of higher-order expectations is "smaller" than corresponding Mertens-Zamir space

Order-Independence

Definition

There is order-independence if $S\left(\infty,\sigma\right)$.f is independent of σ for every $f\in m\Theta$

Definition

Beliefs are expectation-consistent if there exists priors p_i for the agents such $p_i f = p_j f$ for all $f \in V_k^{\infty}$ for some k.

PROPOSITION 1. There is order-independence if and only if beliefs are expectation-consistent.

Discussion

- Expectation-consistency weakens belief-consistency because...
 - no restrictions on beliefs about "redundant" (in Mertens-Zamir higher order belief sense) states
 - even if no belief-redundant states, no restrictions on some events in space not relevant for higher order expectations
 - ▶ no restrictions on 1's beliefs about the correlation of 2 and 3's types.....
- consider common knowledge of heterogeneous priors case

Weaker versions of order-independence

- Any interesting cases where order-independence fails?
- ► At least two interesting cases where order-independence fails but the limit depends only on the last agent in the sequence:
 - two agent case
 - common knowledge of heterogeneous priors
- We study this....

Higher-Order-Independence

Definition

There is higher-order-independence if $S(\infty, \sigma)$.f is independent of $\sigma(k)$, k = 1, 2, ...

Let $\widehat{V}_i^\infty \subset V_i^\infty$ be the set of vectors corresponding to i's expectations about some other agent's expectations (and in particular excluding i's first order expectations of Θ -measurable random variables...)

$$\widehat{V}_{i}^{\infty} = \left\{ E_{i} f \mid f \in \cup_{j} V_{j}^{\infty} \right\}$$

Definition

Beliefs are higher-order expectation-consistent there exists priors p_i for the agents such $p_i f = p_j f$ for all i, j and $f \in \widehat{V}_k^{\infty}$ for some k.

PROPOSITION 1. There is higher-order-independence if and only if beliefs are higher-order expectation-consistent.

Proof of Proposition 2: Higher-Order Expectation-Consistency implies Higher-Order Independence

- Assume higher-order expectation-consistency with priors p_i
- ightharpoonup Fix any *I*-sequence σ
- Write $I(\sigma)$ for measure corresponding to limit of iterated expectations for sequence σ
- ▶ Enough to show that $I(\sigma) f = p_{\sigma(0)} f$ for all $f \in m\Theta$

Higher Order Expectation-Consistency implies Higher-Order-Independence

By definition of prior..

$$p_{\sigma(0)}f = p_{\sigma(0)}E_{\sigma(0)}f$$

▶ By higher-order expectation-consistency (since $E_{\sigma(0)}f \in mV^1_{\sigma(0)}$)

$$p_{\sigma(0)}E_{\sigma(0)}f=p_{\sigma(1)}E_{\sigma(0)}f$$

and so

$$p_{\sigma(0)}f = p_{\sigma(1)}E_{\sigma(0)}f$$

Higher-Order Expectation-Consistency implies Higher-Order Independence

▶ Replacing f with $E_{\sigma(0)}f$ and moving labels, we have

$$p_{\sigma(0)}f=p_{\sigma(2)}E_{\sigma(1)}E_{\sigma(0)}f$$

Iterating gives...

$$p_{\sigma(0)}f = p_{\sigma(k)}S(k,\sigma)f$$

for each k and

$$p_{\sigma(0)}f = I(\sigma)f$$

Higher-Order-Independence implies Higher-Order Expectation-Consistency

- Assume higher-order-independence
- lacktriangle We must construct p_i with $p_i g = p_j g$ for all i, j and $g \in \widehat{V}_k^\infty$
- ▶ Let $p_i = S(\infty, \sigma) E_i$ for arbitrary σ (i.e., independent of σ)

Higher-Order-Independence implies Higher-Order Expectation-Consistency

lacktriangle Any $g\in \widehat{V}_i^\infty$ can be written as

$$E_{\sigma(k)}E_{\sigma(k-2)}....E_{\sigma(1)}f$$

for some finite sequence σ

- ▶ Enough to show that $p_i g = I(\sigma) E_i g$ is independent of σ and i.
- But substituting above expression

$$p_i g = I(\sigma) E_i E_{\sigma(k)} E_{\sigma(k-2)} \dots E_{\sigma(1)} f$$

- ▶ Higher-Order Independence \Rightarrow does not depend on σ or i except though $\sigma(1)$
- ▶ So $p_i g = p_j g$ for all i, j and $g \in \widehat{V}_k^{\infty}$ for some k

Next Talk: Linear Best Response Games on a Network

- ▶ Let $f \in m\Theta$
- ▶ Each agent *i* sets his action *a_i* equal to

$$(1-\beta) E_i f + \beta E_i \left(\sum_{j \neq i} \Gamma(i,j) E_i a_j \right)$$

where each $a_j \in m\mathcal{P}_j$

Γ is a (irreducible) network (= Markov matrix)

Iterated Average Expectations and Rationalizable Play

Let

$$A_i(0,\Gamma)=E_i$$

and

$$A_{i}\left(k+1,\Gamma\right)=\sum_{j\in I}\Gamma\left(i,j\right)A_{j}\left(k,\Gamma\right)$$

Unique rationalizable action in game is

$$\sum_{k=0}^{\infty} \beta^k A_i(k,\Gamma) f$$

As $\beta \to 1$, unique rationalizable action converges to $A_i(\infty, \Gamma) f$ (if defined) for each i

Preliminary Results

- ▶ Each $A_i(k, \Gamma)$ converges to deterministic limit $A(\infty, \Gamma)$ independent of i...
 - ▶ $A(\infty, \Gamma)$ is a implicit common prior
- \blacktriangleright Belief-consistency implies that limit is independent of $\Gamma(\text{immediately from Samet 98a})$
 - ▶ in fact, expectation-consistency is sufficient
 - ▶ and equal to expectation under "common priors"...
- ▶ "De-Coupling": Higher-order belief-consistency implies

$$A\left(\infty,\Gamma\right)=\sum_{i}e_{i}\left(\Gamma\right)p_{i}$$

for some p_i where $e_i(\Gamma)$ are network centrality weights,

$$e_{i}\left(\Gamma\right) = \sum_{i} e_{j}\left(\Gamma\right) \Gamma\left(j, i\right)$$

- Ben will tell you more results...
- I will mention subtleties in establishing these preliminary results as corollaries of properties of Samet I-sequences...

Forward versus Backward Looking Iterated Expectations

► Samet 98a looked at "backward looking" iterated expectations

$$S(k;\sigma) = E_{\sigma(k-1)}E_{\sigma(k-2)}...E_{\sigma(1)}E_{\sigma(0)}$$

▶ We could have looked at forward looking version....

$$F(k,\sigma) = E_{\sigma(0)}E_{\sigma(1)}...E_{\sigma(k-2)}E_{\sigma(k-1)}$$

Obviously does not converge: in case of complete information....

$$F(k,\sigma) = E_{\sigma(k-1)}$$

Our iterated average expectations are forward looking.....

Stochastic Interpretation of Iterated Average (Forward Looking) Expectations

- ▶ Pick sequence of players using Γ , i.e., fix $\sigma(0)$ and draw $\sigma(1)$ according to $\Gamma(i,\cdot)$ and so on...
- Now $A_i(k,\Gamma)$ equals $\mathbb{E}_{\sigma}F(k,\sigma)$ where $\sigma(0)=i$ and we pick (forward) sequence σ as above

Iterated Average Backward Looking Expectations

- ightharpoonup Fix another network $\widetilde{\Gamma}$
- ▶ Let

$$R_i\left(0,\widetilde{\Gamma}\right)=E_i$$

- ▶ Let R_i $\left(k+1,\widetilde{\Gamma}\right)$ be j's expectation of R_i $\left(k,\widetilde{\Gamma}\right)$ where j is picked according to $\widetilde{\Gamma}$
- ▶ Thus $R_i(k,\Gamma)$ equal $\mathbb{E}_{\sigma}S(k,\sigma)$ where $\sigma(0)=i$ and we pick (backward) sequence σ according to Markov process $\widetilde{\Gamma}$

Iterated Average Expectations

lacktriangle Corresponding to $\widetilde{\Gamma}$, the time reversal of Γ defined by

$$\widetilde{\Gamma}(i,j) = \frac{e_j(\Gamma)\Gamma(j,i)}{e_i(\Gamma)}$$

where $e_i(\Gamma)$ are the agents' network centralities

- ▶ Limiting behavior of $A_i(k,\Gamma)$ and $R_i(k,\widetilde{\Gamma})$ are related
- higher-order-independence (=higher-order expectation-consistency) implies

$$A\left(\infty,\Gamma\right)=\sum_{i}e_{i}\left(\Gamma\right)R_{i}\left(\infty,\widetilde{\Gamma}\right)$$

- ► This is de-coupling
- ▶ Other results (convergence, network independence) can also be proved using this connection

Takeaways?

- ► Samet (1998a) is a remarkable and important result
- ► Higher-order expectations should be studied with the seriousness of higher-order beliefs?
 - ► Syntactic approach and universal space? Interpretation of order-independence is subtle.....
 - Universal belief space of Mertens and Zamir (1985) is the "right" space for studying rationalizable behavior (Dekel, Fudenberg and Morris (2007)); universal expected space is the right space for studying linear best response games / or perturbations of smooth games...
- Network defines a natural way of generating an implicit common prior
- Markov process view of beliefs insight is invaluable
 - In studying expectations, natural (as in next talk) to use Markov process on union of types instead of state space / type profiles... removes redundancies and provides unified analysis of networks and incomplete information, see Morris (2000) "Contagion" building on Monderer and Samet (1989)....