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Abstract

A single unit of a good is to be sold by auction to one of two buyers. The good

has either a high value or a low value, with known prior probabilities. The designer

of the auction knows the prior over values but is uncertain about the correct model

of the buyers' beliefs. The designer evaluates a given auction design by the lowest

expected revenue that would be generated across all models of buyers' information that

are consistent with the common prior and across all Bayesian equilibria. An optimal

auction for such a seller is constructed, as is a worst-case model of buyers' information.

The theory generates upper bounds on the seller's optimal payo� for general many-

player and common-value models.
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1 Introduction

In the standard model of optimal auction design, the seller and the potential buyers are

assumed to have subjective expected utility preferences over the outcome of the auction, and

their beliefs are assumed to be consistent with a common prior over the value of the goods

being sold. In spite of having such a rich model of beliefs, the theory sometimes predicts

that relatively simple auctions will be optimal. Such is the case in the celebrated work of

Myerson (1981), in which a combination of independent signals, symmetry, and linearity

of interim expected values leads to the conclusion that �rst- or second-price auctions with

reserve prices will maximize expected revenue. But more generally, and especially when the

bidders' information is correlated, the theory can lead to paradoxical and dizzyingly complex

forms for the optimal auction. These mechanisms, which have highly desirable theoretical

properties, are nonetheless impractical for reasons outside the model. Such is the case with

the full-surplus extraction results of Cremer and McLean (1985, 1988).1 One can give many

reasons why such auctions would not be practically implementable; limited liability and

risk aversion on the part of the buyers come to mind. But in our view, a critical failure

is that in many settings, the designer of the auction faces uncertainty about the correct

model of buyers' beliefs. He therefore might eschew an auction that is exactly optimal under

a particular model of beliefs in favor of an auction that hedges performance across many

di�erent models.

In this paper, we fully embrace this aspect of the auction design problem. We consider

a seller who has a single unit of a good for sale to one of two potential buyers. The good is

known to have one of two values, high or low, and all of the agents (seller and buyers) agree

on a common prior over that value. Moreover, the buyers have beliefs about the value of the

good that are consistent with a common prior.2 We assume, however, that the seller does

not know the correct model of beliefs, and indeed, he considers all models to be possible that

are consistent with the given prior over the value.3 For example, it might be that the buyers

have no information about the value beyond the prior, and they both value the good at its

1See also McAfee, McMillan, and Reny (1989) and McAfee and Reny (1992).
2The reader may rightly ask why we allow for model uncertainty on the part of the seller but not on

the part of the buyers. We are entirely sympathetic to this view, and the possibility that the buyers face
model uncertainty is eminently worthy of study. There are, however, cases in which the buyers may have
been participating in a given market for a long time and therefore have a much better sense of the structure
of information than does the seller, or they simply have insider knowledge of the process that generates
information.

3The classical model where the designer is certain of the correct model of beliefs is extreme. A model in
which the seller is completely agnostic about beliefs, as in our model, is also extreme, although it is extreme
in a conservative direction that should lead to auctions that are more robust than necessary. Verily, a more
reasonable model would fall somewhere in between. We consider the exploration of this middle ground to
be a promising direction for future research.
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ex-ante expected value. Or it may be that the buyers have noisy observations about the

value, perhaps seeing a signal which is the value plus conditionally independent noise. The

buyers' information can even be multidimensional, and come from signals that are correlated

with one another and with the value in an arbitrary manner.

The seller seeks an auction format that will perform well regardless of which model of

beliefs turns out to be the correct description of the world. In particular, for any candidate

auction mechanism, the seller evaluates its performance by the lowest expected revenue across

all models of information and across all Bayesian equilibria.4 The space of auctions that we

allow the seller to choose from is vast: the seller can essentially choose any measurable sets

of messages for the bidders to send to the mechanism, and arbitrary measurable mappings

from messages to allocations and transfers. The only requirement is that the mechanism

allow the buyers to �opt-out,� in which case they receive the good with zero probability and

make zero transfers. Our main result is to identify the best revenue guarantee that the seller

can obtain across all auction formats, as well as to identify a particular auction that achieves

this best lower bound. (Of course, this maxmin auction may perform even better than the

guarantee if the model of beliefs is favorable.)

Let us describe our results, starting with the best revenue guarantee that the seller can

obtain. This quantity can be simply understood through a particular worst-case model of

information that the seller must guard against. The motivating idea for the worst-case model

is the principle that many auctions should perform reasonably well, but none should stand

out as better than the others. Put di�erently, if one auction stood out as superior to the

others, then we might think it would be possible to construct a di�erent model of information

under which this auction is still the best, but has less of an advantage vis-a-vis the other

auction formats than it did under the original type space.

Pursuing this idea, we construct a model of information in which there is an extreme

amount of indi�erence across auction mechanisms. In the worst-case model, the buyers ob-

serve one-dimensional signals that are independently distributed, and as a normalization we

can take them to be standard uniform random variables. Moreover, the interim expectation

of the value given both signals is continuous and monotonically increasing in the signals.

In such a setting, there is a generalization of the well-known revenue equivalence result of

Myerson (1981), which is due to Bulow and Klemperer (1996). The revenue equivalence

4Thus, the seller exhibits an extreme form of ambiguity aversion with respect to the uncertainty about
the correct model of beliefs, in the sense of Gilboa and Schmeidler (1989). We are implicitly taking the
view that the seller has distinct attitudes towards the uncertainty about the correct model of beliefs, and
the uncertainty about the realized beliefs conditional on a particular model. A complete justi�cation of this
view is beyond the scope of this paper. See (cf. Hansen and Sargent, 2001) for a more in-depth discussion of
this perspective, in the context of monetary policy.
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formula is based on the principles that (i) any Bayesian incentive compatible mechanism can

be implemented as a direct mechanism in which bidders report their signals, and (ii) such

a mechanism must deter �local� deviations, wherein a buyer changes their reported type by

a marginal amount. Under these conditions, equilibrium transfers that buyers make to the

seller, and hence expected revenue, are determined by the equilibrium allocation. In addi-

tion, expected revenue can be reformulated simply as the expectation of the �virtual value�

of the buyer who is allocated the good, where �virtual value� is that buyer's value for the

good minus an information rent that comes from incentive constraints.

The value function in this �minmax� information structure has the property that all

bidders have the same virtual value. As a result, the seller is always indi�erent as to whether

the mechanism allocates the good to one buyer or the other, conditional on it being allocated.

Moreover, the signal space is divided into a low region and a high region. On the high region,

the virtual value is constant and equal to the highest value, and on the low region, the

virtual value is identically zero. Thus, on the low region, the seller is additionally indi�erent

between allocating the good and not allocating the good. Indeed, these type spaces that we

construct are the only ones that satisfy all of these conditions, and they are indexed by two

parameters, which are the interim expected value given the highest possible signals and the

interim expected value given the lowest possible signals. The correct parameters are such

that (i) the highest interim expectation is the highest ex-post value of the good, and (ii)

the law of iterated expectations holds, i.e., the expectation of the interim-expected value is

equal to the ex-ante expected value.

Given the conjecture for the worst-case model of beliefs, we then construct a mechanism

that guarantees the seller this amount of revenue in all information structures.5 To do so, we

built on the insights of a recent paper by Du (2016), which also studies a maxmin auction

design problem with many bidders and general common value distributions (thus being more

general than the model studied here). Two of us have previously shown (Bergemann and Mor-

ris, 2013, 2016) that given a �xed mechanism, the problem of calculating minimum revenue

across all models of information and all Bayesian equilibria can be reformulated as a linear

program, in which expected revenue is minimized across a class of incomplete-information

correlated equilibria termed Bayes correlated equilibria (BCE). In this linear program, the

optimization is over joint distributions of values and messages, and the constraints represent

the incentive compatibility requirement that players would want to submit the message that

they have �drawn� from the distribution, given the Bayesian inference that they can draw

5While one might have hoped that identifying the worst-case model of information would lead us to
an optimal mechanism, this is not the case, since there are so many auctions that are optimal in that
environment (such as �rst-price, second-price, or even posted-price mechanisms).
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about others messages and the value of the good. The three of us subsequently applied

this methodology in characterizing minimum revenue of the �rst-price auction (Bergemann,

Brooks, and Morris, 2016a).

Du (2016) innovated by using the dual of this linear program to provide lower bounds

on revenue for particular mechanisms. In the dual program, the optimization is over mul-

tipliers on incentive constraints and on feasibility constraints for the correlated equilibrium

distribution, and for a given mechanism, any choice of multipliers that are feasible for the

dual problem generates a lower bound on minimum revenue. Du uses this principle to show

that when the number of bidders is large, it is possible for the seller to extract virtually all

of the e�cient surplus. Speci�cally, he constructs a sequence of mechanisms and associated

multipliers that are feasible for the dual program. While these mechanisms are not exactly

optimal for any �nite number of buyers, their associated revenue lower bounds converge to

the ex-ante expected value of the good as the number of bidders goes to in�nity.

We employ a similar technique to characterize the maxmin auction with two bidders and

binary values. Motivated by our worst-case information structure, we can learn a great deal

about the structure of a maxmin mechanism. The conjectured formula for minmax revenue

predicts the correct multipliers on the total probability constraints. We know that any

incentive compatible mechanism would e�ectively induce a direct mechanism on the worst-

case type space, which has one-dimensional types, so we can guess that it is also su�cient to

look at mechanisms with one-dimensional message spaces. Since local incentive constraints

pin down the optimal revenue in the worst-case model of beliefs, we can guess that only local

incentive constraints have non-zero multipliers. Following Du, we normalized the multipliers

on local incentive constraints to be a constant. (This essentially corresponds to a particular

choice of units for the messages.) The value of this multiplier is then essentially pinned

down by the choice of the allocation rule. We then construct an allocation and transfer rule

for which these multipliers are feasible for the dual problem. Thus, this mechanism must

achieve the upper bound on maxmin revenue corresponding to our worst-case type space.

This mechanism turns out to have a relatively simple structure, and is distinct from that

constructed by Du (2016). We can think of there being a unit quantity of the good which

is to be divided between the buyers (with buyers' preferences being linear in the quantity

of the good they receive). The bidders make one-dimensional �demands� for an amount of

the good. The buyers' demands are then �lled sequentially in a random order, so that if

the sum of the demands exceeds the total supply of the good, then a buyer will only receive

their full demand if they are served �rst. Otherwise, the buyer receives whatever is left over

after the other buyer's demand has been �lled. The maxmin transfer rule is somewhat more

complicated. In a sense, the transfer is exponential in the buyer's own demand, and the
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sum of the growth rates of the two buyers' transfers is constant, but how that growth rate

is distributed across the buyers depends on their demands.

After our main theorem, we compare the maxmin mechanism to other well-known auction

formats, such as the �rst- and second-price auctions, posted prices, and Du's mechanism.

We also describe upper bounds on maxmin revenue for more general models, which are based

on generalizations of the worst-case model of beliefs.

This paper relates to the literature on informationally robust mechanism design as well

as informationally robust predictions in Bayesian games. The closest related papers are

Bergemann, Brooks, and Morris (2016a) and Du (2016), described above. More recently,

Bergemann, Brooks, and Morris (2016b) studies optimal auction design on the information

structure that is the worst-case for the �rst-price auction. That paper shows that any auction

that induces a conditionally e�cient allocation when values are independent, symmetric, and

private, will be revenue equivalent to the �rst-price auction on the latter's worst-case. This

shows that �rst-price auctions have greater minimum revenue than any other such auction,

including second-price and all-pay auctions with or without reserve prices. Outside of this

class, there are other auctions that improve on the �rst-price auction at its own worst-case,

in particular posted-price mechanisms, thus showing that the �rst-price auction is not a

maxmin mechanism. The present paper is the next logical step in this line of research, using

the revenue equivalence principle to derive the minmax information structure space, and

from there a maxmin mechanism.

In addition, there are a number of papers that treat similar questions with a single buyer.

Bergemann and Schlag (2011, 2008) characterizes randomized posted price mechanisms that

minimizes maximum regret in the face of uncertainty about the demand curve faced by a

monopolist. Our maxmin mechanism reduces to theirs in the case of a single buyer. Con-

dorelli and Szentes (2016) and Roesler and Szentes (2016) characterize optimal information

structures for maximizing buyer surplus when the seller can make it a take-it-or-leave-it o�er

for the good. Under their interpretation, the buyer can choose the information structure be-

fore interacting with the monopolist, where the monopolist has all of the bargaining power

when the two �nally meet. Our worst-case type spaces reduce to theirs with a single buyer.

Our model can also be interpreted in a similar manner: suppose the buyers can collude on

designing their information, after which the seller will run a revenue maximizing auction.

Then the optimal value for the buyers is given by the e�cient surplus, less maxmin revenue.6

6Note that the good would not always be allocated under the maxmin mechanism that we construct, so
that total surplus would be less than one. However, if the buyers chose the minmax information structure,
then there are other seller-optimal mechanisms that the seller could choose, e.g., posted prices, under which
the good is sold with probability one. Thus, an equilibrium of the sequential game is for the buyers to �rst
choose the minmax information structure, followed by the seller choosing an optimal posted price.
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Kos and Messner (2015) and Carrasco et al. (2015) construct a maxmin mechanism when

there is a single buyer, which has the form of a randomized posted price. When there is only

a mean constraint on the value, their models can be viewed as a special case of ours.

Chung and Ely (2007) pursue a conceptually similar exercise as ours. They also study

surplus extraction where the auction designer is uncertain about the correct model of buyers'

beliefs. In contrast to our model, values are private and beliefs are not required to be consis-

tent with a common prior. Moreover, they select for the seller's most preferred equilibrium,

if there is more than one. Their main conclusion is that there exists a maxmin mechanism in

weakly dominant strategies. In contrast, we select for the worst equilibrium for the seller,7

and our mechanism does not generally have an equilibrium in weakly dominant strategies.

Yamashita (2015) studies maxmin auction design in private value models within restricted

classes of mechanisms and in the large market limit. Neeman (2003) and Brooks (2013b,a)

also study robust surplus extraction in the private-value many-bidder model, but assume

non-standard preferences on the part of the designer that are more in the spirit of the com-

puter science literature on algorithmic mechanism design (e.g., Hartline and Roughgarden,

2009).

The rest of this paper proceeds as follows. In Section 2, we describe our model of optimal

auction design with model uncertainty. Section 3 then constructs the worst-case model of

information. Section 4 constructs the maxmin mechanism and presents our main theorem

that characterizes maxmin revenue. Section 5 compares the maxmin auction with other

mechanisms and discusses some extensions of the results. Section 6 concludes. Omitted

proofs are contained in the Appendix.

2 Model

A single unit of a good is to be sold by auction to one of two bidders, indexed by i ∈ {1, 2}.
The bidders assign the same value to the good v ∈ V = {0, 1}. Value v has ex-ante

probability p (v).

7It turns out that maxmin revenue does not depend on how one selects equilibrium, since any equilibrium
on the worst-case type space would result in the same expected revenue. However, selecting the equilibrium
that is preferred by the seller may expand the set of maxmin optimal mechanisms. For example, the seller
could run a mechanism in which he asks the buyers to announce the type space. If there is a majority that
announces the same type space, then the seller runs the optimal auction for that type space, whatever it may
be, and otherwise runs some �xed mechanism. When there are at least three buyers, truthful reporting of
the type space is an equilibrium, since no buyer is pivotal. There are many other equilibria, though, in which
the buyers coordinate on untruthful reports. Our mechanism is much more compelling, in that all equilibria
generate favorable revenue performance. We also give an explicit description of the mechanism, rather than
relying on the black box of the �optimal mechanism� in type spaces for which the revenue maximizing auction
is unknown.
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An auction mechanism consists of (i) measurable sets of messages Mi for each bidder i,

(ii) measurable allocation functions qi : M → R+ for i = 1, 2, where M = M1 ×M2, that

satisfy the feasibility constraints

q1 (m) + q2 (m) ≤ 1

for all m ∈M , and (iii) measurable transfer functions ti : M → R for i = 1, 2. The allocation

function qi (m) represents bidder i's probability of being allocated the good if the message

pro�le m is sent, and ti (m) is bidder i's net transfer to the seller. We denote an auction by

A = ({Mi} , {qi} , {ti}). We require there exists a message 0i ∈Mi such that

qi (0i,mj) = ti (0i,mj) = 0.

Thus, sending a message of 0i corresponds to opting out of the mechanism.

An information structure consists of (i) measurable sets of signals Si for each bidder i

and (ii) a probability transition kernel that maps values in V into probability measures over

signal pro�les in S = S1 × S2:

π : V → ∆ (S) .

We denote an information structure by S = ({Si} , π).

Given an auction mechanism A and an information structure S, we de�ne a strategy of

bidder i to be a measurable mappings from bidder i's signals to distributions over messages.

Thus, the set of bidder i's strategies is

Σi (A,S) = {σi : Si → ∆ (Mi)} .

Given a pro�le of strategies

σ ∈ Σ (A,S) = Σ1 (A,S)× Σ2 (A,S) ,

bidder i's payo� is

Ui (σ,A,S) =
∑
v∈V

∫
s∈S

∫
m∈M

(vqi (m)− ti (m))σ (dm|s) π (s|v) p (v) ,

and revenue is

R (σ,A,S) =
∑
v∈V

∫
s∈S

∫
m∈M

2∑
i=1

ti (m)σ (dm|v) π (s|v) p (v) .
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We will suppress the dependence of these objects on (A,S) when it is clear from context. A

Bayes Nash equilibrium, or equilibrium for short, is a pro�le of strategies σ ∈ Σ (A,S) such

that

Ui (σ) ≥ Ui (σ
′
i, σj)

for all σ′i ∈ Σi (A,S). We let Σ∗ (A,S) denote the set of all equilibria of the Bayesian game

(A,S).

The seller is ambiguity averse with respect to the information structure and the equilib-

rium. Thus, the seller evaluates a mechanism A according to

R (A) = inf
S

inf
σ∈Σ∗(A,S)

R (σ,A,S) .

The seller's problem is to identify an auction mechanism that achieves

sup
A
R (A) .

We let R∗ denote the solution to the seller's problem. We will refer to R∗ as maxmin revenue,

and any mechanism that achieves the supremum will be referred to as a maxmin mechanism.

The seller's problem is essentially a zero-sum game between the seller, who chooses a

mechanism, and nature, who chooses the information structure and the equilibrium strate-

gies adversarially in order to make the expected revenue as low as possible. In the above

formulation, the seller �rst selects the mechanism and nature then selects the type space

and equilibrium. Alternatively, one could have reversed the order of moves with nature �rst

choosing S and then the seller choosing A. In a zero-sum game with �nite actions, the mini-

max theorem would imply that the two problems are payo�-equivalent, and that there exists

an equilibrium saddle point (A∗,S∗) such that each player's action is optimal regardless of

the order of moves. In this setting, it is far from obvious that a minimax theorem should

hold, due to the fact that the equilibrium correspondence is not lower-hemicontinuous with

respect to the information and game form. However, it remains true that R∗ is weakly less

than the minmax revenue that the seller would obtain if Nature had to choose the informa-

tion structure �rst. An optimal such information structure would be a minmax information

structure. As Theorem 1 below a�rms, the minimax property will hold in our setting, and

we will prove our main result by constructing a saddle point for the seller's problem.

Finally, there are two technical points that need to be made. First, the seller's problem

involves a sup over auction mechanisms and an inf over information structures, even though

we have not properly de�ned the available sets of mechanisms and information structures.

In order to make the �set of all mechanisms (information structures)� well-de�ned, we can
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�x some ambient and su�ciently rich measurable spaces M (S) and impose that Mi is a

measurable subset of M (and ditto for Si and S). We shall see that it will be su�cient if

these ambient spaces contain subsets that are isomorphic to the unit interval [0, 1] with the

standard Borel σ-algebra. Second, the de�nition of R (A) involves an in�mum over equilibria

of the Bayesian game (A,S), even though we have not provided su�cient conditions for the

existence of any equilibrium. We could, without altering our results, restrict the seller and

nature to choosing only mechanisms and information structures for which an equilibrium

exists, e.g., those satisfying the hypotheses of Milgrom and Weber (1985), since as we shall

see, the maxmin mechanism and minmax information structure both fall into this class. For

our purposes, it is su�cient to require that (i) the seller must pick a mechanism for which an

equilibrium exists under some information structure, and (ii) given the mechanism, Nature

must pick an information structure for which an equilibrium exists.

3 An upper bound on R∗

We will proceed by �rst establishing an upper bound on R∗, and then constructing a mecha-

nism that achieves the bound. The bound is generated by a particular choice of information

structure for which we can easily pin down revenue. On this type space, Si = [0, 1], and the

bidders' signals are independent draws from the standard uniform distribution.8 Instead of

specifying the conditional distribution of the signals given the value, we shall describe the

information structure via the interim expectation of the value given the pair of signals:

v (s1, s2) = min

{
a

(1− s1) (1− s2)
, 1

}
for some a ∈ [0, 1]. The parameter a is determined as follows. Given our distributional

assumptions and the functional form of v, one can compute the expected value as∫ 1

s1=0

∫ 1

s2=0

v (s1, s2) ds1ds2 = a

(
1− log (a) +

1

2
log2 (a)

)
.

8We emphasize that the fact that the worst-case information structure has independent and one-
dimensional signals is a conclusion, rather than an assumption. Independence is a fairly intuitive property
for the worst-case, since any correlation between signals creates opportunities for the seller to separate types
and extract additional surplus using side bets in the style of Cremer and McLean (1985, 1988). The unidi-
mensionality of signals and monotonicity of interim expected values is far less obvious. In our analysis of the
�rst-price auction Bergemann et al. (2016a), we also concluded that the worst-case model of information had
independent and unidimensional signals and monotonic interim expected values (in the common value case).
This corresponds to a strong ordering on belief hierarchies, so that types that have higher expectations of the
value also have higher expectations of others expectations, etc. It is curious that for both of these problems,
the most e�ective way to distribute information for the purposes of depressing revenue is to order the types
in a consistent manner at all belief levels.
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In order for the law of iterated expectations to hold, it must be that the expectation of

v (s1, s2) is equal to the ex-ante expected value, so that

a

(
1− log (a) +

1

2
log2 (a)

)
= p (1) . (1)

One can easily verify that the left-hand side is strictly increasing in a and is equal to 0 and

1 when a is 0 or 1, respectively, so that there is a unique solution to this equation by the

intermediate value theorem. We denote this information structure by S∗.
S∗ has the features that (i) the buyers have one-dimensional and independent signals

and (ii) the interim expected value is a weakly increasing function of the buyers' signals. In

addition, the value is less than one on the low-signal region in which (1− s1) (1− s2) < a,

and it is identically equal to one when this inequality does not hold.

It turns out that revenue on this type space can be computed relatively easily, using

the generalization of the revenue equivalence formula described in Bulow and Klemperer

(1996). We can heuristically derive this formula as follows. A direct mechanism in which

the allocation and transfer rule are given by measurable functions qi : [0, 1]2 → [0, 1] and

ti : [0, 1]→ R respectively. The equilibrium utility of a type si is

Ui (si) = max
s′i

∫ 1

sj=0

(v (si, sj) qi (s
′
i, sj)− ti (s′i, sj)) dsj.

The envelope formula implies that

U ′i (si) =

∫ 1

sj=0

∂v

∂si
(si, sj) qi (si, sj) dsj.

The ex-ante surplus of bidder i is therefore

Ui =

∫ 1

si=0

∫ si

x=0

∫ 1

sj=0

∂v

∂si
(x, sj) qi (x, sj) dsjdxdsi

=

∫ 1

si=0

∫ 1

sj=0

∂v

∂si
(si, sj) qi (si, sj) (1− si) dsjdsi

where we have applied Fubini's theorem. The seller's revenue on this type space when the

allocation is qi (s) must be the di�erence between total surplus and the bidders' rents, which

is

R =
2∑
i=1

∫
s∈[0,1]2

(
v (s)− (1− si)

∂v

∂si
(s)

)
qi (s) ds.
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As an aside, we note that this formula tells us what revenue must be as a function of the

allocation that is implemented in equilibrium, though it does not tell us which allocations

can be implemented in a globally incentive compatible mechanism. In the case studied in

Myerson (1981), each buyer's value is linearly increasing in their own signal, and in that

case monotonicity of the interim expected allocation is a necessary and su�cient condition

for an allocation to be globally incentive compatible. In this non-linear setting, we know of

no analogous characterization. However, this turns out not to be central to our analysis.

What the model does have in common with the linear model of Myerson (1981) is that

revenue is simply the expectation of the �virtual value� of the buyer who is allocated the

good, where the generalized virtual value is

ψi (s) = v (s)− (1− si)
∂v

∂si
(s) .

If we now plug in the particular choice of v into this expression, we obtain

ψi (s) =

0 if v (s) < 1;

1 if v (s) = 1.

This type space therefore has two remarkable features. First, the two bidders always have

the same virtual value. Thus, conditional on an allocation being implementable, the seller is

indi�erent between allocating the good to buyer 1 or to buyer 2. Second, on the low region

where the value is less than one, the virtual value is zero, so that the seller is additionally

indi�erent between allocating the good or not allocating the good. In e�ect, this type space

creates a tremendous amount of indi�erence on the part of the seller between mechanisms.

It is for this reason that it seems to be a good candidate for a worst-case type space from

the seller's perspective.

Indeed, the only requirement for a mechanism to maximize revenue on this type space is

that the good is allocated whenever the value is exactly 1. As a result, optimal revenue is

simply the probability that the value is one, which is∫
s

Iv(s)=1ds = a (1− log (a)) = R. (2)

For any mechanism that the seller can propose, it is always possible that the information

structure is S∗, in which case equilibrium revenue can be no more than (2). We therefore

have the following proposition:
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Proposition 1 (Revenue Upper Bound).

Any mechanism can generate at most R in revenue when the information structure is S∗.

Thus, R∗ must be weakly less than R.

Incidentally, there are simple incentive compatible mechanisms that would implement

a pointwise optimal allocation, so that R is indeed optimal revenue on the type space S∗.
In particular, the seller could o�er the good at a posted price of a (1− log (a)), and then

randomly allocate the good among the subset of bidders who are willing to purchase it at

that price. It is easily veri�ed that all types would want to buy the good at this price (which

is the interim expectation of the good conditional on having a signal of si = 0).

4 A maxmin mechanism

4.1 Reformulating the revenue minimization problem

We shall argue that there exists a mechanism that is guaranteed to generate at least R in

revenue. To do so, we will employ two simpli�cations. First, for a �xed auction mechanism

A = ({Mi} , {qi} , {ti}), Bergemann and Morris (2013, 2016) have shown that the set of

outcomes that can arise under some information structure and equilibrium is equivalent to

the set of Bayes correlated equilibria (BCE). This solution concept generalizes correlated

equilibrium to games of incomplete information by allowing the players' actions to be corre-

lated with payo� relevant states of Nature. In our setting, we can de�ne a Bayes correlated

equilibrium µ to be an element ofM (V ×M2), which is the set of Borel (and not necessarily

probability) measures on V ×M2, that satis�es the following conditions. First, for every

v ∈ V , µ must satisfy the probability constraint

µ
(
{v} ×M2

)
= p (v) . (3)

Second, µ must satisfy the following obedience constraints: for every measurable deviation

mapping ηi : Mi →Mi, it must be that

Ui (µ,A) =

∫
(v,m)∈V×M

(v qi (m)− ti (m))µ (dv, dm)

≥
∫

(v,m)∈V×M
(v qi (ηi (mi) ,mj)− ti (ηi (mi) ,mj))µ (dv, dm) . (4)

One interpretation of the BCE µ is that there is an omniscient mediator who knows the

true value of the good and can make private and correlated recommendations to the bidders
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of what message they should send the auction. Equation (4) says that players must prefer

to follow the recommendation mi they receive from the mediator rather than deviate as a

function of their recommendation to ηi (mi). We denote by BCE (A) the set of BCE for a

given auction A.
Any equilibrium σ of A under an information structure S must induce a joint distribution

over the value and messages, which is obtained by integrating out signals. For any measurable

set X ⊆M ,

µ (v,X) =

∫
s∈S

∫
m∈X

σ (X|v) π (s|v) p (v) .

It is a fact that this distribution must also be a BCE. Similarly, given a BCE, one can

construct an information structure S and an equilibrium σ that induce the same distribution

over values and actions. See Bergemann et al. (2015a) for a formal proof of the epistemic

equivalence between the two solution concepts.

The upshot is that we can reformulate the seller's problem by taking the in�mum revenue

over all BCE, rather than over all information structures and equilibria. In particular,

inf
µ∈M(V×M)

∫
(v,m)∈V×M

2∑
i=1

ti (m)µ (dv, dm) subject to (3) and (4) (P)

must be equal to R (A). This optimization problem is essentially an in�nite dimensional

linear program, since both the objective, and the constraints (3) and (4) that characterize

BCE are all linear in the measure µ.

We will study this optimization problem for a special class of mechanisms in which

Mi = [0, 1] and the functions qi and ti are both assumed to be di�erentiable. Any auction

satisfying these assumptions will be referred to as regular. Following Du (2016), we will study

a dual of a relaxed version of the primal problem (P). At the �rst step, we will drop all

of the constraints except for those corresponding to �local upward deviations.� Speci�cally,

consider the class of deviation mappings of the form

ηi,k,X (mi) = Imi∈X min

{
mi +

1

k
, 1

}
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for some positive integer k and some measurable set X ⊆ Mi. For each such deviation, the

incentive constraint (4) becomes

k

∫
(v,m)∈V×X

[
v

(
qi

(
min

{
mi +

1

k
, 1

}
,mj

)
− qi (m)

)

−
(
ti

(
min

{
mi +

1

k
, 1

}
,mj

)
− ti (m)

)]
µ (dv, dm) ≤ 0.

The limit as k →∞ is simply

∫
(v,m)∈V×X

[
v
∂qi
∂mi

(m)− ∂ti
∂mi

(m)

]
Imi<1µ (dv, dm) ≤ 0. (5)

Note that wherever qi and ti are not di�erentiable, the partial derivative is implicitly de�ned

by right-continuity. Thus, the obedience constraints (4) imply that the local upward obedi-

ence constraint (5) must be satis�ed for all measurable sets X ⊆Mi. We can therefore relax

the primal problem (P) by dropping all other constraints except these local ones, to obtain

the following optimization problem:

inf
µ∈M(V×M)

∫
(v,m)∈V×M

2∑
i=1

ti (m)µ (dv, dm) subject to (3) and (5). (P′)

Let us denote by R̃ (A) the solution to this optimization problem. Since (P′) is a relaxation of

(P), and since (P) is equivalent to the seller's problem, we can conclude that R̃ (A) ≤ R (A)

for any regular mechanism.

Again, following Du (2016), we will study a di�erent optimization problem that is dual

to (P′). The choice variables in the dual will be �multipliers� on the constraints in the primal

problem. Speci�cally, let Γ denote the set of real-valued functions of values, with a typical

element being

γ : V → R,

and let A denote the set of measurable non-negative functions on [0, 1], with a typical element

being

α : [0, 1]→ R+.
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These functions represent multipliers on probability constraints (3) and multipliers on the

local incentive constraints (5), respectively. Also let

Φ (γ, {αi}) = inf
µ∈M(V×M)

{∑
v∈V

γ (v) p (v) + Φ̂ (γ, {αi} , µ)

}
,

where

Φ̂ (γ, {αi} , µ) =

∫
(v,m)∈V×M

[
2∑
i=1

ti (m)− γ (v)

+
2∑
i=1

α (mi)

(
v
∂qi
∂mi

(m)− ∂ti
∂mi

(m)

)
Imi<1

]
µ (dv, dm) .

Then the dual problem is

sup
(γ,{αi})∈Γ×A2

Φ (γ, {αi}) . (D)

Let us denote by R̂ (A) the optimal value for the dual problem.

Lemma 1 (Weak Duality).

For any regular mechanism A, the optimal value for the dual problem (D) is weakly less than

the optimal value for the relaxed primal problem (P′), and hence weakly less than the optimal

value of the seller's problem, i.e., R̂ (A) ≤ R̃ (A) ≤ R∗.

This result, which is standard for �nite dimensional linear programs, is only slightly less

trivial in this in�nite dimensional setting. For the sake of completeness, we have included a

proof in the Appendix.

Note that it is always possible to achieve a �nite value for Φ (γ, {αi}) by choosing the

multipliers to be identically zero. Indeed, a necessary condition for Φ to be non-negative is

that
2∑
i=1

(
ti (m) + α (mi)

(
v
∂qi
∂mi

(m)− ∂ti
∂mi

(m)

)
Imi<1

)
≥ γ (v) . (6)

Otherwise, it is possible to choose a µ that places in�nite mass on this particular (v,m), which

would yield a value for Φ of −∞. Moreover, any choice of µ is obviously weakly dominated

by a µ that puts zero mass on those (v,m) for which (6) holds as a strict inequality. Thus,

it is without loss of generality to rewrite the dual problem as

sup
(γ,{αi})∈Γ×A2

∑
v∈V

p (v) γ (v) subject to (6). (D′)
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This is the �nal form of the optimization problem, from which we will derive a maxmin

mechanism.

4.2 A maxmin mechanism

We have asserted that the upper bound on R∗ constructed in Section 3 is tight. To demon-

strate this fact, we will construct a mechanism A∗ for which R̂ (A∗), the optimal value for the

dual problem (D′), is exactly equal to R. In turn, this will be demonstrated by constructing

a particular pair of multiplier functions such that the dual objective value is R.

Under the assumption that R is the solution to the seller's problem, we already know a

great deal about the solution to the dual problem for a maxmin mechanism. In particular,

γ (v) can be interpreted as the shadow value of relaxing the probability constraints in terms

of minimum revenue. But given the formula for minimum revenue de�ned in (1) and (2), we

can compute this shadow value directly. Speci�cally,

a

(
1− log (a) +

1

2
log2 (a)

)
=

p (1)

p (0) + p (1)
.

If we take the derivative of both sides with respect to the probabilities, we conclude that

∂a

∂p (0)
= − 2

log2 (a)

p (1)

(p (0) + p (1))2 = − 2p (1)

log2 (a)
;

∂a

∂p (1)
=

2

log2 (a)

p (0)

(p (0) + p (1))2 =
2p (0)

log2 (a)
,

since p (0) + p (1) = 1. Moreover, total revenue is

R = (p (0) + p (1)) a (1− log (a)) ,

so that the derivatives of revenue with respect to the probabilities are

dR

dp (0)
= a (1− log (a)) +

2

log (a)
p (1) ≡ γ∗ (0) ;

dR

dp (1)
= a (1− log (a))− 2

log (a)
p (0) ≡ γ∗ (1) .

We will construct a feasible solution to (D′) with γ∗ as multipliers on probability constraints.

In addition, we will choose the multipliers on local upward incentive constraints to be

constant and equal to

α∗ = − 1

log (a)
.
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This deserves some explanation. As with Du (2016), we are assuming that the shadow

cost of relaxing the local incentive constraint is the same for both players and the same for

all messages. In addition, our relaxation is e�ectively assuming that only local incentive

constraints bind for a revenue minimizing BCE on a maxmin mechanism. Why should this

be the case? The su�ciency of these constraints is motivated by the minmax type space, in

which optimal revenue is completely determined by local incentive constraints. As to why

the multipliers should be constant, that is in a sense a normalization that is without loss

of generality. For if the local incentive constraints did not have constant multipliers, then

we could relabel the messages by moving some closer together and others further apart (but

preserving the same ordering), which would e�ectively change the �size� of a local deviation

so as to make all of the multipliers the same. The fact that the correct constant value is

−1/ log (a) is more subtle, though this choice shall be vindicated by our subsequent analysis.

Our maxmin mechanism A∗ consists of the message space M∗
i = [0, 1], the allocation

rule:

q∗i (mi,mj) =

mi if m1 +m2 < 1;

1
2

(1 +mi −mj) if m1 +m2 ≥ 1,

and the transfer rule:

t∗i (mi,mj) = log (a) a−mi

∫ mi

x=0

axψ (x,mj) dx,

where

ξ (x, y) =


γ∗(0)

2
if m1 +m2 < 1;

1
2

(
γ∗ (1)− α∗ + log (a)

(
(x− β)2 − (y − β)2)) if m1 +m2 ≥ 1,

(7)

and

β =
1

2

(
1− 1

log (a)

)
.

This completes the speci�cation of the mechanism. Figure 1 depicts the allocation and

transfer rules when p (0) = p (1) = 1/2.

The allocation rule q∗ has multiple interpretations. Aumann and Maschler (1985) point

out that this allocation is associated with various standard solutions of an associated coop-

erative game, in which each player has a �claim� on a good with �xed total supply. This

claim represents the maximum amount of the good that the player can use, and below this

amount utility is proportional to the quantity received. The characteristic function for this

game assigns to each coalition the total supply of the good less the claims of players who are

not in the coalition, or zero in the event that others' claims exceed the supply. In the two
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Figure 1: The mechanism A∗ when p (0) = p (1) = 1/2. Clockwise from top left: The
allocation rule q∗i (mi,mj), the transfer rule t

∗
i (mi,mj), ξ (mi,mj), and the total probability

that some bidder is allocated the good.
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player case, q∗ is the allocation of the good that is identi�ed by both the Shapley value as

well as the nucleolus. The former has the interpretation that the buyers arrive in a random

order, and that the claims are satis�ed in the order that players arrive. Thus, each buyer is

equally likely to arrive �rst or second. The �rst buyer's claim is completely �lled, and the

second buyer gets the maximum of his claim and the amount left over from the satisfying

�rst buyer's claim.

The transfer rule we �nd harder to interpret. Clearly, there is an exponential shape to

the transfer as a function of a buyer's own report. Note that ti is the solution to the following

di�erential equation:

∂t∗i
∂mi

(mi,mj) =
1

α∗
[t∗i (mi,mj)− ξ (mi,mj)] .

Thus, −ξ can be interpreted as an �excess� growth rate of the transfer rule. (We say excess,

though ξ can be positive or negative depending on the message pro�le.) The dual incentive

constraints when mi < 1 for i = 1, 2 can therefore be interpreted as a lower bound on the

sum of the excess growth rates,

2∑
i=1

ξ (mi,mj) ≥ γ∗ (v)− α∗v
2∑
i=1

∂qi (m)

∂mi

.

However, these constraints allow for the growth in transfers to be distributed asymmetrically

across the buyers. According to (7), the growth rate is symmetric when the demands sum

to less than one, but are asymmetric when the demands are incompatible. This is necessary

in order to satisfy the dual constraints at the boundary when mi = 1 for at least one i.

Let us now verify that (γ∗, α∗) are feasible for the dual problem (D′) for mechanism A∗.
Note that for mi ∈ [0, 1),

ξ (mi,mj) + ξ (mj,mi) =

γ∗ (0) (= γ∗ (1)− 2α∗) if m1 +m2 < 1;

γ∗ (1)− α∗ if m1 +m2 ≥ 1

and
2∑
i=1

∂q∗i
∂mi

(m) =

2 if m1 +m2 < 1;

1 if m1 +m2 ≥ 1.

Thus, as long as both messages are strictly less than one, the left-hand side of (6) with v = 0

reduces to γ∗ (0) if m1 + m2 ≤ 1 and a (1− log (a)) ≥ γ∗ (0) if m1 + m2 > 1. When v = 1,
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the left-hand side of (6) reduces to γ∗ (0) + 2α∗ = γ (1) when m1 + m2 < 1, and it reduces

to a (1− log (a)) + α∗ = γ∗ (1) ≥ γ∗ (0) when m1 +m2 ≥ 1.

Thus, it only remains to check that the dual constraints are satis�ed on the boundary

region where mi = 1 for some i. The proof is not technically di�cult, but it is lengthy, so

we have relegated it to the Appendix. This completes the proof of the following result:

Lemma 2 (Dual Feasibility).

The multipliers (γ∗, α∗) are feasible for the dual problem for the mechanism A∗. As a result,

R̂ (A∗) ≥ R.

In turn, we have shown that:

Proposition 2 (Lower Bound on Revenue).

Revenue under auction A∗ is at least R in every information structure and equilibrium.

Thus, R∗ is at least R.

Proof of Proposition 2. For the multipliers (γ∗, {α∗i }), the dual objective is simply

p (0) γ∗ (0) + p (1) γ∗ (1) = a (1− log (a)) = R.

Thus, the solution to the primal problem with local constraints (P′) must be weakly greater

than R, as must the solution to the primal problem (P).

As a corollary of Propositions 1 and 2, we obtain our main result:

Theorem 1 (Solution to the Seller's Problem).

Maxmin revenue is R = a (1− log (a)), where a solves (1). Moreover, A∗ is a maxmin

mechanism, and S∗ is a minmax information structure.

We remark that both A∗ and S∗ satisfy the hypotheses of Milgrom and Weber (1985) for

there to exist an equilibrium in distributional strategies, which implies the existence of an

equilibrium in behavioral strategies (i.e., strategies as we have de�ned them). Proposition 1

then implies that revenue in this equilibrium must be precisely R. In fact, it turns out that

there is an equilibrium in the monotonic, symmetric, and pure strategies

σ∗i (si) =


log(1−si)

log(a)
if mi < 1− a;

1 if mi ≥ 1− a.

In this equilibrium, the good is allocated with probability one if and only if the interim

expected value is exactly one. We formalize this as the following result, whose proof is in

the Appendix:
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Proposition 3 (Saddle-Point Equilibrium).

The strategies σ∗ constitute an equilibrium of the maxmin mechanism on the minmax type

space.

This concludes our characterization of maxmin revenue and a maxmin auction. At this

point, it is useful to revisit our original motivation, and ask where we stand relative to

the goal of identifying simple, robust, detail-free mechanisms. We have demanded that our

maxmin mechanism provide favorable revenue guarantees even under arbitrarily rich models

of information, in which signals can be high-dimensional and correlated in an arbitrary

manner, thus generating very rich forms of interdependence. Out of this universe of models,

we have concluded that the critical worst-case model has one-dimensional signals, signals

that are statistically independent, and an interim expected value that a continuous and

increasing function of the signals.

We have also allowed the seller to use mechanisms that employ arbitrarily rich message

spaces and we have allowed allocation and transfer rules that can depend on messages in an

essentially arbitrary manner. All we have required is that the seller allow the buyers to walk

away from the transaction if they so desire. We have concluded that there exists a maxmin

mechanism with one-dimensional messages, allocation and transfer rules that are continuous

and monotonically increasing in the messages, and have a simple interpretation in terms of

bidders making demands, which are settled according to a simple and egalitarian procedure.

Thus, there is already a strong case that our methodology has dramatically reduced the

complexity of the auction design problem and it has led us to a tractable and well-behaved

auction design.

This mechanism is unlike any other than we know of, and we do not know of any auctions

that are in regular use that �t its description. One reason may be that the mechanism requires

the seller to randomize over the allocation, conditional on the reports. Such randomization

may be di�cult for a seller to commit to in a credible way, though it seems to be a necessary

feature of the optimal mechanism as we have de�ned the seller's problem. It is an interesting

question for future research how the form of the optimal mechanism might change if we

imposed determinacy as an additional constraint on the mechanism. As a �nal remark,

we have conducted extensive simulations, which were helpful in identifying the form of the

maxmin auction constructed above. We have not proven, nor do we believe it to be the

case, that the minmax type space and the maxmin auction are unique. The ones that we

have found seem extremely �regular,� in the sense that the message spaces are compact and

allocation and transfer rules are continuous. We suspect that there may exist other maxmin

auctions which satisfy the same, and might be even easier to interpret and implement. We

regard this as a promising avenue for further exploration.
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5 Discussion

5.1 Comparison with other mechanisms

To put the maxmin mechanism in context, let us compare it to other mechanisms that one

might consider using, in the example where p (0) = p (1) = 1/2. First, let us observe that

for this example, the parameter that solves (1) is a ≈ 0.6897, which yields maxmin revenue

of R ≈ 0.2534. This is approximately 50.7% of the total surplus of 1/2.

How would other well-known mechanisms perform? Under certain solution concepts and

in certain settings, the second-price auction is thought to be quite robust. In particular, in

a private value model, where other buyer's signals contain no information about one's own

value, the second-price auction has a unique equilibrium in weakly-undominated strategies.

In the present interdependent value model, however, the second-price auction performs spec-

tacularly poorly: there is always an equilibrium in which one bidder bids zero and the other

bids one, which would result in revenue of zero. We select for the worst equilibrium for the

seller, but even if we did not, it is not clear how to select for an equilibrium that is better

for the seller. The reason is that weak dominance has very little bite when there can be

arbitrary interdependence in values. Bidding a very small amount is weakly undominated as

long as there is a non-zero chance that the value conditional on winning with a higher bid

would be small.

What about posted-price mechanisms? The seller o�ers the good at a price of ρ ∈ [0, 1],

and bidders indicate whether or not they want to buy the good at that price. The good is

then randomly allocated between the bidders who want to buy, and the winner of the good

pays the posted price. It turns out that the worst model of information for this mechanism

is symmetric, with the bidders never purchasing the good when the value is zero and not

purchasing when the value is high with probability x such that

x

1 + x
= ρ =⇒ x =

ρ

1− ρ
.

Thus, conditional on not purchasing, the expected value is exactly equal to the price, so that

buyers are indi�erent. The optimal price is therefore ρ = 1−1/
√

2, which yields a maximum

revenue of 3 − 2
√

2 = 0.1716, which yields about 34.3% of the total surplus and 67.7% of

maxmin revenue.

One can do one step better by using a randomized posted price, rather than a determin-

istic posted price. In particular, Kos and Messner (2015) and Carrasco et al. (2015) have

shown that a randomized posted price can attain maxmin revenue with a single buyer, and

indeed the maxmin revenue is given by the parameter b that solves b (1− log (b)) = 1/2
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(cf. the discussion of generalized minmax type spaces in the next section). The solution is

b ≈ 0.1867, which is approximately 73.7% of maxmin surplus.

Next, the working paper Bergemann et al. (2015b) characterizes minimum revenue for

�rst-price auctions with discrete and common values. The revenue minimizing distribution

of bids has the feature that bidders are indi�erent to all uniform upward deviations, where a

uniform upward deviation up to a bid of bmeans that bidding the maximum of b and whatever

bid x would have been made in equilibrium. If H (b|v) is the cumulative distribution of bids

in equilibrium conditional on the value, then the uniform upward incentive constraint is that

∑
v∈V

(v − b)H (b|v) p (v) ≤
∑
v∈V

p (v)

∫ b

x=0

H (x|v) dx.

One can show that it is without loss of generality to take H (0|0) = 1, so that this integral

equation becomes

(1− b)H (b|1)− b ≤ b+

∫ b

x=0

H (x|1) dx.

The solution to this inequality as an equality, with the initial condition H (0|1) = 0, is given

by

H (b|1) =
b (2− b)
(1− b)2 ,

which hits 1 at

b = 1− 1√
2
.

Thus, each bidder is indi�erent between their equilibrium strategy and winning with proba-

bility one at a bid of b. This tells us that each bidder's equilibrium surplus must be

UFPA
i =

1

2
− b =

1√
2
− 1

2
,

so that revenue is

RFPA =
1

2
− 2UFPA

i =
3− 2

√
2

2
≈ 0.0858,

which is half of what the seller could obtain with the optimal deterministic posted price and

about 33.9% of optimal maxmin revenue. Naturally, this bound could be improved if one

also used deterministic or randomized reserve price.

Finally, Du (2016) has constructed a class of mechanisms in which Mi = [0, 1],

qi (mi,mj) = mi −min {m1,m2} /2
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and

ti (mi,mj) = k
(
1− c−mi

)
for some constants c and k. Maxmin revenue within this class of mechanisms (maximizing

across (k, c) and minimizing across information structures and equilibria) is approximately

0.2403, which is about 94.8% of maxmin revenue.

Thus, the maxmin mechanism provides a signi�cantly better guarantee than many other

well-known mechanisms. At the same time, one advantage of having characterized maxmin

revenue is that it allows us to put into context the revenue performance of various other

mechanisms. How much revenue might be lost by using a mechanism that is non-maxmin

optimal? Put di�erently, what cost would we have to assign to the complexity of the maxmin

mechanism to be willing to use one of these alternative auction formats? We can see that

some of these simpler auctions do fairly well relative to the best one could hope for. The

�rst-price auction, for example, is completely detail free, in that its speci�cation does not

even depend on the prior distribution of values, and it still obtains upwards of one-third of

the best revenue guarantee. The mechanism of Du (2016), which has a signi�cantly simpler

transfer rule than the maxmin mechanism, obtains nearly 95% of the best revenue guarantee

and asymptotically extracts all of the surplus.

5.2 Beyond two players and binary values

Our construction of the maxmin mechanism is (for now) special to two players and the

case in which the ex-post value has only two points in its support. We are optimistic that

the model can be substantially generalized, to models with many bidders and many values.

Indeed, there is a natural generalization of the minmax information structure S∗ to these

cases, which generates an upper bound on maxmin revenue and a conjecture for the maxmin

itself.

Consider a model with n ≥ 1 bidders and in which there is a value that is drawn from some

cumulative distribution function P (v) with support contained in [0, 1]. In the generalized

minmax type space, the bidders once again have signals that are independent uniform draws,

and the interim expectation of the value conditional on the entire pro�le of signals is

v (s1, . . . , sn) = min

{
a

(1− s1) · · · (1− sn)
, b

}
,

where 0 ≤ a ≤ b ≤ 1 are parameters of the information structure. Let us denote this infor-

mation structure by S∗n,a,b. This information structure again admits a revenue equivalence
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formula, such that if the equilibrium allocation is described by qi (s), then revenue is∫
s∈[0,1]n

n∑
i=1

ψi (s) qi (s) ds,

where

ψi (s) = v (s)− (1− si)
∂v

∂si
(s) =

0 if v (s) < 1;

1 if v (s) = 1.

Thus, this type space preserves the tremendous indi�erence on the part of the seller: any

mechanism is optimal as long as it always allocates the good when the value is one, and the

seller is indi�erent as to whom the good is allocated and whether or not the good is allocated

when v (s) < 1.

Let us denote by Fa,b (v) the cumulative distribution of the interim expected value v (s)

on this type space. Then necessary and su�cient conditions for S∗n,a,b to be consistent with

the ex-ante distribution of the value is that P is a mean preserving spread of Fn,a,b, or that∫ v

x=0

Fn,a,b (x) dx ≤
∫ v

x=0

P (x) dx

for every x ∈ [0, 1] and ∫ 1

x=0

Fn,a,b (x) dx =

∫ 1

x=0

P (x) dx.

We conjecture that for a general distribution P , the minmax type space is of the form S∗n,a,b
for some (a, b).

In fact, it is fairly easy to compute optimal revenue on this type space. Let Rn,a,b denote

optimal revenue on S∗n,a,b, and let En,a,b denote the expected value. Then

Rn,a,b = En−1,a,b

and

En,a,b =

∫ 1−a
b

x=0

En−1,a/(1−x),bdx+ a.

The reason is that the expected value, conditional on one bidder having a signal si ∈
[0, 1− a/b], is exactly En,a/(1−si),b, since the signal e�ectively increases the constant a in

the de�nition of the interim expected value. On the other hand, if si ∈ [a/b, 1], then the

value is necessarily equal to b, and this event occurs with probability a/b. Moreover, an

optimal mechanism for this type space is setting a posted price equal to the expected value

given a signal of si = 0, which is simply the expectation of the interim expected value with
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n− 1 buyers. Straightforward calculation reveals that

En,a,b = Rn,a,b = a
n∑
k=0

1

k!

(
− log

(a
b

))k
.

To see this, simply observe that∫ 1

x=0

1

1− x

(
log
(a
b

)
− log (1− x)

)k
dx = − 1

k + 1

(
log
(a
b

))k
.

In the case where the value is either zero or one (i.e., there are only mean and support

restrictions), revenue is minimized by setting b = 1 and setting a such that En,a,1 is equal

to the ex-ante expected value. More generally, if there are more values in the support of P ,

then the optimal b for minimizing revenue may be less than 1, so as to satisfy the second-

order stochastic dominance constraints. For example, for the uniform distribution with two

bidders, the optimal parameters for minimizing revenue are approximately a = 0.0891 and

b = 0.8023, which yield an upper bound on revenue of approximately R2,a,b = 0.28.

We conjecture that this generalized upper bound is tight. We also hope that the proof

technique used in the two-buyer case can be generalized to many-buyer and many-value

models. In particular, under the hypothesis that the upper bound is tight, we can derive the

correct multipliers on probability constraints from the formula for minmax revenue. We can

also conjecture that the generalized maxmin mechanism continues to have one-dimensional

signals that can be interpreted as �demands,� and that all of the demands are �lled when

they sum to less than one. The constant multiplier on the local incentive constraints would

then be pinned down by the requirement that all of the dual constraints bind when the

demands sum to less than one. Indeed, in the many-player binary-value case, this leads to

generalized multipliers of

γ∗ (0) = En−1,a,1 +
np (1)

log (a)
;

γ∗ (1) = En−1,a,1 −
np (0)

log (a)
;

α∗ = − 1

log (a)
.

Moreover, we conjecture that at least in the binary-value model, there is a maxmin mecha-

nism in which the allocation has the form that the buyers' demands are �lled sequentially,

in a random order, as in the two-player case. If we let Z denote the set of permutations of
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{1, . . . , n}, then this allocation is

q∗i (m) =
1

n!

∑
ζ∈Z

min

mi,max

0, 1−
∑

{j|ζ(j)<ζ(i)}

mj


 .

This allocation corresponds to the Shapley value of the n-player cooperative bargaining

game described in Section 4. These conjectures are supported by numerical simulations that

we have conducted with three buyers. The only step remaining to go from conjecture to

theorem is to identify a maxmin transfer rule such that these multipliers and the random

sequential service allocation are feasible for the dual constraints. We are actively pursuing

such a generalized transfer rule.

6 Conclusion

The purpose of this paper has been to characterize auctions which provide the best possible

revenue guarantees for a seller who faces large model uncertainty. We have shown that the

worst model for the seller has a simple description in which bidders' signals are independent

and the value function has a particular form that makes the seller indi�erent over a wide

array of equilibrium allocations. We have shown that there exists a maxmin auction in

which the bidders make demands, and demands are �lled sequentially in a random order.

When paired with carefully chosen transfer rule, this allocation is part of a maxmin optimal

auction. The auction is simple and well-behaved: allocations and transfers are continuous

and increasing functions of the reports, and moreover, buyers can always opt out by sending

the lowest demand, in which case they pay no transfer and are not allocated the good.

Many questions remain. Are there other mechanisms that are also maxmin optimal, and

that would be superior to the one we constructed for reasons outside the model? What would

maxmin auctions look like with more than two buyers, or with more general distributions

of values? What would happen if we impose reasonable restrictions on the models of beliefs

that would exclude the minmax type space constructed above? In the future, we hope to

extend our knowledge of optimal informationally-robust auctions in all of these directions.

28



References

Aumann, R. J. and M. Maschler (1985): �Game theoretic analysis of a bankruptcy

problem from the Talmud,� Journal of economic theory, 36, 195�213.

Bergemann, D., B. Brooks, and S. Morris (2015a): �Bayes Correlated Equilibrium

in In�nite Games,� Tech. rep., Yale University and University of Chicago and Princeton

University.

��� (2015b): �First Price Auctions with General Information Structures: Implications for

Bidding and Revenue,� Tech. Rep. 2018, Cowles Foundation for Research in Economics,

Yale University.

��� (2016a): �First Price Auctions with General Information Structures: Implications for

Bidding and Revenue,� Econometrica, forthcoming.

��� (2016b): �Optimal Auction Design in a Common Value Model,� Tech. rep., Yale

University, University of Chicago and Princeton University.

Bergemann, D. and S. Morris (2013): �Robust Predictions in Games with Incomplete

Information,� Econometrica, 81, 1251�1308.

��� (2016): �Bayes Correlated Equilibrium and the Comparison of Information Structures

in Games,� Theoretical Economics, 11, 487�522.

Bergemann, D. and K. Schlag (2008): �Pricing Without Priors,� Journal of the Euro-

pean Economic Association Papers and Proceedings, 6, 560�569.

��� (2011): �Robust Monopoly Pricing,� Journal of Economic Theory, 146, 2527�2543.

Brooks, B. A. (2013a): �Revenue Sharing in Second-Price Auctions,� Tech. rep., Mimeo,

University of Chicago.

��� (2013b): �Surveying and selling: Belief and surplus extraction in auctions,� Tech.

rep., Mimeo, University of Chicago.

Bulow, J. and P. Klemperer (1996): �Auctions vs Negotiations,� American Economic

Review, 86, 180�194.

Carrasco, V., V. F. Luz, P. Monteiro, and H. Moreira (2015): �Robust Selling

Mechanisms,� Mimeo, University of British Columbia.

29



Chung, K.-S. and J. Ely (2007): �Foundations of Dominant Strategy Mechanisms,� Re-

view of Economic Studies, 74, 447�476.

Condorelli, D. and B. Szentes (2016): �Buyer-Optimal Demand and Monopoly Pric-

ing,� Tech. rep., Mimeo, London School of Economics and University of Essex.

Cremer, J. and R. McLean (1985): �Optimal Selling Strategies Under Uncertainty for a

Discriminating Monopolist When Demands are Interdependent,� Econometrica, 53, 345�

361.

��� (1988): �Full Extraction of the Surplus in Bayesian and Dominant Strategy Auctions,�

Econometrica, 56, 1247�1258.

Du, S. (2016): �Robust Mechanisms under Common Valuation,� Tech. rep., Mimeo, Simon

Fraser University.

Gilboa, I. and D. Schmeidler (1989): �Maxmin Expected Utility with Non-Unique

Prior,� Journal of Mathematical Economics, 18, 141�153.

Hansen, L. P. and T. J. Sargent (2001): �Acknowledging misspeci�cation in macroeco-

nomic theory,� Review of Economic Dynamics, 4, 519�535.

Hartline, J. D. and T. Roughgarden (2009): �Simple versus optimal mechanisms,� in

Proceedings of the 10th ACM conference on Electronic commerce, ACM, 225�234.

Kos, N. and M. Messner (2015): �Selling to the Mean,� Tech. rep.

McAfee, P. and P. Reny (1992): �Correlated Information and Mechanism Design,�

Econometrica, 60, 395�421.

McAfee, R. P., J. McMillan, and P. J. Reny (1989): �Extracting the surplus in the

common-value auction,� Econometrica, 1451�1459.

Milgrom, P. R. and R. J. Weber (1985): �Distributional strategies for games with

incomplete information,� Mathematics of operations research, 10, 619�632.

Myerson, R. (1981): �Optimal Auction Design,� Mathematics of Operations Research, 6,

58�73.

Neeman, Z. (2003): �The E�ectiveness of English Auctions,� Games and Economic Behav-

ior, 43, 214�238.

30



Roesler, A.-K. and B. Szentes (2016): �Buyer-Optimal Learning and Monopoly Pric-

ing,� Tech. rep., Mimeo, London School of Economics and University of Michigan.

Yamashita, T. (2015): �Revenue guarantee in auction with common prior,� Tech. rep.,

Mimeo, Toulouse School of Economics.

31



A Appendix

Proof of Lemma 1. Let µ be any BCE that is feasible for the primal problem (P′). Then the

probability and incentive constraints (3) and (5) are satis�ed everywhere, so that for any

multipliers γ ∈ Γ, we have∑
v∈V

γ (v)
(
p (v)− µ

(
{v} × [0, 1]2

))
= 0

and for any non-negative measurable function αi : [0, 1]→ R+, we have∫
(v,m)∈V×M

αi (mi)

(
v
∂qi
∂mi

(m)− ∂ti
∂mi

(m)

)
Imi<1µ (dv, dm) ≤ 0.

Essentially, any given µ ∈ M (A) de�nes a (possibly signed) measure ν ∈ M (A) according

to

ν (dv, dm) =

(
v
∂qi
∂mi

(m)− ∂ti
∂mi

(m)

)
Imi<1µ (dv, dm)

that is absolutely continuous with respect to µ. If µ is feasible for the primal problem, then

µ only assigns positive measure to those sets on which the average local gains from deviating

up are non-positive, so that ν is also a positive measure. Hence, the expectation of any

non-negative function under ν is also non-negative.

As a result,

∑
v∈V

γ (v) p (v) + Φ̂ (γ, {αi} , µ) ≤
∫

(v,m)∈V×M

2∑
i=1

ti (m)µ (dv, dm) .

Since Φ (γ, {αi}) is the in�mum of the left-hand side over all measures µ ∈ M (A) (even

those that are not feasible for the primal problem), it must be the case that

Φ (γ, {αi}) ≤
∫

(v,m)∈V×M

2∑
i=1

ti (m)µ (dv, dm)

for all µ that are feasible for problem (P′). Since this is true for all choices of multipliers,

we conclude that Φ∗ ≤ R∗∗.

Proof of Lemma 2. It remains to verify that the dual constraints (6) are satis�ed for the

boundary cases where mi = 1 for at least one player. Let us �rst consider the case in which
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exactly one player sends a message of 1. We will show that

t∗ (1, x) + ξ (x, 1) = γ∗ (1)− α∗

2
≥ γ∗ (0)− α∗

2
,

so that the dual constraints are satis�ed for both v = 0 and v = 1. Let us �rst verify that

the equality holds at x = 0. In this case,

t∗ (1, 0) =
γ∗ (0)

2

(
1− 1

a

)
and

ξ (0, 1) =
1

2

(
γ∗ (1)− α∗ + log (a) (1− β)2 − log (a) β2

)
=

1

2
(γ∗ (1)− α∗ − 1) .

Thus, using the fact that γ∗ (0) = γ∗ (1)− 2α∗,

t∗ (1, 0) + ξ (0, 1) =
1

2
(γ∗ (0) + γ∗ (1)− α∗ − 1)− γ∗ (0)

2a

= γ∗ (1)− α∗

2
− α∗ − 1

2
− γ∗ (0)

2a
.

Finally,

−α∗ − 1

2
− γ∗ (0)

2a
=

1

log (a)
− 1

2
−
a (1− log (a)) + 2p(1)

log(a)

2a

=
1

log (a)
− 1

2
− (1− log (a))

2
+

(
1− log (a) + 1

2
log (a)2)

log (a)

= 0

as desired.

Next, we will show that
d

dx
[t∗ (1, x) + ξ (x, 1)] = 0. (8)
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Observe that

d

dx
t∗ (1, x) = − log (a)

a

∫ 1

y=1−x
ay log (a) (x− β) dy

− log (a) a−x

(
γ (1)− 1

log(a)
− γ (0)

2
− 1

2
log (a) (1− x− β)2 +

1

2
log (a) (x− β)2

)

= − log (a)
(
1− a−x

)
(x− β)− a−x

(
1

2
+

log2 (a)

2
(2β − 1) (2x− 1)

)
=

1

2

[
−
(
1− a−x

)
(1 + log (a) (2x− 1))− a−x

(
1 +

log (a)

a
(2x− 1)

)]
= −1

2
(1 + log (a) (2x− 1))

In addition,

d

dx
ξ (x, 1) = log (a) (x− β)

=
1

2
(1 + log (a) (2x− 1))

so that (8) holds.

Finally, we will show that

2t∗ (1, 1) = γ∗ (1) ≥ γ∗ (0) .

Note that

t∗ (1, 1) =
log (a)

a

∫ 1

x=0

axξ (x, 1) dx

=
log (a)

a

∫ 1

x=0

ax
(
γ∗ (1)− α∗ − log (a) (1− β)2) dx

+
log2 (a)

a

∫ 1

x=0

ax (x− β)2 dx.

It is easily veri�ed that∫
ax (x− β)2 dx =

ax

log3 (a)

(
log2 (a) (x− β)2 − 2 log (a) (x− β) + 2

)
+ C.
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Thus,∫ 1

x=0

ax (x− β)2 dx =
a

log3 (a)

(
log2 (a) (1− β)2 − 2 log (a) (1− β) + 2

)
− 1

log3 (a)

(
log2 (a) β2 + 2 log (a) β + 2

)
=

a

log3 (a)

(
log2 (a)

1

4

(
1 +

1

log (a)

)2

− log (a)

(
1 +

1

log (a)

)
+ 2

)

− 1

log3 (a)

(
log2 (a)

1

4

(
1− 1

log (a)

)2

+ log (a)

(
1− 1

log (a)

)
+ 2

)

=
1

log3 (a)

(
log2 (a) + 5

4
(a− 1)− log (a)

2
(1 + a)

)
.

In addition,

log (a)

a

∫ 1

x=0

ax
(
γ∗ (1)− α∗ − log (a) (1− β)2) dx

=
(
γ∗ (1)− α∗ − log (a) (1− β)2)(1− 1

a

)
= γ∗ (1) +

1

log (a)
− log (a)

1

4

(
1 +

2

log (a)
+

1

log2 (a)

)
− 1

a

(
a (1− log (a)) +

2p (1)

log (a)
− 1

log (a)
− log (a)

1

4

(
1 +

2

log (a)
+

1

log2 (a)

))
= γ∗ (1) +

1

log (a)
− log (a)

1

4

(
1 +

2

log (a)
+

1

log2 (a)

)
− (1− log (a)) +

2
(
1− log (a) + 1

2
log2 (a)

)
log (a)

− 1

a log (a)
− log (a)

a

1

4

(
1 +

2

log (a)
+

1

log2 (a)

)
= γ∗ (1)− 1

log (a)

(
log2 (a) + 5

4

(
1− 1

a

)
− log

2

(
1 +

1

a

))
.

Combining these expressions into the above formula for t∗ (1, 1) yields the desired result.

Proof of Proposition 3. We can reparametrize the type space so that types are identi�ed with

their equilibrium bids, and so that the maxmin mechanism is in fact a direct mechanism.

Under this parametrization, the type si is associated with min {1, log (1− si) / log (a)}, so
that a message mi ∈ [0, 1) is associated with si = 1−ami and a message mi = 1 is associated

with the types [1− a, 1]. Thus, the interim expected value given messages m is

w (m) = min
{

1, a1−m1−m2
}
,
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and the distribution of messages is independent and given by the following cumulative dis-

tribution function:

F (m) =

1− am if m < 1;

1 otherwise.

This distribution has a density of − log (a) am on the range [0, 1), and it has a mass point of

size a on a message of 1.

One can show that the equilibrium utility of a type mi that reports m
′
i is

U (m′i|mi) =

∫ 1

mj=0

[w (mi,mj) qi (m
′
i,mj)− ti (m′i,mj)] dF (mj)

=
am′i

2
− a1−m′i

3am
′
i − 3− 2 log (a)

(
am
′
i +m′i − 1

)
2 log (a)

+


a
(
a−m′i−1−m′i log(a)+2a−mim′i log(a)(1−log(a)(1−mi))

)
2 log(a)

if mi > m′i;

a1−mi

(
2−2ami+2 log(a)(mi+m

′
i−amim′i)+log2(a)

(
(mi+m

′
i)

2
−4m′i

))
4 log(a)

if mi ≤ m′i.

The derivative with respect to m′i is therefore

U ′ (m′i|mi) =

g (mi)− g (m′i) if mi > m′i;

1
2

(
g (mi)− g (m′i) +

(
a1−mi − a1−m′i

)
(1− log (a) (1−m′i))

)
if mi ≤ m′i,

where

g (x) = a1−x (1− log (a) (1− x)) .

Note that the function g is increasing in x. We conclude that U ′ (m′i|mi) > 0 when m′i < mi.

When m′i ≥ mi, we can additionally observe that a1−mi < a1−m′i (since a < 1) so that

U ′ (m′i|mi) ≤ 0. Thus, the function U (m′i|mi) is single peaked with a maximum at m′i = mi,

so that the direct mechanism is incentive compatible, as desired.
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