Topic 2: Redistributive Concerns: Kaldor Hicks and the Inverse Optimum

Nathaniel Hendren

Harvard

Spring, 2023

Last Class

Recall: Last class we motivated the MVPF for welfare analysis

$$MVPF = \frac{WTP}{Cost}$$

- Provides welfare comparisons:
 - Pareto comparisons when policies have the same distributional incidence
 - Okun's bucket / social welfare weights when different incidence
- But most policies have different distributional incidence can we do more?
 - Motivated by Kaldor-Hicks "efficiency" tests

Distributional Incidence

- ► Suppose there's a budget-neutral policy that huts the poor and helps the rich.
- ▶ The rich are willing to pay \$1.5 for the policy
- ► The poor are willing to pay \$0.5 to prevent the policy from going into place
- Should we do the policy?

Distributional Incidence

- ► Two common economic methods for resolving interpersonal comparisons
- 1. Social welfare function (Bergson (1938), Samuelson (1947), Diamond and Mirrlees (1971), Saez and Stantcheva (2015))
 - Allows preference for equity
 - ▶ Do the policy only if \$1.50 to the rich is valued more than \$0.5 to the poor:

$$\frac{\eta^{rich}}{\eta^{poor}} > \frac{1}{3}$$

- Subjective choice of researcher or policy-maker
- 2. Kaldor Hicks Compensation Principle (Kaldor (1939), Hicks (1939, 1940))
 - Motivates aggregate surplus, or "efficiency", as normative criteria
 - ▶ $$1.50 $0.50 = $1 > 0 \implies$ do the policy
 - ► Ignores issues of "equity"

Kaldor Hicks: Motivating Aggregate Surplus

- ▶ Suppose individuals, i, are willing to pay s_i for a policy change.
 - Pareto only if $s_i > 0$ for all i
 - In general, $s_i > 0$ and $s_i < 0$ for some i and j
 - ► What to do?
- ► Kaldor Hicks: Suppose we consider alternative policy that also has taxes/transfers to individuals, *t_i*.
 - ► How much can we tax each individual and break even?
 - Aggregate surplus

$$t_i^{max} = s_i$$

Potential Pareto improvement if and only if

$$\sum_{i} t_{i}^{max} > 0 \iff \sum_{i} s_{i} > 0$$

► If total (unweighted) surplus is positive, then the government can institute taxes + the policy to make everyone better off

This Lecture

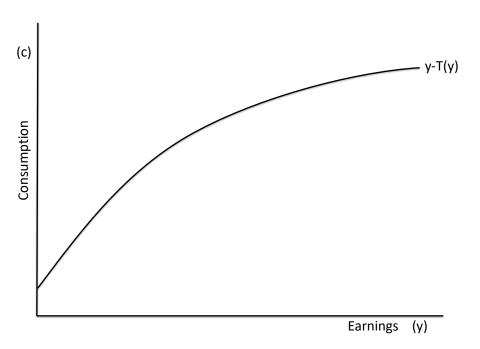
- Kaldor and Hicks provide novel method to resolve interpersonal comparisons
 - Use individual-specific lump-sum transfers to neutralize interpersonal comparisons
- ▶ BUT: Key insight of Mirrlees and optimal tax literature: Can't do individual-specific lump-sum taxes
 - Want to tax two people with the same income differently (high effort low luck vs. low effort high luck)
- ► This lecture: Update Kaldor-Hicks so that transfers are incentive compatible (Mirrlees (1971))
 - Apply to MVPF calculations in Topic 1
 - Key idea: Kaldor-Hicks motivates comparing MVPF of policy to MVPF of distributionally-equivalent tax cut

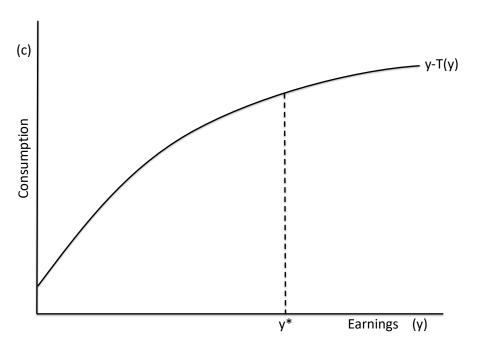
This Lecture

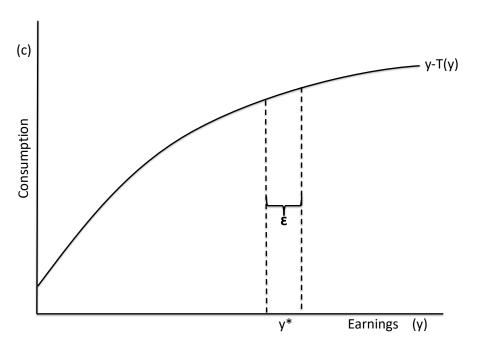
- ► Hicks (1939) writes:
 - "If, as will often happen, the best methods of compensation feasible involve some loss in productive efficiency, this loss will have to be taken into account. (Hicks, 1939)
- Loosely follow mathematical models in Hendren (2020), "Measuring Economic Efficiency Using Inverse-Optimum Weights":
 - ► GE version in Tsyvinksi and Werquin (2019)
- Other key readings:
 - Main ideas first presented in Mirrlees (1976, JPUBEC) (A classic!)
 - Empirically implemented in inverse optimum literature (Bourguignon and Spadaro, 2012)
 - See also Hylland and Zeckhauser (1979), Coate (2000), Kaplow (1996, 2004, 2006, 2008)
 - Related to optimal income taxation (Mirrlees, 1971, Saez, 2001)

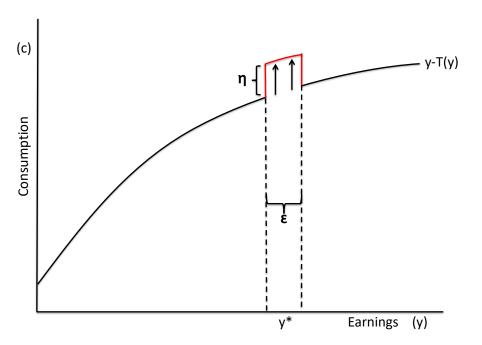
Exploiting the Envelope Theorem...

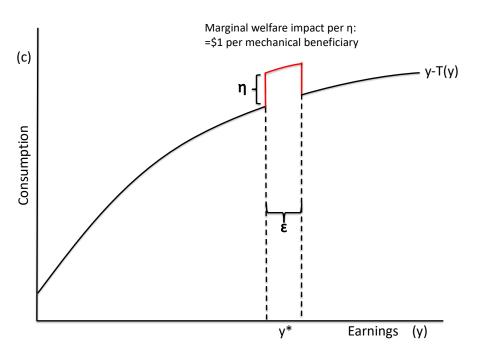
- Key idea: Envelope theorem allows for empirical method to account for distortions
 - Goal: turn unequal surplus into equal surplus using modifications to the tax schedule
 - Not individual-specific lump-sum transfers
 - Cost of moving \$1 of surplus differs from \$1 because of how behavioral response affects government budget
- \triangleright Suppose we want to provide transfers to those earning near y^*

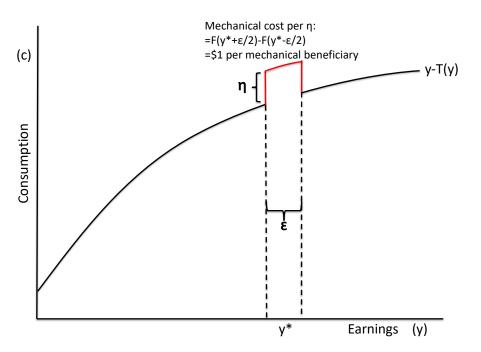


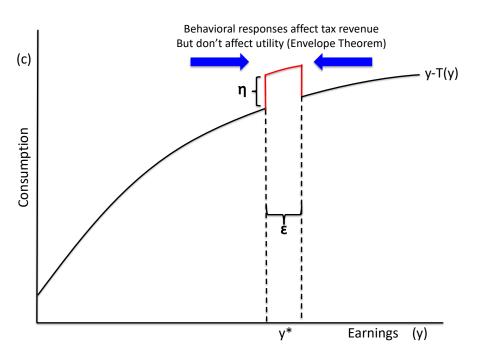


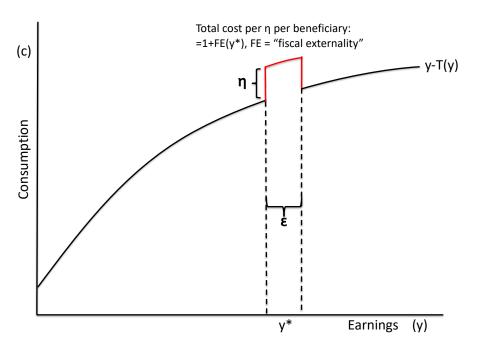












Weights

Consider the function:

$$\tilde{g}\left(y\right) = 1 + FE\left(y\right)$$

or the normalized function

$$g(y) = \frac{1 + FE(y)}{1 + E[FE(y)]}$$

- ▶ To first order: \$1 surplus to those earning y can be turned into g(y)/n surplus to everyone through modifications to tax schedule
- Fiscal externality logic does not rely on functional form assumptions
 - Allows for each person to have her own utility function and arbitrary behavioral responses
 - Extends to multiple policy dimensions (Later if time...)
- For now, find empirical expression for FE(y)

Mathematical Derivation

- What is the marginal cost of a tax cut to those earning near y?
- ightharpoonup Consider calculus of variations in T(y)
 - ▶ Define $\hat{T}(y; y^*, \epsilon, \eta)$ by

$$\hat{T}\left(y;y^{*},\epsilon,\eta\right) = \begin{cases} T\left(y\right) & \text{if } y \notin \left(y^{*} - \frac{\epsilon}{2},y^{*} + \frac{\epsilon}{2}\right) \\ T\left(y\right) - \eta & \text{if } y \in \left(y^{*} - \frac{\epsilon}{2},y^{*} + \frac{\epsilon}{2}\right) \end{cases}$$

- \hat{T} provides η additional resources to an ϵ -region of individuals earning between $y^* \epsilon/2$ and $y^* + \epsilon/2$.
- ▶ Given \hat{T} , individual of type θ chooses \hat{y} $(y^*, \epsilon, \eta; \theta)$ that maximizes utility
 - Some people who earn near y^* might move away from y^* because the government is taxing them more (or move towards y^* if $\eta < 0$)

Causal effects (vs. IC constraints)

Define choice of income, y, in environment with ϵ and η by

$$\hat{y}\left(\theta; y^*, \epsilon, \eta\right) = \operatorname{argmax} \quad u\left(y - \hat{T}\left(y; y^*, \epsilon, \eta\right), y; \theta\right)$$

- ► How does this relate to IC constraints in mechanism design approach?
 - Embedded in ŷ function we substitute the maximization program into the resource constraint and assume observed behavior maximizes the IC constraint
 - Trade causal effects of tax variation for structural assumptions of type distribution and shapes of preferences
 - Causal effects are sufficient...

Marginal Cost of Taxation

▶ Given choices $\hat{y}(y^*, \epsilon, \eta; \theta)$, government revenue is given by

$$\hat{q}\left(\boldsymbol{y}^{*},\boldsymbol{\epsilon},\boldsymbol{\eta}\right)=\frac{1}{\Pr\left\{\boldsymbol{y}\left(\boldsymbol{\theta}\right)\in\left[\boldsymbol{y}^{*}-\frac{\epsilon}{2},\boldsymbol{y}^{*}+\frac{\epsilon}{2}\right]\right\}}\int_{\boldsymbol{\theta}}\left[\hat{T}\left(\hat{\boldsymbol{y}}\left(\boldsymbol{\theta};\boldsymbol{y}^{*},\boldsymbol{\epsilon},\boldsymbol{\eta}\right);\boldsymbol{y}^{*},\boldsymbol{\epsilon},\boldsymbol{\eta}\right)-T\left(\boldsymbol{y}\left(\boldsymbol{\theta}\right)\right)\right]d\boldsymbol{\mu}\left(\boldsymbol{\theta}\right)$$

(normalized by the number of mechanical beneficiaries).

- Note $\hat{q}(y^*, 0, \eta) = \hat{q}(y^*, \epsilon, 0) = 0$ for all ϵ and η
- ightharpoonup Marginal cost of a tax cut to those earning near y:

$$1 + FE(y) = \lim_{\epsilon \to 0} \frac{\partial \hat{q}(y, \epsilon, \eta)}{\partial \eta}$$

▶ Note the MVPF of a tax cut to those earning near y is...?

Key Assumptions

- What are the key assumptions to obtain this representation of the cost of taxation?
 - Partial equilibrium / "local incidence"
 - Behavioral response only induces a fiscal externality
 - Other incidence/externalities would need to be accounted for
 - Others?

Two Types of Policies

- ▶ Basic Idea: Use 1 + FE(y) to weight individual willingness to pay for a policy
 - ► Implements modified Kaldor-Hicks in which transfers occur through income tax schedule
- Broadly, two types of policies to consider:
 - Changes to the tax schedule
 - Changes to other goods/transfers/etc

Changes to the Tax Schedule

- To begin, what about policies that change the tax schedule?
 - Must be indifferent to these!
 - ► Why?
 - ▶ Suppose the tax schedule goes from $T(y) \rightarrow T(y) + \epsilon h(y)$
 - Let $s_{\epsilon}\left(y\right)$ denote individual y's WTP for the policy change. And, let $s\left(y\right)=\lim_{\epsilon \to 0}\frac{s_{\epsilon}\left(y\right)}{\epsilon}$ denote the individuals marginal willingness to pay for the tax change
 - Exercise: Show $\int s(y) (1 + FE(y)) = 0$

Werning 2007: Pareto efficient taxation

- ▶ But, can we say nothing about welfare of changes to the tax schedule?
- ▶ What if FE(y) < -1?
 - Impact of behavioral response to tax change is larger than mechanical revenue raised from the tax
 - Local Laffer effect
- ► Werning 2007 shows that this characterizes when there exists Pareto efficient changes to tax schedule
 - Lowering taxes at y will improve everyone's welfare
 - Those with incomes near y pay less taxes
 - And there's more revenue to the government (which can be redistributed)

Welfare Analysis of Non-Tax Policies

- What about the welfare impact of other (non-tax) policies?
- ▶ Given policy, let s(y) denote the WTP of individual earning y for the policy
 - Assume for simplicity WTP does not vary conditional on y. Given by:

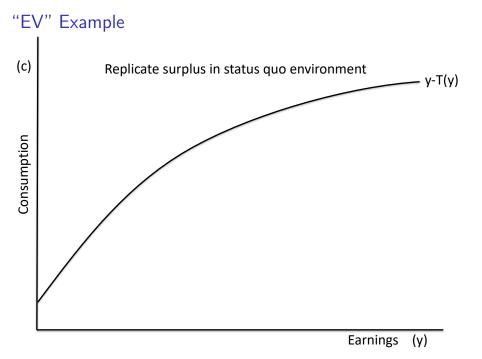
$$s(y) = \frac{\frac{\partial u}{\partial G}}{\lambda}$$

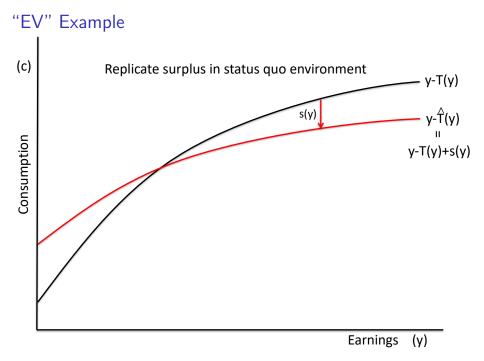
- If s(y) is everywhere positive, then Pareto improvement
- ▶ But, how to resolve tradeoffs if $s(y_1) < 0$ and $s(y_2) > 0$?

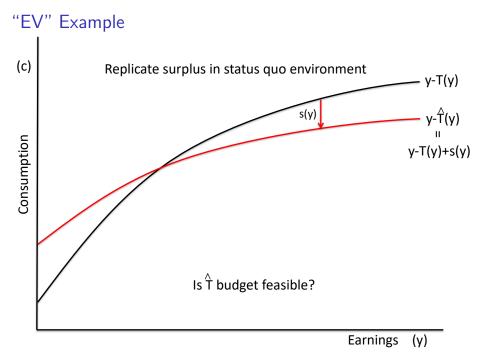
Example: Alternative Environment Benefits Poor (s) Surplus Example: Alternative environment benefits the poor and harms the rich 0 s(y) Earnings

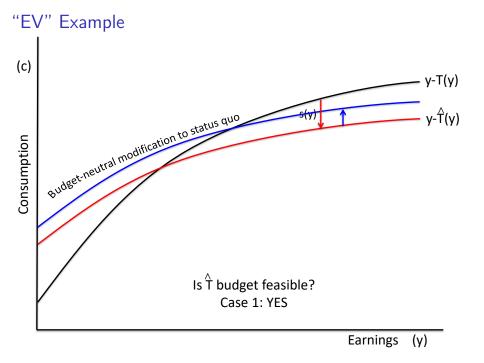
EV and CV

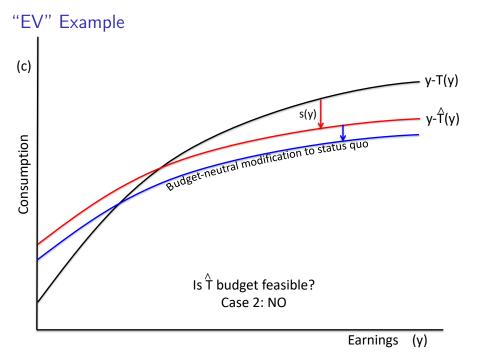
- ightharpoonup Given s(y), let's consider a modified policy that neutralizes distributional comparisons
- Two ways of neutralizing distributional comparisons: EV and CV
- "EV": modify status quo tax schedule
 - ▶ By how much can everyone be made better off in modified status quo world relative alternative environment?

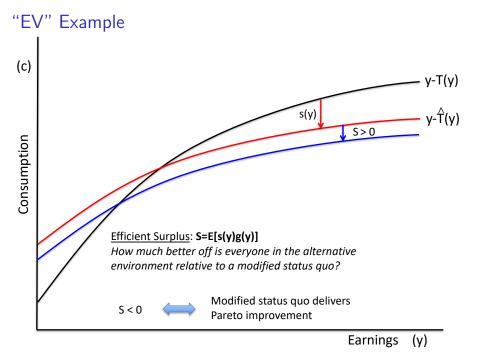






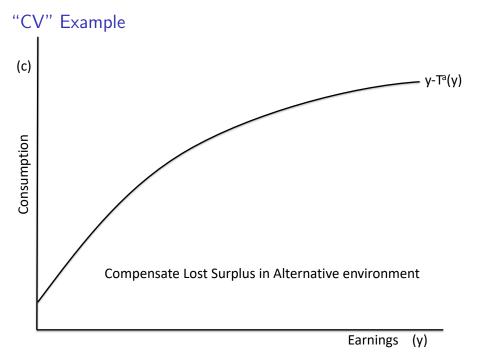


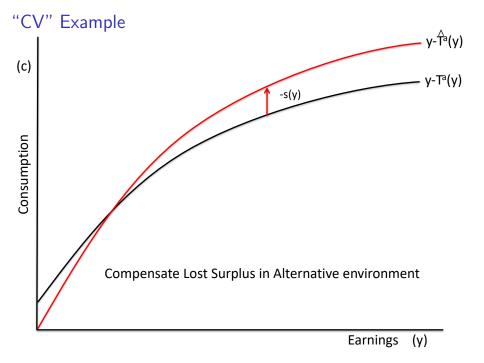


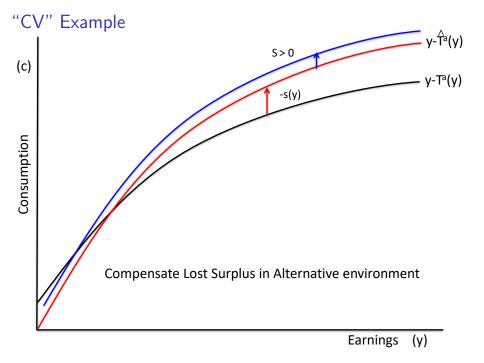


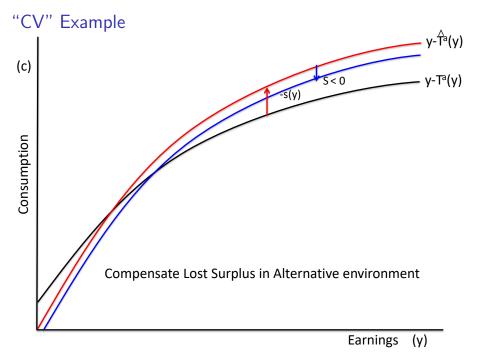
EV and CV

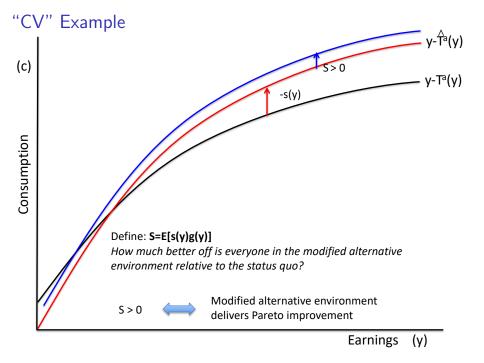
- ► Given s(y), two ways of neutralizing distributional comparisons
- "EV": modify status quo tax schedule
 - By how much can everyone be made better off in modified status quo world relative alternative environment?
- "CV": modify alternative environment tax schedule
 - By how much can everyone be made better off in modified alternative environment relative to status quo?











Pareto Comparisons

- ▶ If g(y) is similar in status quo and alternative environment, then EV and CV are first-order equivalent
 - ► Proof?
- When surplus is homogeneous conditional on income:
 - ► *S* provides first-order characterization of potential Pareto comparisons
 - S quantifies difference between environments without making inter-personal comparisons
 - By how much is everyone better off?
 - What if surplus is heterogeneous conditional on income?

Estimating the Marginal Cost of Taxation

- ▶ What do we need to estimate FE(y)?
- ▶ A bunch of exogenous variation in the tax schedule
 - Combined with data on government revenue, q
 - Then, compute

$$1 + FE(y) = \lim_{\epsilon \to 0} \frac{\partial \hat{q}(y, \epsilon, \eta)}{\partial \eta}$$

- But, need tax variation separate for each y!
 - ▶ In practice: look at responses to policy changes + add a bit of structure

Behavioral Responses to Tax Changes

- Large literature studying behavioral responses to taxation
 - EITC causes people to:
 - ► Enter the labor force (summary in Hotz and Scholz (2003))
 - ► Distort earnings (Chetty et al 2013).
 - ▶ $1 + FE(y) \approx 1.14$ for low-earners (calculation in Hendren 2013)
 - Taxing top incomes causes:
 - ► Reduction in taxable income (review in Saez et al 2012)
 - ▶ Implies $1 + FE(y) \approx 0.50 0.75$
 - Disagreement about amount, but general agreement on the sign: FE(y) < 0
- Reduced form empirical evidence suggests should put more weight on surplus to poor
 - Despite evidence that taxable income elasticities may be quite stable across the income distribution (e.g. Chetty 2012)

A More Precise Representation

- Use optimal tax approach to write FE(y) as function of taxable income elasticities
- ► Let

$$\epsilon^{c}\left(y\right)=$$
 avg comp. elasticity for those earning y

$$\zeta(y) = \text{avg inc. effect for those earning } y$$

$$\epsilon^{P}(y) = \text{avg LFP rate elasticity for those earning } y$$

Optimal Tax Expression

For every point, y^* , such that T'(y) and $\epsilon^c(y^*)$ are locally constant and the distribution of income is continuous:

$$\textit{FE}\left(y^{*}\right) = -\underbrace{\epsilon^{P}\left(y^{*}\right)\frac{T\left(y\right) - T\left(0\right)}{y - T\left(y\right)}}_{\textit{Participation Effect}} - \underbrace{\zeta\left(y^{*}\right)\frac{\tau\left(y^{*}\right)}{1 - \frac{T\left(y^{*}\right)}{y^{*}}}}_{\textit{Income Effect}} - \underbrace{\epsilon^{c}\left(y^{*}\right)\frac{\tau\left(y^{*}\right)}{1 - \tau\left(y^{*}\right)}\alpha\left(y^{*}\right)}_{\textit{Substitution Effect}}$$

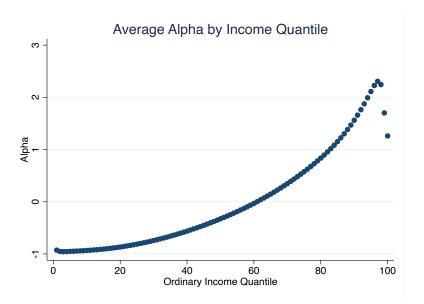
where $\alpha\left(y\right)=-\left(1+\frac{yf'(y)}{f(y)}\right)$ is the local Pareto parameter of the income distribution

- ▶ Heterogeneity in FE(y) depends on:
 - 1. Shape of income distribution, $\alpha(y)$
 - 2. Shape and size of behavioral elasticities
 - 3. Shape of tax rates
- ➤ See derivation in Bourguignon and Spadaro (2012), Zoutman (2013a, 2013b), and Hendren (2020)

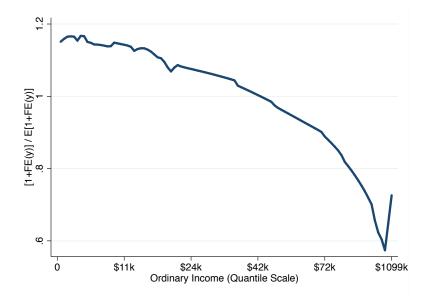
Estimation Approach in US (Hendren, 2020)

- Calibrate behavioral elasticities from existing literature on taxable income elasticities
 - Assess robustness to range of estimates (e.g. compensated elasticity of 0.1, 0.3, and 0.5)
- Estimate shape of income distribution and marginal income tax rate using universe of US income tax returns
 - Account for covariance between elasticity of income distribution and marginal tax rate

Average Alpha



Shape of 1+FE(y)



Example: Producer versus Consumer Surplus

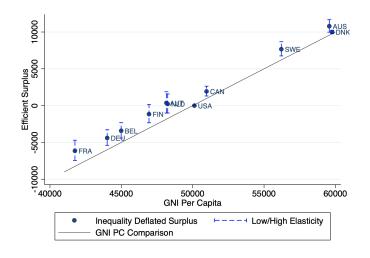
- Suppose budget neutral policy with benefits to producers S^P and consumers S^C
 - Extreme assumption: producer surplus falls to top 1%
 - Consumer surplus falls evenly across income distribution
- Optimal weighting:

$$S^{ID}=0.77S^P+S^C$$

- "Consumer surplus standard" requires top tax rate near Laffer curve
 - France should have tighter merger regulations?
- Key assumption: policy is budget neutral (inclusive of fiscal externalities)

Example: Economic Growth

Figure 10: Comparisons of Income Distributions Across Countries



Targeted Non-Budget Neutral Policies

- Suppose G affects those with income y
- Construct

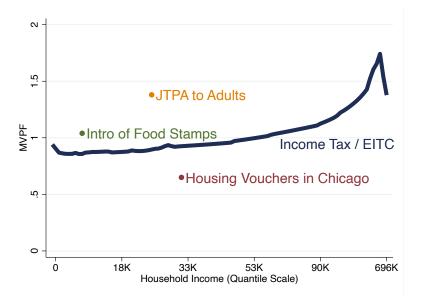
$$MVPF_G = \frac{s(y)}{1 + FE^G}$$

- ▶ Depends on causal effects (FE^G) and WTP for non-market good
- Additional spending on G desirable iff

$$\underbrace{MVPF_G}_{\text{Value of }G} \ge \underbrace{\frac{1}{1 + FE(y)}}_{\text{Value of }T(y)}$$

 Compare value of spending to value of equivalent tax cut to similar people

Welfare Impact



Two reasons to use these weights...

- Logic: Compare the value of the policy to a tax cut with similar distributional incidence
 - Can augment policy with benefit tax to make Pareto improvement
 - Prefer the policy by the (potential) Pareto principle
- Rationales not to use these weights?
 - e.g. Political economy constraints on redistribution? Others?

Inverse Optimum Approach

- ▶ Up to now, 1 + FE(y) is the **cost** of taxation
 - Not necessarily a normative value aside from being able to search for potential Pareto improvements
- But, can also have a normative interpretation
 - ▶ Reveals the social preferences of whoever set the tax schedule

Optimal Tax: Social Preferences \implies Taxes

"Inverse-Optimal" Tax: Taxes \implies Social Preferences

Inverse Optimum Derivation

► Social welfare:

$$W = \int \psi(\theta) u(\theta) d\mu(\theta)$$

- ▶ Define social welfare $\hat{W}(y^*, \epsilon, \eta)$ to be social welfare under $\hat{T}(y; y^*, \epsilon, \eta)$
- Let $\nu\left(\theta\right)$ denote the social marginal utility of income for type θ :

$$\nu\left(\theta\right) = \frac{dW}{dy_{\theta}} = \lambda\left(\theta\right)\psi\left(\theta\right)$$

where λ is the individual's marginal utility of income

- ▶ So, ν is the impact on social welfare of giving type θ an additional \$1.
 - \triangleright Ratios of ν are Okun's bucket

$$\frac{\nu\left(\theta_{1}\right)}{\nu\left(\theta_{2}\right)}=2$$

implies indifferent to \$1 to type θ_1 relative to \$2 to type θ_2

Inverse Optimum Derivation

- For a given y^* , what is the welfare impact of increasing transfers to those earning near y by η ?
- Use envelope theorem:
 - Marginal welfare impact given by mechanical loss in income weighted by social marginal utility of income:

$$\frac{dW}{d\eta}|_{\eta=0} = \int \nu(\theta) \, 1\left\{y \in \left(y^* - \frac{\epsilon}{2}, y^* + \frac{\epsilon}{2}\right)\right\} d\mu(\theta)$$

- Note: Assumes partial equilibrium
- So, a localized tax cut yields welfare:

$$\lim_{\epsilon \to 0} \frac{dW}{d\eta} |_{\eta=0} = E \left[\nu \left(\theta \right) | y \left(\theta \right) = y^* \right]$$

or, the average marginal utilities of income for those earning \boldsymbol{v}^{\ast}

Inverse Optimum Derivation

Government is indifferent to tax changes if and only if

$$E\left[\nu\left(\theta\right)|y\left(\theta\right)=y^{*}\right]=1+FE\left(y^{*}\right)\quad\forall y^{*}$$

- Exercise: Show this is equivalent to equating all MVPFs associated with tax changes to each other
- Common simplifying assumption: Unidimensional heterogeneity:

$$E\left[\nu\left(\theta\right)|y\left(\theta\right)=y\right]=\nu\left(y\right)$$

 Otherwise reveals average social marginal utilities of income conditional on income

- Implement using common elasticity representation
 - Assume convex preferences (no participation responses) and no income effects
- ightharpoonup Recall that if $\tau(y)$ is linear then

$$g\left(y^{*}\right)=1+\epsilon\frac{\tau\left(y\right)}{1-\tau\left(y\right)}\frac{d}{dy}|_{y=y^{*}}\left[y\frac{f\left(y\right)}{f\left(y^{*}\right)}\right]$$

where $\frac{d}{dy}|_{y=y^*}\left[y\frac{f(y)}{f(y^*)}\right]=-\left(1+\frac{y^*f'(y^*)}{f(y^*)}\right)$ is the local Pareto parameter of the income distribution

 \blacktriangleright But, if τ is nonlinear, this generalizes to:

$$g\left(y^{*}\right) = 1 + \epsilon \frac{d}{dy}|_{y=y^{*}} \left[\frac{\tau\left(y\right)}{1 - \tau\left(y\right)} y \frac{f\left(y\right)}{f\left(y^{*}\right)} \right]$$

or

$$\frac{g\left(y^{*}\right)-1}{\epsilon}f\left(y^{*}\right)=\frac{d}{dy}|_{y=y^{*}}\left[\frac{\tau\left(y\right)}{1-\tau\left(y\right)}yf\left(y\right)\right]$$

▶ Use Fundamental Thm of Calculus:

$$\left[\lim_{\tilde{y}\rightarrow\infty}\frac{\tau\left(y\right)}{1-\tau\left(y\right)}\frac{yf\left(y\right)}{f\left(y^{*}\right)}\right]-\frac{\tau\left(y\right)}{1-\tau\left(y\right)}yf\left(y\right)=\int_{y}^{\infty}\frac{g\left(\tilde{y}\right)-1}{\epsilon}f\left(\tilde{y}\right)d\tilde{y}$$

- ► Generally, $\lim_{\tilde{y}\to\infty} \frac{\tau(y)}{1-\tau(y)} \frac{yf(y)}{f(y^*)} = 0$ (e.g. if f is pareto, $f \propto y^{-\alpha-1}$)
- So

$$\frac{\tau\left(y\right)}{1-\tau\left(y\right)}yf\left(y\right) = \int_{\gamma}^{\infty} \frac{1-g\left(\tilde{y}\right)}{\epsilon}f\left(\tilde{y}\right)d\tilde{y}$$

▶ Implies basic Mirrlees formula (Diamond and Saez JEP 2011):

$$\frac{\tau(y)}{1-\tau(y)}\alpha(y)\,\epsilon(y) = 1 - G(y)$$

where

$$G(y) = \frac{1}{1 - F(y)} \int_{y}^{\infty} g(\tilde{y}) f(\tilde{y}) d\tilde{y}$$

is the average social marginal utilities on those earning more than \boldsymbol{y}

$$\alpha(y) = \frac{yf(y)}{1 - F(y)}$$

is the local Pareto parameter of the income distribution

- Literature estimating inverse optimum solutions in many settings
 - Bourguignon and Spadaro (2012), Jacobs, Jongen, and Zoutman (2013; 2014), Lockwood and Weinzierl (2014)
- Key inputs:
 - ightharpoonup Tax schedule, au(y)
 - \triangleright Shape of income distribution, $\alpha(y)$
 - ightharpoonup Taxable income elasticity, $\epsilon(y)$
- Key Assumptions
 - ightharpoonup constant elasticity (consensus that $\epsilon = 0.5$?)
 - no other responses (e.g. participation)

▶ Question: Is $\epsilon(y)$ identified by the causal effect of tax changes?

- ▶ Bourguignon and Spadardo (2012) were one of the first to empirically implement the inverse optimum approach
- Use survey data in France
- Use wages as y
 - Problems with this?
 - ► Recall: Census/survey data vs. tax data...Piketty and Saez (2003)

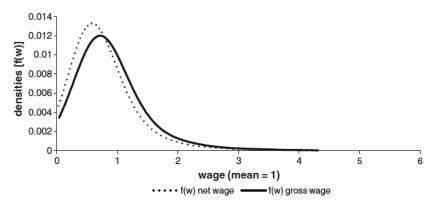


Fig. 2 Kernel wage densities for singles: net and gross scenario

- Problem: tax rates vary conditional on wage
- Ideally, estimate tax rate separately using tax data
 - ► Then aggregate the fiscal externality (see Hendren 2016)
- Solution in survey data: smooth it...

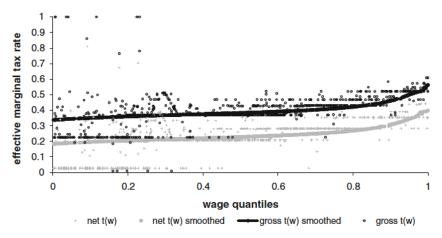


Fig. 1 Kernel smoothed marginal tax rates for singles: net and gross scenarios

- ► Finally, need elasticity of taxable income
- ▶ Use range of elasticities between 0.1 and 0.5

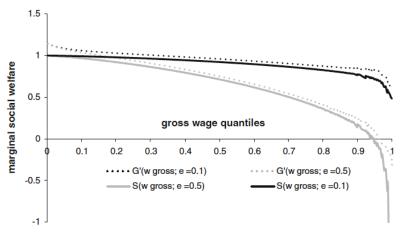


Fig. 4 Social marginal welfare for singles (on gross wages)

Conclusion: If taxable income elasticity is 0.5, then taxes on the rich are too high:

$$FE(y) < -1$$

- Above the top of the laffer curve
- Potential limitations?
- Recall from optimal tax:
 - optimal for top tax rate to be zero unless we have thick upper tail of income distribution
- Nathan's take: result largely driven by thin tail of income distribution provided in survey data; unclear whether would hold in tax data

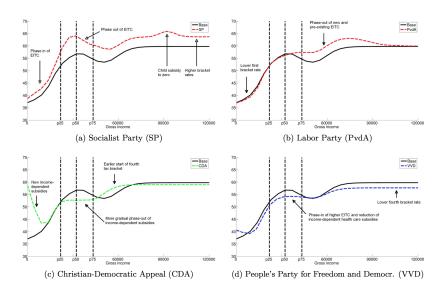
Jacobs, Jongen, and Zoutman (2016)

- ▶ Jacobs, Jongen, and Zoutman (2016) "Redistributive Politics and the Tyranny of the Middle Class"
- ► Key idea: Use not only equilibrium tax rates, but proposed tax changes to estimate social preferences
 - Use data from Dutch political parties
- Map variations in tax policies, $au^{j}\left(y\right)$, into implied social welfare weights, $G^{j}\left(y\right)$
 - ▶ Infer political preferences of parties

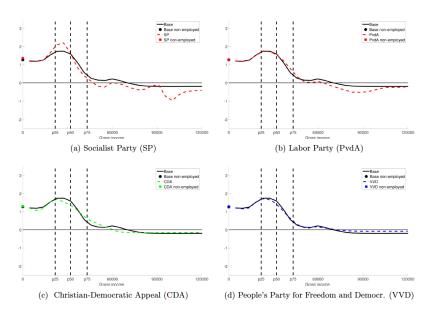
$$\frac{\tau^{J}(y)}{1-\tau^{j}(y)}\alpha(y)\epsilon(y)=1-G^{j}(y)$$

where G^j is the implied social welfare weights on those earning more than ${\it y}$

Effective Marginal Tax Rates



Implied Social Preferences



Jacobs, Jongen, and Zoutman (2016)

- Potential concerns:
 - Dynamics of policy responses
 - Changes in income distribution
 - Changes in taxable income elasticity
- General issue with "sufficient statistics"?

Summary

- Redistribution isn't free
 - Empirical evidence suggests it is costly (cheap) to redistribute from rich to poor (poor to rich)
 - Policies targeted towards the poor "should" be inefficient relative to a world with lump-sum transfers
- But, accounting for distributional incidence requires estimating fiscal externalities
 - ► Taxable income elasticity is a tough empirical parameter...
 - And, still need to estimate MVPF of a policy (which requires estimating its fiscal externality too...)
- ► Can we reduce these requirements of estimating all these behavioral responses?
 - Next lecture!

Heterogeneous Surplus

- What if policy affects different types conditional on income?
 - e.g. Medicaid affects the poor and sick; EITC affects the poor and healthy
 - And maybe there's a social preference for the sick conditional on income?
- Redistribution based on income, not individual-specific
 - Two people with same income, $y(\theta)$, can have different surplus, $s(\theta)$
 - ► Income tax is a "blunt instrument"
 - ▶ $\int s(\theta) g(y(\theta)) = \text{how much on average}$ is each income level better off
 - Search for potential Pareto comparisons more difficult

Heterogeneous Surplus

- Option 1: Still can search for potential Pareto improvements
- Define

$$\underline{S} = E\left[\min\left\{s\left(\theta\right) \middle| y\left(\theta\right) = y\right\}g\left(y\right)\right] > 0$$

- Modified alternative environment delivers Pareto improvement iff $\underline{S} > 0$
- ▶ Modified status quo offers Pareto improvement iff \overline{S} < 0
- No potential Pareto ranking when $\underline{S} < 0 < \overline{S}$
- Easier if surplus does not vary conditional on income, so that $\underline{S} = S = \overline{S}$

Generalization to multiple dimensions

- Option 2: Add more status quo policies
- ▶ Marginal cost $1 + FE(\mathbf{X})$ as opposed to 1 + FE(y)
 - e.g. Transfers conditional on both income, y, and medical spending, m;
 - Notation: $\mathbf{X} = \{y, m\}$
- ► How do we construct FE (X)?
- ► Construct $FE(\mathbf{X}) = \lim_{\epsilon \to 0} FE(\mathbf{X}, \epsilon)$, where $FE(\mathbf{X}^*, \epsilon) = \frac{d}{d\eta} q(\mathbf{X}, \eta, \epsilon) 1$ is the fiscal externality from giving a tax cut to those with values of $\mathbf{X} \in N_{\epsilon}(\mathbf{X}^*)$
 - ▶ $q(\mathbf{X}, \eta, \epsilon)$ is government revenue when types within an ϵ -neighborhood of \mathbf{X} obtain a tax cut of η
- ▶ Then, test

$$\int \left[1 + FE\left(\mathbf{X}\right)\right] s\left(\mathbf{X}\right) >^{?} 0$$