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A Derivations of the Necessary Optimal Conditions for

the Market Maker Problem

Consider the following market maker problem (the same as the programming problem (20)

in the main text)

max
[p2,δh(p2),xh(p2)]h

∑
h

∑
p2

λhαhδh (p2)
[
uh
(
chw1 (p2) , c

h
z1 (p2)

)
+ V h

(
kh (p2) , p2

)]
(A.1)

subject to

δh (p2) k
h (p2) ≥ 0,∀h; p2, (A.2)∑

h,p2

αhδh (p2) c
h
w1 (p2) =

∑
h

αhehw1, (A.3)
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∑
h,p2

αhδh (p2)
[
chz1 (p2) + kh (p2)

]
=
∑
h

αhehz1, (A.4)

∑
h

δh (p2)α
h∆h

(
kh (p2) , p2

)
= 0,∀p2. (A.5)

The Lagrangian for this problem is

L =
∑
h

αh
∑
p2

δh (p2)

{
λh
[
uh
(
chw1 (p2) , c

h
z1 (p2)

)
+ V h

(
kh (p2) , p2

)]
+

µh (p2)

αh
kh (p2) + µw1

[
ehw1 − chw1 (p2)

]
+ µz1

[
ehz1 − chz1 (p2)− kh (p2)

]
− µ∆ (p2)∆

h
(
kh (p2) , p2

)}

The FOCs with respect to chw1 (p2) , c
h
z1 (p2) , k

h (p2), respectively, are

δh (p2)
[
λhαhuhw1 − µw1α

h
]
= 0, ∀h; p2, (A.6)

δh (p2)
[
λhαhuhz1 − µz1α

h
]
= 0, ∀h; p2, (A.7)

δh (p2)
[
λhαhV h

k + µh (p2)− µ∆ (p2)α
h∆h

k

(
kh (p2) , p2

)
− µz1α

h
]
= 0, ∀h; p2, (A.8)

where uhw1 ≡
∂uh(chw1(p2),c

h
z1(p2))

∂chw1(p2)
, uhz1 ≡

∂uh(chw1(p2),c
h
z1(p2))

∂chz1(p2)
, V h

k ≡ ∂V h(kh(p2),p2)
∂kh(p2)

and ∆h
k

(
kh (p2) , p2

)
≡

∂∆h(kh(p2),p2)
∂kh(p2)

. Considering only the case with δh (p2) > 0, we can show that the

µz1

µw1
=

uhz1
uhw1

, (A.9)

µz1

µw1
=

V h
k

uhw1

+
µh (p2)

λhαhuhw1

− µ∆ (p2)

µw1
∆h

k

(
kh (p2) , p2

)
(A.10)

Using the envelope theorem for the value function of the second period utility maximization prob-

lem, we can show that, for any p2 with δh (p2) > 0, V h
k

(
kh (p2) , p2

)
= uhz2

(
chw2 (p2) , c

h
z2 (p2)

)
R.

Therefore,

uhz1
uhw1

=
uhz2
uhw1

R+
µh (p2)

λhαhuhw1

− µ∆ (p2)

µw1
∆h

k

(
kh (p2) , p2

)
, ∀h = a, b. (A.11)

Thus far, we have been treating p2 as taking discrete values in a finite grid, as we have finite sum

over such values. Here, we ensure our grid is judiciously fine enough, i.e., contains the best possible

p2, by treating p2 as a continuous parameter. We then can optimize over p2 using the envelope

condition, taking the derivative of the Lagrangian with respect to p2, and for the optimization

condition, set that derivative to zero. As a result, for each agent type h with δh (p2) > 0,

λhV h
p

(
kh (p2) , p2

)
= µ∆ (p2)∆

h
p

(
kh (p2) , p2

)
. (A.12)
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B Derivations of the Necessary Optimal Conditions for

Utility Maximization Problem in the Decentraliza-

tion with Individually Chosen Rights to Trade

Consider the following utility maximization problem (the same as the maximization problem (27)

in the main text)

max
p2

max
p2,δh(p2),xh(p2)

∑
p2

δh (p2)
[
uh
(
chw1 (p2) , c

h
z1 (p2)

)
+ V h

(
kh (p2) , p2

)]
(A.13)

subject to

δh (p2) k
h (p2) ≥ 0,∀h; p2, (A.14)∑

p2

δh (p2)
[
chw1 (p2) + p1c

h
z1 (p2) + p1k

h (p2) + P∆ (p2)∆
h
(
kh (p2) , p2

)]
≤ ehw1 + p1e

h
z1, (A.15)

The Lagrangian for this problem is

L =
∑
p2

δh (p2)

{
uh
(
chw1 (p2) , c

h
z1 (p2)

)
+ V h

(
kh (p2) , p2

)
+ ηh (p2) k

h (p2) + ηhbc,1

[
ehw1 + p1e

h
z1 − chw1 (p2)− p1c

h
z1 (p2)− p1k

h (p2)− P∆ (p2)∆
h
(
kh (p2) , p2

)]}
The FOCs with respect to chw1 (p2) , c

h
z1 (p2) , k

h (p2), respectively, are

δh (p2)
[
uhw1 − ηhbc,1

]
= 0, ∀h; p2, (A.16)

δh (p2)
[
uhz1 − ηhbc,1p1

]
= 0, ∀h; p2, (A.17)

δh (p2)
[
V h
k + ηh (p2)− ηhbc,1p1 − ηhbc,1P∆ (p2)∆

h
k

(
kh (p2) , p2

)]
= 0, ∀h; p2, (A.18)

Using a similar process as in online Appendix A, we can show that

p1 =
uhz1
uhw1

=
uhz2
uhw1

R+
ηh (p2)

uhw1

− P∆ (p2)∆
h
k

(
kh (p2) , p2

)
, ∀h = a, b. (A.19)

Again, we here ensure our grid is judiciously fine enough, i.e., contains the best possible p2, by

treating p2 as a continuous parameter. We then can optimize over p2 using the envelope condition,

taking the derivative of the Lagrangian with respect to p2, and for the optimization condition, set

that derivative to zero. As a result, for each agent type h with δh (p2) > 0,(
1

ηhbc,1

)
V h
p

(
kh (p2) , p2

)
= P∆ (p2)∆

h
p

(
kh (p2) , p2

)
, (A.20)

With the matching conditions: P∆ (p2) = µ∆(p2)
µw1

and λh = µw1

ηhbc,1
, this condition is equivalent to

condition (A.12).
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C Proofs of the First Welfare Theorem and the Exis-

tence Theorem for the General Economy in Section

of 3 the Main Text

Proof of the First Welfare Theorem 1. This proof follows Prescott and Townsend (1984a). Let

allocations
(
xh,b

)
, and prices (p1, P (w)) be a competitive equilibrium. Suppose the competitive

equilibrium allocation is not Pareto optimal, i.e., there is an attainable allocation x̃ such that∑
w x̃h (w)Uh (w) ≥

∑
w xh (w)Uh (w) for all h and

∑
w x̃ĥ (w)U ĥ (w) >

∑
w xĥ (w)U ĥ (w) for

some ĥ. With local non-satiation of preferences,
∑

w P (w)xh (w) ≤
∑

w P (w) x̃h (w) for all h,

and
∑

w P (w)xĥ (w) <
∑

w P (w) x̃ĥ (w) for some ĥ. Summing over all agents with weights αh,

we have ∑
w

P (w)
∑
h

αhxh (w) <
∑
w

P (w)
∑
h

αhx̃h (w) . (A.21)

In addition, for each allocation x and x̃, we can find a corresponding supply from the intermediary

such that b (w) =
∑

h α
hxh (w) and b̃ (w) =

∑
h α

hx̃h (w). Since both x and x̃ satisfy all feasibility

conditions, b and b̃ both satisfy the clearing constraints (54)-(56). As a result, (A.21) can be

rewritten as
∑

w P (w) b (w) <
∑

w P (w) b̃ (w). On the other hand, the intermediary’s profit

maximization implies that
∑

w P (w) b (w) ≥
∑

w P (w) b̃ (w). This is a contradiction!

Proof of the Existence Theorem 3. For notational convenience, we put the endowment eh onto the

grid. Let P = [P (w)]w be the prices of all bundles. As in Prescott and Townsend (2005), with the

possibility of negative prices, we restrict prices P to the closed unit ball;

D =
{
P ∈ Rn|

√
P ·P ≤ 1

}
, (A.22)

where “·” is the inner product operator. Note that the set D is compact and convex.

Consider the following mapping (λ,x,P) → (λ′,x′,P′), where λ, λ′ ∈ SH−1, xh ∈ Xh. Recall

that the consumption possibility set Xh is non-empty, convex, and compact. Let X be the cross-

product over h of Xh: X = X1 × . . .×XH .

The first part of the mapping is given by λ −→ (x′,P′), where x′ is the solution to the Pareto

program given the Pareto weight λ, and P′ is the renormalized prices. With the second welfare

theorem, the solution to the Pareto program for a given Pareto weight λ also gives us (compensated)

equilibrium prices P∗. The local non-satiation of preferences implies that P∗ ̸= 0. The normalized

prices are given by

P′ =
P∗

P∗ ·P∗ .
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Note that P′ · P′ = 1. In order to preserve the convexity of the mapping with prices in the unit

ball D, we define the convex hull of the normalized prices. Let D̃ be the sets of all normalized

prices, and accordingly coD̃ be its convex hull. Since P′ ∈ D̃, P′ ∈ coD̃, which is compact and

convex. Note that extending D̃ to its convex hull does not add any new relative prices. It is not too

difficult to show that this mapping, λ −→ (x′,P′), is non-empty, compact-valued, convex-valued.

By the Maximum theorem, it is upper hemi-continuous. In addition, the upper hemi-continuity is

preserved under the convex-hull operation.

The second part of the mapping is given by (λ,x,P) −→ λ′. The new weight can be formed as

follows:

λ̂h = max

{
0, λh +

P ·
(
eh − xh

)
A

}
, (A.23)

λ′h =
λ̂h∑
h λ̂

h
, (A.24)

where A is a positive number such that
∑

h

∣∣P ·
(
eh − xh

)∣∣ ≤ A. It is clear that this mapping

is also non-empty, compact-valued, convex-valued, and upper hemi-continuous. In conclusion,

(λ,x,P) → (λ′,x′,P′) is a mapping from SH−1 × X × Sn−1 −→ SH−1 × X × Sn+1. Since each

set is non-empty, compact, and convex, so is its cross-product. In addition, the overall mapping is

non-empty, compact-valued, convex-valued, and upper hemi-continuous since these properties are

preserved under the cross product operation. By Kakutani’s fixed point theorem, there exists a

fixed point (λ,x,P).

Proved in the Second Welfare Theorem 2 in the Appendix in the main text of the main text,

any Pareto optimal allocation can be supported as a compensated equilibrium. In addition, the

nonsatiation and the positive endowment assumptions ensure that there is a cheaper point as in

the proof of Theorem 2. As a result, a compensated equilibrium is a competitive equilibrium with

transfers.

We now need to show that there is no need for wealth transfers in equilibrium, i.e., the budget

constraint without transfers P ·
(
eh − xh

)
= 0 holds for every agent h. It is not difficult to show

that
∑

h α
hP ·

(
eh − xh

)
= 0. In addition, at a fixed point P ·

(
eh − xh

)
must be the same sign

for every h. Hence, P ·
(
eh − xh

)
= 0 for every agent h. This clearly confirms that the budget

constraint (without transfers) of every agent h holds. Hence, a competitive equilibrium (without

transfers) exists.
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D Definition of Competitive Equilibrium (with Exter-

nality) Corresponding to the General Model in Sec-

tion of 3 the Main Text

Definition A.1 (Competitive Equilibrium with Externality). A competitive equilibrium is a spec-

ification of prices (p1,Q,p), and an allocation
(
ch1 , k

h,θh, τ h
)
h
such that

• for any agent type h as a price taker,
(
ch1 , k

h,θh, τ h
)
solves

max
ch1 ,k

h,θh,τh
uh
(
chw1, c

h
z1

)
+ β

∑
s

πsu
h

ehw2s +
∑
j

Djsθ
h
j + τhw2s, e

h
z2s +Rsk

h + τhz2s

 (A.25)

subject to the budget constraints in the first period

chw1 + p1

(
chz1 + kh

)
+
∑
j

Qjθ
h
j ≤ ehw1 + p1e

h
z1, (A.26)

the spot budget constraint in state s

τhw2s + p2sτ
h
z2s = 0, for s = 1, . . . , S, (A.27)

the collateral constraint in state s

p2sRsk
h +

∑
j

Djsθ
h
j ≥ 0, ∀s = 1, . . . , S, (A.28)

and the non-negativity constraint for saving

kh ≥ 0, (A.29)

• markets clear for good w and good z at t = 1, for θhj for all j = 1, . . . , J , and for spot trade

τhℓs in state s, respectively: ∑
h

αhchw1 =
∑
h

αhehw1, (A.30)

∑
h

αh
(
chz1 + kh

)
=

∑
h

αhehz1, (A.31)∑
h

αhθhj = 0, ∀j, (A.32)∑
h

αhτhℓ2s = 0, ∀s; ℓ = w, z. (A.33)
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E Public Finance Interpretation for the Saving Econ-

omy in the Main Text

The budget constraint with the prices of the rights to trade∑
p2

δh (p2)
[
chw1 (p2) + p1

[
chz1 (p2) + kh (p2)

]
+ P∆ (p2)∆

h
(
kh (p2) , p2

)]
≤ ehw1 + p1e

h
z1, (A.34)

which is the same as (28) in the main text, has a public finance interpretation, as if we were to try

to implement the optimum solution by taxes and subsidies. With the constant relative risk aversion

(CRRA) utility function, uh (cw, cz) = − 1
cw

− 1
cz

for h = a, b, the right to trade in exchange p2 is

∆h
(
kh, p2

)
=

( √
p2

1 +
√
p2

)[√
p2

(
ehz2 +Rkh

)
− ehw2

]
. (A.35)

Substituting the rights to trade (A.35) into the budget constraint for an agent type h (A.34) gives

∑
p2

δh (p2)

{
chw1 (p2) + p1

[
chz1 (p2) + kh (p2)

]
≤ ehw1 + p1e

h
z1 −

[(
p2

1 +
√
p2

)
P∆ (p2)R

]
kh

−
[(

p2
1 +

√
p2

)
P∆ (p2)

]
ehz2 +

[( √
p2

1 +
√
p2

)
P∆ (p2)

]
ehw2

}
(A.36)

We can now see that we need to have three types of taxes/subsidies, (i) saving/collateral tax

of
(

p2
1+

√
p2

)
P∆ (p2)R per unit of saving/collateral, kh, (ii) collateral good endowment tax of(

p2
1+

√
p2

)
P∆ (p2) per unit of collateral good z endowment at date t = 2, ehz2, and (iii) subsidy,

negative tax −
( √

p2
1+

√
p2

)
P∆ (p2) per unit of consumption good endowment of good w at date t = 2,

ehw2. The last two parts can be implemented in the form of lump-sum taxes and redistributions

based on ownership of endowments. Endowments matter because they are part of excess demand.

The tax/subsidy rate on endowments also depends on the exchange p2 chosen. That is, the exchange

p2 itself is a choice as far as the household is concerned, so these are not lump sum endowment

taxes.1

But again we do not need the taxes. We let the markets decide. Markets determine prices, and

prices determine allocations.

1This is like looking up marginal rates in a big tax book and settling on which page (or pages) to use,

indexed by p2 that the agent chooses.
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F The Presence of Rights has No Effect on the Stan-

dard Classical Economy

We can show that in a classical economy without pecuniary externalities, the set of competitive

equilibrium allocations does not change when segregated markets are introduced. More specifically,

start in the extended commodity space with markets for rights at various prices, writing down the

programming problem. Then guess that a solution to the first order conditions of the Lagrangian

problem (which are both necessary and sufficient) is the solution, quantities and Lagrange multi-

pliers, of the standard classical economy, without externalities, in the standard commodity space.

Rights to trade in the extended commodity space are simply again the excess demands of the clas-

sical economy, and there are no additional obstacle to trade constraints in either. The guess is

verified to be correct. This implies that the (spot) prices in an active segregated exchange must

be the same as the shadow prices from the planning problem without the segregated exchanges.

That, in turn, ensures that the Lagrange multipliers for the rights constraints for those active spot

market exchanges have to be zero. In the analogue decentralized equilibrium, this implies that the

prices of the rights to trade in those are zero as well. This makes sense since there is no reason

to restrict (“tax” or “subsidize”) trade, as that trade is not imposing an externality. However, the

Lagrange multipliers or decentralized prices of the rights in inactive exchanges are not necessarily

zero. In fact, they should not be zero to help guide agents to choose the optimal exchanges in

equilibrium. This is what is preventing the emergence of new equilibria that might feature some

kind of price discrimination.

G Exogenous Incomplete Markets Economy: Geanako-

plos and Polemarchakis (1986); Greenwald and Stiglitz

(1986)

This section presents a slightly different model economy from the saving economy in Section 2 of the

main text. There is more than one state in the second period here, whereas there is no uncertainty

in the main text, though states of the world were included in the general environment of Section

3. In addition, for the most part, there is no saving here. An exception is the numerical example

of G.4 where there is no insurance for idiosyncratic shocks and savings as a buffer stock against

uncertainty plays a role. Yet, an inefficiency remains, regardless, coming from incomplete markets,

and that is the focus of this section.
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Consider an exogenously imposed incomplete markets economy. It is an economy with two

periods t = 1, 2. There are S possible states of nature in the second period, t = 2, i.e., s = 1, . . . , S,

each of which occurs with probability πs,
∑

s πs = 1. There are 2 goods, labeled good w and good

z, in each date and in each state. There are H types with fractions αh > 0, for h = 1, 2, ..., H such

that
∑

h α
h = 1. Each agent type h is endowed with

(
ehw1, e

h
z1

)
at date t = 1 and

(
ehw2s, e

h
z2s

)
in

state s at date t = 2. Preferences of each type h agent are represented by utility uh.

There are J securities available for purchase or sale in the first period, t = 1. Let D = [Djs]

be the payoff matrix of those assets in the second period t = 2 where Djs is the payoff of asset j

in units of good w (the numeraire good) in state s = 1, 2, . . . , S. Here we do not include securities

paying in good z as there is trade in the two goods in spot markets, so these are not needed. Let θhj

denote the amount of the jth security acquired by an agent of type h at t = 1 with θh ≡
[
θhj

]
j
. Here

a positive number denotes the purchaser or investor, and negative the issuer, the one making the

promise. Let Qj denote the price of security j with Q ≡ [Qj ]j . An exogenous incomplete markets

assumption specifies that D is not full rank; that is, J < S. Thus agents type h cannot achieve

arbitrary targets for consumption, which enter utility as uh
(
ehw2s +

∑
j Djsθ

h
j + τhw2s, e

h
z2s + τhz2s

)
,

where τhw2s and τhz2s are spot trades in good w and z in state s at date t = 2, respectively. The uh

are strictly concave with other regularity conditions.

For this exogenous incomplete markets economy, the key set of obstacle-to-trade constraints

generating the pecuniary externality are the spot budget constraints

Ch
s

(
τ h,p

)
≡ τhw2s + p2sτ

h
z2s = 0, ∀s, h, (A.37)

where p2s is the spot market price in state s of good z in terms of good w, and p ≡ [p2s]s is the

vector of the spot prices. The constraints here are simple spot market budget constraints, but with

incomplete markets this is how prices create externalities. To be consistent with the rights to trade

∆h
s (p) defined below, we keep the vector of spot prices p in the general constraint Ch

s

(
τ h,p

)
. We

simplify the notation by restricting ourselves here to two periods, two goods, S states, but it is easy

to generalize. Likewise, we can easily incorporate intertemporal savings, for example the storage

of good z, kh, as in the numerical example below.

G.1 The Definition of Competitive Equilibrium with Exogenous

Incomplete Markets

Definition A.2 (Competitive Equilibrium with Exogenous Incomplete Markets). A competitive

equilibrium is a specification of prices (p1,Q,p), and an allocation
(
ch1 ,θ

h, τ h
)
h
such that

9



• for any agent type h as a price taker,
(
ch1 ,θ

h, τ h
)
solves

max
ch1 ,θ

h,τh
uh
(
chw1, c

h
z1

)
+ β

∑
s

πsu
h

ehw2s +
∑
j

Djsθ
h
j + τhw2s, e

h
z2s + τhz2s

 (A.38)

subject to the budget constraints in the first period

chw1 + p1c
h
z1 +

J∑
j=1

Qjθ
h
j ≤ ehw1 + p1e

h
z1, (A.39)

and the spot budget constraint in state s

τhw2s + p2sτ
h
z2s = 0, for s = 1, . . . , S; (A.40)

• markets clear for good ℓ = w, z at t = 1, for θhj for all j = 1, . . . , J , and for spot trade τhℓ2s in

state s, respectively: ∑
h

αhchℓ1 =
∑
h

αhehℓ1, ∀ℓ = w, z, (A.41)∑
h

αhθhj = 0, ∀j, (A.42)∑
h

αhτhℓ2s = 0, ∀s; ℓ = w, z. (A.43)

The key constraints that generate the externality in this problem are the spot-budget constraints

(A.40) for an agent of type h. Note that the spot price p2s is determined by pretrade position of

endowments and securities where endowments are exogenous but securities are endogenous, and

we write this as p2s = p2s (θ, e). As in Geanakoplos and Polemarchakis (1986), the dependency

generates an indirect price effect from security reallocations. This indirect effect then produces an

externality when the security markets are incomplete.

G.2 Source of Inefficiency in the Incomplete Markets Example

Proposition B.1. The competitive equilibrium with exogenous security markets is (constrained)

efficient if and only if the equilibrium allocation
(
ch1 ,θ

h, τ h
)
h
is first-best optimal or the spot price

is independent of security positions, i.e., ∂p2s
∂θhj

= 0 for every state s, every security j and every

agent of type h.

Proof. We begin the proof by deriving the necessary and sufficient conditions for the first-best

optimality. The social planner’s problem for the first-best optimality is as follows:

10



Program A.1.

max
(θhℓ1,θ

h
ℓs)ℓ,s,h

u1
(
e1w1 + θ1w1, e

1
z1 + θ1z1

)
+ β

∑
s

πsu
1
(
e1w2s + θ1w2s, e

1
z2s + θ1z2s

)
(A.44)

subject to the participation constraints and the resource constraints, respectively,

uh
(
ehw1 + θhw1, e

h
z1 + θhz1

)
+ β

∑
s

πsu
h
(
ehw2s + θhw2s, e

h
z2s + θhz2s

)
≥ U

h
, for h = 2, ...,H;∑

h

αhθhℓ1 = 0, for ℓ = w, z;∑
h

αhθhℓ2s = 0, for ℓ = w, z; s = 1, ..., S.

Lemma A.1. The necessary and sufficient conditions for the first-best optimality are as follows:

γhuu
h
ℓ1

αh
=

γh̃uu
h̃
ℓ1

αh̃
, ∀h, h̃ = 1, ..., H; ℓ = w, z (A.45)

γhuβπsu
h
ℓ2s

αh
=

γh̃uβπsu
h̃
ℓ2s

αh̃
,∀h, h̃ = 1, ...,H; ℓ = w, z; s = 1, ..., S, (A.46)

where γhu is the Lagrange multipliers for the participation constraints for h (normalized by setting

γ1u = 1), and uhℓ1 = ∂uh

∂chℓ1
and uhℓ2s =

∂uh

∂chℓ2s
are the marginal utility of an agent of type h with respect

to cℓ1 and cℓ2s, respectively.

We now consider the following social planner’s problem for the economy with exogenous security

markets.

Program A.2.

max
(θhw1,θ

h
z1,θ

h
j ,τ

h
w2s,τ

h
z2s)h

u1
(
e1w1 + θ1w1, e

1
z1 + θ1z1

)
+ β

∑
s

πsu
1

e1w2s +
∑
j

Djsθ
h
j + τ1w2s, e

1
z2s + τ1z2s


(A.47)

subject to the participation constraints, the resource constraints, and the obstacle-to-trade con-

straints, respectively,

uh
(
ehw1 + θhw1, e

h
z1 + θhz1

)
+ β

∑
s

πsu
h

ehw2s +
∑
j

Djsθ
h
j + τhw2s, e

h
z2s + τhz2s

 ≥ U
h
, ∀h, (A.48)

∑
h

αhθhℓ1 = 0,∀ℓ; (A.49)

∑
h

αhθhj = 0,∀j, (A.50)

∑
h

αhτhw2s = 0,∀s, (A.51)
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τhw2s + p2s
(
θ1s , ..., θ

H
s

)
τhz2s = 0, ∀s, h. (A.52)

Note that the resource (market-clearing) constraints for τhz2s are omitted due to its linear dependence

on (A.51) and (A.52). A solution to this social planner’s problem is called a constrained optimal

allocation.

The first order conditions for θhw1, θ
h
z1, τ

h
w2s, τ

h
z2s, θ

h
j are as follows:

µh
uβπsu

h
w1 + αhµθ

w1 = 0, (A.53)

µh
uβπsu

h
z1 + αhµθ

z1 = 0, (A.54)

µh
uβπsu

h
w2s + αhµτ

w2s + µh
s = 0, ∀s = 1, ..., S, (A.55)

µh
uβπsu

h
z2s + p2sµ

h
s = 0, ∀s = 1, ..., S, (A.56)

µh
uβ
∑
s

πsu
h
w2sDjs + αhµθ

j +
∑
s

∂p2s

∂θhj

∑
h̃

µh̃
s τ

h̃
z2s = 0, ∀j = 1, ..., J, (A.57)

where µh
u, µ

θ
ℓ1, µ

θ
j , µ

τ
w2s, µ

h
s are the Lagrange multipliers for the participation constraints for h (nor-

malize by setting γ1u = 1), for the resource constraints for θhℓ1, for the resource constraints for θ
h
j , for

the resource constraints for τhw2s and for the obstacle to trade or spot-market constraints in state s

for agent h.

The proof is divided into two parts as follows:

(i) (⇐) We now show that an allocation that satisfies the necessary and sufficient conditions for

the first-best optimality (A.45)-(A.46) must satisfy the first order conditions (A.53)-(A.57).

It is not difficult to see that this will be the case if the externality term, the last term of

(A.57), is zero, i.e., ∑
s

∂p2s

∂θhj

∑
h̃

γh̃s τ
h̃
z2s = 0 (A.58)

It is obvious that if the spot price is independent of security positions, i.e., ∂p2s
∂θhj

= 0 for every

state s, every security j and every agent of type h, then condition (A.58) holds.

We now need to show that if the constrained optimal allocation is first-best optimal, then

the no-externality condition (A.58) must hold. Since the allocation is first-best optimal, it

must satisfy conditions (A.45) and (A.46), which imply that

(
µh̃
s

αh̃

)
must be constant across

agents, i..e, for each s

µh
s

αh
=

µh̃
s

αh̃
= Γs, ∀h, h̃. (A.59)
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Using these conditions, we can then show that

∑
s

∂p2s

∂θhj

∑
h̃

µh̃
s τ

h̃
z2s =

∑
s

∂p2s

∂θhj

∑
h̃

(
µh̃
s

αh̃

)
αh̃τ h̃z2s

=
∑
s

∂p2s

∂θhj

∑
h̃

Γsα
h̃τ h̃z2s =

∑
s

∂p2s

∂θhj
Γs

∑
h̃

αh̃τ h̃z2s = 0,

where the last equation results from the resource constraints for τhz2s. This proves that the

no-externality condition (A.58) holds. To sum up, we prove that there is no externality if

the constrained optimal allocation is first-best optimal or the spot price is independent of

security positions, i.e., ∂p2s
∂θhj

= 0 for every state s, every security j and every agent of type h.

(ii) (⇒) Unfortunately, we cannot generally prove the reversed statement but, as shown in

Geanakoplos and Polemarchakis (1986), it is true generically (it is true except for some

unlikely cases). The key idea is that the indirect price effects could be canceling each other

out only if the equilibrium allocation is first-best optimal in most cases. But this does not

happen generally.

G.3 Remedy for the Externality in the Incomplete Markets Econ-

omy

With potentially incomplete security markets, a given security traded at t = 0 has implications in

general for most if not all spot prices at t = 1. This is one source of externalities. To internalize

these externalities, we thus need rights to trade indexed by the vector of spot prices p = [ps]s over

all states s. That is, what we now term p-exchanges must naturally deal with S spot markets as a

bundle. As a result, all objects are indexed by vector p. This is where there is a subtle difference

from the saving economy.

As already noted, a key step is to define type h’s rights to trade ∆h
s (p) in the spot markets

at prices p2s. Type h chooses both the amount of these rights to trade, that is, the trades at p2s,

and the vector p = (p2s)
S
s=1 itself. To repeat, there is in effect a market place exchange indexed

by prices p where security trades will be entered into and priced at t = 1 and where goods will be

exchanged in spot markets at state s at the same price p2s. For these rights to have meaning these

exchanges must be segregated and choices of the agents must be exclusive.

In more detail, the quantity of rights purchased over states s = 1, . . . , S is a vector ∆h (p) =[
∆h

s (p)
]S
s=1

. In a particular state s, ∆h
s (p) is defined as the standard excess demand for the nu-
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meraire, good w, of an agent type h in spot markets in state s. Namely, ∆h
s (p21, . . . , p2s, . . . , p2S) =

τh∗w2s

(
eh2s,θ

h, p2s
)
is the solution to the state s utility maximization problem at price p2s:

(
τh∗w2s

(
eh2s,θ

h, p2s

)
, τh∗z2s

(
eh2s,θ

h, p2s

))
= argmax

τhw2s,τ
h
z2s

uh

ehw2s +

J∑
j=1

Djsθ
h
j + τhw2s, e

h
z2s + τhz2s


(A.60)

subject to the spot-budget constraints (A.37). This choice of rights could be costly to buy or

alternatively it could generate revenue. In particular, let P∆ (p, s) denote the market price of

rights to spot trade in exchange p in state s, with components as desired spot prices and the

vector running over all states s. Then the net cost is this per unit price times the quantity of

rights ∆h
s (p) just defined. Namely,

∑
s P∆ (p, s)∆h

s (p) if p is chosen. Let δh (p) be the indicator

variable which is equal to 1 for the chosen p and is zero otherwise. Thus the budget term will be∑
p δ

h (p)
∑

s P∆ (p, s)∆h
s (p).

The key tie-in is that security trades θh (p) are also tied to the choice of exchange p. That

is, let Qj (p) denote the price of security j traded in exchange p. This then has a net cost in the

budget
∑

p δ
h (p)

∑
j Qj (p) θ

h
j (p). Both costs of rights to trade and the tie-in to securities are

subtracted from the value of endowments at t = 1 leaving consumption as a residual. The entire

budget is the following

∑
p

δh (p)

chw1 + p1c
h
z1 +

∑
j

Qj (p) θ
h
j (p) +

∑
s

P∆ (p, s)∆h
s (p)

 ≤ ehw1 + p1e
h
z1. (A.61)

Finally, the spot prices p and security prices Qj (p) will have to be such as to attain market

clearing in rights to trade: ∑
h

δh (p)αh∆h
s (p) = 0, ∀s;p, (A.62)

and market clearing in securities ∑
h

δh (p)αhθhj (p) = 0, ∀j;p. (A.63)

Also the spot market in each state s in exchange p must be cleared, consistent with the agent types

who have chose to trade there, validating their choice of p.∑
h

δh (p)αhτhℓ2s (p) = 0, ∀s;p; ℓ = w, z. (A.64)

Note that due to the maximization of (A.60) subject to (A.37) that the chosen τhw2s at p that

appear in (A.64) will be the τh∗w2s in (A.60), in turn equal to the rights ∆h
s (p) purchased. Finally,

equations (A.62) can be satisfied trivially for inactive exchanges where δh (p) = 0 for all h.
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In general, spot prices p2s can be a complex mapping from pre-trade endowments and security

holdings. There are few a priori restrictions on individual and aggregate excess demands. But,

conceptually, for the individual this does not matter, as all she cares about are the chosen prices

at which she will trade and the associated implication for rights, security, and spot trades. Finding

an equilibrium is the economist’s problem, not the agent’s problem.

Let xh (p) =
(
ch1 , δ

h (p) ,θh (p) , τ h (p) ,∆h (p)
)
denote a typical bundle or allocation for an

agent type h, where again ∆h (p) ≡
[
∆h

s (p2s)
]
s
. If δh (p) = 0, then the rest of the p contingent

choices need not be specified, as agent h is choosing not to trade at p.

Definition A.3. A competitive equilibrium with segregated exchanges indexed by p is a specifi-

cation of allocation
[
xh (p)

]
h,p

≡
[
ch1 , δ

h (p) ,θh (p) , τ h (p) ,∆h (p)
]
h,p

and prices (p1,Q,p,P∆)

such that

(i) for any agent type h as a price taker,
[
xh (p)

]
p
solves

max
[xh(p)]

p

∑
p

δh (p)

u(chw1, c
h
z1

)
+
∑
s

πsu

ehw2s +
∑
j

Djsθ
h
j (p) + τhw2s (p) , e

h
z2s + τhz2s (p)


subject to the budget constraints in the first period

∑
p

δh (p)

chw1 + p1c
h
z1 +

∑
j

Qj (p) θ
h
j (p) +

∑
s

P∆ (p, s)∆h
s (p)

 ≤ ehw1 + p1e
h
z1,

and the spot-budget constraint in state s∑
p

δh (p)
[
τhw2s (p) + p2sτ

h
z2s (p)

]
= 0, ∀s,

(ii) markets clear for good ℓ = w, z in t = 1, for securities j paying good w, for good ℓ = w, z in

state s, and for rights to trade in exchange p for state s, respectively,∑
h

αhchw1 =
∑
h

αhehw1,∑
h

αhchz1 =
∑
h

αhehz1,∑
h

δh (p)αhθhj (p) = 0, ∀j;p,

∑
h

δh (p)αhτhℓ2s (p) = 0, ∀s;p; ℓ = w, z,

∑
h

δh (p)αh∆h
s (p) = 0, ∀s;p.
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G.4 Illustrative Example for the Exogenous Incomplete Markets

Economy

This numerical example is a deviation from the saving economy in Section 2 of the main text. This

example has only one physical good in the first period where there are two goods in the main text.

We are featuring idiosyncratic shocks in the second period, and no insurance over those, the source

of incomplete markets.

Consider an economy with two periods, t = 1, 2. There are two states s = 1, 2 in the second

period. Let the probability of state s is πs = 1
2 . For simplicity, there is only one good in the first

period t = 1, while there are two goods ℓ = w, z in the second period t = 2. Each unit of storage

of the single good in the first period becomes one unit of good z in the second period regardless

of the state (no shocks on the return to storage). Notationally, k units of storage in t = 1 gives k

units of good z in every state in the second period.

There are two types of agents, h = a, b, both of which have an identical logarithmic utility

function

uh(c) = ln c, (A.65)

which is homothetic. As a result, the equilibrium spot price p2s is determined by the ratio of

the commodity aggregates, as in the collateral economy. Note that the externality exists in this

economy due to the interaction between the incompleteness of the markets and storage, as first

period decisions impact the second period price. Each type consists of 1
2 fraction of the population,

i.e. αh = 1
2 . In addition, the discount factor is β = 1.

The endowment profiles of the agents are shown in Table A.1 below. Note that all risk is

idiosyncratic, with type a relatively well endowed in state s = 1 and vice versa for type b. Note

also that the symmetry of the endowments and the homogeneity of the preferences imply that an

equilibrium allocation is symmetric. In addition, the endowment is structured in such a way that

both types would like to save (kh > 0).

Table A.1: Endowment profiles of the agents.

ehw1 ehw21 ehz21 ehw22 ehz22

h = a 10 5 5 1 1

h = b 10 1 1 5 5

Definition A.4. A competitive equilibrium is a specification of prices (p1, p21, p22), and an alloca-

tion
(
chw1, c

h
ℓ2s, k

h
)
h
such that

16



• for any agent type h as a price taker,
(
chw1, c

h
ℓ2s, k

h
)
solves

max
chw1,c

h
ℓ2s,k

h
u
(
chw1

)
+ β

∑
s

πs

[
u
(
chw2s

)
+ u

(
chz2s

)]
(A.66)

subject to the budget constraints in period t = 1 and state s = 1, 2, respectively

chw1 + kh = ehw1 (A.67)

chw2s + p2sc
h
z2s = ehw2s + p2s

[
ehz2s + kh

]
, ∀s. (A.68)

• markets clear for good w at t = 1:∑
h

αh
(
chw1 + kh

)
=
∑
h

αhehw1, (A.69)

for good z in each state s = 1, 2: ∑
h

αhchw2s =
∑
h

αhehw2s, (A.70)

and for good z in each state s = 1, 2:∑
h

αhchz2s =
∑
h

αh
(
chz2s + kh

)
, (A.71)

With a homogeneous homothetic utility function, the spot price in each state s is determined

by the ratio of the aggregate resources:

p2s =

∑
h α

hehw2s∑
h α

h
(
ehz2s + kh

) , (A.72)

with the equilibrium spot price function p2s = p2s

( ∑
h αhehw2s∑

h αh(ehz2s+kh)

)
.

With symmetry, the first best allocation (“fb”) with state contingent transfers has both agents

save kfb = 3.5, which implies that the equilibrium spot price of good z, pfb2s = 0.4615 in all states.

On the other hand, the competitive equilibrium with externality for this environment is numerically

solved and presented in columns 1 and 2 of Table A.2. With externality, each agent type saves

more kex = 4.3077 to try to cover some of the idiosyncratic risk, which leads to a lower equilibrium

spot price pex2s = 0.4105 in all states.

We now solve for the competitive equilibrium with rights to trade in segregated exchanges

using the following Pareto program with equal Pareto weights, λh = 1
2 for all h = a, b. Let

xh ≡
[
xh (cw1, k,p,∆)

]
be a typical lottery for an agent of type h. We again impose on the grid

of the lottery that a positive mass can be put on a grid with the following property only: for each

bundle (cw1, k,p,∆) and each agent type h,

∆s (p) = p2s

(
ehz2s + k

)
− ehw2s, (A.73)
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Table A.2: Competitive equilibrium with incomplete markets and the corresponding con-

strained optimal solutions.

equilibrium constrained equilibrium

with externality optimality with rights to trade

h = a h = b h = a h = b h = a h = b

chw1 5.6923 5.6923 5.9767 5.9767 5.9767 5.9767

kh 4.3077 4.3077 4.0233 4.0233 4.0233 4.0233

chw21 4.3077 10.7437 4.4272 10.3643 4.4272 10.3643

chw22 1.5895 3.8718 1.5728 3.6822 1.5728 3.6822

chz21 10.7437 4.3077 10.3643 4.4272 10.3643 4.4272

chz22 3.8718 1.5895 3.6822 1.5728 3.6822 1.5728

p2s 0.4105 0.4105 0.4272 0.4272 0.4272 0.4272

Expected Utility 4.5768 4.5768 4.5791 4.5791 4.5791 4.5791

The Pareto program with rights to trade is

max
xh

∑
h

λhαh
∑

cw1,k,p,∆

xh (cw1, k,p,∆)

{
u (cw1) + β

S∑
s=1

πsV
(
ehw2s,, e

h
z2s + k, p2s

)}
(A.74)

subject to ∑
cw1,k,p,∆

xh (cw1, k,p,∆) = 1, ∀h; (A.75)

∑
h

αh
∑

cw1,k,p,∆

xh (cw1, k,p,∆)
{
cw1 + k − ehw1

}
= 0; (A.76)

∑
h

αh
∑

cw1,k,∆

xh (cw1, k,p,∆)∆s = 0, ∀s;p (A.77)

where the indirect utility function for an agent type h in state s is defined by

V
(
ehw2s,, e

h
z2s + k, p2s

)
= max

τw2s,τz2s
u
(
ehw2s + τw2s

)
+ u

(
ehz2s + k + τz2s

)
(A.78)

subject to the spot market budget constraint

τw2s + p2sτz2s = 0 (A.79)

According to the second welfare theorem, the constrained optimal allocation can be decen-

tralized as the competitive equilibrium with rights to trade in segregated exchanges. In fact, we
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numerically solve the linear programming problem above in Matlab and then recover the equilib-

rium prices using part of the proof of the theorem. The equilibrium outcome is presented in the

columns 5 and 6 of Table A.2.

The equilibrium allocation with rights to trade in segregated exchanges has only one active spot

market pop with pop2s = 0.4272 for all s = 1, 2. The equilibrium savings here is lower than the one

in competitive equilibrium with the externality, i.e., kop = 4.0233 (but still higher than in the first

best). Table A.3 presents equilibrium prices/fees of rights to trade in exchange vector p = (p21, p22)

in each state s = 1, 2, the P∆ (p, s) with argument ranging over p and s that is, including over

inactive exchanges. Note that the prices of the rights to trade with the spot price p2s in different

exchanges are clearly different, i.e., P∆ ((p21, p22) , 1) ̸= P∆ ((p21, p̃22) , 1) when p22 ̸= p̃22. Note that

here the vector is different in the second component, yet this makes the rights price for trading in

the first state different.

Table A.3: The equilibrium price of the rights to trade in exchange p = (p21, p22) in each

state s, P∆ (p, s). The only active exchange is p = (0.42715, 0.42715), which is presented in

bold.
p P∆ (p, 1) P∆ (p, 2)

p21 p22

0.41609 0.41609 0.07456 0.07456

0.41609 0.42715 0.07807 0.09456

0.42715 0.41609 0.09455 0.07806

0.42715 0.42715 0.13342 0.13342

0.42715 0.46154 0.17094 0.23213

0.46154 0.42715 0.23213 0.17094

In this equilibrium, each agent type buys/sells the rights to trade in an exchange pop =

(0.42715, 0.42715). Due to symmetry, an agent type h = a sells the rights ∆a (pop, 1) = −1.1457 in

state s = 1 and the numeraire good w, and then buys good z in s = 1. Agent type h = a buys the

same amount of good w in state s = 2, ∆a (pop, 2) = 1.1457, and hence agent type a sells good z

at s = 2. This is crucial as savings of type a is motivated by the shortfall of type a’s endowment

in state s = 2. That is, this is where the exposure to idiosyncratic risk for agent type a is doing

damage, bringing too much good z to the second period, creating the externality. The markets for

rights to trade in good w can remove the externality through its marginal impact on the decision

to save of each agent type. In effect, each pays a “tax” when selling good z and buying good w in

the state which motivated the saving. The situation is reversed for agent type b in terms of the

ordering over goods and states, but the same in terms of saving. In total, the net trade in the rights
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to trade will be zero in net value for both agent types at t = 1. What agent type a buys agent

type b sells and vice versa, and each trade has the same value. That is, each agent does actively

trade rights but with no implication for wealth at t = 1. The key is the marginal impact of each

rights to trade on saving decisions. Note that the optimal lottery is degenerated; that is, all agents

of each type choose the only one exchange as the probability measure at the optimal allocation

xh (wop) = 1.000 for all h = a, b, as shown in Table A.4. In fact, it is identical to the solution of

the planning problem below.

Constrained Planning Problem

The constrained optimal allocation can be computed by maximizing the expected utility of a

representative consumer, exploiting the symmetry, subject to spot market constraints with price p2s

replaced by the appropriate clearing ratio of commodities. The solution to the following planning

problem below is confirmed to be the solution to the equilibrium with rights. For notational

purposes, we drop the type-specific index h.

max
cw1,cw2s,cz2s,k

u (cw1) + β
∑
s

πs [u (cw2s) + u (cz2s)] (A.80)

subject to

cw1 + k = ew1, (A.81)

cw2s +

(
Ew2s

Ez2s + k

)
cz2s = ew2s +

(
Ew2s

Ez2s + k

)
(ez2s + k) , ∀s = 1, 2, (A.82)

where the aggregate of good ℓ = w, z in state s is Eℓ2s =
∑

h α
hehℓ2s. We here write the spot budget

constraints in terms of the ratio of commodity aggregates. The optimal allocation is numerically

solved and presented in columns 3 and 4 of Table A.2. In fact, the necessary condition for the

optimality can be formulated as a cubic function, which leads to the only one feasible (as a real

number) solution.

G.5 Markets for Rights to Trade Do Not Complete the Securities

Markets

Of course, one might wonder if our method solves the externality problem by simply completing

the markets? By allowing agents to choose markets with pre-specified spot prices in each state s,

we effectively create state-contingent transfers of wealth at least to some degree. But is it enough

to achieve the first best allocation? The answer is generally, no. Exogenous incomplete markets
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Table A.4: The equilibrium allocation.

h = a h = b

copw1 5.9767 5.9767

kop 4.0233 4.0233

pop21 0.42715 0.42715

pop22 0.42715 0.42715

∆op
1 -1.1457 1.1457

∆op
2 1.1457 -1.1457

xh 1.000 1.000

P∆ (pop, 1) 0.13342 0.13342

P∆ (pop, 2) 0.13342 0.13342

and the positivity of spot prices still restrict how much wealth transfers we can make in each state.

Technically, the feasible set with incomplete markets and rights to trade is generically a strict subset

of the feasible set with the complete markets.

See Figure 1 for an illustrative example. This example assumes the stereotypical debt contract,

a bond that pays the same amount of good w in each two states. However, in state s = 2, there

is more of good w and good z overall. Then, no matter what the price ratio p2s in state s = 2,

certain regions cannot be reached. The main point is that the scarcity in state s = 1 can affect the

feasibility in state s = 2 because the markets are incomplete.

H A General Model with Price Externalities and Its

Prototypical Economies

This section formulates a general model that captures key features regarding price externalities of

6 prototypical economies including a collateral economy (Kilenthong and Townsend, 2014b), an

exogenous incomplete markets economy (Geanakoplos and Polemarchakis, 1986; Greenwald and

Stiglitz, 1986), a moral hazard with retrading economy (Acemoglu and Simsek, 2012; Kilenthong

and Townsend, 2011), a liquidity constrained economy (Hart and Zingales, 2013), a fire sales econ-

omy (Lorenzoni, 2008), and a hidden information with retrading economy (Diamond and Dybvig,

1983; Jacklin, 1987). Each subsection presents a key ingredient of the model along with the rel-

evant part of each prototypical economy. In order to map those models into the unified general
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1e 1e

(a) A feasible set in state s = 1.

Agent b

Agent a

2e 2e

(b) A feasible set in state s = 2. The shaded areas are

not feasible.

Figure 1: The set of feasible allocations when markets are incomplete markets with rights

to trade is generically a strict subset of the feasible set with the complete markets. The

figures (a) and (b) assume the stereotypical debt contract, a bond that pays one unit of

good w in each two states, s = 1 and s = 2. However, in state s = 2, due to variation

across states in underlying endowments, there is more of good w overall, hence the larger

Edgeworth box. Endowments plus pre-trade positions in the bond, ẽhs ≡
(
ehw2s + θh, ehz2s

)
,

determine the starting point before spot trade, a point on the horizontal line, which must

be feasible. Then, no matter what the price ratio p2s in state s = 2, from very steep to very

flat budget line, certain regions of the box s = 2 cannot be reached. The scarcity in state

s = 1 can affect the feasibility in state s = 2 because the markets are incomplete, despite

markets for rights.

framework and keep the notation for each model as close as possible to the original one, as just

cited, the notation in this section is slightly different from the main text and earlier sections in that

all indices over commodities and agent types here will be all numbered, and in some cases the first

period is t = 0.

H.1 Basic Ingredients: Commodity Space, Preferences, Endow-

ments, and Technology

There are L commodities. These can be basic underlying commodities and also date and/or state

contingent where the date and/or state are public. In order to incorporate private information

problems into this framework, we also allow a subset of commodities to be contingent on recom-

mended but unobserved actions or on reported but unobserved states. For actions, let a be the
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recommended action and (with the incentive compatibility constraints in place) the actually taken

action, and a′ be potentially deviating action. For privately observed states, let a be the reported

state and (with incentive compatibility constraints in place) the actual state, and let a′ be some

potentially counterfactual report. Let A ∈ R+ be the set of possible actions/states, i.e., a, a′ ∈ A.

There is a continuum of agents of measure one. The agents are divided into H (ex-ante) types,

each of which is indexed by h = 1, 2, · · · ,H. Each type h consists of αh ∈ [0, 1] fraction of the

population such that
∑

h α
h = 1. In addition, this model allows for ex-post diversity denoted by

ex-post (either observable or unobservable) type ω ∈ Ω. More formally, let ζh (ω) be the fraction of

agents of type h whose ex-post type is ω. An ex-post type ω may depend on an observed output,

an unobserved action, and/or unobserved state of nature as well.

Each agent type h is endowed with an endowment eh ∈ RL
+. Note that ch and eh lie in the

L-dimensional commodity space. The preferences of an agent of type h are represented by the

utility function Uh
(
ch
)
, where ch ∈ RL is the consumption allocation for an agent of type h.

Each agent of type h has an access to a production technology defined implicitly by

F h
(
yh
)
≥ 0, (A.83)

where yh ∈ RL is the vector of its inputs and outputs in commodity space L. This production

technology is generally a multidimensional vector of constraints with dimension O, i.e., F h
(
yh
)
≡[

F h
o

(
yh
)]O

o=1
.

H.1.1 Basic Ingredients for the Collateral Economy

This is a two-period economy, t = 0, 1. There are a finite S states of nature in the second period

t = 1, i.e., s = 1, 2, ..., S. Let 0 < πs ≤ 1 be the objective and commonly assessed probability of

state s occurring, where
∑

s πs = 1. There are two goods, called good 1 and good 2 in each period.

These two goods can be traded in each date and in each state, and we refer to those markets as spot

markets with good 1 as the numeraire good in every date and state. Thus, there are L = 2 (1 + S)

commodities. There is no unobserved action or privately observed state.

Each agent of type h = 1, 2, . . . ,H is endowed with good 1 and good 2, eh0 =
(
eh10, e

h
20

)
in the

first period and ehs =
(
eh1s, e

h
2s

)
, in each state s = 1, · · · , S. Let eh =

(
eh0 , · · · , ehS

)
be the endowment

profile of an agent of type h over the first period and all states s in the second period, respectively.

There is no ex-post diversity in this economy, and therefore we simply omit all related notation.

The preferences of an agent of type h are represented by the utility function uh
(
ch1 , c

h
2

)
, and
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the discounted expected utility of h is defined by:

Uh
(
ch
)
≡ uh

(
ch10, c

h
20

)
+ β

S∑
s=1

πsu
h
(
ch1s, c

h
2s

)
, (A.84)

where β is the discount factor.

Good 1 is consumable but cannot be stored from t = 0 to t = 1 (is completely perishable),

while good 2 is consumable and storable. The good 2 that is stored can be collateralizable, i.e.,

can serve as collateral to back promises. Henceforth, good 2 and the collateral good will be used

interchangeably. Each unit of good 2 stored (as input) will become Rs units of good 2 in state s.

As a result, the production function in our general framework can be written as follows:

F h
s (y

h) = −yh2s −Rsy
h
20 ≥ 0, for s = 1, . . . , S, (A.85)

where yh20 ∈ R− and yh2s ∈ R+, s = 1, 2, . . . , S are inputs and outputs, respectively. We use the

standard convention under which an input must be non-positive and an output must be non-

negative. This economy has O = S production functions.

H.1.2 Basic Ingredients for the Exogenous Incomplete Markets Economy

Consider an economy with two periods, t = 0, 1. There are S possible states of nature in the second

period t = 1, i.e., s = 1, . . . , S, each of which occurs with probability πs such that
∑

s πs = 1. There

are 2 goods, labeled good 1 and good 2, in each date and in each state. Thus, there are L = 2 (1 + S)

commodities. Because the endowment profiles are the same as specified in the collateral economy

discussed above, we omit the details in this section for brevity.

The preferences of an agent of type h are represented by the utility function uh
(
ch1 , c

h
2

)
, and

the discounted expected utility of h is defined by:

Uh
(
ch
)
≡ uh

(
ch10, c

h
20

)
+ β

S∑
s=1

πsu
h
(
ch1s, c

h
2s

)
, (A.86)

where β is the discount factor. There is no ex-post diversity in this economy, and endowments and

preferences are known ex-ante, and therefore we simply omit all related notation.

For simplicity, we assume that there is no production. Thus, F h
o can be suppressed. As a

result, there would be no externalities if preferences were identically homothetic, as spot prices

are determined by ratio of aggregate endowment only, which no one can influence. So we assume

otherwise; that is, preferences are not identically homothetic.
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H.1.3 Basic Ingredients for the Moral Hazard with Retrading Economy

There are two physical commodities, labeled as good 1 and good 2, in each states. These com-

modities can be produced using the sole input, called action, a. Let A be the number of possible

actions. As in the literature, the random production technology is given by f(q|a), which is the

probability density function of the output vector of good 1 and good 2, q = (q1, q2), conditional on

an action a taken by an agent. In other words, the probability that the realized output will be q

is f(q|a) when an agent takes an action a. The action that an agent takes is private information.

Hence, there is a moral hazard problem. There is a continuum of ex ante identical agents of mass 1,

i.e., no diversity in types so trivially α1 = 1. For simplicity, we assume that each agent is endowed

with zero units of both goods.

We will now map this moral hazard economy into our general model with securities trading.

Different combinations of outputs q define (idiosyncratic) states or indexes for contracting purposes.

There is no loss of generality to assume that there are a finite Q states, q ∈ Q. Following the

mechanism design literature, an optimal consumption of the two goods under moral hazard depends

on realized output q and recommended action a; that is, c1(q, a) and c2(q, a). Accordingly, we

define commodity using both output/state q and recommended action a. In particular, for each

recommended action a, there are Q states. There are two commodities in each state. In addition,

actual action a itself is another commodity. Therefore, there are L = 2QA+1 commodities in this

model.

Each agent is endowed with the instantaneous common utility function for the two goods

and action, u (c1, c2, a). Again, let a be recommended action, and a′ be taken (possibly out-of

equilibrium) action. The discounted expected utility of an agent who is reported action a but took

action a′ is defined by:

U (c) =
∑
q

π(q|a′)u
(
c1(q, a), c2(q, a), a

′) (A.87)

where π(q|a) denote the probability of realizing outputs q given action a (actually taken), which

satisfies the following probability constraint:∑
q

π(q|a) = 1, ∀a. (A.88)

Ex-post diversity in this model is determined by actual (ex ante) action and realized (ex post)

outputs, i.e., ω = (q, a′). For generality, let δ (a′) be the fraction of agents who took action a′.

Recall that the fraction of agents who realized outputs q conditional on taking action a′ is f (q|a′).

As a result, the fractions of agents of ex-post type (q, a′) is ζ1 (q, a′) = f (q|a′) δ (a′).
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As in the literature, the probability distribution across outputs/states depend on agent’s choice

of action a. This dependency is modeled as a general production function F whose input is actual

action a and outputs are q:

F (q, a) = f (q|a)− π(q|a) = 0, ∀q, a (A.89)

In words, different actions will lead to different probability distributions. There are, as in (A.89),

O = QA production functions. Combining these production technologies with the probability

conditions (A.88) leads to standard probability constraints of production function f(q|a):∑
q

π(q|a) = 1 ⇒
∑
q

f (q|a) = 1, ∀a. (A.90)

H.1.4 Basic Ingredients for the Liquidity Constrained Economy

Consider an economy with four periods, t = 0, 1, 2, 3. There are two types of agents, called “doctors”

and “builders”, each of which consists of αh > 0 for all h = b, d fraction of the population with∑
h=b,d α

h = 1. Each agent h = b, d is endowed with eh = e units of wheat at period t = 0. This

is a simplified and deterministic version of Hart and Zingales (2013) in which we assume that the

doctors will buy building services in period t = 1 first, and the builders will buy doctor services

later in period t = 2. As in the collateral model in section H.1.1, there is no unobserved action or

privately observed state, and therefore we simply omit all related notations.

There are two commodities in period t = 0, wheat wh
0 , and storage fh

0 , where the latter is

formally defined below. There are three commodities in period t = 1, storage fh
1 , building services

bd and labor supply of the doctors ld. Similarly, there are three commodities in period t = 2,

storage fh
2 , doctor services d

b, and labor supply of the builders lb. There is one commodity, wheat

wh
3 , in the last period t = 3. Therefore, there are L = 9 commodities in this model.

The preferences of doctors and builders are represented by

Ud (c) = ud
(
wd, dd, bd, ld

)
= wd

3 + bd −
(
ld
)2
2

, (A.91)

U b (c) = ub
(
wb, db, bb, lb

)
= wb

3 + db −
(
lb
)2
2

, (A.92)

respectively. Note that doctors do not consume doctor services, and vice versa for builders. We

can write the utility function in a more general from as follows:

Uh (c) = uh
(
wh, dh, bh, lh

)
= wh

3 + δhb b
h +

(
1− δhd

)
dh −

(
lh
)2
2

, (A.93)

where δhb = 1 if h ̸= b, and zero otherwise.
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There are two technologies or assets available in period t = 0. First, the collateralizable asset

is a storage technology, whose return from t = 0 to t = 3 is 1 unit of wheat, i.e., saving one unit of

wheat in the first period t = 0 will return 1 unit of wheat in the last period t = 3. In addition, the

claim on the output of this technology is transferable, and therefore can be used as private money

(or collateral) during periods t = 1 and t = 2. The second asset is an investment project, whose

return from t = 0 to t = 3 is R̄ > 1 units of wheat. However, this asset cannot be used as collateral.

For simplicity, we consider only a deterministic return case here. Let fh
0 be the amount of wheat

stored by an agent type h = b, d, and accordingly, the agent type h invests e − fh
0 units of wheat

in the investment project.

The production technologies are irreversible; that is, their outputs will be realized in the last

period t = 3 only. The production function of the storage technology (denoted by subscript “s”)

for an agent type h is defined as follows:

F h
s

(
fh
2 , y

h
31

)
= yhs3 − fh

2 = 0, ∀h = b, d, (A.94)

where fh
2 is the number of claims on the storage technology held by the agent type h at the end

of period t = 2, and yhs3 is the output in unit of wheat in period t = 3 received by the agent type

h from the storage technology. Similarly, the production function for investment project (denoted

by subscript “i”) is defined by

F h
i

(
e− fh

0 , y
h
i3

)
= yhi3 − R̄

(
e− fh

0

)
= 0, ∀h, (A.95)

where fh
0 is the amount of wheat stored by an agent type h in period t = 0, and yhi3 is the output

in unit of wheat in period t = 3 received by the agent type h from the investment technology .

In addition, the builders and the doctors produce building and doctor services (denoted by

subscript “o”), respectively, using the following simple linear technologies:

F h
o

(
yhh, l

h
)

= yhh − lh = 0, ∀h = b, d, (A.96)

which use labor as the only input. For notational convenience, we also set

F h
0

(
yh−h

)
= yh−h = 0, ∀h = b, d, (A.97)

where yh−h = ydb , y
b
d denote building services produced by doctors and vice versa. To sum up, there

are O = 4 production functions.

H.1.5 Basic Ingredients for the Fire Sales Economy

Consider an economy with three periods, t = 0, 1, 2. There are two states, s = 1, 2, realized in

period t = 1, with probability π1 and π2, respectively. We use histories of these states to define
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states in period t = 2; that is, if the state s = 1 is realized in period t = 1, then the state in period

t = 2 will automatically be s = 1. Therefore, there are two states s = 1, 2 in the last period t = 2.

There are two types of agents, called “consumers” and “entrepreneurs”, each of which consists of

equal mass. A consumer receives an endowment of e units of consumption goods in each period

while an entrepreneur is endowed with n units of consumption goods in the first period t = 0 only.

There are L = 8 commodities in this model, i.e., two physical goods, namely consumption and

capital goods, in period t = 0, two physical goods, namely consumption and capital goods, at each

state s = 1, 2 in period t = 1, and one physical good, namely consumption good, at each state

s = 1, 2 in period t = 2.

The preferences of a consumer is represented by

U c (c) = E [cc0 + cc1 + cc2] = cc0 +
∑
s=1,2

πs (c
c
1s + cc2s) , (A.98)

where superscript “c” stands for consumer, cc0 is the consumer’s consumption in period 0, and ccts is

the consumer’s consumption at state s = 1, 2 in period t = 1, 2. The preferences of an entrepreneur

is represented by

U e (c) = E [ce2] =
∑
s=1,2

πsc
e
2s, (A.99)

where superscript “e” stands for entrepreneur, ce2s is the entrepreneur’s consumption at state s = 1, 2

in period t = 2.

The following production functions, and inputs/outputs are generally written as F h
ℓts, and yhℓts,

where h = c, e denotes an agent type, ℓ = c, i, k, n, o, p, r denotes an input/output type of commodi-

ties (“c” stands for consumption goods, “i” stands for input for new capital production, “k” stands

for capital input, “n” stands for new capital, “o” stands for old capital, “r” stands for repairing

input for capital maintenance) or a constraint type (“p” stands for weakly positive constraints),

t = 0, 1, 2 denotes a period, and s = 0, 1, 2 denotes a state with state s = 0 for period t = 0.

Each entrepreneur can turn a unit of consumption good into a unit of (new) capital good at

any period and any state of nature. This constitutes the first set of production functions:

F e
n00 (y

e
n00, y

e
i00) = yen00 + yei00 = 0, (A.100)

F e
n1s (y

e
n1s, y

e
i1s) = yen1s + yei1s = 0, ∀s = 1, 2, (A.101)

where yen00 ∈ R+ (yei00 ∈ R−) and yen1s ∈ R+ (yei1s ∈ R−) are the outputs in unit of capital goods

(inputs in unit of consumption goods) in period t = 0, and at state s in period t = 1, respectively.

These specifications with profit maximization limit the price of capital not to be larger than 1 at
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any point in time. On the other hand, the capital investment is irreversible; that is, it is not feasible

to directly turn a capital good into consumption goods. This irreversibility leads to fire sales, which

can cause the price of capital to be significantly below one.

In addition, each entrepreneur has access to an entrepreneurial production technology, which

transforms yen00 units of the capital goods in period t = 0 into asy
e
n00 units of the consumption

goods in period t = 1, where s = 1, 2 is the aggregate state. This technology can be represented by

the following production function:

F e
c1s (y

e
c1s, y

e
n00) = yec1s − asy

e
n00 = 0, ∀s = 1, 2, (A.102)

where yec1s is the output in unit of consumption goods at state s = 1, 2 in period t = 1.

The capital must be repaired at the cost γ > 0 units of consumption goods at state s = 1, 2 in

period t = 1 per unit of capital chosen to be repaired. Non-repaired part will be fully depreciated.

This maintenance technology can be represented by the following production function:

F e
r1s (y

e
o1s, y

e
r1s) = γyeo1s + yer1s = 0, ∀s = 1, 2, (A.103)

where yeo1s ∈ R+ is the output in unit of (old) capital goods at state s in period t = 1 from this

maintenance process, and yer1s ∈ R− is the input in unit of consumption goods for the maintenance

process. The production technology also requires that old repaired capital cannot be larger (in

absolute value) than the original capital from period t = 0, i.e.,

F e
p1s (y

e
o1s, y

e
r1s) = yeo1s + yer1s ≥ 0,∀s = 1, 2. (A.104)

Further, an entrepreneur can use all capital available in period t = 1, yek1s, to produce Ayek1s

units of consumption goods in period t = 2, with A > 1. This technology can be represented by

the following production function:

F e
c2s (y

e
c2s, y

e
k1s) = yec2s −Ayek1s = 0, ∀s = 1, 2, (A.105)

where yec2s is the output in unit of consumption goods at state s = 1, 2 in period t = 1.

Each consumer owns a traditional production technology, which produces consumption goods

in period t = 2 using capital goods in period t = 1, yck1s, as the input. The traditional technology is

represented by the production function f (yck1s), which is assumed to be increasing, strictly concave,

twice differentiable, and satisfies the following properties f (0) = 0, f ′ (0) = 1, f ′ (yc1s) ≥ q̄. Strict

concavity and f ′ (0) = 1 assumptions imply that consumers would not produced (new) capital using

technology (A.100)-(A.101) even if they were be able to do so. They will own capital only when

there is fire sales, under which the price of capital wold be below one. The capital good is fully
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depreciated at the end of the last period t = 2. This traditional technology can be represented by

the following production function:

F c
c2s (y

c
c2s, y

c
k1s) = ycc2s − f (yck1s) = 0, ∀s = 1, 2, (A.106)

where ycc2s is the output in unit of consumption goods in period t = 2.

To sum up, there are O = 13 production functions in this model.

H.1.6 Basic Ingredients for the Hidden Information with Retrading Economy

This is an economy with unobserved states or preference/liquidity shocks and retrading possibilities

(e.g., Allen and Gale, 2004; Diamond and Dybvig, 1983; Farhi et al., 2009; Jacklin, 1987). Similar

to the moral hazard problem, if there were no retrading possibility, then the Prescott-Townsend

equilibria would have been equivalent to Pareto optima. However, this liquidity problem features

externalities when agents can trade in spot/private markets ex-post creating the interaction of

binding incentive constraints and the spot prices. As in Prescott and Townsend (1984b) and Farhi

et al. (2009), we focus only on incentive compatible allocations (rather than sequential service

constraints and no bank runs).

There is a continuum of ex-ante identical agents with total mass 1, i.e., no diversity in types

so trivially α1 = 1. There are three periods, t = 0, 1, 2. There is one physical commodity in each

period t = 1, 2. Each agent is endowed with e units of the good in the contracting period, t = 0,

and this will be an input into production functions.

Let η be a ex-post preference/liquidity shock which defines a (idiosyncratic) state in this model.

There is no loss of generality to assume that there are a finite Q states, η ∈ Q. The shock/state is

drawn at t = 1 with π (η) as the probability that an agent will receive η shock such that

Q∑
η=1

π (η) = 1. (A.107)

In this sense there is ex-post diversity. Henceforth, we represent an ex-post type of an agent by

his shock η. The fraction of agents of ex-post type ω = η is ζ1 (ω) = π (η). With a continuum of

agents, we also interpret π (η) as the fraction of agents receiving η shock.

To sum up, each state η has two dated commodities; that is, the physical good in period t = 1

or good 1, and the physical good in period t = 2 or good 2. In addition, an investment decision at

t = 0, ρ, is also a commodity. Therefore, there are L = 2Q+ 1 commodities in this model.

The utility function conditional on a shock η is given by u (c1, c2, η), where (c1, c2) is the vector

of consumption allocations in period t = 1 and t = 2, respectively. For example, in the Diamond-

Dybvig model, the shock will dictate if an agent would like to consume now or later. The utility
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function is assumed to be differentiable, concave, increasing in c1 and c2, and satisfies the usual

Inada conditions with respect to c1 and c2. The discounted expected utility of an agent is define

by:

U (c) =
∑
η

π (η)u (c1 (η) , c2 (η) , η) . (A.108)

Following the literature, there are two technologies or assets. First, the short-term asset is a

storage technology, whose return from t to t+1 is R1, i.e., saving one unit of the good today at t will

return R1 units of the good in the next period at t+ 1, t = 0, 1. The second asset is the long-term

asset. The long-term investment must be taken at t = 0, and its return R2 will be realized at t = 2.

We assume that the long-term asset is more productive than the short-term asset, i..e, R2 > R1.

For simplicity, returns here are deterministic, i.e., no aggregate shocks.

There is no loss of generality to assume that an agent must decide how much to invest in

the short-term and the long-term assets at the beginning t = 0. Let ρ be the fraction of initial

endowment invested in the short-term asset; that is, ρe is the total amount invested in the short-

term asset, and (1− ρ) e is the total amount invested in the long-term asset. In addition, we assume

that there is no option to liquidate at t = 1, and there is no short term investment between t = 1

and t = 2 without loss of generality2. The production functions of short-term asset, F1 (between

t = 0 and t = 1), and long-term asset F2 (between t = 0 and t = 2) are as follows:

F1 (ρe, y1) = y1 −R1ρe = 0, (A.109)

F2 ((1− ρ) e, y2) = y2 −R2 (1− ρ) e = 0, (A.110)

where yt is an output in unit of the physical good in period t = 1, 2 regardless of the state of nature.

Note however that outputs do not really vary with the preference/liquidity shocks since the shocks

η are liquidity, not productivity shocks and the distribution of shocks in the population is constant.

To sum up, there are O = 2 production functions.

H.2 Market Structure: Security and Spot Markets

There are J securities. Let θhj ∈ R denote the amount of security j acquired (negative if sold) by

an agent of type h, and Dj = [Djℓ]
L
ℓ=1 ∈ RL

+ denote its payoff vector. Thus securities have payoffs

of goods in the L-dimensional space of underlying commodities. Notationally, let D = [Dj ]
J
j=1 be

2This economy is equivalent to the one in Diamond and Dybvig (1983) where banks invest in the long-term

asset only, and then liquidate a fraction of the projects at t = 1. In Allen and Gale (2004) with stochastic

returns, some short term investment may be necessary at t = 1.
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the payoff matrix of all securities. Let Q ∈ RJ
+ be the price vector of all securities, that is, Qj ≥ 0

for j = 1, . . . , J .

In addition, agents can trade in each of M spot markets of subsets of commodities. Let Lm ⊂ L

be the subset of commodities that can be traded in spot markets m. Let τ h denote the set of

trades in these markets with τhℓm denoting the amount of good ℓ in market Lm acquired (negative if

surrendered) by an agent of type h. Note again that these spot trades τhℓm are restricted to be traded

with commodities in Lm only. Let pm ≡ [pℓm]ℓ∈Lm ∈ RLm

+ be the price vector of commodities in

Lm.

The relationship between consumption, endowments, securities, spot trades, and outputs for an

agent of type h is defined implicitly by

gh
(
ch, eh,θh, τ h,yh

)
= 0. (A.111)

These will be obvious identities or accounting formulas in the examples which follow. This condition

is generally multidimensional vector with dimension N , i.e.,

gh ≡
(
ghn

(
ch, eh,θh, τ h,yh

))N
n=1

.

H.2.1 Market Structure for the Collateral Economy

Let θhℓs denote securities paying in good ℓ = 1, 2 in state s or net transfers of good ℓ = 1, 2 in

state s acquired by an agent type h. If this is negative, it is a promise to pay. Also θhℓ0 is spot

purchase of good ℓ at t = 0 but for convenience we refer to this as a security trade. Thus there

are J = 2 (1 + S) securities. Let Qℓ0 and Qℓs denote the security (spot) price of good ℓ at period

t = 0 and the price of a security paying in good ℓ in state s, respectively. We take good ℓ = 1 as

the numeraire.

Let τhℓs denote spot trade amount of good ℓ = 1, 2 in spot markets in state s, Ls (m = s here),

acquired by an agent of ex-ante type h. With abuse of notation, let τhℓ0 denote spot trade amount

of good ℓ in spot markets L0 in period t = 0 acquired by an agent of ex-ante type h. Each spot

market has two commodities, namely good 1 and good 2, i.e., Lm = 2 for all m = 0, 1, . . . , S. There

are M = S+1 spot markets here. We set the spot-market-clearing price of good 1 equal to one (the

numeraire good), and let ps denote the spot-market-clearing price of good 2 in each spot market

Ls.

The consumption-relationship constraints in this case are defined as follows:

ghℓs

(
ch, eh,θh, τ h,yh

)
= ehℓs + yhℓs + θhℓs + τhℓs − chℓs = 0, for ℓ = 1, 2; s = 0, 1, . . . , S, (A.112)
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where we set yh10 = 0 and yh1s = 0 to represent the fact that good 1 cannot be stored. There

are N = 2 (1 + S) consumption-relationship constraints. As proved in Kilenthong and Townsend

(2014b), with complete collateralized contracts, there is no need for restricted/spot trades τ in this

case. All trades can be accomplished in ex-ante security markets. As a result, the consumption-

relationship constraints can be rewritten as follows:

ghℓs

(
ch, eh,θh,yh

)
= ehℓs + yhℓs + θhℓs − chℓs = 0, for ℓ = 1, 2; s = 0, 1, . . . , S. (A.113)

Nevertheless, we can define what the ex-post spot price ps would be that would clear these markets

(without active trade).

H.2.2 Market Structure for the Exogenous Incomplete Markets Economy

There are J < S securities available for purchase or sell in the first period t = 0. Let D = [Djs] be

the payoff matrix of those assets where Djs be the payoff of asset j in unit of good 1 (the numeraire

good) in state s in the second period t = 1, s = 1, 2, . . . , S. Let θhj denote the amount of the

jth security acquired by an agent of type h at t = 0, and Qj denote the price of security j. An

exogenous incomplete markets assumption specifies that D is not full rank; that is again, J < S.

This is crucial.

Let τhℓs denote spot trade amount of good ℓ = 1, 2 in spot markets in state s, Ls (m = s here),

acquired by an agent of ex-ante type h. With abuse of notation, let τhℓ0 denote spot trade amount

of good ℓ = 1, 2 in spot markets L0 in period t = 0 acquired by an agent of ex-ante type h. Each

spot market has two commodities, namely good 1 and good 2, i.e., Lm = 2 for all m = 0, 1, . . . , S.

There are M = S + 1 spot markets here. We set the spot-market-clearing price of good 1 equal

to one (the numeraire good), and let p0 and ps denote the spot-market-clearing price of good 2 in

spot market L0 in period t = 0, and the spot-market-clearing price of good 2 in spot market Ls at

state s in period t = 1, respectively.

The consumption-relationship functions in the first period t = 0 is defined as follows:

ghℓ

(
ch, eh,θh

)
= ehℓ0 + τhℓ0 − chℓ0 = 0, for ℓ = 1, 2. (A.114)

The consumption-relationship function for good 1 and good 2, respectively, in the state s in the

second period is defined as follows:

gh1+2s

(
ch, eh,θh, τ h

)
= eh1s +

∑
j

Djsθ
h
j + τh1s − ch1s = 0, for s = 1, . . . , S, (A.115)

gh2+2s

(
ch, eh,θh, τ h

)
= eh2s + τh2s − ch2s = 0, for s = 1, . . . , S. (A.116)

Note here there will be active spot market trades τ to support the equilibrium allocation. To sum

up, there are N = 2(1 + S) consumption-relationship constraints.
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H.2.3 Market Structure the Moral Hazard with Retrading Economy

To be consistent with the general model, one can imagine that there are state-contingent securities

paying in good ℓ = 1, 2 when state/output is q and the recommended action is a, namely θℓ(q, a).

That is, security j is indexed by q, ℓ, and a. Even though there are J = 2QA securities available

to trade, each agent can trade only 2Q securities depending on his recommended action a only. In

particular, an agent recommended action a will be able to trade only securities θa ≡ [θℓ(q, a)]ℓ,q. Let

Qℓ(q, a) denote the price of a security paying in good ℓ conditional on output q and recommended

action a. Recall that actual action a′ = a is an input of the production technology, and there is no

loss of generality to assume that it is non-tradable. Therefore, there is no price for that commodity

action. Note also that as in the literature, these equilibrium securities prices are fair prices.

There is the possibility of retrade in ex post spot markets. One can think of two subperiods: the

first with the application of inputs, securities, and production; the second for output and possible

retrading with final consumption. Without aggregate uncertainty, there is only one set of spot

markets (M = 1) for good 1 and good 2 (L1 = 2). Let τℓ (q, a) be spot trade of an agent of ex-post

type (q, a) when a is both the recommended and taken action. We set the spot-market-clearing

price of good 1 equal to one (the numeraire good), and let p denote the spot-market-clearing price of

good 2, which depends on agents’ action a (recommended and taken) and securities θa = [θℓ(q, a)]ℓ,q

as a function of recommended action a (as if the markets can be partitioned by action a); that is,

p = p (θa, a).

As in Kilenthong and Townsend (2011) and the collateral example in Section H.2.1, the spot

markets are redundant (with complete contracts), however. Anything that can be done with spot

markets can be done without them with altered security holdings. Therefore, we can omit spot

trades, henceforth, though there is still an implicit shadow spot price. The consumption-relationship

in this case is defined as follows:

gℓqa = qℓ + θℓ(q, a)− cℓ(q, a) = 0,∀q, a; ℓ = 1, 2. (A.117)

There are N = 2QA consumption-relationship constraints.

H.2.4 Market Structure the Liquidity Constrained Economy

To be consistent with the general model, there is no security in this model; that is, J = 0. All

trades occur in the spot markets. There are 2 sets of spot markets in period t = 1 and t = 2;

that is, M = 2. Agents can trade storage claim τhf1 and building services τhb in the spot markets

in period t = 1 at price pb; that is, there are two commodities in the spot markets in period t = 1

(L1 = 2). Similarly, agents can trade storage claim τhf2 and doctor services τhd in the spot markets
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in period t = 2 at price pd; that is, there are two commodities in the spot markets in period t = 2

(L2 = 2).

The consumption-relationship constraints are as follows:

ghb

(
bh, yhb , τ

h
b

)
= bh −

(
yhb + τhb

)
= 0,∀h, (A.118)

ghd

(
dh, yhd , τ

h
d

)
= dh −

(
yhd + τhd

)
= 0, ∀h, (A.119)

ghw

(
wh, yhi3, y

h
s3

)
= wh

3 − yhi3 − yhs3 = 0, ∀h, (A.120)

ghft

(
fh
t , f

h
t−1, τ

h
ft

)
= fh

t − fh
t−1 − τhft = 0, ∀h; t = 1, 2. (A.121)

To sum up, there are N = 5 consumption-relationship constraints.

H.2.5 Market Structure the Fire Sales Economy

Let θh0 and θhts denote securities paying in unit of consumption goods in period t = 0, and securities

paying in consumption goods at state s = 1, 2 in period t = 1, 2 acquired by an agent type h = c, e,

respectively. There are J = 5 securities. Let Qts denote the contract/security price of a security

paying in consumption goods at state s = 1, 2 in period t = 1, 2, and Q0 = 1 the price of the

contract/security paying in unit of consumption goods in period t = 0, which is the numeraire

good.

There are also spot markets at each state s = 1, 2 in period t = 1. There are Lm = 2

commodities in each spot markets m = 1, 2. We set the spot-market-clearing price of good 1 equal

to one (the numeraire good), and let ps denote the spot-market-clearing price of good 2. As in

Lorenzoni (2008), the market clearing conditions for the spot markets in each state s (for τhks and

τhcs) imply that the spot price ps is determined by capital input for the traditional technology yck1s,

i.e., ps = f ′ (yck1s).

The consumption-relationship functions for consumers and entrepreneurs are given by

gcc0 (e, θ
c
0, c

c
0) = e+ θc0 − cc0 = 0, (A.122)

gcc1s (e, θ
c
1s, τ

c
cs, c

c
1s) = e+ θc1s + τ ccs − cc1s = 0, ∀s = 1, 2, (A.123)

gcc2s (e, θ
c
2s, y

c
c2s, c

c
2s) = e+ θc2s + ycc2s − cc2s = 0, ∀s = 1, 2, (A.124)

gcks (τ
c
ks, y

c
k1s) = τ cks − yck1s = 0, ∀s = 1, 2, (A.125)

gec0 (n, θ
e
0, y

e
i00) = n+ θe0 − yei00 = 0, (A.126)

gec1s (θ
e
1s, τ

e
cs, y

e
c1s, y

e
r1s, y

e
i1s) = θe1s + τ ecs + yec1s + yer1s + yei1s = 0, ∀s = 1, 2, (A.127)

geks (y
e
n1s, y

e
o1s, τ

e
ks, y

e
k1s) = yen1s + yeo1s + τ eks − yek1s = 0, ∀s = 1, 2, (A.128)

gec2s (y
e
c2s, θ

e
2s, c

e
2s) = yec2s + θe2s − ce2s = 0,∀s = 1, 2, (A.129)
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where a function with superscript “c” (“e”) is a consumption-relationship function for consumers

(for entrepreneurs). There are N = 14 consumption-relationship conditions.

H.2.6 Market Structure the Hidden Information with Retrading Economy

To be consistent with the general model, one can imagine that there are state-contingent securities

θt(η
′) paying the single good at t = 1, 2 conditional on reported shock/state η′ ∈ Q. That is,

security j is indexed by t and η′. There are J = 2Q (the number of states times the number of

dates) securities available.

There is the possibility of retrade in ex post spot markets as in the moral hazard with retrading

economy above. Without aggregate uncertainty, there is only one set of spot markets (M = 1)

for good 1 and good 2 (Lm = 2), in which everyone participates. Let τt (η) be spot trade of

an agent of ex-post type η when η is both truthfully reported and realized shock. We set the

spot-market-clearing price of good 1 equal to one (the numeraire good), and let p denote the spot-

market-clearing price of good 2, which depends on securities θ = [θt(η)]t,η and investment decision

ρ; that is, p = p (θ, ρ).

As in the moral hazard with retrading economy, the spot markets are redundant (with complete

contracts), however. Anything that can be done with spot markets can be done without them with

altered security holdings. Therefore, we can omit spot trades, henceforth, though there is still an

implicit shadow spot price. The consumption-relationship in this case is defined as follows:

gtη′ = yt + θt(η
′)− ct(η

′) = 0, ∀η′; t = 1, 2. (A.130)

There are N = 2Q consumption-relationship constraints.

H.3 Trade Frictions: Obstacle-to-Trade Constraints

There are I sets of obstacle-to-trade constraints, each of which contains potentially multiple con-

ditions, indexed by a = 1, . . . , A and a′ = 1, . . . , A. Each set of obstacle-to-trade constraints

i = 1, 2, ...I depends on the spot prices of a particular subset of commodities pi or the prices of

a particular subset of securities denoted Qi, or both. Each can depend on the same set of prices(
pi,Qi

)
. In their general form, each obstacle to trade constraint (a, a′) in set i can be written as:

Ch
i,a,a′

(
ch, θh, τh,yh,pi,Qi

)
≥ 0, for i = 1, . . . , I; a ∈ A; a′ ∈ A. (A.131)

These obstacle-to-trade constraints could be in the form of collateral constraints, retrading in

exogenous incomplete-market constraints, incentive compatibility constraints under moral hazard
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with retrading, incentive compatibility constraints under hidden information with retrading, liq-

uidity constraints, and no-default constraints. The total number of obstacle-to-trade constraints is

V ≤ IA2, where the inequality results from the fact that the maximum number of constraints for

each agent type is IA2 but it is possible for some types to have less. Note that an action as in a

moral hazard model, or privately observed state indexes the commodities, and therefore is included

in ch. In addition to actions or preference shocks, the index (a, a′) also denote each individual

constraint in each set i of the obstacle-to-trade constraints sharing the same set of prices
(
pi,Qi

)
.

The dependency on market-clearing prices of these obstacle-to-trade constraints is the source

of price externalities in this paper. Most of the literature focuses only on the dependency on the

restricted/spot prices. This paper explicitly puts security prices into the constraints in order to

emphasize that price externalities could arise even when we shut down the spot markets. In other

words, the spot markets/prices are not fundamental to the externality problem. It is an obstacle

to trade itself, which can not be removed, that is key to the problem. As shown in the collateral

economy below, one can get rid of the spot markets there since they are redundant. The collateral

constraints (the need to back promises by collateral) then depend on security prices only, but the

price externality still occurs.

H.3.1 Trade Frictions for the Collateral Economy

As in Kilenthong and Townsend (2014b), the collateral constraints or obstacle-to-trade constraints

state that the value of collateral yh2s must weakly exceed value of promises to pay
(
θh1s, θ

h
2s

)
:

psy
h
2s ≥ ps

(
−θh2s

)
+
(
−θh1s

)
, for s = 1, . . . , S, (A.132)

which can be rewritten as follow:

ps

(
yh2s + θh2s

)
+ θh1s ≥ 0, for s = 1, . . . , S, (A.133)

where again ps is the spot price of good 2 in units of good 1 in state s.

These collateral constraints can be rewritten in terms of security prices as following:

Ch
s

(
θh,yh,Qs

)
= Q2s

(
yh2s + θh2s

)
+Q1sθ

h
1s ≥ 0, for s = 1, . . . , S, (A.134)

which results from the fact that, with complete state contingent contracts at t = 0 and the possibility

of retrading, the spot price ratio ps equals to the ratio of security prices Q2s

Q1s
. This formulation

emphasizes that we can shut down the spot markets, but the collateral constraints still depend on

security prices, which still generate externalities. In other words, the spot markets/prices are not
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fundamental to the externality problem. It is an obstacle to trade itself, which can not be removed,

that is key to the problem.

Each agent of type h faces I = S sets of obstacle-to-trade constraints, each of which contains

only one constraint, i.e., technically A = 1. Therefore, there are V = S obstacle-to-trade constraints

in total.

H.3.2 Trade Frictions for the Exogenous Incomplete Markets Economy

The obstacle-to-trade or spot-budget constraint for an agent of type h in each state s is simply the

budget constraint in that state:

Ch
s

(
τ h
s ,p
)
= τh1s + psτ

h
2s = 0, for s = 1, . . . , S, (A.135)

Note that the spot price ps is determined by pre-trade position of endowments and securities where

endowments are exogenous but securities are endogenous.

Each agent of type h faces I = 1 set of obstacle-to-trade constraints, which contains A = S

constraints. Therefore, there are V = S obstacle-to-trade constraints in total.

H.3.3 Trade Frictions for the Moral Hazard with Retrading Economy

The possibility of retrade in ex post spot markets creates obstacle to trade in this model. With the

possibility of retrade, the ex-post utility maximization problem of an agent who was recommended

action a receiving compensation (c1(q, a), c2(q, a)), but took action a′ when the spot market price

is p is as follows:

v
(
c1(q, a), c2(q, a), a

′, p
)
= max

τ1,τ2
u
(
c1(q, a) + τ1, c2(q, a) + τ2, a

′) (A.136)

subject to the budget constraint:

τ1 + pτ2 = 0, (A.137)

taking spot-market-clearing price p as given.

As in Kilenthong and Townsend (2011), the possibility of retrade in ex post spot markets and

the moral hazard problem imply that the incentive compatibility constraints (IC) are as following:

∀a, a′,

C1,a,a′ (c, p) =
∑
q

u (c1(q, a), c2(q, a), a) f(q|a)−
∑
q

v
(
c1(q, a), c2(q, a), a

′, p
)
f(q|a′) ≥ 0,

(A.138)
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Here the agent takes the recommended action a and so a = a′. There is only one set of obstacle-to-

trade constraints, I = 1, and there are A2 constraints for this one i. Therefore, there are V = A2

incentive compatibility constraints in total.

H.3.4 Trade Frictions for the Liquidity Constrained Economy

The obstacle-to-trade or spot market constraints for an agent type h = b, d in period t are as

follows:

Ch
1

(
τhf1, τ

h
b ,p

)
= τhf1 + pbτ

h
b = 0, ∀h = b, d, (A.139)

Ch
2

(
τhf2, τ

h
d ,p

)
= τhf2 + pdτ

h
d = 0, ∀h = b, d, (A.140)

where pb and pd are the spot-market-clearing prices of building and doctor services in period t = 1

and t = 2, respectively; that is, pb is such that
∑

h=b,d α
hτhb = 0, and vice versa. Note that the

spot price pb and pd are determined by storage positions of all agents which are endogenous. Each

agent of type h faces I = 1 set of obstacle-to-trade constraints, which contains A = 2 constraints.

Therefore, there are V = 2 obstacle-to-trade constraints in total.

H.3.5 Trade Frictions for the Fire Sales Economy

Each consumer faces the following sets of obstacle-to-trade constraints. First, the participation

constraint for a consumer is given by

Cc
pc (θ

c
0, θ

c
1s, θ

c
2s) = θc0 +

∑
s

πs (θ
c
1s + θc2s) ≥ 0. (A.141)

This constraint states that a consumer would not enter the contract at period t = 0 and would be

at autarky unless the contract offers a non-negative expected return from t = 0 to t = 2. Second,

the no-default conditions for a consumer are as follows:

Cc
cd1 (θ

c
1s, θ

c
2s) = θc1s + θc2s ≥ 0,∀s = 1, 2, (A.142)

Cc
cd2 (θ

c
2s) = θc2s ≥ 0, ∀s = 1, 2. (A.143)

These constraints imply that a consumer would default (not pay when θcts < 0) at state s = 1, 2 in

period t = 1, 2 unless the return from that period on is non-negative.

Each entrepreneur faces the following obstacle-to-trade constraints or no-default conditions:

Ce
ed1 (y

e
n00, θ

e
1s, θ

e
2s, ps) = (ηas +max {ps − γ, 0}) yen00 + θe1s + θe2s ≥ 0, ∀s = 1, 2, (A.144)

Ce
ed2 (y

e
k1s, θ

e
2s) = ηAyek1s + θe2s ≥ 0, ∀s = 1, 2, (A.145)
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where 1 − η ∈ (0, 1) is the fraction of the firm’s current profit that the entrepreneur could keep if

he decided to default. Constraints (A.144) imply that the entrepreneur is better off not defaulting

at state s = 1, 2 in period t = 1. In particular, he would get (1− η) asy
e
n00 if he defaulted. On the

other hand, his net income would be (as +max {ps − γ, 0}) yen00 + θe1s + θe2s in case of no default.

Similarly, constraints (A.145) imply that net income of the entrepreneur at state s = 1, 2 in period

t = 2 in case of no default, Ayek1s+θe2s, is larger than his net income in case of default, (1− η)Ayek1s.

In addition, both agent types also face the following spot market budget constraints:

Ch
spot

(
τhcs, τ

h
ks, ps

)
= τhcs + psτ

h
ks = 0, ∀h = c, e; s = 1, 2, (A.146)

To be consistent with the general model, there are I = 7 sets of obstacle-to-trade constraints for

the consumer c and 6 sets of obstacle-to-trade constraints for the entrepreneur e. Each set contains

only one constraint, i.e., A = 1. Therefore, there are 7 obstacle-to-trade constraints in total for the

consumer c and 6 obstacle-to-trade constraints in total for the entrepreneur e.

It is worthy of emphasis that the spot market budget constraints (A.146) are not the sources

of the externality here because this model has a complete contingent contracting structure. See a

similar result in Proposition B.1. On the other hand, the key obstacle-to-trade constraints that

cause an inefficiency in this model is the first set of no-default conditions for an entrepreneur

(A.144), which again depends on equilibrium prices which in turn are determined by collective

ex-ante choices of the agents.

H.3.6 Trade Frictions for the Hidden Information with Retrading Economy

With abuse of notation, we refer to (c1(η
′), c2(η

′)) as pre-trade compensation condition on reported

state/shock. Thus, the ex-post utility maximization problem at t = 1 of an agent who reported

state η′, realized state η, and received compensation (c1(η
′), c2(η

′)) is as follows:

v
(
c1
(
η′
)
, c2
(
η′
)
, η, p

)
= max

τ1,τ2
u
(
c1
(
η′
)
+ τ1, c2

(
η′
)
+ τ2, η

)
(A.147)

subject to the budget constraint:

τ1 + pτ2 = 0, (A.148)

taking spot price (interest rate) p as given.

In addition, the possibility of retrade in ex post spot markets and the hidden information

problem imply that an incentive compatibility (IC) or obstacle-to-trade constraint:

C1,η,η′ (c, p) = u (c1 (η) , c2 (η) , η)− v
(
c1
(
η′
)
, c2
(
η′
)
, η, p

)
≥ 0,∀η, η′. (A.149)

There are I = Q2 constraints for each i, and therefore with only one i, there are V = Q2 obstacle-

to-trade constraints in total. This will be imposed so actual and reported states will be the same.
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H.4 Competitive Equilibrium with Externalities of Prototypical

Economies

This section presents the standard definitions of competitive equilibria that have externalities for a

liquidity constrained economy (Hart and Zingales, 2013) and a fire sales economy (Lorenzoni, 2008).

The definitions for an incomplete markets economy and a collateral economy are already displayed

in online Appendix G.1 and Kilenthong and Townsend (2014b), respectively. The definitions of a

moral hazard with retrading economy and a hidden information with retrading economy can be

found in Kilenthong and Townsend (2011).

H.4.1 Competitive Equilibrium for the Liquidity-Constrained Economy

Definition A.5. A competitive equilibrium with liquidity constraints is a specification of allocation(
fh
0 , l

h, τhb , τ
h
d , τ

h
f1, τ

h
f2, b

h, dh, wh
3 ,y

h
)
h=b,d

and prices (pb, pd) such that

(i) for each h,
(
fh
0 , l

h, τhb , τ
h
d , τ

h
f1, τ

h
f2,y

h
)
solves the utility maximization problem

max
fh
0 ,l

h,τhb ,τhd ,τhf1,τ
h
f2,y

h
wh
3 + δhb b

h +
(
1− δhd

)
dh −

(
lh
)2
2

(A.150)

subject to the production constraints (A.94)-(A.97), the consumption-relationship constraints

(A.118)-(A.121), and the obstacle-to-trade constraints (A.139)-(A.140), taking prices (pb, pd)

as given;

(ii) markets clear for storage claims in period t = 1∑
h

αhτhf1 = 0, (A.151)

markets clear for building services in period t = 1∑
h

αhτhb = 0, (A.152)

markets clear for storage claims in period t = 2∑
h

αhτhf2 = 0, (A.153)

markets clear for doctor services in period t = 2∑
h

αhτhd = 0, (A.154)
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H.4.2 Competitive Equilibrium for the Fire Sales Economy

Definition A.6. A competitive equilibrium with fire sales is a specification of allocation
(
ch, θh, τh,yh

)
h=c,e

and prices (ps, Qts)s such that

(i) for each consumer c, (cc, θc, τ c,yc) solves the utility maximization problem

max
cc,θc,τc,yc

cc0 +
∑
s=1,2

πs (c
c
1s + cc2s) (A.155)

subject to the budget constraints

θc0 +
∑
s,t

Qtsθ
c
ts ≤ 0, (A.156)

the production constraints (A.106), the consumption-relationship constraints (A.122)-(A.125),

and the obstacle-to-trade constraints (A.141)-(A.143), (A.146), taking prices (ps, Qts) as

given;

(ii) for each entrepreneur e, (ce, θe, τ e,ye) solves the utility maximization problem

max
ce,θe,τe,ye

∑
s=1,2

πsc
e
2s (A.157)

subject to the budget constraints

θe0 +
∑
s,t

Qtsθ
e
ts ≤ 0, (A.158)

the production constraints (A.100)-(A.105), the consumption-relationship constraints (A.126)-

(A.129), and the obstacle-to-trade constraints (A.144)-(A.145), (A.146), taking prices (ps, Qts)

as given;

(iii) markets clear in contract paying in period t = 0

θc0 + θe0 = 0, (A.159)

markets clear in security paying at state s in period t

θcts + θets = 0, ∀t = 1, 2; s = 1, 2, (A.160)

markets clear in consumption good at state s in period t = 1

τ ccs + τ ecs = 0, ∀s = 1, 2, (A.161)

markets clear in capital good at state s in period t = 1

τ cks + τ eks = 0,∀s = 1, 2. (A.162)
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H.5 Competitive Equilibrium and Pareto Problem of the Gener-

alized Model: The Lottery Representation

Let xh (c,θ, τ ,y,p,Q,∆) be the probability measure on (c,θ, τ ,y,p,Q,∆) for an agent of type h.

In other words, xh (c,θ, τ ,y,p,Q,∆) is the probability of receiving allocation (c,θ, τ ,y), and being

in exchanges (p,Q) with the rights to trade ∆. It is worthy of emphasis that price externalities

cannot simply be overcome using lotteries to convexify the problem, as shown in Kilenthong and

Townsend (2011) where price externalities exist even in a setting with lotteries. For notational

purposes, let w ≡ (c,θ, τ ,y,p,Q,∆).

As a probability measure, a lottery of an agent of type h, xh, satisfies the following probability

constraint: ∑
w

xh (w) = 1. (A.163)

With a continuum of agents, xh (w) can be interpreted as the fraction of agents of type h assigned to

a bundle (w). More formally, with all choice object gridded up as an approximation, the commodity

space is assumed to be a finite dimensional linear space3. Let xh ≡
[
xh (w)

]
w

be a typical lottery

for an agent of type h.

We now consider a bundle w as a typical commodity. Each bundle will be feasible for an

agent of type h with endowment e only if it satisfies the spot-market budget constraints, the

consumption-relationship constraints, the technology constraints, the obstacle-to-trade constraints,

and the right-to-trade requirements4 as following:

Lm∑
ℓ=1

pℓmτhℓm (ω) ≤ 0, ∀s, ω, (A.164)

ghn

(
ch, eh,θh, τ h,yh

)
= 0, ∀n, (A.165)

F h
o

(
yh
)

= 0, ∀o, (A.166)

Ch
i,a,a′

(
ch,θh, τ h,yh,pi,Qi

)
≥ 0, ∀i, a, a′ (A.167)

∆i − dh
i (w) = 0, ∀i, (A.168)

where dh
i (w) is the excess demand functions corresponding to the ith set of obstacle-to-trade

constraints for an agent type h who holds a bundle w.

3The limiting arguments under weak-topology used in Prescott and Townsend (1984a) can be applied to

establish the results if the commodity space is not finite.
4In some cases, as in a moral hazard with retrading and a hidden information with retrading, the right-

to-trade requirements may be embedded implicitly in the obstacle-to-trade constraints. As a result, they

may not be explicitly written out as separate constraints as in Kilenthong and Townsend (2011).
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Accordingly, we impose the following condition on the probability measure as follows:

xh (w) ≥ 0 if conditions (A.164) to (A.168) hold, (A.169)

= 0 if otherwise.

In words, a positive measure can be defined only on feasible bundles, which satisfy the spot-

market budget constraints, the consumption-relationship constraints, the technology constraints,

the obstacle-to-trade constraints, have the required amount of the rights to trade.

In addition, in order to incorporate the moral hazard economy into the general framework with

lotteries, we need to impose additional conditions, called mother-nature constraints, to ensure that

the lottery is consistent with the production technology5, as in Prescott and Townsend (1984b).

There are W mother-nature constraints. The mother-nature constraints can be written as linear

constraints as follows: ∑
w

Γw (w) = 0, (A.170)

where Γw (w) ∈ R is the coefficient for wth constraint corresponding for (w).

More formally, the consumption possibility set of an agent of type h is defined as follows:

Xh =
{
xh : xh (w) satisfies (A.163), (A.169), and (A.170)

}
(A.171)

Let xh be a typical element of Xh. Note that Xh is compact and convex.

H.5.1 Competitive Equilibrium with Segregated Security Exchanges for the

Generalized Model

Let P (w) be the price of a bundle or contract (w). Each agent is infinitesimally small relative

to the entire economy and will take all prices as given. The intermediaries also act competitively.

Note as well that the rights to trade ∆ is also priced.

Consumers: Each agent of type h, taking prices P (w) as given, chooses xh to maximize its

expected utility:

max
xh∈Xh

∑
w

xh (w)Uh (w) (A.172)

subject to the budget constraint∑
w

P (w)xh (w) ≤
∑
w

P (w) eh (w) (A.173)

5That is, the technology constraints will be replaced by the mother-nature constraints for the moral

hazard with retrading economy.
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Financial Intermediaries: There is no loss of generality to assume that there is a represen-

tative financial intermediary who issues (sells) b (w) ∈ R+ units of each bundle at the unit price

P (w). Note that the intermediary can issue any non-negative number of a bundle; that is, the

number of bundles issued does not have to be between zero and one and is not a lottery. Let b

be the vector of the number of bundles issued as one move across bundles, arguments in b (w).

With constant returns to scale, the profit of a market-maker must be zero and the number of

market-makers becomes irrelevant. Therefore, without loss of generality, we assume there is one

representative market-maker, which takes prices as given.

In order to deal with ex post diversity in private information problems, we define some partic-

ipation mechanism. Let ξhj , called eligibility weight, denote the mass of agents of type h who are

eligible to trade security j, and hence ξj =
∑

h α
hξhj be the total mass of agents of all types who are

eligible to trade security j, adding up over ex-ante types. Note that ξhj can depend on observable

actions or unobserved states in A.

The intermediary’s profit maximization problem is as follows:

max
b

∑
w

P (w) b (w) (A.174)

subject to ∑
j∈Ji

∑
(c,θ,τ ,y,p−i,Q−i,∆)

b (w)Ψzjξjθj ≤ 0, ∀z = 1, . . . , Z; i = 1, . . . , I;pi;Qi, (A.175)

where Ψ = [Ψzj ]z,j is the matrix of security weights6 for the jth security in the zth feasibility

constraint, and J i is the set of all securities corresponding to the ith set of obstacle-to-trade con-

straints, and therefore will be exclusively available to agents in a particular exchange only. These

constraints state that the financial intermediary must put together deals that execute all securities

properly.

Market Clearing: The market-clearing conditions for contracts/lotteries are as follows:∑
h

αhxh (w) = b (w) , ∀w. (A.176)

In order to define the market-clearing conditions for spot trades consistently, we need to define

indicator functions ρmi whose value will be one if spot markets m are relevant to obstacle-to-

trade constraints i, and zero otherwise. More formally, ρmi = 1 if pm is part of obstacle-to-trade

6This extra notation is needed to capture trading structure in private information problems. See the

examples of this matrix in the appendices of Kilenthong and Townsend (2014a).
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constraint i, Ch
i,a,a′ , and ρmi = 0 otherwise. The market-clearing conditions for spot trades are as

follows: ∑
(c,θ,τ−ℓ−m,y,p−i,Q−i,∆)

∑
h

αhxh (w) τℓmρmi = 0, ∀m; ℓ; i;pi,Qi, (A.177)

where τ = (τℓm, τ−ℓ−m). Note that the ex-post diversity is already captured implicitly in the

lottery xh, and therefore there is no need for ζh (ω) in the lottery representation. For example,

as in the moral hazard case, ζh (q, a) = δ (a) f (q|a) represents a fraction of population who took

action a and received outputs q. Under the lottery representation, the mother nature constraints

ensure that these fractions are consistent with the production technology. That is, the ex-post

diversity is already part of the lottery.

In addition, we again require that the markets for the rights to trade clear; that is, for each

exchange
(
pi,Qi

)
, ∑

(c,θ,τ ,y,p−i,Q−i,∆)

∑
h

αhxh (w)∆h
i = 0, ∀i;pi,Qi. (A.178)

Definition A.7. A competitive equilibrium with segregated exchanges is a specification of alloca-

tion (x,b), and prices P (w) such that

(i) for each agent of type h, xh ∈ Xh solves (A.172) subject to (A.173), taking prices P (w) as

given;

(ii) for the financial intermediary, b solves (A.174) subject to (A.175), taking prices P (w) as

given;

(iii) markets for contracts/lotteries, spot trades, and rights to trade clear; that is, (A.176), (A.177)

and (A.178) hold.

H.5.2 Constrained Optimal Allocations for the Generalized Model

An allocation x ≡
(
xh
)
h
is attainable if xh ∈ Xh for all h, and it satisfies the following resource

constraints for securities corresponding to the ith obstacle-to-trade constraint in exchange
(
pi,Qi

)
,

for spot trades τℓm in exchange
(
pi,Qi

)
, and the consistency constraints, respectively:∑

j∈Ji

∑
(c,θ,τ ,y,p−i,Q−i,∆)

∑
h

αhxh (w)Ψzjξjθj ≤ 0, ∀z; i;pi;Qi, (A.179)

∑
(c,θ,τ−ℓ−m,y,p−i,Q−i,∆)

∑
h

αhxh (w) τℓmρmi = 0, ∀m; ℓ; i;pi,Qi, (A.180)

∑
(c,θ,τ ,y,p−i,Q−i,∆)

∑
h

αhxh (w)∆h
i = 0, ∀i;pi,Qi. (A.181)
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The key idea of our market-based solution is to formulate the consistency constraints as lin-

ear feasibility constraints. This formulation in fact makes the price externalities depletable, and

therefore makes it possible to reach a constrained optimal allocation using a non-personalized price

system as in a standard Walrasian equilibrium in contrast to a Lindahl equilibrium where prices

are personalized. Technically, the linear consistency constraints correspond to market clearing

conditions for the rights to trade in the competitive equilibrium.

Definition A.8. An allocation x ≡
(
xh
)H
h=1

∈ X1 × . . .×XH is said to be attainable if xh ∈ Xh

for every agent of type h, and it satisfies (A.179)-(A.181).

Let X denote the set of all attainable allocations. With finite linear weak-inequality constraints,

the attainable set X is compact and convex. In addition, the assumption that the endowment is

on the grids also ensures that X is nonempty.

A constrained optimal allocation is an attainable allocation such that there is no other attainable

allocation that can make at least one agent type strictly better off without making any other agent

type worse off. We characterize constrained optimality using the following Pareto program. Let

λh ≥ 0 be the Pareto weight of agent type h. There is no loss of generality to normalize the

weights such that
∑

h λ
h = 1. A constrained Pareto optimal allocation x solves the following

Pareto program.

Program A.3. The Pareto Program with Lotteries:

max
x∈X

∑
h

λhαh
∑
w

xh (w)Uh (w) (A.182)

subject to (A.179)-(A.181).

It is clear that the objective function now is linear in x. Thus, it is continuous and weakly

concave. As discussed earlier, the feasible set X is non-empty, compact, and convex. Therefore, a

solution to the Pareto program for given positive Pareto weights exists and is a global maximum.

The proof of the equivalence between Pareto optimal allocations and the solutions to the program

is omitted for brevity (see Prescott and Townsend, 1984b, for a similar proof).
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