Information and Market Power

Dirk Bergemann, Tibor Heumann and Stephen Morris

European Summer Symposium in Economic Theory, Gerzensee, July 2016

- A trader's price impact measures how much increasing demand influences its market price
 - sometimes called market power

- A trader's price impact measures how much increasing demand influences its market price
 - sometimes called market power

SUBSTANTIVE QUESTION 1:

 How does price impact vary as we change the finite number of agents and asymmetric information structure?

- A trader's price impact measures how much increasing demand influences its market price
 - sometimes called market power

SUBSTANTIVE QUESTION 1:

- How does price impact vary as we change the finite number of agents and asymmetric information structure?
- We will be looking at this question in the context of demand function competition: Klemperer and Meyer (1989) and Vives (2011)

- A trader's price impact measures how much increasing demand influences its market price
 - sometimes called market power

SUBSTANTIVE QUESTION 1:

- How does price impact vary as we change the finite number of agents and asymmetric information structure?
- We will be looking at this question in the context of demand function competition: Klemperer and Meyer (1989) and Vives (2011)

ANSWFR:

• For any fixed number of agents, every price impact (between 0 and ∞) arises in some information structure

- A trader's price impact measures how much increasing demand influences its market price
 - sometimes called market power

SUBSTANTIVE QUESTION 1:

- How does price impact vary as we change the finite number of agents and asymmetric information structure?
- We will be looking at this question in the context of demand function competition: Klemperer and Meyer (1989) and Vives (2011)

ANSWER:

• For any fixed number of agents, every price impact (between 0 and ∞) arises in some information structure

INTUITION:

 Depending on confounding in agents' signals, any inference from market price can arise

- A trader's price impact measures how much increasing demand influences its market price
 - sometimes called market power

SUBSTANTIVE QUESTION 1:

- How does price impact vary as we change the finite number of agents and asymmetric information structure?
- We will be looking at this question in the context of demand function competition: Klemperer and Meyer (1989) and Vives (2011)

ANSWFR:

• For any fixed number of agents, every price impact (between 0 and ∞) arises in some information structure

INTUITION:

- Depending on confounding in agents' signals, any inference from market price can arise
- Such effects overwhelm large number of trader effects

 We will characterize what can happen for any information structure

- We will characterize what can happen for any information structure
- We have been thinking about this in a variety of settings

- We will characterize what can happen for any information structure
- We have been thinking about this in a variety of settings
- Application of tools developed elsewhere to an environment with linear best responses, normal information and maintaining symmetry

- We will characterize what can happen for any information structure
- We have been thinking about this in a variety of settings
- Application of tools developed elsewhere to an environment with linear best responses, normal information and maintaining symmetry
- But can now compare all outcomes that can arise in the same environment for different mechanisms (e.g., Cournot, Kyle)

SUBSTANTIVE QUESTION 2:

 How do price impact, prices and quantity of trade vary with the market mechanism?

SUBSTANTIVE QUESTION 2:

 How do price impact, prices and quantity of trade vary with the market mechanism?

ANSWFRS:

 Mean quantity of trade does not depend on the information structure under Cournot, moves with price impact under demand function competition

SUBSTANTIVE QUESTION 2:

 How do price impact, prices and quantity of trade vary with the market mechanism?

ANSWFRS:

- Mean quantity of trade does not depend on the information structure under Cournot, moves with price impact under demand function competition
- Any correlation of market variables can arise under Cournot, restricted under demand function competition

SUBSTANTIVE QUESTION 2:

 How do price impact, prices and quantity of trade vary with the market mechanism?

ANSWFRS:

- Mean quantity of trade does not depend on the information structure under Cournot, moves with price impact under demand function competition
- Any correlation of market variables can arise under Cournot, restricted under demand function competition
- Arbitrary variance of output under under Cournot, bounded under demand function competition

SUBSTANTIVE QUESTION 2:

 How do price impact, prices and quantity of trade vary with the market mechanism?

ANSWFRS:

- Mean quantity of trade does not depend on the information structure under Cournot, moves with price impact under demand function competition
- Any correlation of market variables can arise under Cournot, restricted under demand function competition
- Arbitrary variance of output under under Cournot, bounded under demand function competition
- Kyle model relaxes both constraints

Talk

- 1 Environment
- 2 Noise Free Information and Demand Function Competition
- 3 General Information Structures
- 4 General Mechanisms

- i = 1, ..., N agents (buyers)
- agent i's net utility from a_i units of an asset (good) purchased at price p is

$$u_i(\theta_i, a_i) = \theta_i a_i - \frac{1}{2} a_i^2 - p a_i$$

- agent i's "valuation" (marginal value of first unit) is θ_i
- valuations are normally and symmetrically distributed:

$$\left(\begin{array}{c} \theta_i \\ \theta_j \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu_{\theta} \\ \mu_{\theta} \end{array}\right), \left(\begin{array}{cc} \sigma_{\theta}^2 & \rho_{\theta\theta}\sigma_{\theta}^2 \\ \rho_{\theta\theta}\sigma_{\theta}^2 & \sigma_{\theta}^2 \end{array}\right)\right)$$

with mean $\mu_{\theta} > 0$, standard deviation $\sigma_{\theta} > 0$ and correlation coefficient $\rho_{\theta\theta} \in (0,1)$

- i = 1, ..., N agents (buyers)
- agent i's net utility from a_i units of an asset (good) purchased at price p is

$$u_i(\theta_i, a_i) = \theta_i a_i - \frac{1}{2} a_i^2 - pa_i$$

- agent i's "valuation" (marginal value of first unit) is θ_i
- valuations are normally and symmetrically distributed:

$$\left(\begin{array}{c} \theta_i \\ \theta_j \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu_{\theta} \\ \mu_{\theta} \end{array}\right), \left(\begin{array}{cc} \sigma_{\theta}^2 & \rho_{\theta\theta}\sigma_{\theta}^2 \\ \rho_{\theta\theta}\sigma_{\theta}^2 & \sigma_{\theta}^2 \end{array}\right)\right)$$

with mean $\mu_{\theta} > 0$, standard deviation $\sigma_{\theta} > 0$ and correlation coefficient $\rho_{\theta\theta} \in (0,1)$

- interdependent valuations: idiosyncratic and common payoff shocks
 - as $\rho_{\theta\theta} \rightarrow$ 0: pure private values
 - as $\rho_{\theta\theta} \to 1$: pure common values

• (inverse) aggregate supply function:

$$p = c_0 + cA$$
, $c_0, c \in \mathbb{R}_+$

could be derived from quadratic cost function

Payoff Shocks

• individual values are normally distributed:0

$$\left(\begin{array}{c} \theta_{i} \\ \theta_{j} \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} \mu_{\theta} \\ \mu_{\theta} \end{array}\right), \left(\begin{array}{cc} \sigma_{\theta}^{2} & \rho_{\theta\theta}\sigma_{\theta}^{2} \\ \rho_{\theta\theta}\sigma_{\theta}^{2} & \sigma_{\theta}^{2} \end{array}\right)\right)$$

individual values are normally distributed:0

$$\left(\begin{array}{c} \theta_i \\ \theta_j \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{cc} \mu_\theta \\ \mu_\theta \end{array}\right), \left(\begin{array}{cc} \sigma_\theta^2 & \rho_{\theta\theta}\sigma_\theta^2 \\ \rho_{\theta\theta}\sigma_\theta^2 & \sigma_\theta^2 \end{array}\right)\right)$$

 useful alternative representation by orthogonal elements: common payoff shock

$$\overline{\theta} \triangleq \frac{1}{N} \sum_{i} \theta_{i}$$

and idiosyncratic payoff shock

$$\Delta\theta_i\triangleq\theta_i-\overline{\theta}$$

individual values are normally distributed:0

$$\left(\begin{array}{c} \theta_i \\ \theta_j \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{cc} \mu_\theta \\ \mu_\theta \end{array}\right), \left(\begin{array}{cc} \sigma_\theta^2 & \rho_{\theta\theta}\sigma_\theta^2 \\ \rho_{\theta\theta}\sigma_\theta^2 & \sigma_\theta^2 \end{array}\right)\right)$$

 useful alternative representation by orthogonal elements: common payoff shock

$$\overline{\theta} \triangleq \frac{1}{N} \sum_{i} \theta_{i}$$

and idiosyncratic payoff shock

$$\Delta\theta_i\triangleq\theta_i-\overline{\theta}$$

resulting distribution of payoff uncertainty:

$$\left(\begin{array}{c} \Delta\theta_{i} \\ \overline{\theta} \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} 0 \\ \mu_{\theta} \end{array}\right), \left(\begin{array}{c} \left(1-\rho_{\theta\theta}\right)\sigma_{\theta}^{2} & 0 \\ 0 & \rho_{\theta\theta}\sigma_{\theta}^{2} \end{array}\right)\right)$$

Private Information

- agent i has private but imperfect information about the payoff shocks
- signals $s_i \in \mathbb{R}^K$ are normally and symmetrically distributed:

$$\begin{pmatrix} \theta_i \\ \theta_j \\ s_i \\ s_j \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} \mu_{\theta} \\ \mu_{\theta} \\ \mu_s \\ \mu_s \end{pmatrix}, \begin{pmatrix} \Sigma_{\theta\theta} & \Sigma_{\theta s} \\ \Sigma_{\theta s} & \Sigma_{s s} \end{pmatrix} \end{pmatrix}$$

- signal $s_i \in \mathbb{R}^K$ of each agent can be multi-dimensional
- large class of possible information structures

Trading Mechanisms: Demand Function Competition

• Each agent submits a demand function (schedule):

$$x_i: \mathbb{R}^K \times \mathbb{R} \to \mathbb{R}$$

expressing a price contingent demand:

$$x_i(s_i, p) \in \mathbb{R}$$

aggregate demand:

$$\sum_{i} x_{i} (s_{i}, p)$$

• market clearing:

$$p^* = c_0 + c \sum_i x_i (s_i, p^*)$$

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

$$\lambda \in \mathbb{R}$$

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

for some weight

$$\lambda \in \mathbb{R}$$

• Klemperer and Meyer (1989) considered the case where $\lambda=1$ and no shocks

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

$$\lambda \in \mathbb{R}$$

- Klemperer and Meyer (1989) considered the case where $\lambda=1$ and no shocks
- Vives (2011) consider the case where $\lambda = 1$ and ε_i are *i.i.d.* and does comparative statics with variance

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

$$\lambda \in \mathbb{R}$$

- Klemperer and Meyer (1989) considered the case where $\lambda=1$ and no shocks
- Vives (2011) consider the case where $\lambda = 1$ and ε_i are *i.i.d.* and does comparative statics with variance
- We will...
 - first consider "noise free information structures where $\lambda \neq 1$ and no shocks

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

$$\lambda \in \mathbb{R}$$

- Klemperer and Meyer (1989) considered the case where $\lambda=1$ and no shocks
- Vives (2011) consider the case where $\lambda = 1$ and ε_i are *i.i.d.* and does comparative statics with variance
- We will...
 - first consider "noise free information structures where $\lambda \neq 1$ and no shocks
 - and then consider the case where $\lambda \neq 1$ and shocks are characterized by correlation as well as variance;

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

$$\lambda \in \mathbb{R}$$

- Klemperer and Meyer (1989) considered the case where $\lambda=1$ and no shocks
- Vives (2011) consider the case where $\lambda = 1$ and ε_i are *i.i.d.* and does comparative statics with variance
- We will...
 - first consider "noise free information structures where $\lambda \neq 1$ and no shocks
 - and then consider the case where $\lambda \neq 1$ and shocks are characterized by correlation as well as variance;
- this three dimensional class of information structures is then
 - without loss for one dimensional symmetric normal information structures

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

$$\lambda \in \mathbb{R}$$

- Klemperer and Meyer (1989) considered the case where $\lambda=1$ and no shocks
- Vives (2011) consider the case where $\lambda = 1$ and ε_i are *i.i.d.* and does comparative statics with variance
- We will...
 - first consider "noise free information structures where $\lambda \neq 1$ and no shocks
 - and then consider the case where $\lambda \neq 1$ and shocks are characterized by correlation as well as variance;
- this three dimensional class of information structures is then
 - without loss for one dimensional symmetric normal information structures

Noise free information

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta}$$

Noise free information

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta}$$

 In symmetric linear equilibrium, agents will submit linear demand functions:

$$x_i(s_i, p) = \beta_0 + \beta_s s_i + \beta_p p \tag{1}$$

Noise free information

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta}$$

 In symmetric linear equilibrium, agents will submit linear demand functions:

$$x_i(s_i, p) = \beta_0 + \beta_s s_i + \beta_p p \tag{1}$$

Price Impact

$$m = \frac{\partial p}{\partial x}$$

will also be an equilibrium parameter because agent i will want to set

$$x_i = \frac{\mathbb{E}\left[\theta_i | s_i, p\right] - p}{1 + m}$$

- Solve for $(\beta_0, \beta_s, \beta_p, m)$
- We will focus on price impact (m) and price sensitivity (β_p)

Price Impact depends on Price Sensitivity

 if agent i demanded x units of the good at price p, then market clearing would imply that

$$p = c_0 + c \left(x + \sum_{j \neq i} \left(\beta_0 + \beta_s s_j + \beta_p p \right) \right)$$

and so

$$m = \frac{\partial p}{\partial x} = \frac{c}{1 - (N - 1)c\beta_p}$$
 (2)

• by symmetry and linearity, these two equilibrium variables (m, β_p) are numbers and, in particular, so not depend on the agent, signals (of him and others) and the price

Price Sensitivity depends on Price Impact

Two reasons to condition on price changes:

• prices represent opportunity cost

Price Sensitivity depends on Price Impact

Two reasons to condition on price changes:

- prices represent opportunity cost
- price conveys information

Opportunity Cost Effect

• If $\lambda = 1$, there is no information effect

Opportunity Cost Effect

- If $\lambda = 1$, there is no information effect
- In this case, will set

$$\beta_p = -\frac{1}{1+m}$$

• If the price is more than expected, how does an agent's valuation change relative to his prior expectation?

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?
 - if $\lambda >> 1...$
 - the agent's signal is mostly about the common component

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?
 - if $\lambda >> 1...$
 - the agent's signal is mostly about the common component
 - his expectation of the idiosyncratic component will drop...

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?
 - if $\lambda >> 1...$
 - the agent's signal is mostly about the common component
 - his expectation of the idiosyncratic component will drop...
 - his expected value of the good will decline

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?
 - if $\lambda >> 1...$
 - the agent's signal is mostly about the common component
 - his expectation of the idiosyncratic component will drop...
 - his expected value of the good will decline
 - if $\lambda \approx 0...$
 - the agent's signal is mostly about the idiosyncratic component

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?
 - if $\lambda >> 1...$
 - the agent's signal is mostly about the common component
 - his expectation of the idiosyncratic component will drop...
 - his expected value of the good will decline
 - if $\lambda \approx 0...$
 - the agent's signal is mostly about the idiosyncratic component
 - his expectation of the common component will go up

- If the price is more than expected, how does an agent's valuation change relative to his prior expectation?
- If the price is more than expected, it must be that $\overline{\theta}$ is more than expected
- What does this imply about agent's valuation $\theta_i = \Delta \theta_i + \overline{\theta}$?
 - if $\lambda >> 1...$
 - the agent's signal is mostly about the common component
 - his expectation of the idiosyncratic component will drop...
 - his expected value of the good will decline
 - if $\lambda \approx 0...$
 - the agent's signal is mostly about the idiosyncratic component
 - his expectation of the common component will go up
 - · his valuation of the good will increase

• Overall (including both effects):

$$\beta_p = -\frac{1}{1+m} + (1-\lambda)\left(\frac{1}{Nc} + \frac{1}{1+m}\right)$$

• Overall (including both effects):

$$\beta_p = -\frac{1}{1+m} + (1-\lambda)\left(\frac{1}{Nc} + \frac{1}{1+m}\right)$$

• Price sensitivity switches from negative to positive for some λ between 0 and 1

Two Equations in Two Unknowns

$$m = \frac{c}{1 - (N - 1) c\beta_p}$$
$$\beta_p = -\frac{1}{1 + m} + (1 - \lambda) \left(\frac{1}{Nc} + \frac{1}{1 + m}\right)$$

Price Impact and Price Sensitivity

A trick

- Solving for each information structure at once is hard work
- Without loss of generality, we can restrict attention to information structures where all an agent knows is his action in equilibrium (i.e., demand function):
 - "Bayes correlated equilibrium"
 - Bergemann and Morris (2012, 2015), Bergemann, Heumann and Morris (2015)

Statistical Description

- write $\Delta a_i = a_i \overline{a}$
- symmetry implies statistically equivalent description over 4 variables

$$\begin{pmatrix} \Delta a_i \\ \bar{a} \\ \Delta \theta_i \\ \bar{\theta} \end{pmatrix}$$

with mean

$$\begin{pmatrix} 0 \\ \mu_{\mathsf{a}} \\ 0 \\ \mu_{\theta} \end{pmatrix}$$

and variance-covariance matrix....

Statistical Description

$$\begin{pmatrix} \frac{N-1}{N} \left(1-\rho_{aa}\right) \sigma_{a}^{2} & 0 & \rho_{\Delta\Delta}\sigma_{\Delta a}\sigma_{\Delta\theta} & 0 \\ 0 & \frac{(1+(N-1)\rho_{aa})\sigma_{a}^{2}}{N} & 0 & \rho_{\bar{a}\bar{\theta}}\sigma_{\bar{\theta}}\sigma_{\bar{a}} \\ \rho_{\Delta\Delta}\sigma_{\Delta a}\sigma_{\Delta\theta} & 0 & \frac{N-1}{N} \left(1-\rho_{\theta\theta}\right)\sigma_{\theta}^{2} & 0 \\ 0 & \rho_{\bar{a}\bar{\theta}}\sigma_{\bar{\theta}}\sigma_{\bar{a}} & 0 & \frac{(1+(N-1)\rho_{\theta\theta})\sigma_{\theta}^{2}}{N} \end{pmatrix},$$

Statistical Description

- normality implies mean vector μ and variance-covariance matrix Σ is necessary and sufficient for characterization
- outcome variables only, no reference to signals/information
- exogenous variables $\mu_{ heta}, \sigma_{ heta}^2, \rho_{ heta heta}$
- endogenous variables $\mu_{\it a}, \sigma_{\it a}^2, \rho_{\it aa}, \rho_{ar{\it a}ar{\it \theta}}, \rho_{\Delta\Delta}$

Demand Function Competition Best Response Condition

• what happens if you impose best response condition

$$a_i = rac{1}{1+m}\mathbb{E}[heta_i - c_0 - cNar{a}|a_i, ar{a}]), \ \ orall i, a_i, ar{a}$$

on statistical model?

where m is a measure of price impact (market power)

Characterization of Demand Function Competition

Theorem

Demand function competition implies:

1 mean of traded quantity is:

$$\mu_{\mathsf{a}} = \frac{\mu_{\theta} - c_0}{1 + \mathsf{N}c + m};$$

2 second moments of trades are:

$$\sigma_{\Delta a} = \frac{\rho_{\Delta \Delta} \sigma_{\Delta \theta}}{1 + m}, \sigma_{\bar{a}} = \frac{\rho_{\bar{\theta}\bar{a}} \sigma_{\bar{\theta}}}{1 + c + m};$$

3 idiosyncratic and average correlation coefficients are:

$$\rho_{\Delta\Delta}, \rho_{\bar{\theta}\bar{s}} \in (0,1].$$

4 market power $m \in (-1/2, \infty)$

Informational Decentralization

- Bayes correlated equilibrium pins down joint distribution of a_i , $\Delta \theta_i$ and $\overline{\theta}$.
 - with three parameters m, $\rho_{_{\Delta\Delta}}$ and $\rho_{_{\tilde{\theta}\tilde{\mathbf{a}}}}$
- general one dimensional symmetric information structures given by

$$s_i = \Delta \theta_i + \lambda \cdot \overline{\theta} + \varepsilon_i$$

- with three parameters λ , $\rho_{\varepsilon\varepsilon}$ and σ_{ε}
- one to one map in parameter space

Cournot Competition Best Response Condition

what happens if you impose best response condition

$$a_i = rac{1}{1+c}\mathbb{E}[heta_i - c_0 - cNar{a}|a_i]$$

on statistical model?

Characterization of Cournot Competition

Theorem

(Bergemann, Heumann and Morris (2015)) Demand function competition implies:

1 mean of traded quantity is:

$$\mu_{\mathsf{a}} = \frac{\mu_{\theta} - c_0}{1 + \mathsf{N}c + c};$$

2 standard deviation of individual actions is:

$$\sigma_{a} = \frac{\rho_{a\theta}\sigma_{\theta}}{1 + Nc\rho_{aa} + c};$$

3 correlation coefficients satisfy:

$$\rho_{\mathrm{a}\theta} = \rho_{\mathrm{\Delta}\Delta} \sqrt{(1-\rho_{\mathrm{a}\mathrm{a}})(1-\rho_{\theta\theta})} + \rho_{\bar{\mathrm{a}}\bar{\theta}} \sqrt{\rho_{\mathrm{a}\mathrm{a}}\rho_{\theta\theta}}$$

Informational Decentralization

 Can map back into the same three parameter one dimensional signal structure.

First moment:

- Under Cournot competition, price impact is independent of information structure
- Under demand function competition
 - price impact varies
 - there is an additional degree of freedom in the first moment
- Second moments
 - Agents are less informed under Cournot competition
 - Arbitrary variance of total output is possible
 - Under demand function competition
 - it is as if agents know the equilibrium price (and thus total quantity)
 - there is an additional restriction in the second moment

More Mechanisms

- Condition on noisy prices: move smoothly from demand function competition to Cournot, continuity in characterizations
- Variation on static Kyle model
 - richer because we have common and idiosyncratic shocks
 - add noise traders
 - market maker plays role of best response function
- outcomes are superset of demand function competition and Cournot
 - do not condition on prices
 - there is variable price impact

Conclusion

- Useful, feasible and insightful to abstract from fine details of the information structure
- Can get new insight into price impact in this framework
- Can compare alternative mechanisms in common outcome space