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1 Complete Characterization with Binary Support

Let m = 2 and consider a binary support distribution: vp ∈ {v, v̄} where v̄ >

max{v, ṽ}. We say a project is “suitable for exploitation” if and only if it has value

v̄. One can check that if α = 1
2
the players can always implement the first-best. For

conciseness, we therefore assume α = 1.

Proposition A1 When m = 2 there are three possible non-empty experimentation

policies which are optimal for a non-empty region of parameter values:

1. First Best: The players’ scope of experimentation is maximal in all periods

and the players exploit projects suitable for exploitation.

2. Immediate Exploitation: The players explore projects in one domain and,

upon finding a project suitable for exploitation, they permanently exploit said

project and immediately begin the exploration of projects in the other domain

until identifying one suitable for exploitation.

3. Delayed Exploitation: The players explore projects in one domain and,

upon finding a project suitable for exploitation, they idle on that domain and

explore projects on the other domain until finding a project suitable for exploita-

tion. Subsequently the players permanently exploit the two projects they have

found which are suitable for exploitation.
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The players always prefer (1) to (2) and (2) to (3). For this reason, this propo-

sition fully characterizes the optimal experimentation policy, since given any set of

parameter values one can check which of these three policies is feasible.

Proof. The proof proceeds in two steps. First, we argue that no other experimentation

policy may be optimal. Next, we use backwards induction to verify that these three

policies are indeed optimal for a non-empty region of parameter values.

By symmetry, we can consider the experimentation strategy as a function of the

number of projects suitable for exploitation, n. We first prove two results: scope is

increasing with respect to n and scope is weakly larger than n.

To prove the former, note that any project selection rule that the players can

implement when they have identified n − 1 projects suitable for exploitation is also

implementable when they have identified n such projects. This occurs because the

continuation value of their relationship is strictly increasing in the number of projects

suitable for exploitation. Additionally, exploiting a project suitable for exploitation

results in a positive net present value. Hence, the scope of the players’ relationship

can never shrink on path.

The proof for the second statement notes that (i) by assumption, the players can

always exploit n projects suitable for exploitation, (ii) the continuation value following

exploration is weakly higher than that of exploitation, and (iii) the players maximize

the scope as E(vp) ≥ 2c. Combining these observations implies that the players’ scope

of experimentation always exceeds n.

Next, note that the players will neither exploit a project which is not suitable

for exploitation (exploration provides higher current period profits and relaxes the

implementability constraint), nor explore on a domain for which they have discov-

ered a project suitable for exploitation (exploitation delivers higher current period

profits, and both exploration and exploitation lead to an identical implementability

constraint). Combining these observations with the result that scope cannot decrease

implies that, if the players begin maximally, they can implement the first best. There-

fore, it suffices to analyze experimentation policies where |P1| = 1, and to determine

what the experimentation strategy dictates when n = 1. If when n = 1 the players

maintain a scope of 1 and exploit this project, then the players never utilize the sec-

ond domain. This cannot be optimal: by the logic of Bernheim and Whinston (1990),

the players could instead implement the first best. If the players expand their scope,

then this is necessarily the second policy in the proposition. If the players maintain
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a scope of 1, then this is the third policy in the proposition.

For the second step of the proposition, note that the first-best is optimal as δ → 1.

Finally, one can show that both (2) and (3) are optimal by computation: for instance,

upon setting v = 0, v̄ = 4, c = 1, δ
1−δ

(v̄ − 2c) = 1.01c, there will exist two different

values of P (vp = v̄) for which (2) and (3) are optimal for an open set of parameter

values around these points.1

2 Extensions

In this section we provide the proofs for the extensions outlined in Section 5.3 of

the text.

2.1 Risky Collaborations

We make the following simplifications: α = 1, E(vp) = 2c, and m = 2. Let the

distribution of benefits on domain 1 be as in the main analysis. On domain 2 there

exists only one project with value vr ∈ {0, v}, where Pr (vr = v) = q and v ≥ 2ṽ,

ensuring that upon discovery of a project with value v the players can implement the

first-best policy on domain 1.

Proposition A2 For an open set of parameter values: (i) the players explore the

domain 2 project after having first discovered a project with value exceeding ṽ on

domain 1, (ii) despite being able to explore both domains in period 1.

Proof of Proposition A2. We now provide the necessary conditions for the statement

in the proposition to hold:

c ≤ q
δ

1− δ
(v − 2c) (1)

c >
Pr(vp ≥ ṽ)δ

1− δ · Pr(vp < ṽ)

1

1− δ
E(vp − 2c|vp ≥ ṽ) (2)

c <
Pr(vp ≥ ṽ)δ

1− δ · Pr(vp < ṽ)

( 1

1− δ
E(vp − 2c|vp ≥ ṽ) + qv − 2c+ q

δ

1− δ
(v − 2c)

)
(3)

1One could also instead prove that (2) is always implementable for a strictly larger region of
discount factors than (1) to show that (2) is optimal.
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These conditions state, respectively, that domain 2 could be started on its own, that

domain 1 cannot be started on its own (or, equivalently, with knowledge that the

domain 2 project is worth zero), and that domain 1 can be started when anticipating

that domain 2 is started after discovering a project with value at least ṽ. These

conditions imply that the optimal experimentation policy takes one of two forms: (1)

Explore projects on both domains, and if the risky project fails, then permanently

idle on domain 1 if a project with value ṽ is not discovered in the first period. If

the risky project has value v, then the experimentation policy becomes efficient on

domain 1. (2) Explore domain 1 and only explore domain 2 once finding a project

with value at least ṽ. As policies (1) and (2) are both feasible, the players choose the

policy with a higher net present value. Exploring both domains implies a surplus of:

qv − 2c+ q
δ

1− δ
(v − 2c)

+ (1− q)
δ

1− δ
E((vp − 2c)1vp≥ṽ) + q

Pr(vp > v0)δ

1− δ · Pr(vp < ṽ)

1

1− δ
E(vp − 2c|vp ≥ v0), (4)

where the first line corresponds to the surplus from domain 2 and the second line

corresponds to the surplus from domain 1. Further, the surplus from exploring domain

1 and later exploring domain 2 is exactly Equation (3) as the expected surplus in

period 1 is equal to zero. Let us hold fixed the surplus from domain 2 and δ, but let

us consider varying q while v remains fixed to maintain the same expected surplus.

When q = 1, there is no uncertainty and the surplus from exploring both domains at

once can be shown to be strictly greater than delaying. When domain 2 is explored

after domain 1, changing q but holding the expected surplus from domain 2 fixed has

no effect on the total expected surplus. In contrast, when exploring both domains at

once, a decrease in q increases the probability that domain 1 is never explored. As

q continues to decrease, the profit from exploring both domains at once converges to

the expected surplus from domain 2 plus the probability that the first drawn project

in domain 1 exceeds ṽ, multiplied by the profitability of exploiting such a project.

In contrast, the profit from going sequentially converges to that of with certainty

utilizing domain 1 plus the expected profitability of domain 2 when explored after

finding a suitable project in domain 1. One can see that the players may delay domain

2, even if it is more profitable than domain 1, so as to prevent permanently idling on

domain 1.
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2.2 Symmetric Benefits

Let us first consider a case where on one domain the benefits are symmetric but on

the other domain benefits are asymmetric. Namely, for domain 1 all projects equally

benefit both parties but domain 2 is as in our main analysis.

Proposition A3 Let δ∗ and δ be defined as in the main analysis. In this extension,

δ∗ < δ. In other words, for intermediate discount factors, the scope of experimentation

is initially limited on path, with scope increasing with strictly positive probability along

the equilibrium path.

Proof of Proposition A3. Observe that δ∗ = 0 because an experimentation policy

consisting of exploration on the symmetric benefits domain and only expanding the

scope once a project exceeding ṽ is discovered is always feasible. Further, δ̄ > 0 as

C(·) → 0 as δ → 0, implying that the players cannot explore the asymmetric benefits

domain in period 1.

Let us now consider the case where α, the probability that the benefits go to

player 1, differs across the domains. Denote by αj, the corresponding probability for

domain j. For simplicity, let us assume α1 = 1/2 and α2 = 1.

Proposition A4 Let δ∗ and δ be defined as in the main analysis. In this extension,

δ∗ < δ. In other words, for intermediate discount factors, the scope of experimentation

is initially limited on path, with scope increasing with strictly positive probability along

the equilibrium path.

Proof of Proposition A4. Observe that δ∗ = 0 because an experimentation policy

consisting of exploration on domain 1 and only expanding scope once a project ex-

ceeding 2ṽ is discovered is always feasible. Further, δ̄ > 0 because C(·) → 0 as δ → 0,

implying that the players cannot explore projects in domain 2 in period 1.

2.3 Technological Interdependencies

In this extension, we assume that domains are perfectly technologically dependent.

Formally, assume there is a bijection between the projects in the two domains, such

that for any two projects paired by the bijection, the project values are equal. Such

an assumption implies that any project value found on a given domain can be used
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to produce an identical value on the second domain. Further, for simplicity, we will

again restrict attention to α = 1 and m = 2, but the forces naturally extend.

Proposition A5 Let δ∗ and δ be defined as in the main analysis. In this extension,

δ∗ < δ. Further, scope is terminally maximal with probability 1 for any non-empty

experimentation.

Proof of Proposition A5. The latter statement follows directly from technological in-

terdependencies and Bernheim and Whinston (1990): if the players permanently

exploit k projects with value v̂, then the players can exploit m projects with value v̂.

In this analysis, Proposition 1 continues to hold and the optimal experimentation

policy only conditions on the best project found across all domains: v̂. Denote by

B(v̂) the bellman equation corresponding to the players’ strategy. Therefore, δ̄ is

defined as

2c = δ̄Ev̂1,v̂2(B(max{v̂1, v̂2})|δ̄). (5)

To prove, δ∗ < δ̄, it suffices to show:

c < δ̄ lim
δ↑ δ̄

Ev̂1(B(v̂1))|δ) ⇐⇒ 2 lim
δ↑δ̄

Ev̂1(B(v̂)|δ) > Ev̂1,v̂2(B(max{v̂1, v̂2})|δ̄). (6)

B(·|δ̄) is characterized by two thresholds, v̂, ¯̂v: for v̂ ≥ ¯̂v the players exploit two

projects with value v̂, for v̂ ∈
[
v̂, ¯̂v

)
the players exploit one project with value v̂ and

explore a new project, and for v̂ < v̂ the players explore two new projects.

Consider an alternative experimentation strategy with ϵ > 0: for v̂ ≥ ¯̂v + ϵ the

players exploit two projects with value v̂, for v̂ ∈
[
v̂ + ϵ, ¯̂v + ϵ

)
the players exploit one

project with value v and explore a new project, and for v̂ < v̂+ ϵ the players explore

one new project. As ϵ > 0, this experimentation policy is implementable for v̂ > v̂+ ϵ

as δ ↑ δ̄. Hence, it suffices to show that this policy is implementable at period 1.

Under this policy, limδ↑δ̄ B(0|δ) > 1
2
B(0|δ̄). Therefore, the expected continuation

value of this policy at date 1 when δ ↑ δ̄ is strictly greater than half the expected

continuation value of the optimal policy when δ = δ̄. This assertion is exactly the

claim we needed to show Equation (6) holds.
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