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Abstract. We consider general Bayesian persuasion problems where the receiver’s

utility is single-peaked in a one-dimensional action. We show that a signal that pools

at most two states in each realization is always optimal, and that such pairwise sig-

nals are the only solutions under a non-singularity condition on utilities. Our core

results provide conditions under which the induced receiver action is single-dipped

or single-peaked on each set of nested signal realizations. We also provide conditions

for the optimality of either full disclosure or negative assortative disclosure, where

all signal realizations are nested. Methodologically, our results rely on novel duality

and complementary slackness theorems. Our analysis extends to a general problem

of assigning one-dimensional inputs to productive units, which we call optimal pro-

ductive transport. This problem covers additional applications including matching

with peer effects (assigning workers to firms, students to schools, or residents to

neighborhoods), robust option pricing (assigning future asset prices to price distri-

butions), and partisan gerrymandering (assigning voters to districts).
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1. Introduction

Following the seminal papers of Rayo and Segal (2010) and Kamenica and Gentzkow

(2011), the past decade has witnessed an explosion of interest in the design of optimal

information disclosure policies, or Bayesian persuasion. While significant progress

has been made in the special case where the sender’s and receiver’s utilities are linear

in the unknown state (e.g., Gentzkow and Kamenica 2016, Kolotilin, Mylovanov,

Zapechelnyuk, and Li 2017, Kolotilin 2018, Dworczak and Martini 2019, Kleiner,

Moldovanu, and Strack 2021)—so that a distribution over states can be summarized

by its mean—the general, non-linear case is far less well-understood. The literature to

date thus has little to say about the qualitative implications of economically natural

curvature properties of utilities, or about the robustness of optimal disclosure patterns

uncovered in the linear case when utilities are non-linear.

This paper studies persuasion with non-linear preferences as an instance of a general

class of economic models that we call optimal productive transport. In the persuasion

context, we consider a standard setting with one sender and one receiver, where the

receiver’s action and the state of the world are both one-dimensional. We assume

that the sender always prefers higher actions, the receiver prefers higher actions at

higher states, and the receiver’s expected utility is single-peaked in his action for any

belief about the state. In this model, the receiver’s action is optimal iff his expected

marginal utility from increasing his action equals zero: that is, iff the receiver’s first-

order condition holds. This first-order approach is key for tractability. We provide

three types of results, all of which have general analogues beyond persuasion.

First, we show that it is always without loss to focus on pairwise signals, where

each induced posterior belief has at most binary support. Moreover, under a non-

singularity condition on the sender’s and receiver’s utilities—which we call the twist

condition—every optimal signal is pairwise.

Second, we ask when it is optimal for the sender to induce higher actions with riskier

or safer prospects. That is, when the sender pools two extreme states x1 < x4 and

separately pools two moderate states x2 ≤ x3 such that x1 < x2 ≤ x3 < x4, do

the extreme states induce a higher action—in which case we say that disclosure is

single-dipped, as the receiver’s action is single-dipped on the set {x1, x2, x3, x4}—or

a lower action—in which case we say that disclosure is single-peaked? This question

turns out to be key for understanding optimal disclosure patterns with non-linear
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preferences. Our core results provide general conditions for the optimality of single-

dipped disclosure (and, similarly, single-peaked disclosure). The conditions are based

on the following simple idea. If disclosure is not single-dipped, then there must

exist a single-peaked triple: a pair of pooled states x1 < x4 and an intervening state

x2 ∈ (x1, x4) such that the induced action at x2 (say, action y2) is greater than the

induced action at {x1, x4} (say, action y1). Our conditions ensure that any single-

peaked triple can be profitably perturbed in the direction of single-dippedness by

shifting weight on x1 and x4 from y1 to y2, while shifting weight on x2 in the opposite

direction.

Third, we provide conditions for the optimality of either full disclosure, where the

state is always disclosed, or (more interestingly) negative assortative disclosure, where

all states are paired in a negatively assortative manner, so that all prospects can be

ordered from safest to riskiest, and only a single state “in the middle” is disclosed.

Intuitively, full disclosure and negative assortative disclosure represent the extremes of

maximum disclosure (disclosing all states) and minimal pairwise disclosure (disclosing

only one state). There is a unique full disclosure outcome, but there are many negative

assortative disclosure outcomes, depending on the weights on the states in each pair.

We further characterize the optimal negative assortative disclosure pattern as the

solution of a pair of ordinary differential equations, and provide examples where

these equations admit an explicit solution.

While this paper is mainly motivated by Bayesian persuasion, the theory we develop

applies equally to several other applications. We consider three: matching with peer

effects (e.g., assigning workers to firms, students to schools, or residents to neigh-

borhoods to maximize welfare), robust option pricing (assigning future asset prices

to price distributions to bound the price of a derivative), and partisan gerrymander-

ing (assigning voters to districts to maximize expected seat share). To facilitate the

analysis of these applications, in Section 7 we recast our model in terms of assigning

general “inputs” to “productive units.” Table 1 explains how our general model maps

to each of our applications.

Mathematically, our model combines aspects of a production problem (combining in-

puts to produce output) and a transportation problem (matching inputs and outputs

to generate utility)—hence the name “optimal productive transport.” The model

is a new kind of optimal transport problem. Our key technical results are duality

and complementary slackness theorems for this problem. The closest strand of the

optimal transport literature is that on martingale optimal transport (e.g., Beiglböck,



PERSUASION AND MATCHING 3

Application Input (x) Productive Unit
(µ)

Output (y) Meaning of Single-
Dippedness

Persuasion: state posterior receiver action riskier prospects in-
duce higher actions

Matching with
Peer Effects:

worker, student,
or resident with
ability x

firm, school, or
neighborhood

peer effect diverse firms,
schools, or neigh-
borhoods are more
desirable

Option Pricing: period-2 asset
price

period-2 asset
price distribution

period-1 asset
price

riskier assets are
more expensive

Gerrymandering: voter with par-
tisanship x

district probability that
designer’s party
wins the district

polarized districts
are stronger

Table 1. Atlas of Our Applications

Henry-Labordere, and Penkner 2013, Galichon, Henry-Labordere, and Touzi 2014,

Beiglböck and Juillet 2016), which we discuss in Section 3.1.1

The optimal productive transport framework nests a great deal of prior work, both

in persuasion and in the contexts of the other applications we cover. Some key prior

works are Rayo and Segal (2010), Goldstein and Leitner (2018), and Guo and Shmaya

(2019) (on persuasion); Arnott and Rowse (1987) and Saint-Paul (2001) (on match-

ing); Beiglböck and Juillet (2016) (on option pricing); and Friedman and Holden

(2008) (on gerrymandering). In light of our analysis, some of the main results in

these papers can be viewed as showing that single-dipped or single-peaked disclosure

is optimal—that is, that riskier or safer prospects induce higher actions—in some

special settings. For instance, Friedman and Holden’s (2008)“matching slices” gerry-

mandering solution, where a gerrymanderer creates electoral districts that pool ex-

treme supporters with similarly extreme opponents, and wins those districts with the

most extreme supporters and opponents with the highest probability, is an example

of single-dipped disclosure. Goldstein and Leitner’s (2018) non-monotone stress tests,

where a regulator designs a test that pools the weakest banks that it wants to receive

funding with the strongest banks (and subsequently pools less weak banks with less

strong ones), such that the weakest and strongest banks receive the highest fund-

ing, is another such example. On the other hand, Guo and Shmaya’s (2019) “nested

1A few recent papers apply optimal transport to persuasion, but these works are not very related
to ours either methodologically or substantively. Perez-Richet and Skreta (2024) and Lin and Liu
(2023) consider limited sender commitment; Arieli, Babichenko, and Sandomirskiy (2023) consider
persuasion with multiple receivers; Malamud and Schrimpf (2022) focus on the question of when
optimal signals partition a multidimensional state space.
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intervals” disclosure rule, where a designer pools favorable states with similarly un-

favorable states, and persuades the receiver to take her preferred action with higher

probability at more moderate states, is an example of single-peaked disclosure.

Organization. The paper is organized as follows. Section 2 presents our model in

the context of persuasion. Section 3 formulates primal and dual versions of our prob-

lem and establishes strong duality and complementary slackness. Section 4 shows

that pairwise signals are without loss. Sections 5 and 6 present our main substantive

results: Section 5 provides conditions for single-dipped or single-peaked disclosure to

be optimal, and Section 6 provides conditions for full disclosure or negative assort-

ative disclosure to be optimal. Section 7 reframes our model as “optimal productive

transport,” and applies it to matching, option pricing, and gerrymandering, as well

as some specific persuasion problems. Section 8 concludes. Additional results, as well

as all proofs, are deferred to the Appendix or Online Appendix.

2. Persuasion with Non-Linear Preferences

For concreteness, we exposit our model and main results in the context of Bayesian

persuasion. In Section 7.1, we rephrase the model as a general problem of assigning

inputs to productive units, which we call optimal productive transport. This more

general framing covers our matching, option pricing, and gerrymandering applica-

tions.

2.1. Model. We consider a standard persuasion problem, where a sender chooses a

signal to reveal information to a receiver, who then takes an action. The sender’s

utility V (y, x) and the receiver’s utility U(y, x) depend on the receiver’s action y ∈
Y := [0, 1] and the state of the world x ∈ [0, 1]. The sender and receiver share a

common prior ϕ ∈ ∆([0, 1]), with support X := supp(ϕ).2 A signal τ ∈ ∆(∆(X)) is

a distribution over posterior beliefs µ ∈ ∆(X) such that the average posterior equals

the prior: Eτ [µ] = ϕ (Aumann and Maschler 1995, Kamenica and Gentzkow 2011).

An outcome π ∈ ∆(Y × X) is a joint distribution over actions and states. As we

will see, it is equivalent to view the sender as choosing a signal τ (the signal-based

problem) or as directly choosing an outcome π subject to an obedience constraint

(the outcome-based problem).

2Throughout, for any compact metric space X, ∆(X) denotes the set of Borel probability measures
on X, endowed with the weak* topology. For any µ ∈ ∆(X), its support supp(µ) is the smallest
compact set of measure one.
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We impose four standard assumptions on preferences, which are similar to those in

canonical unidimensional models of communication such as signaling (Spence 1973),

cheap talk (Crawford and Sobel 1982), and hard information disclosure (Seidmann

and Winter 1997). First, utilities are smooth.

Assumption 1. V (y, x) and u(y, x) := ∂U(y, x)/∂y are three times differentiable.

Apart from the receiver’s marginal utility u, we denote partial derivatives with sub-

scripts: e.g., Vy(y, x) = ∂V (y, x)/∂y.

Second, the receiver’s expected utility is single-peaked in his action for any posterior

belief.

Assumption 2. u(y, x) satisfies strict aggregate single-crossing in y: for all posteriors

µ ∈ ∆(X), ∫
X

u(y, x)dµ(x) = 0 =⇒
∫
X

uy(y, x)dµ(x) < 0.

Quah and Strulovici (2012) and Choi and Smith (2017) characterized a weak ver-

sion of aggregate single-crossing. We provide an analogous characterization of strict

aggregate single-crossing in Appendix A. A sufficient condition is strict monoton-

icity of u (or equivalently strict concavity of U): i.e., uy(y, x) < 0 for all (y, x). In

fact, Appendix A shows that strict aggregate single-crossing is equivalent to strict

monotonicity up to a normalization.

Third, the receiver’s optimal action satisfies an interiority condition.3

Assumption 3. minx∈[0,1] u(0, x) = maxx∈[0,1] u(1, x) = 0.

The key implication of Assumptions 1–3 is that for any posterior µ, the receiver’s

optimal action γ(µ) := argmaxy∈[0,1] Eµ[U(y, x)] is unique and is characterized by the

first-order condition ∫
X

u(γ(µ), x)dµ(x) = 0. (1)

Our assumptions thus allow a “first-order approach” to the persuasion problem, sim-

ilar to the approach of Mirrlees (1999) and Holmström (1979) to the classical moral

hazard problem.4

3The substance of Assumption 3 is that for each x, there exists y such that u(y, x) = 0. Note that
it can never be optimal for the receiver to take any y such that u(y, x) has a constant sign for all x.
We can then remove all such y from Y and renormalize Y to [0, 1], so that Assumption 3 holds.
4The first-order approach to persuasion was introduced in Kolotilin (2018).
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Uniqueness of the receiver’s optimal action implies that any signal τ induces a unique

outcome πτ , and that we can define the sender’s indirect utility from inducing pos-

terior µ as

W (µ) =

∫
X

V (γ(µ), x)dµ(x).

Fourth, the sender prefers higher actions, and the receiver’s utility is supermodular.

Assumption 4. Vy(y, x) > 0 and ux(y, x) > 0.

Together with Assumptions 1–3, Assumption 4 ensures that for each action y there

is a unique state χ(y) such that u(y, χ(y)) = 0 (i.e., the receiver’s optimal action at

χ(y) is y), and that χ(y) is a strictly increasing, continuous function with range [0, 1].

A common interpretation of the receiver’s action y ∈ [0, 1] is that the receiver has a

private type and makes a binary choice—say, whether to accept or reject a proposal—

and y is the receiver’s choice of a cutoff type below which he accepts. This interpret-

ation is especially useful for some special cases of the model, as we see next.5

2.2. Special Cases. We list some leading special cases of the model, which we return

to periodically to illustrate our results.

(1) The linear case (Gentzkow and Kamenica 2016): u(y, x) = x − y and V (y, x) =

V (y). That is, γ(µ) = Eµ[x] and V is state-independent. This is the well-studied case

where the sender’s indirect utility W (µ) depends only on Eµ[x].
6

(2) The linear receiver case: u(y, x) = x− y but V is arbitrary (e.g., possibly state-

dependent). Here the receiver’s preferences are as in the linear case, while the sender’s

preferences are general.7

(2a) The separable subcase (Rayo and Segal 2010): V (y, x) = w(x)G(y) with w > 0

and G > 0. An interpretation is that the receiver has a private type t with distribution

5To spell out this interpretation, let g(t|x) be the conditional density of the receiver’s type
t ∈ [0, 1] given the state x ∈ [0, 1]. The sender’s and receiver’s utilities from rejection are nor-
malized to zero. The sender’s and receiver’s utilities from acceptance are functions ṽ(t, x) and
ũ(t, x), with ũ(t, x)g(t|x) satisfying Assumption 2. For y ∈ [0, 1] (interpreted as the cutoff such
that the receiver accepts iff t ≤ y), we recover our model with V (y, x) =

∫ y

0
ṽ(t, x)g(t|x)dt and

U(y, x) =
∫ y

0
ũ(t, x)g(t|x)dt.

6More generally, utilities can be transformed to fall in the linear case if u and Vy are affine in
m(x) for some function m. In this case, γ(µ) = a(Eµ[m(x)]) for some function a, and W (µ) =

H(Eµ[m(x)])+Eµ[l(x)] for l(x) = V (0, x) andH(y) =
∫ a(y)

0
Vy(ỹ, y)dỹ. Since Eτ [Eµ[l(x)]] = Eϕ[l(x)]

for any signal τ , the sender’s problem is the same if the state is x̃ = m(x), the receiver’s marginal
utility is x̃− y, and the sender’s utility is H(y).
7The assumption that Vy(y, x) > 0 is unnecessary in the linear receiver case.
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G and accepts a proposal iff Eµ[x] ≥ t, and the sender’s utility when the proposal is

accepted is w(x).8

(2b) The translation-invariant subcase: V (y, x) = P (y−x). An interpretation is that

the receiver “values” the proposal at Eµ[x], and the sender’s utility depends on the

amount by which the proposal is “over-valued,” Eµ[x] − x. For example, a school

may care about the extent to which its students are over- or under-placed. These

preferences are similar to those in Goldstein and Leitner’s (2018) model of stress

tests (see Appendix D.3).

(3) The state-independent sender case: V (y, x) = V (y) but u is arbitrary. Here

the sender’s preferences are as in the linear case, while the receiver’s preferences are

general.

(3a) The separable subcase: u(y, x) = I(x)(x− y), with I > 0. This subcase extends

the linear case by letting the receiver put more weight on some states than others.

(3b) The translation-invariant subcase: u(y, x) = T (x − y), with T (0) = 0. An

example that fits this subcase is that the sender’s utility when the proposal is accepted

is 1, and accepting the proposal corresponds to the receiver undertaking a project

that can either succeed or fail, where the receiver’s payoff is 1 − κ when the project

succeeds and −κ when it fails (and 0 when it is not undertaken), with κ ∈ (0, 1). The

difficulty of the project is 1−x, the receiver’s ability is 1− t, the receiver’s “bad luck”

ε has distribution J , and the project succeeds iff 1 − x ≤ 1 − t − ε, or equivalently

ε ≤ x− t. This example fits the current subcase with V equal to the distribution of

t and T (x− y) = J(x− y)− κ.

(3c) The quantile sub-subcase: u(y, x) = 1{x ≥ y} − κ, with κ ∈ (0, 1). This subcase

corresponds to the previous example with J(x−y) = 1{x ≥ y}, so the project succeeds
iff the receiver’s ability exceeds the project’s difficulty. While u is now discontinuous,

this subcase arises as a limit of the translation-invariant case. Yang and Zentefis

(2024) and Kolotilin and Wolitzky (2024) study the quantile sub-subcase.

8Rayo and Segal focused on the sub-subcase with the uniform distribution G(y) = y. They as-
sume that the state (x, z) is two-dimensional, that the sender’s and receiver’s marginal utilities are
Vy(y, x, z) = z and u(y, x) = x− y, and that there are finitely many states (x, z), so generically the
sender’s utility can be written as Vy(y, x) = w(x). Rayo (2013), Nikandrova and Pancs (2017), and
Onuchic and Ray (2023) consider the separable subcase where x is continuous and (x, z) is supported
on the graph of x → w(x). Rochet and Vila (1994), Tamura (2018), Kramkov and Xu (2022), and
Dworczak and Kolotilin (2024) allow more general distributions of (x, z) ∈ R2.
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3. Optimality Conditions

This section establishes optimality conditions that form the basis for our analysis.

Section 3.1 formulates signal-based and outcome-based primal and dual problems

and shows that they are equivalent. We will make use of both formulations. Section

3.2 establishes our key complementary slackness theorem.

3.1. Primal and Dual Problems. The sender’s signal-based primal problem is to

find a signal τ ∈ ∆(∆(X)) to

maximize

∫
∆(X)

W (µ)dτ(µ) (P)

subject to

∫
∆(X)

µdτ(µ) = ϕ. (BP)

Here, the primal constraint (BP) is the usual Bayes plausibility constraint (Kamenica

and Gentzkow, 2011).

Next, let L(X) denote the set of Lipschitz continuous functions on X. The signal-

based dual problem is to find a price function p ∈ L(X) to

minimize

∫
X

p(x)dϕ(x) (D)

subject to

∫
X

p(x)dµ(x) ≥ W (µ), for all µ ∈ ∆(X). (ZP)

The interpretation is that p(x) is the shadow price of state x, and the dual constraint

(ZP) is the zero profit condition that the sender’s indirect utility from inducing any

posterior µ cannot exceed the expectation of p(x) under µ. This interpretation will

become clearer in the general framework of Section 7.1.

A preliminary result is that strong duality holds: solutions to (P) and (D) exist and

give the same value.

Lemma 1. There exists τ ∈ ∆(∆(X)) that solves (P); there exists p ∈ L(X) that

solves (D); and the values of (P) and (D) are equal: for any solutions τ of (P) and

p of (D), we have ∫
∆(X)

W (µ)dτ(µ) =

∫
X

p(x)dϕ(x).
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Lemma 1 follows by showing that W (µ) is Lipschitz continuous and applying Co-

rollary 2 of Dworczak and Kolotilin (2024), which in turn generalizes Theorem 2 of

Dworczak and Martini (2019) from linear persuasion problems to non-linear ones.9

Next, the outcome-based primal problem is to find an outcome π ∈ ∆(Y ×X) to

maximize

∫
Y×X

V (y, x)dπ(y, x) (P’)

subject to

∫
Y×X̃

dπ(y, x) =

∫
X̃

dϕ(x), for all measurable X̃ ⊂ X, (BP’)∫
Ỹ×X

u(y, x)dπ(y, x) = 0, for all measurable Ỹ ⊂ Y. (OB)

Here, (BP’) is an outcome-based version of Bayes plausibility, which says that the

marginal of π on X equals the prior ϕ; and (OB) is the obedience constraint that the

receiver’s action at each posterior µ is γ(µ). A joint distribution π that violates (OB)

is inconsistent with optimal play by the receiver, as there exists Ỹ ⊂ Y such that the

receiver’s play is suboptimal conditional on the event {y ∈ Ỹ }. Conversely, for any

joint distribution π that satisfies (BP’) and (OB), if the sender designs a mechanism

that draws (y, x) according to π and recommends action y to the receiver, it is optimal

for the receiver to obey the recommendation. We therefore say that an outcome π is

implementable iff it satisfies (BP’) and (OB), and optimal iff it solves (P’).

Finally, letting B(Y ) denote the set of bounded, measurable functions on Y , the

outcome-based dual problem is to find p ∈ L(X) and q ∈ B(Y ) to

minimize

∫
X

p(x)dϕ(x) (D’)

subject to p(x) ≥ V (y, x) + q(y)u(y, x), for all (y, x) ∈ Y ×X. (ZP’)

The interpretation is that p(x) is the shadow price of state x; q(y) is the value of

relaxing the obedience constraint at action y; and (ZP’) says that p(x) is no less than

the sender’s value from assigning state x to any action y, where this value is the sum

of the sender’s utility, V (y, x), and the product of q(y) and the amount by which

obedience at y is relaxed when state x is assigned to action y, u(y, x).

9Corollary 2 of Dworczak and Kolotilin (2024) is proved using strong duality in an optimal transport
problem, as in Villani (2009). Further duality results for persuasion problems include those of Dizdar
and Kováč (2020), Kramkov and Xu (2022), Galperti, Levkun, and Perego (2024), and Smolin and
Yamashita (2023).
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We now establish that the price functions in the signal-based and outcome-based

formulations coincide. Hence, by Lemma 1, strong duality holds in the outcome-

based formulation, as well as the signal-based one.10

Lemma 2. A price function p ∈ L(X) is feasible (optimal) for (D) iff there exists

q ∈ B(Y ) such that (p, q) is feasible (optimal) for (D’).

3.2. Complementary Slackness. Letting p be the optimal price function (which

we will see in Remark 1 is unique), define the set

Λ =

{
µ ∈ ∆(X) :

∫
X

p(x)dµ(x) = W (µ)

}
. (2)

Note that Λ is compact, because Eµ[p(x)] and W (µ) are continuous in µ.

By Lemma 1, together with (BP), a signal τ is optimal iff∫
∆(X)

(∫
X

p(x)dµ(x)−W (µ)

)
dτ(µ) = 0.

Hence, since the integrand is non-negative by (ZP) and Λ is compact, τ is optimal iff

supp(τ) ⊂ Λ. Any posterior µ /∈ Λ is thus excluded from the support of any optimal

signal. In analogy with the optimal transport literature (e.g., Section 3 in Ambrosio,

Brué, and Semola 2021), we refer to the set Λ as the contact set.

The following is our main technical result.

Theorem 1. There exists q ∈ B(Y ) such that

(1) (p, q) is optimal for (D’);

(2) for all µ in Λ (and, thus, in the support of any optimal signal τ), we have

q(γ(µ)) = −
∫
X
Vy(γ(µ), x)dµ(x)∫

X
uy(γ(µ), x)dµ(x)

; (3)

(3) for all non-degenerate µ in Λ (and, thus, in the support of any optimal signal τ),

the function q has derivative q′(γ(µ)) at γ(µ) satisfying, for all x ∈ supp(µ),

Vy(γ(µ), x) + q(γ(µ))uy(γ(µ), x) + q′(γ(µ))u(γ(µ), x) = 0. (4)

10Strong duality in the outcome-based formulation is established under slightly different assumptions
in Lemmas 1 and 2 of Kolotilin (2018). However, a key step in the proof—that q can be taken to
be bounded—is incomplete in Kolotilin (2018).
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Theorem 1 is our key tool for characterizing optimal signals. Intuitively, by comple-

mentary slackness, the support of any optimal outcome π is contained in the set of

points (y, x) that satisfy (ZP’) with equality. Thus, if it is ever optimal to induce

action y at state x—i.e., if y maximizes V (y, x) + q(y)u(y, x)—then y must satisfy

the first-order condition

Vy(y, x) + q(y)uy(y, x) + q′(y)u(y, x) = 0,

which is just (4) with γ(µ) = y. Moreover, taking the expectation of this equation

with respect to µ yields (3). This equation simply says that q(y) equals the product

of the sender’s expected marginal utility at y and the rate at which y increases as

obedience is relaxed, where the latter term equals −1/Eµ[uy(y, x)] by the implicit

function theorem applied to obedience. Note that in the linear case, q(y) simply

equals V ′(y), a useful point that also appears implicitly in Dworczak and Martini

(2019) and explicitly in Dworczak and Kolotilin (2024).

As shown in Appendix E.4, another implication of Theorem 1 is:

Remark 1. There is a unique solution p to (D).

Lemmas 1–2 and Theorem 1 can be compared to results in optimal transport. In

standard optimal transport, two marginal distributions are given (e.g., of men and

women, or workers and firms), and the problem is to find an optimal joint distribution

with the given marginals. In our problem, the marginal distribution over states is

given (by the prior ϕ), and the problem is to find an optimal joint distribution with

this marginal, where for each action the conditional distribution over states satisfies

obedience. Strong duality and complementary slackness theorems are likewise key

tools in optimal transport (e.g., Villani 2009, Theorem 5.10), but the relevent versions

of these results differ from ours.11

The most relevant strand of the optimal transport literature is that on martingale

optimal transport (MOT). The MOT problem is to find an optimal joint distribution

of two variables (say, y and x) with given marginals, subject to the martingale con-

straint that the expectation of x given y equals y. This problem coincides with our

linear receiver case, but with an exogenously fixed distribution of the receiver’s ac-

tion. Motivated by problems in mathematical finance, Beiglböck, Henry-Labordere,

and Penkner (2013) (see also Beiglböck, Nutz, and Touzi 2017) introduce MOT and

11For example, in standard optimal transport, both dual variables appear in the dual objective
function, and they are both uniquely determined.
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prove that the primal and dual problems have the same value; however, they also

show that their dual problem may not have a solution, unlike in our model with

endogenous actions (or in standard optimal transport). Results in MOT also do

not establish compactness of the contact set, which holds in our model as well as in

standard optimal transport. Thus, MOT is related to our linear receiver case, but

the endogenous action distribution apparently makes our model more tractable.12

4. Pairwise Disclosure and the Twist Condition

Our first substantive result is that there is always an optimal signal that pools at

most two states in every realized posterior, and that under an additional condition

every optimal signal has this property. This result simplifies the persuasion problem

to a generalized matching problem, where the sender chooses what pairs of states to

match together and with what weights.

Formally, a set of posteriors M ⊂ ∆(X) is pairwise if | supp(µ)| ≤ 2 for all µ ∈M . A

signal τ is pairwise if supp(τ) is pairwise: that is, a pairwise signal induces posterior

beliefs with at most binary support. For example, with a uniform prior, for any cutoff

x̂ ∈ [0, 1] the signal that reveals states below the cutoff and pools each pair of states

x and 1 + x̂ − x for x ∈ [x̂, (1 + x̂)/2] to induce posterior µ = δx/2 + δ1+x̂−x/2 is

pairwise. The special case where x̂ = 1 is full disclosure, which is also pairwise. In

contrast, no disclosure, where τ(ϕ) = 1, is not pairwise.13

If the receiver’s utility is not quasi-concave, pairwise signals may be suboptimal. For

example, suppose the sender rules three castles, one of which is undefended. The

state x—the identity of the undefended castle—is uniformly distributed. Suppose

the receiver can attack any two castles, and payoffs are (−1,+1) for the sender and

receiver, respectively, if the receiver attacks the undefended castle, and are (+1,−1)
otherwise. Then any pairwise signal narrows the set of possibly undefended castles

to at most two, so the receiver always wins. But if the sender discloses nothing, the

receiver wins only with probability 2/3.14

12The MOT literature uses the contact set of an outcome-based dual problem. See Kolotilin, Corrao,
and Wolitzky (2022) for an alternative development of the results in the current paper that relies
on the contact set of our outcome-based dual, (D’). The approach in the current version, which is
based on the contact set Λ of the signal-based dual, (D), turns out to be simpler.
13See Figure 2. The “disclose-pair” pattern in Panel d. is reminiscent of this example, but with
different weights on the states in each pair.
14Pairwise signals are also suboptimal in the price-discrimination problem of Bergemann, Brooks,
and Morris (2015), as well as in Brzutowski (2023), where U(y, x) = 1{y ≥ x}− y. In these models,
the receiver’s utility is not quasi-concave. However, a variant of Bergemann, Brooks, and Morris
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In contrast, pairwise signals are without loss under Assumptions 1–3. Moreover,

equation (4) implies that if it is optimal to induce the same action y at three states

x1, x2, and x3, then the vector (Vy(y, x1), Vy(y, x2), Vy(y, x3)) must be a linear com-

bination of the vectors (u(y, x1), u(y, x2), u(y, x3)) and (uy(y, x1), uy(y, x2), uy(y, x3)).

This observation gives a condition—which we call the twist condition—under which

pooling more than two states is suboptimal, so that every optimal signal is pairwise.15

Twist Condition For any action y and any triple of states x1 < x2 < x3 such that

x1 < χ(y) < x3, we have |S| ≠ 0,16 where

S :=

Vy(y, x1) Vy(y, x2) Vy(y, x3)

u(y, x1) u(y, x2) u(y, x3)

uy(y, x1) uy(y, x2) uy(y, x3)

 . (5)

We will apply this condition extensively in Section 5.

Theorem 2. For any signal τ (whether optimal or not), there exists a pairwise signal

τ̂ that induces the same outcome. Moreover, if the twist condition holds, then the

contact set is pairwise, and hence so is any optimal signal.

The intuition for the first part of the theorem is that for any posterior µ, there exists

a hyperplane passing through it such that all posteriors on the hyperplane induce the

same action, and the extreme points of the hyperplane in the simplex have at most

binary support. Thus, any posterior that puts weight on more than two states can

be split into posteriors with at most binary support without affecting the induced

outcome. Figure 1 illustrates this argument for a posterior with weight on three

states.

The intuition for the second part is that this splitting leaves an extra degree of

freedom, which can be profitably exploited under the twist condition. Consider a

posterior µ with supp(µ) = {x1, x2, x3}. We can split µ into posteriors µ′ and µ′′

with at most binary support that both induce action γ(µ). For example, suppose

that supp(µ′) = {x1, x2} and supp(µ′′) = {x1, x3}. Now consider a perturbation that

moves probability mass ε on x1 from µ′ to µ′′. This perturbation induces non-zero

(2015) with smooth demand and concave monopoly profit would fit our assumptions, so pairwise
signals would be optimal.
15The term “twist condition” is in analogy to optimal transport, where the twist condition is an
analogous non-singularity condition (e.g., Definition 1.16 in Santambrogio 2015).
16Here | · | denotes the determinant of a matrix; we use the same notation for the cardinality of a
set.
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x1

x2

x3

µ′

µ′′

← γ(µ)

µ

Figure 1. Pairwise Signals are Without Loss

Notes: The optimal action at any posterior on the line between µ′ and
µ′′ equals γ(µ), so splitting µ into µ′ and µ′′ eliminates a non-binary-
support posterior without changing the outcome.

marginal changes in the action at µ′ and µ′′. Under the twist condition, these changes

have a non-zero marginal effect on the planner’s expected utility, by the implicit

function theorem. Therefore, either this perturbation or the reverse perturbation,

where ε is replaced with −ε, is strictly profitable.17

Prior results by Rayo and Segal (2010), Alonso and Câmara (2016), and Zhang and

Zhou (2016) also give conditions under which all optimal signals are pairwise. The-

orem 2 easily implies these earlier results.18 Note that the twist condition always fails

in the linear case, where |S| = 0. Hence, in the linear case, Theorem 2 never rules

out pooling multiple states, and indeed pooling multiple states is often optimal (e.g.,

Kolotilin, Mylovanov, Zapechelnyuk, and Li 2017).19

An immediate corollary of Theorem 2 is that no disclosure is generically suboptimal

when there are at least three states, because for a fixed action y, a generic vector

(Vy(y, x))x∈X with |X| ≥ 3 coordinates cannot be expressed as a linear combination of

17Formally, the second part of Theorem 2 directly follows from Theorem 1.
18Proposition 4 in Alonso and Câmara (2016) states that if u(y, x) = x − y and there do not exist
ζ ≤ 0 and ι ∈ R such that Vy(y, xi) = ζxi + ι for i = 1, 2, 3, then it is not optimal to induce action
y at states x1, x2, and x3. This result is too strong as stated, and it is not correct unless ζ is also
allowed to be positive. Theorem 2 implies this corrected version of Alonso and Câmara’s result.
19Of course, Theorem 2 shows that even when pooling multiple states is optimal, there also exists
an optimal pairwise signal, where the “multi-state pool” is split into pairs. Conversely, if multiple
posteriors all induce the same action, they can be pooled without affecting the outcome.
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two fixed vectors (u(y, x))x∈X and (uy(y, x))x∈X (for any standard notion of genericity,

e.g., Hunt, Sauer, and Yorke 1992, p. 222), as is required by (4). Moreover, in the

linear receiver and state-independent sender cases, if no disclosure is optimal for all

priors then the sender’s and receiver’s utilities must take a particular non-generic

form: they must fall in the linear case (as defined in footnote 6) with a concave V .

Corollary 1. For any prior ϕ with | supp(ϕ)| ≥ 3 and any u, no disclosure is

suboptimal for generic Vy. Moreover, in the linear receiver and state-independent

sender cases, no disclosure is optimal for all priors ϕ ∈ ∆([0, 1]) iff there exist

m, l : [0, 1]→ R and concave H : R→ R such that

W (µ) = H(Eµ[m(x)]) + Eµ[l(x)], for all µ ∈ ∆([0, 1]). (6)

Given Kamenica and Gentzkow’s concavification result, Corollary 1 implies that, for

generic utilities, the sender’s indirect utility is not concave in the posterior when

there are more than two states. Note that Corollary 1 allows the case where u and Vy

always have the opposite sign, so the sender’s and receiver’s ordinal preferences over

actions are diametrically opposed. Hence, even in this case no disclosure is generically

suboptimal.

5. Single-Dipped and Single-Peaked Disclosure

The next two sections present our main results, which characterize optimal disclosure

patterns. The current section asks when it is optimal for riskier or safer prospects to

induce higher actions: that is, when optimal signals are “single-dipped” or “single-

peaked.”20 As we will see, this question unifies and generalizes much of what is known

about special cases of the persuasion problem with non-linear preferences, as well as

other models that fit our optimal productive transport framework.21

5.1. Single-Dippedness/-Peakedness. A signal τ is single-dipped (-peaked) if for

any µ1, µ2 ∈ supp(τ) such that supp(µ1) contains x1 < x3 and supp(µ2) contains

x2 ∈ (x1, x3), we have γ(µ1) ≥ (≤)γ(µ2). Similarly, τ is strictly single-dipped (-

peaked) if for any µ1, µ2 ∈ supp(τ) such that supp(µ1) contains x1 < x3 and supp(µ2)

20Recall that we refer to “riskiness” in terms of the range of a posterior’s support: if x1 < x2 ≤
x3 < x4 then a posterior with support {x1, x4} is riskier than one with support {x2, x3}.
21In the MOT context, Beiglböck and Juillet (2016) argue that single-dippedness/-peakedness are ca-
nonical properties analogous to positive/negative assortativity in standard matching models. Math-
ematically, positive/negative assortativity corresponds to monotonicity in the FOSD order, while
single-dippedness/-peakedness corresponds to monotonicity in a variability order that depends on
u; when u(y, x) = x− y, this variability order is the usual convex order.
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contains x2 ∈ (x1, x3) we have γ(µ1) > (<)γ(µ2). We also apply these definitions

to an arbitrary set of posteriors M ⊂ ∆(X) by replacing supp(τ) with M in the

definitions. In particular, a pairwise signal is single-dipped if the induced receiver

action is single-dipped on each set of nested pairs of states.

An equivalent definition is that a signal τ is single-dipped if it never induces a strictly

single-peaked triple (y1, x1), (y2, x2), (y1, x3), with x1 < x2 < x3 and y1 < y2, in

that there exist µ1, µ2 ∈ supp(τ) such that x1, x3 ∈ supp(µ1) and y1 = γ(µ1), and

x2 ∈ supp(µ2) and y2 = γ(µ2). (Otherwise, such a triple would witness a violation of

single-dippedness.) Correspondingly, we say that a set Γ ⊂ X × Y is single-dipped if

it does not contain a strictly single-peaked triple; and an outcome π is single-dipped

if π(Γ) = 1 for some single-dipped set Γ ⊂ X × Y .22

Each panel in Figure 2 illustrates a signal in the linear receiver case (u(y, x) = x−y).

Panel a. is full disclosure, which is trivially strictly single-dipped, as no states are

paired. Panel b. is no disclosure, which is single-dipped but not strictly single-dipped.

Panels c., d., and e. are all strictly single-dipped. Panel c. is an example of negative

assortative disclosure, where state x = 1/3 is disclosed and the other states are paired

with weight 2/3 on the higher state in each pair. Panel d. shows a signal where all

states below 1/3 (as well as state 1/2) are disclosed, and the other states are paired

with weight 3/4 on the higher state in each pair. This “disclose-pair” pattern is a

strictly single-dipped analogue of upper-censorship, where all states below a cutoff

are disclosed and all states above the cutoff are pooled (e.g., Kolotilin, Mylovanov,

and Zapechelnyuk 2022). Upper-censorship is only weakly single-dipped, whereas

disclose-pair splits up the pooling region in upper-censorship to obtain strict single-

dippedness. Panel e. shows a more complicated strictly single-dipped signal. While

strict single-dippedness implies that each action is induced at at most two states,

Panel e. shows that more than two actions can be induced at a single state (here,

state 2/5).23 Finally, Panel f. shows “matching across the median” (e.g., Kremer and

Maskin 1996), which is not single-dipped, for example because it contains the strictly

single-peaked triple {(1/4, 1/2), (1/2, 3/4), (3/4, 1/2)}.

All of our results (and all proofs, except for the proof of Theorem 4) are symmetric

between the single-dipped and single-peaked cases. We thus present our results and

22These definitions extend naturally to strict single-dippeness and (strict) single-peakedness.
23Also, while the function χ2 defined in Remark 2 is always monotone under strict single-dippedness,
Panel e. shows that the function χ1 can be non-monotone.



PERSUASION AND MATCHING 17

0 1
2

1
0

1
2

1

x

y

0 1
2

1
0

1
2

1

x

y

a. Full Disclosure b. No Disclosure

0 1
3

1
0

1
3

2
3

1

x

y

0 1
3

1
2

1
0

1
3

1
2

5
6

1

x

y

c. Negative Assortative Disclosure d. Disclose-Pair

0 2
5

1
0

1

x

y

0 1
4

1
2

3
4

1
0

1
4

1
2

3
4

1

x

y

e. A Complicated Single-Dipped Set f. Median Matching is not Single-Dipped

Figure 2. Some Single-Dipped Disclosure Patterns

Notes: Each panel displays, for the indicated signal τ (e.g., full dis-
closure in Panel a.), the set of points (x, γ(µ)) where x ∈ supp(µ) and
µ ∈ supp(τ).
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proofs only for the single-dipped case (except for the proof of Theorem 4), omitting

the analogous results for the single-peaked case.

Remark 2. A strictly single-dipped set can be described by two functions χ1 and χ2

that specify the states χ1(y) and χ2(y) which are pooled together to induce each action

y. Specifically, for any strictly single-dipped set Λ, there exist unique functions χ1 and

χ2 from YΛ = {γ(µ) : µ ∈ Λ} to X such that supp(µ) = {χ1(γ(µ)), χ2(γ(µ))} for all

µ ∈ Λ, χ1(y) = χ(y) = χ2(y) or χ1(y) < χ(y) < χ2(y) for all y, and χ2(y) ≤ χ2(y
′)

and χ1(y
′) /∈ (χ1(y), χ2(y)) for all y < y′.24

5.2. Variational Theorem. The next result captures the core economic logic behind

single-dippedness. It is also our key tool for determining when optimal plans are

single-dipped: we use it to establish our main sufficient condition for single-dipped

disclosure to be optimal (Theorem 4, in the next subsection), and also use it directly

to study some applications in Appendix D.25

Theorem 3. Suppose that for any pair of actions y1 < y2 and any triple of states

x1 < x2 < x3 such that x1 < χ(y1) < x3, there exists a vector β ≥ 0 such that Rβ ≥ 0

and Rβ ̸= 0, where

R :=

V (y2, x1)− V (y1, x1) −(V (y2, x2)− V (y1, x2)) V (y2, x3)− V (y1, x3)

−u(y1, x1) u(y1, x2) −u(y1, x3)

u(y2, x1) −u(y2, x2) u(y2, x3)

 .

Then the contact set is single-dipped, and hence so is every optimal signal.

The intuition behind Theorem 3 is very simple, and is illustrated in Figure 3. The

condition in Theorem 3 says that a signal that induces a strictly single-peaked triple

(y1, x1), (y2, x2), (y1, x3) with positive probability can be improved by re-allocating

mass β1 on x1 and mass β3 on x3 from y1 to y2, while re-allocating mass β2 on x2

from y2 to y1. This re-allocation is profitable for the sender, because the sender’s

expected utility increases when y1 and y2 are held fixed (i.e., the first coordinate of

Rβ is non-negative); the receiver’s marginal utility conditional on being recommended

y1 increases (i.e., the second coordinate of Rβ is non-negative), which increases the

24This remark follows from Corollary 1.6 and Lemma A.9 of Beiglböck and Juillet (2016). For
completeness, we provide a simple self-contained proof in the appendix.
25Theorem 3 provides conditions under which every optimal signal is single-dipped. In addition,
Lemma 11 in Appendix E.9 provides weaker conditions under which some optimal signal has this
property.
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y1
x1 x2 x3

y2

β1 β2 β3

Figure 3. A Profitable Perturbation of a Non-Single-Dipped Signal

Notes: The figure shows a perturbation that shifts weights β1 and β3

on x1 and x3 from a posterior inducing action y1 to a posterior inducing
action y2, and shifts weight β2 on x2 in the opposite direction. This
perturbation is profitable if it increases the receiver’s expected marginal
utility at y1 and y2 and also increases the sender’s expected utility for
fixed y1 and y2.

receiver’s action, and hence increases the sender’s expected utility; and the receiver’s

marginal utility conditional on being recommended y2 also increases (i.e., the third

coordinate of Rβ is non-negative), which again increases the sender’s expected utility.

Moreover, at least one of these improvements is strict (i.e., Rβ ̸= 0). The same logic

also applies for any signal that induces a strictly single-peaked triple, even if this

triple occurs with 0 probability, except now mass must be re-allocated from small

intervals around x1, x2, and x3.
26

5.3. Sufficient Conditions for Single-Dipped Disclosure. We can now give our

main sufficient condition on utilities for single-dipped disclosure to be optimal. This

is a central result of our paper. As we will see, our condition covers several prior

models, as well as some new applications.

Theorem 4. If uyx(y, x)/ux(y, x) and Vyx(y2, x)/ux(y1, x) are increasing in x for any

y and y1 ≤ y2, then there exists an optimal single-dipped signal.

If in addition either uyx(y, x)/ux(y, x) or Vyx(y2, x)/ux(y1, x) is strictly increasing in

x for any y and y1 ≤ y2, then the contact set is strictly single-dipped, and hence so is

every optimal signal.

The proof establishes single-dippedness by constructing perturbations that satisfy the

conditions in Theorem 3, and further establishes strict single-dippedness by verifying

the twist condition from Theorem 2.

26Formally, this step relies on our complementary slackness theorem, Theorem 1.
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u

x

a. Linear Receiver Case. b. State-Independent Sender Case.

Figure 4. The Intuition for Theorem 4 in Two Special Cases

Notes: Panel a. In the linear receiver case, when the sender’s utility in-
crement V (y2, x)− V (y1, x) is convex in the state, more extreme states
should induce higher actions.
Panel b. In the state-independent sender case, when the receiver’s mar-
ginal utility u(y, x) is more convex in the state at higher actions, more
extreme states should induce higher actions.

The intuition for Theorem 4 is relatively straightforward in the linear receiver and

state-independent sender cases. (See Figure 4.) In the linear receiver case, we have

uyx(y, x)/ux(y, x) = 0 and Vyx(y2, x)/ux(y1, x) = Vyx(y2, x), so our sufficient condi-

tions for single-dipped disclosure to be optimal are satisfied iff Vy is convex in x.27 To

see why, note that for any strictly single-peaked triple (y1, x1), (y2, x2), (y1, x3), the

perturbation that moves mass on x1 and x3 from y1 to y2 and moves mass on x2 in the

opposite direction, so as to hold fixed the receiver’s marginal utility conditional on

being recommended either action, has the effect of also holding fixed the probability

of each recommendation, while spreading out the state conditional on action y2 and

concentrating the state conditional on action y1. This perturbation is profitable when

the difference V (y2, x) − V (y1, x) is convex in x, which holds whenever Vy is convex

in x.

27In the separable and translation-invariant subcases, convexity of Vy simplifies to convexity of w
and P ′, respectively.
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In the state-independent sender case, we have Vyx(y2, x)/ux(y1, x) = 0, so our suffi-

cient conditions for single-dipped disclosure to be optimal are satisfied iff ux is log-

supermodular in (y, x), or equivalently u is more convex in x at higher actions y.28 To

see why, note that for any strictly single-peaked triple (y1, x1), (y2, x2), (y1, x3), the

perturbation that moves mass on x1 and x3 from y1 to y2 and moves mass on x2 in the

opposite direction, so as to hold fixed the receiver’s marginal utility conditional on be-

ing recommended y1 as well as the total probability of each recommendation, has the

effect of increasing the receiver’s marginal utility conditional on being recommended

y2. This follows because, by log-supermodularity of ux, for the receiver’s expected

marginal utility the marginal rate of substitution between “shifting weight from x1

to x2” and “shifting weight from x2 to x3” is higher at y1 than y2. Finally, when V

is state-independent, this perturbation increases the sender’s expected utility.29

As we explain in Section 7, there are close antecedents to the conditions in Theorem

4 for the linear receiver and state-independent sender cases, in non-persuasion set-

tings that nonetheless fall in our general optimal productive transport framework. In

particular, results in the MOT literature (e.g., Theorem 6.1 of Beiglböck and Juillet

2016) can be translated to our framework to imply the linear receiver case of Theorem

4, while results in the gerrymandering literature (Lemma 1 of Friedman and Holden

2008) can be translated to our framework to imply the state-independent sender case

of Theorem 4. Theorem 4 thus unifies and generalizes these disparate contributions.

We also establish an additional result in Appendix B: under our conditions for strictly

single-dipped disclosure to be optimal (and a regularity condition), the optimal signal

is unique.30

28In the separable and translation-invariant subcases, log-supermodularity of ux simplifies to
2I ′(x)2 ≥ I(x)I ′′(x) and log-concavity of T ′, respectively.
29In the linear receiver and state-independent sender cases, the sufficient conditions for the optimality
of strict single-dipped disclosure in Theorem 4 are “almost necessary,” because the condition |S| ≠ 0
on Y × [0, 1] implies that |S| has a constant sign on Y × [0, 1], which can be shown to be equivalent
to strict convexity of Vy in the linear receiver case, and to strict log-supermodularity of ux in the
state-independent sender case. By Theorem 2, a necessary condition for the optimality of strictly
single-dipped disclosure is that |S| ≠ 0 on the restricted domain where x1 < χ(y) < x3.
30This result is somewhat akin to Brenier’s theorem in optimal transport, which shows that the
optimal transport plan is unique under a suitable complementarity-type condition, called the twist
or generalized Spence-Mirrlees condition (Brenier 1991, Gangbo and McCann 1996; or see Section
1.3 in Santambrogio 2015).
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6. Full Disclosure and Negative Assortative Disclosure

While single-dippedness is an important property, it remains important to fully char-

acterize optimal signals when this is tractable.31 The current section does this for

the polar cases of “maximum” and “minimal” pairwise disclosure. The former case

corresponds to full disclosure, where each state is disclosed; while the latter case cor-

responds to negative assortative disclosure, where all states are paired in a negatively

assortative manner, so all posteriors can be ordered from least to most extreme. Here

our results on full disclosure extend existing results, whereas our results on negative

assortative disclosure are entirely novel.32

6.1. Full Disclosure. Full disclosure is the (unique) signal τ where every µ ∈
supp(τ) is degenerate.

If for all states x1 and x2, and all probabilities ρ, the sender prefers to split the

posterior µ = ρδx1 +(1−ρ)δx2 into degenerate posteriors δx1 and δx2 , then the sender

prefers full disclosure to any pairwise signal. Since pairwise plans are without loss by

Theorem 2, full disclosure is then optimal. Conversely, if the sender strictly prefers

not to split µ = ρδx1 + (1− ρ)δx2 into δx1 and δx2 for some states x1 and x2 and some

probability ρ, then the sender strictly prefers the pairwise signal that differs from

full disclosure only in that it pools states x1 and x2 into µ; so full disclosure is not

optimal.33 Recalling that belief µ = ρδx1 + (1 − ρ)δx2 induces action γ(µ) satisfying

ρu(γ(µ), x1) + (1− ρ)u(γ(µ), x2) = 0, we obtain the following result.

Theorem 5. Full disclosure is optimal iff, for all µ = ρδx1 + (1− ρ)δx2 with x1 < x2

in X and ρ ∈ (0, 1), we have

ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) ≤ ρV (γ(δx1), x1) + (1− ρ)V (γ(δx2), x2). (7)

Moreover, full disclosure is uniquely optimal if (7) holds with strict inequality for all

such µ.

In the linear case, condition (7) holds iff V is convex in y. In the state-independent

sender case, condition (7) simplifies as follows:

31Recall that many different disclosure patterns can be single-dipped, as illustrated in Figure 2.
32In the context of partisan gerrymandering, Kolotilin and Wolitzky (2023) provide conditions under
which the disclose-pair pattern illustrated in Figure 2.d is optimal in the state-independent sender
case.
33This argument is valid when ϕ has finite support. The general case (Theorem 5) uses duality and
is adaptated from part (2) of Proposition 1 in Kolotilin (2018); we give a slightly simpler proof and
also establish uniqueness.
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Corollary 2. In the state-independent sender case, full disclosure is optimal iff, for

all µ = ρδx1 + (1− ρ)δx2 with x1, x2 ∈ X and ρ ∈ (0, 1), we have

V (γ (µ)) ≤ ρV (γ (δx1)) + (1− ρ)V (γ (δx2)) . (8)

In a classical one-to-one matching model, Becker (1973) showed that if the utility

from matching two types h (x1, x2) is supermodular, then it is optimal to match like

types. Legros and Newman (2002) refer to this extreme form of positive assortative

matching as segregation. Their Propositions 4 and 9 show that segregation is optimal

iff h (x1, x1)+h (x2, x2) ≥ 2h (x1, x2) for all x1, x2 (which is a strictly weaker property

than supermodularity). In the persuasion setting, segregation corresponds to full

disclosure. Note that if we fix ρ = 1/2 and let h (x1, x2) = V (γ (δx1/2 + δx2/2)), then

(8) reduces to Legros and Newman’s condition. Intuitively, full disclosure is “less

likely” to be optimal in persuasion than segregation is in classical matching, because

in persuasion the designer has an extra degree of freedom ρ in designing matches.

In the linear receiver case, there is a simple sufficient condition for (7):

Corollary 2’. In the linear receiver case, full disclosure is optimal if V (y, x) is convex

in y and satisfies V (x1, x2) + V (x2, x1) ≤ V (x1, x1) + V (x2, x2) for all x1, x2 ∈ X.

A sufficient condition for V (x1, x2)+V (x2, x1) ≤ V (x1, x1)+V (x2, x2) is supermodu-

larity of V : for all x1 < x2 and y1 < y2, V (y1, x1) + V (y2, x2) ≥ V (y1, x2) + V (y2, x1).

Thus, in the linear receiver case, full disclosure is optimal whenever the sender’s utility

is convex in y and supermodular in (y, x). This sufficient condition for full disclosure

generalizes that given by Rayo and Segal (2010) for the separable subcase.34

In addition, in Appendix B we show that when the prior has full support and the

twist condition holds, full disclosure is uniquely optimal whenever it is optimal.

6.2. Negative Assortative Disclosure. A pairwise signal τ is negative assortative

if the supports of any µ, µ′ ∈ supp(τ) are nested: that is, denoting supp(µ) = {x1, x2}
and supp(µ′) = {x′

1, x
′
2}, where without loss x1 ≤ x2 and x′

1 ≤ x′
2, we have either

x1 ≤ x′
1 ≤ x′

2 ≤ x2 or x′
1 ≤ x1 ≤ x2 ≤ x′

2. We also apply the same definition to an

arbitrary set of posteriors M ∈ ∆(X) by replacing supp(τ) with M . In particular, a

34Their condition is that w is increasing in x and G is convex in y, where V (y, x) = w(x)G(y).
In the sub-subcase with G(y) = y, (7) holds iff w is increasing in x, because (7) simplifies to
ρ(1− ρ)(w(x2)− w(x1))(x2 − x1) ≥ 0.
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strictly single-dipped contact set Λ is negative assortative if χ1 : YΛ → X is decreasing

and χ2 : YΛ → X is increasing.35

The main result of this section is that if strictly single-dipped disclosure is optimal and

the sender strictly prefers to pool any two states, then negative assortative disclosure

is optimal. Moreover, if the prior has a density, then the optimal signal is unique (by

Theorem 7 in Appendix B) and is characterized as the solution to a system of two

ordinary differential equations.

To see the intuition, note that if strictly single-dipped disclosure is optimal, then any

two pairs of pooled states {x1, x3} and {x′
1, x

′
3} with x1 < x3, x

′
1 < x′

3, and x1 ≤ x′
1,

must be either ordered (i.e., x1 < x3 ≤ x′
1 < x′

3) or nested (i.e., x1 ≤ x′
1 < x′

3 ≤ x3).

This follows because if the pairs overlap (i.e., x1 < x′
1 < x3 < x′

3), then either

(x1, x
′
1, x3) or (x′

1, x3, x
′
3), together with the corresponding actions, would form a

single-peaked triple. Hence, for any pair of pooled states {x1, x3}, there must exist

a disclosed state x2 ∈ (x1, x3): intuitively, there must exist pairs of pooled states

in the interval (x1, x3) that are closer and closer together, until the pair degenerates

into a single disclosed state. Therefore, if any two pairs of pooled states {x1, x3}
and {x′

1, x
′
3} are ordered, there would exist two distinct disclosed states x2 ∈ (x1, x3)

and x′
2 ∈ (x′

1, x
′
3). But if the sender strictly prefers to pool any two states, this is

impossible. Finally, if pairs of pooled states cannot overlap or be ordered, the only

remaining possibility is that all pairs of pooled states are nested: that is, disclosure

is negative assortative.36

To derive the equations for the optimal signal, note that if χ1 and χ2 are differentiable

then the posterior µ that induces y = γ(µ) equals

µ =
−f(χ1(y))χ

′
1(y)

−f(χ1(y))χ′
1(y) + f(χ2(y))χ′

2(y)
δχ1(y)+

f(χ2(y))χ
′
2(y)

−f(χ1(y))χ′
1(y) + f(χ2(y))χ′

2(y)
δχ2(y).

37

Hence, by (1) and (BP), we have

u(y, χ1(y))f(χ1(y))χ
′
1(y) = u(y, χ2(y))f(χ2(y))χ

′
2(y),

35Recall that, as defined in Remark 2, χ1(y) and χ2(y) are the smaller and larger states that are
pooled together to induce action y ∈ YΛ.
36In this argument, the existence of the two disclosed states relies on the assumption that supp(ϕ) =
[0, 1]. The formal proof relies on complementary slackness.
37This equation is a version of the Monge-Ampere equation in optimal transport (e.g., Section 1.7.6
in Santambrogio 2015).
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or more generally (allowing that χ1 and χ2 may not be differentiable)

u(y, χ1(y))(−dϕ([0, χ1(y)])) + u(y, χ2(y))dϕ([0, χ2(y)]) = 0. (9)

In addition, the sender’s FOC (4) gives

v(y, χ1(y)) + q(y)uy(y, χ1(y)) + q′(y)u(y, χ1(y)) = 0,

v(y, χ2(y)) + q(y)uy(y, χ2(y)) + q′(y)u(y, χ2(y)) = 0,

and solving this sytem of equations gives

d

dy

(
Vy(y, χ1(y))u(y, χ2(y))− Vy(y, χ2(y))u(y, χ1(y))

u(y, χ1(y))uy(y, χ2(y))− u(y, χ2(y))uy(y, χ1(y))

)
=

Vy(y, χ1(y))uy(y, χ2(y))− Vy(y, χ2(y))uy(y, χ1(y))

uy(y, χ1(y))u(y, χ2(y))− uy(y, χ2(y))u(y, χ1(y))
.

(10)

Finally, the solution to the differential equations (9)–(10) must satisfy the boundary

conditions

(χ1(y), χ1(y), χ2(y), χ2(y)) = (0, χ(y), χ(y), 1), (11)

where y = minYΛ and y = maxYΛ, because the lowest induced action y is induced at

the disclosed state χ(y) = χ1(y) = χ2(y), and the highest induced action y is induced

at states 0 = χ1(y) and 1 = χ2(y).
38

Theorem 6. Assume that X = [0, 1]. If Λ is strictly single-dipped and for all x1 < x2

there exists ρ ∈ (0, 1) such that

ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) > ρV (γ(δx1)), x1) + (1− ρ)V (γ(δx2), x2), (12)

with µ = ρδx1 + (1 − ρ)δx2, then Λ is negative assortative. Moreover, if the prior

ϕ has a density f , then the optimal signal is unique, and the functions χ1 and χ2

are continuous and solve the system of differential equations (9)–(10), with boundary

conditions (11).

38In the linear receiver case, (10) simplifies to

d

dy

(
Vy(y, χ1(y))

χ2(y)− y

χ2(y)− χ1(y)
+ Vy(y, χ2(y))

y − χ1(y)

χ2(y)− χ1(y)

)
= −Vy(y, χ2(y))− Vy(y, χ1(y))

χ2(y)− χ1(y)
.

Geometrically, this says that the slope of the curve γ(µ) 7→ Eµ[Vy(γ(µ), x)] is equal to the neg-
ative of the slope of the secant passing through the points (χ1(γ(µ)), Vy(γ(µ), χ1(γ(µ)))) and
(χ2(γ(µ)), Vy(γ(µ), χ2(γ(µ)))). Nikandrova and Pancs (2017) derive this condition for the separ-
able sub-subcase with Vy(y, x) = w(x).
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Like equation (7) in the previous subsection, equation (12) simplifies in special cases.

In the linear case, (12) holds iff V is strictly concave in y.39 In the state-independent

sender case, it holds iff V (γ(µ)) > ρV (γ(δx1)) + (1 − ρ)V (γ(δx2)). In the linear

receiver case, it holds if V (y, x) is concave in y and satisfies V (x1, x2) + V (x2, x1) >

V (x1, x1) + V (x2, x2) for all x1 < x2; a sufficient condition for the latter property

is strict submodularity of V . These conditions generalize the sufficient condition for

pooling given by Rayo and Segal (2010) for the separable subcase.40

We can also give primitive conditions on V and u for (12) to hold, and hence for the

unique optimal signal to be negative assortative.

Corollary 3. Assume that the condition for strict single-dippedness given in Theorem

4 holds. Then for all x1 < x2 there exists ρ ∈ (0, 1) such that (12) holds iff, for all

y ∈ Y ,

Vyy(y, χ(y)) ≤ Vy(y,χ(y))uyy(y,χ(y))

uy(y,χ(y))
+ 2Vyx(y,χ(y))uy(y,χ(y))−Vy(y,χ(y))uyx(y,χ(y))

ux(y,χ(y))
. (13)

Equation (13) is a local necessary condition for (12): if (13) fails, then (12) also

fails for x1 < x2 sufficiently close to χ(y). When the condition for strict single-

dippednes holds, this local necessary condition turns out to be globally sufficient for

(12). Equation (13) simplifies dramatically in some special cases. In the linear receiver

case, (13) simplifies to Vyy(y, y) + 2Vyx(y, y) ≤ 0; in the translation-invariant subcase

of the linear receiver case, this simplifies further to P ′′(0) ≥ 0. In the separable (resp.,

translation-invariant) subcase of the state-independent sender case, (13) simplifies to

Vyy(y)/Vy(y) ≤ 2I ′(y)/I(y) (resp., Vyy(y)/Vy(y) ≤ T ′′(0)/T ′(0)).

In Appendix C, we give three examples of optimal single-dipped negative assortative

disclosure. Example 1 illustrates how the differential equations (9)–(10) can some-

times be explicitly solved to find the optimal signal. Example 2 characterizes the

optimal signal in quantile persuasion (i.e., Case (3c) in Section 2.2). In quantile per-

suasion, our sufficient conditions for strictly single-dipped disclosure to be optimal

are not satisfied, and there are multiple optimal signals; however, one optimal signal

is strictly single-dipped negative assortative. Finally, Example 3 illustrates that in

39In the linear case, V is strictly concave iff no disclosure is uniquely optimal for all priors, by
Corollary 1 in Kolotilin, Mylovanov, and Zapechelnyuk (2022).
40Their condition is that w is strictly decreasing in x and G is concave in y, where V (y, x) =
w(x)G(y). In the sub-subcase with G(y) = y, (12) holds iff w is strictly decreasing in x.
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some cases the unique optimal signal randomizes conditional on the state, even when

the prior is atomless.41

7. Optimal Productive Transport: Theory and Applications

We now give a general interpretation of our framework in terms of assigning inputs

to productive units, and describe the implications of our results for matching, option

pricing, and partisan gerrymandering, as well as some specific persuasion models. We

pay particular attention to the implications of single-dippedness summarized in Table

1 in the Introduction.

7.1. Optimal Productive Transport. Our signal-based primal problem (P) may

be generalized as follows: given a distribution ϕ ∈ ∆([0, 1]) with support supp(ϕ) = X

of inputs x, find a distribution τ ∈ ∆(∆(X)) of productive units µ ∈ ∆(X) to

maximize

∫
∆(X)

∫
X

V (γ̃(µ), x)dµ(x)dτ(µ)

subject to

∫
∆(X)

µdτ(µ) = ϕ,

where γ̃ : ∆(X) → Y is an arbitrary production function that specifies the output

y produced by unit µ.42 This optimal productive transport problem is the same as

(P), except that the value of an arbitrary production function γ̃(µ) is not necessarily

given by the first-order condition (1) for some function u.

But now suppose that γ̃ satisfies the following two properties:

Betweenness: For any µ, η ∈ ∆(X) satisfying γ̃(µ) < γ̃(η), and any ρ ∈ (0, 1),

we have γ̃(µ) < γ̃(ρη + (1− ρ)µ) < γ̃(η).

Continuity: γ̃ is continuous on ∆(X).

The key property here is the first one, which says that mixing two units produces an

output in between those produced by each of them in isolation. The following result—

which adapts Proposition A.1 of Dekel (1986)—shows that these properties ensure the

existence of a function u such that γ̃ is given by (1). Thus, under Betweenness and

Continuity, the optimal productive transport problem is the same as our persuasion

problem.

41In contrast, Zeng (2023) shows that there is always a deterministic optimal signal in the separable
subcase of the linear receiver or state-independent sender case.
42The interpretation of the assumption that the domain of γ̃ is probability measures on X rather
than arbitrary measures is that production exhibits constant returns to scale, so nothing is gained
by varying the scale of a productive unit.
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Proposition 1. A function γ̃ satisfies Betweenness and Continuity iff there exists a

continuous function u : Y ×X → R such that, for any µ ∈ ∆(X),∫
X

u(y, x)dµ(x) = (<)0 ⇐⇒ y = (>)γ̃(µ).

In the persuasion context, the function u in Proposition 1 is the receiver’s marginal

utility. More generally, u(y, x) can be viewed as a measure of the “efficacy” of in-

put x in the production of output y. For the remainder of this section, we assume

Betweenness and Continuity, as well as that some such u satisfies Assumptions 1–4.

The general interpretation of the signal-based primal problem (P) is that a planner

obtains utility V (y, x) from using input x in the production of output y, and assigns

inputs to productive units according to a production plan τ ∈ ∆(∆(X)) to maximize

the expectation of V (γ(µ), x). The corresponding interpretation of the signal-based

dual problem (D) is that there is a decentralized economy with price p(x) attached to

input x, where the zero-profit condition (ZP) says that an entrepreneur who obtains

utility V (y, x) from using input x in the production of output y cannot create a unit

µ ∈ ∆(X) that leaves her with a positive utility after paying for its inputs.

More precisely, a pair (τ, p) ∈ ∆(∆(X))× L(X) is a competitive equilibrium if

(i) all inputs are assigned to productive units:
∫
X
µdτ(µ) = ϕ;

(ii) operating units make zero profits:
∫
X
p(x)dµ(x) = W (µ) for all µ ∈ supp(τ);

(iii) no entrant can make strictly positive profits:
∫
X
p(x)dµ(x) ≥ W (µ) for all µ ∈

∆(X).

Then, by strong duality (Lemma 1), we have

Remark 3. A competitive equilibrium exists, and a pair (τ, p) is a competitive equi-

librium iff τ solves (P) and p solves (D).

We will make use of the interpretation of optimal plans and prices as competitive

equilibria in the matching context in Section 7.2.

Similarly, the general interpretation of the outcome-based primal problem (P’) is that

a planner chooses an outcome π ∈ ∆(Y ×X) to maximize her expected utility, sub-

ject to the constraints that all inputs are utilized and that each output y is produced

by a unit µ satisfying γ(µ) = y. The corresponding dual can again be interpreted

as a decentralized economy, where now the zero-profit condition (ZP’) says that an

entrepreneur who produces any output y cannot profitably employ any input in the
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production of this output, after accounting for the input’s price, p(x), and the mar-

ginal effect of its use on the output, q(y)u(y, x). Finally, complementary slackness

(Theorem 1) says that any entrepreneur who breaks even must employ only inputs

that satisfy (ZP’) with equality.

7.2. Matching with Peer Effects. Assigning workers with heterogeneous abilities

to firms with workplace peer effects (i.e., intra-firm spillovers) is an important topic in

labor economics (Kremer and Maskin 1996, Saint-Paul 2001, Eeckhout 2018, Boerma,

Tsyvinski, and Zimin 2024). In Saint-Paul (2001), there is a continuum of workers

indexed by ability x ∈ [0, 1]. The population distribution of x is ϕ, with support

X ⊂ [0, 1]. Workers sort into firms, which are ex ante homogeneous and face constant

returns to scale, so that a firm can be identified with its distribution of workers

µ ∈ ∆(X). Workplace peer effects depend on the mean worker ability in a firm,

γ(µ) = Eµ[x], so the output of a worker with ability x in firm µ can be written as

V (γ(µ), x). The planner’s problem of assigning workers to firms to maximize total

output is thus precisely (P), in the linear receiver case where γ(µ) = Eµ[x]. Moreover,

the problem of finding competitive equilibrium wages p(x) for workers with ability

x (where, as in Section 7.1, a competitive equilibrium is an assignment of workers

to firms and wages such that operating firms make zero profits and no entrant can

make strictly positive profits), is precisely (D). In this context, Lemma 1 says that a

competitive equilibrium exists and maximizes total output.

Saint-Paul (2001) considered the special case of this model where V (y, x) = xG(y)

for an increasing function G. In this case, the total output of a firm µ equals

Eµ[x]G(Eµ[x]). Since this is a function only of Eµ[x], Saint-Paul (2001) coincides

with the linear case of our model. We now summarize the implications of our results

for the general linear receiver case of our model in the worker assignment context. We

pay special attention to the separable case where V (y, x) = w(x)G(y) for increasing

functions w and G, which may be particularly natural in this context.

In the worker assignment context, an assignment is pairwise if each firm contains at

most two worker types, and a pairwise assignment is strictly single-dipped if firms

with more heterogeneous workers have higher average worker ability. Since we are in

the linear receiver case, Theorem 4 implies that a strictly single-dipped assignment

is optimal whenever Vy is strictly convex in x—or, in the separable case, w is strictly

convex. Intuitively, Vy is the marginal benefit of having higher-ability coworkers,

so when this is convex in a worker’s own ability, it is optimal for firms where the

distribution of worker abilities is more spread out to have higher average worker
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ability. Moreover, when in addition V is strictly increasing in both arguments and

convex in x, firms with more heterogeneous workers also produce higher output, as if

Eµ[x] = y < y′ = Eµ′ [x] and supp(µ′) is more spread out than supp(µ), then

Eµ[V (y, x)] < Eµ[V (y′, x)] < Eµ′ [V (y′, x)].43

Thus, in this case firms with more heterogeneous workforces are more productive,

and hence also pay higher average wages (by zero profit).

Our conditions for full disclosure (i.e., segregation, where each firm has a homogen-

eous workforce) and negative assortative disclosure/matching (where all firms can

be ordered from least to most heterogeneous) are also interesting in the worker as-

signment context. By Corollary 2’, segregation is optimal if V is convex in y and

supermodular—or, in the separable case, G is convex. On the other hand, by Co-

rollary 3, negative assortative matching is optimal if Vy is strictly convex in x and

Vyy + 2Vyx ≤ 0—or, in the separable case, w is strictly convex and w(x)G′′(y) +

2w′(x)G′(y) ≤ 0. Intuitively, these results say that segregation is optimal if peer

effects are convex, and that negative assortative matching is optimal if single-dipped

assignment is optimal and peer effects are sufficiently concave.

We also note that p(x) is convex whenever V is convex in x—or, in the separable

case, w is convex. This follows because p(x) = supy∈Y V (y, x) + q(y)(x − y), so if

Vxx > 0 then p is the supremum of a set of convex functions. Recalling that p(x) is

the equilibrium wage of a worker with ability x, this says that wages rise more than

one-for-one with ability. This result reflects the fact that higher-ability workers are

not only better workers, but also better coworkers.

A model that is equivalent to worker-firm matching can capture the assignment of

students to schools with peer effects, or more generally the assignment of heterogen-

eous agents to clubs. In Arnott and Rowse (1987), there is a continuum of students

indexed by ability x, who must be assigned to ex ante identical schools, which can

be identified with their student bodies µ ∈ ∆(X). A student with ability x who

attends a school µ attains an education that she values at V (γ(µ), x), where again

γ(µ) = Eµ[x]. Arnott and Rowse (1987) study the planner’s problem of assigning stu-

dents to schools to maximize total educational attainment: this problem is equivalent

43Here, the first inequality follows because Vy > 0, and the second inequality follows because
Vx, Vxx > 0 and µ′ can be obtained from µ by increasing its mean and then taking a mean-preserving
spread (i.e., µ′ is greater than µ in the increasing convex order).
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to the linear receiver case of (P). The “decentralized” version of this problem is con-

sidered by Epple and Romano (1998), who study competitive equilibrium in a market

for private schooling, where a school µ with mean student ability y = γ(µ) charges

tuition t(y, x) to students of ability x. Here, a competitive equilibrium may be defined

precisely as in Section 7.1, with the interpretation that p(x) is the equilibrium utility

of a student with ability x, and that the tuition charged to a student with ability x to

attend a school with mean student ability y is t(y, x) = V (y, x)−p(x). (The assump-

tion that schools take student utility levels as given when setting tuition is called

utility taking in the literature on club economies: e.g., Ellickson, Grodal, Scotchmer,

and Zame 1999.) In this context, Lemma 1 says that a competitive equilibrium exists

and maximizes total educational attainment.44

The conditions on V under which an optimal assignment of students to schools is

single-dipped, segregation, or negative assortative are the same as in the worker as-

signment context. Indeed, bearing in mind that p(x) is the equilibrium utility of an

agent with ability x in either model—so that the wage of a worker with ability x is

p(x), and the tuition paid by a student with ability x who attends a school with mean

ability y is V (y, x) − p(x)—the models are identical. In particular, if Vy is strictly

convex in x, then a strictly single-dipped assignment is optimal, so that schools with

more heterogeneous student bodies are more desirable for all students.

The outcome-based dual (D’) has a particularly natural interpretation in the student

assignment/club economy setting. In a competitive equilibrium, a school with mean

student ability y charges tuition t(y, x) = q(y)(y − x) to students with ability x.

(Thus, a school subsides students with above-average ability and charges students

with below-average ability.) A student with ability x attends the school y that gives

her the highest utility, p(x) = supy∈Y V (y, x) − q(y)(y − x). All operating schools

break even, and no entrepreneur can turn a positive profit by starting a new school.

Yet another interpretation of the model covers peer effects in residential choice.

de Bartolome (1990), Benabou (1996), Becker and Murphy (2000), and Durlauf (2004)

consider residents with binary ability x who choose to live in one of two neighborhoods

of fixed size. A resident with ability x who lives in a neighborhood with a fraction y of

high-ability residents obtains utility V (y, x). These papers study the planner’s prob-

lem of assigning residents to neighborhoods to maximize total utility, and contrast

44Arnott and Rowse (1987) additionally endogenize public spending on schools, while Epple and
Romano (1998) let students differ in income as well as ability. Arnott and Rowse (1987) focus
on the Cobb-Douglas utility function V (y, x) = xαyβ and provide conditions for the optimality of
segregation (“perfect streaming”) or no disclosure (“complete mixing”).
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the solution with the competitive equilibrium outcome when real estate prices cannot

depend on the purchaser’s ability. Our model extends this setting to the case of a

continuum of ability levels and (potentially) a continuum of neighborhoods, where a

resident with ability x who lives in a neighborhood with a distribution of residents

µ ∈ ∆(X) obtains utility V (γ(µ), x), with γ(µ) = Eµ[x]. Our condition for segrega-

tion to be optimal—that V is convex in y and supermodular—sharpens results in this

literature.45 Our condition for strict single-dippedness—that Vy is strictly convex in

x—has no analogue in the literature (which assumes binary types). Finally, Remark

3 shows that a competitive equilibrium is efficient if real estate prices can depend on

the purchaser’s ability. In such an equilibrium, the price for a resident with ability x

to buy a house in a neighborhood with mean ability y is V (y, x)−p(x) = q(y)(y−x).46

7.3. Option Pricing. In mathematical finance, the literature on martingale optimal

transport (e.g., Beiglböck, Henry-Labordere, and Penkner 2013, Galichon, Henry-

Labordere, and Touzi 2014, Beiglböck and Juillet 2016) studies the following problem.

An underlying asset will be marketed in two future periods, 1 and 2. In period 0, an

exotic option is for sale, which will pay V (y, x) if the realized asset price is y in period

1 and x in period 2. An analyst knows the marginal distributions of y and x, but

her only information regarding their joint distribution is that it satisfies E[x|y] = y

for every y. The interpretation of this assumption is that there are liquid markets for

European call options on the asset price in each period, from which the analyst can

infer the marginal distributions of the asset price (by Breeden and Litzenberger 1978);

and the analyst believes that the market satisfies no-arbitrarge, which implies that

the asset price is a martingale under the risk-neutral measure. The analyst’s problem

is to find the joint distribution π ∈ ∆(Y × X) that maximizes the expected value

of the option (and, thus, the maximum option price consistent with no-arbitrage),

subject to the two marginal constraints and the martingale constraint.

Now consider the variant of this problem where the marginal distribution of y is also

unknown. The interpretation is that there is a liquid market for call options only on

the period 2 asset price: for example, perhaps the asset is a share in a firm that is

45The closest point in the literature seems to be an observation by Benabou (1996, p. 249) that
Vyy > 0 and Vyx > 0 both favor segregation.
46The above models all feature linear peer effects: γ(µ) = Eµ[x]. Boucher, Rendall, Uschev, and
Zenou (2024) consider a model of non-linear peer effects where γ(µ) = h−1 (Eµ[h(x)]) and h is a power
function. In our setting, this model—along with the more general one where u(y, x) = h(x)− h(y)
for any strictly increasing function h, which yields peer effect γ(µ) = h−1 (Eµ[h(x)])—is equivalent
to the linear peer effect (linear receiver) case, up to the change of variables x̃ = h(x) and ỹ = h(y).
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expected to go public after period 1, and there are only liquid options markets for

the prices of publicly traded firms. Then the analyst’s problem of determining the

maximum option price, subject to constraint that the marginal distribution of the

period 2 price x is ϕ, and the martingale constraint E[x|y] = y, is precisely (P’), in

the linear receiver case where γ(µ) = Eµ[x]. Lemma 1 establishes strong duality for

this problem.47

In this context, the optimal dual variables (p, q) have an important interpretation.

Recall that the option to be priced pays V (y, x) when the asset price is y in period

1 and x in period 2. An alternative to buying this exotic option is to buy a simple

option that pays p(x) when the period 2 asset price is x, and in addition to plan to sell

q(y) units of the asset itself in period 1 when the period 1 asset price is y. Since selling

q(y) units at price y yields a profit of q(y)(y− x) when the period 2 asset price turns

out to be x, this alternative strategy is sure to outperform—or super-replicate—the

exotic option iff

p(x) + q(y)(y − x) ≥ V (y, x) for all (y, x) ∈ Y ×X.

Note that this condition is precisely (ZP’). Thus, Lemma 1 implies that the maximum

option price can be calculated as either Eπ[V (y, x)] under the joint distribution of asset

prices π that solves (P’) (i.e., the maximum expected value of the exotic option), or

as Eϕ[p(x)], for the simple option payouts p(x) that solve (D’) (i.e., the price of the

cheapest strategy that super-replicates the exotic option).

In the option pricing context, a joint distribution of asset prices is pairwise if it is a

binomial tree: each period 1 price y can be followed by at most two distinct period

2 prices x. A pairwise joint distribution is strictly single-dipped if more dispersed

period 2 prices follow higher period 1 prices: that is, if riskier assets are more ex-

pensive. Since we are in the linear receiver case, Theorem 4 implies that the option

price is maximized by a strictly single-dipped distribution whenever Vy is strictly

convex in x. This condition is known as the “martingale Spence-Mirrlees condition”

in the MOT literature, which Beiglböck and Juillet (2016), Henry-Labordère and

Touzi (2016), and Beiglböck, Henry-Labordère, and Touzi (2017) show implies that

a strictly single-dipped distribution (which they call a “left-curtain coupling”) is op-

timal in the standard MOT problem (where the period 1 asset price distribution is

47The possibility that the period 1 marginal may be unknown, and the resulting problem (P’), are
briefly considered in Corollary 1.5 of Acciaio, Beiglbock, Penkner, and Schachermayer (2016). That
result establishes weak duality and primal attainment, but not dual attainment, which as we discuss
is an important issue.
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fixed exogenously).48 Moreover, by Corollary 2’, full disclosure (where x = y with

probability 1) is optimal if V is strictly convex in y and supermodular; while Corollary

3 implies that negative assortative matching (where higher period 1 prices are always

followed by more dispersed period 2 prices, so more expensive assets are riskier) is

optimal if Vy is strictly convex in x and Vyy + 2Vyx ≤ 0.

The formula for q(y) also has an interesting interpretation in the option pricing con-

text. By equation (3), for every period 1 price y in the support of the marginal of an

optimal joint distribution π, we have

q(y) = Eπ[Vy(y, x)|y].

This is a version of Shephard’s lemma: the amount of the asset sold at period 1 price

y under the cheapest super-replicating strategy equals the derivative of the option

price with respect to y. In addition, in finance the derivative of the option price with

respect to the underlying asset price is known as the option’s “Delta.” Thus, in the

option pricing context, q(y) is simply Delta.

7.4. Partisan Gerrymandering. Partisan gerrymandering—where a partisan de-

signer assigns voters to districts to maximize her party’s seat share—is an important

feature of American politics. Kolotilin and Wolitzky (2023) develop and calibrate

a model of partisan gerrymandering, which generalizes the leading earlier models of

Owen and Grofman (1988), Friedman and Holden (2008), and Gul and Pesendorfer

(2010). In this model, there is a continuum of voters indexed by their partisanship

x ∈ [0, 1]. The population distribution of x is ϕ, with support X ⊂ [0, 1]. The de-

signer chooses a districting plan τ ∈ ∆(∆(X)) that assigns voters to equipopulous

districts µ ∈ [0, 1], prior to the realization of an aggregate shock y ∈ R with cdf V .

The share of type-x voters who vote for the designer’s party when the aggregate shock

takes value y is deterministic and is denoted by v(y, x) ∈ [0, 1].49 The function v(y, x)

is assumed to be strictly decreasing in y and strictly increasing in x: that is, higher

aggregate shocks are less favorable for the designer, while voters with higher partis-

anship are more favorable. The designer wins a district µ iff she receives a majority

48Specifically, Beiglböck and Juillet (2016) show that the unique optimal outcome is single-dipped in
the translation-invariant subcase if P ′ is strictly convex (Theorem 6.1), and in the separable subcase
if w is strictly convex (Theorem 6.3); while Theorem 5.1 in Henry-Labordère and Touzi (2016) and
Theorem 3.3 in Beiglböck, Henry-Labordère, and Touzi (2017) extend this conclusion to the general
linear receiver case where Vy is strictly convex in x. All these papers concern the MOT context,
where the distribution of y is fixed exogenously.
49Among other notational differences, the order of the arguments of v is reversed in Kolotilin and
Wolitzky (2023).
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of the district vote. Thus, defining u(y, x) := v(y, x) − 1/2, note that the designer

wins a district µ iff y ≤ γ(µ), where γ(µ) is given by (1). The designer thus wins a

district µ with probability V (γ(µ)). Finally, the designer chooses τ to maximize her

expected seat share, subject to the constraint that all voters are assigned to equipop-

ulous districts: i.e., Eτ [µ] = ϕ.50 The designer’s problem is thus precisely (P), in the

state-independent sender case where V (y, x) = V (y). Note that the designer’s prefer-

ences are state-independent because she cares only about the probability of winning

each district, and not directly about a district’s composition.

In the gerrymandering context, a districting plan is pairwise if each district contains

at most two voter types, and a pairwise districting plan is strictly single-dipped if

more polarized districts are more favorable for the designer (i.e., if γ(µ) > γ(µ′)

for all µ, µ′ ∈ supp(τ) such that supp(µ) contains x1 < x3 and supp(µ′) contains

x2 ∈ (x1, x3).) Since V is state-independent, Theorem 4 implies that strictly single-

dipped districting is optimal whenever ux is strictly log-supermodular. This result

generalizes a main result of Friedman and Holden (2008) (their Lemma 1), which

shows that strictly single-dipped districting is optimal under an “informative signal

property” that is equivalent to log-supermodularity of ux.
51 As explained in Kolotilin

and Wolitzky (2023), the intuition for this result is that log-supermodularity of ux

means that moderate voters “swing more” with the aggregate shock y than more ex-

treme voters, so a marginal voter is less likely to be pivotal in a district consisting of

moderates than in a district that is evenly divided between left-wing and right-wing

extremists. The designer then optimally exploits this difference in pivot probabilit-

ies by assigning more favorable marginal voters to more polarized districts: i.e., by

creating a single-dipped districting plan.

Kolotilin andWolitzky (2023) go on to apply the duality and complementary slackness

developed in the current paper to derive further properties of optimal districting

plans. In particular, they give conditions under which optimal districting segregates

the strongest opposing voters (as in “pack-and-crack” districting, or the disclose-

pair plan illustrated in Figure 2.d) or more moderate voters (as in an alternative

50As discussed in Kolotilin and Wolitzky (2023), the equipopulation constraint is strictly enforced in
practice, while other constraints on districting (such as geographic continuity of districts) are often
relatively slack, and are thus neglected in much of the gerrymandering literature.
51Friedman and Holden (2008) additionally assume that there is a finite number of districts and
that u satisfies a “central unimodality” condition.
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plan proposed by Friedman and Holden 2008, which resembles negative assortative

disclosure with an interval of disclosed intermediate states).52

7.5. Specific Persuasion Models. Our analysis covers most persuasion models

with non-linear preferences considered to date, including Zhang and Zhou’s (2016)

model of information disclosure in contests; Guo and Shmaya’s (2019) model of per-

suading a receiver with affiliated private information; and Goldstein and Leitner’s

(2018) model of optimal stress tests. The main results in the latter two papers show

that, respectively, single-peaked and single-dipped negative assortative disclosure are

optimal. In Appendix D, we describe how our analysis covers these prior models and

provides some additional results.

8. Conclusion

This paper has developed a general model of assigning inputs to productive out-

puts, which we call optimal productive transport. Our leading application is Bayesian

persuasion, but the model also covers other applications including matching, option

pricing, and partisan gerrymandering. In the persuasion context, our substantive

results provide conditions for all optimal signals to be pairwise, for riskier or safer

prospects to induce higher actions, and for full or negative assortative disclosure to

be optimal. In some cases, we can characterize optimal signals as the solution to a

pair of ordinary differential equations, or even solve them in closed form. Methodolo-

gically, we develop novel duality and complementary slackness theorems, which form

the basis of all of our proofs.

We mention a few open issues. First, while the persuasion literature has made pro-

gress by allowing unrestricted disclosure policies, the pairwise signals that we high-

light are not always realistic. (For example, in reality it is probably not feasible to

design a stress test that pools only the weakest and strongest banks.) An alternative,

complementary approach is to restrict the sender to partitioning the state space into

intervals, as in Rayo (2013) and Onuchic and Ray (2023). An interesting observa-

tion is that, at least in the separable subcase of our model considered by Rayo and

Onuchic and Ray, our condition (12) is equivalent to the condition that complete

pooling is uniquely optimal among monotone partitions for all prior distributions.

This suggests that, under our conditions for the optimality of single-dipped/-peaked

52As argued by Cox and Holden (2011), this is a key question for assessing the likely consequences
of restrictions on districting such as those instituted by the Voting Rights Act of 1965.
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disclosure, negative assortative disclosure might be the optimal unrestricted disclos-

ure policy for all priors iff no disclosure is the optimal monotone policy for all priors.

More generally, analyzing the relationship between the optimal pairwise signals we

have characterized and simpler signals such as monotone partitions is an important

direction for future research.

Second, in the informed receiver interpretation of our model mentioned in Section 2,

our analysis pertains to disclosure mechanisms that do not first elicit the receiver’s

type, or public persuasion in the language of Kolotilin, Mylovanov, Zapechelnyuk, and

Li (2017). Public persuasion turns out to be without loss in Kolotilin, Mylovanov,

Zapechelnyuk, and Li (2017), as well as in Guo and Shmaya (2019). It would be

interesting to investigate conditions for the optimality of public persuasion in our

more general model, and in particular to see how they relate to our conditions for the

optimality of full or negative assortative disclosure.

Third, while we have taken some steps toward fully characterizing optimal signals by

deriving the differential equations (9)–(10) and solving them in a couple examples,

much more remains to be done. Equations (9)–(10) are closely related to the op-

timality and Monge-Ampere equations in optimal transport (e.g., Section 1.7.6 in

Santambrogio 2015). The rich mathematical literature on these equations may hold

some insights for fully characterizing optimal signals in certain settings.

Finally, our model could be generalized to allow multidimensional states or actions.

We suspect that our results on duality (Lemmas 1 and 2), complementary slackness

(Theorem 1), and pairwise signals (Theorem 2) generalize up to some technicalit-

ies.53 Generalizing our other results would require a more general notion of single-

dippedness. With a unidimensional action and a multidimensional state, one can

still define a notion of single-dippedness as inducing higher actions at more extreme

states; with multidimensional actions, the appropriate generalization is unclear.54 For

results on multidimensional persuasion focusing on the linear case, see Dworczak and

Kolotilin (2024).
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A. Characterization of Strict Aggregate Single-Crossing

We present two alternative conditions that are equivalent to strict aggregate single-

crossing of u. Condition (2) is analogous to the “signed-ratio monotonicity” conditions

for weak aggregate single-crossing in Theorem 1 of Quah and Strulovici (2012) and

Corollary 2 of Choi and Smith (2017). We give a shorter proof based on the optimality

of pairwise signals (see Appendix F.1). Condition (3) is novel. It corresponds to strict

monotonicity of u (i.e., uy(y, x) < 0), up to a normalizing factor g(y) > 0.

Lemma 3. Let Assumption 1 hold. The following statements are equivalent:

(1) Assumption 2 holds.

(2) For all x, x′, and y, we have

u(y, x) = 0 =⇒ uy(y, x) < 0, (14)

u(y, x) < 0 < u(y, x′) =⇒ u(y, x′)uy(y, x)− u(y, x)uy(y, x
′) < 0. (15)

(3) There exists a differentiable function g(y) > 0 such that ũ(y, x) = u(y, x)/g(y)

satisfies ũy(y, x) < 0 for all (y, x).

B. Uniqueness

This appendix presents a notable technical result: under a regularity condition, strict

single-dippedness implies that there is a unique optimal signal. It also shows that

conditions for uniqueness are much weaker when full disclosure is optimal.

We say that a strictly single-dipped set Λ is regular if for each y ∈ YΛ, there exists

ε > 0 such that either (i) χ1(ỹ) = χ2(ỹ) for all ỹ ∈ (y−ε, y)∩YΛ or (ii) χ1(ỹ) < χ2(ỹ)

for all ỹ ∈ (y − ε, y) ∩ YΛ. This regularity condition rules out pathological cases

where states switch infinitely many times from being disclosed to being paired. This

condition is satisfied in every example in the literature that we know of.

Theorem 7. If X = [0, 1], ϕ has a density, and Λ is strictly single-dipped and regular,

then there is a unique optimal signal.

In martingale optimal transport, the optimal solution is unique under the martingale

Spence-Mirrlees condition (e.g., Proposition 3.5 in Beiglböck, Henry-Labordère, and

Touzi 2017), which coincides with our condition for the optimality of strict single-

dippedness in the linear receiver case. The key implication of Theorem 7 is that the
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optimal marginal distribution of actions is unique. There is no analogue of this result

in martingale optimal transport, where this marginal distribution is fixed.

To see the intuition for Theorem 7, consider the case where ϕ is discrete and χ2 is

strictly increasing. Let y = maxµ∈Λ γ(µ) be the highest action that can be optimally

induced. Since Λ is strictly single-dipped, there is a unique posterior µ in Λ inducing

action y, namely µ = δχ2(y) if χ1(y) = χ2(y) and µ = ρδχ1(y) + (1− ρ)δχ2(y) where ρ ∈
(0, 1) is uniquely determined by (1) if χ1(y) < χ2(y). Since χ2 is strictly increasing,

for any optimal signal τ , the state χ2(y) can only induce action y and thus τ(µ) =

ϕ(χ2(y)) if χ1(y) = χ2(y) and τ(µ) = ϕ(χ2(y))/(1− ρ) if χ1(y) < χ2(y). Working our

way through the support of ϕ from the highest state to the lowest in this fashion, we

obtain the unique value of τ(µ) for each µ ∈ Λ. When ϕ has a density, the possibility

that χ2 may be only weakly increasing does not threaten uniqueness of the optimal

signal, because the set of states corresponding to flat regions of χ2 is at most countable

and thus has ϕ-measure 0. Finally, our regularity condition ensures that the above

argument extends easily from the discrete case to the continuous one.

In addition, when the prior has full support and the contact set is pairwise (e.g.,

the twist condition holds), full disclosure is uniquely optimal whenever it is optimal.

To see the intuition, suppose full disclosure is optimal, and suppose there is another

optimal signal that pools some states x1 and x2 to induce an action y. Then the signal

that discloses all other states while pooling x1 and x2 to induce y is also optimal. But

then the signal that discloses all other states while pooling x1, x2, and the third state

χ(y) ̸= x1, x2 to induce y would also be optimal—but this signal is not pairwise,

which is a contradiction.

Remark 4. Assume that X = [0, 1]. If the contact set is pairwise and full disclosure

is optimal, then it is uniquely optimal.

C. Examples of Negative Assortative Disclosure

Example 1 (Solving the Differential Equations). Consider the linear receiver case

with Y = X = [1/e, e], f(x) = 1/(2x), and V (y, x) = y/x. We claim that the unique

optimal outcome matches each state x1 ∈ [1/e, 1] with state x2 = 1/x1 with equal

weights, so that the induced action is y = x1/2+1/(2x1). Thus, χ1(y) = y−
√

y2 − 1,

and χ2(y) = y +
√
y2 − 1 for all y ∈ [1, e/2 + 1/(2e)].

Indeed, by Theorem 4, the optimal outcome is strictly single-dipped, since w(x) = 1/x

is strictly convex. By Corollary 3, (12) holds, since w′ < 0. Hence, by Theorem 6, the
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optimal outcome is single-dipped negative assortative and satisfies (9)–(11). Now, for

x2 = 1/x1 and y = x1/2 + 1/(2x1), (9) holds because

u(y, x2) =

(
1

2x1

− x1

2

)
= −

(
x1

2
− 1

2x1

)
= −u(y, x1),

f(x2)
dx2

dy
=

1

2/x1

(
− 1

x2
1

dx1

dy

)
= − 1

2x1

dx1

dy
= −f(x1)

dx1

dy
,

(10) holds because

d

dy

(
w(x1)

1

2
+ w(x2)

1

2

)
=

d

dy

(
1

2x1

+
x1

2

)
=

d

dy
y = 1,

w(x2)− w(x1)

x2 − x1

=
x1 − 1/x1

1/x1 − x1

= −1,

and (11) holds because 1/(1/e) = e and 1/1 = 1.55

Example 2 (Quantile Persuasion). Consider the quantile sub-subcase of the state-

independent sender case, where u(y, x) = 1{x ≥ y} − κ with κ ∈ (0, 1). Let ϕ have

a density on [0, 1]. Assuming that the receiver breaks ties in favor of the sender, we

have, for x1 < x2,

γ(ρδx1 + (1− ρ)δx2) =

x2, ρ ≤ 1− κ,

x1, ρ > 1− κ.

Note that (12) always holds for ρ ∈ (0, 1− κ). We claim that there exists an optimal

single-dipped negative assortative signal where the induced distribution over actions

α satisfies α([y, 1]) = ϕ([y, 1])/κ, and the posterior inducing any action y ∈ [y, 1] is

(1− κ)δχ1(y) + κδχ2(y), where χ2(y) = y, χ1(y) solves κϕ([0, χ1(y)]) = (1− κ)ϕ([y, 1]),

and y solves κϕ([0, y]) = (1 − κ)ϕ([y, 1]).56 A notable feature of this signal is that,

with the informed receiver interpretation, it would remain optimal even if the sender

knew the receiver’s type and could condition disclosure on it.

Example 3 (A Stochastic Optimal Signal). In the following example, for some priors

negative assortative disclosure is optimal; and for other priors, the unique optimal

signal randomizes conditional on the state, even though the prior is atomless.

Consider the translation-invariant subcase of the state-independent sender case. Let

Y = X = [−1, 3], let ϕ have a density f with f(−y) ≥ 3f(3y) for all y ∈ (0, 1], let

55We can also solve this example by directly applying Theorem 1, because, for q(y) = y, the function
V (y, x) + q(y)u(y, x) = y/x+ y(x− y) is maximized at y = x/2 + 1/(2x) for all x ∈ [1/e, e].
56See Appendix F.7 for the proof.
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Figure 5. The Optimal Signal in Example 3

Notes: The three black line segments depict the graphs of χ1 and χ2.
The red line segments indicate pairs of states χ1(y) and χ2(y) that are
optimal to pool to induce action y ∈ (0, 1]. If the prior density satisfies
f(−y) > 3f(3y) for all y ∈ (0, 1], then, for each state x < 0, the
optimal signal randomizes between disclosing x (and inducing action
x) and pooling x with state −3x (and inducing action −x).

u(y, x) = T (x−y) with T (0) = 0 and strictly log-concave T ′, and let V (y, x) = T (2y).

With the informed receiver interpretation, this captures a case where, for example,

κ = 1/2, the distribution of ε is N(0, σ2), and the distribution of t is N(0, (σ/2)2).57

By Theorem 4, the optimal outcome is strictly single-dipped. Furthermore, we claim

that

χ1(y) =

y, y ∈ [−1, 0],

−y, y ∈ (0, 1],
and χ2(y) =

y, y ∈ [−1, 0],

3y, y ∈ (0, 1],

so that the posterior inducing any action y ∈ [−1, 1] is δχ1(y)/2 + δχ2(y)/2, and the

distribution over actions α has density a given by

a(y) =

6f(3y), y ∈ (0, 1],

f(−y)− 3f(3y), y ∈ [−1, 0).

The unique optimal signal is single-dipped negative assortative iff f(−y) = 3f(3y)

for all y ∈ (0, 1]. In contrast, if f(−y) > 3f(3y) for all y ∈ (0, 1], then each state

x ∈ [−1, 0) is mixed between inducing actions y = x and y = −x.58 See Figure 5.

57By symmetry and strict log-concavity of T ′, Vyy(y)/Vy(y) = 2T ′′(2y)/T ′(2y) > (<)T ′′(0)/T ′(0) =
0 for 0 > (<)y, showing that (13) fails for y < 0, and thus Theorem 6 does not apply.
58See Appendix F.8 for the proof.
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D. Specific Persuasion Models

This appendix shows how our analysis covers some well-known prior persuasion mod-

els, where single-dipped or single-peaked disclosure is optimal.59

D.1. Contests. Zhang and Zhou (2016) study information disclosure in contests. In

their model, two contestants, A and B, compete for a prize by exerting efforts zA and

zB. The probability that contestant i = A,B wins is zi/(zA + zB). Everyone knows

contestant A’s value vA = 1. Contestant B’s value vB is known to contestant B and

the designer. The sender designs a signal about vB to maximize expected total effort.

It is convenient to parameterize x = 1/
√
vB and y =

√
zA. With this parameteriza-

tion, Zhang and Zhou’s Proposition 1 shows that, given a posterior µ, contestant A

exerts effort z⋆A = γ(µ)2 determined by Eµ [x− (1 + x2) γ(µ)] = 0, and contestant B

(who knows x) exerts effort z⋆B(x) = γ(µ)/x− γ(µ)2, so the sender’s expected utility

is z⋆A + Eµ [z
⋆
B(x)] = Eµ [γ(µ)/x]. We thus recover our model with V (y, x) = y/x and

u(y, x) = x− (1 + x2)y.

Zhang and Zhou give results on optimality of pairwise disclosure, full disclosure, and

no disclosure. Our approach easily yields the following result, which additionally gives

conditions for optimality of single-dipped/-peaked disclosure and negative assortative

disclosure (which were not considered by Zhang and Zhou).

Proposition 2. In Zhang and Zhou’s contest model where the prior ϕ has a positive

density on X = [x, x], where 0 < x < x, if x ≥ 1 then the unique optimal signal is

full disclosure; and if x ≤ 1/
√
3 (1/

√
3 ≤ x < x ≤ 1), then the unique optimal signal

is single-dipped (-peaked) negative assortative disclosure.

The proof of single-dippedness/-peakedness uses Theorem 3 with a perturbation that

fixes both actions. In contrast, directly applying Theorem 4 would yield only the

weaker result that single-peaked negative assortative disclosure is optimal if 1/
√
2 ≤

x < x < 1.60

59The applications in this section also illustrate some technical points. Section D.1 illustrates how
directly applying Theorem 3 can yield weaker sufficient conditions for the optimality of single-dipped
disclosure than those in Theorem 4. Sections D.2 and D.3 illustrate how our analysis extends when
some of our assumptions are violated: in Section D.2, Assumption 3 fails, so the receiver’s optimal
action may be at the boundary and thus violate the first-order condition; in Section D.3, Assumption
4 fails, as the sender only weakly prefers higher actions.
60To see this, suppose x < 1. Then ux(y, x) = 1− 2xy > 0 for y ≤ x/(1 + x2) = maxY . Moreover,
uyx(y, x)/ux(y, x) = −2x/(1−2xy) is always decreasing in x, while Vyx(y2, x)/ux(y1, x) = −1/(x2−
2x3y1) is decreasing in x iff 3xminY = 3x2/(1 + x2) ≥ 1, or equivalently x ≥ 1/

√
2.
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D.2. Affiliated Information. Guo and Shmaya (2019) consider a persuasion model

with a privately informed receiver, where it is commonly known that the receiver

wishes to accept a proposal iff x exceeds a threshold x0, and the receiver’s type t

is his private signal of x. Letting G(t|x) denote the distribution of t conditional on

x, with corresponding density g(t|x), this setup maps to our model with V (y, x) =

G(y|x), u(y, x) = (x − x0)g(y|x), and g(t|x) strictly log-submodular in (t, x).61,62

These preferences satisfy Assumptions 1 and 2 (see Lemma 3), but not Assumption

3, as u(y, x) > 0 for all y when x > x0. Nonetheless, assuming that the receiver

breaks ties in the sender’s favor, we have γ(µ) = max{y : Eµ[u(y, x)] ≥ 0}.

Let us take for granted that Theorem 3 holds even though Assumption 3 is violated

(e.g., this is clearly true with a discrete prior). Applying Theorem 3 with a perturba-

tion that fixes one action while increasing the other action and the sender’s expected

utility (for fixed actions), we obtain the following result, which reproduces Guo and

Shmaya’s main qualitative insight.63

Proposition 3. In Guo and Shmaya’s model of persuading a privately informed

receiver, every optimal signal is single-peaked.

D.3. Stress Tests. Goldstein and Leitner (2018) consider a model of optimal stress

tests. The sender is a bank regulator and the receiver is a perfectly competitive

market. The bank has an asset that yields a random cash flow. The asset’s quality

is x, which is observed by the bank and the regulator but not the market, and is

normalized to equal the asset’s expected cash flow.64 The regulator designs a test

to reveal information about x. After observing the test result, the market offers a

competitive price y for the asset. Finally, the bank decides whether to keep the asset

and receive the random cash flow, or sell it at price y. Letting z denote the bank’s

final cash holding (equal to either the random cash flow or y), the bank’s payoff equals

z+1{z ≥ x0}, where x0 is a constant. An interpretation is that the bank faces a run

if its cash holding falls below x0. The regulator designs the test to maximize expected

social welfare, or equivalently to minimize the probability of a run.

61The ordering convention here is that high t is bad news about x. This ordering is opposite to Guo
and Shmaya’s, but follows our convention that the receiver accepts for types below a cutoff.
62Inostroza and Pavan (2023) study robust stress test design in a setting with multiple receivers
with coordination motives. As they note, the single-receiver version of their model is a special case
of Guo and Shmaya (2019).
63When the prior has positive density on [0, 1], Guo and Shmaya’s Theorem 3.1 additionally implies
that the optimal signal is single-peaked negative assortative.
64This is the model in Section 5 of their paper, where the bank observes x.
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Goldstein and Leitner show that a bank with a type-x asset is willing to sell at a price

y iff y exceeds a reservation price σ̃(x) that satisfies σ̃(x) > x if x < x0, σ̃(x) < x

if x > x0, and σ̃′(x) ≥ 0. Intuitively, if x < x0 then the bank demands a premium

to forego the chance that a lucky cash flow shock pushes its holdings above x0, while

if x > x0 then the bank desires insurance against bad cash flow shocks that push

its holdings below x0. However, the value of the regulator’s problem is unaffected if

the reservation price is re-defined as σ(x) = x if x ≤ x0 and σ(x) = σ̃(x) if x > x0,

because it is suboptimal for the regulator to induce a bank to sell at a price below

x0. It is more convenient to work with the normalized reservation price σ(x).

It is also convenient to restrict attention to tests that, for each x, either induce the

bank to sell or fully disclose the bank’s value: this is without loss because pooling

two asset types that do not sell is weakly worse than disclosing these types. For such

a test, the price induced by any posterior µ is γ(µ) = Eµ[x], so we are in the linear

receiver case. We can capture the requirement that the bank always sells if y ̸= x by

setting V (y, x) = −∞ if y < σ(x). Finally, letting w(x) > 0 equal the social gain

when a bank sells a type-x asset at a price above x0 (which equals the probability

that a type-x asset yields a cash flow below x0), we obtain the linear receiver case of

our model with

V (y, x) =

w(x)1{y ≥ x0}, if y ≥ σ(x),

−∞, otherwise.

Note that V violates Assumptions 1 and 4, as it is discontinuous and only weakly

increasing in y. Nonetheless, if we assume a discrete prior (as do Goldstein and

Leitner), we recover their main qualitative insight.

Proposition 4. In Goldstein and Leitner’s stress test model with a discrete prior,

there exists an optimal single-dipped signal.

To prove the proposition, we use a perturbation that fixes both actions. Since V is

only weakly increasing, this perturbation now only weakly increases the sender’s ex-

pected utility. Nonetheless, when X is finite, repeatedly applying such perturbations

eventually yields a single-dipped signal. We also note that, as Goldstein and Leit-

ner show, if Eϕ[x] < x0—so that no disclosure does not attain the sender’s first-best

outcome—then every optimal signal is single-dipped.65

65A related model by Garcia and Tsur (2021) studies optimal information disclosure to facilitate
trade in an insurance market with adverse selection. Their model can be mapped to the linear
receiver case with V (y, x) = ν(y) if y ≥ σ(x) and V (y, x) = −∞ otherwise, where ν(y) is a strictly
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E. Proofs

E.1. Proof of Lemma 1. The proof of Lemma 1 remains valid without Assumption

4 and when X is an arbitrary compact metric space.

By Corollary 2 in Dworczak and Kolotilin (2024), it suffices to show that W is

Lipschitz on ∆(X), endowed with the Kantorovich-Rubinstein distance

dKR(µ, η) = sup

{∫
X

p(x)d(µ− η)(x) : p is 1-Lipschitz on X

}
, for all µ, η ∈ ∆(X).

Recall that the Kantorovich-Rubinstein distance metrizes the weak* topology on

∆(X) (e.g., Theorem 6.9 in Villani 2009).

Let LVy , LVx , and Lux be the maximum values of |Vy|, |Vx|, and |ux| on Y × [0, 1],

which are well-defined because Vy, Vx, and ux are continuous, by Assumption 1, and

Y × [0, 1] is compact. Then V (y, x) is LVy -Lipschitz in y for all x, V (y, x) is LVx-

Lipschitz in x for all y, and u(y, x) is Lux-Lipschitz in x for all y. Moreover, let luy

be the minimum value of −
∫
X
uy(γ(µ), x)dµ(x) on ∆(X), which is well-defined by

Assumption 1 and is strictly positive (i.e., luy > 0), by Assumption 2. Note that γ is

Lux/luy -Lipschitz on ∆(X), because, by the implicit function theorem, the derivative

of γ(µ+ ρ(η − µ)) with respect to ρ at any ρ ∈ [0, 1] and µ, η ∈ ∆(X) satisfies∣∣∣∣ ddργ(µ+ ρ(η − µ))

∣∣∣∣ = ∣∣∣∣ ∫
u(γ(µ+ ρ(η − µ)), x)d(η − µ)(x)

−
∫
uy(γ(µ+ ρ(η − µ)), x)d(µ+ ρ(η − µ))(x)

∣∣∣∣
≤
∣∣∣∣ 1luy

∫
u(γ(µ+ ρ(η − µ)), x)d(η − µ)(x)

∣∣∣∣
≤ Lux

luy

dKR(η, µ),

where the last inequality holds by the definition of dKR and Lux-Lipschitz continuity

of u(y, x) in x for all y. Now, for any µ, η ∈ ∆(X), we have

|W (η)−W (µ)| =
∣∣∣∣∫ (V (γ(η), x)− V (γ(µ), x))dη(x) +

∫
V (γ(µ), x)d(η − µ)(x)

∣∣∣∣
≤
∫
|V (γ(η), x)− V (γ(µ), x))| dη(x) +

∣∣∣∣∫ V (γ(µ), x)d(η − µ)(x))

∣∣∣∣
increasing, strictly concave function, and σ is a continuous, strictly increasing function that satisfies
σ(x) < x. Considering a similar perturbation as in Goldstein and Leitner shows that single-dipped
negative assortative disclosure is optimal in their model. We also mention Leitner and Williams
(2023), where a bank regulator discloses information about the design of a stress test to induce
banks to make socially desirable investments. In this model, single-peaked disclosure is optimal.
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≤ LVy

Lux

luy

dKR(η, µ) + LVxdKR(η, µ),

showing that W is Lipschitz on ∆(X).

E.2. Proof of Lemma 2. The proof of Lemma 2 remains valid without Assumption

4 and when X is an arbitrary compact metric space.

One direction is obvious. If (p, q) is feasible for (D’), then, for all µ ∈ ∆(X), we have∫
X

p(x)dµ(x) ≥
∫
X

(V (γ(µ), x) + q(γ(µ))u(γ(µ), x))dµ(x)

=

∫
X

V (γ(µ), x)dµ(x) = W (µ),

so p is feasible for (D).

Suppose now that p is feasible for (D). By (ZP) for µ = δx, with x ∈ X, we have

p(x) ≥ V (γ(δx), x), for all x ∈ X. (16)

For x1, x2 ∈ X and y ∈ Y such that u(y, x1) < 0 < u(y, x2), let

µ =
u(y, x2)

u(y, x2)− u(y, x1)
δx1 +

−u(y, x1)

u(y, x2)− u(y, x1)
δx2 .

Then γ(µ) = y by (1), so, by (ZP),

p(x1)− V (y, x1)

u(y, x1)
≤ p(x2)− V (y, x2)

u(y, x2)
, if u(y, x1) < 0 < u(y, x2). (17)

By (16), it suffices to show that there exists a bounded, measurable q such that (ZP’)

holds for all y ̸= γ(δx), or equivalently q(y) ∈ [q(y), q(y)], for all y ∈ Y , where q and

q are defined by

q(y) =

supx1∈X:u(y,x1)<0
p(x1)−V (y,x1)

u(y,x1)
, y > 0,

−∞, y = 0,

q(y) =

infx2∈X:u(y,x2)>0
p(x2)−V (y,x2)

u(y,x2)
, y < 1,

+∞, y = 1,

That is, it suffices to show that the correspondence Q given by Q(y) = [q(y), q(y)],

for all y ∈ Y , admits a bounded, measurable selection q. We now show that there

exists C > 0 such that Q(y) ∩ [−C,C] is non-empty valued for all y ∈ Y , so q given

by q(y) = argminr∈Q(y) |r|, for all y ∈ Y , is a required selection, by the measurable

maximum theorem (Theorem 18.19 in Aliprantis and Border 2006). By (17), Q(y) is
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non-empty for all y ∈ (0, 1), so it suffices to show that there exists C > 0 such that

q(y) ≤ C and q(y) ≥ −C.

Define

q̃(y, x) =


Vy(y,x)

−uy(y,x)
, u(y, x) = 0,

V (γ(δx),x)−V (y,x)
u(y,x)

, u(y, x) ̸= 0.

Recall that Assumption 2 requires that uy(y, x) < 0 when u(y, x) = 0; so q̃(y, x) is

well-defined. It suffices to show that there exists C > 0 such that |q̃(y, x)| ≤ C for

all (y, x) ∈ Y ×X, because then, by (16), we have

p(x2)− V (y, x2)

u(y, x2)
≥ V (γ(δx2), x2)− V (y, x2)

u(y, x2)
= q̃(y, x2), if u(y, x2) > 0,

p(x1)− V (y, x1)

u(y, x1)
≤ V (γ(δx1), x1)− V (y, x1)

u(y, x1)
= q̃(y, x1), if u(y, x1) < 0,

so, by the definition of q and q, we get that q(y) ≥ −C and q(y) ≤ C.

Finally, to show that there exists C > 0 such that |q̃(y, x)| ≤ C for all (y, x) ∈ Y ×X,

it suffices to show that q̃ is continuous on the compact set Y × X. By Berge’s

theorem, γ(δx) is continuous in x, as it is a unique maximizer of a continuous function

U(y, x) =
∫ y

0
u(ỹ, x)dỹ. Note that q̃ is continuous at each (y, x) such that u(y, x) ̸= 0,

because V , u, and γ are continuous. Next, consider (y, x) such that u(y, x) = 0, or

equivalently y = γ(δx). For each (y′, x′) ∈ Y ×X, there exists ŷ between γ(δx′) and

y′ such that

[V (γ(δx′), x′)− V (y′, x′)]uy(ŷ, x
′) = −Vy(ŷ, x

′)u(y′, x′),

by the mean value theorem applied to the function

[V (γ(δx′), x′)− V (ỹ, x′)]u(y′, x′)− [V (γ(δx′), x′)− V (y′, x′)]u(ỹ, x′),

where the argument ỹ is between γ(δx′) and y′. Thus,

q̃(y′, x′)− q̃(y, x) =
Vy(ŷ, x

′)

−uy(ŷ, x′)
− Vy(y, x)

−uy(y, x)
.

If (y′, x′) → (y, x) then (ŷ, x′) → (y, x), because γ(δx) is continuous in x. Hence,

q̃(y′, x′)→ q̃(y, x), because Vy and uy are continuous. This shows that q̃ is continuous

on Y ×X.

E.3. Proof of Theorem 1. The proof of Theorem 1 remains valid if Assumption 4

is replaced with the weaker requirement that u(y, x) satisfies strict single-crossing in

x: for all y and x < x′, we have u(y, x) ≥ 0 =⇒ u(y, x′) > 0.
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By Lemma 2, there exists q ∈ B(Y ) such that (p, q) is feasible for (D’). Recall that,

under strict single-crossing of u(y, x) in x, for each action y, there is a unique state

χ(y) such that u(y, χ(y)) = 0. First, redefine q(y) = −Vy(y, χ(y))/uy(y, χ(y)) for all

y ∈ Y such that p(χ(y)) = V (y, χ(y)). We now show that (p, q) is still feasible for

(D’). Fix any y such that p(χ(y)) = V (y, χ(y)) and any x ∈ X. For any ε ∈ (0, 1),

define yε ∈ Y as a unique solution to (1−ε)u(yε, χ(y))+εu(yε, x) = 0. By the implicit

function theorem,

lim
ε↓0

yε − y

ε
=

u(y, x)

−uy(y, χ(y))
.

By (ZP’), we have

V (y, χ(y)) ≥ V (yε, χ(y)) + q(yε)u(yε, χ(y)) and p(x) ≥ V (yε, x) + q(yε)u(yε, x).

Adding the first inequality multiplied by 1 − ε and the second inequality multiplied

by ε, and taking into account the definition of yε, we get

p(x) ≥ V (y, x) +
(1− ε)[V (yε, χ(y))− V (y, χ(y))] + ε[V (yε, x)− V (y, x)]

ε
.

Taking the limit ε→ 0 gives

p(x) ≥ V (y, x) +
Vy(y, χ(y))

−uy(y, χ(y))
u(y, x),

showing that (p, q) is still feasible with redefined q.

Thus, (3) holds, by construction, for all degenerate µ ∈ Λ. Since, for non-degenerate

µ ∈ Λ, (4) integrated over µ yields (3), it remains to show that (4) holds for each

non-degenerate µ ∈ Λ.

Fix a non-degenerate µ ∈ Λ, so that∫
X

(p(x)− V (γ(µ), x)− q(γ(µ))u(γ(µ), x))dµ(x) = 0.

Since the integrand is non-negative and continuous in x, it follows that

p(x) = V (γ(µ), x) + q(γ(µ))u(γ(µ), x), for all x ∈ supp(µ). (18)

Since µ is non-degenerate, strict single-crossing of u(y, x) in x implies that there exist

x1, x2 ∈ supp(µ) such that x1 < χ(γ(µ)) < x2. Thus, by (ZP’), for every ỹ ∈ Y , we

have

p(x1) = V (γ(µ), x1) + q(γ(µ))u(γ(µ), x1) ≥ V (ỹ, x1) + q(ỹ)u(ỹ, x1).
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Therefore, for every ỹ > γ(µ), we have

q(ỹ)− q(γ(µ))

ỹ − γ(µ)
≥ 1

−u(ỹ, x1)

[
V (ỹ, x1)− V (γ(µ), x1)

ỹ − γ(µ)
+ q(y)

u(ỹ, x1)− u(γ(µ), x1)

ỹ − γ(µ)

]
.

Since V and u have continuous partial derivatives in y, we have

q′
+
(γ(µ)) := lim inf

ỹ↓γ(µ)

q(ỹ)− q(γ(µ))

ỹ − γ(µ)
≥ C1,

where

C1 = −
1

u(γ(µ), x1)
[Vy(γ(µ), x1) + q(γ(µ))uy(γ(µ), x1)].

Applying a similar argument for x = x1 and ỹ < γ(µ), we get

q′−(γ(µ)) := lim sup
ỹ↑γ(µ)

q(ỹ)− q(γ(µ))

ỹ − γ(µ)
≤ C1.

Similarly, considering x = x2 with ỹ > γ(µ) and ỹ < γ(µ), we get

q′+(γ(µ)) := lim sup
ỹ↓γ(µ)

q(ỹ)− q(γ(µ))

ỹ − γ(µ)
≤ C2,

q′−(γ(µ)) := lim inf
ỹ↑γ(µ)

q(ỹ)− q(γ(µ))

ỹ − γ(µ)
≥ C2,

where

C2 = −
1

u(γ(µ), x2)
[Vy(γ(µ), x2) + q(γ(µ))uy(γ(µ), x2)].

In sum, we have

C1 ≤ q′
+
(γ(µ)) ≤ q′+(γ(µ)) ≤ C2 and C2 ≤ q′−(γ(µ)) ≤ q′−(γ(µ)) ≤ C1.

We see that C1 = C2 and all four Dini derivatives of q at γ(µ) coincide, so q has a

derivative q′(γ(µ)) at γ(µ) that satisfies q′(γ(µ)) = C1 = C2.

Since x1, x2 ∈ supp(µ) are arbitrary, (4) holds for all x ∈ supp(µ) with x ̸= χ(γ(µ)).

For x ∈ supp(µ) with x = χ(γ(µ)), (4) holds because, as shown above, we have that

q(γ(µ)) = −Vy(γ(µ), χ(γ(µ)))/uy(γ(µ), χ(γ(µ))).

E.4. Proof of Remark 1. The proof of Remark 1 remains valid if Assumption 4 is

replaced with strict single-crossing of u(y, x) in x.

Recall that to define Λ we took an arbitrary solution p to (D). Also, recall (18) stating

that

p(x) = V (γ(µ), x) + q(γ(µ))u(γ(µ), x), for all µ ∈ Λ and x ∈ supp(µ).
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Fix any solution τ to (P), so supp(τ) ⊂ Λ. Let X⋆ = ∪µ∈supp(τ) supp(µ). Then, by

(BP), we have ϕ(X⋆) = 1, so the closure of X⋆ is X.

Next, take any x ∈ X⋆. If there is µ ∈ supp(τ) and x ∈ supp(µ) such that γ(δx) =

γ(µ), then p(x) = V (γ(δx), x). Otherwise, there is µ ∈ supp(τ) and x, x′ ∈ supp(τ)

such that either x < χ(γ(µ)) < x′ or x′ < χ(γ(µ)) < x. Suppose that x < χ(γ(µ)) <

x′ (the other case is analogous and omitted). By Theorem 1, we have

Vy(γ(µ), x) + q(γ(µ))uy(γ(µ), x) + q′(γ(µ))u(γ(µ), x) = 0,

Vy(γ(µ), x
′) + q(γ(µ))uy(γ(µ), x

′) + q′(γ(µ))u(γ(µ), x′) = 0.

Adding the first equation multiplied by u(γ(µ), x′) and the second multiplied by

−u(γ(µ), x), we obtain

q(γ(µ)) = − v(γ(µ), x)u(γ(µ), x′)− v(γ(µ), x′)u(γ(µ), x)

uy(γ(µ), x)u(γ(µ), x′)− uy(γ(µ), x′)u(γ(µ), x)
,

which is well-defined because the denominator is strictly negative by Assumption 2.

Consequently, p(x) = V (γ(µ), x) + q(γ(µ))u(γ(µ), x). In sum, for each x ∈ X⋆, an

arbitrary solution p to (D) is determined by a fixed solution τ to (P). Moreover, since

X is the closure of X⋆, there is a unique continuous extension of p from X⋆ to X.

This shows that there is a unique p ∈ L(X) that solves (D).

E.5. Proof of Theorem 2. We first prove the second part where the twist condition

holds. The proof of this part remains valid if Assumption 4 is replaced with strict

single-crossing of u(y, x) in x.

Suppose by contradiction that there exists µ ∈ Λ with x1 < x2 < x3 in supp(µ).

Then, by the definition of γ(µ) and strict single-crossing of u(y, x) in x, we have

min supp(µ) < χ(γ(µ)) < max supp(µ). Thus, by redefining x1 = min supp(µ) and

x3 = max supp(µ) if necessary, we can assume that x1 < χ(γ(µ)) < x3, so (5)

holds. But this implies that the rows of the matrix S are linearly independent, which

contradicts the fact that (4) holds at (γ(µ), x1), (γ(µ), x2), and (γ(µ), x3). Thus,

| supp(µ)| ≤ 2 for all µ ∈ Λ, implying that every optimal signal is pairwise.

We now turn to the first part. The proof of this part does not require Assumption 4,

and it remains valid when X is an arbitrary compact metric space.

For any µ ∈ ∆(X), denote the set of distributions of posteriors with average posterior

equal to µ by

∆2 (µ) =

{
τ ∈ ∆(∆(X)) :

∫
∆(X)

ηdτ (η) = µ

}
.
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Let ∆Bin
2 (µ) ⊂ ∆2(µ) denote the set of such distributions where in addition the

posterior is always supported on at most two states:

∆Bin
2 (µ) =

{
τ ∈ ∆2(µ) : supp(τ) ⊂ ∆Bin

1

}
,

where

∆Bin
1 = {η ∈ ∆(X) : |supp(η)| ≤ 2} .

We wish to show that for each τ ∈ ∆2(ϕ), there exists τ̂ ∈ ∆Bin
2 (ϕ) such that πτ̂ = πτ .

We set the stage by defining some key objects and establishing their properties. Define

∆1 = ∆(X) and ∆2 = ∆(∆ (X)). Since X is compact, the sets ∆1 and ∆2 are

also compact (in the weak* topology), by Prokhorov’s Theorem (Theorem 15.11 in

Aliprantis and Border 2006). In addition, ∆2 (µ) is compact, since it is a closed subset

of the compact set ∆2.

Define the correspondence P : ∆1 ⇒ ∆1 as

P (µ) =

{
η ∈ ∆1 :

∫
X

u (γ (µ) , x) dη (x) = 0

}
.

For each µ ∈ ∆1, P (µ) is a moment set—a set of probability measures η ∈ ∆1

satisfying a given moment condition (e.g., Winkler 1988). By Assumption 2, we

have, for all µ, η ∈ ∆1,

η ∈ P (µ) ⇐⇒ γ (µ) = γ (η) . (19)

Clearly, P (µ) is nonempty (as µ ∈ P (µ)) and convex. Since u(y, x) is continuous in

x, P (µ) is a closed subset of ∆1, and hence is compact. Also, the correspondence P

has a closed graph. Indeed, consider two sequences µn → µ ∈ ∆1 and ηn → η ∈ ∆1

with µn ∈ ∆1 and ηn ∈ P (µn), so that∫
X

u (γ (µn) , x) dηn (x) = 0.

Note that γ(µ) is a continuous function of µ, by Berge’s theorem (Theorem 17.31

in Aliprantis and Border 2006). Since u is also continuous, by Corollary 15.7 in

Aliprantis and Border (2006), we have∫
X

u (γ (µ) , x) dη (x) = 0,

proving that η ∈ P (µ), so P has a closed graph.

Define the correspondence E : ∆1 ⇒ ∆1 as

E (µ) = P (µ) ∩∆Bin
1 = {η ∈ P (µ) : |supp η| ≤ 2} .
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Notice that for each µ ∈ ∆1, the support of µ is well-defined, by Theorem 12.14 in

Aliprantis and Border (2006). Moreover, from the proof of Theorem 15.8 in Aliprantis

and Border (2006), it follows that ∆Bin
1 is a closed subset of ∆1, so both ∆Bin

1 and

E(µ) are compact.

Define the correspondence Σ : ∆1 ⇒ ∆2 as

Σ (µ) =

{
σ ∈ ∆(E (µ)) : µ =

∫
E(µ)

ηdσ (η)

}
.

Lemma 5 shows that the correspondence Σ admits a measurable selection. In turn,

Lemma 5 relies on Lemma 4.

Lemma 4. Let Assumptions 1 and 2 hold. For any y ∈ Y and µ ∈ ∆(X) such that∫
u(y, x)dµ(x) = 0, there exists σµ ∈ ∆(∆(X)) such that

∫
ηdσµ(η) = µ and for each

η ∈ supp(σµ) we have
∫
u(y, x)dη(x) = 0 and | supp(η)| ≤ 2.

Proof. Follows immediately from the Choquet Theorem (Theorem 3.1 in Winkler

1988) and Richter-Rogosinsky’s Theorem (Theorem 2.1 in Winkler 1988) □

Lemma 5. There exists a measurable function µ 7→ σµ ∈ Σ (µ).

Proof. The correspondence Σ is nonempty-valued, by Lemma 4. Next, fix µ ∈ ∆1,

and consider a sequence σn → Σ ∈ ∆2 with σn ∈ Σ (µ). By the Portmanteau Theorem

(Theorem 15.3 in Aliprantis and Border 2006), we have∫
E(µ)

ηdσn (η)→
∫
E(µ)

ηdσ (η) and lim sup
n

σn (E (µ)) ≤ σ (E (µ)) ,

where the last inequality holds because E (µ) is closed. Thus,∫
E(µ)

ηdσ (η) = µ and 1 = lim sup
n

σn (E (µ)) ≤ σ (E (µ)) ≤ 1,

proving that σ ∈ Σ (µ). Thus, Σ is closed-valued.

Next, consider two sequences µn → µ ∈ ∆1 and σn → σ ∈ ∆2 with µn ∈ ∆1 and

σn ∈ Σ(µn), so that

µn =

∫
E(µ)

ηdσn (η) , σn

(
∆Bin

1

)
= 1, and σn (P (µn)) = 1.

The Portmanteau Theorem implies that µ =
∫
ηdσ (η) and σ

(
∆Bin

1

)
= 1, since ∆Bin

1

is closed. Define P (µn) as the closure of ∪∞k=nP (µk). By construction, P (µk) ⊂
P (µk) ⊂ P (µn) for k ≥ n, so the Portmanteau Theorem implies that σ(P (µn)) = 1.
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Moreover, P (µn) ↓ P ⊂ P (µ), because P has a closed graph. Hence, σ(P (µ)) = 1, by

the continuity of probability measures (Theorem 10.8 in Aliprantis and Border 2006).

That is, σ ∈ Σ(µ), showing that the correspondence Σ has a closed graph.

Therefore, Σ is measurable, by Theorem 18.20 in Aliprantis and Border (2006), as

well as nonempty- and closed-valued. Hence, there exists a measurable function

µ 7→ σµ ∈ Σ (µ), by Theorem 18.13 in Aliprantis and Border (2006). □

Finally, taking a measurable selection, for each τ ∈ ∆2 (ϕ), define τ̂ ∈ ∆2 as

τ̂
(
∆̃1

)
=

∫
∆1

σµ

(
∆̃1

)
dτ(µ) (20)

for every measurable set ∆̃1 ⊂ ∆1. By construction, τ̂ ∈ ∆Bin
2 (ϕ), since

τ̂(∆Bin
1 ) =

∫
∆1

σµ(∆
Bin
1 )dτ(µ) = 1

and

ϕ =

∫
∆1

µdτ(µ) =

∫
∆1

(∫
E(µ)

ηdσµ(η)

)
dτ(µ) =

∫
∆1

ηdτ̂(η),

where the first equality holds by τ ∈ ∆2(ϕ), the second by σµ ∈ Σ, and the third by

(20). Similarly, for each measurable Ỹ ⊂ Y and X̃ ⊂ X, we have

πτ (Ỹ , X̃) =

∫
∆1

1{γ(µ) ∈ Ỹ }µ(X̃)dτ(µ)

=

∫
∆1

1{γ(µ) ∈ Ỹ }
(∫

E(µ)

η(X̃)dσµ(η)

)
dτ(µ)

=

∫
∆1

(∫
E(µ)

1{γ(η) ∈ Ỹ }η(X̃)dσµ(η)

)
dτ(µ)

=

∫
∆1

1{γ(η) ∈ Ỹ }η(X̃)dτ̂(η)

= πτ̂ (Ỹ , X̃),

where the second equality holds by σµ ∈ Σ, the third by (19) and E(µ) ⊂ P (µ), and

the fourth by (20).

E.6. Proof of Corollary 1. The proof of Corollary 1 remains valid if Assumption 4 is

replaced with strict single-crossing of u(y, x) in x. Since |X| ≥ 3, strict single-crossing

of u(y, x) in x implies that there exist x1 < x2 in X such that x1 < χ(γ(ϕ)) < x2.
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Suppose that no disclosure is optimal. Then, by part (3) of Theorem 1, it follows

that (4) holds for µ = ϕ and all x ∈ X, so there exist constants q(γ(ϕ)), q′(γ(ϕ)) ∈ R
such that

Vy(γ(ϕ), x) = −q(γ(ϕ))uy(γ(ϕ), x)− q′(γ(ϕ))u(γ(ϕ), x) for all x ∈ X.

Thus, Vy(γ(ϕ), ·) lies in a linear space L spanned by uy(γ(ϕ), ·) and u(γ(ϕ), ·), whose
dimension is at most 2. But a generic Vy(γ(ϕ), ·) lies in a linear space whose dimension

is at least 3, since |X| ≥ 3, and thus it does not belong to L, showing that generically

no disclosure is suboptimal.

Finally, suppose that no disclosure is optimal for all priors. It suffices to show that

W is given by (6) for some functions m, l, and H, as then Corollary 1 in Kolotilin,

Mylovanov, and Zapechelnyuk (2022) implies that no disclosure is optimal for all

priors iff H is concave. By Assumption 3 and part (3) of Theorem 1, there exist

functions q0, q1 such that

Vy(y, x) + q0(y)uy(y, x) + q1(y)u(y, x) = 0, for all (y, x) ∈ [0, 1]2. (21)

First, consider the linear receiver case. Note that (21) simplifies to

Vy(y, x) = q0(y) + q1(y)(y − x).

Thus,

V (y, x) =

∫ y

0

(q0(ỹ) + q1(ỹ)(ỹ − x))dỹ + V (0, x),

and

W (µ) =

∫ Eµ[x]

0

(q0(ỹ) + q1(ỹ)(ỹ − Eµ[x]))dỹ + Eµ[V (0, x)].

So (6) holds with m(x) = x, l(x) = V (0, x), and H(y) =
∫ y

0
(q0(ỹ) + q1(ỹ)(ỹ − y))dỹ.

Second, consider the state-independent sender case. We have q0(y) > 0 for all y ∈
[0, 1], by (3) and Assumptions 2 and 4. Differentiating (21) with respect to x yields

uyx(y, x) = −
q1(y)

q0(y)
ux(y, x).

Thus,

u(y, x) = (u(0, x)− u(0, 0))e
−

∫ y
0

q1(ỹ)
q0(ỹ)

dỹ
+ u(y, 0),

implying that γ(µ) = a(Eµ[u(0, x)]) for some function a. Hence

W (µ) = V (a(Eµ[u(0, x)])).

So (6) holds with m(x) = u(0, x), l(x) = 0, and H(y) = V (a(y)).
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E.7. Proof of Remark 2. Let Λ be strictly single-dipped. Note that there do

not exist distinct µ and η in Λ such that γ(µ) = γ(η), as otherwise µ/2 + η/2,

with | supp(µ/2 + η/2)| ≥ 3, would also be in Λ, contradicting that Λ is pairwise.

Thus, there exist unique functions χ1 and χ2 from YΛ to X such that supp(µ) =

{χ1(γ(µ)), χ1(γ(µ))} and χ1(γ(µ)) = χ(γ(µ)) = χ2(γ(µ)) or χ1(γ(µ)) < χ(γ(µ)) <

χ2(γ(µ)) for all µ ∈ Λ. Moreover, for all y < y′ in YΛ, we have χ2(y) ≤ χ2(y
′), as

otherwise there would exist µ, µ′ ∈ Λ such that γ(µ) = y, γ(µ′) = y′, and χ1(y) ≤
χ(y) < χ(y′) ≤ χ2(y

′) < χ2(y) contradicting that Λ is single-dipped. Likewise, for all

y < y′ in YΛ, we have χ1(y
′) /∈ (χ1(y), χ2(y)), as otherwise there would exist µ, µ′ ∈ Λ

such that γ(µ) = y, γ(µ′) = y′, and χ1(y) < χ1(y
′) < χ2(y) contradicting that Λ is

single-dipped.

E.8. Proof of Theorem 3. The proof of Theorem 3 remains valid if the condition

ux(y, x) > 0 in Assumption 4 is replaced with strict single-crossing of u(y, x) in x.

We will prove that Λ is single-dipped, which implies that every optimal signal is

single-dipped. We start with an appropriate version of the theorem of alternative.

Lemma 6. Exactly one of the following two alternatives holds.

(1) There exists α > 0 such that αR ≤ 0.

(2) There exists β ≥ 0 such that Rβ ≥ 0 and Rβ ̸= 0.

Proof. Clearly, (1) and (2) cannot both hold, because premultiplying Rβ ≥ 0 with

Rβ ̸= 0 by α > 0 yields αRβ > 0, whereas postmultiplying αR ≤ 0 by β ≥ 0 yields

αRβ ≤ 0.

Now suppose that (1) does not hold. Then there does not exist α ≥ 0 such that

α
(
R −I

)
≤
(
0 −e

)
where I is an identity matrix and e is a row vector of ones. Thus, by the theorem of

alternative (e.g., Theorem 2.10 in Gale 1989), there exists β ≥ 0 and γ ≥ 0 such that(
R

−I

)(
β γ

)
≥ 0 and − eγ < 0,

which in turn shows that (2) holds. □

We prove the theorem by contraposition. Suppose that Λ is not single-dipped, so there

exist µ1, µ2 ∈ Λ and x1 < x2 < x3 such that x1, x3 ∈ supp(µ1), x2 ∈ supp(µ2), and
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γ(µ1) < γ(µ2). By strict single-crossing of u(y, x) in x, without loss, we can assume

that x1 < χ(γ(µ1)) < x3, by redefining x1 = min supp(µ1) and x3 = max supp(µ1) if

necessary.

By (ZP’) and Theorem 1, we have

V (γ(µ1), x1) + q(γ(µ1))u(γ(µ1), x1) ≥ V (γ(µ2), x1) + q(γ(µ2))u(γ(µ2), x1),

V (γ(µ2), x2) + q(γ(µ2))u(γ(µ2), x2) ≥ V (γ(µ1), x2) + q(γ(µ1))u(γ(µ1), x2),

V (γ(µ1), x3) + q(γ(µ1))u(γ(µ1), x3) ≥ V (γ(µ2), x3) + q(γ(µ2))u(γ(µ2), x3).

By (3), we have, for i = 1, 2,

q(γ(µi)) = −
Eµi

[Vy(γ(µi), x)]

Eµi
[uy(γ(µi), x)]

> 0,

where the inequality follows from Assumptions 2 and 4. Thus, the vector α =

(1, q(γ(µ1)), q(γ(µ2))) is strictly positive and satisfies αR ≤ 0. By Lemma 6, there

does not exist a vector β ≥ 0 such that Rβ ≥ 0 and Rβ ̸= 0, as desired.

E.9. Proof of Theorem 4. The proof uses the following five lemmas, whose proofs

are deferred to Appendix F. We start with the second part of the theorem, and we

show that Λ is strictly single-dipped (-peaked), which implies that every optimal

signal is strictly single-dipped (-peaked).

Lemma 7. If uyx(y, x)/ux(y, x) and Vyx(y, x)/ux(y, x) are increasing (decreasing) in

x for all y, with at least one of them strictly increasing (decreasing), then |S| > (<)0

for all y and x1 < x2 < x3 such that x1 < χ(y) < x3.

Lemma 8. If uyx(y, x)/ux(y, x) and Vyx(y2, x)/ux(y1, x) are increasing (decreasing)

in x for all y and y2 ≥ (≤)y1, with at least one of them strictly increasing (decreasing),

then |R| > (<)0 for all x1 < x2 < x3 and all y2 > (<)y1 such that x1 < χ(y1) < x3.

Lemma 9. If uyx(y, x)/ux(y, x) is increasing in x for all y, then for all x1 < x2 < x3

and all y2 > y1 such that x1 < χ(y1) < x3, we have

u(y2, x3)u(y1, x1) > u(y2, x1)u(y1, x3),

u(y2, x2)u(y1, x1) > u(y2, x1)u(y1, x2),

u(y2, x3)u(y1, x2) > u(y2, x2)u(y1, x3).
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Lemma 10. If Vyx(y2, x)/ux(y1, x) is decreasing in x for all y2 ≤ y1, then for all

x1 < x2 < x3 and all y2 < y1 such that x1 < χ(y1) < x3, we have

u(y1, x1)

V (y1, x1)− V (y2, x1)
<

u(y1, x2)

V (y1, x2)− V (y2, x2)
<

u(y1, x3)

V (y1, x3)− V (y2, x3)
.

Lemma 11. Suppose that V n is a sequence of functions satisfying Assumption 1 such

that V n
y converges uniformly to Vy, and suppose that the contact sets Λn under V n

are single-dipped (-peaked). Then there exists a single-dipped (-peaked) optimal signal

under V .

Now, the set Λ is single-dipped (-peaked) by Theorem 3 with

β =

u(y2, x3)u(y1, x2)− u(y2, x2)u(y1, x3)

u(y2, x3)u(y1, x1)− u(y2, x1)u(y1, x3)

u(y2, x2)u(y1, x1)− u(y2, x1)u(y1, x2)


β =


u(y2,x1)

V (y2,x1)−V (y1,x1)
u(y2,x2)

V (y2,x2)−V (y1,x2)
u(y2,x3)

V (y2,x3)−V (y1,x3)


 ,

as follows from Lemma 8 and Lemma 9 (Lemma 10). Moreover, | supp(µ)| ≤ 2 for all

µ ∈ Λ by Theorem 2 and Lemma 7, showing that Λ is strictly single-dipped (-peaked).

Finally, we prove the first part of the theorem. Consider V n such that

V n
y (y, x) = Vy(y, x) +

∫ x

0

ṽ(x)

n
ux(y, x̃)dx̃,

where ṽ(x) is a continuous, strictly positive, and strictly increasing (decreasing) func-

tion on [0, 1]. Then V n
y (y, x) > 0 because Vy(y, x) > 0 and ux(y, x) > 0 for all (y, x),

by Assumption 4. Moreover, for all y2 ≥ (≤)y1,

V n
yx(y2, x)

ux(y1, x)
=

Vyx(y2, x)

ux(y1, x)
+

ṽ(x)

n

ux(y2, x)

ux(y1, x)

is strictly increasing (decreasing) in x, because ṽ(x) is strictly positive and strictly

increasing (decreasing) in x; Vyx(y2, x)/ux(y1, x) is increasing (decreasing) in x; and

ux(y2, x)/ux(y1, x) is increasing in x, since uyx(y, x)/ux(y, x) is increasing (decreasing)

in x. Thus, by Lemma 11, there exists an optimal single-dipped (-peaked) signal.

E.10. Proof of Theorem 7. The proof of Theorem 7 remains valid if Assumption

4 is replaced with strict single-crossing of u(y, x) in x.

We start with the following lemma, which is also used in the proof of Theorem 6.

Lemma 12. If X = [0, 1] and Λ is strictly single-dipped, then for each y in YΛ there

exists y′ ≤ y in YΛ such that χ1(y) ≤ χ1(y
′) = χ2(y

′) ≤ χ2(y).
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Proof. We prove that a required y′ can be constructed as

y′ = inf{ỹ ∈ YΛ : χ1(y) ≤ χ1(ỹ) ≤ χ2(ỹ) ≤ χ2(y)}.

By definition, y′ ≤ y. Moreover, y′ ∈ YΛ, because YΛ is compact. Suppose by

contradiction that χ1(y
′) < χ2(y

′). Let X⋆ = ∪µ∈Λ supp(µ). Since there exists

an optimal signal τ , which satisfies supp(τ) ⊂ Λ and
∫
∆(X)

µdτ(µ) = ϕ, we have

ϕ(X⋆) = 1, so the closure of X⋆ is X = [0, 1]. Thus, there exists y′′ ∈ YΛ such that

χ(y′′) or χ2(y
′′) is in (χ1(y

′), χ2(y
′)). Since Λ is strictly single-dipped, we have y′′ < y′

and χ1(y
′) ≤ χ1(y

′′) ≤ χ2(y
′′) ≤ χ2(y

′), contradicting the definition of y′. □

Next, we claim that if y ∈ YΛ and ε > 0 are such that χ1(ỹ) < χ2(ỹ) for all ỹ ∈ (y −
ε, y)∩YΛ, then χ1(ỹ1) < χ2(ỹ2) for all ỹ1, ỹ2 ∈ (y−ε, y)∩YΛ. Suppose by contradiction

that there exist ỹ1, ỹ2 ∈ (y−ε, y)∩YΛ such that χ1(ỹ1) ≥ χ2(ỹ2). By Lemma 12, there

exists ỹ′1 ≤ ỹ1 in YΛ such that χ2(ỹ
′
1) = χ(ỹ′1) = χ1(ỹ

′
1) ≥ χ1(ỹ1) ≥ χ2(ỹ2) ≥ χ(ỹ2), so

ỹ′1 ∈ (y − ε, y) ∩ YΛ and χ1(ỹ
′
1) = χ2(ỹ

′
1), yielding a contradiction.

Suppose now that ϕ has a density. Suppose by contradiction that there are two

distinct optimal signals, τ and τ ′. Since Λ is strictly single-dipped, for each y ∈ YΛ,

there is a unique µ in Λ such that γ(µ) = y, namely µ = ρyδχ1(y)+(1−ρy)δχ2(y) where

ρy =


u(y,χ2(y))

u(y,χ2(y))−u(y,χ1(y))
, χ1(y) < χ2(y),

0, χ1(y) = χ2(y).

Thus, distinct signals τ and τ ′ must induce distinct distributions α and α′ over actions

γ(µ). Let ŷ = sup{y ∈ Y : α([0, y]) ̸= α′([0, y])} ∈ YΛ, where the inclusion follows

from α ̸= α′ and α(YΛ) = α′(YΛ) = 1. By the regularity condition and the claim

above, there exists ε > 0 such that either (i) χ1(ỹ) = χ2(ỹ) for all ỹ ∈ (ŷ − ε, ŷ) ∩ YΛ

or (ii) χ1(ỹ1) < χ2(ỹ2) for all ỹ1, ỹ2 ∈ (ŷ − ε, ŷ) ∩ YΛ. We will now show that

α([0, ỹ]) = α′([0, ỹ]) for all ỹ ∈ (ŷ− ε, ŷ) contradicting the definition of ŷ. Since χ2 is

increasing, states x > χ2(ỹ) can only induce actions y > ỹ. Thus, since γ is bijective

from Λ to YΛ and since α([0, y]) = α′([0, y]) for all y ≥ ŷ, in both cases (i) and (ii),

we have, for all ỹ ∈ (ŷ − ε, ŷ) ∩ YΛ,

ϕ((χ2(ỹ), 1])− ϕ([χ2(ỹ), 1]) ≤
∫
[ỹ,ŷ]

(1− ρy)dα(y)−
∫
[ỹ,ŷ]

(1− ρy)dα
′(y)

≤ ϕ([χ2(ỹ), 1])− ϕ((χ2(ỹ), 1]).
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Moreover, since ϕ has a density, we have ϕ((χ2(ỹ), 1]) = ϕ([χ2(ỹ), 1]), and hence∫
[ỹ,ŷ]

(1− ρy)dα(y) =

∫
[ỹ,ŷ]

(1− ρy)dα
′(y).

Then, since 1− ρy > 0 for all y ∈ YΛ, and since supp(α) ⊂ YΛ and supp(α′) ⊂ YΛ, it

follows that α([ỹ, ŷ]) = α′([ỹ, ŷ]) for all ỹ ∈ (ŷ−ε, ŷ). Thus, since α([0, y]) = α′([0, y])

for all y ≥ ŷ, it follows that α([0, ỹ]) = α′([0, ỹ]) for all ỹ ∈ (ŷ − ε, ŷ).

E.11. Proof of Remark 4. The proof of Remark 4 remains valid if Assumption 4

is replaced with strict single-crossing of u in x.

Suppose by contradiction that Λ contains µ = ρδx1 + (1 − ρ)δx2 , with x1 < x2 and

ρ ∈ (0, 1). Denote y = γ(µ) and x = χ(y). By strict single-crossing of u in x, we have

x1 < x < x2. Since X = [0, 1] and full disclosure is optimal, we have δx ∈ Λ. Thus,

ρp(x1) + (1− ρ)p(x2) = ρV (y, x1) + (1− ρ)V (y, x2) and p(x) = V (y, x).

Adding the two equalities gives

ρ
2
p(x1) +

1
2
p(x) + 1−ρ

2
p(x2) =

1
2
ρV (y, x1) +

1
2
V (y, x) + 1

2
(1− ρ)V (y, x2),

which shows that η = ρδx1/2 + δx/2 + (1− ρ)δx2/2, contradicting that Λ is pairwise.

E.12. Proof of Theorem 5. The proof of Lemma 1 remains valid without Assump-

tion 4 and when X is an arbitrary compact metric space. The support of the full

disclosure signal is the set of all degenerate posteriors on X. Thus, by Lemmas 1 and

2, full disclosure is optimal iff there exists q ∈ B(Y ) such that

V (γ(δx), x) ≥ V (y, x) + q(y)u(y, x), for all (y, x) ∈ Y ×X,

⇐⇒ V (y, x1)− V (γ(δx1), x1)

−u(y, x1)
≤ q(y) ≤ V (γ(δx2), x2)− V (y, x2)

u(y, x2)
,

for all y ∈ Y and x1, x2 ∈ X such that u(y, x1) < 0 < u(y, x2). As shown in the

proof of Lemma 2, the left-hand side and right-hand side functions are bounded on

Y × X, so full disclosure is optimal iff, for all y ∈ Y and x1, x2 ∈ X such that

u(y, x1) < 0 < u(y, x2), we have

V (y, x1)− V (γ(δx1), x1)

−u(y, x1)
≤ V (γ(δx2), x2)− V (y, x2)

u(y, x2)
,

⇐⇒ u(y, x2)V (y, x1)− u(y, x1)V (y, x2) ≤ u(y, x2)V (γ(δx1), x1)− u(y, x1)V (γ(δx2), x2),

⇐⇒ ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) ≤ ρV (γ(δx1)), x1) + (1− ρ)V (γ(δx2), x2),
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where ρ = u(y, x2)/(u(y, x2)− u(y, x1)), µ = ρδx1 + (1− ρ)δx2 , and γ(µ) = y, by the

definition of γ(µ). To complete the proof that full disclosure is optimal iff (7) holds

for all µ, note that for each y and x1, x2 ∈ X such that u(y, x1) < 0 < u(y, x2), we

have ρ = u(y, x2)/(u(y, x2)− u(y, x1)) ∈ (0, 1); and conversely, for each x1 < x2 and

ρ ∈ (0, 1), there exists a unique y ∈ (γ(δx1), γ(δx2)) such that ρ = u(y, x2)/(u(y, x2)−
u(y, x1)).

Finally, assume that (7) holds with strict inequality for all µ. Suppose by contradic-

tion that full disclosure is not uniquely optimal. Then, by Lemmas 1 and 2, there exist

η ∈ Λ and distinct x1, x2 ∈ supp(η). By the definition of γ(η), without loss, we can

assume that either u(γ(η), x1) = 0 = u(γ(η), x2) or u(γ(η), x1) < 0 < u(γ(η), x2).

In the case u(γ(η), x1) = 0 = u(γ(η), x2), we have γ(µ) = γ(δx1) = γ(δx1) for

µ = δx1/2 + δx2/2, so

1
2
V (γ(µ), x1) +

1
2
V (γ(µ), x2) =

1
2
V (γ(δx1), x1) +

1
2
V (γ(δx2), x2),

contradicting that (7) holds with strict inequality for µ. In the case u(γ(η), x1) < 0 <

u(γ(η), x2), we have γ(µ) = γ(η) for µ = ρδx1+(1−ρ)δx2 with ρ = u(γ(η), x2)/(u(γ(η), x2)−
u(γ(η), x1) ∈ (0, 1). Since η ∈ Λ and x1, x2 ∈ supp(η), we have

V (γ(η), x1) + q(γ(η))u(γ(η), x1) ≥ V (γ(δx1), x1),

V (γ(η), x2) + q(γ(η))u(γ(η), x2) ≥ V (γ(δx2), x1).

Adding the first inequality multiplied by ρ and the second inequality multiplied by

1− ρ gives

ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) ≥ ρV (γ(δx1), x1) + (1− ρ)V (γ(δx2), x2),

contradicting that (7) holds with strict inequality for µ.

E.13. Proof of Corollary 2’. Condition (7) holds because

ρV (ρx1 + (1− ρ)x2, x1) + (1− ρ)V (ρx1 + (1− ρ)x2, x2)

≤ρ(ρV (x1, x1) + (1− ρ)V (x2, x1)) + (1− ρ)(ρV (x1, x2) + (1− ρ)V (x2, x2))

≤ρV (x1, x1) + (1− ρ)V (x2, x2),

where the first inequality holds because V (y, x) is convex in y, and the second holds

because V (x1, x2) + V (x2, x1) ≤ V (x1, x1) + V (x2, x2).

E.14. Proof of Theorem 6. The proof of Theorem 6 remains valid if Assumption

4 is replaced with strict single-crossing of u(y, x) in x. Since X = [0, 1], Λ is strictly
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single-dipped, and for all x1 < x2 there exists ρ ∈ (0, 1) such that (12) holds, it

follows that χ1(y2) ≤ χ1(y1) for all y1 < y2 in YΛ, and thus Λ is negative assortative.

Suppose by contradiction that there exist y1 < y2 in YΛ such that χ1(y1) < χ1(y2).

Then χ2(y1) ≤ χ1(y2), as otherwise there would exist µ1, µ2 ∈ Λ such that γ(µ1) =

y1 < y2 = γ(µ2), and χ1(y1) < χ1(y2) < χ2(y1) contradicting that Λ is single-dipped.

By Lemma 12, there exist y′1 ≤ y1 and y′2 ≤ y2 in YΛ such that χ1(y1) ≤ χ1(y
′
1) =

χ2(y
′
1) ≤ χ(y1) ≤ χ2(y1) ≤ χ1(y2) ≤ χ1(y

′
2) = χ2(y

′
2) ≤ χ2(y2), and thus y′1 ≤ y′2. In

fact, y′1 < y′2, as otherwise we would have χ1(y1) ≤ χ(y1) = χ2(y1) = χ1(y2), which

implies χ1(y1) = χ2(y1) = χ1(y2), contradicting χ1(y1) < χ1(y2). Thus, denoting

x1 = χ(y′1) < χ(y′2) = x2, we have δx1 , δx2 ∈ Λ. For any µ = ρδx1 + (1 − ρ)δx2 with

ρ ∈ (0, 1), we have

p(x1) = V (γ(x1), x1) ≥ V (γ(µ), x1) + q(γ(µ))u(γ(µ), x1),

p(x2) = V (γ(x2), x2) ≥ V (γ(µ), x2) + q(γ(µ))u(γ(µ), x2),

by (ZP) and the definition of Λ. Adding the first inequality multiplied by ρ and the

second inequality multiplied by 1 − ρ, we obtain that (12) fails for all ρ ∈ (0, 1),

yielding a contradiction.

Now assuming that ϕ has a density f and Λ is negative assortative, we will show

that the functions χ1 and χ2 are continuous and satisfy the differential equations

(9)–(10) and the boundary condition (11). Since the closure of X⋆ = ∪µ∈Λ supp(µ)
is X = [0, 1], it follows that the closure of the union of the images of the functions

χ1 and χ2 must also be equal to [0, 1]. Since χ1 is decreasing and χ2 is increasing

on the compact domain YΛ, and since χ1(y) ≤ χ(y) ≤ χ2(y) for all y ∈ YΛ, it

follows that χ1 and χ2 are continuous functions such that χ1(y) = χ(y) = χ2(y),

χ1(y) < χ(y) < χ2(y) for all y > y in YΛ, χ1(y) = 0, χ2(y) = 1, and (χ1(zi), χ2(zi)) =

(χ1(zi), χ2(zi)) for all i, where {(zi, zi)}i is an at most countable set of disjoint open

intervals comprising the set [y, y] \ YΛ. Since ϕ has a density, the measure of the

endpoints of these intervals is zero, and hence the set of optimal signals is unaffected

if we extend the domain of χ1 and χ2 to [y, y] by setting χ1(y) = χ1(zi) = χ1(zi) and

χ2(y) = χ2(zi) = χ2(zi) for all y ∈ (zi, zi). In sum, without loss of generality, we

can assume that χ1 and χ2 are continuous monotone functions defined on [y, y] that

satisfy (11) and χ1(y) < χ(y) < χ2(y) for all y ∈ (y, y].
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Since χ1 is continuously decreasing on [y, y], χ2 is continuously increasing on [y, y],

and ϕ has a density, we can rewrite (OB) for Ỹ = [y, y′], with y ≤ y < y′ ≤ y, as∫ y′

y

u(ỹ, χ1(ỹ))(−dϕ([0, χ1(ỹ)])) +

∫ y′

y

u(ỹ, χ2(ỹ))dϕ([0, χ2(ỹ)]) = 0.

Taking the limit y′ ↓ y, we obtain (9) for all y ∈ [y, y].

By Theorem 1, for all y > y in YΛ,

Vy(y, χ1(y)) + q(y)uy(y, χ1(y)) + q′(y)u(y, χ1(y)) = 0,

Vy(y, χ2(y)) + q(y)uy(y, χ2(y)) + q′(y)u(y, χ2(y)) = 0.

Solving for q(y) and q′(y), we get, for all y > y in YΛ,

q(y) =
Vy(y, χ1(y))u(y, χ2(y))− Vy(y, χ2(y))u(y, χ1(y))

u(y, χ1(y))uy(y, χ2(y))− u(y, χ2(y))uy(y, χ1(y))
,

q′(y) =
Vy(y, χ1(y))uy(y, χ2(y))− Vy(y, χ2(y))uy(y, χ1(y))

uy(y, χ1(y))u(y, χ2(y))− uy(y, χ2(y))u(y, χ1(y))
,

where the denominators in the expressions for q(y) and q′(y) are not equal to 0, by

Assumption 2. Noting that q′ is the derivative of q gives (10) for all y > y in YΛ.

E.15. Proof of Corollary 3. Noting that ρu(γ(µ), x1) + (1− ρ)u(γ(µ), x2) = 0 and

denoting y = γ(µ), we infer that (12) fails if there exist x1 < x2 such that for all

y ∈ (γ(δx1), γ(δx2)), we have

u(y, x2)(V (y, x1)− V (γ(δx1), x1))− u(y, x1)(V (y, x2)− V (γ(δx2), x2)) ≤ 0.

By Taylor’s theorem and some algebra, we get

u(y, x2)(V (y, x1)− V (γ(δx1), x1))− u(y, x1)(V (y, x2)− V (γ(δx2), x2))

=
1

2
uy(y, χ(y))

(
Vyy(y, χ(y))−

Vy(y, χ(y))uyy(y, χ(y))

uy(y, χ(y))

−2Vyx(y, χ(y))uy(y, χ(y))− Vy(y, χ(y))uyx(y, χ(y))

ux(y, χ(y))

)
·(y − γ(δx1))(γ(δx2)− y)(γ(δx2)− γ(δx1))

+o((y − γ(δx1))(γ(δx2)− y)(γ(δx2)− γ(δx1))).

Hence, if (13) fails at some y, then there exist x2 > x1 with γ(δx2) − y > 0 and

y − γ(δx1) > 0 small enough such that (12) fails for all ρ ∈ (0, 1).
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Note that dχ(y)/dy = −uy(y, χ(y))/ux(y, χ(y)), by the implicit function theorem

applied to u(y, χ(y)) = 0. Thus, the derivative of q(y) = −Vy(y, χ(y))/uy(y, χ(y)) is

given by

q′(y) = −Vyy(y, χ(y))

uy(y, χ(y))
+
Vyx(y, χ(y))

ux(y, χ(y))
+
Vy(y, χ(y))uyy(y, χ(y))

(uy(y, χ(y)))2
−Vy(y, χ(y))uyx(y, χ(y))

uy(y, χ(y))ux(y, χ(y))
.

Conversely, suppose that (13), together with all other assumptions of the corollary,

holds. Then, for y > γ(δx), we have

V (y, x)− Vy(y, χ(y))

uy(y, χ(y))
u(y, x)− V (γ(δx), x)

=(V (ỹ, x) + q(ỹ)u(ỹ, x))|yγ(δx)

=

∫ y

γ(δx)

[Vy(ỹ, x) + q(ỹ)uy(ỹ, x) + q′(ỹ)u(ỹ, x)]dỹ

≥
∫ y

γ(δx)

[
Vy(ỹ, x)−

Vy(ỹ, χ(ỹ))

uy(ỹ, χ(ỹ))
uy(ỹ, x)

]
dỹ

+

∫ y

γ(δx)

[
Vy(ỹ, χ(ỹ))uyx(ỹ, χ(ỹ))

uy(ỹ, χ(ỹ))ux(ỹ, χ(ỹ))
− Vyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))

]
u(ỹ, x)dỹ

=

∫ y

γ(δx)

∫ χ(ỹ)

x

[
Vy(ỹ, χ(ỹ))

uy(ỹ, χ(ỹ))
uyx(ỹ, x̃)− Vyx(ỹ, x̃)

]
dx̃dỹ

+

∫ y

γ(δx)

∫ χ(ỹ)

x

[
Vyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))
− Vy(ỹ, χ(ỹ))uyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))

]
ux(ỹ, x̃)dx̃dỹ

=

∫ y

γ(δx)

∫ χ(ỹ)

x

[
Vyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))
− Vyx(ỹ, x̃)

ux(ỹ, x̃)

]
ux(ỹ, x̃)dx̃dỹ

+

∫ y

γ(δx)

∫ χ(ỹ)

x

Vy(ỹ, χ(ỹ))

−uy(ỹ, χ(ỹ))

[
uyx(ỹ, χ(ỹ))

ux(ỹ, χ(ỹ))
− uyx(ỹ, x̃)

ux(ỹ, x̃)

]
ux(ỹ, x̃)dx̃dỹ > 0,

where the first and last equalities are by rearrangement, the second and third equal-

ities are by the fundamental theorem of calculus, the first inequality is by (13) and

substitution of q(ỹ) and q′(ỹ), and the last inequality is by our assumptions imposed

in the corollary.

By Taylor’s theorem, we have, for x1 < x2 and y ∈ (γ(δx1), γ(δx2)),

u(y, x2)(V (y, x1)− V (γ(δx1), x1))− u(y, x1)(V (y, x2)− V (γ(δx2), x2))

=

[
V (γ(δx2), x1)−

Vy(γ(δx2), x2)

uy(γ(δx2), x2)
u(γ(x2), x1)− V (γ(δx1), x1)

]
·(−uy(γ(δx2), x2))(γ(δx2)− y) + o(γ(δx2)− y).
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Hence (12) holds for sufficiently small ρ > 0.

E.16. Proof of Proposition 1. Define the weak order ≿ on ∆(X) by µ ≿ η if

γ̃(µ) ≥ γ̃(η). Clearly, γ̃ satisfies Betweenness and Continuity iff ≿ satisfies Axioms

A1(a), A2’, and A4 in Dekel (1986). Thus, by his Proposition A.1, together with the

characterization (**) in Proposition 1 and the argument in Section 3.C, γ̃ satisfies

Betweenness and Continuity iff there exists a continuous function û from [0, 1] × X

to [0, 1] such that µ ≿ η ⇐⇒ γ̂(µ) ≥ γ̂(µ), where γ̂(µ), for any µ ∈ ∆(X), is defined

implicitly as the unique ŷ ∈ [0, 1] satisfying∫
X

û(ŷ, x)dµ(x) = (<)ŷ ⇐⇒ y = (>)ŷ.

In Dekel’s construction, γ̂ is continuous and thus there exists a continuous and strictly

increasing function γ̌ such that γ̂(µ) = γ̌(γ̃(µ)) for all µ ∈ ∆(X). Then, u defined by

u(y, x) = û(γ̌(y), x)− γ̌(y) for all (y, x) is as stated in the proposition.
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Online Appendix

F. Additional Proofs

F.1. Proof of Lemma 3. (1) =⇒ (2). It is easy to see that Assumption 2 for µ = δx

such that u(y, x) = 0 yields (14). Similarly, Assumption 2 for µ = ρδx + (1 − ρ)δx

such that u(y, x) < 0 < u(y, x′) and ρu(y, x) + (1− ρ)u(y, x′) = 0 yields (15).

(2) =⇒ (1). By Lemma 4, for any y ∈ Y and µ ∈ ∆(X) such that
∫
u(y, x)dµ(x) = 0,

there exists σµ ∈ ∆(∆(X)) such that
∫
ηdσµ(η) = µ, and for each η ∈ supp(σµ) there

exist x, x′ ∈ X and ρ ∈ [0, 1] such that η = ρδx + (1− ρ)δx′ and

ρu(y, x) + (1− ρ)u(y, x′) = 0. (22)

It suffices to show that

ρuy(y, x) + (1− ρ)uy(y, x
′) < 0. (23)

There are two cases to consider. First, if ρu(y, x) = 0, then (23) follows from (14)

and (22). Second, if ρu(y, x) ̸= 0, then (23) follows from (15) and (22).

(3) =⇒ (1). Notice that∫
u(y, x)dµ(x) = 0 ⇐⇒

∫
ũ(y, x)dµ(x) = 0.

Hence, if ũy(y, x) < 0 for all (y, x) and
∫
u(y, x)dµ = 0, then∫

uy(y, x)dµ(x) = g(y)

∫
ũy(y, x)dµ(x)+g′(y)

∫
ũ(y, x)dµ(x) = g(y)

∫
ũy(y, x)dµ(x) < 0,

yielding Assumption 2.

(1) =⇒ (3). We rely on the following lemma.

Lemma 13. If Assumptions 1 and 2 hold, then there exists a continuous function

h(y) such that

uy(y, x) + h(y)u(y, x) < 0, for all (y, x) ∈ Y ×X. (24)

Given this lemma, the required g is given by

g(y) = e−
∫ y
0 h(ỹ)dỹ,

as follows from

ũy(y, x) =
∂

∂y

(
u(y, x)

e−
∫ y
0 h(ỹ)dỹ

)
=

uy(y, x) + h(y)u(y, x)

e−
∫ y
0 h(ỹ)dỹ

< 0.
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Proof of Lemma 13. Fix y ∈ Y . Let M+(X) be the set of positive Borel measures on

X. Define the set C ⊂ R3 as follows

C =

{(∫
u(y, x)dµ(x),

∫
uy(y, x)dµ(x)− z,

∫
dµ(x)

) ∣∣ µ ∈M+(X), z ≥ 0

}
.

Clearly, C is a convex cone.

Moreover, C is closed, because u(y, x) and uy(y, x) are continuous in x. To see this,

let sequences µn ∈M+(X) and zn ∈ Rn
+ be such that∫

u(y, x)dµn(x)→ c1,

∫
uy(y, x)dµn(x)− zn → c2,

∫
dµn(x)→ c3

for some (c1, c2, c3) ∈ R3. It follows from
∫
dµn(x)→ c3 that all µn belong to a com-

pact subset of positive measures whose total variation is bounded by supn

∫
dµn(x),

and hence, up to extraction of a subsequence, µn → µ ∈ M+(X), with
∫
dµ(x) = c3.

Since u(y, x) and uy(y, x) are continuous in x, we get
∫
u(y, x)dµn(x)→

∫
u(y, x)dµ(x) =

c1 and
∫
uy(y, x)dµn(x)→

∫
uy(y, x)dµ(x). Hence, zn →

∫
uy(y, x)dµ(x)− c2 = z ≥

0. In sum, ∫
u(y, x)dµ(x) = c1,

∫
uy(y, x)dµ(x)− z = c2,

∫
dµ(x) = c3,

showing that C is closed.

Next, notice that Assumption 2 implies that (0, 0, 1) /∈ C. Thus, by the separation

theorem (e.g., Corollary 5.84 in Aliprantis and Border 2006), there exists β ∈ R3 such

that, for all µ ∈M+(X) and z ≥ 0,

0β1 + 0β2 + 1β3 < 0 ≤
(∫

u(y, x)dµ(x)

)
β1 +

(∫
uy(y, x)dµ(x)− z

)
β2 +

(∫
dµ(x)

)
β3,

or equivalently

u(y, x)β1 + uy(y, x)β2 + β3 ≥ 0, for all x ∈ X,

−β2 ≥ 0,

β3 < 0.

(25)

We now show that there exists a scalar h(y) ∈ R satisfying

uy(y, x) + h(y)u(y, x) < 0, for all x ∈ X. (26)

There are two cases. First, if β2 < 0 then h(y) = β1/β2 ∈ R satisfies (26). Second, if

β2 = 0 then (25) implies that

u(y, x)β1 ≥ −β3 > 0, for all x ∈ X.
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Thus, we have either (i) u(y, x) > 0 for all x ∈ X, so, taking into account continuity

of u(y, x) and uy(y, x) in x,

h(y) = min
x∈X

{
−uy(y, x)

u(y, x)

}
− 1 ∈ R

satisfies (26); or (ii) u(y, x) < 0 for all x ∈ X, so

h(y) = max
x∈X

{
−uy(y, x)

u(y, x)

}
+ 1 ∈ R

satisfies (26).

It remains to show that if for all y ∈ Y there exists h(y) ∈ R satisfying (26), then

there exists a continuous function h̃ : Y → R satisfying (26). Define a correspondence

φ : Y ⇒ R,

φ(y) = {r ∈ R : uy(y, x) + ru(y, x) < 0, for all x ∈ X}.

Note that φ is nonempty valued by assumption, and is clearly convex valued. In

addition, φ has open lower sections, because for each r ∈ R the set

{y ∈ Y : uy(y, x) + ru(y, x) < 0, for all x ∈ X}

is open, since uy and u are continuous on the compact set Y ×X. Thus, by Browder’s

Selection Theorem (Theorem 17.63 in Aliprantis and Border 2006), φ admits a con-

tinuous selection h̃, which by construction satisfies (26). □

F.2. Proof of Lemma 7. We consider the case where uyx/ux and Vyx/ux are in-

creasing in x; the case where uyx/ux and Vyx/ux are decreasing in x is analogous and

thus omitted.

Fix x1 < x2 < x3 and y such that u(y, x1) < 0 < u(y, x3). The inequality |S| > 0

follows from the following displayed equations:

u(y, x3)− u(y, x1) =

∫ x3

x1

ux(y, x)dx > 0,

where the inequality holds by Assumption 4;∣∣∣∣∣ u(y, x1) u(y, x3)

uy(y, x1) uy(y, x3)

∣∣∣∣∣ = −u(y, x3)uy(y, x1) + u(y, x1)uy(y, x3) > 0,

where the inequality holds by part (2) of Lemma 3;∣∣∣∣∣Vy(y, x1) Vy(y, x3)

u(y, x1) u(y, x3)

∣∣∣∣∣ = u(y, x3)Vy(y, x1)− u(y, x1)Vy(y, x3) > 0,
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where the inequality holds by Assumption 4;

−

∣∣∣∣∣Vy(y, x2)− Vy(y, x1) Vy(y, x3)− Vy(y, x2)

u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

∣∣∣∣∣
= (Vy(y, x3)− Vy(y, x2))(u(y, x2)− u(y, x1))− (Vy(y, x2)− Vy(y, x1))(u(y, x3)− u(y, x2))

=

∫ x3

x2

∫ x2

x1

(Vyx(y, x̃)ux(y, x)− Vyx(y, x)ux(y, x̃))dxdx̃ ≥ (>)0,

where the inequality holds by Assumption 4 and (strict) monotonicity of Vyx/ux in x;∣∣∣∣∣ u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

uy(y, x2)− uy(y, x1) uy(y, x3)− uy(y, x2)

∣∣∣∣∣
= (u(y, x2)− u(y, x1))(uy(y, x3)− uy(y, x2))− (u(y, x3)− u(y, x2))(uy(y, x2)− uy(y, x1))

=

∫ x3

x2

∫ x2

x1

(ux(y, x)uyx(y, x̃)− ux(y, x̃)uyx(y, x))dxdx̃ ≥ (>)0,

where the inequality holds by Assumption 4 and (strict) monotonicity of uyx/ux in x;∣∣∣∣∣∣∣
Vy(y, x1) Vy(y, x2) Vy(y, x3)

u(y, x1) u(y, x2) u(y, x3)

uy(y, x1) uy(y, x2) uy(y, x3)

∣∣∣∣∣∣∣∣∣∣∣∣ u(y, x1) u(y, x3)

uy(y, x1) uy(y, x3)

∣∣∣∣∣
(u(y, x3)− u(y, x1))

= −

∣∣∣∣∣Vy(y, x2)− Vy(y, x1) Vy(y, x3)− Vy(y, x2)

u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

∣∣∣∣∣
+

∣∣∣∣∣Vy(y, x1) Vy(y, x3)

u(y, x1) u(y, x3)

∣∣∣∣∣∣∣∣∣∣ u(y, x1) u(y, x3)

uy(y, x1) uy(y, x3)

∣∣∣∣∣
∣∣∣∣∣ u(y, x2)− u(y, x1) u(y, x3)− u(y, x2)

uy(y, x2)− uy(y, x1) uy(y, x3)− uy(y, x2)

∣∣∣∣∣ ,
where the equality holds by rearrangement.

F.3. Proof of Lemma 8. We consider the case where uyx/ux and Vyx/ux are in-

creasing in x; the case where uyx/ux and Vyx/ux are decreasing in x is analogous and

thus omitted.
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Fix x1 < x2 < x3 and y2 > y1 such that u(y1, x1) < 0 < u(y1, x2). The inequality

|R| > 0 follows from the following displayed equations:

u(y1, x3)− u(y1, x1) =

∫ x3

x1

ux(y1, x)dx > 0,

where the inequality holds by Assumption 4;∣∣∣∣∣u(y1, x1) u(y1, x3)

u(y2, x1) u(y2, x3)

∣∣∣∣∣
= −u(y1, x3)u(y2, x1) + u(y1, x1)u(y2, x3)

= −g(y1)ũ(y1, x3)g(y2)ũ(y2, x1) + g(y1)ũ(y1, x1)g(y2)ũ(y2, x3)

= g(y1)g(y2)[−ũ(y1, x3)(ũ(y2, x1)− ũ(y1, x1)) + ũ(y1, x1)(ũ(y2, x3)− ũ(y1, x3))]

= g(y1)g(y2)

∫ y2

y1

[−ũ(y1, x3)ũy(y, x1) + ũ(y1, x1)ũy(y, x3)]dy > 0,

where the inequality and the second equality hold by parts (2) and (3) of Lemma 3;∣∣∣∣∣V (y2, x1)− V (y1, x1) V (y2, x3)− V (y1, x3)

u(y1, x1) u(y1, x3)

∣∣∣∣∣
= u(y1, x3)

∫ y2

y1

Vy(y, x1)dy − u(y1, x1)

∫ y2

y1

Vy(y, x3)dy > 0,

where the inequality holds by Assumption 4;

−

∣∣∣∣∣V (y2, x2)− V (y1, x2)− V (y2, x1) + V (y1, x1) V (y2, x3)− V (y1, x3)− V (y2, x2) + V (y1, x2)

u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

∣∣∣∣∣
= (V (y2, x3)− V (y1, x3)− V (y2, x2) + V (y1, x2))(u(y1, x2)− u(y1, x1))

−(V (y2, x2)− V (y1, x2)− V (y2, x1) + V (y1, x1))(u(y1, x3)− u(y1, x2))

=

∫ y2

y1

∫ x3

x2

∫ x2

x1

(Vyx(y, x̃)ux(y1, x)− Vyx(y, x)ux(y1, x̃))dxdx̃dy ≥ (>)0,

where the inequality holds by Assumption 4 and (strict) monotonicity of Vyx/ux in x;∣∣∣∣∣u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

u(y2, x2)− u(y2, x1) u(y2, x3)− u(y2, x2)

∣∣∣∣∣
= (u(y1, x2)− u(y1, x1))(u(y2, x3)− u(y2, x2))− (u(y1, x3)− u(y1, x2))(u(y2, x2)− u(y2, x1))

=

∫ x3

x2

∫ x2

x1

(ux(y1, x)ux(y2, x̃)− ux(y1, x̃)ux(y2, x))dxdx̃ ≥ (>)0,
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where the inequality holds by Assumption 4 and (strict) monotonicity of uyx/ux in

x, which imply that, for y2 > y1 and x̃ > x, we have

ln
ux(y1, x)ux(y2, x̃)

ux(y1, x̃)ux(y2, x)
=

∫ y2

y1

∂

∂y
[lnux(y, x̃)− lnux(y, x)]dy =

∫ y2

y1

[
uyx(y, x̃)

ux(y, x̃)
− uyx(y, x)

ux(y, x)

]
dy ≥ (>)0;

∣∣∣∣∣∣∣
V (y2, x1)− V (y1, x1) −(V (y2, x2)− V (y1, x2)) V (y2, x3)− V (y1, x3)

−u(y1, x1) u(y1, x2) −u(y1, x3)

u(y2, x1) −u(y2, x2) u(y2, x3)

∣∣∣∣∣∣∣∣∣∣∣∣u(y1, x1) u(y1, x3)

u(y2, x1) u(y2, x3)

∣∣∣∣∣
(u(y1, x3)− u(y1, x1))

= −

∣∣∣∣∣V (y2, x2)− V (y1, x2)− V (y2, x1) + V (y1, x1) V (y2, x3)− V (y1, x3)− V (y2, x2) + V (y1, x2)

u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

∣∣∣∣∣
+

∣∣∣∣∣V (y2, x1)− V (y1, x1) V (y2, x3)− V (y1, x3)

u(y1, x1) u(y1, x3)

∣∣∣∣∣∣∣∣∣∣u(y1, x1) u(y1, x3)

u(y2, x1) u(y2, x3)

∣∣∣∣∣
∣∣∣∣∣u(y1, x2)− u(y1, x1) u(y1, x3)− u(y1, x2)

u(y2, x2)− u(y2, x1) u(y2, x3)− u(y2, x2)

∣∣∣∣∣ ,
where the equality holds by rearrangement.

F.4. Proof of Lemma 9. Fix x1 < x2 < x3 and y2 > y1 such that u(y1, x1) <

0 < u(y1, x3). The first claimed inequality follows as in the proof of Lemma 8, by

Assumption 2 and u(y1, x1) < 0 < u(y1, x3). We thus focus on the second and third

inequalities.

As in the proof of Lemma 8, Assumption 4 and monotonicity of uyx/ux in x yield

u(y1, x3) > u(y1, x2) > u(y1, x1),

u(y2, x3)− u(y2, x2)

u(y1, x3)− u(y1, x2)
≥ u(y2, x2)− u(y2, x1)

u(y1, x2)− u(y1, x1)
.

There are three cases to consider.

(1) u(y1, x2) = 0. In this case, u(y2, x2) < 0, by Assumption 2. Thus,

u(y2, x2)u(y1, x1) > 0 = u(y2, x1)u(y1, x2),

u(y2, x3)u(y1, x2) = 0 > u(y2, x2)u(y1, x3).

(2) u(y1, x2) > 0. In this case, as follows from the proof of Lemma 8,

u(y2, x2)u(y1, x1) > u(y2, x1)u(y1, x2),
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by Assumption 2 and u(y1, x1) < 0 < u(y1, x2). Thus,

u(y2, x3)− u(y2, x2)

u(y1, x3)− u(y1, x2)
≥ u(y2, x2)− u(y2, x1)

u(y1, x2)− u(y1, x1)
>

u(y2, x2)

u(y1, x2)

=⇒ u(y2, x3)u(y1, x2) > u(y2, x2)u(y1, x3).

(3) u(y1, x2) < 0. In this case, as follows from the proof of Lemma 8,

u(y2, x3)u(y1, x2) > u(y2, x2)u(y1, x3),

by Assumption 2 and u(y1, x2) < 0 < u(y1, x3). Thus,

u(y2, x2)

u(y1, x2)
>

u(y2, x3)− u(y2, x2)

u(y1, x3)− u(y1, x2)
≥ u(y2, x2)− u(y2, x1)

u(y1, x2)− u(y1, x1)

=⇒ u(y2, x2)u(y1, x1) > u(y2, x1)u(y1, x2).

F.5. Proof of Lemma 10. Fix x1 < x2 < x3 and y2 < y1 such that x1 < χ(y1) < x3.

As in the proof of Lemma 8, Assumption 4 and monotonicity of Vyx/ux in x yield

V (y1, xj)− V (y2, xj) > 0 for j = 1, 2, 3, (27)

u(y1, x3) > u(y1, x2) > u(y1, x1), (28)

V (y1, x3)− V (y2, x3)− V (y1, x2) + V (y2, x2)

u(y1, x3)− u(y1, x2)

≤ V (y1, x2)− V (y2, x2)− V (y1, x1) + V (y2, x1)

u(y1, x2)− u(y1, x1)
.

(29)

There are two cases to consider.

(1) u(y1, x2) ≥ 0. In this case, we have

u(y1, x1)

V (y1, x1)− V (y2, x1)
<

u(y1, x2)

V (y1, x2)− V (y2, x2)
,

by (27) and u(y1, x1) < 0 ≤ u(y1, x2), and

u(y1, x2)

V (y1, x2)− V (y2, x2)
<

u(y1, x3)

V (y1, x3)− V (y2, x3)
,

by

u(y1, x2)(V (y1, x3)− V (y2, x3)) ≤u(y1, x2)
u(y1, x3)− u(y1, x1)

u(y1, x2)− u(y1, x1)
(V (y1, x2)− V (y2, x2))

<u(y1, x3)(V (y1, x2)− V (y2, x2)),
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where the first inequality holds by (29), V (y1, x1) > V (y2, x1), u(y1, x3) > u(y1, x2),

and u(y1, x2) ≥ 0, and the second inequality holds by V (y1, x2) > V (y2, x2), u(y1, x3) >

u(y1, x2), and u(y1, x1) < 0.

(2) u(y1, x2) ≤ 0. In this case, we have

u(y1, x2)

V (y1, x2)− V (y2, x2)
<

u(y1, x3)

V (y1, x3)− V (y2, x3)
,

by (27) and u(y1, x2) ≤ 0 < u(y1, x3), and

u(y1, x1)

V (y1, x1)− V (y2, x1)
<

u(y1, x2)

V (y1, x2)− V (y2, x2)
,

by

−u(y1, x2)(V (y1, x1)− V (y2, x1)) ≤− u(y1, x2)
u(y1, x3)− u(y1, x1)

u(y1, x3)− u(y1, x2)
(V (y1, x2)− V (y2, x2))

<− u(y1, x1)(V (y1, x2)− V (y2, x2)),

where the first inequality holds by (29), V (y1, x3) > V (y2, x3), u(y1, x3) > u(y1, x2),

and u(y1, x2) ≤ 0, and the second inequality holds by V (y1, x2) > V (y2, x2), u(y1, x2) >

u(y1, x1), and u(y1, x3) > 0.

F.6. Proof of Lemma 11. We give the proof for the single-dipped case. The proof

remains valid if Assumption 4 is replaced with strict single-crossing of u(y, x) in x. Let

τn be any optimal signal under V n, so that supp(τn) ⊂ Λn. Since the set of compact

subsets of a compact set is compact (in the Hausdorff topology), taking a subsequence

if necessary, Λn converges to some compact set Λ ⊂ ∆(X). Since the set of signals

is compact (in the weak* topology), taking a subsequence if necessary, τn converges

weakly to some signal τ . Finally, since Λn → Λ, τn → τ , and supp(τn) ⊂ Λn, it

follows that supp(τ) ⊂ Λ, by Box 1.13 in Santambrogio (2015).

We claim that τ is optimal under V . Since V n
y converges uniformly to Vy, for each

δ > 0 there exists nδ ∈ N such that, for all n ≥ nδ, we have |V n
y (y, x)− Vy(y, x)| ≤ δ

for all (y, x). Since τn is optimal under V n, for each signal τ̃ we have∫
∆(X)

∫
X

∫ y

0

Vy(ỹ, x)dỹdµ(x)dτ
n(µ) ≥

∫
∆(X)

∫
X

∫ y

0

V n
y (ỹ, x)dỹdµ(x)dτ

n(µ)− δ

≥
∫
∆(X)

∫
X

∫ y

0

V n
y (ỹ, x)dỹdµ(x)dτ̃(µ)− δ

≥
∫
∆(X)

∫
X

∫ y

0

Vy(ỹ, x)dỹdµ(x)dτ̃(µ)− 2δ.
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Passing to the limit as δ → 0 and n→∞ establishes the optimality of τ under V .

Suppose by contradiction that Λ is not single-dipped. Then there exist µ1, µ2 ∈ Λ

and x1 < x2 < x3 such that x1, x3 ∈ supp(µ1), x2 ∈ supp(µ2), and γ(µ1) < γ(µ2).

Since Λn → Λ, there exist µn
1 , µ

n
2 ∈ Λn such that µn

1 → µ1 and µn
2 → µ2. Since γ(µ)

is continuous in µ and since the support correspondence is lower hemicontinuous,

by Theorem 17.14 in Aliprantis and Border (2006), it follows that there exists n,

µn
1 , µ

n
2 ∈ Λn, and xn

1 < xn
2 < xn

3 such that xn
1 , x

n
3 ∈ supp(µn

1 ), x
n
2 ∈ supp(µn

2 ), and

γ(µn
1 ) < γ(µn

2 ), contradicting that Λn is single-dipped.

F.7. Proof for Example 2. First, notice that the outcome π that corresponds to

the proposed signal is implementable. (BP’) holds because, for all y ∈ [y, 1], the

marginal distribution over actions satisfies

απ([a, 1]) = ϕ([0, χ1(y)]) + ϕ([a, 1]),

and the posterior conditional on y is

πy =
dϕ([0, χ1(y)])

dϕ([0, χ1(y)] + dϕ([a, 1])
δχ1(y) +

dϕ([a, 1])

dϕ([0, χ1(y)] + dϕ([a, 1])
δχ1(y),

as follows from κϕ([0, χ1(y)]) = (1− κ)ϕ([a, 1]), which implies that κdϕ([0, χ1(y)]) =

(1−κ)dϕ([a, 1]) and that χ1 is a continuous, strictly decreasing function. (OB) holds

because, for all y ∈ [y, 1],

Eπy [u(y, x)] = Eπy [1{x ≥ y} − κ] = πy([y, 1])− κ = 0.

Consider now any other implementable outcome π̃. By (OB), there exists π̃y with

π̃y([y, 1]) ≥ κ, as otherwise Eπ̃y [u(y, x)] < 0. Thus, by (BP’), απ̃([y, 1]) ≤ ϕ([y, 1])/κ,

as follows from

ϕ([y, 1]) =

∫
Y

π̃ỹ([y, 1])dαπ̃(ỹ) ≥
∫ 1

y

π̃ỹ([y, 1])dαπ̃(ỹ) ≥ καπ̃([y, 1]).

Since απ([y, 1]) = ϕ([y, 1])/κ, it follows that απ first-order stochastically dominates

απ̃, and thus, for an increasing V ,∫
Y×X

V (y)dπ(y, x) =

∫
Y

V (y)dαπ(y) ≥
∫
Y

V (y)dαπ̃(y) =

∫
Y×X

V (y)dπ̃(y, x),

showing that π is optimal.

F.8. Proof for Example 3. We will show that Λ = {δχ1(y)/2+δχ2(y)/2 : y ∈ [−1, 1]}.
Then, by Theorem 7, there is a unique optimal signal. Consider a signal τ that

induces the distribution over actions α and the only posterior inducing each action
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y ∈ supp(α) is µ = δχ1(y)/2 + δχ2(y)/2. By construction, supp(τ) ⊂ Λ. Moreover,∫
µdτ(µ) = ϕ, because, for each y ∈ [0, 1],

ϕ([χ2(y), 3]) = ϕ([3y, 3]) = 1
2
α([y, 1]),

ϕ([−1, χ1(−y)]) = ϕ([−1,−y]) = α([−1,−y]) + 1
2
α([y, 1]).

Hence τ is optimal. Finally, the following lemma shows that Λ is as stated.

Lemma 14. Functions

p(x) =

T (2x), x ∈ [−1, 0),

3T (2
3
x), x ∈ [0, 3],

and q(y) =


2T ′(2y)
T ′(0)

, y ∈ [−1, 0),

2, y ∈ [0, 3].

satisfy (ZP’) with equality if y ∈ [−1, 1] and x ∈ {χ1(y), χ2(y)}, and strict inequality

otherwise.

Proof of Lemma 14. Since T is symmetric about 0 (i.e., T (x− y) = −T (y − x)) and

T ′ is strictly log-concave, it follows that T ′(0) > T ′(z) for all z ̸= 0 and T (z) is

strictly concave for z ≥ 0. Hence, if z′1 ≤ z1 ≤ z2 ≤ z′2, (z
′
1, z

′
2) ̸= (z1, z2), and

ρ′z′1 + (1 − ρ′)z′2 = ρz1 + (1 − ρ)z2, for some z1, z2, z
′
1, z

′
2 ≥ 0 and ρ, ρ′ ∈ (0, 1), then

ρ′T (z′1) + (1− ρ)T (z′2) < ρT (z1) + (1− ρ)T (z2), by Jensen’s inequality.

We split the analysis into six cases.

(1) For y ∈ [0, 3] and x ∈ [y, 3], (ZP’) simplifies to

3T (2
3
x) ≥ T (2y) + 2T (x− y),

which holds with equality for x = 3y = χ2(a) and strict inequality for x ̸= 3y.

(2) For y ∈ [0, 3] and x ∈ (0, y), (ZP’) simplifies to

3T (2
3
x) + 2T (y − x) ≥ T (2y) + 4T (0),

which always holds with strict inequality.

(3) For y ∈ [0, 3] and x ∈ [−1, 0], (ZP’) simplifies to

2T (y − x) ≥ T (2y) + T (−2x),

which holds with equality for x = −y = χ1(y) and strict inequality for x ̸= −y.

(4) For y ∈ [−1, 0) and x ∈ [0, 3], (ZP’) simplifies to

3T (2
3
x) + T (−2y) ≥ q(y)T (x− y) + 2T (0),
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which always holds with strict inequality because q(y) < 2 and T (x− y) > 0.

(5) For y ∈ [−1, 0) and x ∈ (y, 0), (ZP’) simplifies to

T (−2y) ≥ T (−2x) + q(y)T (x− y),

which is equivalent to

T (−2y)− T (−2x)
T ′(−2y)(−2y + 2x)

≥ T (x− y)− T (0)

T ′(0)(x− y)
,

which always holds with strict inequality because T (z) is strictly concave for z ≥ 0,

and thus the left-hand side is strictly greater than 1 whereas the right-hand side is

strictly less than 1.

(6) For y ∈ [−1, 0) and x ∈ [−1, y], (ZP’) simplifies to

T (−2y) + q(y)T (y − x) ≥ T (−2x),

which holds with equality for x = y = χ1(y). For x < y, the inequality is equivalent

to
T (y − x)− T (0)

T ′(0)(y − x)
≥ T (−2x)− T (−2y)

T ′(−2y)(−2x+ 2y)
,

which always holds with strict inequality because

T (−2x)− T (−2y)
T ′(−2y)(2y − 2x)

=
1

2y − 2x

∫ 2(y−x)

0

T ′(z − 2y)

T ′(−2y)
dz

<
1

2y − 2x

∫ 2(y−x)

0

T ′(z)

T ′(0)
dz

=
T (2y − 2x)− T (0)

T ′(0)(2y − 2x)

<
T (y − x)− T (0)

T ′(0)(y − x)
,

where the first inequality holds because T ′ is strictly log-concave, and the second

inequality holds because T (z) is strictly concave for z ≥ 0. □

F.9. Proof of Proposition 2. Recall that most results remain valid if the condition

ux(y, x) > 0 in Assumption 4 is replaced with strict single-crossing of u(y, x) in

x. Clearly, γ(µ) = Eµ[x]/(1 + Eµ[x
2]). To ensure that Assumption 3 holds, we

normalize Y = [minx∈[x,x] γ(δx),maxx∈[x,x] γ(δx)]. Assumptions 1 and 2 obviously

hold. Moreover, since γ(δx) is strictly increasing on [0, 1] and strictly decreasing on

[1,+∞), it follows that u(γ(δx), x
′) > 0 if x < x′ ≤ 1 and if 1 ≤ x′ < x. Thus, if

x ≤ 1, then u(y, x) satisfies strict single-crossing in x, whereas, if x ≥ 1, u(y, x) also
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satisfies strict single-crossing in x once the state is redefined as −x. So Theorems 2,

3, 5, and 6 apply.

Lemma 15 replicates Lemma 1 and Proposition 3 in Zhang and Zhou (2016).

Lemma 15. If x1 < x2 and x1x2 > (<)1, then ρV (γ(δx1), x1)+(1−ρ)V (γ(δx2), x2) >

(<)ρV (γ(µ), x1) + (1− ρ)V (γ(µ), x2) for all ρ ∈ (0, 1).

Proof. For µ = ρδx1 + (1 − ρ)δx2 , γ(µ) = (ρx1 + (1− ρ)x2)/(1 + ρx2
1 + (1− ρ)x2

2).

Thus, if x1 < x2 and x1x2 > (<)1, we have

d

dρ
γ(µ) =

(x2 − x1)(x1x2 − 1)

(1 + ρx2
1 + (1− ρ)x2

2)
2
> (<)0,

d2

dρ2
γ(µ) =

(x2 − x1)(x1x2 − 1)(x2
2 − x2

1)

(1 + ρx2
1 + (1− ρ)x2

2)
3

> (<)0.

Define φ(ρ) = γ(µ) (ρ/x1 + (1− ρ)/x2). Thus, if x1 < x2 and x1x2 > (<)1, we have

φ′′(ρ) =

(
ρ

x1

+
1− ρ

x2

)
d2

dρ2
γ(µ) + 2

(
1

x1

− 1

x2

)
d

dρ
γ(µ) > (<)0,

so φ is strictly convex (concave), and ρφ(1) + (1− ρ)φ(0) > (<)φ(ρ). □

If x ≥ 1, then x1x2 > 1 for all x1 ≤ x1 < x2, so full disclosure is uniquely optimal by

Theorem 5 and Lemma 15. Assume henceforth that x ≤ 1.

After some algebra, we get, for all y and x1 < x2 < x3,

|S| = (x3 − x2)(x3 − x1)(x2 − x1)(1− x2x3 − x1x3 − x1x2)

x1x2x3

If x ≤ 1/
√
3 (x ≥ 1/

√
3), then |S| > (<)0 for all x1 < x2 < x3 ≤ x (x ≤ x1 < x2 <

x3), so Λ is pairwise by Theorem 2. Proposition 4 in Zhang and Zhou (2016) derives

a version of this result for a finite set X.

Moreover, if x ≤ 1/
√
3 (x ≥ 1/

√
3), then Λ is single-dipped (-peaked), as follows from

Theorem 3 with

β =

u(y2, x3)u(y1, x2)− u(y2, x2)u(y1, x3)

u(y2, x3)u(y1, x1)− u(y2, x1)u(y1, x3)

u(y2, x2)u(y1, x1)− u(y2, x1)u(y1, x2)


β = −

u(y2, x3)u(y1, x2)− u(y2, x2)u(y1, x3)

u(y2, x3)u(y1, x1)− u(y2, x1)u(y1, x3)

u(y2, x2)u(y1, x1)− u(y2, x1)u(y1, x2)


 ,



82 KOLOTILIN, CORRAO, AND WOLITZKY

because, for y < y′ and x < x′ with xx′ < 1, we have

u(y′, x′)u(y, x)− u(y′, x)u(y, x′) = (y′ − y)(x′ − x)(1− xx′) > 0,

and

Rβ =

(y2 − y1)
2|S|

0

0

 ⪈

0

0

0


Rβ =

−(y2 − y1)
2|S|

0

0

 ⪈

0

0

0


 .

Thus Λ is strictly single-dipped (-peaked) if x ≤ 1/
√
3 (x ≥ 1/

√
3). Finally, since,

by Lemma 15, (12) holds for all ρ ∈ (0, 1), Theorem 6 yields that, if x ≤ 1/
√
3

(x ≥ 1/
√
3), then the optimal signal is unique and single-dipped (-peaked) negative

assortative.

F.10. Proof of Proposition 3. Suppose by contradiction that an optimal outcome

assigns positive probability to a strictly single-dipped triple (y1, x1), (y2, x2), (y1, x3),

with x1 < x2 < x3, y2 < y1, and x1 ≤ x0 ≤ x3. Consider a perturbation that

reallocates mass β1ε on x1 and mass β3ε on x3 from y1 to y2, while reallocating mass

β2ε on x2 from y2 to y1 where ε > 0 is small enough and β = (β1, β2, β3) is given by

β =


(
0, 1

(x2−x0)g(y2|x2)
, 1
(x2−x0)g(y2|x3)

)
, x2 > x0,

(0, 1, 0) , x2 = x0,(
1

(x0−x1)g(y1|x1)
, 1
(x0−x2)g(y1|x2)

, 0
)
, x2 < x0,

where x1 < x2 < x3, y2 < y1, and x1 ≤ x0 ≤ x3. We focus on the case x0 < x2, as

the other cases are analogous. The above perturbation increases action y1, because,

by strict log-submodularity of g,

u(y1, x2)y2 − u(y1, x3)y3 =
g(y1|x2)

g(y2|x2)
− g(y1|x3)

g(y2|x3)
> 0.

Moreover, the same perturbation also increases the sender’s expected utility for fixed

y1, y2. This follows because

(V (y1, x2)− V (y2, x2))y2 − (V (y1, x3)− V (y2, x3))y3

=

(
G(y1|x2)−G(y2|x2)

(x2 − x0)g(y2|x2)
− G(y1|x3)−G(y2|x3)

(x3 − x0)g(y2|x3)

)
>

1

(x2 − x0)

(
G(y1|x2)−G(y2|x2)

g(y2|x2)
− G(y1|x3)−G(y2|x3)

g(y2|x3)

)
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=
1

(x2 − x0)

∫ y1

y2

(
g(t|x2)

g(y2|x2)
− g(t|x3)

g(y2|x3)

)
dt ≥ 0,

where the first inequality is by x0 < x2 < x3 and the second inequality is by log-

submodularity of g. Thus, this perturbation is strictly profitable for the sender, so

every optimal outcome is single-peaked.

F.11. Proof of Proposition 4. As shown by Kamenica and Gentzkow (2011), there

exists an optimal outcome with a finite support. Suppose the support contains a

strictly single-peaked triple (y1, x1), (y2, x2), (y1, x3), with x1 < x2 < x3, y1 < a2, and

x1 < a1 < x3. Notice that V (y1, x3) ̸= −∞ (so y1 ≥ σ(x3)), as otherwise the sender’s

expected utility would be −∞, which cannot be optimal. Taking into account that

σ(x) = x for x ≤ x0 gives y1 > x0. Thus, the first row in R is zero. Consider a

perturbation that shifts weights β1 = (x3 − x2)ε and β3 = (x2 − x1)ε on x1 and x3

from y1 to y2 and shifts weight β2 = (x3 − x1)ε from y2 to y1, where ε takes the

maximum value such that β1 ≤ π({(y1, x1}), β2 ≤ π({(y2, x2}), β3 ≤ π({(y1, x3}), so
that a strictly single-peaked triple is removed. This perturbation holds fixed y1 and

y2 and thus does not change the sender’s expected utility, since the first row in R is

zero. Repeating such perturbations until all strictly single-peaked triples are removed

(a finite number of times since supp(π) is finite) yields a single-dipped outcome that

is weakly preferred by the sender.
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