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Abstract

Incomplete Information Games, Local Interaction Games and Random
Matching Games are all examples of a class of Interaction Games. In this
paper, I describe how potential methods can generalize and unify results in
the different literatures.

1. Introduction

In Morris (1997b), I documented a close connection between incomplete infor-
mation games and local interaction games. This connection in turn implied a
relationship between robustness and infection arguments for incomplete infor-
mation games and uninvadability and contagion results for best response type
dynamics in local interaction games. In this paper, I summarize some ongoing
work exploring the connection.

An action profile is robust to incomplete information in a complete information
game if every incomplete information game where payoffs are almost always given
by that complete information game has an equilibrium where that action profile
is almost always played (see Kajii and Morris (1997a)). We showed that an

*A May 1998 version of these notes were circulated under the title “Notes on Local Inter-
action, Generalized Potential Games and Strategic Complementarities.” This material builds
on earlier work and long discussions with Atsushi Kajii. Some of the ideas here will appear in
Frankel, Morris and Pauzner (1999).

TCowles Foundation, Yale University, P.O.Box 208281, New Haven CT 06520-8281. E-Mail:
stephen.morris@yale.edu.



I
equilibrium is robust if it is p-dominant for some p with > p; < 1. Ui (1998)
i=1

showed that if an equilibrium is a potential maximizer, i.e., maximizes a potential
function as in Monderer and Shapley (1996), then it is robust. I provide some
new sufficient conditions for robustness. An action profile a* is a characteristic
potential maximizer if there exists a function assigning a value to every coalition
of players such that whenever player i has a conjecture over his opponents’ actions
such that his expected contribution to the coalition of players choosing according
to a* is positive, his best response is to player a;. This condition generalizes
Kajii and Morris’ p-dominance condition. A characteristic potential maximizer
is always robust. An action profile a* is a local potential mazximizer if there exists
a potential function assigning a value to every action profile such that whenever
player i has a conjecture over his opponents’ actions such that moving his action
towards a; increases the expected value of the potential function, he has a best
response to do so. Local potential maximizers are always both characteristic
potential maximizers and potential maximizers. A local potential maximizer is
always robust in games with strategic complementarities. T'wo player, three action
games with symmetric payoffs and strategic complementarities generically have
a unique local potential maximizer, and these are characterized below. These
results are presented in sections 2 through 4.

Any incomplete information game can be interpreted as a local interaction
game as follows. Interpret the players as “roles”. The types of player i (in the
incomplete information interpretation) can then be interpreted as players in role
i (in the local interaction interpretation). A type profile then corresponds to
a collection of players, one in each role, called upon to play the game. The
probability of the type profile then corresponds to the weight assigned to that
interaction group. The notion of equilibrium is unchanged in this alternative
interpretation. (This relation is discussed in much more detail in Morris (1997b)).
Now there is an alternative interpretation of robustness: an action profile is robust
in a complete information game if every interaction game where payoffs are given
by that complete information game in most interactions has an equilibrium where
that action profile is played by most players. The above results thus immediately
translate. Much of the local interaction literature studies the dynamic evolution of
play in environments where all interactions have the same payoff function. In this
setting, I say that an action profile is uninvadable if it continues to be played if it is
initially played by most players and players only shift to actions that give higher
payoffs against the current configuration of play. All the sufficient conditions



for robustness are sufficient for uninvadability. Although I do not present such
results, action profiles that are uninvadable are also the ones that will tend to
spread under the dynamics studied in the literature. These results are presented
in sections 5 through 6.

Many games have no robust equilibrium. Even some games with strategic com-
plementarities have no robust equilibrium (and thus no local potential maximizer).
An example is given in section 7. It is shown how there exists an incomplete infor-
mation game with payoffs almost always given by that complete information game
where the unique equilibrium has one action profile always played. But there ex-
ists another incomplete information game, again with payoffs almost always given
by that complete information game, where the unique equilibrium has a differ-
ent action profile always played. The argument clearly holds for all games in a
neighborhood of the example, i.e., for an open set of games. This result has an in-
teresting local interaction translation. Authors in the local interaction literature
(e.g., Blume (1993) and Ellison (1993)) have emphasized how local interaction
will lead to fast convergence in evolutionary environments. This example shows
that which action we converge to depends on some fine details of the interaction
structure.

Some remaining issues are discussed in section 8:

e All the analysis of this paper takes place in a non-standard framework,
where there is an unbounded weight assigned to different type profiles /
interactions. In the local interaction interpretation, this is the standard in-
finite population assumption. In the incomplete information interpretation,
this corresponds to an infinite probability mass, or “improper prior,” on the
state space. This is a very convenient mathematical trick. In section 8.1, I
discuss how results could be translated to the more standard setting.

e Much of the local interaction literature deals with the case where there are
no “roles” and an interaction, or matching, just consists of any I (usually 2)
players. In this case, we can dispense with certain restrictions on the inter-
action structure inherited from the incomplete information interpretation.
However, this extra structure does not effect any results. This is discussed
in section 8.2.

e In games with strategic complementarities, local potential maximizers are
both characteristic potential maximizers and potential maximizers. Thus
the local potential maximizer condition unifies existing p-dominance and



potential sufficient conditions in the incomplete information and local inter-
action literatures. It would be nice to have such a unifying result for games
without the strategic complementarities. A conjecture along this lines is
suggested in section 8.3.

e All the analysis in this paper relies on a finite action assumption. In section
8.4, I discuss the continuum analogues of the potential maximizing condi-
tions developed in this paper. These are relevant in Frankel, Morris and

Pauzner (1999).

2. Incomplete Information Games and Robustness

2.1. Incomplete Information Games with Improper Priors

There are I players. Write T; for the infinite set of possible types of player 7, and
T =T, xTyx .. xT;. Player i has a set of possible actions, A;; A = Ay x .. x Aj.
For some results, a complete order on actions is assumed; in this case, write @; for
the largest action in A;, g, for the smallest action in A;, a; for the smallest action
larger than a; # @; and a; for the largest action smaller than a; # a,;. A strategy
for player 7 is a function s; : T; — A;. A payofl function for player i is a function
u; : A x T — R with the interpretation that u; (a,t) is the payoff of type t; if
nature chooses type profile ¢ and players choose action profile a. Let P :T"— R
be the prior probability on the space of type profiles. It is assumed that this is an

improper prior with infinite mass, i.e., that Y- P (¢) is non-convergent. However,
teT
it 1s assumed that

t_;eT_;

so that the conditional probability

P(ti,t;)
tLiET,i T

is well-defined. An event E is said to be finite if Y. P (t) is f{inite; it is co-finite
teE

if > P(t) is finite. The non-standard assumption of an improper prior should
¢ E

be thought of as a convenient mathematical way of ensuring the existence of
events with non-zero but negligible probability (i.e., with finite probability). In



section 8.1, I discuss how results could be extended to standard (mass 1) priors.
A strategy profile (si)le is a (pure strategy) equilibrium if

Do Pl t) s ((si () s (t-), (b)) = D P(talts) wi (@, 5 (¢0)) , (ti,t-4))

t;€T_5 t; el

forall i =1,..,1, t; € T; and a; € A;. A mixed strategy for players in role i is
a function o; : T; — A(A;); utilities may be extended to mixed strategies and
(mixed strategy) equilibrium defined in the usual way.

Thus holding fixed I and the action sets (AZ-)I

=1

the pair IS = ((Ti)ijzl ,P) and an incomplete information game is the triple
I I
IG = ((Ti>z‘:1 P, <UZ)Z:1)

an information system is

2.2. Complete Information Games

A complete information game consists of a payoff function for each player, g =
(g1,-.-,91), where each g; : A — R. When a complete information game g is given,
I write 3, : A (A ;) — 2% for player i’s best response correspondence, i.e.,

ﬂi <)\z> = argmax Z )\z (CL,Z') g; (CLZ', CL,Z') .

aiEAi

2.3. Strategic Complementarities

For some results, I will be concerned with complete information games with some
monotonic structure.

Definition 2.1. Complete information game g satisfies strategic complementar-
ities (SC) if g; (a;,a—;) — gi (a},a—;) > gi(as,a_;) — g;(a},a_;) if a; > al and
a_; >a ;.

Lemma 2.2. If g satisfies strategic complementarities and A\; € A (A_;) strictly
first order stochastically dominates \; € A (A_;), then min [§; (A;)] > max [, (\))].

See Krishna [1992] for a proof.
Definition 2.3. Complete information game g satisfies diminishing marginal re-

turns (DMR) if g; (a;“,a,i) — gi(a;,a-;) < gi(a,a_;) — g (a;,a,i), for all
a; € Az\ {gi,m} and a_; € A,Z‘.



Lemma 2.4. If g satisfies DMR, a; € 3, ()\;), and either a; > al, > a or a; <
a; < a;, then

Z)\i<a7i CL , A >Z)\ ,).
See Krishna [1992] for a proof.

2.4. Robustness

For any fixed incomplete information game IG = ((Ti)ijzl P, (ui)le), write

lg;| = {t el :u (a, (ti,tii)) = g; (a) for each t' ; such that P (ti,t/,i) > 0}
and [g| = iél 9]

Definition 2.5. Action profile a* is robust in g if every incomplete information
game where |g| is co-finite has an equilibrium where {t : 0; (af|t;) =1 for all i}
is co-finite.

3. Generalized Potential Games

A game is a potential game [Monderer and Shapley (1996)] if each player’s change
in utility from switching actions could have been derived from a common payoff
function.

Definition 3.1. Action profile a* is a potential mazimizer (P-mazimizer) of g if
there exists a potential function v: A — R with v (a*) > v (a) for all a # a*, such
that foralli=1,...1, a;, a, € A; anda_; € A ;,

U(CLZ',CL,Z') —U(CL;,CL, ) = 9g; (azu Z) gz( - )

I will also be interested in some variations on the notion of a potential maxi-
mizer. The first was studied by Monderer and Shapley (1996). The latter two are
new.

Definition 3.2. Action profile a* is a weighted potential maximizer (WP-maximizer)
of g if there exists a weighted potential function v : A — R with v (a*) > v (a)
for all a # a* and pe Ri, such that for alli =1,..,1, a;, a, € A; and a_; € A_;,

v(as,a ) —v(ag,a ) = p;gi (e, a) — gi (aj,a3)] .



Definition 3.3. Action profile a* is a local potential mazimizer (LP-maximizer)
of g if there exists a local potential function v: A — R with v (a*) > v (a) for all
a # a* and, for each i, p; : A; — Ry, such that for alli=1,... ] anda_; € A_;,

v(a;,a_;)—v (a;,a,i) > (a;) [gz' (as,a ) — gi (af, a,i)} if a; > 43.1)
and v (a;,a_;) —v (a;“,a,i) > p, (a;) [gl- (a;,a_5) — g; (a;“, a,i)] ifa; < a}

Definition 3.4. Action profile a* is characteristic potential mazimizer (CP-mazimizer)
of g if there exists a characteristic potential function v : 2%~} — R with
v({1,....,1}) >v(S) forall S # {1,....,1} and, for eachi, y1; : A; — R such that

for alla; € A, anda_; € A_;

(0 ({J #i:a;= a;})—1/) ({J #i:a;= a;} U {@'}) > i (as) (9i (@i, a-3) — gs (af,a—y)) -

A weighted potential function requires that a player’s change in utility from
switching actions is proportional (for that player) to the change in a common
payoff function. A local potential function requires that this condition holds
only locally (when a player switches from one action to a neighboring action).
In addition, the equalities in the condition are replaced with inequalities: it is
required only that the gain from switching away the maximizing action is no
greater than the gain under the local potential. Finally, an additional action
dependent condition is allowed in the inequality. Clearly a P-maximizer is always
a WP-maximizer and a WP-maximizer is always an LP-maximizer.

The characteristic potential maximizer conditions both weaken and strengthen
the standard potential maximizer conditions. There is a strengthening, because
the potential function is allowed to depend only on the set of players choosing
according to a* (and not the exact actions of those not choosing according to a*).
But it is a weakening, since equalities are replaced by inequalities. Thus there is no
general relationship between CP-maximizers and P-maximizers. However, a CP-
maximizer must be an LLP-maximizer. To see why, let a* be a CP-maximizer with
characteristic potential function ¢, and ¢ ({1,..,1}) > ¢ (S) for all S # {1,..,I}.

Now consider the following potential function

v(a)=v¢ ({i:a; =al}).

by construction, v (a*) > v (a) for all @ # a*. Thus to show that a* is an LP-
maximizer, it is enough to show that there exists, for each i, y; : A; — R, such



that foralli=1,...] and a_; € A_,,

v(a,a_;) —v (a;, a,i) > p, (a;) [gl- (a;,a_;) — gs (a;,a,i)} if a; > af
and v (a;,a_;) — v (a;“, a,,-) >, (a;) [gl- (a;,a_3) — g; (a;“, a,i)] if a; < af.

If a; > a; > af, then the left hand side of the top inequality is always equal to
zero. Thus we can set g, (a;) = 0. If a; = a}, then the above inequality becomes:

vw({i#ira=a})—v ({i#ia=a} u{i}) = (@) [gi (ai,0 ) = gi (0], a4)]
But by the definition of a characteristic potential, such a p; (a;) exists. A sym-
metric argument applies for a; < a.

3.1. Dual Characterizations

The following lemmas provides some alternative characterizations of the potential
maximizing conditions.

Lemma 3.5. Action profile a* is a LP-maximizer if and only if there exists v :
A — R withv(a*) > v (a) for all a # a* and, for each i and a; > af,

Z;)\z‘ (a—;) g (a- ) Z)\ :) gi (a;,a_;)

for all \; € A(A.;) suchthat [v (a;,a,i) — v (ay, a,i)} A (a—) > 0.

a4

Symmetrically, for each i and a; < af,

ZAZ- (@) gi(af,as) > ZA i) 9i (@i, a-)

for all \; € A(A.;) such that Z [ (a a- ) — v (ai,a,i)} Ai (a—;) > 0.

—i

PROOF. For simplicity, consider the case where ¢* = a. Fix function v with
v(a*) > v(a) for all a # a*. Now a* is LP-maximizer if for all i and a; > a, there
exists [ € Ry such that

i [ (ai,a-;) — gi ( )] <w(a;,a_;)—v (a;,a,i)



for all a ; € A ;. By the theorem of the alternative (see, e.g., Gale (1960),
page 47), this is true if and only if, for all i and a; € A;, there does not exist
A A ; — R, such that

Z A; (a—z‘) {gi (ai,aﬂ') — g (a;,a,i)} > 0

a,iEA,i

and > X(a) [v (a;,a_;) —v (a;,a,i)} < 0

a,iEA,i

Thus if
Z Ai (a;) [v (a;,a_ ;) —wv (a;,a,i)} <0

a,iEA,i

for any \; € A (A_;), we must have

> Nia)[gi(aa ) —gi(a;,a5)] <0. m

a,iEA,i

Lemma 3.6. Action profile a* is a CP-maximizer if and only if there exists i :

Z Ai(a—i) gi (a7, a-;) > Z Ai (=) g (a;,a5)

a,iEA,i a,iEA,i

for all'i, a; € A;, and \; € A (A_;) such that

S Nlay) [¢ <{j Da; = a;} U {@'}) — ({j Da; = a;})} > 0.

a,iEA,i

The interpretation is that a} is a best response whenever the expected con-
tribution of 7 to the coalition of players choosing according to a* is non-negative.
Monderer and Shapley (1996) and Ui (1997a) discuss some relationships between
potential functions of non-cooperative games and Shapley values of cooperative
games.

PROOF. Iix characteristic potential function ¥ with ¥ ({1,....I}) > ¢ (5)
for all S # {1,....,1}. Now a* is a CP-maximizer if for all i and a; € A;, there
exists [ € R such that

filgi (ai,as) = gi(af,a)l < v ({ira;=aj}) = ({5: 0, = aj} U {i})



for all a ; € A ;. By the theorem of the alternative (see, e.g., Gale (1960),
page 47), this is true if and only if, for all i and a; € A;, there does not exist
A A ; — R, such that

Yo Ai(ai)[gi(ai,a ) — gi(af,a )] > 0

a,iEA,i

and > X (a) [1/)({]’:aj:a;})—1/)<{j:aj:a;}u{i})] < 0

a,iEA,i

Thus if

S ned o(fie =) v (e =} )] <o

a,iEA,i

for any \; € A (A_;), we must have

Z Ai ( ) [g: (az; i) — G (a:,aﬂ')] <0. |

a,iEA,Z

This characterization has a useful corollary. Write p = (py, ...., pr) for a vector
of probabilities, p € [0, 1]1. If an action profile is p-dominant, in the sense of

I
Kajii and Morris [1997], for some p with Y p; < 1, then a* is a CP-maximizer.
=1

Definition 3.7. Action profile a* is p-dominant in g if

Z)\ (af,a_ >Z)\ (a;,a_;),
for all'i, a; € A; and \; € A (A ) W1th)\< )>pZ

I
Lemma 3.8. If action profile a* is p-dominant for some p with Y. p; < 1, then
i=1

a* is a CP-maximizer.
PROOF. Let
1- szv it s = {1727"'7 }

— Z pz, otherwise

€S

10



I
If 3 p; <1, then ¢ ({1,....;1}) > (S) for all S # {1,....,1}. Now observe that
i=1

0 < 3 Na)p({ira=agiuil)-v({iq=a})
& 0< N (%) —p
& pi <A (aii) u

3.2. Examples

3.2.1. Two Player Two Action Symmetric Games with Strategic Com-
plementarities

Let [ =2, Ay = Ay = {0,1}, g1 (z,y) = 92 (¥,2) = way. Let woo > wio and
wyy > Wy, so (0,0) and (1,1) are both strict Nash equilibria. Now a potential
function v is given by the following matrix.

0 1
0 W19 — Woo

1| wio — weo | wio + wip — Woo — Woy

(1,1) is a P-maximizer if wyp + wy1 — weo — wo1 > 0, and (0,0) is a P-maximizer
s wyg + wyp — weo — w1 < 0. Thus, generically, there is a P-maximizer. The
P-maximizer is the risk dominant equilibrium in the sense of Harsanyi and Selten

(1988).

3.2.2. Two Player Two Action Asymmetric Games with Strategic Com-
plementarities

Let I = 2 and Al = A2 = {0,1} Let g1 (0,0) > g1 (1,0), g1 (1,1) > g1 (0,1),
g2(0,0) > g2 (0,1) and g2 (1,1) > g2 (1,0), so (0,0) and (1,1) are both strict Nash

equilibria. Now let

q* _ g1 (070) — 41 (170)

! g1 (070)_91 (1,0)+91 (171)_91 (071)
x 92 (070> — 92 (071)
P T 000 R0 Y e w10

A weighted potential function v is given by the following matrix:

11



0
Olg+q¢ | ¢
1] ¢ 1

(0,0) is a WP-maximizer if ¢f + g5 > 1 and (1, 1) is a WP-maximizer if ¢; + ¢5 <
1. Thus, generically, there is a WP-maximizer. The WP-maximizer is the risk
dominant equilibrium in the sense of Harsanyi and Selten (1988).

3.2.3. Many Player Two Action Symmetric Games with Strategic Com-
plementarities.

Let A; = {0,1} and ¢; (a;,a;) = w(a;, #{j #i:a; =1}), where £ (n) = w (1, n)—

w (0,n) is increasing in n. A potential function for this game is

m—1 ] .
v(a) = kZ::og(k;)’lf#{Z:ai:l}:m
0,ifa=0

-1
Now 1 =(1,..,1) is the P-maximizer if Y £(k) > 0, O is the P-maximizer if
=0

-1
> & (k) < 0. Thus generically in this class of games, there exists a P-maximizer.
k=0

An equivalent characterization of the P-maximizer is the following. Suppose that
a player had a uniform prior over the number of his opponents choosing action 1.
If 1 is a best response to that conjecture, then 1 is the P-maximizer; if 0 is a best
response to that conjecture, then 0 is the P-maximizer.

3.2.4. Many Player Two Action Asymmetric Games with Strategic Com-
plementarities

Let Az = {0, 1} and g; (CLZ',CL,Z‘) = w; (CLZ‘, {j 7é 1 a; = 1}) and Sz (S) = w; (1,5) -

w; (0,5) is increasing in S (where S is ordered by set inclusion). If action profile

R! such that ¢ ({1,2,..,1}) > ¢ (S) for all S # {1,2,..,I} and, for all i and
SCH{l,.,i—1i+11} ¥ (S)—v(SU{i}) > —w& (S). If action profile O is

such that ¢ ({1,2,..,1}) > 9 (S) for all S # {1,2,..,1} and, for all i and S C
{1, i=Li+ 1,1}, @ (S) — v (SU{i}) = m&; ().

12



To illustrate these conditions, consider unanimity games where for some ¥, z €
Rl
yi, ifa=1
gi(a) =X z,ifa=0
0, otherwise
Now 1 is a CP-maximizer if there exists 4 € R. such that p,y, > w4 for all j # i,
0 is a CP-maximizer if there exists p € R4 such that py; < p;z; for all j # i.
Thus a necessary condition for 1 to be a CP-maximizer is that y;y; > z;2; for all
J # 1, and a necessary condition for 0 to be a CP-maximizer is that y;y; < 2;2;
for all j # i. Clearly, then, an open set of games do not have any CP-maximizer.
For example, all games in the neighborhood of the following game do not have a
CP-maximizer. There are three players, and payoffs if player 3 chooses action 0

are:
Player 2’s Action

0 1
Player 1’s Action| 0 | 6,1,1 | 0,0,0
110,0,0(0,0,0

while payoffs if player 3 chooses action 1 are:

Player 2’s Action

0 1
Player 1’s Action| 0 | 0,0,0 | 0,0,0
1]0,0,0]222

Note that in two action games, a LP-maximizer must be a CP-maximizer. So
there is no LP-maximizer for an open set of games.

3.2.5. Two Player Three Action Symmetric Games with Strategic Com-
plementarities

Let I =2, A = Ay = {0,1,2}; g1 (a1, a2) = g2 (a2, a1) = Wy, Wa,, Where Wyy > Wy,
for all y # 2 and way — Wery > Way — Wery if 2 > 27 and y > . Write A7V, for the
net expected gain of choosing action z rather than y against a 50/50 conjecture
on whether the opponent will choose action =’ or 3/. Thus

Aﬁ’y/ = Wyrg + Wary — Wyrg — Wyry.

Note that Al = A, and AJJ, = —AY,. Note that AZY > 0 implies that
action profile (z, ) pairwise risk dominates action profile (y,y). Now we have the
following complete (for generic games) characterization of the LP-maximizers.

13



e (0,0) is the LP-maximizer if AJ} > 0 and either (1) Al2 > 0 or (2) A%l >0

02 02
A A%

e (1,1) is the LP-maximizer if A1) > 0 and Al > 0.

e (2,2) is the LP-maximizer if A2{ > 0 and either (1) AlJ > 0or (2) A} >0

AR AT
and NOT{ > ATQ{

The following example illustrates these conditions:

(91,92) | O 1 2

0 11 [00[—6 -3
1 0.0 |L.1]0.0

) ~3.6|0,0]22

(0,0) is the LP-maximizer, since AY = 3, A% =1, A® =2 and A% = 1. Note
that (2,2) pairwise risk dominates both (1,1) and (0,0), but nonetheless is not
the LP-maximizer.
Proving the above claims (i.e., constructing the local potential functions) in-
volves tedious algebra. Here, I will just note two cases to illustrate the issues.
Case 1: A]) > 0 and Aj2 > 0. Consider the following local potential function:

v |0 1 2
0| —Al — —
10 Wp1 — W11 £
1wy —wp |0 Wo1 — W11
12
2| —¢ W91 — W11 —A12

for some small but strictly positive €. Setting a* = (1,1) and g, (0) = gy (2) =
te (0) = gy (2) = 1, one can verify that the inequalities of equation (3.1) are
satisfied. 0 0
Case 2: A)} > 0, A3l > 0, A® > 0, A® > 0 and %17?— < %ﬁ—%. Consider the
01 21
following local potential function:

v |0 1 2

0 £ e+ )\1 [w (1, 0) —w (0, 0)] )\1 [wOQ — w12] + )\2 [11)12 — U)QQ]
Lle+ XN [wlo - woo] _)\QA%% Ao [w12 - w22]

21N [w02 - w12] + Ay [w12 - w22] Ao [wu - w22] 0

14



for some small but strictly positive £ and positive Ay and Ay such that

Al A AR
Setting a* = (0,0), gy (1) = py (1) = Ay, g1y (2) = py (2) = A9, one can verily that
the inequalities of equation (3.1) are satisfied.

3.2.6. Joint Output Games

Let g; (a;,a—;) = w(a) — h; (a;). Then a potential function is v (a) = w(a) —

I I
> h;(a;) and a* is a P-maximizer if a* € arg max lw (a) =X hy (ai)].
=1 a =1

4. Results on Robustness and Generalized Potential Games
Proposition 4.1. If a* is a WP-maximizer of g, then a* is robust in g.

This result is due to Ui [1998]. The current version of that paper shows that
if a* is a P-maximizer, then a* satisfies a slightly weaker version of robustness
(“robustness to canonical elaborations”). Ui has pointed out to me that the
result extends to full robustness with almost the same proof. The extension to
WP-maximizing action profiles is straightforward.

Proposition 4.2. If a* is CP-maximizer of g, then a* is robust in g.

The proof is close to that of Kajii and Morris (1997a), which in turn draws
on the logic of Monderer and Samet (1989). We exploit the following lemma that
has some independent interest. An event E' C T is said to be simple if it is the
product of events in (TZ-)Z.IZI.

Lemma 4.3. Fix any information system ((Ti)l P). Let 1 : 281} & R with

=1

W ({1,....;1}) > (S) for all S # {1,....,1}. If simple event F is co-finite, then it

~ I ~
has a simple, co-finite, subset £ = X FE; with
i=1

S P(tt ) [1/) ({j 1€ Ej} U {@'}) — ({j 1€ EJ})] >0 (4.1)

t_;€T_5

foralli =1,..,1 and t; € E;.
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PROOF OF LEMMA 4.3. Write T = T; U .. U T} for the union of types
of the players. We will construct a labelling of types. Fach type is labelled with
a pair of numbers, (71,79), where 71 € (1,2,3) and 7 is a positive integer. Thus
writing 7 (¢;) = (71 (t;) , T2 (t;)) for the label of type t;, T is an one-to-one function,
7F:T — {1,2,3} x Z,,. We require a complete order on {1,2,3} x Z, defined
by (11,79) &= (7}, 74) if 71 > 7} or 71 = 7} and 75 > 7).

First assign labels of the form (1,k) to all types not in E;. Now for each
k € Z,,, assign label (2,k) to a type t; with

Y, Pllit ) ({d:7 () > ud{i}) = ({7 (t;) > 7}H)] <0.

t_;eT_;

If there is no such type, halt the labelling of such types at integer k—1. Otherwise,
label all such types. Now assign labels of the form (3, k) to all the remaining types.
Now let

V(k)=> PO @{5:7)> 2R} -v{L...1})

teT

By construction, V' (1) is finite. But if 7 (¢;) = k,

VB -VE-D == g Pl At s il B

Thus V (k) is increasing.
Now let v = S#min (¥ ({1,....,1}) — ¢ (S)). Observe that

V(k) < —y > P(t).

{t:;(ti)g(Q,k) for some z}

Thus if > P (t) were infinite, we would have V (k) — —o0 as
{t:;(ti)S(Q,oo) for some z}
k — oo, a contradiction since V (0) is finite and V (k) is increasing in k. Now
~ ~ I~
letting F; = {t; : 7 (t;) > (3,1)}, we have that F' = x F; is co-finite and satisfies
=1

the required property. B B
PROOF OF PROPOSITION 4.2. Fix a complete information game g and
an interaction game IG = ((TZ)ZI:1 P, (ul)le) where |g| is co-finite. Applying

lemma 4.3, let E be the co-finite simple subset of |g| satislying 4.1. Now consider
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P, (ul)l ), where

a modified version of incomplete information game ((Ti)l i

=1
each type {; € Ej is required to play action a!. Find an equilibrium of this game.
Condition (4.1) and lemma 3.6 imply that this is also an equilibrium of the original

game. H

Proposition 4.4. If g satisfies SC and DMR, and action profile a* is an LP-
maximizer of g, then a* is robust in g.

Lemma 4.5. Fix any information system ((T)ZI 1 ,P). Let v : A — R with

v({1,....,1}) >v(S) for all S # {1,....,I}. If simple event F = >< E; is co-finite,

then there exist strategy profiles 3§ and s, such that (1) 3(t ) Z a* > s(t) for all
tel; (2){t:st)#aors(t)#a} CFE; (3{t:5(t)=a*=s(t)} is co-linite;

and (4)
Z ‘P(tl-,t,,-) o (G @) 5 )—vE L) < 0ifa) <5 (1) <7,
and Z; (it [v ((ﬁi (L) 8 (tfi)) —v(s (tz-,tﬂ-))} < 0ifal > s, (1;) D)

PROOF OF LEMMA 4.5. Write T = T} U..U T} for the union of types of

the players. Now construct a strategy sequence as follows. Let

a;, ift; ¢ F;
g(i)(ti):{ 1ft§éE

For each 7 > 1, choose a player k and a type &, € F; such that
S P (it o (G5 (@) 55 n) —o (5 ()] 20
topeT_y,
and let

35 (t;) =

T—1
7

{ (5 (B)) Lifi=kand s, = §,
S

(t;), otherwise

If for some T, there is no such k and #;, let
5 () =571 (8)

for all i and ¢;. Write 5 for the limit of this sequence. Now let
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=S POl (1) - v ().
teT
Observe first that V' (0) is finite. Now suppose that #; € E; and that at date T,
type t; has just switched from action a; = 3] (t;) > a to action a = 73] ! (tz).
Then

Vin-Vi((r—1) = Z P(t;,t ) (v (a;“, s’ (t,,-)) —v (a,, s", (t,l)))

t_;€T_5
> 0.

Thus V' (7) is initially finite and is increasing. But letting v = rryléir} (v (a*) — v (a)),

V(ir)<—y > P(t). Thusif >  P(t) were infinite, we would have
{t37(t)#a*} {t:3(t)#a}
V(1) — —00 as T — o0, a contradiction. Thus > P (¢) is finite.
t:5(t)£a*

We can symmetrically construct a limiting stiat(e;;?f p}roﬁle s. Now the required
properties of § and s follow from the construction. W

PROOF OF PROPOSITION 4.4. Fix a complete information game g and
an interaction game IG = ((TZ)ZI:1 , P, (ul)le) where |g| is co-finite. Construct
5 and s satisfying the properties of lemma 4.5, setting ' = |g|. Now consider
the modified game where each type t; of player 7+ must choose an action a; with
s; (1) < a; <35;(t;). Find an equilibrium of this modified game. By lemma 3.5,
this equilibrium remains an equilibrium of the original game. B

Kajii and Morris (1997a) showed that if a* was a p-dominant equilibrium for

some p with Z p; < 1, then a* was robust. This was sufficient to show the

robustness of rlsk dominant equilibria in two player two action games (symmetric
or asymmetric) but becomes a very stringent requirement as the number of players
becomes large. Nonetheless, an open set of games (in payofl space) have such p-
dominant equilibria. Proposition 4.2 generalizes the Kajii and Morris result.

As noted above, Ui (1998) showed that if a* were a WP-maximizer, then a*
is robust. While many interesting games (including many player games) have
WP-maximizers, a weakness of this result is that (with many players and many
actions) only a non-generic set of games have a WP-maximizer.

It would be nice to have a condition that generalized both the CP-maximizer
sufficient condition and the WP-maximizer sufficient condition (section 8.3 con-
tains a conjecture along these lines).
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There is a close relation between robustness and the limit equilibria of noisy
games introduced by Carlsson and van Damme (1993a). Robustness is a sufficient
condition for an action profile to be played in the limit of some noisy version of
the game (see Kajii and Morris (1997b) for more on the relationship). Frankel,
Morris and Pauzner (1999) demonstrate how LP-maximizers must be selected in
noisy games with strategic complementarities. Carlsson and van Damme (1993a)
first showed that the risk dominant equilibrium of two player two action games
must be selected. In a number of different settings, Carlsson and van Damme
(1993b), Kim (1996) and Morris and Shin (1999) showed that the WP-maximizing
action of many player two action symmetric games must be selected. Carlsson
and Ganslandt (1998) showed that a certain equilibrium is selected in a minimum
effort game and noted that it was a P-maximizer. Carlsson (1989) gave a three
player two action asymmetric payoff example where the noisy selection depended
on the noise structure. Corsetti, Morris and Shin (1999) give a many player two
action asymmetric payoff application.

5. Interaction Games and Uninvadability

5.1. The Local Interaction / Matching Interpretation of the Incomplete
Information Game and Robustness

An alternative local interaction interpretation of the information system IS =
QETZ-)Z.Il ,P) and the incomplete information game IG = ((Ti)ijzl P, (uz)le) is
the following. There is an infinite population of players. Each player belongs
to one of I possible roles. Write T; for the set of players in role i, and T =
Ty x Ty X .. x Ty. An interaction is a vector of players (one in each role), t € T
Fach interaction was a weight P (t), where P : T'— R,. Players in role i have
a set of possible actions, A;; A = Ay x .. X A;. A strategy for players in role 7
is a function s; : T; — A;. A payofl function for players in role 7 is a function
u; : A x T — R with the interpretation that u; (a,t) is the payoff of player ¢; if
interaction t is chosen and players choose action profile a. A strategy profile (si)i[:l
is a (pure strategy) equilibrium if each player’s action maximizes the weighted sum
of the his payoff in the interactions he is involved in, 1.e.,

Do Pl ((si () s (t-) s (o t—)) = D P(tealts) wi ((as, 54 (¢0)) , (t,t-4))

t;€T_5 t;eT_;

foralli=1,...1,t; € T; and a; € A;.

19



In the random matching interpretation, only one interaction is played, but it
is drawn according to (improper) probability P, and each player maximizes his
expected payofl (without knowing which partners he is interacting with).

Thus we will call IS = ((Ti)le , P) an interaction system and IG = ((Ti)le P, (ui)le)
an nieraction game.

Now there is a natural local interaction / random matching interpretation of
robustness. Suppose that interaction game where almost all players have payoff
functions given by g, has an equilibrium where almost all players chooses according
to a*. Then a* is robust.

5.2. Uninvadability

The classic question in the local interaction literature concerns a population that
interacts according to interaction system IS = ((Ti)ij:l ,P), and has payoffs al-
ways given by complete information game g. What happens if players shift toward
actions that give higher payoffs? How do such dynamics behave?

Consider a sequence of pure strategy profiles, {s7}° . For any fixed s7, write

7] [t;] € A(A;) for the probability distribution over neighbors’ action, i.e.,

7 [ti] (a—i) = > P(t]t) .
{t,i:sii(t,i):a,i}

We will be concerned with two properties of such of strategy sequences:

e Single Player Revision [S]: for all 7 > 1, there is at most one i € {1,..,1}
and t; € T; such that s7 (;) # s ' (t;)

e Better Response [B]: if s] ' (t;) = a; and s} (t;) = a}, then d} gives at
least as high a payoff against 77 ' [t;] than a;

Property S requires that at most only player switches behavior in each period.
Property B requires that players only switch to action that give at least as high
a payoff.

Definition 5.1. Action profile a* is invaded under strategy sequence {s™}>7 i

*

a* 1s initially played by almost all players but is eventually not played by an

infinite mass of players; i.e., writing q" = S P(t), ¢° is finite, but ¢" — oo

{t:s7(0)+a}
as 7T — Q.
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Definition 5.2. Action profile a* is uninvadable in g if for every local interaction
system and sequence {s7}>°  satistying property S and B, action profile a* is not
invaded.

6. Results on Uninvadability and Generalized Potential Games

Proposition 6.1. If action profile a* is a WP-mazimizer of g, then o* is unin-
vadable in g.

PROOF. Let a* uniquely maximize weighted potential function v with weights
p but nonetheless be invadable. Thus there exists configuration sequence {s7}>°

with > P(t) co-finite, but > P(t) tends to 0o as T — co. Let
[1:50(5 £} (157 (0%)

V(r) =2 P ) (v(s (1) —v(a")

teT

Observe first that V' (0) is finite and non-positive and non-positive. Now suppose
that at date 7, type t; has just switched from action a; to action a}. Then

Vi) —V(r—-1) = Z P(t;,t ) (v (a;, s’ (t,,-)) —v (ai, sT, (t,l)))

e,
= W Z P (t;,t-;) <9i <a‘;7 s’ (t—z‘)) — 9i (az‘, s’ (tfz)))
tieT_;

> 0, by best response property.
So V' (7) is non-decreasing; thus it remains in the interval [V (0) , 0] forever. But
letting v = n;éig (v (a*) — v (a)),
Vin<— >, P().
{t:s7(t)#a*}

As 7 — oo, the right hand side tends to —oo, a contradiction. W

Proposition 6.2. If action profile a* is CP-maximizing in g, then a* is uninvad-
able in g.

Proof. Let {s7}>7 , be a strategy sequence satisfying S and B, with {¢ : s® () = a*}
co-finite. By lemmas 4.3 and 3.6, there exists a simple, co-finite subset £ C
{t:s°(t) = a*} such that s" (t) =a* forallt € Fand 7> 0. R
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Proposition 6.3. If g satisties SC and DMR and action profile a* is a LP-
maximizer of g, then a* is uninvadable in g.

PROOF. Let {s7}>7 , be a strategy sequence satisfying S and B, with {t : s° (1) = a*}
co-finite. By lemmas 4.5 and 3.5, there exist strategy profiles 5 and s, such that (1)
5(1) 2 57 (1) 2 5(t) forall L € T3 (2) {55 (1) AT or s (1) £ a} C {t: 5 (1) = a*);
and (3){t:3(t) =a* = s(t)} is co-finite. A

Under the dynamic revision process in this paper, a player either sticks to his
current action, or switches to one giving a better payoff. Requiring the player to
switch to a best response obviously makes it easier to easier to be uninvadable.
A number of papers have considered such best/better response dynamics in the
literature, including Blume [1995], Anderlini and Tanni [1996], Tanni [1997, 199§]
and Morris [1997a]. Blume [1995] and Tanni [1998] demonstrated the tendency for
the potential maximizing action to spread. The uninvadability condition identified
here is a key step in showing the tendency to spread, and it can be shown that
CP-maximizers and LP-maximizers (in games with strategic complementarities)
will spread in the dynamics that they consider. Blume [1995] also analyzed games
with strategic complementarities and identified one sufficient condition for an
action to spread. It can be shown that symmetric action profiles he identifies are
LP-maximizers.

Another strand of the literature on local interaction work has looked at sto-
chastic best response dynamics, where players tend to choose actions with higher
payofls, but sometimes make mistakes, e.g., Blume (1993), Ellison (1993), and
Young (1998). These processes are ergodic, so no action is uninvadable. But it
seems likely that CP-maximizers and [.P-maximizers would represent the long run
equilibria under those more general dynamics.

7. Contagion: An Example

A converse to the uninvadability question is the following. When can we con-
struct a local interaction system and a finite “trigger group” of players in that
local interaction system, such that if that trigger group of players initially plays
according to a*, and players revise their behavior towards better responses, then
eventually the whole population must play according to a*. If this is the case, we
say that action profile a* spreads contagiously. One can show that action profiles
that satisfy the sufficient conditions above for robustness and uninvadability, may
spread contagiously (given the right interaction structure).

22



But can one find games where different action profiles may spread contagiously,
depending on the local interaction structure? We noted in section 3.2.4 the ex-
istence of an open set of three player, two action with asymmetric payoffs with
no LP-maximizer. In this case, the two equilibria will be contagious, for different
interaction structures. However, the local interaction literature mostly deals with
games with two players and symmetric payoffs. So to maximize the relevance for
local interaction, we will describe a two player, four action game with symmetric
payofls (and also strategic complementarities) where distinct equilibria are both
contagious.

Consider the following example. There are two players, 1 and 2. The types
of player i are the set of integers. The types of the players are correlated. In
particular, there is w : Z — Ry and P (t1,t5) = w(|t; —ts]). Let A4; = Ay =
{0,1,2,3}. Consider the following complete information symmetric payoffs.

g]0 1 2 3
0 [ 50,50 | 46,41 | 32,23 | 8,3
1 [ 41,46 [ 50,50 | 42,47 | 27,29
2
3

23,32 | 47,42 | 50,50 | 41,52
3,8 | 29,27 | 52,41 | 50,50

This game has SC and DMR. Consider two different interaction weights:

0,if 2=0
wy (2) = 1, for all z € {1,2,..,480}

0, for all z > 480

0,if 2=0

2, for all z € {1,2,...,160}
wy(2) = 1, for all z € {161,162, ...,480}

0, for all z > 480

Claim 1 Consider the incomplete information game where the prior probability is
generated by wy, types {1,....,960} of each player have a dominant strategy
to play action 0, and all other types have payoffs given by g. This game has
a unique strategy profile surviving iterated deletion of dominated strategies
for each player: always play action 0.
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PROOF OF CLAIM 1. Consider the strategy profile s* defined as follows:

0, i |t;| <k + 240

() = | LR+ 241 < 4] <k + 450

i\ 2, if k + 451 < |t;] < k + 660
3, if k + 661 < [t,]

This strategy profile has the property that types at the edge of two action regions
always have a strict incentive to choose the lower of the two actions (and thus
every player’s best response is no higher than their current action). More precisely,
observe that types 240 and —241 (of either player) attach probability % to their
, % to their opponent choosing 1, % to their opponent

to their opponent choosing 3. Thus the expected payoff to

opponent choosing 0
choosing 2 and L

960
action 01s -+ 4q1 209 210 61 40822
= = (4 27 (32) 4+ — (8) = —=2
960 (50) + 960 (46) + 960 (32) + 960 (8) 960
and the expected payoff to action 1 is
480 209 210 61 40597
— (41) + — (B0) + — (42) + — (27) = ——
960< )+960< >+960< >+960< ) 960

Thus action 0 is the best response.
The corresponding probabilities for types 451 and —451 are (%, %, %, %).
Thus the expected payoff to action 1 is:

270 210 209 271 12555

— (41) + — — (42) + — (27) = ——

960 (41) + 960 (50) + 960 (42) + 960 (27) 320
and the expected payoff to action 2 is:

270 210 209 271 12547

— (2 — (4 — — (41) = ——

960 (23) + 960 (47) + 960 (50) + 960 (41) 320

Thus action 1 is the best response.
The corresponding probabilities for types 451 and —451 are (%, %, %, %).
Thus the expected payoff to action 1 is:

60 210 210 480 1381
— (2 — (4 — — (41) = ——
960 (23) + 960 (47) + 960 (50) + 960 (41) 32
and the expected payoff to action 3 is:
60 210 210 480 1373
— 3)+ —=—=1(29) + —=(52) + —= (50) = ——
960<)+960< )+960< )+960< ) 32
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Thus action 2 is the best response.

Thus the best response to strategy profile s* is at most s**!

. Now consider
what happens when we iteratively delete strictly dominated strategies. One may
verify that if strategy s survives k + 1 rounds of iterated deletion, then s < s*.
Thus if s survives iterated deletion of strictly dominated strategies, s; (t;) = 0 for
all ¢;.

Claim 2 Consider the incomplete information game where the prior probability is
generated by ws, types {1,....,960} of each player have a dominant strategy
to play action 3, and all other types have payoffs given by g. This game has
a unique strategy profile surviving iterated deletion of dominated strategies
for each player: always play action 3.

The proof of claim 2 parallels the proof of claim 1, noting that if we define
strategy profile s* by:

3, i |t;] < k + 240

2, if k 4 241 < |t < k + 320
1,if k + 321 < |t;] < k +480 °
0, if k + 481 < |t;]

one can verify that the best response to s* is at least to s**1,

Thus we have an equilibrium argument that, depending on the interaction
structure, different actions must spread. To obtain a best response dynamics
result, let us consider sequences that satisfy our earlier requirements that one
player switches behavior at a time (S), and players only switch to better responses
(B); and let us add the requirements that someone’s behavior keeps switching as
long as we are not in equilibrium:

e Revision [R]: if s] ' (¢;) ¢ 3, (szl [tl]) for any 7 and ¢;, then s™ # 7!
Now suppose that payoffs are given by g always. then we have:

Claim 3. If {s7}7, is a strategy sequence satisfying properties B and R, given
wy and u*, and, for some k, 9 (¢t;) = 0 for all t; € {k,k +1,....k + 1920},
then s7 (¢;) — 0 for all i and ¢,.

Claim 4. If {s7}7 is a strategy sequence satisfying properties B and R, given
wy and u*, and, for some k, 9 (¢;) = 3 for all t; € {k,k +1,....k + 1920},
then s7 (¢;) — 3 for all i and ¢,.
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The proofs are very similar to those for claims 1 and 2.

Blume [1993] and Ellison [1993] have emphasized how local interaction can lead
to very fast convergence to a long run equilibrium. Ellison gave a non-constructive
argument why the limiting behavior must depend on whether interaction is local
or global. The above example provides a constructive demonstration why different
limiting behavior must result from different local interaction structures.

8. Extensions

8.1. Bounded Interactions

We assumed that interaction games had unbounded probability mass, i.e., that
> P (t) is non-convergent. This was a convenient mathematical device. If instead
teT

we let > P(t) = 1, the above results would continue to hold with alternative
teT

(slightly more complicated) definitions of uninvadability along the following lines.

Definition 8.1. Action profile a* is robust in g if for every 6 > 0, there exists

£ > 0 such that every interaction game where Y. P (t) > 1—¢ has an equilibrium
telg|

where 3 P(t)y>1-¢.
{t:ai<az’f ti):l}

Definition 8.2. Action profile a* is e-invaded under strategy sequence {s™}°

if a* is initially played by almost all players but is eventually not played by an

infinite mass of players; i.e., writing q" = S Pt),q" <e but " — 1 as

{t:s7(D+a"}
T — OQ.

Definition 8.3. Action profile a* is uninvadable in g if there exists € > 0 such
that for every local interaction system and sequence {s”}’°  satisfying property
S and B, action profile a* is not e-invaded.

8.2. The One Population Case

[To be completed]. We considered the case where players had different roles. The
analysis goes through essentially unchanged in the case with a single role. Note
that almost all our examples dealt with the symmetric payoff complete information
games that arise in one population local interaction models.
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8.3. A Unifying Sufficient Condition

Definition 8.4. Action profile a* is a monotonic potential mazimizer (MP-mazimizer)
of g if there exists a potential functionv : A — R withv (a*) > v (a) for all a # a*,

and for each i, ji; : A2 — R, such that for alli = 1,..,1, a; # a}, a;, € A; and

a_; € A,Z‘,

v (aiu a_;) — v (a;, a_;) > py (aiu a;) g (az‘, a_;) — gs (a;7 a—z‘)] .

In the special case where p, (a;,a.) is independent of a; and a; and the in-
equalities hold with equality, this reduces to the WP-maximizer conditions. If
v(a) = v (a') whenever {i:a; =af} = {i:a,=a’}, and p, (a;,a}) =0 if a} # a},
then this condition reduces to the CP-maximizer conditions.

8.4. Continuum Actions

The arguments in these notes are discrete action arguments. However, we note the
continuum action analogues of the potential conditions, as these will be important
in Frankel, Morris and Pauzner [1999]. Thus suppose that each A; = [0, 1].

The P-maximizer and WP-maximizer conditions are unchanged. An inter-
esting example of a continuum potential game is a Two Player Fzpected Action
Game, where player i’s best response is to choose 3 (F;a;), where F;a; is his ex-
pectation of his opponent’s action and § is a continuous and strictly increasing
function with 3 (0) = 0 and (1) = 1. This best response behavior can be derived
from the following symmetric payoff functions:

a1

g1 (a1,a2) = aj.ay — /ﬂfl (z)dx

=0
a2

g2 (a1,a9) = aj.as— /ﬂfl (x)dx
z=0

This is an example of a joint output games (see section 3.2.6). A potential function
for this game is

az

v(ay,as) = ajas — / B (z)dx — / Bt (z) dz;
=0

=0
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a
(a,a) is the potential maximizing action profile if a € argmax [ [0 (x) — x]dxz,
a =0
i.e., if @ maximizes the area under the pure strategy best response function.
The characteristic potential condition is not interesting in the case of contin-
uum actions: it will not be satisfied in any interesting cases.

The local potential maximizer condition generalizes in a very natural way.

Definition 8.5. Action profile a* is a local potential mazimizer (LP-maximizer)
if there exists v : A — R with v(a*) > v(a) for all a # a* and, for each i,
w; - Ay — Ry, such that foralli=1,...1 anda ;€ A _,,

d dg; .
d:z‘ (a;,a-5) = p;(a;) d_gl (a;,a_;) ifa; > a}
d dg; .

and :i (ai,a5) < p;(as) —di (a;,a_;) ifa; < a}

The alternative characterization of the LLP-maximizer condition becomes:

e Action profile a* is a LP-maximizer if and only if there exists v : A — R
with v (a*) > v (a) for all @ # a* and, for each i and a; > af,

(3

dg;
/ A (CL,Z') dZ (CLZ‘, CL,Z‘) < 0
dv
for all )\Z < A (A,Z) such that / d_ (CLZ', CL,Z') )‘Z (CL,Z') < 0.
s

Symmetrically, for each ¢ and a; < af,

dg;
/)\z (CL,Z') dZ (CLZ',CL,Z‘) > 0

d
Y (CLZ‘, CL,Z') A (CL,Z') > 0.
a;

forall \; € A(A_;) such that /d
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