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1. Introduction

Many economic problems are naturally modelled as a game of incomplete infor-
mation, where a player’s payoff depends on his own action, the actions of others,
and some unknown economic fundamentals. Rational behavior in such environ-
ments clearly depends on a player’s beliefs about economic fundamentals; but it
also depends on “higher order beliefs,” i.e., players’ beliefs about other players
beliefs, players’ beliefs about other players’ beliefs about other players’ beliefs,
and so on. While this dependence has been understood for a long time, it is only
recently that a small theoretical literature in game theory has examined in more
detail how the equilibria of incomplete information games vary with such higher
order beliefs.!

*We would like to thank Bill Brainard, Giancarlo Corsetti and participants in a
Cowles Foundation lunch for valuable comments on this material. MUCH OF THE
MATERIAL IN THIS PAPER HAS BEEN INCORPORATED INTO OUR SURVEY
PAPER ON “GLOBAL GAMES: THEORY AND APPLICATIONS” PREPARED FOR
THE EIGHTH WORLD CONGRESS OF THE ECONOMETRIC SOCIETY (available at
http://www.econ.yale.edu/ “sm326/seattle.pdf).

' Rubinstein [1989], Monderer and Samet [1989], Carlsson and van Damme [1993a], Morris,
Rob and Shin [1995], Kajii and Morris [1997].



Conventional wisdom holds that such higher order beliefs may play an impor-
tant role in some economic phenomena. It is reported that, following the Asian
crisis, some of the investors who withdrew their capital from Brazil, did so not
because they overestimated the economic linkages between Asia and Brazil, but
because they thought others might do so. It is reported that negative shocks to
some hedge fund portfolios led some lenders to make excessive margin calls and
seek to liquidate collateral, not because they thought the fund was insolvent, but
because they thought that other lenders might think so, and they had an incentive
to get out early. It is reported that apparently irrelevant news about the economy
leads some firms to reduce their investments (and thus to recession), not because
they think that the news is relevant, but because they think others may think so.
It is reported that some investors are currently paying inflated prices for internet
stocks not because they believe that future dividends will be high enough to jus-
tify those prices, but because they believe that others believe so, and therefore
there are short run speculative profits to be made.

Applied modelers have taken such reports very seriously. Yet the resulting
models have typically managed to avoid modelling higher order beliefs. How? If
economic fundamentals permit multiple equilibria and economic players observe
some payofl-irrelevant public signals ( “sunspots”), then players might happen to
switch behavior contingent on the sunspot signal. Such sunspot shifts are used
in the academic literature to “explain” currency crises (e.g., Obstfeld [1986)),
bank runs (e.g., Diamond and Dybvig [1983]), macroeconomic recession (e.g.,
Cooper [1999]) and other phenomena. Such sunspot explanations are apparently
intended as proxies for the true higher order beliefs explanations. After all, it
is common knowledge in the models that the sunspots are payoff-irrelevant (as
are, presumably, literal sunspots). Yet the informal discussion accompanying
such sunspot explanations invariably appeal to “sunspots” that the modeler may
believe are payoff-irrelevant but for which there is clearly not common knowledge
of their irrelevance among economic agents (e.g., the Asian crisis for Brazil).

While such sunspot proxy explanations are insightful in some contexts, we
believe that it is both important and feasible to develop richer models that permit
a substantive role for higher order beliefs. Our purpose in this paper is to illustrate
this methodological claim, using a simple example.? Consider the problem of two
players who stand to gain from co-ordinating their investment: each player has
a greater incentive to invest if the other player does so. Each player observes

2In doing so, we are attempting to clarify some of our earlier work (Morris and Shin [1998a])
when we analyzed a more complicated model of currency crises. By abstracting from the partic-
ular application, we hope to bring out our methodoligical points more clearly. We are pursuing
these issues further in models of currency crises (Morris and Shin [1998b] and Corsetti, Morris
and Shin [1999]) and pricing debt with liquidity risk (Morris and Shin [1999]).



both a public signal and a private signal about the gains from investment (the
“economic fundamentals”), where both signals are normally distributed. Allowing
each player to observe such simple two dimensional signals allows a non-trivial
role for higher order beliefs. If T observe a low public signal and a high private
signal about fundamentals, I have a medium expectation about fundamentals but
I expect you to be more pessimistic than me; if T observe a high public signal
and a low private signal about fundamentals, I may have the identical medium
expectation about fundamentals but now I expect you to be more optimistic than
me.

If public signals are sufficiently informative relative to private signals, then
strategic complementarities lead to the existence of multiple equilibria. But if
private signals are sufficiently informative relative to public signals, then there is
a unique equilibrium, and we can explore the role of higher order beliefs in deter-
mining individual behavior. In particular, for any given (first order) expectation
that a player has about economic fundamentals, he will invest only if the public
signal exceeds some threshold. The public signal is having an extra effect (in
addition to its influence on the player’s first order expectation of fundamentals)
because it conveys information in equilibrium about the likelihood of the other
player investing. In this sense, public signals play the role of sunspots in the
standard multiple equilibrium - sunspot story. But the theory endogenously pins
down which public event serves as the co-ordinating sunspot.

There is a closed form characterization for the unique equilibrium, and this
can be used to illustrate the tractability of the approach and the intuitiveness of
the conclusions. In particular, we quantify a “publicity effect” that measures the
extra strategic role that public signals play (relative to private signals observed by
all players) and identify when it will be most important. We identify observational
implications of the model (assuming public but not private signals are observed
by the econometrician). We characterize the unique equilibrium as the precision
of public and private signals goes to infinite. We show how to perform (intuitive)
comparative static and policy analysis in this model (a particular difficulty for the
multiple equilibrium - sunspot approach). And we note how the analysis easily
extends to many players.

Eissentially this example was analyzed in the introduction of Carlsson and van
Damme [1993a] for the case where economic fundamentals and signals are distrib-
uted uniformly. They obtained a closed form solution for the unique equilibrium.
Their main result was that, under some weak regularity conditions on the prob-
ability distribution over fundamentals and signals, there is a unique equilibrium
as the noise in the signals becomes sufficiently small, and the risk dominant equi-
librium of the underlying game is played. If we let the precision of private signals
tend to infinite in our model, we replicate their limiting results in our very special



setting. But by obtaining a closed form solution for a case with multidimensional
signals, we are able to explore how higher order beliefs influence outcomes away
from the limit they study.

2. A Coordination Game with Public and Private Signals

Two players are playing the following symmetric game:

NOT
INVEST INVEST
TNVEST (1)
(Attack / Deposit) 0,0 ¢—-1,0
NOT INVEST (N) 001 00
(Do Nothing / Withdraw) ' ;

Three stylized interpretations of these payoffs explain the connection to some of
the literatures that we discussed in the introduction:

1. INVESTMENT GAME. Two players are deciding whether to invest. There
is a safe action (not invest); there is a risky action (invest) which gives a
higher payoff if the other player invests.

2. CURRENCY CRiIsiS. Two players are deciding whether to attack a currency.
There is a safe action (do nothing); there is a risky action (attack by selling
the foreign currency short) which gives a higher payofl if the other player
attacks.

3. BANK RUN. Two players are deciding whether to leave their deposits in a
bank. There is a safe action (withdraw); there is a risky action (deposit)
which gives a higher payoff if the other player deposits.

If there were complete information about €, there would be three cases to
consider.

e If § > 1, each player has a dominant strategy to invest.

e If 6 € [0,1], there are two pure strategy Nash equilibria: both invest and
both not invest.

e If 6 < 0, each player has a dominant strategy to not invest.



But there is incomplete information. Parameter ¢ is normally distributed with
mean y and precision « (i.e., variance is é and standard deviation is %) The
mean y is publicly observed. In addition, each player observes a private signal
x; = 0 + &;. Each g; is distributed normally with mean 0 and variance <. Thus
each player i observes a public signal ¥ € R and a private signal z; € R

Although this is a very simple and natural information structure, it turns out
that it is rich enough to allow a substantive role for higher order uncertainty. Let
us start by briefly describing why this is the case. Write 0; = %ﬁmz for player i’s
expectation of . Thus player 1’s posterior on 6 is normally distributed with mean

0; and precision a+f. Since &, is distributed independently, player 1’s posterior on
5 is normally distributed with mean 0; and precision 2 O(j:;g) =1 / (a vz )
Observe then that player 1’s expectation of player 2’s expectation of 8 is:
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Thus player 1 expects player 2 to be more optimistic than himself, if the public
signal exceeds his private signal; player 1 expects player 2 to be more pessimistic
than himself, if his private signal exceeds the public signal. As we will see in

(y — 1)

the analysis that follows, if each player is expecting the other to be just a little
bit more pessimistic than himself, risky co-ordination becomes very difficult to
maintain.?

We now analyze the equilibria of this game. For now, fix the public signal y.

A strategy for player 7 is a function specifying an action for each possible private

~k ~1

3More generally, write § for player 1’s kth order expectation of §. Now 6 = F; () =
[o% z (a+B8)*—B%)y+p°z1 73 (o+B)*—B%)y+B°x
yt_% L 9 = By (B2 (0)) = ( (a+6))2 L0 =E, (B (B4 (0)) = ( (a+6))3 L and

~k o k ko s
0 (( +5)(a+5))ky+ﬁ L. Thus as k — o0, § — .




signal; a natural kind of strategy we might consider is one where a player takes
the risky action only if he observes a private signal above some cutofl point, Z:

5 (m1) = Invest, if z; > T
A7) Notlnvest, if o <7

We will refer to this strategy as the switching strategy around Z. Suppose that
player 1 thought that player 2 was following such a “switching” strategy. Player
1’s expected payoff would be

u(x,Z) = E(0|xy) —Pr(ze <Zl|zy)
_ o fn o platf)) (- _ oyt fn
a+ 3 a+ 23 a+ 3 '
Notice that this expression is continuous and strictly increasing in x1. Thus player
I’s (essentially) unique best response is to follow a switching strategy, investing if
w(z1,Z) > 0 and not investing otherwise.! Thus we have a symmetric switching
strategy equilibrium, with both players choosing switching point Z, exactly if
u (Z,Z) = 0. In fact, invest is a rationalizable action only if z exceeds the lowest

equilibrium switching point and not invest is rationalizable action only if x is less
than the higher equilibrium switching point.

Proposition 2.1. If u (Z,z) = 0, then there is a symmetric switching strategy
equilibrium around T. If x and T are, respectively, the smallest and largest so-
lutions to the equation u (Z,T) = 0, and s; is a strategy that survives iterated
deletion of dominated strategies, then s; (x;) = Not Invest ifz; < z and s; (x;) =
Invest if x; > 7.

Corollary 2.2. If T is the unique solution to the equation u (Z,z) = 0, then the
switching strategy around T is the unique rationalizable strategy for either player.

The idea of the proof is the following. It can be shown a strategy s; survives k
rounds of iterated deletion of strictly dominated strategies if and only if s; (z;) =
Not Invest if x < z, and s; (z;) = Invest if x > Ty. This is true for k = 0,
setting x, = —o0 and Ty = —oo, and one can verify inductively that it holds for
all k. But if z, < z, we know that u (z;,z;) < 0. Thus if a player expected his
opponent to follow a trigger strategy around z; and observed signal z;, he would
a strictly negative payoff to investing. This implies that x; ., > z,. It turns out
that z, T z and Ty, | . A full proof is given in appendix B.

4There will be exactly one signal for which both investing and not investing will be best
responses. The tie-breaking rule used in such instances has no effect on our analysis.

6



oy +B8%E the
at+3 ?
expected value of 0 given private signal ¥ and public signal y. We also make

It is useful to re-write the equation u (Z,7) = 0 in terms of § =

explicit the dependence on the public signal. Now Z = W =0+ 3 (5 — y),
so substituting into the equation u (Z,7Z) = 0 (and making the dependence on the
public signal y explicit) and we have equilibrium condition:

S(ED )

(V7 (0-y))

|

ﬂ(@, y) =

0—
= 0
a+

where v =75 (o, B) = o’ (a+2[3) Note that u (Q y) represents the expected utility

of investing for a player whose expectation of 6 is 0, if he expects his opponent to
follow a 0 switching strategy.

Figures 1 through 4 plot the function w (Q ) for v = 1000, 10, 5 and 1000,
respectively. The intuition here is the following. If public mformatlon is large
(i.e., &> ( and thus 7y is large), then players with 0 less than y = % confidently
expect that their opponent will have observed a higher signal, and therefore will
be investing. Thus his expected utility is (about) 0. But as 6 moves above y = %,
he rapidly becomes confident that his opponent has observed a lower signal and
will not be investing. Thus his expected utility drops rapidly, around ¥, to (about)
0 — 1. But if public information is small (i.e., @« < (B and 7 is small), then players
with @ not too far above or below y = % attach probability (about) % to their
opponent observing a higher signal. Thus his expected utility is (about) 0 — %

There is unique equilibrium if, for all y, there is a unique value of  solving 6 —
P (ﬁ (5 — y)) = 0; there are multiple equilibria if, for some ¥, there are multiple
values of 0 solving 0 — ® (ﬁ (5 — y)) = 0. We can characterize analytically when
there is a unique equilibrium.

Proposition 2.3. There is a unique equilibriumn if and only 7 (a, 3) < 2.

Figure 5 plots in («, 3)-space the uniqueness and non-uniqueness regions.

Proof. We first show that there is a unique 6 solving 0 — (I><\/_ (5 y)) = 0 for
all y if ¥ («, 8) < 27 Iffy<27rthen—3—1—\/_¢< @—y)=>1—-/£>0.

If v < 27, then the inequality is strict and there can be at most one solutlon If
v = 27T then the only point when —3 = 0 is when 0 = y. At this point, 2 _2 =0
but <% > 0, so again there is a unique solution.

We now show that if ¥ (o, ) > 27, there are multiple (in fact, three) values

of 0 solving 0 — ® <\/_ (Q — —)) = 0. One solution to this equation is 6 = 5 (since
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(i L
ﬂ(%%) =0 for any 7). But if v > 27, then g <d%’2)_: 1—7¢9(0)=1- % <0.

But u (5, y) is continuous in f, tends to —oo as § — —oo, and tends to oo as

6 — 00. So there are at least three solutions. M

3. Properties of the Unique Equilibrium

Throughout the remainder of the paper, we assume that there is a unique equi-
librium, i.e., that ¥ («, 5) < 27. Under this assumption, we can mnvert the equi-
librium condition (2.1) to show in (9, y) space what the unique equilibrium looks
like 1

y=h,(0)=0—- —3 ' (0 (3.1)

L
1000

intuition. If @ < 0, it is optimal to not invest (independent of the public signal).
If & > 1, it is optimal to invest (independent of the public signal). But if 0 <
0 < 1, there is a trade-off. The higher y is (for a given 5), the more likely it
is that the other player will invest. Thus if 0 < @ < 1, the player will always
invest for sufficiently high y, and not invest for sufficiently low 3. This implies in

Figures 6 and 7 plot this for v =5 and v = The picture has an elementary

particular that changing y has a larger impact on a player’s action than changing
his private signal (controlling for the informativeness of the signals). We next
turn to examining this “publicity” effect.

3.1. The Publicity Effect

To explore the strategic impact of public information, we examine how much a
player’s private signal must adjust to compensate for a given change in the public
signal. Equation (3.1) can be written as

Wiy (5 (2 ) -

a—+ 3 a+ 3

Totally differentiating with respect to y gives
dx % +V7¢ ()

dy  1— o)

This measures how much the private signal would have to change to compensate
for a change in the public signal (and still leave the player indifferent between
investing or not investing). We can similarly see how much the private signal



would have to change to compensate for a change in the public signal, if there
was no strategic effect. Totally differentiating

g wtir _
a+ 3

we obtaln
dx Q

dy — f
The publicity multiplier is the ratio of these two:

AV (AR ) 1t (v @)
1= vie (Vi (R —y))  1-vie((210)

Thus suppose a player’s expectation of 6 is 6 and he is has observed a public
signal that makes him indifferent between investing and not investing; ¢ measures
the extra clout of public information relative to private information at that point.
Notice that (for any given « and () it is maximized when 0 = %, and thus the
critical public signal y = % Thus it is precisely when there is no conflict between
private and public signals that the multiplier has its biggest effect. Here the

publicity multiplier equals
TN

Vi
Notice that when private information is very accurate relative to private infor-
mation (i.e., § — 0), the publicity multiplier is very small. The multiplier is
biggest just before we hit the multiplicity zone of the parameter space (i.e., when
Y s /37).

There is plentiful anecdotal evidence that in settings where co-ordination is
important, public signals play a role in co-ordinating outcomes that exceeds the
information content of those announcements. For example, financial markets ap-
parently “overreact” to announcements from the Federal Reserve Board and public
announcements in general. If market participants are concerned about the reac-
tion of other participants to the news, the “overreaction” may be rational and
determined by the type of equilibrium logic of our example. Further evidence
for this is briefings on market conditions by key players in financial markets us-
ing conference calls with hundreds of participants. Such public briefings have a

larger impact on the market than bilateral briefings with the same information,
because they automatically convey to participants not only information about



market conditions but also valuable information about the beliefs of the other
participants.

Urban renewal also has a co-ordination aspect. Private firms’ incentives to
invest in a run down neighborhood depend partly on exogenous characteristics of
the neighborhood, but also depend to a great extent on whether other firms are
investing. A well publicized investment in the neighborhood might be expected to
have an apparently disproportionate effect on the probability of ending in the good
equilibrium. The willingness of public authorities to subsidize football stadiums
and conference centers is consistent with this view.

An indirect econometric test of the publicity effect is performed by Chwe
[1998]. Chwe observes that the per viewer price of advertising during the Super
Bowl is exceptionally high (i.e., the price of advertising increases more than lin-
ecarly in the number of viewers). The premium price is explained by the fact that
any information conveyed by those advertisements becomes not merely known
to the wide audience, but also common knowledge among them. The value of
this common knowledge to advertisers should depend on whether there is a sig-
nificant co-ordination problem in consumers’ decisions whether to purchase the
product. Chwe makes some plausible ex ante guesses about when co-ordination is
an important issue because of network externalities (e.g., the Apple Macintosh)
or social consumption (e.g., beer); and when it is not (e.g., batteries). He then
confirms econometrically that it is the advertisers of co-ordination goods who pay
a premium for large audiences.

3.2. Limiting Behavior

An interesting special case of the model arises as signals become more informative.
First, consider what happens when we increase the precision of private signals,
while holding the precision of public signals fixed (i.e., let § — oo for fixed «). In

this case, ¥ (o, 3) o ( atp ) — 0 and

— B \ate2p
B —oo0, if 0 > %
Wi (0) = 5, 1£0=75
00, if 0 < %

This result says that as private signals become more informative, a player’s deci-
sion to invest depends only on whether his expected value of 0 exceeds % In fact,
Carlsson and van Damme’s [1993a] showed quite generally that in two player,
two action games, as private information dominates public information, the risk
dominant action must be played. The intuition is that as private signals become
more informative, the prior looks locally uniform. Thus for any signal a player
observes, he attaches probability of around % to the other player observing a lower
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signal. If a player attaches probability % to other investing, and 0 = %, then he is
indifferent between investing and not investing.

If we increase the precision of public signals, while holding the precision of
private signals fixed (i.e., let @ — oo for fixed 3), then we clearly exit the unique
equilibrium zone.® But we can examine what happens to the unique equilibrium
as the precision of both signals tends to infinite in such a way that uniqueness is

maintained. Specifically, let & — oo and let % — ¢, where ¢ > ﬁ. In this case,

o? <a+ca2

1
~ _ — < 27,
7<a7ﬂ>_> Oé—|—2(3042> —>26< e

ca?
Thus 3 3
heas) () = 7= (V2e) 27 ().

This result says that even though the public signal becomes irrelevant to a player’s
expected value of 6 in the limil, it continues to have a large impact on the outcome.
For example, suppose ¢ =1 and y = % (i.e., public information looks bad). Fach
player i will invest only if §; > 0.7, i.e., they will be very conservative. This is
true even as they players ignore y (i.e., 0; — x; for each player 7).

The intuition for this result is the following. Suppose public information looks
bad (y < %) If each player’s private information is much more accurate than the
public signal, they will mostly ignore ¥ in forming their own expectation of §. But
each will nonetheless expect the other to have observed a somewhat worse signal
than themselves. This pessimism about the other’s signal makes it very hard to
support an investment equilibrium.

3.3. Empirical Implications?

Private information models are always hard to test because, by assumption, the
private information is not observable. However, we can hope to come up with
suggestive indirect tests. We discussed earlier the implications that markets might
appear to react excessively to public information.

This approach also has an important empirical prediction concerning the dis-
tribution of the payoff arising from the action of invest. This empirical prediction
has some implications for our understanding of market risk, and of the formal
analysis of “Value at Risk” (we are examining this issue in more detail in Morris
and Shin [1999]). When prices are sensitive to the flow volume of trade - such as
when a large number of investors try to sell their holdings simultaneously - there is

(0,1). If
< 1 and

5F0£ sufﬁcien_tly large «, either action is rationalizable as long as y € (0, 1_) and @
either § > 1 or # > 0 and y > 1, then only invest is rationalizable. If either § < 0 or
1 < 0, then only not invest is rationalizable.

=
0
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an element of coordination in the trading strategies of investors. The significance
of this coordination element is increasing in the degree to which prices are more
sensitive to trades, and in the degree to which traders are leveraged. When traders
are highly leveraged, the potential losses arising from a sudden price change in-
duces them to act more sensitively to the selling of others. The recent episodes of
turbulence in the financial markets (such as the sudden fall in the dollar against
the yen on October 8th 1998) are difficult to explain except by reference to such
whiplash effects.

The action to invest can be interpreted as the action of going long on a par-
ticular asset. If the horizon of the investor is short (as is the case for most active
traders), the payoff to holding the asset can be represented as the sum of 0, the
payoff arising from the asset in the absence of selling pressure, minus the propor-
tion of investors who sell (or by some function of this proportion). In the unique
equilibrium, in the limit when the noise become small (3 — o), the payofl func-
tion becomes approaches

0 if 60>
{ -1 if 0<

N =0 =

This implies that the ex ante distribution of the payoff to holding the asset (con-
ditional on the public signal) can be written as

(Va0 (y-1) it o<1
FO)=¢ @ (Va(z-y)) if —1
D(Val-y) i 0>

and the associated density function is given by the bi-modal density:

(Ve —(y—1)) if 0<—5
f(@)=40 if

o(Val—y) i 0>

The striking feature of the density f is that it is bi-modal, and the shape of the
density is very far from the smooth, bell-shaped distribution of payoffs routinely
seen in textbooks of finance.® The potential losses will be underestimated if the
investor believes that the payoff is normally distributed.

The analysis of “market risk” has emerged as one of the most important topics
in finance. However, the current state of the art (such as J.P. Morgan’s RiskMet-
rics) relies on payofls which are assumed to be normal, and which are calibrated
from a window of observations from the recent past. It is perhaps no accident that

51f we were not looking at the limit as 3 — oo, the distribution would be smoothed out, but
the bi-modal feature would be maintained.
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otherwise sophisticated banks and financial institutions incurred large losses dur-
ing the turbulent summer and autumn of 1998. When coordination is an element
of the payoff to holding an asset, the payoff distribution arising from the asset is
very unlikely to be normally distributed, even if the underlying fundamentals are
normally distributed.

This observation also sheds light on the debate on the “fat tails” of observed
asset returns. It is well known that, although the distribution of returns over
long horizons show fat tails relative to the normal distribution, the “fatness” of
the tail varies over time. During relatively quiet times, the fatness of the tail is
not as pronounced as it is during more turbulent episodes in the market. Such
observations are very suggestive of the sort of effects we have alluded to here.

3.4. Higher Order Beliefs and Bounded Rationality

A standard response to suggestions that higher order beliefs (and especially very
high order beliefs) might play an important role is economic analysis is that rea-
soning to such high levels is beyond the capacity of most decision makers. It
is implied that ignoring high levels of beliefs might represent a good model of
bounded rationality.

The model studied in this paper illustrates what we think is wrong with this
view. First, although second order beliefs were important, the equilibrium analysis
is simple and the intuition behind the resulting equilibria is straightforward. It is
not clear why restricting the notion of rationality is especially compelling here.

But second, we want to argue that very high order beliefs are the driving
force behind this example, yet the analysis suggests a very simple and intuitive
(boundedly rational?) heuristic for behavior in the face of such very high order
uncertainty. To develop this theme, we informally introduce some ideas from the
higher order beliefs literature (see the references in footnote 1). An event is said
to be common knowledge if everyone knows it, everyone knows that everyone
knows it, and so on. Monderer and Samet [1989] introduced the following natural
generalization of common knowledge: for some number p € [0, 1], an event is com-
mon p-belief if everyone believes it with probability at least p, everyone believes
with probability p that everyone believes it with probability p, and so on. This
“hierarchical” definition of common p-belief is complex but is luckily equivalent
to a more tractable “fixed point” definition. An event is p-evident if, whenever
it is true, everyone believes it with probability at least p. Monderer and Samet
showed that an event F is common p-belief at state w if and only if there is a
p-evident event F' such that w is an element of F' and event E is believed with
probability at least p whenever F'is true.

We can illustrate these concepts in our example. Fix a public signal 3. De-
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scribe a state of the world by the triple (9,51,§2> consisting of the state of
fundamentals, player 1’s expectation of fundamentals and player 2’s expecta-
tion of fundamentals. We will be interesting in events of the form “both play-
ers’ expectation of fundamentals is at least «,” i.e., events of the form F, =
{(9,51,§2> eR?®:0, > o and 0, > a}. When is the event F, p-evident? We
need to check that whenever 8, > «, the probability player 1 assigns to 05 > « is
at least p (and vice-versa). Since this probability is increasing in 01, it is enough
to check this for 8; = . But Pr (52 > oz‘ 0, = a) =1—-® (ﬁ(a — y)) (this
calculation was a key component of our equilibrium calculations). Thus event F,
is p-evident if and only if ® (ﬁ (o — y)) < 1—p. So the fixed point characteriza-
tion of common p-belief implies that event Ey is common p-belief at state (0, 3, 3)
if and only if there exists 0 < o < 3 such that ® (ﬁ (o — y)) <1 —p. But the
equilibrium condition (3.1) tells us that the unique equilibrium switching point
0 uniquely solves ® (ﬁ (5 — y)) = 0. Thus we have the following alternative
characterization of equilibrium:

e A player with expectation  invests in the unique equilibrium if and only if
it is common (1 — 9) -belief that each player’s expectation of 0 exceeds 0.7

The connection between common p-belief and equilibria of co-ordination games
with incomplete information is quite general. The insight is that if you only take
a strategically risky action (i.e., one where it is costly if your opponent fails to
co-ordinate) if there exists a p-evident event that you can both co-ordinate your
actions on. The more strategically risky the action (i.e., in this example, the
lower 5) the greater degree of p-evidence your require. Events that are p-evident
for high p can be though of as approximately public: whenever they occur, there
is a large probability that each player observes them.

Thus there is a very simple boundedly rational heuristic for behavior in co-
ordination problems with payoff uncertainty. Only take strategically risky actions
when there is some almost public event indicating that the actions make sense. If
some new piece of information arrives that others might interpret as bad news, do
not take the strategically risky action. This heuristic is in the spirit of the fully
rational model, it is consistent with unique equilibrium and it seems to capture
better than multiple equilibrium-sunspots models the phenomena they seek to
explain.

"When there is not a unique equilibrium (i.e., if ¥ (o, 3) > 27)), investing is rationalizable
if and only if it is common (1 —9)—be1ief that each player’s expectation of 8 exceeds 0; not
investing is rationalizable if and only if it is common B-belief that each player’s expectation
of 6 is less than 1. Thus ¥ («, ) < 27 is a sufficient condition for the events “it is common
(1 - 5)—belief that each player’s expectation of 6 exceeds 0” and “it is common 0-belief that
each player’s expectation of 8 is less than 17 to be essentially disjoint.
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4. Extensions

4.1. Comparative Statics and Public Policy

A major weakness of multiple equilibrium - sunspot models is that comparative
statics and thus policy analysis cannot be performed. We will briefly illustrate
how our model can be extended to deliver natural comparative static and policy
conclusions. Suppose we introduce a parameter z > 0 representing the cost of
misco-ordination (our original game was the case where z = 1)

NOT
INVEST | nvEsT
INVEST (D)
(Attack / Deposit) 6,0 §-20
NOT INVEST (N)
(Do Nothing / Withdraw) | &7 7 0,0

There are multiple equilibria of the complete information game if § € [0, z]. For
large z, we get the possibility that an inefficient equilibrium is played (both not
invest) for very high values of 6. One interpretation is that these bad equilibria are
the outcome of a negative externality (in not investing, I don’t take into account
the cost it imposes on you). A natural policy response would be to impose a
small tax 7 on this action. Arguments in favor of taxing capital outflows to
prevent currency crises can be understood in these terms. The payoff matrix now
becomes:

NOT
INVEST | nvEsT
INVEST (I)
(Attack / Deposit) 9,0 0—z,-7
NOT INVEST (N) P -
(Do Nothing / Withdraw) |~ © noT

But now there are multiple equilibria of the complete information game if 6 €
[—7,2 — 7]. The tax does have the positive impact of ruling out the bad equilib-
rium (both not invest) for values of # in the interval (z — 7, z]. But the powerful
intuition underlying such policy proposals is the hope that such a tax will reduce
the probability of an attack for all values of . But the complete information
analysis simply cannot deliver that conclusion. We conclude by demonstrating
the comparative statics of policy in this simple example.

So consider the incomplete information environment described earlier (para-
meterized by « and ). The analysis proceeds essentially as before. Uniqueness
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now requires that 2275 (a, 8) < 27. The equilibrium condition becomes

T4+0 =20 (ﬁ(?—y))

Assuming the uniqueness condition is satisfied with strict inequality, we get that

do 1

& T )

i.e., that increasing the tax lowers the critical expectation about 6 at which players
invest. Thus the intuitive comparative statics hold globally.

4.2. Many Players

The above analysis easily extends to the many player case, and we briefly sketch
how this works (there is a more detailed treatment in appendix A). Suppose now
there are K players and the payoff to not investing 0, and the payoff to investing
is 0 — 1+ f(w), where 7 is the proportion of K — 1 opponents investing and
f:]0,1] — [0,1] is increasing with f (0) = 0 and f (1) = 1. As before, 0 is drawn
from normal distribution with mean y and precision « and each player i observes
a signal x; = 0+ £;, where each &; is drawn from a normal distribution with mean
0 and precision 3. If K = 2, this reduces to exactly the model we have been
analyzing before.

Suppose player 1 has observed public signal y and private signal 21, giving him
an expectation of fundamentals of 6;. His posterior over the private signals of the
other players, (3, .....,xx) are distributed normally with some correlation. Writ-
ing H (m,n, p,c) for the probability that at least m out of n normally distributed
random variables are less than or equal to ¢ if each of the random variables has
mean 0 and variance 1, and the correlation coefficient between any two random
variables is p, it turns out that the probability that at least k out of players 2
through K observing a signal less than or equal to x is

5 a |a+f
H(k:,K—l 57 73\ a1 (6, —y)>

Thus if player 1 has expectation 6 and expects others to follow switching strategies
with switching point 6, his expected payoff is

0 (7) = K[ i?l)](}](k“—l Eitvtlbeer <9_y>>>

(41
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As before, there is a unique equilibrium if and only if U (5) = 0 has a unique
solution (the argument is exactly that for the two player case reported in proposi-
tion 2.1 and proved in appendix B). Using this equation, it is possible to show for
any K, there exists constants K and & such that there is a unique equilibrium if

¥ (o, 8) = % 5:2% < k (independent of the shape of f); and there are multiple

equilibria if ﬁ(oz B) > R. Also, as § — 0, it is possible to show that U (5)
—14++ E f (K 1) Thus an individual invests only if § > 1 — & E f ( ) 8

Thus addlng many players does not change the qualitative conclus1ons of the
analysis. A clean illustration of this point is obtained by considering the special
case the function f is linear, i.e., f (7) = 7. In this case, one may verify that (for
any K) the equation (4.1) reduces to U (5) —0—-d (ﬁ (5 — y)), Le., exactly the

condition we obtained in the two player case.
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APPENDIX A: THE K PLAYER CASE

There are K > 2 players, the payoff to not investing is 0, the payoff to investing
is 0 — 1+ f(w), where 7 is the proportion of K — 1 opponents investing and
f :10,1] — [0,1] is increasing with f(0) = 0 and f(1) = 1; 0 is drawn from
normal distribution with mean 3 and precision « and each player i observes a
signal x; = 6 + £;, where each g; is drawn from a normal distribution with mean
0 and precision (3.

Suppose player 1 has observed public signal y and private signal z; what
probability does he assign to the event that at least k out of players 2 through K
observing a signal less than or equal to 27 To answer this question, consider the

following linear transformation of (zs, ...., Zk):
\/— a+p - ay+pPx \/— Oé‘l‘ﬂ +€i_@y+ﬂ$
a+ 28 a+ 8 a+ 3
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Now for player 1,

0
€9
£3

EN

Now

29
23

ZN

where

Thus

. Blath)
a+ 203
0
0 1 p
0 p 1
= N 01,1 p O
0 p P
Wherep:a%ﬁ.

ay+Bx
a+[3
z ~ N (
0
0
0

A=+/B

ay+px 1
w2 (g 000 -0
0 0 5 0 0
0 1o 0 3 0
1
0 0 0 0 5
! 1
2 o+ ay + Ox 1
€3 —\/E o vty
. a+20\ a+p .
1
EN
1 1 0 0
oz—l—ﬂ 1 0 1 0
1 0 0 1
1
1 86‘1‘5
/7 a+ 3 <ozy—|—ﬂa:> 1 Al o
a+20\ a+p :
1 .
0
1 1 1 1 1
opTE B P atp
1 4,1 1 1
atpg atpg g otp atpg
1 1 1 41 1
a3 a+p3 a+ 151 a3
a3 a+p3 a+p3 a+3
P P
P P
1 P
p 1
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Writing 0 for O‘Zigm, observe that x = 0 + & (Q — y), so z; > x if and only if

:\/E Oé—l-ﬂ( —> \/— a+ g <ﬂ> <§_y> \;4_ o+ (9 y>

o+ 203 a+ 20 o+ 203

Now write H (m,n,p,c) for the probability that at least m out of n normally
distributed random variables are less than or equal to ¢ if each of the random
variables has mean 0 and variance 1, and the correlation coefficient between any
two random variables is p. It turns out that the probability that at least k out of
players 2 through K observing a signal less than or equal to x is

ikx—1, L @ [etl g )
a+28 B\ a+23
As in the two person case, the key equation is the payolf to investing for a player
with posterior 6, if he expects others to follow the 6 switching strategy. This

equals

0Ll (i)

(4.2)
There is a unique equilibrium (for given K, «, # and f) if and only if the equation
U (5) = 0 has a unique solution. But observe that

dﬁ_ o oz—l—ﬂKfl (E=£) dH I6; a [a+p
7w | i (@ (v e O

Observe that H (m,n, p,c) is continuous in p and ¢ and strictly increasing in ¢ for
all m =1, .., n; thus the following are well defined:

dH (m,n,p,0
c¢(n) = inf min ‘ (m. 7. p, )‘
pcl0,1] m=1,..,n de
_ dH (m,n, p,c)
¢(n) = sup max max
p€[0,1] m=1,...,n ceR de
Now writing as before, 7 («, ) = \/iﬁ 5:2%, we have:

Lemma 4.1. Fix K. If 7 (o, ) < =,

any f); if (o, ) > E(—}(), then there are multiple equilibria (for any f).

then there is a unique equilibrium (for
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Thus 3 must be of the order of a? for uniqueness, independent of the shape of
f and the number of players.
We can also examine what happens as § — 0. First, note that H (m, n, %, 0) =

Z‘TJrll for all m and n (David and Six [1971]). This implies that as § — 0, and thus

afw — %, equation (4.2) becomes
K-1
~ 1 k
Uf)=0-14— —_—
011+ %21 (75)
_ K-1
Thus in the unique equilibrium, investment occurs only if 8 > 1 — % Soof (%)
k=1

ArPPENDIX B: PROOF OF PROPOSITION 2.1

We will provide a proof of proposition 2.1. The same proof also works for the
many player case described in section 4.2 and appendix A. The payoffs in our game
exhibit strategic complementarities. The following features of our model echo the
general results concerning games with strategic complementarities obtained by

Milgrom and Roberts [1990)].

e There is a “smallest” and “largest” equilibrium, corresponding to the small-
est and largest solutions to the equation u (x,z) = 0.

e Any strategy other than those lying between the smallest and largest equilib-
rium strategies can be eliminated by iterated deletion of dominated strate-
gies. Thus, if z and T are, respectively, the smallest and largest solutions to
u(x,x) = 0, then rationalizability removes all indeterminacy in a player’s
strategy except for the interval [z, Z|.

e If there is a unique solution to u (x,x) = 0, then there is a unique equilib-
rium, and this is obtained as the uniquely rationalizable strategy.

We now turn to the proof of the main lemma. Begin with the function u (z, z).
It can be seen to satisty the following three properties.

Monotonicity. u is strictly increasing in its first argument, and is strictly de-
creasing in its second argument.

Continuity. u is continuous.

Crossing. For any & € RU {—o00, 00}, there is x such that u (z, %) = 0.
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By appealing to these features, we can define two sequences of real numbers.

First, define the sequence
2?2k (4.3)

as the solutions to the equations:

In an analogous way, we define the sequence

L2 ... 3k . (4_4)

as the solutions to the equations:

u(i:l,oo) = 0
u(z®,z') =
u (@ %) = 0

We can then prove:

Lemma Al. Let x solve u (z,z) = 0. Then

k

! Pt << (4.5)
25 ...

>z > > (4.6)

ST
ST

<
s

Moreover, if x and Z are, respectively, the smallest and largest solutions to
u(z,z) =0, then

z=lim z¢ and 7= lim 2" (4.7)

k— oo k—o0
Proof. Since u (z!', —00) = u (z?,z') = 0, monotonicity implies z' < z%. Thus,
suppose 2" 1 < z*. Since u (gk,gk’l) =u (gk“,gk) = 0, monotonicity
implies z* < 2. Finally, since u (z,z) = 0 = u (2", 2%), and 2" < zFH,
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1 k

monotonicity implies that ¥ < x. Thus, 2! < 22 < ... < 2F < ... < 2.
An exactly analogous argument shows that ! > 22 > ... > 28 > ... > 1.
Now, suppose z is the smallest solution to u (z,z) = 0. By (4.5) and the
monotonicity of u, x is the smallest upper bound for the sequence {gk}
Since {gk} is an increasing, bounded sequence, it converges to its smallest
upper bound. Thus z = limy_., 2*. Analogously, if Z is the largest solution
tow (z,z) = 0, then (4.6) and monotonicity of u implies that T = limy, ., Z*.
This proves lemma Al.

Lemma A2. If s is a strategy which survives k rounds of iterated deletion of
interim dominated strategies, then

(4.8)

{ Not Invest if z < z”
s(z) = : —
Invest if x>%

The argument is as follows. Let s_; be the strategy profile used by player i’s
opponent, and denote by @' (x, s ;) the expected payoff to i of Invest conditional
on x when his opponent’s strategy profile is given by s_;. The incidence of Invest
is maximized when everyone invests irrespective of the signal. Conversely, the
incidence of Invest is minimized when everyone plays Not Invest irrespective
of the signal. The expected payoff to Invest increases with the incidence of
investment by others. Thus, for any x and any s_;,

u(r,00) <@ (7,5 ;) < u(z,—00) (4.9)
From the definition of 2! and monotonicity,
z <z' = forany s_;, @ (z,5_;) <u(z,—o0) <u(z',—o0) =0. (4.10)

In other words, x < z'implies that conditional on x, Invest is strictly dominated
by Not Invest. Similarly, from the definition of Z! and monotonicity,

x> T = for any s_;, @’ (z,5_;) > u(x,00) > u (z',00) = 0. (4.11)

In other words, > Z' implies that Not Invest is strictly dominated by Invest.
Thus, if strategy s; survives the initial round of deletion of dominated strategies,

(4.12)

5 () = Not Invest if z <uaz!
Y] Invest if x>zt

so that (4.8) holds for k = 1.
For the inductive step, suppose that (4.8) holds for k, and denote by U* the
set of strategies which satisfy (4.8) for k. We must now show that, if player i faces
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a strategy profile from U*, then any strategy which is not in U**! is dominated.
Thus, suppose that player i believes that he faces a strategy s_; from U*. Given
this, the incidence of Invest is maximized when s_; is theZ®-switching strategy,
and the incidence of Invest is minimized when s_; is the z*-switching strategy.
The payoff to Invest increases with the incidence of investment by others. Thus,
for any x and any strategy s_; from U”,

u(z,2%) <@ (x,s;) <u(wz"). (4.13)

From the definition of 2* and monotonicity, we have the following implication for
any strategy s_; drawn from U”.

<z = @ (z,5;) <u(z,2) <u(d ) =0 (4.14)

In other words, when z < z* and when all others are using strategies from U*,
Invest is strictly dominated by Not Invest. Similarly, from the definition of Z*
and monotonicity, we have the following implication for any strategy s ; from U*.

x> = @ (x,5;) > u (2, 7%) >u(Z 7)) =0 (4.15)
In other words, when x > Z*! and all others are using strategies from U*, Not

Invest is strictly dominated by Invest. Thus, if strategy s; survives k +1 rounds
of iterated deletion of dominated strategies,

Not Invest if =z < zFt!
, = ) = 4.1
si (2) { Invest if x>zt (4.16)

This proves lemma A2.

With these preliminary results, we can complete the proof of the main lemma.
Pirst, let us show that if z solves u (z,x) = 0, then there is an equilibrium in
switching strategies around z. Since u (x,z) = 0, if everyone else is using the
x-switching strategy, the payoff to Invest given z is the same as that for Not
Invest. Since u is strictly increasing in its first argument,

T, < <z <= u(r,z) <0<u(z )

so that the z-switching strategy is the strict best reply.
Finally, if z is the unique solution to u (z,z) = 0, then from Lemma Al, we
know that
r= lim 2" = lim 7" (4.17)

k— o0 k—o0

so that the only strategy which survives the iterated deletion of dominated strate-
gies 1s the x-switching strategy.
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