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A. Imputing Bundle Prices

In each performance year, CMS assigns a bundle price to each participating hospital based on the hospital’s

quality and the case-mix of the episode. In period 3, CMS stopped reporting bundle prices for voluntary

treatment hospitals that selected out. We therefore construct a predicted period 3 bundle price for all treatment

hospitals based on a linear regression of period 3 bundle prices on period 2 bundle prices among all mandatory

treatment and voluntary select-in hospitals where both prices are observed.

CMS generates a bundle price for each of the four case-mix groups: DRG 470 without hip fracture,

DRG 470 with hip fracture, DRG 469 without hip fracture, and DRG 469 with hip fracture.1 Let h index

hospitals and c index case-mix groups. For each case mix group, we estimate the regression

(11) b3,hc = β1b2,hc + β2,r(h) + εhc,

where b3,hc is the bundle price from period 3, b2,hc is the bundle price from period 2, and β2,r(h) is the region

fixed effect. We control for region fixed effects because bundle prices are set based on both the hospital’s

historical spending and that of the region’s. The adjusted R2 from the regressions are 0.96, 0.96, 0.95 and

0.95 for the case mix groups.

To obtain one bundle price per hospital for our model estimation, we take a weighted average of the

predicted values for each case-mix group for each hospital, weighting case-mix groups by the number of

episodes for that case-mix group at that hospital in period 3. Appendix Figure A.1 shows a scatter plot of

observed and predicted hospital-level bundle prices, for hospitals where we observe both.

1Technically, hospitals can receive a higher bundle price by obtaining a higher composite quality score (CQS). However, because

of how CQS is constructed, we expect little change in quality over time. The largest component of CQS is the THA/TKA (total

hip arthroplasty/total knee arthroplasty) complication measure, which is a three-year rolling average of standardized 90-day com-

plication rate. The other main component is the HCAHPS (Hospital Consumer Assessment of Healthcare Providers and Systems)

survey measure, which is a hospital-level measure of patient experience that covers all patients and not limited to LEJR. Consistent

with this, Finkelstein et al. (2018) show that hospital quality scores are unaffected by bundled payments. We ignore this aspect of

pricing for this exercise.
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B. Variance Decomposition

In this section, we describe the variance decomposition exercise we use to quantify the power of patient and

hospital characteristics in explaining the heterogeneity in levels and slopes across hospitals.

As we discuss in Section III, we use period 1 outcomes to proxy for hospital levels. Letting i denote

episodes and h denote hospitals, we first residualize period 1 outcomes with episode-level regression of the

form

outcome1i = β0 + βxi + γzh + εi,(12)

where xi are patient characteristics and zh are hospital characteristics. We next take the residuals from these

regressions εi and regress them on hospital fixed effects. We then compare the standard deviation of these

estimated hospital fixed effects, based on the residualized outcomes, to the standard deviation of fixed effects

of hospital fixed effects, where we do not first net out controls. Standard deviations are calculated weighting

each hospital by the number of episodes in period 1.

To analyze sources of the heterogeneity in slopes, we conduct a similar exercise. Letting h index hos-

pitals and s index strata, we estimate hospital-level regressions of the form

outcomeh2 = β0 + β1zzhBPh + β2outcomeh,2014 + β3outcomeh,2013 + δs(h) + εh2,(13)

where zh are hospital characteristics (including, in one case, average characteristics of the hospital’s patient

population), and δs(h) are strata fixed effects. This is the analogue to Equation 2 except that we allow for the

treatment effects to vary with hospital characteristics.

We then re-estimate Equation 2 using the estimated residual εh2 from estimating the above equation as

the outcome. As before, we then compare the standard deviation of the slopes based on the residualized out-

comes, to the standard deviation of the slopes without residualizing, weighting each hospital by the number

of episodes in period 1 as before.

Appendix Table A.5 shows the results from this analysis for the threemain outcomes. The top row shows

the standard deviations where we do not control for any hospital or patient characteristics, the subsequent

rows show the impact of separately controlling for hospital characteristics, and the final rows show the

effect of controlling for all the previously listed hospital characteristics and of controlling for the “kitchen
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sink” of hospital and patient characteristics. The bottom line from this analysis is that observables explain

only a modest share of the cross-hospital variation in levels and slopes. Controlling for all the hospital

characteristics, along with strata and MSA fixed effects, explains a quarter of the variation in levels and

about one-sixth of the variation in slopes. The kitchen sink specifications that additionally control for all

available patient characteristics still leave at least half of the variation unexplained.

C. Description of the Gibbs Sampler

In this appendix, we describe the Gibbs sampler that we use to estimate the model. A key advantages of

the Gibbs sampler is that it allows for data augmentation of latent variables (Tanner and Wong, 1987). In

our context, we augment the hospital-specific level, slope, and choice shifter {λh, ωh, νh}H
h=1 as additional

parameters of the model.

Let HC = {h : BPh2 = 0} be the set of control group hospitals and let HT = {h : BPh2 = 1} be the

set of treatment group hospitals. Among the treatment group hospitals, let HV be the set of hospitals that

were given the decision whether to voluntarily select into the bundled payment program in period 3 and let

HM := HT \ HV be the set of treatment group hospitals who were mandated to remain in the program.

We weight hospitals according to the average number of CJR episodes at that hospital so that our es-

timates are representative of the average episode in our sample. Let wh denote the normalized number of

episodes at hospital h, such that
H
∑

h=1
wh = H.

We can write the full model as follows:

ln λht = ln λh + γt + εht, t = 1, 2, 3,

yht = λht − BPhtωh, t = 1, 2, 3,

BPh3 = 1 ⇐⇒ bh3 − λh exp(γ3) +
ωh

2
+ νh > 0, ln λh

ln ωh

 ∼ N


 x′hβλ

x′hβω

 ,

 σ2
λ ρσλσω

ρσλσω σ2
ω


 ,

εht ∼ N(0, σ2
ε ), t = 1, 2, 3,

νh ∼ N(x′hβν, σ2
ν ),
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where xh is a vector of hospital characteristics, including strata indicators, and we normalize γ2 = 0. The

selection equation in the third line only applies to hospitals in the voluntary treatment group HV . Hospitals

in the mandatory treatment group HM have BPh3 = 1 automatically.

The data we observe are {yh1, yh2, yh3, BPh1, BPh2, BPh3, bh2, bh3, xh}H
h=1. The set of parameters (and

pseudo parameters) we want to estimate is given by

θ =

βλ, βω, βν, Σ =

 σ2
λ ρσλσω

ρσλσω σ2
ω

 , σν, σε, γ1, γ3, λ = {λh}H
h=1, ω = {ωh}H

h=1, ν = {νh}h∈HV

 .

For notational convenience, for any parameter δ ∈ θ, we will use δ|θ− to denote the parameter δ conditional

on all other parameters in θ and all data we can observe.

To facilitate the estimation, we make two transformations of the parameters. First, we denote τε =

σ−2
ε as the precision of a normal distribution. Second, we re-write the participation equation as σ−1

ν (bh3 −

λh exp(γ3) +
ωh

2
) + ν̃h > 0, where ν̃h = νhσ−1

ν ∼ N(x′hβνσ−1
ν , 1). This transformation allows us to treat

the participation equation as a Probit equation with linear parameters β̃ν = {σ−1
ν , βνσ−1

ν }.

We now specify the prior distribution for each parameter in θ and derive the expression for its posterior

distribution conditional on all other parameters and the data we can observe. For β ∈ {βλ, βω, β̃ν}, the prior

specifies that β ∼ N(µ
β
0 , Σ

β
0 ). We use a conventional diffuse prior so that µ

β
0 = 0, (Σβ

0 )
−1 = 0. Let

X =



x′1 0

... ...

x′H 0

0 x′1

... ...

0 x′H


, y =



ln λ1

...

ln λH

ln ω1

...

ln ωH


, Ω = Var(y)

∣∣∣∣θ− = Σ ⊗ IH.

Let W be a 2H−dimensional diagonal matrix where the hth and (H + h)th elements are wh. Then

(βλ, βω)|θ− ∼ N((X ′Ω−1WX)−1X ′Ω−1Wy, (X ′Ω−1WX)−1).

Similarly, let x̃h = (bh3 − λh exp(γ3) +
ωh

2
, x′h)

′, zh = x̃′h β̃ν + νh, x̃ = (x̃h)h∈HV , z = (zh)h∈HV ,
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and w be an |HV |−dimensional diagonal matrix with elements {
wh

∑
h∈HV

wh
}h∈HV on the diagonal. Then

β̃ν|θ− ∼ N((x̃′wx̃)−1 x̃′wz, (x̃′wx̃)−1).

We restrict to hospitals that were given the decision whether to voluntarily select into the bundled payments

program, as nothing in the data tells us about νh for hospitals who did not face this decision.

For Σ, the prior specifies Σ−1 ∼ Wishart(ν0, S−1
0 ). We use a diffuse prior with ν0 = 0, S0 = 0. Let

uh = (ln λh − xhβλ, ln ωh − xhβω)′. Then

Σ−1|θ− ∼ Wishart(H, (
H

∑
h=1

whuhu′
h)

−1).

For τε, the prior specifies τε ∼ Γ(a0, b0). We use a diffuse prior with a0 = 0, b0 = 0. Then

τε|θ− ∼ Γ(
3
2

H, bε),

where

bε =
1
2

H

∑
h=1

wh(ln yh1 − ln λh − γ1)
2 +

1
2

H

∑
h=1

wh(ln(yh2 + BPh2ωh)− ln λh)
2

+
1
2

H

∑
h=1

wh(ln(yh3 + BPh3ωh)− ln λh − γ3)
2.

Forγ ∈ {γ1, γ3}, the prior specifies thatγ ∼ N(µγ
0 , σ

γ
0 ). We use a diffuse prior that µ

γ
0 = 0, (σγ

0 )
−1 =

0. Then

γ1|θ− ∼ N

(
1
H

H

∑
h=1

wh(ln yh1 − ln λh),
1
H

τ−1
ε

)
,

γ3|θ− ∼ N

(
1
H

H

∑
h=1

wh(ln(yh3 + BPh3ωh)− ln λh),
1
H

τ−1
ε

)
.

So far, once we condition on {λh}H
h=1, {ωh}H

h=1, and {µh}H
h=1, the model is pretty standard, with a

system of three normally-distributed equations, and all parameters sampled from common posterior distri-

butions, including normal, Gamma, andWishart. The part of the Gibbs sampler that is less standard involves

sampling from the conditional distribution of the augmented hospital-specific parameters: λ = {λh}H
h=1,
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ω = {ωh}H
h=1, and ν = {νh}h∈HV . As each hospital is independent of the others, conditional on the other

parameters, it does not depend on other hospitals’ augmented parameters. Thus, all we need to describe is

the conditional probability of λh, ωh, and νh. Let φ(x, µ, σ) = exp(−1/2((x − µ)/σ)2) be proportional

to the normal probability density function.

We start from νh. If we ignore the participation decision, νh follows the distribution N(x̃′h β̃ν, 1). When

we incorporate the participation decision, for h ∈ HV , νh follows a truncated normal distribution (truncated

from below if BPh3 = 1 or from above if BPh3 = 0):

Pr(νh|θ−) ∝


φ(νh, x̃′h β̃ν, 1), if BPh3 = I(νh > −(bh3 − λh exp(γ3) +

ωh

2
))

0, if BPh3 6= I(νh > −(bh3 − λh exp(γ3) +
ωh

2
))

.

Thenλh. If we ignore the participation decision, the joint distribution of (ln λh, ln yh1, ln(yh2 + BPh2ωh), ln(yh3 +

BPh3ωh)) conditional on other parameters is



ln λh

ln yh1

ln(yh2 + BPh2ωh)

ln(yh3 + BPh3ωh)


∣∣∣∣
θ−

∼ N





µλ(ωh)

µλ(ωh) + γ1

µλ(ωh)

µλ(ωh) + γ3


,



σ̃2
λ σ̃2

λ σ̃2
λ σ̃2

λ

σ̃2
λ σ̃2

λ + σ2
ε σ̃2

λ σ̃2
λ

σ̃2
λ σ̃2

λ σ̃2
λ + σ2

ε σ̃2
λ

σ̃2
λ σ̃2

λ σ̃2
λ σ̃2

λ + σ2
ε




,

where

µλ(ωh) = x′hβλ + ρ
σλ

σω
(ln ωh − x′hβω), σ̃2

λ = (1 − ρ2)σ2
λ.

The conditional marginal density of λh is proportional to φ(ln λh, µ̃λ
h , σ̃λ

h ), where

µ̃λ
h = µλ(ωh) + Σ12Σ−1

22


ln yh1 − µλ(ωh)− γ1

ln(yh2 + BPh2ωh)− µλ(ωh)

ln(yh3 + BPh3ωh)− µλ(ωh)− γ3

 , σ̃λ
h =

√
σ̃2

λ − Σ12Σ−1
22 Σ21,

Σ12 = Σ′
21 = (σ̃2

λ, σ̃2
λ, σ̃2

λ), Σ22 =


σ̃2

λ + σ2
ε σ̃2

λ σ̃2
λ

σ̃2
λ σ̃2

λ + σ2
ε σ̃2

λ

σ̃2
λ σ̃2

λ σ̃2
λ + σ2

ε

 .

When we incorporate the participation decision, for control group hospitals (h ∈ HC) and treatment group
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hospitals mandated to remain in the program (h ∈ HM), the density of λh remains the same. For treatment

group hospitals, which were given the decision whether to voluntarily select into the bundled payments

program (h ∈ HV), ln λh follows a truncated normal distribution (truncated from above if BPh3 = 1 or from

below if BPh3 = 0):

Pr(λh|θ−) ∝


φ(ln λh, µ̃λ

h , σ̃λ
h ), h ∈ HC ∪ HM

φ(ln λh, µ̃λ
h , σ̃λ

h ), if BPh3 = I(λh < exp(−γ3)(bh3 +
ωh

2
+ νh)), h ∈ HV

0, if BPh3 6= I(λh < exp(−γ3)(bh3 +
ωh

2
+ νh)), h ∈ HV

.

Lastωh. If we ignore the participation decision, the joint distribution of (ln ωh, ln yh1, ln(yh2 + BPh2ωh), ln(yh3 +

BPh3ωh)) conditional on other parameters is



ln ωh

ln yh1

ln(yh2 + BPh2ωh)

ln(yh3 + BPh3ωh)


∼ N





µω(λh)

ln λh + γ1

ln λh

ln λh + γ3


,



σ̃2
ω 0 0 0

0 σ2
ε 0 0

0 0 σ2
ε 0

0 0 0 σ2
ε




,

where

µω(λh) = x′hβω + ρ
σω

σλ
(ln λh − x′hβλ), σ̃2

ω = (1 − ρ2)σ2
ω.

Note that conditional on other parameters, yh1 and ωh are independent. Using transformations of random

variables, we can write down the conditional joint density of ωh, yh2, and yh3 as

f (ωh, yh2, yh3|θ−) =
1√

1 − ρ2
λωσω

√
2πωh

exp(− (ln ωh − µω(λh))

2σ̃2
ω

2

)

× 1
σε

√
2π(yh2 + BPh2ωh)

exp(− (ln(yh2 + BPh2ωh)− ln λh)

2σ2
ε

2

)

× 1
σε

√
2π(yh3 + BPh3ωh)

exp(− (ln(yh3 + BPh3ωh)− ln λh − γ3)

2σ2
ε

2

).

For control group hospitals (h ∈ HC), it simplifies to ln ωh ∼ N(µω(λh), (1 − ρ2
λω)σ

2
ω). For treatment
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hospitals (h ∈ HT), the conditional marginal density of ωh, denoted by g(·), is

g(ωh|θ−) =
f (ωh, yh2, yh3|θ−)

f (yh2, yh3|θ−)
=

f (ωh, yh2, yh3|θ−)∫
f (ωh, yh2, yh3|θ−)dωh

∝ f (ωh, yh2, yh3|θ−).

When we incorporate the participation decision, for control group hospitals (h ∈ HC) and treatment group

hospitals mandated to remain in the program (h ∈ HM), the density of λh remains the same. For treatment

group hospitals who were given the decision whether to voluntarily select into the BP program (h ∈ HV),

ωh follows a truncated distribution (from below if BPh3 = 1 or from above if BPh3 = 0):

Pr(ωh|θ) ∝



φ(ln ωh, µω(λh), (1 − ρ2)σ2
ω), if h ∈ HC

g(ωh|θ−), if h ∈ HM

g(ωh|θ−), if BPh3 = I(ωh > 2(λh exp(γ3)− th − νh)), h ∈ HV

0, if BPh3 6= I(ωh > 2(λh exp(γ3)− th − νh)), h ∈ HV

.

We restrict ωh from being too large by truncating it from above at 0.71λh and from belong too small by

truncating it from below at 1.2 There is no closed-form expression for the density g(ωh|θ−), so we adopt

the “invert CDF” sampling method (Devroye, 2006)3 and use numerical integration to construct the CDF of

ωh for h /∈ HC.

With these posterior distributions, we can draw each parameter at a time, conditional on all other pa-

rameters and the data, and do this iteratively. We tested the algorithm on simulated data, where we know the

true parameters, and it performs well. The posteriors cover the true parameters in most simulations.

We initialize the algorithm with the following initial values. In principle, we can start from any reason-

able values and the algorithm will converge eventually. We make informed guesses to expedite the conver-

gence. Let WC = ∑
h∈HC

wh denote the sum of hospital weights in the control group HC. Then

γ1
1 =

1
WC

∑
h∈HC

wh(ln yh1 − ln yh2), γ1
3 =

1
WC

∑
h∈HC

wh(ln yh3 − ln yh2),

2The upper bound of 0.71λh is imposed for economic reasons discussed in Section V.A. The lower bound of 1 is imposed for

the computational reason of avoiding occasionally large negative values of log(ωh) that lead to unreasonable negative draws of σω

and create issues in the numerical integration.
3Let F(x) be the cumulative distribution function of a random variable x. The “invert CDF” sampling method draws from this

distribution by drawing r from a uniform distribution on [0,1] and computing F−1(r).
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σ1
ε =

√
1

2WC
∑

h∈HC

wh(ln yh1 − ln yh2 − γ1
1)

2 +
1

2WC
∑

h∈HC

wh(ln yh3 − ln yh2 − γ1
3)

2,

ln λ1
h = ln yh1 − γ1

1, βλ1
= (X′X)−1(X′ ln λ1), where X = (xh)

H
h=1, ln λ1 = (ln λ1

h)
H
h=1,

dh = exp(ln yh1 −γ1
1 +σ1

ε
2
)− yh2, βω1 = (X′X)−1(X′ ln d), where X = (xh)h∈HT ,dh>0, d = (dh)h∈HT ,dh>0,

σ1
λ =

√√√√ 1
H

H

∑
h=1

wh(ln yh1 −
1
H

H

∑
h=1

wh ln yh1)2 − σ1
ε

2,

σ1
ω =

√√√√ 1
∑

h∈HT ,dh>0
wh

∑
h∈HT ,dh>0

wh(ln dh −
1

∑
h∈HT ,dh>0

wh
∑

h∈HT ,dh>0
whdh)2,

ρ1 = Corr(ln λ1
h, ln dh)h∈HT ,dh>0, ln ω1

h ∼ N(x′hβω1 + ρ1 σ1
ω

σ1
λ

(ln λ1
h − x′hβλ1

), (1 − ρ12
)σ1

ω
2
),

βν1 = 0, σ1
ν = 5, 000, ν1

h ∼ N(x′hβν1, σ1
ν

2
) such that BPh3 = I(ν1

h > −(bh3 − λ1
h exp(γ1

3) +
ω1

h
2
)).

We run the Gibbs sampler for 100,000 iterations. Each iteration takes a few seconds and in total it takes

5-6 days on a standard server. Appendix Figure A.2 shows the evolution of all parameters. It converges to

the stable posterior distribution of the parameters fairly quickly, after several thousand iterations. We burn

the first 10,000 iterations and construct our results using the remaining 90,000 iterations.

D. Mapping from Estimates to Results

In this appendix, we describe how we map from the Gibbs sampler to the estimates reported in Table IV, V,

and Figure IV and the counterfactual results reported in Table VI and Figure V.

As we describe in Appendix C, we run the Gibbs sampler for 100,000 iterations. The posterior distribu-

tions of the parameters stabilize after several thousand iterations, so we burn the first 10,000 iterations and

construct our results using the remaining 90,000 iterations.

Let k = 1, 2, ..., K index iterations with K = 90, 000. For each iteration, we have a random draw from

the posterior distribution for each parameter, denoted θk. In Table IV, we report the posterior mean and
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posterior standard deviation for each parameter calculated as

mθ =
1
K

K

∑
k=1

θk, sθ =

√√√√ 1
K − 1

K

∑
k=1

(θk − mθ)2.

In Table V, we present summary statistics of the distribution of key economic objects across hospitals.

Specifically, we compute the mean, standard deviation, and different percentiles across hospitals using draws

for a given iteration k, weighting by the number of episodes at each hospital. Then we average across all

iterations to construct the values we report in the table. For example, we construct

E(ln λh) =
1
K

K

∑
k=1

(
1
H

H

∑
h=1

wh ln λk
h

)

where, as before, wh is the normalized number of episodes at each hospital and H = ∑H
h=1 wh is the sum of

these hospital weights.

We use a (slightly) modified approach to calculate statistics for λh3. Recall that λh is an augmented

parameter in the Gibbs sampler, so each iteration produces random draws for it, while λh3 is not. Therefore,

for λh3, we first draw the stochastic component εk
h3 for each hospital in each iteration from the normal

distribution N(0,
(
σk

ε

)2
). We next calculate λk

h3 = λk
h exp(γk

3 + εk
h3). We then average over hospitals and

iterations as before.

In Panel A of Table VI and Panel A of Appendix Table A.10 we present the counterfactual estimates,

restricting our analysis to hospitals in the voluntary treatment group HV where we can observe bundle prices.

We use posterior draws from the Gibbs sampler to compute the following objects of interest:

(1) Bundled payment indicator: BPk
h3. The first row of PanelA reports the counterfactual with no bundled

payment program where all hospitals are paid under FFS, so BPk
h3 = 0, ∀h, k. The second row consid-

ers a counterfactual in which all hospitals were mandated to enroll in bundled payments in period 3,

so BPk
h3 = 1, ∀h, k. The third row considers the voluntary selection scenario that actually took place,

in which case BPk
h3 is the same as the observed participation decision. Given the nature of the Gibbs

sampler, which conditions on the observed data, this BPk
h3 indicator is consistent with the draws in

each iteration, so that BPk
h3 = 1 ⇐⇒ bk

h3 − λk
h exp(γk

3) + ωk
h/2 + νk

h > 0.

(2) Government spending: BPk
3hbh3 + (1 − BPk

3h)λ
k
h3

11



(3) Relative social costs: (1 + 0.15)(BPk
3hbh3 + (1 − BPk

3h)λ
k
h3 − λk

h3) = (1 + 0.15)BPk
3h(bh3 − λk

h3)

(4) Relative hospital profit (without choice shifter): BPk
3h(bh3 − λk

h3 + ωk
h/2)

(5) Relative social surplus (without choice shifter): (4) - (3) = BPk
3h(ω

k
h/2 − 0.15(bh3 − λk

h3))

(6) Relative hospital profit (with choice shifter): BPk
3h(bh3 − λk

h3 + ωk
h/2 + νk

h)

(7) Relative social surplus (with choice shifter): (6) - (3) = BPk
3h(ω

k
h/2 + νk

h − 0.15(bh3 − λk
h3))

As before, for a given object of interest we first take the weighted average across draws for a single iter-

ation k and then we average over all iterations. The posterior values of λk
h3 and ωk

h are the same across

counterfactuals.

E. Targeting

In order to explore the impact of better targeting in a systematic fashion, we approximate the observed bundle

prices using a parametric distribution, and then change the parameters that govern the covariance of bundle

prices with hospital costs. Specifically, we model bundle prices as lognormally distributed, such that they

are correlated with λh but only correlated with ωh via the correlation between λh and ωh. That is, we assume

bh3 and λh3 follow the following joint lognormal distribution:

 ln bh3

ln λh3

 ∼ N


 µb

µλ3

 ,

 σ2
b ρλ3bσbσλ3

ρλ3bσbσλ3 σ2
λ3


 .

We focus on voluntary treatment group hospitals (HV) in period 3, as we do in the other counterfactu-

als. For these hospitals, the maximum likelihood estimators for the mean and standard deviation of the log

bundled price distribution are given by:

µ̂b =
1

WV
∑

h∈HV

wh ln bh3, σ̂b =

√
1

WV
∑

h∈HV

wh (ln bh3 − µ̂b)
2,

where wh is, as before, the (normalized) number of episodes at hospital h and WV = ∑h∈HV
wh is the sum

of these weights for the voluntary treatment group.

To recover ρλ3b, we estimate the covariance between ln λh and ln bh3. Since Cov(ln yh1, ln bh3) =

Cov(ln λh − γ1 + εh1, ln bh3) = Cov(ln λh, ln bh3), due to the independence of εh1. It follows that the

12



maximum likelihood estimator of the covariance is

Cov(ln λh, ln bh3)
∧

=
1

WV
∑

h∈HV

wh(ln yh1 − µ̂λV )(ln bh3 − µ̂b),

where µλV = 1
WV

∑h∈HV
wh ln yh1.

The counterfactuals reported in Panel B of Table VI and Panel B of Appendix Table A.10 are based on

bundle prices drawn from alternative distributions. For a given counterfactual, defined by the parameters

{µk
b, σk

b , ρk
λ3b}, we draw bundle prices for each hospital h and each iteration k conditional on the simulated

value of λk
h3 :

ln bk
h3 ∼ N

(
µk

b + ρk
λ3b

σk
b

sk
λ3

(
ln λk

h3 − mk
λ3

)
, (1 − ρk

λ3b
2
)σk

b
2
)

,

where mk
λ3
and sk

λ3
are the weighted mean and standard deviation of ln λk

h3 for that iteration:

mk
λ3

=
1

WV
∑

h∈HV

wh ln λk
h3, sk

λ3
=

√
1

WV
∑

h∈HV

wh(ln λk
h3 − mk

λ3
)2.

Given the simulated bk
h3, we then derive hospitals’ participation decisions BPk

h3 using the selection equation

and calculate the other quantities of interest following the approach described in Appendix D.

In the first row of Panel B, we consider the counterfactual of “perfect targeting,” which sets bundle prices

to equal to realized claims under FFS, except that wemaintain the mean log bundle price at its observed level.

This is equivalent to setting µk
b = µ̂b, σk

b = sk
λ3
, and ρk

λ3b = 1.

The second row examines the case of “feasible targeting,” which sets the bundle price based on a hospi-

tal’s underlying type and the time trend, but does not account for the stochastic component εk
h3. Specifically,

we set µk
b = µ̂b, σk

b = sk
λ, and ρk

λ3b =
sk

λ

sk
λ3

, where

sk
λ =

√√√√ 1
WV

∑
h∈HV

wh

(
ln λk

h −
1

WV
∑

h∈HV

wh ln λk
h

)2

.

The third row reports results under “observed targeting,” which sets µk
b = µ̂b, σk

b = σ̂b, and ρk
λ3b =

Cov(ln λh, ln bh3)
∧

σ̂bsk
λ3

.
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The fourth row considers a case in which bundle prices are uniform across hospitals and equal to the

observed level of bundle prices. We set µk
b = µ̂b and σk

b = 0.

The last row considers “narrow bundling, no targeting,” in which we remove hospital claims from the

bundle and assume that we cannot target prices for other claims. Within our framework, this is equivalent to

setting the bundle price as the sum of ex post, realized hospital claims and a predetermined, fixed payment

for other costs: bh = f HOSP
h + Eh[ f OTH

h ]. We estimate the parameters for this bundle price using the

empirical distributions of ln bh = ln( f HOSP
h + Eh[ f OTH

h ]) and ln λh3. The resulting parameters used for

the counterfactual are µk
b = µ̂b, σk

b = 0.09, and ρk
λ3b = 0.76.
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FIGUREA.1

Observed and Predicted Bundle Prices
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Notes: Figure shows a scatterplot of the observed bundle price and the predicted bundle price, for hospitals for which we
observe both. We obtained one bundle price per hospital by taking a weighted average across the four bundle prices based on
the observed case-mix of episodes at each hospital in period 3.
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FIGUREA.2

Gibbs Sample Posteriors

Notes: Figure shows posterior draws for each of the 100,000 iterations of the Gibbs sampler. See discussion in Appendix
C for additional details.
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TABLEA.1

Cream Skimming

Select-in vs. Select-out 
Difference SE P-value

Panel A: Average Elixhauser at hospital in period 3
Mean among select-out (SD) 2.5 (0.7)

Control for Period 1 Lag -0.06 0.10 -0.25 0.14 0.56
Control for Period 2 Lag -0.03 0.08 -0.19 0.13 0.75
Control for Period 1& 2 Lags -0.02 0.08 -0.19 0.14 0.79

Panel B: Number of episodes at hospital in period 3 (Apr 1 - Sept 15)
Mean among select-out (SD) 68.1 (67.2)

Control for Period 1 Lag -0.42 5.29 -11.19 10.35 0.94
Control for Period 2 Lag -4.46 4.46 -13.55 4.63 0.32
Control for Period 1& 2 Lags -4.66 4.28 -13.38 4.07 0.29

Panel C: Log number of episodes at hospital in period 3 (Apr 1 - Sept 15)
Mean among select-out (SD) 3.6 (1.3)

Control for Period 1 Lag 0.02 0.08 -0.13 0.18 0.77
Control for Period 2 Lag -0.04 0.05 -0.14 0.06 0.40
Control for Period 1& 2 Lags -0.04 0.05 -0.14 0.06 0.39

95% CI

Notes: Table reports estimates from a hospital-level regression of the period 3 outcome an indicator for select-in,

controlling for the lagged outcome from period 1 and/or period 2, and MSA fixed effects. The sample is restricted to

hospitals in the voluntary treatment group that faced a select-in decision in period 3. Standard errors are clustered at

the MSA level. The Elixhauser index of co-morbidities in Panel A is a measure of patient health, with a higher number

indicating worse health.
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TABLEA.2

Experimental Estimates During Mandatory Participation Period:

Alternative Specifications

Control Mean   
Average 

Treatment 
Effect 

Control Mean   
Average 

Treatment 
Effect 

Control Mean   
Average 

Treatment 
Effect 

(SD) (SE)  (SD) (SE)  (SD) (SE)  
p -value p -value p -value

Panel A: Healthcare Claims and Utilization
Claims 25,294 -790 25,887 -588 25,899 -407

(3,603) (204) (3,340) (212) (5,142) (286)
0.001 0.006 0.157

Claims for Index Admission 13,542 -169 13,750 -113 13,754 -47
(2,389) (89) (2,080) (90) (2,670) (133)

0.06 0.21 0.72
Claims for Institutional PAC 4,119 -499 4,111 -334 4,117 -323

(1,378) (128) (1,214) (119) (2,411) (123)
0.001 0.006 0.009

Claims for Home Health 1,800 -89 1,996 18 1,997 26
(918) (59) (872) (87) (996) (89)

0.13 0.84 0.77
Other Claims 5,832 28 6,029 11 6,032 89

(532) (55) (537) (44) (1049) (86)
0.61 0.80 0.30

Utilization Measures
Number of Days in Index Admission 2.6 -0.1 2.6 0.0 2.6 0.0

(0.4) (0.04) (0.3) (0.04) (0.6) (0.04)
0.22 0.75 0.86

Number of Days in Institutional PAC 7.7 -0.6 7.6 -0.3 7.6 -0.4
(2.3) (0.23) (1.9) (0.20) (4.2) (0.21)

0.01 0.13 0.08
Discharge Destination

 Institutional Post Acute Care 0.313 -0.034 0.320 -0.021 0.320 -0.021
(0.104) (0.009) (0.093) (0.009) (0.151) (0.009)

0.001 0.015 0.020
 Home Health Agency 0.339 0.004 0.378 0.025 0.378 0.026

(0.196) (0.018) (0.173) (0.019) (0.222) (0.018)
0.81 0.19 0.16

 Home (w/o Home Health Agency) 0.329 0.042 0.289 0.013 0.289 0.005
(0.232) (0.018) (0.212) (0.018) (0.265) (0.020)

0.02 0.45 0.81
 Other 0.019 -0.004 0.013 -0.004 0.013 -0.004

(0.032) (0.002) (0.023) (0.002) (0.030) (0.002)
0.05 0.07 0.05

Panel B: Quality Measures
Complication Rate 0.011 0.001 0.011 0.001 0.011 0.002

(0.005) (0.001) (0.004) (0.000) (0.010) (0.001)
0.26 0.01 0.003

ER Visit During Episode 0.198 0.003 0.194 0.002 0.194 0.002
(0.027) (0.003) (0.021) (0.002) (0.047) (0.003)

0.40 0.41 0.50
90-day All Cause Readmission Rate 0.102 -0.001 0.103 -0.002 0.103 -0.001

(0.015) (0.002) (0.014) (0.002) (0.031) (0.002)
0.73 0.22 0.39

Panel C: Admissions and Patient Composition
LEJR Admissions (per 1,000 enrollees) 29.9 -0.8 27.3 -0.5 7.9 -0.5

(15.8) (0.5) (13.6) (0.3) (12.4) (0.2)
0.10 0.16 0.01

CJR-eligible Admissions (per 1,000 enrollees) 23.6 0.1 21.1 0.1 6.7 -0.4
(11.3) (0.5) (9.7) (0.5) (9.5) (0.2)

0.89 0.87 0.02
Elixhauser Comorbidity Score 2.4 0.0001 2.3 -0.004 2.3 -0.0001

(0.3) (0.029) (0.2) (0.027) (0.4) (0.027)
0.998 0.873 0.997

MSA-Level, Unweighted MSA-Level, Weighted Hospital-Level, Weighted

Notes: Table compares regression estimates in Table I with estimates from two alternative specifications: an MSA-

level specification, where observations are weighted based on number of episodes in the MSA in period 2, and a

hospital-level specification where observations are weighted based on the number of episodes at the hospital in period

2. See Table I notes for more details.
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TABLEA.3

Experimental Estimates: Effects Over Time

Period Control 
Mean SD Change with Bundled 

Payment SE P-Value

Panel A: All MSAs
Total Episode Claims 2016 Q2 25,337 3,642 -591 232 0.02

2016 Q3Q4 25,552 3,710 -739 223 0.01
2017 Q1Q2 24,996 3,624 -684 224 0.01
2017 Q3Q4 25,427 3,744 -900 253 0.01

Claims for Institutional PAC 2016 Q2 4,296 1,499 -443 156 0.01
2016 Q3Q4 4,246 1,445 -406 140 0.01
2017 Q1Q2 3,905 1,390 -502 139 0.01
2017 Q3Q4 4,070 1,601 -635 161 0.01

Share Discharged to Institutional PAC 2016 Q2 0.34 0.12 -0.040 0.010 0.01
2016 Q3Q4 0.32 0.11 -0.027 0.009 0.01
2017 Q1Q2 0.30 0.10 -0.034 0.009 0.01
2017 Q3Q4 0.29 0.10 -0.031 0.009 0.01

Panel B: Voluntary MSAs
Total Episode Claims 2016 Q2 25,222 4,455 -573 353 0.11

2016 Q3Q4 25,335 4,575 -629 344 0.08
2017 Q1Q2 24,993 4,376 -719 335 0.04
2017 Q3Q4 25,305 4,614 -1,001 362 0.01

Claims for Institutional PAC 2016 Q2 3,883 1,537 -328 209 0.13
2016 Q3Q4 3,763 1,489 -255 190 0.19
2017 Q1Q2 3,557 1,393 -448 174 0.02
2017 Q3Q4 3,585 1,708 -442 213 0.05

Share Discharged to Institutional PAC 2016 Q2 0.29 0.10 -0.020 0.014 0.16
2016 Q3Q4 0.27 0.08 -0.013 0.012 0.28
2017 Q1Q2 0.25 0.08 -0.024 0.011 0.04
2017 Q3Q4 0.24 0.08 -0.017 0.011 0.13

Panel C: Mandatory MSAs
Total Episode Claims 2016 Q2 25,452 2,631 -483 347 0.17

2016 Q3Q4 25,770 2,601 -671 313 0.04
2017 Q1Q2 24,998 2,715 -616 327 0.07
2017 Q3Q4 25,549 2,644 -713 391 0.08
2018 Q1Q2 25,857 2,589 -959 406 0.03
2018 Q3 26,214 2,783 -1,282 396 0.01

Claims for Institutional PAC 2016 Q2 4,709 1,352 -486 236 0.05
2016 Q3Q4 4,730 1,235 -435 208 0.05
2017 Q1Q2 4,254 1,310 -481 219 0.04
2017 Q3Q4 4,555 1,334 -752 244 0.01
2018 Q1Q2 4,591 1,165 -644 254 0.02
2018 Q3 4,907 1,418 -901 279 0.01

Share Discharged to Institutional PAC 2016 Q2 0.40 0.11 -0.053 0.016 0.01
2016 Q3Q4 0.37 0.11 -0.033 0.014 0.03
2017 Q1Q2 0.34 0.10 -0.039 0.014 0.01
2017 Q3Q4 0.34 0.09 -0.048 0.014 0.01
2018 Q1Q2 0.35 0.07 -0.059 0.014 0.01
2018 Q3 0.35 0.09 -0.054 0.017 0.01

Notes: Table replicates the analysis shown in Table I separately by time period for the three key outcome variables.

Period 2 is 2016 and 2017. Period 3 is 2018. See Table I notes for more details.
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TABLEA.4

Correlates of Levels and Slopes with Hospital-Specific Trends

28,357 (5,998) 5,814 (3,021) 0.455 (0.187) -1,001 (6,205) -813 (3,253) -0.033 (0.168)

Coefficient (S.E.) from Bivariate Regression

Number of CJR Episodes -5.31 (1.56) -3.39 (0.69) -0.0001 (0.0001) 1.04 (3.35) 1.71 (0.95) 0.00008 (0.00006)

Quality -441 (41) -197 (18) -0.010 (0.001) -26 (79) 36 (31) -0.001 (0.002)

Number of Beds 3.90 (1.21) 0.62 (0.32) 0.0001 (0.00003) 1.45 (0.68) 0.36 (0.33) 0.000026 (0.00002)

Teaching 4,528 (599) 561 (258) 0.049 (0.021) 502 (689) -387 (467) -0.033 (0.023)

For-Profit -3,030 (660) -387 (304) -0.064 (0.025) -2,636 (1280) -780 (425) -0.056 (0.030)

Non-Profit -219 (596) 369 (264) 0.008 (0.023) -1,048 (507) -596 (301) -0.019 (0.024)

Mean (S.D.)

Panel A: Heterogeneity in Levels Panel B: Heterogeneity in Slopes

Claims Claims for 
Institutional PAC 

Probability of 
Discharge to PAC

Claims Claims for 
Institutional PAC 

Probability of 
Discharge to PAC

Notes: Table replicates Table II except that the hospital-specific slopes in Panel B are based on estimating an augmented version of Equation 2, which additionally

controls for hospital-specific linear time trends. Specifically, we report estimates of β4,h from the regression yh = β0 + β1,h + β2,t + β3,h × t + β4,h × BPh + εh,t,

where β1,h are hospital fixed effects, β2,t are calendar year fixed effects, β3,h × t are hospital fixed effects interacted with a linear time trend, and β4,h × BPh are hospital

fixed effects interacted with an indicator for treatment hospitals in period 2 (when bundled payment was in effect); we estimate this equation using data from 2010-2014,

2016 and 2017. In both panels, the coefficients on for-profit and non-profit are obtained from the same regression, where government-owned is the omitted category. All

regressions are weighted by the number of episodes in period 2. Robust standard errors are shown in parentheses.
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TABLEA.5

Correlates of Cross-Hospital Heterogeneity

Unconditional S.D. of Hospital Fixed Effects
S.D. of Hospital Fixed Effects with additional controls:

Number of CJR Episodes 5,843  (97.4%) 2,894  (95.8%) 0.183  (98.1%) 3,055  (100.0%) 1,799  (99.4%) 0.105  (99.9%)

Quality 5,604  (93.4%) 2,867  (94.9%) 0.180  (96.2%) 3,026  (99.1%) 1,778  (98.3%) 0.103  (98.0%)

Number of Beds 5,864  (97.8%) 3,017  (99.9%) 0.186  (99.7%) 3,048  (99.8%) 1,804  (99.7%) 0.104  (99.7%)

Teaching 5,751  (95.9%) 3,017  (99.9%) 0.186  (99.6%) 3,041  (99.6%) 1,802  (99.6%) 0.104  (99.4%)

Ownership (For-Profit, Non-Profit, 
Government) 5,896  (98.3%) 3,006  (99.5%) 0.185  (98.9%) 3,041  (99.6%) 1,809  (100.0%) 0.105  (99.9%)

Strata Fixed Effects 5,718  (95.3%) 2,882  (95.4%) 0.173  (92.8%) 3,054  (100.0%) 1,809  (100.0%) 0.105  (100.0%)

MSA Fixed Effects 4,532  (75.6%) 2,557  (84.6%) 0.139  (74.5%) 2,665  (87.2%) 1,685  (93.2%) 0.092  (87.9%)

All of the above 3,537  (59.0%) 2,236  (74.0%) 0.125  (66.8%) 2,637  (86.4%) 1,638  (90.5%) 0.090  (85.9%)

All of the above, as well as all observed 
patient characteristics 2,830  (47.2%) 1,687  (55.8%) 0.107  (57.4%) 2,169  (71.0%) 1,236  (68.3%) 0.077  (73.1%)

Panel A: Heterogeneity in Levels Panel B: Heterogeneity in Slopes

Total Episode Claims Institutional PAC 
Claims

Probability of 
Discharge to PAC

Total Episode Claimis Institutional PAC 
Claims

Probability of 
Discharge to PAC

5,998 3,021 0.187 3,054 1,809 0.105

Notes: PanelsAand B report the standard deviation of hospital-specific levels and slopes, respectively. In parentheses, we also report the ratio of the conditional standard

deviation to the unconditional standard deviation for that outcome. In Panel A, we first obtain residuals from an episode-level regression of the period 1 outcome (shown

in the columns) on the row variable. We then regress the residuals on hospital fixed effects. Table reports the standard deviation of the hospital fixed effects, weighted by

the number of episodes at each hospital in period 2. In Panel B, we first obtain residuals from a hospital-level regression of the period 2 outcome (shown in the columns)

on an indicator for treatment, the row variable, lagged outcomes from 2013 and 2014, and strata fixed effects. We weight the regression by the number of episodes at each

hospital in period 2. We then regress the residuals on the interaction between hospital fixed effects and treatment indicator, controlling for lagged outcomes from 2013 and

2014, and strata fixed effects (i.e. Equation 2). Table reports the standard deviation of the hospital-specific specific treatment effects (measured by the coefficients on the

interaction terms), weighted by the number of episodes at each hospital in period 2. The set of patient characteristics include age, race, sex, disability, hip fracture, DRG,

and number of Elixhauser comorbidities (in Panel B the hospital-level averages are being used).
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TABLEA.6

Selection on Slopes with Hospital-Specific Trends

Voluntary  
Select-In

Voluntary 
Select-Out

P-Value of Select-In 
vs. Select-Out 

Difference

Voluntary    
Select-In

Voluntary    
Select-Out

P-Value of Select-In 
vs. Select-Out 

Difference
(1) (2) (3) (4) (5) (6)

-791 -665 0.73 -534 -522 0.98
(1,931) (2,826) (4,966) (5,487)

-518 -176 0.05 -388 -280 0.75
(973) (1,474) (2,297) (2,793)

-3.3% -1.2% 0.122 -2.8% -2.3% 0.81
(7.8%) (9.2%) (14.4%) (15.0%)

Baseline With Hospital-Specific Trends

Impact on Institutional PAC claims

Impact on episode claims

Impact on Share Discharged to 
Institutional PAC

Notes: The panel titled “Baseline” replicates Table III Panel B from the paper, and reports the average (and standard deviation)

over different hospitals of β1,h from estimating Equation 2 by OLS. The panel titled “With Hospital-Specific Trends” reports the

analogous results from estimating and augmented version of Equation 2, which additionally controls for hospital-specific linear

time trends. Specifically, we report estimates of β4,h from the regression yh = β0 + β1,h + β2,t + β3,h × t + β4,h × BPh + εh,t,

where β1,h are hospital fixed effects, β2,t are calendar year fixed effects, β3,h × t are hospital fixed effects interacted with a linear
time trend, and β4,h × BPh are hospital fixed effects interacted with an indicator for treatment hospitals in period 2 (when bundled

payment was in effect); we estimate this equation using data from 2010-2014, 2016 and 2017. All estimates are weighted by the

number of episodes in the hospital in period 2. The p-values in columns (3) and (6) are based on robust standard errors.
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TABLEA.7

Parameter Estimates, Dropping 2017 Data

Panel A: Equation-Specific Parameters

Mean Std. Err. Mean Std. Err. Mean Std. Err.
Constant* 10.175 0.005 4.866 0.311 -8,635 12,943
ln(CJR Episodes) -0.067 0.005 -0.560 0.174 5,774 9,359
ln(Beds) 0.049 0.006 0.439 0.283 1,078 5,396
Quality score -0.170 0.005 4.605 0.272 48,028 11,762
Teaching 0.017 0.005 -0.033 0.272 -2,512 10,872
For-profit -0.008 0.005 0.070 0.188 4,114 11,523
Government-owned -0.002 0.004 -0.097 0.206 -712 4,849
Non-profit
Strata fixed effects
σ 0.139 0.003 0.696 0.113 27,044 28,666
Panel B: Additional Model Parameters

Mean Std. Err.
γ 1 0.060 0.004
γ 2

γ 3 0.008 0.003
σ ε 0.076 0.001
ρ 0.081 0.234

ν equationln(λ) equation ln(ω) equation

yes yes
omitted category omitted category omitted category

normalized to 0

yes

Notes: Table reports posterior means and posterior standard deviations of the model parameters (parameter estimates) dropping

2017 data from period 2. See Table IV notes for more details.
∗ Constant is episode-weighted average of strata specific constants.

23



TABLEA.8

Posterior Distributions, Dropping 2017 Data

E(x) SD(x) P5 P25 P50 P75
B.1. All hospitals
Ln(λ h ) 10.17 0.19 9.90 10.05 10.15 10.28
λ h2 26,668 5,844 19,359 22,663 25,579 29,601
λ h3 26,989 6,021 19,392 23,047 25,880 29,671
Ln(ω h ) 4.866 1.723 1.851 3.704 4.989 6.130
ω h 460 1,096 7 44 156 479

B.2. Hospitals in the Voluntary Treatment Group Only
λ h 25,490 4,595 19,662 22,382 24,625 27,672
λ h3 25,721 5,389 18,839 22,067 24,716 28,263
b h 23,717 3,787 19,547 21,284 22,814 25,156
b h  - λ h  - γ 3 -1,987 2,752 -6,852 -3,302 -1,716 -344
ω h 242 606 5 24 72 215
(b h  - λ h  - γ 3 ) + ω h /2 -1,866 2,738 -6,726 -3,157 -1,594 -244
ν -8,275 34,190 -65,597 -31,058 -7,741 14,962

Notes: Table presents summary statistics on the distribution of economic objects, dropping 2017 data from period 2. See Table

V notes for more details.
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TABLEA.9

Counterfactuals, Dropping 2017 Data

Relative 
Hospital Profit

Relative Social 
Surplus

(1) (2) (3) (4) (5)

Panel A: Mandatory vs. Voluntary
Mandatory FFS  (Benchmark) 0.00% 25,721 0 0 0
Mandatory Bundled Payment 100.00% 23,717 -2,304 -1,883 421
Voluntary Bundled Payment 39.20% 25,244 -548 -421 127

Panel B: Alternative Voluntary Regimes with Different Bundle Prices
Perfect targeting 43.25% 25,721 0 61 61
Feasible targeting 42.72% 25,712 -11 53 64
Observed targeting 42.85% 25,823 118 165 47
No targeting 42.89% 26,218 572 558 -14
Narrow bundle, no targeting 42.82% 25,856 155 196 41

Share Selecting 
In 

Government 
Spending

Relative Social 
Costs

Ignoring Choice Shifter

Notes: Table reports counterfactual estimates for the 259 hospitals in the voluntary treatment group, based on estimated that drop

2017 data from period 2. See Table VI notes for more details.
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TABLEA.10

Counterfactuals Incorporating Choice Shifter

Relative Hospital 
Profit

Relative Social 
Surplus

(1) (2) (3) (4) (5)

Panel A: Mandatory vs. Voluntary
Mandatory FFS  (Benchmark) 0.0% 25,517 0 0 0
Mandatory Bundled Payment 100.0% 23,659 -2,137 -9,455 -7,318
Voluntary Bundled Payment 38.8% 25,055 -532 8,393 8,925

Panel B: Alternative Voluntary Regimes with Different Bundle Prices 
Perfect targeting 38.7% 24,870 -745 8,225 8,970
Feasible targeting 38.5% 24,908 -700 8,232 8,932
Observed targeting 38.7% 25,018 -574 8,302 8,876
No targeting 39.1% 25,302 -248 8,526 8,773
Narrow bundle, no targeting 38.5% 25,045 -543 8,330 8,873

Share 
Selecting In 

Government 
Spending

Relative Social 
Costs

Incorporating Choice Shifter

Notes: Table is identical to Table VI except that that columns (4) and (5) report hospital profits and social surplus, relative to the

FFS counterfactual, under the assumption that νh is welfare relevant.
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