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Abstract

In this paper we propose an equilibrium selection mechanism which is based
on the existence of higher order uncertainty, and on the way that players make
interactive inferences about the game they play, and about the actions their
opponents take in equilibrium., We show that the circumstances under which a
unique equilibrium is selected depend on the structure of the games being played,
and on the extent to which a belief at one state can be extended (through
pPlayers’ interrelated information structures) to beliefs at other states. We
delineate these circumstances in a Bayesian framework in which games vary with
the state of nature and in which players have more than two actions available to
them. The results are illustrated both in the finite and the continuous -

information cases.
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Section I: Introduction

Of late there have been several attempts to go beyond the "refinement"
11terature and select among multiple stricf Nash equilibria. Two basic
aéproaches have emerged. One is the axiomatic approach (see Harsanyi and Selten
k1988>) which selects an equilibrium according to a set of desiderata specified
;& the modeler. Another is the evolutive approach (see Foster and Young (1990),
or Kandori, Mailath and Rob (1993)), which considers a 'perturbed’' adjustment
process, and selects its limit outcome. While these two approaches ére quite
different, they turn out to select the same (risk dominant equilibrium) in 2x2
games.

| In this paper, we suggest a new approach which is based on the existence
of.higher order uncertainty, i.e. we consider a situation where each player is
uncertain about the type of the other player, which may imply uncertainty about
either payoffs, or actions in equilibrium, or both. 1In general, it might be
expected that such higher order uncertainty would, if anything, enlarge the set
of possible outcomes. However, in certain natural situations, such higher order
uncertainty enables us to make a unique, prediction of players’ actions. The
logic behind this is as follows. Assume (for a reason to be elaborated on below)
that one player is known to take a certain action at a certain state (which may
itself have a very low probability}. Then this knowledge might imply a
definitive response by the other player and this, in turn, implies how the
origiﬁ#l player responds to that knowledge, and so on. If this chain of
réésoning‘results in a unique action profile, then this logic has elicited a
séecific prediction. The goal of this paper is to delineate the conditions under
which this is indeed the case, i.e. te show for which class of games and for
which class of information structures this reasoning leads unambiguously to a

unique prediction.



As it turns out, when this is the case in a single 2x2 game, the uniqu
prediction is again the risk—dominant equilibrium. But, more generally, we sho
how this can be extended to a Bayesian framework in which games vary with th
‘state of nature’ and to games with more than two actions. To do so we introduc
two new concepts—stochastic potential and p-dominance—which enable us t
characterize when a unique equilibrium is selected. The stochastic potential i
a way of measuring the extent to which knowledge at one state can be extende
(via Bayes rule) to knowledge at other states given how knowledge interact
across players. p-dominance, on the other hand, is a property of fhe game itsel
and measures the resilience of equilibria as one varies the beliefs of a playe
over what other players may do. These concepts may have wider applicabilit
outside of the present context. In the présent context the relationship betwee
them determines when a unique equilibrium is selected.

The logic of our argument is the same as that in Rubinstein’s (1989
'electronic mail game’ example, and this paper can be seen as delineating exactl
when, in general, that logic operates. Rubinstein’s example showed how a sligh
departure from common knowledge alters discontinuously the outcome(s) that wouls
have occurred under common knowledge. An ensuing paper by Monderer and Same
(1989) argues that the discontinuity is an artifact of the way that ’‘almos
common knowledge’ 1is defined, and that continuity can be restored by a
appropriate definition of 'closeness’ on information structures. This paper use:
properties of ‘belief operators’, introduced by Monderer and Samet, t
characterize the situations under which the electronic mail game type argumen
operates. We then demonstrate that this argument operates precisely is
situations where there is no 'almost common knowledge’, in Monderer and Samet':
sense, anywhere in the state space. But we also argue that these situation

arise naturally, not only as in Rubinstein’s setting, but also for example whe:



players observe some elightly noisy signals about the environment.

One such setting was illustrated by Carlsson and van Damme (1992), who
showed that one form of higher order uncerfainty, which they label "global
uncertainty", leads to the risk dominant outcome being played. Apart from some
minor technical differences and the fact that our concepts apply to a broader
class of games, the result we report here agrees with theirs for the class of 2x2
games. The two formulations, therefore, illustrate that the sufficient
conditions for this type of argument to work arise qﬁite generally.

There are at least two further ideas in the literature to which the present
paper relates. First is the reputation approach proposed by Kreps and Wilson
(1932), and Milgrom and Roberts (1982)., That approach developed the idea that
a small degree of uncertainty alters the set of equilibria of \games dramatically.
In turn, this is related to the idea that a very small probability event may be
'leveraged' to have global implications. The argument in this paper is related,
but the 'leveraging’ occurs not through time but across overlapping information

sets in the players’ information partitions. Also, Kreps and Wilson were

. concerned with sustaining outcomes that are not equilibria to begin with (so

their goal is expansive), whereas here we are interested in reducing the set of

-original equilibria.

-

The approach here 1s also related to the idea that players tend to
(rationally) use simple (i.e. state independent) strategies although contingent
ones are available, and are not more costly to.use. Shin and Williamson (1992)
showed that this was true in the context of co-ordination games. The present
formulation identifies more generally the set of circumstances where this is
expected to occur.

The remainder of the paper is organized as follows. In the next section,

we provide a 'leading example’ which illustrates some of the paper's key ideas.



In section 3, we lay.out the general framework. In section 4, we use a 'belief
operator’ formulation to analyze the properties of the information structure,
In section 5, we analyze properties of games which generalize the notion of risk-
dominance for two action games to the idea of p—dominance for many action games.
An action profile is p—dominant if the action of each player is the unique best
response to any conjecture which assigns probability at least p to the
corresponding action of the other player. Thus a strict Nash equilibrium is 1-
dominan;, a dominant action profile is O—dominant and a risk—dominant equilibrium
is 1/2-dominant. In section 6, two classes of "Separable Compatibility Games"
are shown to always have a risk—dominant (ie, 1/2—dominant) Nash equilibrium.
In section 7, we provide the main result which places joint restrictions on the
games and information structures under which a unique outcome emerges. The
existence of a globally risk-dominant equilibrium is required to generate a
unique prediction, and for the class of separable compatibility games such an
equilibrium always exists. In section 8, we provide an example where the
information structure is generated by continuous signals with some local noise.
In the limit, as noise tends to zero, the risk~dominant equilibrium is guaranteed

to be played at every state. Section 9 concludes.

Section 2: ILeading Example

Suppose two investors must decide simultaneously whether to invest in a
project. Only if both invest is the project profitable. But there is some
uncertaint& about exactly how profitable the project is. Furthermore, there is
uncertainty about what each investor knows about the project's profitability,
which affects investors' incentives to invest not only directly (through their
payoff-relevant knowledge) but also indirectly through the inferences they make

about each others actions. A simple model incorporating these features is used
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in this section to illustrate key ideas in the paper.

Suppose there is a set of possible states, O = {0,1,2,3,...,M,M + 1}.
The prior probability distribution (p(k)) over I is parametrized by a constant
a > 0 which satisfies:’

p(k + 1)/p(k) = a.

There are two players, 1 and 2, who are potential investors in the project.
The success or otherwise of the project depends on the state as well as the
actions of the blayers. At state 0, the project is a certain success. It is a
dominant action for both players to invest in the project. For a constant 8 >

0, the payoff matrix for the game played at state 0 is:

(0,0) (0,8)
G, =
(8,0) (8,8)
Each playef:chooées from the set of actions (N,I}). N stands for "no
investment® and I stands for “investment". TFor player 1, choosing the top row

is to choose N, while for player 2, choosing the left column is to choose N. For
state k §“f1,2,3,...,M}, the project succeeds only if both players invest. If
only one of the players invests, then the project fails, and the player who has
invested loses the sunk cost of 1 in utility terms. If the project succeeds,
both players collect a payoff of S* at state k. The game played at state k has
the following payoffs.
(0,0) (0,-1)
G, =
(-1,0) (8%, 8%
Since 8 > 0, each of these games has two strict Nash equilibria, (N,N) and

(I,I). Finally, at state M + 1, the project is a certain failure. At this sfate,




any player whe invests loses the sunk cost irrespective of the decision of the

other player. N is therefore a dominant action for both ﬁlayers. The payoffs

at state M + 1 are given as follows.

(0,0 (0,-1)

Gyey =
(-1,0) (-1,-1)

We now turn to the information of the players. We shall assume that player

1 has the following information partition over Q.

{0), (1,2}, (3,4),...,(k,k+1)}),...,(M-1,M), (M+1)}.

Player 2's information partition is given by:
{0,1), (2,3), (4,5),...,(k-1,k),...,(M-2,M-1),(M,M+1).
Thus, at states 0 and M + 1, player 1 has strictly better informafion than
player 2, but at all other states, neither player has superior information to the

other. Denote by P! the partition of player 1, and by P? the partition of player

2. The strategy of player 1 in the Bayesian game is a function:

st: @ - (N,I)

which is measurable on P!, while player 2's strategy is a function s?: @ » (N,I}

which is measurable on P2, Players have dominant strategies at the two end

points of the state space, but the games at the intermediate states have multiple

strict Nash equilibria. These are the games which are of economic interest.

The outceome in the Bayesian game can be seen as the result of a ‘tug of

war' between the actions at the two end points of fI. Which action wins out in

this tug of war depends crucially on the relative magnitudes of the parameters

a and B. We introduce the following sets. Let 4y and 4; be subsets of K

defined as follows.

Let
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Ay = ((a,B)|a > max(8,8"))
Ar = {(a,B)|a < min(B,A")).

These sets are illustrated in figure 1.

[Figure 1]
Let us denote by (I the set of states which excludes state 0 and M + 1. Then we
have:
THEOREM 2.1. If (a,B) € A; U Ay, there is a unique equilibrium (s!,s?) of the

Bayesian game. Moreover,

o]

(a,B) € Ay ¢ st(w) = s%(w) =N, YVwe (2.1)

ol

(a,B) € A & st(w) = s2(w) = I, Yowe (2.2)
In other words, in the shaded regions of figure 1, either both players
invest at every intermediate state or both players choose not to invest at any

of the intermediate states. We prove this theorem by showing that player 2's



equilibrium strategy is a constant function whenever (a,B8) € A; U Ay, and that
it has the wvalues stated above.

To begin with, suppose that (a,8) € Ay. We will show that s?(M+1) = N, and
show that if s2(k+l1) = N then s?(k) = N, for all k. At state M+l, player 2's
information is given by the set (M, M+l}. At state M+l, player 1 chooses N,
since N is the dominant action for 1, and (M+1)} is an element of 1’s partition.
Given the information (M,M+1}, player 2 can guarantee a payoff of zero by playing
N. The maximum expected payoff from playing I is given by:

pOMI| (M, Me1}) (B + p({M+1]|(M, M+1})(-1). (2.3)

This is negative if and only if a > . Given that (@, B) € Ay, this inequality
holds. Hence, s?(M+l) = N.

Now, suppose s?(k+l) = N. 1If k and k+1 belong to the same element of 2’s
partition, then the measurability of s? on P* implies that s?(k) = N. Thus,
suppose that k and k+l belong to different elements of P?. Then, (k, k+1} is an

element of player 1'’s partition. Refer to figure 2.

'y ' ' opl
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[Figure 2]

Consider 1's optimal action given the information (k, k+l1}. 1 can guarantee a
payoff of zero by choosing N. In contrast, the maximum expected payoff from

playing I is given by:
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PU(k}|(k,kt1]) (B*)+p((k+1}|(k, k+1})(-1) (2.4)
This is negative if and only if a> f%. Given that (a,B) € 4y, this inequality
holds. 'Hence, si(k+l) = N.
Now, consider 2’s action at state k. At k, 2’s information is (k-1,k}.
2 can guarantee a payoff of zero by playing N. The maximum expecéed payoff from
playing I is: »
p((k-1}|(k-1,k))(BY) + p((k)|(k-1,k))(-1) | (2.5)
which is negative if and only if a> f1. Given that (ﬁ,ﬂ) € Ay, this inequality
holds. ™~ Hence, s2(k) = N.
We have shown that s? is a constant function over 0 with value N. Player
1's best reply is to choose s! whose value is N at all states other than 0.
Thus, we have shown: |
(a,B) € Ay » st(w) = s2(w) = N, Vweaa
which is one half of (2.1). To see that the converse holds, we note from (2.3),
(2.4) and (2.5) that if sl(w) = s?(w) = N for all w e (1,2,...,M), then a > g*
for all k ¢ (1,2,...,M). This implies that (a,B) € Ay.
Equation (2.2) can be proved in exactly analogous manner. If (a,B) € 4,

then s2

can be shown to be a constant function, whose value is I everywhere.
Again, the argument is inductive. Show first that s%(0) = I, and then show that
if s%(k) = I, then s?(k+l) = I. We leave the details to the reader. Notice also
that this result is tight in the following sense. If (a,B8) € A; U 4y, there

exist (pure strategy) Nash Bayesian equilibria so that sl(w) = I and s'(w’) =N,

for some w,w’ € Q. |

Section 3: The framework and a general possibility result

Theorem 2.1 illustrates the fact that a player’s decision depends on what

she thinks the other plaver knows. For instance, at k = 1 player 2 thinks that



player 1 may know k = 0 which would induce player 1 fo invest, which makes it ' used th
profitable for player 2 to invest as well (regardless of what player 1 might do 5 P
if he knew k =~ 1). The interesting fact is that this type of ‘local reasoning' ; of the

at k = 1 has repercussions for actions of both players at other states (actually poégiblq
at most states). We shall refer to this form of reasoning as the ‘infection | Harsany:
argument’. In the example, we saw how this infection argument can generate discuss:
surprisingly precise predictions about the play of a game with incomplete partitic

information where almost all of the complete information games have multiple Nash
equilibria. But we also saw how changing the prior beliefs on the state space . A
could reverse this prediction or might leave us with multiple equilibria. Thus ‘
when the prior probability of states declined sufficiently fast, the unique

Bayesian Nash equilibrium of the incomplete information game had investment

occurring almost everywhere, while if the prior probability of states increased
sufficiently fast, the unique Bayesian Nash equilibrium of the incomplete

information game had investment not occurring almost everywhere. TIf the prior

=1
1V

probability varies at an intermediate rate, there exist multiple equilibria.
Thus while the infection argument is powerful, the prediction implied by the a typica
infection argument is sensitive to the prior on states and the structure of i write P
information. ' the true
The main purpose of this paper is to show how natural properties of the ‘ | Ve
information system do sometimes uniquely determine the outcome. But in this i An even;
section, we want to give a formal statement of the sense in which "anything can j knowledg,
happen", if we are allowed to manipulate the prior beliefs, for any given c Fl for
structure of payoffs and information partitions. This also helps make clear ;he % shown to

logic of the infection argument itself. We will also introduce the general
framework of multi-—action two player games of incomplete information which is 1Thy
inclusior
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..........lll...............-.......IllIIIIlIlll.llllIIII-I-III---IIIIIIIIIIiL-------



y

used throughout the paper.

Priyate information is to be represented by partitions of the set of states
of the wgrld (as in Aumann (1976)), rather than by a cross product of sets of
possible . types ofleach'player, as In the standard framework introduced by
Harsanyi (1967/68). This modelling choice does not change any results. But
discussion of iterated knowledge and belief is more naturally carried out in a

partition framework.

An information system consists of I = [Q, (1,2), (P!} ,, 7], where:-
2 is a finite set of states of the world;
{1,2) is the collection of players;
P is the partition of states of the world representing the
information of player i;

x is a strictly positive prior probability distribution on Q.

Each player is assumed to share the same prior # on 0. We will write w for
a typical element of Q. Then n(w) 1s the probability of state w. We will also
write Pi(Q) for the element of i’s partition, P!, containing state w. Thus if
the true state is w,vPi(w) is(;he set of states whigh player i thinks possible.

We will require a notion of common knowledge in this information system.
An event is a subset of the state space 1. An event E is said to be common
knowledge at state w if there exists an event F such that w € F C E and Pi(w)
Cc F! for each player and all w € F. This notion of common knowledge can be

shown to be equiﬁalent to the intuitive iterated notion (see Aumann (1976)). We

1Throughout the paper, the symbol C is used to represent weak or strict
inclusion.
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will be concerned with situations where there is no non-trivial common knowledge
in the information system — that is, where the only event that is ever common
knowledge is the universal set . It can be shown that there is no non—trivial
common knowledge if and only if the meet (finest common coarsening) of the two
players’ partitions is the trivial partition which consists only of the universal

set Q.

An incomplete information game consists of G = [I, {A'},; 5, (g')im,2),
where:—
I is an information system as described above;
A' is the finite set of actions available to player i;

gt: Ax 0 - R is player i's payoff function, with A = A x A2,

" Thus, in each state w, there is a one shot (complete information) game
associated with w, with payoff to player i of gi(al, ad; w) if player 1 chooses
action a'eA!, and player 2 chooses action a?c4?. But in general players do not
know the true state, so must choose strategies based only on their information.
Thus a pure strategy for player i in the incomplete information game is a
function s*: @ - A!, measurable with respect to his partition. Write S! for the
set of such pure strategies. Now a pure strategy pair (s?, s?) is a Bayesian
Nash equilibrium of the incomplete information game if, for (i,j) = (1,2) and

(2,1) and for all t! € st,

gu(w)gi[si(m),sj(m);m] 2 gu(m)g’[ti(w),sj(m);m].

WE! W€

Mixzed strategy equilibria could be defined in the natural way. Results in
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this paper will be characterizing the Bayesian Nash equilibria of jpcomplete
information games in terms of the properties of the various complete information
games being played at different states of the world. Thus, al is a dominant

action for player i in the state w game if

gilat,a?; o) > gi(b?,a?;w), for all a’ea’, bieal. (3.1

Action pair (al!, a?) is a strict Nash equilibrium of the state w game if,

for (i,j) = (1,2) and (2,1),

gilat,al;w) > gi(b!,a’;w), for all bieal, (3.2)
In particular, we will often be interested in action pairs a = (a!, a?)

which are strict Nash equilibria in every complete information game, so that the

above condition holds for every w.
We are now in a position to state the main result of this section.

THECREM 3.1. Suppose that, for some information system and incomplete
information game, [l] some action pair (a', a?®) is a strict pure strategy Nash
equilibrium of the state w game, for each w; [2] for some player i, and for some

state w*, action a'

is a dominant action in the state w" game; [3] there is no
non-trivial common knowledge. Then for some strictly positive prior m on the

state space @, playing (a', a?) everywhere is the unique Bayesian Nash

equilibrium of the incomplete information game.

In other words, leaving everything other than the prior the same, we can
adjust the prior to guarantee that any strategy pair which is a Nash equilibrium

of every complete information game is always played in the unique Bayesian Nash

13



equilibrium of the incomplete information game.

PROOF. [1] Since (a', a%) is a strict pure strategy equilibrium of every w
complete information game, there exists some p, 0 < p < 1, such that for every

state w information game, and for all bleAl, bieAd,

pgi(at,a’;w) + (1-p)gi(ai,b’;w) > pgi(bi,a?;w) + (1-p)g?(bi,bl;w).

[2] Suppose, without loss of generality, that 1 is the player with a strictly
dominant action on state w*. Then there exists a q, 0 < g < 1, such that, for

211 bleAl, s? : 1 -+ A%, w ¥ W,

ggt(at, s?(w*);e*) + (1-q@)g*(a*, s?(w);w) >
gg' (b}, s?*(0*) ;0*) + (1-g)g* (b, s?(w) ;w).

[3] Let N be the number of elements in 2 and choose an ¢ such that

[4] Let LE = { we | P2(w) N E » @ ). Thus L*E is the set of states where i
allows that event E 1is possible. Let Ay = {w'), A; = Pl(w"), define 4,
inductively by Ap4; = L2A, if t is odd, Ay = LA, if t is even. Since each L! is
an increasing function (L!E D E) and Q is finite, { Ay} is an increasing sequence
which converges to some set A*. But then we would have L!A* = A" for each i.
Thus by non—trivial common knowledge, there is some integer T such that 4; = Q
for all £t > T.

[5] Now we construct a prior using the sequence {Ay). Let ¢(w) be the minimum

integer t such that weA,. Then let

e (@)
n{w) —if::aﬁ.
o'el
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Thus any state not in A; is at most ¢ times as likely as any state in A;.

[6] We are now ready to make the infection argument. Suppose (s!, s?) is a pure
strategy Bayesian Nash equilibrium of the incomplete information game. Let O'
= ( we |st(w) = a'), for each i. By [2], [3] and the definition of A4;, we know
that A; C Q', since 1 must assign probability at least q to state w", given his
information set Pl(w*) - A But for any t odd, A, c Q' implies Ay, € 02, since
player 2 must assign probability at least p to event A,. Similarly, t even and
A, C @F implies Avu c 0!, since player 1 must assign ﬁrobability at least p to

event 4;. By induction, O = Q! = 02, and we are done. |

Section 4: Stochastic Potential

What drives the infection argument used in the example of section 2 and
theorem 3.1? Suppose that (a!, a?) is a strict pure strategy Nash equilibrium
of each complete information game.' We need to have some lower bound p con the

probability assigned by player j to player i playing a!

, to ensure that j’s best
response is aJ, regardless of what other actions are taken at other possible
states. Once we have that lower bound, the trick is an iterative argument of the

1 on some information set. Then there

.following form. Sufpose player 1 chooses a
. 1s some set where pi;yeryé assigns probability at least p to that information set
of player 1. Repeating the same argument, there is also some set where player
1 assigns probability at least p to the event where player 2 assigns probability
at least p to the original information set of player 1 wheré he was hypothesized
to be playing a!'. If we continue this iterative process, and converge to the
entire state space fi, then the infection argument has worked. In this section,

we introduce the idea of the stochastic potential of an information system. The

stochastic potential is the highest probability p such that starting with any

15



1formation set of either player, this iterative process (whereby players believe
ith probability p that the other player’s information lies in some set)
ynverges to the universal set.

In order to define the stochastic potential, it is useful to introduce the
lea of belief operators on the state space. Such belief operators were
itroduced in a related context by Monderer and Samet (1989). Write (with some

use of notation) the conditional probability of event E, given event F, as:-

(EnF) m(w)
' = K = WEENF
OERr

Now for a given information system, define player i’s p-belief operator by:

BlE ={weQ|n (B! P! (w))2p}

Thus BipE is the set of states where player i believes, with probability
= least p, that event E will occur. It is useful to compare this belief
verator with natural knowledge and possibility operators. Define knowledge

erator K and possibility operator L' by

KiE = {we]P!(w) cE}

LiE = {0€Q|Pi{0) NE » o}

An event is known if that event is true at every state thought possible.
1 event is possible if the eveﬁt contains some state thought possible. In our
:amework{ the fact that x is positive everywhere implies that to believe with
obability one is equivalent to knowledge (i.e. K'E = BYLE for all E), and to

2lieve with arbitrarily small probability is equivalent to possibility (i.e. LiE
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- BiE, for all E, for some ¢ > 0).

Now we can define the key belief property of an information system.

DEFINITION. The stochastic potential of an information system is the largest

number p such that for every non-empty event E

[B;B31¥L*E n [BiBy1¥L?E = Q, for some k.

Tﬁus for any non-empty event E, at any state w, a statement of the
\ followiﬂg form is true: "1 believes with probability at least p that 2 believes
with probability at least p that 1 believes with probability at least p.....
that 1 tﬁinks E is possible; énd 2 believes with probability at least p that 1
believés with probability at least p that 2 believes with probability at least
P that 2 thinks E is possible".

To see that every information system has a well ‘defined stochastic
potential, so that there exists a "largest p" in the definition, notice first
that p > g implies B E c B'{;E. 1If an event is believed with probability at least
p, it is believed withuprobability at least q, if p is strictly greater than g¢.
Now, by induction, we know that p > q implies that [B!BZ]*LE n [B* B! ]XL’E C
[quBZq]kLlE ’n [E?BY,)¥L2E. But it is also the case that B',E = limg.B',()E for any
increasing sequence, p(t) -+ p, since w(ElPi(w)) > p(t) for all t implies
i n(EIPikw)) 2 p. So there must exist a largest p such that the above property

holds.

| It is useful to 1illustrate this requirement by means of an example,

Consider the following information system:-—

17 .



Q={1,2,3,4,5,6,7,8,9}

P = ({1:2:3}:{4151611{718:9})
P =({1,4,7},{2,5,8},1{3,6,9})
n:{LliALilii

21’7’7’7’21'7’7'7'21}

Consider event E = {1}. Then LE = {1, 2, 3) and L%E = {1, 4, 7). Suppose
p > 3/7; then B! L%E = B%LE = @. Thus the stochastic potential can be no more
than 3/7. Suppose 1/7 < p < 3/7. Then BYL%E = (4, 5, 6, 7, 8, 9}, BLLIE = (2,
3, 5, 6, 8, 9} and B% B L% =~ BY,B%L'E = Q. By the symmetry of the example, an
analogous argumént applies for any other singleton event. So the stochastic
potential of this information system is 3/7. The idea of stochastic potential
is closely related to Mondgrér and Samet’s notion of common p-belief. An event
is said to be common p-belief if and enly if everyone believes with probability
at least p that everyone believes ... etc.. that E is true. It can be shown that
if p is greater than 1 minus the stochastic potential, then no event other than
2 is ever common p-belief.

We would like to characterize the possible stochastic potentials of
information systems. The following property of the belief operator Bip when p

> 1/2 will be useful. We write ~E for the complement of event E in Q.

LEMMA 4.1. Suppose p > 1/2. Then [BI B! ]*~E C ~[BI B ]*E, for all events E, k

> 1.

PROOF. w € BY.F n B! ~F implies x[F|PY(w)] > 1/2 and n[~F|Pi(w)] = 1 - x[F|P}(w)]
> 1/2, which gives a contradiction. So B F n B'~F = &, for all events F.
Therefore B!,~F C ~B* F for all players and events. Iterated application of this

gives the result. |

LEMMA 4.2. [i] The stochastic potential of any information system is less than
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or equal to 1/2 J.f ‘and only if there is some private information [i.e. P(w) =
g, for some i, weqQ]. [ii]’ 'i‘he stochastic pofential of an information system is
strictly greater than zero if and only if there is no non-trivial common
knowledge.
PROOF. [i] Suppose p > 1/2. 1f player i has private information, then there is
an event E such that E = L'E and ~E = ~L'E. But now by lemma 4.1, [B'Bd ]*Li-E
= [BBIJ*~E C ~[B' B ]E = ~[B!,BI J*L*E. So one of [B! B ]XLi~E and [B!BI,|*LiE
is not eqixal’ to 0, for all k, so p is not the stochéstic potential. If all
players have no private information, then LE = L%E = Q, for all non—empty E, so
stochastic potential is 1. [ii] Suppose there is non-trivial common khowledge;
then there exists an event F »  such that P!(w) C F for all weF. Now if p > 0,
[BYB%,]XL'F = [BZ,BY,]XL?F = F » Q for all k, so p is not the stochastic potential.
1f there is no non-trivial common knowledge, let p = mingn(w). Now B E = I'E,
for all events E. But [LJ)¥E = O for some k by no non-trivial common
knowlédge. I
We can check that 1/2 1is not only an upper bound on the stochastic
potential, but is also attained for some information systems. For éxample, the

information system in the leading example of section 2 has a stochastic potential

. 1 a |.
of min {.1_.:&, '1-47&}'

-stochastic potential is 1/2.

so that if there is a uniform prior (ie, a = 1), the

Information systems with the structure of overlapping information sets of
the leading example arise naturally in many classes of problems w‘here there is
a lack of common knowledge. Examples include the co—ordinated attack problem of
the computer science literature [Halpern (1986)], the electronic mail game of
Rubinstein (1989) and the hidden envelopes trading problem of Geanakoplos (1992).

In section 8, we show that if uncertainty is generated by some symmetric

19
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and local noise in an infinite state space, the stochastic potential tends to 1/2

as the noise tends to zero.

Section 5: p-Dominance

The infection argument depends on the relation between the stochastic
potential, introduced in the last section, and properties of the payoffs of the
games being played. This section introduces those critical properties. In order
to ensure that a pair of actions (a'!, a?) is going to infect the state space, we
require a probability p such that a! is a best response for player i to al, just
as long as player i assigns at least probability p to j choosing action al

(regardless of what probability he assigns to other possible éctions).

DEFINITION. Action pair (a!, a?) is p-dominant in the state w game if, for (i,j)

= (1,2) and (2,1), and for all b! € A! and b? € A2,

pgilai,al;e) + (1-p)gil(al,b’;w) > pgi(bi,a? ;) + (1-p)gi(bi,bl;w).(5.1)

This definition is equivalent to requiring (a!, a%?) to be p-—dominant in
every two-by-two game generated by restricting the multi-action game to actions
sets B! = (a!, b}, B2 - {a®, b?) for some b! € Al, b% € A2.
| Notice that if (a', a?) is p-dominant for some p, then (a!, a?) is q-
dominant for any p £ ¢ £ 1. This suggests the following definition of the

critical level at which a given action pair becomes p—dominant.

DEFINITION. If action pair (a!, a2) is p-dominant for some 0 < p < 1 in the
state w game, we say that the critical dominance level of (a!, a?) is the infinum

of the set of p's for which (a!, a?) is p~dominant.
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Notice that since p-dominance is defined by means of a strict inequality,
the action pair (a!, a?) is p—dominant if and only if p is strictly greater than
the critical dominance level of (al!, a%).

We also note in passing that the notion of p~dominance unifies a number of

standard concepts: (al, a?) is a strict Nash equilibrium if (a!, a?) is l-dominant

1 2

_and actions al and a®? are dominant actions if (a!, a?) is O-dominant (these
;onéepts are defined on p.13 in equationé/(3.1) and (3.2)).

Finally, notice that the notion of p—dominance iﬁtroduced here is closely
related to Harsanyi and Selten’s k1§88) notion of risk dominance. To see why,
observe that action pair (a', &%) is 1/2-dominant in the state w complete

information game if, for (i,j) = (1,2) and (2,1), and for all b! € A! and b?% €

A%,

tgilai,al;e) + 2gi(al, bl;0) > 2gi(bi,at;0) + 2gi(bi, bl 0).
This exactly coincides with Harsanyi and Selten’s risk-dominance in 2 by
2 games. For many action games, the notion of 1/2-dominance is more stringent,
as it makes comparisons between every action pair, not just between Nash
equilibrium action pairs.

The key step in the infection argument uses an alternative characterization

of p—dominance which is stated in the next lemma.
LEMMA 5.1. Action pair (a!, a?) is p~dominant if and only if for (i,j) = (1,2)

and (2,1), for every probability distribution A on A! such that A(al) 2 p, and

every bt € A*,
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Y A(bI)gi(al,blie) > T A(bI)gi(bi,al;e). (5.2)

blea’ blea?

i is the unique best

This lemma tells us that if (a!, a?) is p-dominant, a
sponse for player i as long as he believes that the other player will play a
h probability at least p. If p = 0, the lemma states that an action is a best
sponse to any conjecture over the other player’s actions.

)OF Notice first that if p=1, (5.1) and (5.2) are trivially equivalent. So
restrict ourselves to p < 1. Now suppose (5.2) is true. Then in particular
2) ié true for A(al) = p, A(bd) = 1l-p, for any b3 € A}, This gives (5.1).

wersely, suppose (5.1) is true. For any probability distribution ) on A with

3y > p, (5.2) implies:-

[1] p(1-A(al))g;lat,a’;e) + (1-p) ; A(blygital,b?;a) >
bIea’

p(1-A(al))g;(bf,a%;0) + (1-p) ?: A(b))gi(bi,bl;w)
2] (A(ad)-p)gi(ai,al;w) z(A(aJ)-p)g (bi,al;w)

ming these constraints gives

(1-p) Y, A(bI)gi(ai,bi;e) > (1-p) ; A (b7)giipi, bi;e),
bleat blea’

| thus (5.2). ‘ i

An example will illustrate the character of p—dominance and the relation

risk~dominance. Consider the following symmetric game.
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player 2
L C R
T 7,7 0,0 0,0
player 1 M 0,0 2,2 7,0
D 0,0 0,7 8,8

This game has three strict Nash equilibria: (T,L), (M,C) and (D,R). Risk
dominance in Harsanyi and Selten (1988) involves pairwise comparisons of these
strict Nash equilibria: (T,L) risk dominates (M,C), (M,C) risk dominates (D,R)
and (2,R) riskrdominates (T,L). The notion of p-~dominance we introduced is
global, in the sense that each strict Nash equilibrium action pair is being
compéred with every other pair of actions. In our terminology, the critical
dominance level of (T,L) is 8/15: thus (T,L) is p—dominant for every p strictly
greater than 8/15; (D,C) is p—~dominant for any p greater than 7/9; (D,R) is p-~
dominant for any p greater than 2/3. This example illustrates two properties of
p~dominance proved in theorem 5.1 below: if there is more than one p-~dominant
action palr, then p is more than 1/2; and, generically for games with pure
strategy equilibria, there is some p for which there is a unique action pair
which is p—dominant. In the example, for any 8/15 <p < 2/3, (T,L) is the unique
p—~dominant action pair. For p < 1/2 the relationship is cyclical, and we cannot
singlé out an action pair which p dominates every other action pair. On the
other hand, for certain classes of games it is possible to find a unique p~

.dominant action pair for p £ 1/2. Such games will be shown in the next section.
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THEOREM 5.1. [i] If p < 1/2, there is at most one p—dominant action pair.
[ii] Generically in payoffs, every game has either only strictly mixed Nash
equilibria or exactly one p—dominant Nash equilibrium action pair (a!, a?), for
some p.
PROO¥

[i] Suppose p < 1/2, (a', a&?) and (b, b?%) are p—dominant and a' » bi,

Then we have the contradictory implications:-

s9ital,a%;0) + 2gi(al, bl0) > 2gi(di,ad;0) + 293 (bi, 0T a),

2gi(bi,ad;0) + gl (bi,bli0) > 2gi(al,a’;e) + 1gi(al, bl;0).

[ii] If there is a pure strategy Nash equilibrium, then generically there is at
leaét one strict Nash equilibrium. Generically, the critical p-dominance of
every stfict Nasﬁ equilibrium will be different. For example, if (al, 2%) is a
étrict Néshlequilibrium,vadding £ to eaﬁh player's payoff from action pair (a!,
a?) wiil.always decreése the‘critical dominance level of (a!, 2?) and will weakly

increase the critical dominance level of every other strict Nash equilibrium

pair. I

Section 6: Separable Compatibility Games

Focusing on games with pure-strategy Nash equilibria, theorem 5.1 shows
that we can find a small enough p for which only one Nash equilibrium is p-
dominant. On the other hand, the example before theorem 5.1 shows that this p
may exceed 1/2. 1In this section we provide examples of games with multiple
equilibria, but where one of the equilibria is p—dominant for p < 1/2. 1In the

next section we show that such examples are key to the nonvacuousness of the
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infection argument. in general multi-action games.

Consider then the following ‘partnership game’. There are two players who
| play a symmetric game in which they both pick ‘effort levels’. The payoff to
each player increases in his own and his partner’s effort, but decreases the
further apart these effort levels are (perhaps, because the two players have to
spend some time rectifying the difference between their resulting abilities).
Another scenario whiéh fits this description is where each player chooses a
technology which may not be fully compatible with the technology chosen by her
oppenent. In such circumstances players are penalized the further apart their
technologies are. The payoff function corresponding to such scenarios can be

written as

gi(at,ad) = u(al,ad) - d(at,ad),

where at, 2l € A, a common action set, u is a (symmetric) gross.payoff and d(e,*)
1s a distance function? which reflects the cost of incompatibility. As a special
case of this we might have A = R,, u(al, ad) = xa* + (1-A)a) - p!, for some X €
(0,1) and some p! > 0 (representing the cost of action i) and d(a!, al) = d |at -
adl, where |~| represents "absolute value", and d is a positive constant. For
d sufficiently large all diagonal elements, (a!, a') for all a' € A, are Nash
equilibria.

Assume now that there exists a dominant action -say a"- for the gross
payoff u (this action need not be dominant for g). Then this action (played by
both players) 1/2 dominates every other action pair in the g game. To see that

note that

2d(+,+) satisfies d(a,a’) = d(a’,a), d(a,a) = 0 and d(a,a’’) < d(a,a’) +
d(af’aff).
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gla*,a*) + g(a*,a’) >g(a,a*) + g(a,a’)
and only if

u(a*,a*) - d(a*,a*) +u(a*,a’) - d(a*,a’)

> u(a,a*) - d(a,a*) +u(a,a’) -d(a,a’),
ch holds because a" is dominant in u (so u(a*,a") > u(a,a”) and u(a*,a’) >
,ad), and because of the triangle inéquélity as applied to d. 1In the

ticular example the dominant action is the one for which Aal — p! is maximal

r al % A.

This example exploits the symmetry of the distance function d, selecting

equilibrium solely on the basis of asymmetry in the gross payoff function, u
, on the basis of the tradeoff between effort and cost alone). Analogously,
can create examples with a symmetric u function, and select an equilibrium on

basis of asymmetries in the distance function (ie, on the basis of
omﬁatibility considerations alone). Consider the case where A = R,, u(a, a’)

(a constant), and 'd (a, a’) = c(|a - a’l._

 Then if we let a* be the effort level for which c, is maximal (ie, this is

effort level from which it is most costly to deviate), we have:

gla*, a*) + g(a*, a’) > g(a, a*) + g(a, a’)
and only if
co|la’ - a"| < cp|a” 1\a| + cola - a|,
ch holds because c* S ¢,y and because of the triangle inequality.
Finally note that these examples are robust in that slight perturbations

their payoff functions (g) leave us with games in which one equilibrium is p-

inant with p < 1/2.
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tion 7: Stochastic Potential, p-Dominance and Risk Dominance

We are now in a position to state the main theorem of the paper for finitg
jncomplete information games. There are a number of different ways in which our
characterizations of p—dominance and stochastic potential can be ﬁsed, via the
infection argument, to pin down outcomes. Theorem 7.1 considers a situation
vhere some action pair (al!, a?) is p-dominant everywhere, where p 1s the
stochastic potential of the information system, and where, in addition, there is

some state where at

is known to be strongly dominant for some player. In this
case, we know that action a! will be taken somewhere on the state space, so the
infection argument is allowed to operate.

On the other hand, the corollary which follows mékes no assumption about
a strongly dominant action somewhere on the state space. Instead, the corollary
makes a conditional claim., Suppose there is a pure strategy Bayesian Nash
equilibrium where the p—dominant action pair are played. Then it must be played
everywhere. It is important to note, though, that this statement is not
‘reversible’, ie, it can be made only about one Bayesian-Nash equilibrium.

Therefore, starting from any other equilibrium the infection argument may ‘get

stuck’ somewhere.

THEOREM 7.1. (1] Suppose that [1] the information system has stochastic
potential of p; [2) (a', a®) is p-dominant at every state; and [3] some player
i at:some state w" knows the event "a' is a strongly dominant action”. Then
playing (a', a?) everywhere is the unique Bayesian Nash equilibrium of the

incomplete information game.

PROOF. [i] Suppose (o', ¢2) is a (possibly mixed strategy) Bayesian-Nash

arm1ilibrium of the cvame where gi* Q - A(AYY and ol measurable with respect to




- Let 0! = { weB | o*(w)(a') =1 ). Thus @' is the set of states where i plays

> pure strategy a' in the given equilibrium. Now by [2], B*;,ﬂJ c Q. Let E =

©"), i.e the event where a! is strictly dominant everywhere for some player

By construction, L'E = E. Clearly, E c O'. Therefore B} E c B a' c 9. Thus
induction [B4,B3,JXE C 0 and BI,[BL,BI,]%E c @ for all k. But by [1] [BL,BI J*E

3, (B*B%)*E = @ for some k. So ! = 0 - Q. |

XOLLARY 1. Suppose that [1] the information system has stochastic potential
p; [2] (a', a%) is p-dominant at every state. Suppose that s is a pure
rategy Bayesian Nash equilibrium of the incomplete information game, with s*(w)

at for some i and some w. Then playing (&, a?) everywhere is the unique

resian Nash equilibrium of the incomplete information game.

The following observation may help clarify the difference between theorem
| and corollary 1. Observe that the (Bayesian) game described in the theorem
in fact dominance solvable; that is, 1terated deletion of strategies which are
:ongly dominated in the incomplete information game leaves playing the
scified action pair (a!, a?) everywhere as the unique iteratively undominated
d thus rationalizable) strategy pair. In the game described in the corollary,
srated deletion will typically have no bite. Thus it could be that there are
» action pairs which are strict pure stfategy Nash equilibria at every state,
which case we know that there are fwo simple Bayesian Nash equilibria where
:H of these action pairs is played everywhere. Nonetheleés, if one of these
tion pairs is p-dominant for p < 1/2, the conditional statement of the
rollary

can be made in reference to it, but not in reference to the other

1ilibrium. As a special case of this consider the classes of games in section
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6. Then we have shown that there exists a unique action pair which is p—dominant
for p < 1/2. Therefore if we know that this action pair was played somewhere
(and no matter how unlikely the contingency was), then we can infer that it is
played everywhere. An analogous claim about any other equilibrium is impossible.

More precisely we have the following (which is a special case of corollary 1).

COROLLARY 2: Suppose that (a!, a?) is a risk-dominant action profile at every
state, and that the stochastic potential is sufficiently close to 1/2. Then if

st(w) = a! for some i and some w then (a', a?) is played everywhere.

Notiée that if each player has only two possible actions, corollary 2
implies that in any pure strategy Bayesian Nash equilibrium, only "simple”
strategies are played. That is, there ﬁay be a pure strategy BNE where each
player takés the action which is not in the risk—-dominant action profile. But
| if one of ;isk;dominant actions is ever taken, each player takes the risk-—

dominant:écﬁidn everywhere by corollary 2. This argument need not apply when

" there are more than two actions.

Section 8: A noisy information system

Theorem 7.1 has power only if the stochastic potential is significantly
above zero. It has most power 1f the stochastic potential is at or close to its
maximum possible vélue, 1/2, so that we can guarantee that a risk dominant action
is chosen. How likely or unlikely are we to get close to 1/27?

If there is a uniform prior in the leading example of sec:ion 2 (i.e, a=
1), then the stochastic potential is actually equal to 1/2. Althqugh there are
well known stories generating information systemsbﬁith that structure, it is

rather épecial. In a finite state space, a stochastic potential of 1/2 must be



zed to be a rather extreme property.

On the other hand, with continuous signals (and thus an infinite state
e}, there are circumstances in which a stochastic potential of 1/2 arises
y naturally. Suppose that there is some true “circumsfance" describing the

ld, which is distributed along a continuum. But one or both players observe

oisy version of the signal ~ that 1is, they observe some signal which is

netrically distributed around the true circumstance, and whose support is
irely within ¢ of the true circumstance. What probability does one player
ign to the other player observing a signal to the left of his? 1In this
-ion, it is shown (in lemma 8.4) that, for any q < 1/2, we can choose ¢
Ficiently small such that this probability is greater than q.

This would imply that, if we extended the definition of stochastic
ential to infinite state spaces, we could find, for any q < 1/2, some ¢ > 0
1 that if the support of the noise is all within ¢ of the true circumstance,
stochastic potential is more than q. Therefore as ¢ - 0 we can generate a
~hastic potential which is as close to 1/2 as we wish. However, defining
lef operators on infinite state spaces raises some somewhat tangential (for
purposes) issues concerning conditional probabilities on zero probability
1ts. Rather than deal with these issues in general, we provide a direct proof
- the noisy information system described here leads, via the infeétion
iment, to a globally risk dominant action to be played everywhere.

The framework of this section is similar to that of Carlsson and van Damme
92y, and yields the same qualitative conclusions. One difference is that
lsson and van Damme exploit continuity between the state space and payoffs to
ive a stronger characterization of when the risk dominant outcome is played.

the other hand, our framework does not depend on that continuity,

Let us introduce the set of circumstances as the circle with unit radius,

oted by €. Nature chooses a circumstance according to a continuous density
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p(+), where p(x) > 0, for all x e C.
There are two players — player 1 and player 2. Player 1 can observe the
true circumstance perfectly, but player 2 has some noise in his signal. The

state space O is the product € x €. Geometrically, I is a torus — that is, the

surface of a doughnqt whose cross section is €. The state w = (x,y) represents
the combination in which the true circumstance is x and player Z observes the
méss_age y. We adopt the notational convention in which, for x e € and real
number a, the expression x + a denotes the point in C which may be reached from
x by rotating clockwise by a radians. Hence, x = x +2mn for any x and integer
n. O may be represented as in figure 3 as a square with side 27, with the
understanding that the left border is commected with the right border, and that

the top border is comnected to the bottom border.

Yo+ 7 0
1
y Yo
l
Yo— 7
- T -+
[Figure 3]

We shall follow the convention of denoting by X the random variable whose
realization is the true circumstance, and denoting by Y the random variable whose
realization is the message received by player 2. 1In other words, X is the
function X:0© -+ € such that X(w) 1is the first component of w, and ¥ is the

function Y:9 -+ € such that Y(w) is the second component of w.

31



The joint density over 1 is parametrized by number £ for which 0 < £ < =,
is given by:
f(x,y,e) = p(x)n(x,y,¢)
y,£) represents the noise in 2’s signal which is independent of the choice
he true circumstance. n(x,y,£) is continuous and satisfies the following

e properties.

xX+a

) xIry(x,y,.‘:)dyal ® a>c¢
a
) n(x,x+a,e) = n(x,x-a,c), Vx,va.
) n(x,x+a,eg) = n(x’ ,x’ +a,e),Vx,Vx’ ,Va.

first condition states that, conditional on x being the true circumstance,
noise has support [x—g, x+e]. (AZ) states that the noise is symmetric around
true circumstance, and (A3) states that shape of the noise is invariant to
true circumstance. We can represent the support of the density I in terms
he shaded diagonal strip and the two shaded corner pieces as represented in

re 4.

2n| 777 Q

% ]

[Figure 4]
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We then have:
1FMMA 8.1 (A2) and (A3) imply that n is symmetric in the fist two comporéents.
That is, for any x,y, € C,

n(x,y,€) = n(y,x,¢e).

PROOF .

n(x+(y-x),y+(y-x),e) by (A3),
n(y,y-(y-x),e) by (A2),
n(y,x,€). B

n(x,y,t)

The following is an immediate consequence of this lemma and (A2).

X+

: y
(A4) ![ n(x,y,e)dx = )Ln(x,y,e)dx = .%., VyeC.

We shall be interested in the following probabilities. We denote by:

Prob,(yo-1 S X < yo|Y = y,)

the probability that the true circumstance lies in the half circle to the left
of y, givén' that the player 2 has received the message y,, when the noise is

given by n(x,y,e). In other words,

Y Yot
Prob (y, - xS X<y|Y =yg) = I f(x,yo,e)dx/AJ. £(x,y,,e)dx
S

b Ouud

The following probabilities are defined analogously.
Prob.(y, + 7 2 X 2 ¥o|Y = y)

Prob (xy - ® £ Y < x| X = x)
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Prob (x, + x> Y 2 x,|X = xp) .
e shall appeal to the following features of these probabilities. The proofs are

resented in the appendix.

EMMA 8.2.
Prob (x, - 7 S Y < x| X = x;) ==.;'., Vxg, Ve, (8.1)

Prob, (y, -ﬁSXSyo|Y=yo)-'.§., as £-0, Vy,. (8.2)

FMMA 8.3. For any q < % and ¢ > 0, there is a § > 0 such that, for all x,

C we have:

Prob,(x, - * S Y < x,|X =%, + 8) > ¢ (8.3)

Prob,(xy - 2 Y > x4|X = x4 - 8) > q. (8.4)

EMMA 8.4, For any q< %.,there is an £* > 0 such that, for all y, € € and all

PrObe(Yo“’5X-<-Yo|Y=Yo)>q (8.5)

Prob,(yo - ®* 2 X 2 yo|Y = y5) > q. (8.6)

iquilibrium in Bayesian Games.

With these preliminary results, we can address the question of what actions
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will be played in equilibrium. The two players face a game G in which the action
sets A! and A? are finite. The strategy of player 1 is denoted by s!, where s?!
is a function which maps each circumstance x € C to an action in A'. Player 2's
strategy s? is a function which maps each realization y € € of player 2's message

to an action in A%2. If strategies are best replies to each other given some

level of nqise e, we shall say that these strategies are an gquilibrium of the

Bayesian game with noise ¢,

We shall be interested in the case in which the game G has a .;'.—dominant

equilibrium. In other words, there is some action pair (al, a?) and some

critical dominance level q<.% for which, as long as player 2 places

probability greater than q on a?, player 1's unique best reply is to play a', and

1

conversely, as long as player 1 places probability greater than g on a*, player

2's unique best reply is to play a?. We have the following theorem.

THEOREM 8.1. Suppose G .has a %—dominant equilibrium (a', a2?). Then, there
are numbers £* > 0 and 6 > 0 such that, for any non-empty open interval (b,c) and
any equilibrium of the Bayesian game with noise ¢ < ¢*, if s!(x) = a! for all x

€ (b,c), then s¥(x) = a! for all x € (b - &8, c + ).

2r Q
c
1
Y
1l b
b=b-6
d=c+6
0 1) cd o2n
“- T =+
[Figure 5]
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OOF. Let q‘<.% be the critical dominance level for the .%—dominant

uilibriumb(al, a?) of G. Consider player 2’s inference problem when faces with
e message b € C. Refer to figure 5. By lemma 8.4, there is some benchmark &*
0‘sucﬁ that, for any ¢ < ¢* and any w € @, player 2 places probability greater
an q¢ on the event (wlb s X(w) s ¢) for a sufficiently small value of the

nchmark £*. Thus, for all ¢ < &,

Prob (b< X< c|Y =b) >gq. (8.7}

an exactly analogous argument for the message c € €, we have:

Prob (b<X<cl¥ =¢c)>q. (8.8)
r any message yo € (b,c), if ¢ < ¢" player 2'p1aces probability greater than
on the event (w|b s X¥(w) = ¢}). Hence, together with (8.7) and (8.8), for all

< £, we have:

Prob,(b<X<c|Y =y,) >q, Vy,€ [b,c]. (8.9)
hypothesis, the action pair (a!, a?) is a .%-dominant equilibrium of G, and
is the critical dominance level of this equilibrium. Also, by hypothesis,
ayer 1 plays al on the event (w[X(w) € (b,c)}. Thus, by (8.9), player 2 plays
on the event (w|X(w) € [b,c]).

We now turn to player 1°’s inference in the neighborhood of the states in
|X(w) = b) and (w|X(w) = ¢} given that player 2 plays a®? on the event (w|Y(w)
[b,c]}. By lemma 8.3, for any level of nolse &, there is a number & > 0 which

uniform across the states such that, given the message x, — §, player 1 places
obability greater than g on the event {wlxb £ Y(w) = x, + x}. In particular,

r states w for which X(w) = b - 5§, player 1 places probability greater than g

- the event {w|b € Y(w) = b + n}). Hence,
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s

Prob(bSY<c|X=b~5)>q.
gimilarly, by lemma 8.3, there is some § > 0 which is uniform across the states

such that, when faced with the message ¢ + &, 1 places probability greater than

g to the event {w|b < Y(w) < c}J. That is,

Prob (b<Y<c|X=c +8)>q.
Since player 2 plays a? on the event (w|b < Y(w) < ¢}, and since (a!,a?) is a .%
dominant equilibrium with critical value ¢, player 1 plays al on {le(w) =b - §)
and on (wIX(w) = ¢ + 8). Moreover, player 1 plays al given every realization of

X between b - § and ¢ + &§. This implies the statement of theorem 8.1. ]

COROLLARY. Suppose G has a'.%—dominant equilibrium (a!,a2?). Then, if &l is
played on any non—-empty interval of the set of circumstances, then (al,a?) is

played at every state.

PROOF.  Since ¢" and 6 are defined independently of the interval (b,c), theorem
1 can be applied to (b-&, c¢+8) to yield the conclusion that al is played by 1
given any message in (b-28, c+28). By iteration, al is played by 1 everywhere

on 1. Hence, (a',a?) is played everywhere on Q. _ |

ection 9: Conclusion
This paper introduces the idea that the existence of higher order
uncertainty can actually pin down outcomes in games with multiple equilibria.
The essence of the idea is that a ‘'small grain of knowledge’ can be extrapolated
to have implications at states that are completely different from the state where
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the knowledge was originally available. For instance, in the example of section
2 an investor’s decision is sometimes dictated by the fact that the other
investor knows — in some set of circumstances — something which he does not
know, althdugh he also knows that such knowledge is certainly not available in
the present set of circumstances. Therefore it is sometimes possible to
determine the action taken in one state on the basis of which action is taken at
another state.

This idea is already suggested in Rubinstein’s electronic mail game
example, where the risk dominant action pair in a 2x2 game turns out to be the
selected equilibrium. Here we develop this idea in a broader context, showing
that the appropriate generalization of risk dominance is p—dominance, and that
whether a unique equilibrium is indeed selected depends on the specification of
the information structure (in particular, its stochastic potential), and on the
level of p—dominance of the different action profiles. These two concepts—p-
dominance and the stochastic potential-might be of independent interest apart
from how (and whether) they determine which equilibrium is selected.

We close by indicating a few directions for future research. First, our
focus here has been on generating sufficient conditions for the infection
argument to work. It would be of interest to generate necessary conditions as
well, delineating thereby the exact circumstances when the infection argument has
power. Second we have analyzed systematically only the finite information
structure case, where a large stochastic potential (close to 1/2) is rather
unusual. On the other hand, the example in section 8 shows that it is quite easy
to generate a stochastic potential close to 1/2 in an infinite state space. It
remains an open question whether this is an artifact of the ‘geometric’ nature
of the example or whether this feature arises more generally in a continuous

framework. We hope to address these issues in future work.
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Appendix

)F OF LEMMA 8.2. TFor (8.1), note that:

b (X - S Y < x| X = xp)

Xo Xyt
J- f(xo,}"i)dY/ J- f(xo,}’af)dy
X3 g

Xy+n

X,
p(xo)J n(xo,5,€)dy/p(x,) I n(xy,y,€)dy
- Xg—

-1/2, by (A2).

'8.2), we start with two definitions. For some point y, € C and ¢ > 0, let:

M(yy,¢) = max{p(x) |y, - e <x <y, +¢)

m(yp,€) = min{p(x) |y, - e Sx <y, + €).

. numbers are well-defined since p is continuous, and the closed interval is

wct. Also, since p(x) > 0 for all x, both m(y,,¢) and M(y,, €) are positive.

Y,

» Yot?t
Prob, (7, - # < X < yo|Y = yp) = j p(x)n(x,5,,¢)dx/ f p(x)n(x,7,,£)dx
Yo

Ol

Yo

Yot
< M(3p,€) f n(x,¥0,)dx/m(yy, ) j n(X,¥,,£)dx
Yo

Yo
1 {#(¥o,€)
= b .
Y[—(_—fm ey | By 49
similar argument,

m(yp, €
Prob (7, - ® S X < y,|Y = y,) 2 %F(%‘)}
Q>
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1 |m(yo,¢) - . 1 [M(yo,¢) (*%)
- yO,?y:lSProb:(yo r<X<Sy|Y =y, < “Z[iﬁ@ﬁy .

gince p is continuous, the expressions in square brackets tend to 1 as ¢ tends

to zerc. Hence, the probability in question tends to a half as ¢ tends to zero.[}

PROOF OF LEMMA 8.3.

X,

Prob (% -7 <Y< x0|X =X, +0) = f(x,+6,y,€)dy/ I f(x,+0,y,¢)dy
xg-1

# d—=r f—u

x,ﬂl‘
n(xy+6,y,€)dy/ J. n(xo+6,y,£)dy
x-n

'I(xo"é,)’,t)d}’-

&
&)

From lemma 8.2, this expression tends to 1/2 as & tends to zero. Thus, there is
8 > 0 for which the expression is strictly greater than q. Moreover, by (A3),

this 6 is uniform across all x, € C. By symmetry, (8.4) also holds. |

PROOF OF LEMMA 8.4. Denote by p,, the minimum value of p(x) over C. This
value is well-defined since p is continuous and C is compact. Moreover, the
compactness of C implies that p is uniformly continuous over C. Consider the

positive number (1-2¢)ppin. By uniform continuity, there is ¢* > 0 such that:
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