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Abstract

We recover valuations of time using detailed data from a large ride-hail
platform, where drivers bid on trips and consumers choose between a set
of rides with di↵erent prices and wait times. Leveraging a consumer panel,
we estimate demand as a function of both prices and wait times and use
the resulting estimates to recover heterogeneity in the value of time across
consumers. We study the welfare implications of personalized pricing and its
e↵ect on the platform, drivers, and consumers. Taking into account drivers’
optimal reaction to the platform’s pricing policy, personalized pricing lowers
consumer surplus by 2.5% and increases overall surplus by 5.2%. Like the
platform, drivers benefit from personalized pricing. By conditioning prices
on drivers’ wait times and not on consumers’ data, the platform can capture
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simultaneously benefit consumers.
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1 Introduction

The trade-o↵ between time and money is an important component of all trans-

portation markets, where consumers often face the choice of paying a higher price

for faster or more immediate travel. How consumers resolve this trade-o↵ partly

determines the demand for transportation services and therefore the benefits of

policies, such as infrastructure investments, congestion taxes, and pricing. The

rise of ride-hailing platforms has made this trade-o↵ between time and money

more salient: platforms o↵er consumers an increasingly tailored set of options,

making reducing the time spent waiting more or less expensive. Relying on the

ability to quote prices to consumers on a smartphone app, these platforms can

also fine-tune their prices to specific observables, such as time of day and location

or aggregate market conditions. Recent work has established the e�ciency gains

of more sophisticated pricing policies relative to traditional taxi markets (see, e.g.,

Buchholz, 2022; Castillo, 2019; Rosaia, 2020).

At the same time, ride-hail platforms engage in frequent interactions with con-

sumers, allowing them to learn about consumers’ sensitivity to prices and wait

times. Consequently, these platforms can assess consumers’ willingness to pay for

reduced wait times, which we refer to as their value of time. Although this ability

enables platforms to provide consumers with better tailored options, it also allows

them to engage in personalized pricing.

The welfare e↵ect of price discrimination is known to be ambiguous and thus a

matter of empirical measurement (Pigou, 1920). However, such measurement is

challenging for a number of reasons. Obtaining credible estimates of a single con-

sumer’s preferences requires the analyst to have access to substantial amounts

of observational data for any given consumer. Two-sided markets, such as ride-

hailing platforms, exacerbate this challenge because any changes to consumer pric-

ing necessarily impact the other side of the market. Thus, to measure the welfare

implications of pricing policies, the analyst also needs to account for the supply

side’s incentives.

In this paper, we use detailed consumer choice data from a large European ride-

hailing platform, Liftago, to measure the welfare implications of price discrimina-

tion on the basis of consumer heterogeneity in the value of time. We make two

primary contributions. First, relying on the unique features of our setting, we

obtain estimates of the heterogeneity in the value of time across consumers on the

platform by estimating a demand system that depends on both prices and wait
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times. Second, we use these estimates to quantify the welfare e↵ects of platform

pricing policies that exploit the heterogeneity in consumers’ value of time to price

discriminate. As part of this exercise, we estimate a model of driver bidding be-

havior, which allows us to infer drivers’ opportunity costs of serving rides. This

approach allows us to account for the payments that are necessary to incentivize

drivers’ participation under di↵erent counterfactual pricing policies.

To measure consumers’ preferences over time and money, we exploit the unique fea-

tures of Liftago’s ride-allocation mechanism, which allows consumers to directly

express preferences over price and wait time. Liftago allocates rides through a

rapid auction process in which nearby drivers bid on ride requests. Requesting

consumers then choose between bids based on various characteristics. Most im-

portantly, bids often involve a trade-o↵ between price and wait time, allowing us

to observe how consumers resolve this trade-o↵. We observe consumers’ individ-

ual choice sets as well as their ultimate selection for 1.9 million ride requests and

5.2 million bids. Because we observe the same consumers repeatedly interacting

with the platform, we can recover persistent di↵erences in the value of time across

consumers.

Our demand results quantify how much consumers respond to changes in both

price and wait time, as well as the underlying persistent heterogeneity in this re-

sponse. Price elasticities are four to 10 times as large as wait-time elasticities.

Expressed as an hourly quantity, we find that consumers’ value of time (hence-

forth, vot) is on average $13.21. Although these measures vary widely within the

day and across space, most of the variation is driven by latent di↵erences across

riders independent of observable sources of variation. Ranking individuals by their

relative sensitivity to prices and wait times, we find the vot of the top quartile is

about 3.5 times higher than that of the bottom quartile.

We then use our demand estimates to study the welfare e↵ects of platform pricing

strategies that exploit the heterogeneity in consumers’ preferences over time and

money. We allow the platform to use consumers’ historical data as an input

to pricing and analyze the impact of di↵erent forms of personalized pricing on

consumer welfare as well as driver and platform profits. Because of the increasing

abundance of consumer data, the potential consequences of personalized pricing

are the subject of recent policy debate.1 In our counterfactual, we allow the

1See, for example, White House Council of Economic Advisors (2015), OECD Directorate for
financial and enterprise a↵airs, Competition Committee, Note by the United States (2016), and
Bourreau and De Streel (2018).
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platform to o↵er a menu of trips to the consumers and separate payments to

drivers to ensure their participation. In contrast to the current platform policy,

where the platform collects a percentage fee and directly implements drivers’ bids

as prices, we allow the platform to directly choose the price the rider faces.

An important piece of our counterfactual exercise is the estimation of a model of

driver bidding. As discussed above, a unique aspect of platform price discrim-

ination is that di↵erent forms of platform pricing have implications for drivers’

earnings. Consequently, the platform’s costs of procuring a ride are endogenous

to its pricing policy. Thus, drivers’ incentives act as a constraint on the platform’s

ability to benefit from price discrimination. As a result, how additional surplus is

split between the platform and the drivers is not immediately clear. To the best of

our knowledge, ours is the first study to consider how personalized pricing a↵ects

the supply side in platform markets. This is relevant for many other platform

settings because platforms observe consumer data that suppliers do not.

Our model of driver bidding allows us to infer drivers’ opportunity cost of serving

a ride and evaluate drivers’ incentives. In choosing their bids, drivers weigh the

revenues from a trip against the value of their outside option, which is heteroge-

neous and privately observed by drivers. We adopt methods from the empirical

auction literature (Guerre et al., 2000; Jofre-Bonet and Pesendorfer, 2003) that

allow us to map from observed bids to costs that capture these opportunity costs.

Having estimated the platform’s demand and supply of rides, we quantify the

welfare e↵ects and the platform’s profits from personalized pricing. Relative to

the baseline scenario in which o↵ers are determined via a competitive auction and

the platform only collects a 10% fee on the winning bid, personalized pricing leads

to a threefold increase in platform profits but a decrease in overall welfare, most

of which comes from reduced driver profits (-74%), increased ride prices (+7%),

and fewer trips being completed on the platform (-20%).

Relative to the baseline, personalized pricing allows the platform to both exercise

its market power—by setting prices on both sides of the market—and use its

information about consumer preferences. To understand the e↵ects of each of these

changes separately, we consider an intermediate counterfactual, uniform pricing,

in which the platform sets prices on both sides of the market but does not condition

its pricing policy on individual consumer preferences. This counterfactual captures

the platform’s gains from centralizing pricing given the consumers’ and drivers’

outside options. We find uniform pricing explains most of the losses in consumer
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welfare and driver profits relative to the baseline scenario. Consumer surplus

decreases by 36% and driver profits decrease by 74%. The number of requests

in which all trip o↵ers are rejected increases from 36% to 49% because of higher

prices.

Relative to uniform pricing, personalized pricing has a small but negative e↵ect

on average consumer welfare. This aggregate loss in consumer surplus, however,

masks interesting distributional e↵ects across consumers. Indeed, most consumers

(62.5%) benefit from personalized pricing, but these gains are o↵set by the plat-

form’s ability to increase prices for the most inelastic consumers. Relative to

uniform pricing, average prices fall slightly under personalized pricing and the

market expands by up to 7.6%. Furthermore, conditional on the platform exer-

cising its market power, drivers benefit from the platform’s ability to incorporate

consumer information into its pricing policy, as reflected by a 11% increase in

profits relative to uniform pricing. Because both drivers and the platform benefit

while consumers surplus decreases only modestly, personalized pricing increases

welfare by up to 6.33% relative to uniform pricing.

In practice, platforms may be reluctant to use detailed consumer order histo-

ries for their pricing policies. Instead, they may o↵er menus of trips in which

trips with shorter wait times have higher prices to take advantage of consumers’

heterogeneous preferences over wait times. Indeed, pricing on estimated time-of-

arrival, or ETA-based pricing, is becoming increasingly popular among the major

ride-hailing platforms.2 Motivated by this observation, our final counterfactual,

ETA-based pricing, allows the platform to set di↵erent prices on rides with di↵er-

ent wait times, but not to condition its pricing on individual consumer preferences.

We compare what fraction of surplus ETA-based pricing can capture relative to

the case in which the platform knows individual wait-time sensitivities. We find

ETA-based pricing increases profits by 0.9% relative to uniform pricing, which is

about two-thirds of the increase from pricing on individual wait-time sensitivity.

Furthermore, overall welfare under ETA-based pricing is close to welfare when the

platform knows individual wait-time sensitivities.

Our results highlight the nuanced welfare e↵ects of incorporating detailed con-

sumer information into pricing in two-sided markets. Relative to the competitive

2For example, Lyft recently introduced “wait and save,” which grants a discount for riders
who are willing to wait longer, in turn serving faster rides to consumers who have more urgent
requests (Helling, 2023). Uber followed with a similar feature called UberX Priority; see Uber
(2023). A discussion of how Uber uses (personal) data to price is provided by Martin (2019).
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baseline mechanism where prices are set via auctions, our uniform pricing coun-

terfactual shows unexercised pricing power by the platform, which comes at a

considerable welfare cost for consumers and drivers. However, conditional on the

platform exercising this pricing power, the more information the platform incor-

porates into its pricing policy, the larger the overall welfare gains. Furthermore,

our results highlight our welfare conclusions depend on what side of the market

we look at: once we account for drivers’ incentives, drivers command a substan-

tial share of the surplus created by using more consumer information. Finally,

our results suggest that ETA-based pricing strategies can command a substantial

portion of the profits arising from personalized pricing.

Related literature As we describe below, the paper contributes to the litera-

tures on price discrimination, taxi and ride-hailing markets, and the transportation

literature that studies the value of time.

The empirical literature on price discrimination focuses on non-platform settings

and measures the benefits of second-degree (Miravete, 1996; Hendel and Nevo,

2013; Luo, Perrigne, and Vuong, 2018) and third-degree (e.g., Hendel and Nevo,

2013; List, 2004; Bauner, 2015; Levitt, List, Neckermann, and Nelson, 2016) price

discrimination, as well as di↵erent forms of nonlinear and personalized pricing

(e.g., Rossi, McCulloch, and Allenby, 1996; Shiller, 2013; Nevo, Turner, and

Williams, 2016; Dubé and Misra, 2023).3 Recent papers study price discrimination

in the context of big data; see, for instance, Ali, Lewis, and Vasserman (2022) and

Jin and Vasserman (2021) for the benefits of voluntary data disclosure, Kehoe,

Larsen, and Pastorino (2018) for personalized pricing in the market of experience

goods, Aridor, Che, and Salz (2023) for the e↵ects of privacy-protection policies,

and Doval and Skreta (Forthcoming) for how consumers’ forward-looking behavior

a↵ects firms’ incentives to collect data in the first place. Our paper contributes

to this literature in at least two ways. First, we quantify the benefits of price

discrimination in the context of a two-sided platform, which introduces challenges

relative to price discrimination in one-sided markets (see Section 6). Second, our

individual-level measurement of the value of time allows us to quantify the e↵ects

of personalized pricing on latent unobservables. This is in contrast to studies

such as Dubé and Misra (2023), in which personalized pricing is only based on

observable characteristics.
3The literature on the welfare e↵ects of price discrimination goes back to the seminal work

of Pigou (1920); see Aguirre, Cowan, and Vickers (2010) and Bergemann, Brooks, and Morris
(2015) for recent studies.
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Our paper contributes to the literatures on taxi and ride-hail markets. Some

of these papers estimate demand for taxis or ride-hailing as a function of prices

(Buchholz, 2022; Gaineddenova, 2021) or wait times (Frechette, Lizzeri, and Salz,

2019), but not both. More closely related are Castillo (2019), Rosaia (2020),

and Goldszmidt, List, Metcalfe, Muir, Smith, and Wang (2020), which, like us,

estimate demand in ride-hail markets as a function of both wait time and price,

but with a di↵erent focus and data. Castillo (2019) quantifies the benefits of

surge pricing, and Goldszmidt et al. (2020) measure the value of time through

an experiment on Lyft. Rosaia (2020) studies platform competition and the role

of platform pricing policies in determining the distribution of supply across the

platforms. Gaineddenova (2021) analyzes the e↵ects of platform pricing policies

that do not allow riders to sort in terms of their willingness to pay for a ride.

In contrast to these papers, we recover individual-level heterogeneity in demand,

which we then use to study the welfare implications of the platform’s ability to

personalize prices and steer consumers to di↵erent drivers.

Our data allow us to directly measure consumers’ willingness to pay for reductions

in wait time based on choices on the platform, which is distinct from, but related

to the value of travel-time savings, i.e., the value that people assign to shorter

trips. For this reason, our paper contributes to the literature in transportation

economics and industrial organization on the value of travel-time savings, dating

back to the pioneering work of Daniel McFadden (McFadden, 1974; Domencich and

McFadden, 1975). These studies measure the value of travel-time savings through

surveys or revealed-preference analysis based on mode choice. Small (2012) pro-

vides an excellent review of this literature. Recent studies take advantage of more

detailed micro data. Hall (2018) analyzes the benefits of choice over toll and non-

toll lanes. Kreindler (2023) experimentally measures the value of peak-congestion

pricing in Bangalore. Bento, Roth, and Waxman (2020) use commuter tollway

choices to infer consumers’ urgency from their willingness to pay for travel-time

savings.

Organization The rest of this paper proceeds as follows. Section 2 describes

the institutional setting and our data. Section 3 describes the demand and supply

models and Section 4 their estimation. Section 5 presents our estimation results.

Section 6 analyzes di↵erent forms of price discrimination on the platform. Sec-

tion 7 concludes.
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2 Setting and data

2.1 A unique approach to matching and price discovery

Liftago is an app-based ride-hail platform that was founded in 2015 and services

rides through licensed taxi drivers in many cities in Europe. We focus on Prague,

where licensing requires both a fee and an exam. Moreover, taxis need to be

equipped with a physical meter, which captures the number of kilometers trav-

eled in the “occupied” mode and the billed amount. Meters need to be certified

every two years by a state agency. Each meter records the aggregate numbers

of kilometers billed together with the revenues. A licensed driver may find rides

by searching for street-hail consumers or by choosing to participate in a dispatch

service. Among dispatch options are traditional telephone-based dispatch services

and, more recently, Liftago. This regulatory environment is di↵erent from most

US cities in which there is nearly free driver entry into the ride-hail market with

firms such as Uber and Lyft. In the period that we study, Liftago is by far the

dominant platform in Prague.4 During this period, the number of requested rides

and drivers on the platform are also steady over time without noticeable time

trends.

Drivers pay a 10% fee for each ride booked through the platform. By tracking

both the taxi’s GPS location and the time of the trip, the platform provides

an approximate fare before the trip begins and a final fare after its completion.

Because Liftago is not well known internationally, few riders are tourists, making

our estimates easier to interpret in terms of local economic quantities. This is also

reflected in the relatively small fraction of airport rides, which constitute about

2% of total trips.

Drivers and consumers are matched by a combination of a dispatch algorithm and

an auction. Whenever a consumer requests a ride, the system looks for nearby

available cars and sends requests to a number of them, typically four, to elicit

an o↵er. A driver who receives a request observes the details of the trip —-the

location of the consumer, the destination, consumer rating, and payment via cash

or credit. A driver who is interested in fulfilling the ride submits a bid from a set

of pre-programmed tari↵s.5 A tari↵ consists of a flag fee, a per-minute waiting fee,

4Uber has also been in Prague since 2014, but its presence is not as large as in a typical
US city of similar size, partially because it is still fighting several legal battles, due to various
licensing and taxation issues. Since an EU court’s decision in December 2017, Uber is viewed as
a transportation company, and hence, its drivers also need to be properly licensed.

5Drivers who supply rides in Liftago typically have many pre-programmed bid increments.
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and a per-kilometer fee with a regulatory cap of CZK 36 (⇡ $1.41). The platform

takes tari↵ bids and combines them with a query to Waze, a real-time tra�c

mapping service, which provides estimates of the taxi arrival time (equivalently,

the consumer’s wait time), the trip time, and trip distance. The tari↵ bids are

then translated into a single expected price for a trip. The consumer then observes

bids as final trip prices together with other bid-specific attributes: the wait time

until the taxi arrives, the make and model of the car, and the driver’s rating.

Importantly, these non-price attributes are automatically attached to each of the

bids; in each auction, drivers only have control over the tari↵. The consumer

may select one of the bids, in which case the ride occurs, or may decline all bids.

When the ride is completed, the consumer pays the fare shown on the meter. In

Figure A.1 in Appendix A, we show the interface that riders see before making

the request and after the o↵ers arrive.

Liftago’s mechanism allows for variation in both prices and wait times: a driver

with a high wait time may submit a lower bid than a driver with a short wait

time, and vice versa. Contrast this market-clearing mechanism with traditional

taxi services, in which prices are fixed and the market clears through adjustments

in wait time (Frechette et al., 2019), and with other ride-hail platforms, in which

prices adjust to keep wait times stable (Castillo, 2019).

2.2 Data

Our dataset covers 1.9 million trip requests and 1.1 million fulfilled trips on Liftago

between September 30, 2016, and June 30, 2018 (Liftago (2020)). For each request,

we observe the time of the request, the pick-up and drop-o↵ location, trip price

bids and estimated wait times from each driver, and which bid the consumer chose,

if any. In addition, we observe a unique identifier for each driver and consumer.

The sample period includes 1,455 unique drivers and 113,916 unique consumers.

We complement the data for each ride request with public-transit availability

based on the GPS addresses for each origin and destination in the Liftago data.

Furthermore, we use data on hourly rainfall in Prague to attach prevailing weather

characteristics.6

Table 1 summarizes daily activity on the platform. About 3, 000 trip requests are

made each day, 61% of which become rides. The average bid is $10.72 and the

6Public data are available from the National Oceanic and Atmospheric Administration
(NOAA (2018)).
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average wait time is seven minutes. In addition, about one-third of the drivers in

the sample were active each day. The average number of drivers bidding in each

auction is 2.8, and except in rare cases (less than 0.33%), no more than four bids

are made. We discard auctions with more than four bids.

Table 1: Bid, Order, and Daily Summary Statistics

Variable P25 Mean P75 S.D.

Panel A: Chosen Trip
Price of Trip (USD) 6.13 9.24 11.11 4.58
Wait Time (minutes) 4.00 6.14 8.00 3.08

Panel B: All Bids
Price of Trip (USD) 9.80 10.57 11.32 1.16
Wait Time (minutes) 5.88 7.11 8.36 1.88
Number of Bids 2.00 2.81 4.00 1.08

Panel C: Daily
Requests per Day 2376 2940 3468 947
Trips per Day 1502 1831 2180 569
Drivers per Day 491 518 569 90

Note: This table shows summary statistics at the auction level
(Panel A), the bid level (Panel B), and the daily level (Panel C).
P25 refers to the 25th percentile and P75 to the 75th percentile
of the respective variable. Panel B reports the average over each
statistic computed within each auction. The data are based on
638 days of observations.

Table 2 summarizes drivers’ daily activity on the platform. On average, drivers

participate in 16 auctions per day on the platform and win around 3.8 of these

auctions per day. Although we do not observe drivers’ o↵-platform trips, we

observe they spend around one hour driving on the platform. We also find the

time spent between serving two platform rides is on average 112 minutes. The

drivers’ activity on the platform is consistent with the drivers’ being licensed taxi

drivers who supplement their street-hail business with on-platform rides. Taken

together, these statistics suggest drivers rely on the street-hail business for the

majority of their earnings.

2.3 Preferences over time and money: Intra-daily patterns

In this section, we provide descriptive evidence for patterns in prices, wait times,

and choices. We document large and interpretable heterogeneity in consumer

choices, which provides important identifying variation for our model. In Figure 1,

we show the average prices (Figure 1a) and wait times (Figure 1b) of o↵ered trips
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Table 2: Daily Driver Statistics

Variable P25 Mean P75 S.D.

Bids Per Day/Driver 6.00 15.99 22.00 12.93
Trips Per Day/Driver 1.00 3.54 5.00 3.36
Win Probability 0.09 0.23 0.33 0.19
Daily Time on Trip (min.) 15.07 62.46 94.32 60.32

Note: This table describes the daily distribution of bids, trips, win
probabilities, and minutes spent on trips for a driver. The sample
represents 235,111 driver-days. P25 refers to the 25th percentile and
P75 to the 75th percentile of the respective variable.

by day of the week and time of the day. Prices are lower during weekday afternoons

and higher during weekends, whereas wait times tend to be substantially higher

during the day than overnight.

Consumers in our data often face a non-trivial trade-o↵ between price and wait

time when choosing among bids. A trade-o↵ implies the existence of options such

that one has a shorter wait time but a higher price, and vice versa. Depending on

the time of day, about 58%–70% of auctions involve a trade-o↵ between waiting

less and paying more (see Figure B.1 in Appendix B for additional detail.)

In Figure 2a, we show how consumers solve the trade-o↵ between time and mon-

etary costs at di↵erent times of the day. At all times of day, consumers are more

likely to pick the minimum price option than the minimum wait-time option. The

elasticities we back out from our model are in line with this observation. Moreover,

the magnitudes of these di↵erences vary throughout the day. During work hours,

the likelihood of choosing the lowest price option significantly dips, and the likeli-

hood of choosing the shortest wait option increases by even more.7 This pattern

can be attributed to some combination of preference heterogeneity across con-

sumers as well as within-consumer heterogeneity throughout the day. Because we

observe consumer identifiers, our model leverages the variation across consumers

to identify individual-level preference heterogeneity.

In Figure 2b, we compare choices over price and wait times by pickup location.

We show in Figure 2b the probability of consumers choosing the lowest price or

shortest wait time among all available bids in each pickup location, computed only

within auctions that feature a trade-o↵ between prices and wait times. Locations

are sorted by the probability of choosing the lowest price. As with Figure 2a,

7These two likelihoods need not add up to 1, because a consumer may choose a driver with
neither the lowest price nor the shortest wait time if, for instance, this driver has the highest
rating.
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Figure 1: Prices and wait Times by Hour and Day

Figure (a) Average Prices
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Figure (b) Average Wait Times
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Note: These figures show the average o↵er prices (Figure 1a) and average wait times (Fig-
ure 1b) across all bids submitted on di↵erent days of the week and at di↵erent times of day.

in Figure 2b, we see consumers pick rides with lower prices and shorter wait

times. The figure shows minimum prices are chosen about two to three times more
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Figure 2: Trade-O↵s and Choices

Figure (a) By Hour
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Figure (b) By Pickup Location
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Note: These figures show the mean probability of a consumer who faces a trade-o↵ between
price and wait time choosing either the lowest price or shortest wait time. Probabilities are
computed among orders in which one of the bids was chosen over the outside option. In Fig-
ure 2b, we sort locations by the probability of choosing the lowest price.

often than minimum wait times, but heterogeneity also exists across locations.

While there are di↵erences across locations, these di↵erences are relatively small

compared with the intertemporal variation in how consumers solve the price and

wait-time trade-o↵.
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3 Platform model

We describe the theoretical framework through which we study the consumers’

and drivers’ choices in the platform. A ridesharing platform connects consumers

and taxi drivers in exchange for a percentage fee on the ride fare. On a given date

t and origin o, the interaction unfolds as follows: First, a consumer in need of a

ride from o requests a ride. Second, the platform sends out ride requests to the

drivers based on their proximity to the passenger. Third, conditional on accepting

the request, drivers submit a bid for the ride. Fourth, the consumer observes

the bids selected by the platform’s algorithm and decides which to accept, if any.

Finally, if the consumer accepts one of the bids, the platform collects a 10% fee

from the driver. Below, we describe each of these events, working backwards from

the consumer’s choice of which ride to accept.

3.1 Demand side and the value of time

Consider a consumer, indexed by i, who submits a ride request between two lo-

cations. We summarize the request r by its origin o, its destination d, and the

date and time it is submitted, t, denoted by r = (t, o, d). The consumer is then

presented with a menu with Jr o↵ers, which does not include the outside option

of not taking a trip. Each o↵er j 2 {1, . . . , Jr} is characterized by its price, bj,

wait time, wj, and observable trip characteristics, xj. The observable trip char-

acteristics include request-dependent characteristics common to all drivers—for

example, hour of day, public transit availability, tra�c speeds, trip distance and

time length, rainfall, origin and destination, and whether the order is placed on the

street or in a building—as well as driver j’s characteristics—for example, driver’s

name and rating, car year, color, and model (basic, premium, or luxury).8 In what

follows, we use Jr to indicate both the set of drivers associated with a request and

the o↵er attributes (bj, wj, xj)j2Jr when it does not risk confusion.

The consumer’s preferences over the tuple (bj, wj, xj) are summarized by (i) a

vector of coe�cients, (�w
ir, �

p
ir, �

x), (ii) a stochastic part ✏ijr, and (iii) an additional

term, ⇠r, that captures unobserved conditions a↵ecting demand on a particular

route at a particular time, such as large sporting events or transit delays.

8Premium cars (56% of our sample) include brands such as Audi and Lexus. Luxury cars
(10% of our sample) include brands such as Tesla and Ferrari.
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Formally, consumer i’s utility from option j 2 Jr can be written as

uijr = �w
ir wj + �sq w2

j + �p
ir bj + �x xj + ⇠r + ✏ijr. (1)

Importantly, the coe�cients �w
ir and �p

ir are consumer specific. Our specification

also includes a utility parameter on the square of the wait time, which allows us

to capture potential nonlinearities in the disutility of wait time. As we discuss in

Section 5.1, the parameter estimate is small and therefore does not play a major

role in the analysis.

Consumer choice out of a menu The consumer’s outside option is to reject

all the bids in a given request, and perhaps take another form of transportation

or forego the trip entirely. We normalize the value of this outside option to 0.

However, we do allow consumer utility from platform rides to shift according to

several factors summarized in xj, such as the availability of public transit. These

factors allow us to control for the shifting value of the inside good relative to the

outside option.

Under this normalization and the assumption that ✏ijr are independently and iden-

tically distributed according to a Type I extreme value distribution, the likelihood

of consumer i choosing driver j out of menu Jr is given by

lJr(wj, bj, xj, ⇠r; �) =
exp(�w

ir wj + �sq w2
j + �p

ir bj + �x xj + ⇠r)

1 +
P

k2Jr exp(�
w
ir wk + �sq w2

k + �p
ir bk + �x xj + ⇠r)

. (2)

Value of time The preference parameters in Equation 1 allow us to describe a

consumer’s value of time (vot) at di↵erent locations and di↵erent times of day.

These vot are obtained via the following equality, which compares the utility of

o↵er j with the utility of a hypothetical option j0 that adds a single minute to

the wait time but is otherwise identical. In particular, the time from pickup to

the destination is the same for both trips. The di↵erence bj � bj0 that solves the

equation reflects the additional units of money needed to make the consumers

indi↵erent between paying more for j or wait more for j0:

�p
ir bj + �w

ir wj = �p
ir bj0 + �w

ir (wj + 1), (3)

where we omit the term involving the square of the wait time anticipating that

in our estimation this term is close to 0. When comparing trips j and j0, the
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consumer trades o↵ spending one more minute at the origin (trip j0) or at the

destination (trip j). Equation 3 implies a minute of time at destination d relative

to its value at origin o is valued as

votir = bj � bj0 =
�w
ir

�p
ir

, (4)

where r = (t, o, d). Equation 4 shows we can recover individual estimates of vot

directly from the estimated demand model by taking a ratio of coe�cients.

3.2 Model of driver bidding

We now present the model of driver bidding behavior. We use this model to ra-

tionalize the observed bids as arising from drivers’ privately observed opportunity

costs of serving a ride. Such costs inform us about the distribution of markups

drivers are able to earn and, consequently, how welfare is distributed in the mar-

ket. When we turn to our analysis of platform pricing, we require these costs as an

input to the platform pricing problem and the associated counterfactual pricing

and welfare analyses.

Whereas the model that follows is static, we show in Appendix D.2 that it can be

microfounded by a dynamic model, that accounts for drivers’ dynamic incentives

in the platform, in the spirit Lagos (2000), Buchholz (2022), Brancaccio et al.

(2020) and Brancaccio et al. (2023). The model in this section has the advantage

of relying on fewer assumptions and, as we argue in Appendix D.1, the costs

recovered from this model are su�cient for the counterfactuals we consider.

Consider a request between locations o and d at time t, r = (t, o, d), and a driver

j who is near location o at that time. This request is associated with wait time wj

and observable trip characteristics xj. The wait time wj together with the trip’s

length—included in xj—determine the number of periods until the passenger is

dropped o↵, ⌧(wj, xj), which may a↵ect the driver’s cost of serving the ride.

When considering what bid to submit, the driver compares the expected benefit

of winning the auction against the opportunity cost of successfully bidding for the

trip. The opportunity cost of successfully bidding for the trip summarizes what

the driver gives up when serving the trip: the value of remaining at location o at

time t net of the value of being at location d at time t + ⌧(wj, xj). The value of

remaining at o at time t includes both the current foregone opportunities at that

moment—for instance, serving a ride in the taxi market—and the continuation
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value of remaining at location o at time t. In other words, the opportunity cost

of serving the ride is a combination of current and future foregone opportunities,

and we refer to it as the driver’s inclusive cost of serving the ride.

Our model of driver bidding behavior captures in reduced form the driver’s inclu-

sive cost of serving a ride. We assume that conditional on winning the auction

for a trip request r with characteristics (wj, xj), driver j incurs a cost cjr. In

the dynamic microfoundation in Appendix D.2, cjr is a combination of foregone

opportunities in location o at time t and foregone continuation values (see Equa-

tion D.5). As we explain below, cjr alone is enough to determine the driver’s

optimal bid.

Driver j’s optimal bid then solves

max
b

�(b|wj, xj, ⇠r) (0.9 b� cjr) , (5)

where �(b|wj, xj, ⇠r) denotes the probability driver j wins the ride when he submits

bid b, and 0.9b is the payment the driver receives conditional on winning and the

platform taking a 10% fee. It follows that driver j’s optimal bid satisfies the

first-order condition

cjr = 0.9

✓
b+

�(b|wj, xj, ⇠r)

�0(b|wj, xj, ⇠r)

◆
. (6)

The win-probability � depends on the consumer’s preferences over the submitted

bids, as well as how many other drivers bid for the ride and their wait times and

characteristics. Drivers do not observe anything about the other bidders when

submitting their bid. The bids and quality attributes of other drivers, summarized

by (c�j, w�j, x�j), the number of competing drivers, and consumer’s preferences

are therefore all stochastic from driver j’s perspective. Taking into account the

distribution of the number of competing drivers, their bids and wait times, and

the consumer’s preferences, driver j’s winning probability is given by

�(b|wj, xj, ⇠r) = E
h
lJr(wj, bj, xj, ⇠r; �)|j 2 Jr

i
. (7)

The expectation is therefore taken over (i) the number of competing drivers, (ii)

the competing drivers’ bids, bj0 , their costs cj0r, and their characteristics (wj0 , xj0),

and (iii) the consumer’s preferences as summarized by � and the shocks ✏·.
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4 Estimation

4.1 Demand estimation

We now discuss demand estimation details. We estimate a likelihood model based

on the individual choices over bids on the app. The model captures two types of

heterogeneity in vot: time- and location-specific heterogeneity, and individual-

specific heterogeneity.

To capture common elements of time- and location-specific heterogeneity in vot,

we introduce time and location heterogeneity in price and wait-time coe�cients.

Specifically, the price coe�cient �p
ir can vary between work (9am–6pm) and non-

work hours. Instead, the wait-time coe�cient �w
ir can vary across five blocks of

time: 1am–5am, 6am–9am, 10am–3pm, 4pm–6pm, and 7pm–12am. We denote by

ht the cell of the partition to which a given date and time t belongs.

To capture individual-specific heterogeneity, we leverage the panel structure of our

data to compute random coe�cients on both price and wait time using an MCMC

procedure. To allow for better interpretation of this heterogeneity, the analysis

hereafter only utilizes weekday data.

Concretely, we assume a consumer’s wait-time preference coe�cient is additive in

individual-, origin-, destination-, and time-of-day-specific shifters:

�w
ir = �w

i + �w
o + �w

d + �w
ht
, (8)

whenever r = (t, o, d). Instead, we only allow for minimal variation in price coef-

ficients within an individual consumer. We assume price coe�cients are additive

in individual- and time-of-day-specific shifters:9

�p
ir = �p

i + �p
ht
. (9)

We assume the individual-specific shifters (�w
i , �

p
i ) are normally distributed, with

mean µ and variance-covariance matrix ⌃. The covariance of the individual-

specific components captures whether people who are more elastic to wait times

are also more elastic to price. Because income utility should be related to the

opportunity cost of time, a positive covariance is expected.

9Allowing the price coe�cients to vary across day and night hours allows us to capture, among
other observations, that daytime business trips may be reimbursed.
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Random coe�cients logit estimated via MCMC We adopt a hierarchical

Bayes mixed-logit model to obtain individual-specific estimates for both wait-time

and money preferences. We use an MCMC method using data augmentation of

latent variables as in Tanner and Wong (1987). In this approach, the unobserved

random coe�cients are simulated at each iteration. This method sidesteps the

need to evaluate multidimensional integrals, by instead sampling from a truncated

normal distribution.

Following techniques described in Rossi et al. (2005) and Train (2009), we con-

struct a Gibbs sampler, the details of which are in Appendix B.2. Such an MCMC

procedure is known to be slow for a large-dimensional parameter space. To avoid

slow convergence, we first estimate the model without the random coe�cients us-

ing standard maximum likelihood and then employ the Gibbs sampler to obtain

the distribution of random coe�cients separately, starting from the maximum

likelihood estimates.

Control function Because drivers might condition their bids on the unobserved

demand conditions ⇠r, the price coe�cients may be biased. Because our model is

likelihood based, we use a control function approach to address this issue (Petrin

and Train, 2010).

Based on the first-order conditions of the drivers’ bidding problem in Equation 6,

we can approximate their bids as a function of a driver-specific cost component cj,

an order-driver-specific deviation from this average denoted �cjr, and a function

of the demand conditions g(⇠r):10

bjr =
1

0.9
(cj +�cjr) + g(⇠r). (10)

Our control function approach exploits the variation in persistent cost di↵erences

cj across drivers, which we found to be large in the data (see Figure B.3 in Ap-

pendix B.2.1).11 Because the driver selection process is determined by physical

proximity, the assignment of drivers to consumers is quasi random, and cj there-

fore provides the random identifying variation. To implement this approach, we

first regress o↵ered bids on a set of driver fixed e↵ects. From this regression, we

take the residual and average it within each order to predict g(⇠r).12 We then add

10This approximation is based on a Taylor expansion; see Appendix B.2.1.
11This approach is similar to that in the literature that exploits di↵erent leniency standards

of judges, known as the judge design. See, e.g., Waldfogel (1995).
12To increase power, one could also construct the control function over a larger set of or-
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this predicted value as a control for ⇠r in the consumer’s indirect utility function.

We provide in Appendix B.2.1 additional detail on the design of our control func-

tion approach. Figure B.3 depicts the resulting distribution of fixed e↵ects, which

shows average driver bids have large and persistent variation relative to the over-

all mean. The interquartile range is $1.90, or 20% of the average fare, and the

range from the 10th to the 90th percentile is $4.00, or 43% of the average fare. In

Table B.1, we also provide results from a Monte Carlo exercise that demonstrates,

given our model assumptions, the control function’s ability to recover unbiased

parameter estimates in the presence of unobserved demand shocks.

4.2 Driver costs: Identification and estimation details

We now provide details of the estimation of the drivers’ costs. First, recall that

the problem faced by the drivers can be mapped into a static auction (Jofre-Bonet

and Pesendorfer, 2003), except that the winning probabilities are determined by

the consumer’s choices. Second, given our demand estimates, we show we can use

techniques similar to those in Guerre et al. (2000) to back out the drivers’ inclusive

costs that rationalize the observed bids.

Recall that driver j’s problem when faced with request r = (t, o, d) with charac-

teristics (wj, xj) delivers the following first-order condition:13

cjr = 0.9

✓
b+

�(b|wj, xj, ⇠r)

�0(b|wj, xj, ⇠r)

◆
. (11)

Equation 11 implies the distribution of inclusive costs is non-parametrically iden-

tified from the demand estimates and the drivers’ bids. Indeed, we directly ob-

serve the bid on the right-hand side of Equation 11. Furthermore, we can com-

pute the sample analogues of the win probability �(·|wj, xj, ⇠r) and its derivative

�0(·|wj, xj, ⇠r) with estimates from the demand system (cf. Equation 7), so that

all the objects on the right-hand side are observed.

Using Equation 11, we can simply back out driver j’s inclusive cost bid by bid.

However, for each order, we only observe one realization of competing bids. To

compute �(·|wj, xj), which includes drivers’ time- and location-dependent expecta-

tions about competitors and consumers, we sample from the observed distribution

ders, including all orders within the same origin and destination. However, to the extent that
unobserved demand shocks are more local, this approach would still lead to bias.

13We assume a connected bid space. This is an approximation because drivers in reality bid
in small increments of several cents.
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of bids and consumers (Hortaçsu and McAdams, 2010). For each bid observed

in the data, we simulate 50 requests. For each request, we draw a consumer-

preference vector �i and a set of competing drivers. To simulate the correct

conditional expectation, the bids and attributes of competing drivers are drawn

conditional on each location and time period, as well as the trip’s length. Given

these simulation draws, we construct the sample analogues of �(·|wj, xj, ⇠r) and

�0(·|wj, xj, ⇠r).

Remark 1 (From inclusive costs to flow costs and continuation values). As we

explain in Section 6, the identification of the drivers’ inclusive costs, which ag-

gregate the drivers’ on- and o↵-platform opportunity costs over time, is enough

for our counterfactual exercises. In many applications, separately identifying the

on- and o↵-platform components of the costs and further decomposing them into

their per-period components may be useful. For this reason, after introducing our

dynamic microfoundation for the drivers’ model in Appendix D.2, we show both

that the model is identified in Appendix D.3 and that all driver primitives can be

recovered through a simple regression of the inclusive costs on a set of time- and

location-specific dummies. In particular, we show in Proposition 1 that the driver’s

current foregone opportunities and all location- and time-dependent expectations

that give rise to cjr are separately identified.

5 Results

We first present the results from our demand estimation and the implied elasticities

for both wait time and price. We then show the vot results implied by the demand

estimates. Lastly, we present results on the estimated costs of drivers.

5.1 Demand results

Our results include a set of estimated utility parameters for price, wait time, and

additional shifters that are common to all consumers, as well as individual-specific

preference estimates for price and wait time. We start by reporting the preference

parameters that are individual-specific, and then report those parameters that are

common.

Figure 3 shows a contour plot of the joint distribution of individual consumer

preferences over prices, �p
ir, and wait times, �w

ir. Preferences are heterogenous

along both dimensions. A slight negative dependence also exists between price

20



Figure 3: Individual-Specific Preference Estimates
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Note: This figure provides a contour plot of the kernel density of individual estimates of �w
ir

and �p
ir. Each quadrant defines a high (H) and low (L) relative sensitivity to wait time and

price, used in analysis below.

and wait-time coe�cients. For instance, the average price coe�cient of consumers

with wait-time coe�cients below the median is �1.11 and �1.17 for wait-time

coe�cients above the median. The graph also shows our classification into four

types of individuals, depending on whether they have high (H) or low (L) sensi-

tivity to price and wait time. To do so, we split consumers along the median of

the respective distributions of coe�cients. We use this categorization to present

elasticity comparisons below.

In Table 3, we report the coe�cients that are common to all consumers, with

standard errors. We find the common part of the price coe�cient varies minimally

across working and non-working hours. The intra-daily variation in wait-time

coe�cients shows people are the most wait-time sensitive at night and in the early

morning hours, and the least wait-time sensitive during the middle of the day. We

find the coe�cient on wait-time squared is close to 0, which is consistent with what

we see in the data: in Figure B.2 in Appendix B.1, we show that the likelihood

of picking a particular trip is close to a linear function of the wait time and of

the minimum wait time. We also find variation in wait-time sensitivity across

locations, although these di↵erences are much smaller than the aforementioned

variation across times of day. Due to the large number of location coe�cients, we
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summarize the full set of location- and time-of-day-specific estimates separately

in Figure B.4 and Figure B.5.

Additional coe�cients measure an interaction e↵ect between wait time and other

indicator variables that impact the value of a trip compared with the outside

option: public-transit availability, whether the trip is ordered on the street, and

the presence of rain in the hour the trip was ordered. These environmental factors

are relatively small but significant, with the marginal e↵ects of each implying less

than a 1% decrease in the probability of choosing a ride on the platform.

Beyond recovering heterogeneity in wait-time and price preferences, we also es-

timate rich substitution patterns dependent on driver-specific factors. Both the

driver rating and the car type significantly a↵ect consumer choices. Our estimates

suggest consumers value each rating point by $0.10. Consumers have an average

willingness-to-pay of $0.64 for luxury cars and $0.22 for premium cars, compared

with basic cars.

We now turn to discuss what these estimates imply for the sensitivity of demand

to changes in price and wait-time. In Table 4, we show price and wait-time

elasticities respectively, and also a set of order-level elasticities, which measure only

substitution to the outside option when either all prices or all wait times change

by a small amount. We see a general pattern: consumers are much more price

elastic than wait-time elastic. Price elasticities range from four to 11 times higher

than wait-time elasticities, with starker di↵erences in the evening. Consumers

have highly heterogeneous elasticities: between the two extreme groups (i.e., H

Price, H Wait and L Price, L Wait), both price and wait-time elasticities di↵er by

about a factor of four.

These elasticity estimates convey that both price and wait time are important

factors in the consumers’ decisions, and that wait-time elasticities vary throughout

the day in ways that reflect the patterns of consumer choices we see in Figure 2.14

5.2 Value of time results

We now present results on the vot implied by our estimates, scaled to USD per

hour. We compute vot using the coe�cients in Table 3 together with Equation 4.

14We can also decompose elasticities by trip origins and destinations as we have done in
Table B.3. Broadly similar patterns between demand types are revealed, though each elasticity
measure varies from one location to another. In general, price elasticities are more variable than
wait-time elasticities.
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Table 3: Common-Preference Estimates

Description Coe�cient Std Error

Price 6pm-6am -1.184 0.002
Price 6am-6pm -1.173 0.003

Wait Time 1am-5am 0.004 0.011
Wait Time 6am-9am -0.060 0.010
Wait Time 10am-3pm -0.070 0.010
Wait Time 4pm-6pm -0.043 0.010
Wait Time 7pm-11pm -0.010 0.010

Wait ⇥ On-Street Order -0.038 0.002
Wait ⇥ Raining 0.013 0.004
Wait Time Squared -0.006 0.000

Driver Rating Points 10.827 0.096
Car: Mid Quality 0.244 0.005
Car: High Quality 0.716 0.009
Trip Speed -0.055 0.002
Alt. Transit Available 0.059 0.007
Order on Street 0.230 0.014
Rain -0.137 0.034
Trip Distance 5.608 0.071
Waiting ⇥ Pickup Location FE 1-30 X X
Waiting ⇥ Dropo↵ Location FE 1-30 X X
Pickup Location FE 1-30 X X
Dropo↵ Location FE 1-30 X X
Hour FE X X
Note: This table provides coe�cient estimates and standard errors from the
logit demand model for each consumer type. Estimates are conditioned on 60
additional wait-time interactions and 66 additional fixed e↵ects. Additional
details for these values are in Figure B.4. These parameter estimates com-
prise outside option shifters and wait-time preference interactions with each
of 30 pickup and dropo↵ locations as defined in Appendix A.2. The omitted
results are instead depicted graphically in Figure B.4.
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Table 4: Estimated Elasticities

Time of Type Bid-Level Elasticities Order-Level Elasticities

Day Partition Price Wait Time Price Wait Time

Daytime

6am-6pm

Overall -4.36 -1.01 -3.90 -0.89
H Price, H Wait -8.67 -1.82 -7.4 -1.54
H Price, L Wait -2.85 -0.85 -2.79 -0.75
L Price, H Wait -5.05 -1.04 -4.44 -0.96
L Price, L Wait -1.96 -0.50 -2.01 -0.50

Evening

6pm-6am

Overall -5.5 -0.50 -4.90 -0.48
H Price, H Wait -8.81 -0.80 -7.55 -0.75
H Price, L Wait -3.32 -0.36 -3.38 -0.36
L Price, H Wait -6.20 -0.52 -5.42 -0.52
L Price, L Wait -2.53 -0.22 -2.67 -0.24

Note: This table provides the demand elasticity of price and wait time across daytime and
evening hours and individual-type groupings. We distinguish as high (H) price sensitivity

individuals who have below-median values for �p
i and low (L) price sensitivity individuals

as those with above-median values for �p
i , and similarly for wait-time sensitivity. The first

two columns show these elasticities among competing o↵ers, reflecting the change in de-
mand of a particular o↵er due to a 1% change in that o↵er’s price or wait time. The second
two columns show the elasticities with respect to choosing the outside option, reflecting a
change in demand for all o↵ers due to a 1% change in price or wait time on all o↵ers.

We summarize the results in Table 5. The overall mean vot across all trips,

expressed as an hourly quantity, is $14.05. We find significant individual-, time-

of-day-, and location-specific heterogeneity underlying this average. The most

prominent of the three is the heterogeneity across consumers. As before, we report

four groups of individuals: those with above- and below-median random coe�cient

estimates on both price and wait-time preferences. The low-price-sensitivity and

high-wait-time sensitivity group exhibits vot nearly twice the overall average

at $22.76 per hour, whereas individuals with high sensitivity to price and low

sensitivity to wait time have an average vot of $4.91 per hour. All groups have

similar time-of-day patterns, with the highest values in the morning between 6am

and 9am. We find vot estimates are higher in the late morning and mid-day

hours than in the evening and overnight.

Finally, we report results separately for Prague’s city center and the city periphery.

We provide definitions of these regions in Figure A.2. We find the vot for trips in

the city center is higher than for trips in the city periphery. Although variation in

vot is meaningful both spatially and intertemporally, variation in the individual

component of the vot explains by far the largest share of its overall variation.
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In contrast to earnings data from the Czech Statistical O�ce, our estimates of

vot are larger than the average wage in Prague, which is approximately $9.50 per

hour during the sample period. This finding is perhaps not surprising, because

taxis are a relatively expensive mode of transit, and thus, taxi riders are likely

positively selected on income.15 Even for this selected set of riders, we find large

heterogeneity in their vot. As we illustrate in the next section, this heterogeneity

has important implications for the pricing counterfactuals.

Table 5: Value-of-Time Estimates

Subsample
Value of Time (VOT)

12a–6a 6a–9a 10a–2p 3p–6p 7p–12a All Hours
All Types 14.14 15.89 16.09 13.90 12.50 14.05

(0.38) (0.40) (0.57) (0.36) (0.17) (0.34)

H Price, H Wait 13.67 16.84 17.17 14.92 13.36 14.66
(0.09) (0.12) (0.10) (0.08) (0.04) (0.06)

H Price, L Wait 4.08 6.67 7.03 5.21 3.68 4.91
(0.07) (0.09) (0.07) (0.06) (0.03) (0.04)

L Price, H Wait 21.30 25.39 25.91 23.11 19.88 22.76
(0.52) (0.69) (0.49) (0.45) (0.27) (0.45)

L Price, L Wait 19.27 12.04 12.15 11.07 15.71 13.85
(0.69) (0.72) (0.87) (0.74) (0.37) (0.53)

City-Center Trips 15.27 17.39 17.11 14.50 13.20 14.93
(0.39) (0.44) (0.52) (0.41) (0.22) (0.37)

Non-City-Center Trips 6.75 6.50 9.50 9.47 7.20 7.94
(0.35) (0.34) (0.40) (0.27) (0.13) (0.27)

Note: This table provides vot estimates implied by the logit demand model. All estimates
are presented in USD. We report bootstrap standard errors in parentheses, based on 100
bootstrap iterations.16

Because in our discrete-choice model, preference parameters are individual but not

trip-specific, our vot estimates for a given consumer are obtained by averaging

over all the trips the consumer takes. However, a given consumer may have a

higher or lower vot depending on the circumstances surrounding a ride (e.g., more

15A platform-conducted survey about riders’ wage rates shows the average wage among the
respondents is $15.23, which is higher than the average wage of $9.15 in Prague at the time.
This finding confirms that consumers on the platform are positively selected in terms of income,
as they are on other major ride-hail platforms.

16The standard errors in Table 5 can alternatively be obtained from the realizations of the
stationary portion of the Monte Carlo chain. By relying instead on bootstrap, our code, included
in the replication package, is already prepared to compute standard errors on several derived
statistics.
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or less urgent trips), and our vot estimates average across all these circumstances.

In Appendix B.5, we demonstrate our data can be used to recover di↵erent vot

estimates between trips with a drop-o↵ time close to the start of a new hour,

which are more likely to involve deadlines, and those at di↵erent times. This

analysis provides an example of how we might recover di↵erent types of trip-specific

heterogeneity that is otherwise averaged in the results we report in Table 5.

5.3 Supply results

In Table 6, we summarize our estimates of the drivers’ inclusive cost. We find

drivers earn rents over their inclusive costs as indicated by markups of around

30%. Winning drivers bid $1.21 lower on average than remaining drivers and have

costs that are on average $0.81 lower than the remaining drivers. We also find

drivers with shorter wait times bid higher and, conditional on winning, earn higher

markups than drivers with higher wait times. This finding suggests drivers are

aware that short wait times are a quality attribute that makes their overall bid

more competitive. The markup of drivers with the shortest wait time is more than

11% higher than the markup of the remaining drivers in that order. Within an

order, the bid of the shortest-wait-time driver has a higher markup than that of

the driver with the highest rating. Interestingly, drivers with the highest rating

bid 94 cents less, which is about 9% lower. These results suggest the wait-time

premium is substantial and that high ratings are maintained in part by o↵ering

lower-than-average prices. This finding contrasts with more common services such

as Uber, where drivers have no discretion over pricing.

The costs and markups that we recover exhibit large variance. This finding sug-

gests the platform’s bidding mechanism plays an important role in discovering

the lowest-cost drivers. We break down driver costs by hour and by location in

Figure 4, where we show some systematic variation in the average cost. However,

these averages by location and hour mask large variations across drivers. The

whiskers represent one standard deviation above and below the average cost. We

find that idiosyncratic cost variation is large relative to predictable variation in

costs due to either time-of-day or location. In Figure C.1 in Appendix C.1, we

show that markups are highest during the day, especially in the early morning

hours.
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Table 6: Driver Cost Estimates

Mean Median P25 P75 S.D.

Bid ($), winner 9.63 9.01 7.15 11.55 3.31
Bid ($), shortest wait 10.76 10.60 8.97 12.34 2.58
Bid ($), highest rating 9.90 9.75 8.21 11.37 2.42
Bid ($), all bidders 10.84 10.15 7.77 13.11 2.30

Cost ($), winner 6.47 6.27 5.02 7.69 1.97
Cost ($), all bidders 7.28 7.05 5.59 8.71 2.30

Markups winner 0.35 0.30 0.20 0.46 0.21
Markups all bidders 0.27 0.22 0.14 0.35 0.19
Markups shortest wait 0.30 0.25 0.16 0.40 0.20
Markups highest rating 0.30 0.24 0.15 0.39 0.20

Note: This table provides a breakdown of markups and cost estimates that
we recover from the driver model. The table also shows summary statistics of
prices for each of the breakdowns.
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Figure 4: Cost Heterogeneity

Figure (a) By Hour
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Figure (b) By Location
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Note: In these figures, the dots denote the average of estimated driver costs by hour (Fig-
ure 4a) and location (Figure 4b). The whiskers represent one standard deviation above and
below the average cost. In Figure 4b, we order locations by average driver cost to better high-
light the cost heterogeneity.
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6 Pricing the value of time

Our estimates demonstrate large heterogeneity in both consumer vot and driver

costs. In this section, we evaluate the welfare e↵ects of counterfactual platform

pricing strategies that take advantage of the latent individual-specific variation

in consumer preferences, while also respecting drivers’ participation constraints.

We focus our analysis on studying personalized pricing, including its e↵ects on

consumers, drivers, and the platform. This focus leverages the panel dimension

of our consumer data and complements prior work on livery vehicles, which has

investigated the pricing of aggregate or observable sources of demand variation

(Buchholz, 2022; Castillo, 2019; Rosaia, 2020). Understanding this type of pricing

is increasingly relevant as ride-hail and other platforms turn to more sophisticated

pricing strategies, building on a wealth of accumulated consumer data.

In what follows, we first describe how we set up the platform’s problem. In

the counterfactuals, we allow the platform to decouple prices on the drivers’ and

consumers’ side, which is in contrast to the baseline in which Liftago charges the

winning driver a fixed 10% fee and implements that driver’s bid as a price the

consumer must pay. We now allow the platform to choose a price for each option

the consumer faces and separately choose driver payments for each option, so it

is able to influence not only how much the consumer pays and the driver receives,

but also whom the consumer matches with.

Direct mechanism approach We model the platform’s pricing and matching

policy as arising from a direct mechanism that takes as inputs the drivers’ costs

and outputs a menu from which the consumer chooses. This approach has the ad-

vantage that the consumers’ and drivers’ behavior are captured by a set of (mostly

linear) constraints that the platform’s mechanism must satisfy, and therefore does

not require the computation of equilibria.17 We assume the platform o↵ers the

same drivers to the consumer as we observe in the data.

Formally, for a given trip request r and for a given set of drivers Jr, the platform

chooses a pair of transfers trj(c1, . . . , cJr) and prices prj(c1, . . . , cJr) for each driver

j 2 Jr and each profile of drivers’ costs cr ⌘ (c1, . . . , cJr). Tari↵ trj(cr) represents

the payment driver j receives and prj(cr) represents the price the consumer pays for

a ride with driver j. Whereas the transfers and prices may depend on observable

17For this reason, this approach can be exploited to characterize the platform’s pricing policy
that maximizes a combination of platform profits and consumer and driver welfare.
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trip characteristics such as the drivers’ wait times, we suppress this dependence

from the notation for ease of exposition.

Because the platform does not know the consumer’s logit shocks, the platform’s

menu o↵er (prj(cr), wj)j2Jr leads to a set of choice probabilities. As in Section 3.1,

these probabilities are given by the likelihood in Equation 1, replacing the drivers’

bids by the platform-chosen prices.

Given consumers’ prices and drivers’ transfers, the platform’s profits are

⇧(tr, pr; �, cr) =
JrX

j=1

�
prj(cj, c�j)lJr (pj(cj, c�j), ·; �)� trj(cj, c�j)

�
.

That is, the platform collects price prj from the consumer if the consumer selects

driver j 2 Jr and makes an expected payment of trj to driver j, where the expec-

tation is relative to the probability of serving the ride.18

Finally, we specify the information the platform has about consumers and drivers

when choosing its pricing policy. On the consumer side, our counterfactuals con-

sider di↵erent scenarios for what the platform knows about the individual-specific

components of �. Below, we denote the platform’s information about consumers

by I. On the drivers’ side, we assume the platform knows the drivers’ cost distri-

bution, but not the drivers’ realized costs. Thus, when choosing its pricing policy,

the platform needs to satisfy each driver’s participation and incentive compatibil-

ity constraint. Because driver j knows their own cost and the trip request, but

not how many other drivers’ the platform requests and their costs, driver j faces

an expected transfer Tj(ĉj) and an expected probability of being assigned to the

consumer Lj(ĉj) when their submitted costs are ĉj. Thus, the platform’s policy

must satisfy the following constraints for each driver j, cost cj, and reported cost

ĉj:

Tj(cj)� cjLj(cj) � 0, (PCj(cj))

Tj(cj)� cjLj(cj) � Tj(ĉj)� cjLj(ĉj). (ICj(cj, ĉj))

The participation constraint, PCj(cj), implies the platform must cover each driver’s

inclusive cost of serving the ride, which accounts for the foregone current and

future opportunities both on and o↵ the platform. The incentive constraint,

18That is, tj(cr) = lJr (pj(cr), wj , xj ;�i) · t̃j(cr), where t̃j are the payments conditional on
serving the ride and lJr (·) is the likelihood the driver is chosen out of the menu.

30



ICj(cj, ĉj), captures that the platform does not know the drivers’ opportunity

costs and must respect drivers’ incentives when selecting the transfers.

The platform then chooses transfers and prices (tj, pj) to solve

max
pr,tr

E�,c [⇧(t
r, pr; �, cr)|I] (⇧(I))

s.t. PCj(cj), ICj(cj, ĉj) for all j 2 Jr, cj, and ĉj.

Given the above formulation, one remark is in order about the model of plat-

form pricing. The constraints the platform faces in terms of drivers’ behavior are

expressed in terms of the drivers’ inclusive costs, which aggregate their foregone

on- and o↵-platform opportunities at the baseline. Whereas changing the platform

pricing may not a↵ect the value of the o↵-platform opportunities, it does a↵ect the

value of the on-platform ones and the drivers’ choices between on- and o↵-platform

activities, both of which a↵ect their inclusive costs. As we show in Table 2 and

discuss further in Appendix D.4, the data suggest on-platform activities represent

only a very small portion of drivers’ overall daily earnings, which has two impli-

cations. First, the inclusive costs we recover are largely driven by the foregone

o↵-platform opportunities. Second, changes to the platform’s pricing policy will

have small e↵ects on the drivers’ inclusive costs. It follows that in our setting,

ignoring the changes in the drivers’ opportunity costs is not a first-order concern.

Nevertheless, our identification and estimation results for the dynamic microfoun-

dation of the drivers’ model provide the necessary machinery to re-estimate the

drivers’ costs as the platform’s policy changes at the cost of more assumptions

than those needed to recover the costs cj. In Appendix D.4, we utilize this ma-

chinery to illustrate our results are robust to changes in the drivers’ continuation

values as a result of the platform’s pricing policy change.

Counterfactual description Our personalized pricing counterfactuals distin-

guish between the case in which the platform knows �w
i and the case in which

it knows both �w
i and �p

i . In each case, the platform sets prices conditional on

both the drivers’ costs and its knowledge of individual consumer preferences. We

contrast the results of the personalized pricing counterfactuals with two other

scenarios:

First, we consider a uniform pricing counterfactual, in which the platform sets

prices on both sides of the market conditional on drivers’ costs, but not on indi-

vidual consumer preferences. The comparison between the uniform pricing and
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baseline results explains what portion of the welfare and profit e↵ects of personal-

ized pricing are a consequence of the platform’s ability to set prices on both sides

of the market. Instead, the comparison between the uniform and personalized

pricing results explains what portion of the welfare and profit e↵ects of personal-

ized pricing are a consequence of the platform using information about consumer

preferences in its pricing.

Second, we examine ETA-based pricing, which is another non-personalized pricing

policy in which the platform conditions prices both on drivers’ wait times and

costs. That is, under ETA-based pricing, the platform may assign di↵erent prices

to drivers with the same reported costs if they have di↵erent wait times. ETA-

based pricing is a useful benchmark both because Uber and Lyft are already

engaging in this type of pricing and because platforms may be reluctant to use

consumer order histories to estimate �w
i and �p

i due to consumer backlash. Wait-

time pricing may then give consumers incentives to reveal their high wait-time

sensitivity by picking a driver with shorter wait time and higher price.

Given our focus on unobserved sources of demand variation at the individual

level, we conduct our counterfactuals for a subset of trips that are observationally

similar. Specifically, we select trips from the modal origin to the modal destination

between the highest-volume hours of 7pm and 12am.19

6.1 Counterfactual results

We now discuss our counterfactual results, which we summarize in Table 7. Rela-

tive to the baseline, personalized pricing on both wait-time and price coe�cients

leads to a three-fold increase in the platform’s profits, a substantial part of which

is due to an almost four-fold decrease in drivers’ profits. Consumers face higher

prices relative to the baseline and hence, the share of rides in the platform de-

creases by 20%. Higher prices also lead to a fall in consumer welfare of 35%.

The e↵ects of personalized pricing on the wait-time coe�cients are more modest,

but still substantial. Notably, because the platform can now segment the market

on less variables, the share of rides in the platform decreases by 6% and drivers’

profits fall by 9% relative to personalized pricing on both coe�cients. Interest-

ingly, consumer welfare is higher when the platform conditions its pricing policy

on the wait-time coe�cient alone, despite average fares being higher than under

19The implications of our computations are qualitatively unchanged if we focus on di↵erent
subsets of trips.
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Table 7: Platform Pricing: Welfare Results

Baseline Platform Pricing
10% uniform wait coef. wait, price ETA

flat fee pricing only coef. pricing

Inside Option Share 0.626 0.471 0.476 0.505 0.478
�% from uniform +32.84% – +1.08% +7.28% +1.55%

Average Fare $6.175 $6.628 $6.608 $6.566 $6.507
�% from uniform -6.84% – -0.29% -0.93% -1.81%

Platform Profit $0.417M $1.171M $1.179M $1.262M $1.179M
�% from uniform -64.41% – +0.76% +7.82% +0.72%

Platform Revenue $2.13M $2.14M $2.164M $2.317M $2.163M
�% from uniform -0.50% – +1.12% +8.26% +1.05%

Driver Profit $1.093M $0.259M $0.267M $0.293M $0.249M
�% from uniform +322.72% – +3.34% +13.44% -3.77%

Cons. Surplus $1.109M $0.739M $0.739M $0.722M $0.751M
�% from uniform +50.16% – +0.02% -2.25% +1.65%

Total Welfare $2.619M $2.168M $2.185M $2.277M $2.179M
�% from uniform +20.81% – +0.81% +5.06% +0.50%

Note: This table summarizes the results of the pricing counterfactuals. All values estimate the
welfare achieved among the subset of rides of the most common origin, destination and time of
day in our sample. The first column, Baseline, denotes the welfare e↵ects of the status-quo 10%
fee structure. The second column, uniform pricing, shows the e↵ects of optimal platform pricing
conditional on knowledge of the distribution of consumer preferences and driver costs alone. The
third and fourth columns show the e↵ects of optimal platform pricing conditional on, respectively,
knowledge of only consumers’ individual preference for wait time, and full knowledge of individual
preferences for wait time and price. The last column, ETA-based pricing, shows the e↵ects of op-
timal platform pricing similar to uniform pricing but now also setting prices according to drivers’
ETA and costs. Percentage changes are shown relative to the uniform pricing counterfactual.

personalized pricing on both coe�cients.

The welfare and profit consequences of personalized pricing combine both the plat-

form’s ability to exert its price-setting power and its use of consumer information.

Comparing the baseline welfare and profits to those under uniform pricing reveal

how much of the changes in welfare and profits are due to the platform’s market

power. We document that the value to the platform of exercising its market power

and directly setting prices on both sides is substantial. Relative to the baseline,
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the platform raises prices for consumers while lowering the transfers to drivers,

thereby appropriating surplus from both market sides. Driver profits relative to

their outside option fall by 76%, and consumer surplus falls by 33%. The plat-

form’s pricing leads to a significant quantity distortion with 53% of consumers

choosing the outside option compared with 37% in the baseline. One major take-

away is that the platform leaves substantial profits on the table by operating

passively through the 10% fee rule. By exercising market power over both con-

sumers and drivers in the form of centralizing and decoupling prices, the platform

profits increase even without engaging in price discrimination.20 Relative to uni-

form pricing, when the platform just uses knowledge of the individual wait-time

coe�cient, profits increase by about 1% and by more than 8% when it conditions

prices on both wait-time and price coe�cients.

Another important takeaway from the comparison between the baseline and uni-

form pricing is that the losses in consumer surplus from personalized pricing are

mostly due to the platform’s ability to centralize pricing and not its knowledge of

consumer preferences. Relative to uniform pricing, the loss of consumer surplus

due to both forms of personalized pricing are modest. Furthermore, personal-

ized pricing on the wait-time coe�cient expands the inside market share by 1.1%,

whereas personalized pricing on both coe�cients expands the inside market share

by 7.3%. In both cases, average prices are slightly lower than uniform pricing. As

we detail further below, the most price and wait time-sensitive consumers tend

to benefit through lower prices, whereas the least sensitive consumers face higher

prices.

A final takeaway from the comparison between the baseline and uniform pricing

relates to the e↵ects of personalized pricing on drivers’ profits. This question is an

important one that is relevant in many e-commerce settings, in which platforms

typically have much more information about consumers than suppliers. Relative to

uniform pricing, we document that in percentage terms, drivers benefit even more

from the platform itself from the platform’s knowledge of consumer preferences.

When the platform only conditions on the wait-time coe�cient, driver profits are

3.3% higher than under uniform pricing. When the platform conditions on both

the wait-time and price coe�cients, driver profits increase by more than 13%.

Overall, personalized pricing increases surplus relative to uniform pricing: when

20A potential explanation for the low pricing we observe is that it serves as a kind of investment
in market share and long-run adoption, a facet of the platform optimization problem we do not
address.
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the platform uses knowledge of both price and wait-time coe�cients, total surplus

goes up by more than 5%.

In practice, platforms may choose not to use individual order histories to learn

consumers’ preferences. In this case, o↵ering di↵erent prices for di↵erent wait

times can be used as an alternative to give consumers incentives to reveal and

act on their preferences. We therefore consider ETA-based pricing. We find ETA-

based pricing leads to a 0.72% increase of profits relative to uniform pricing, which

is about 95% of the profit increase from pricing on wait-time coe�cients. This

finding suggests ETA-based pricing strategies can capture a large share of the

profits of pricing strategies that directly rely on consumer-preference data. We also

see overall welfare under ETA-based pricing is close to the welfare of personalized

pricing on the wait-time coe�cient. Conversely, such menu pricing does not attain

the platform and driver profits found under full personalized pricing, because it

cannot e↵ectively capture di↵erences in underlying price elasticities.

Table 8 summarizes the distribution of prices under each counterfactual pricing

regime. Moving to any platform-based pricing raises overall prices almost every-

where in the distribution. Relative to uniform pricing, sales prices become much

more dispersed under personalized pricing, and increasingly so with full personal-

ization (i.e., on both consumer coe�cients). Under fully personalized prices, the

10th percentile of the price distribution is slightly lower than the baseline. We

o↵er additional insight on the prevailing price and wait-time distributions in Ap-

pendix D.5 and show personalized pricing does little to sort wait time-sensitive

consumers to lower wait-time rides, because these preferences are instead inter-

nalized by the platform through di↵erential pricing.

Distributional e↵ects Personalized pricing has interesting distributional impli-

cations. In Figure 5 we show the consumer-surplus e↵ects of personalized pricing

relative to uniform pricing across di↵erent consumer groups. We show the extent

to which preference heterogeneity determines the “winners and losers” of personal-

ized prices. Although consumer surplus falls, we find that the majority (62.5%) of

consumers benefit from personalization. For the most sensitive consumers in the

upper-right cell, surplus increases nearly three-fold once prices are personalized.

The reason is that the platform lowers prices enough to grow participation among

the more elastic consumers. At the same time, for the least sensitive consumers

in the bottom-left cell, surplus is cut in half because the platform can now isolate

and mark up rides to only these consumers.
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Table 8: Exploring the Price Distribution

Q10 Q25 Q50 Q75 Q90

Baseline (10% Flat Fee) $5.60 $5.76 $6.23 $6.51 $6.86

Uniform Pricing $6.00 $6.08 $6.17 $6.96 $7.90

Personalized (�w
i only) $5.86 $6.02 $6.17 $7.04 $7.82

Personalized (�w
i and �p

i ) $5.42 $5.86 $6.57 $7.27 $7.98

ETA Pricing $5.83 $6.09 $6.22 $6.99 $7.61

Note: This table summarizes the distribution of sales prices across pric-
ing counterfactuals. Price variation comes from di↵erences in winning bids
in the baseline and di↵erences in transaction prices in each counterfactual
according to each pricing regime. All estimates correspond to the welfare
analysis in Table 7.

Figure 5: Consumer Surplus E↵ects by Individual Preference Type

Note: This figure shows the consumer-surplus e↵ects of moving from platform pricing with
no personalization to personalized platform pricing. We show these e↵ects across the joint
distribution of consumers’ individual preferences for price and wait time expressed in quartiles
of the absolute value of preferences. Thus, larger numbers indicate higher disutility.

In Figure 6, we explore the role of vot heterogeneity. Because vot is defined

as the ratio �w
ir/�

p
ir, a high-vot individual may have a relatively high sensitivity

to wait time and an average price sensitivity, or an average wait-time sensitivity

and a relatively low price sensitivity. As a result, the surplus patterns are not

monotone in vot.
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Figure 6: Consumer Surplus E↵ects by Consumer VOT type

Note: This figure shows the consumer-surplus e↵ects of moving from platform pricing with
no personalization to personalized platform pricing. We repeat the exercise by collapsing indi-
vidual preferences to individual vot distributions.

7 Conclusions

The demand for transportation services depends on how consumers trade o↵ time

and money. Ride-hailing platforms commonly o↵er tailored options for di↵erent

wait times, indicating an interest in using data to implement some degree of price

discrimination. Given the vast and growing stores of consumer data, we ask how

such platforms and both sides of the market, consumer and driver, would be

a↵ected by setting personalized prices that are tailored according to the platform’s

estimates of individual preferences for time and money.

We use panel data from a large European ride-share platform that o↵ers menus

with explicit trade-o↵s between time and money. This unique feature allows us

to estimate a demand model based on choices from these menus and recover con-

sumers’ preferences over time and money, as well as their implied willingness to

pay to reduce wait time. By observing the same consumers over time, we are able

to recover individual-level heterogeneity in these estimates.

Our demand model results reveal noteworthy patterns in how individuals value

time and money. Consumers are substantially more price elastic than wait-time

elastic. Large variation exists in the willingness to pay for wait-time reductions in

the population of riders. We show how these di↵erences vary throughout the day;

for instance, we show the willingness to pay for lower wait times is higher during
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work hours. Most of this variation is driven by latent demand characteristics

across consumers as opposed to observable di↵erences.

We also exploit the auction format to estimate drivers’ opportunity costs. We

demonstrate that potentially complex and dynamic bidding decisions can be trans-

formed into a static auction, allowing us to recover driver opportunity costs

through an estimator in the spirit of Guerre et al. (2000). On the driver side,

we show large variation in both costs and markups. Thus, in our counterfactuals,

it is important that the platform is able to account for these varied opportunity

costs when setting prices directly.

Given our estimated variation in individual consumer preferences and driver costs,

we conduct a counterfactual analysis to quantify the welfare implications of per-

sonalized pricing. We model the platform’s pricing and matching policy as arising

from a direct mechanism that takes as inputs drivers’ costs and outputs a menu

from which the consumer chooses. This approach allows us to study the plat-

form’s optimal pricing policies in a tractable way that avoids the need to compute

equilibria among the two sides of the market.

Our counterfactual results show the platform does not exercise the full extent of

its market power. Conditional on the platform setting prices on both sides of

the market, we show that pricing policies such as personalized pricing that lever-

age consumer data are welfare-improving relative to those that do not. Indeed,

personalized pricing leads to increased welfare relative to uniform pricing due to

lower average prices and a small market expansion. Under personalized pricing,

the platform, the drivers, and most consumers benefit at the expense of the least

elastic consumers. Nevertheless, the net beneficiaries are the platform and drivers,

because consumers incur small overall welfare losses. These results highlight po-

tentially interesting distributional implications of pricing policies that rely heavily

on consumer data. Moreover, we show that non-personalized approaches, such as

ETA-based pricing, may achieve some of these welfare gains.

38



References

Aguirre, I., S. Cowan, and J. Vickers (2010): “Monopoly price discrimina-
tion and demand curvature,” American Economic Review, 100, 1601–15.

Ali, S. N., G. Lewis, and S. Vasserman (2022): “Voluntary Disclosure and
Personalized Pricing,” The Review of Economic Studies, 90, 538–571.

Aridor, G., Y.-K. Che, and T. Salz (2023): “The E↵ect of Privacy Regula-
tion on the Data Industry: Empirical Evidence from GDPR,” RAND Journal

of Economics, 54, 695–730.

Bauner, C. (2015): “Mechanism choice and the buy-it-now auction: A struc-
tural model of competing buyers and sellers,” International Journal of Industrial
Organization, 38, 19–31.

Bento, A., K. Roth, and A. R. Waxman (2020): “Avoiding tra�c congestion
externalities? The value of urgency,” National Bureau of Economic Research.

Bergemann, D., B. Brooks, and S. Morris (2015): “The limits of price
discrimination,” American Economic Review, 105, 921–57.

Bourreau, M. and A. De Streel (2018): “The regulation of personalised
pricing in the digital era,” .

Brancaccio, G., M. Kalouptsidi, and T. Papageorgiou (2020): “Geogra-
phy, transportation, and endogenous trade costs,” Econometrica, 88, 657–691.

Brancaccio, G., M. Kalouptsidi, T. Papageorgiou, and N. Rosaia
(2023): “Search frictions and e�ciency in decentralized transport markets,”
The Quarterly Journal of Economics, 138, 2451–2503.

Buchholz, N. (2022): “Spatial equilibrium, search frictions, and dynamic e�-
ciency in the taxi industry,” The Review of Economic Studies, 89, 556–591.

Castillo, J. C. (2019): “Who Benefits from Surge Pricing?” Available at SSRN

3245533.

Domencich, T. A. and D. McFadden (1975): “Urban travel demand-a be-
havioral analysis,” Tech. rep.

Doval, L. and V. Skreta (Forthcoming): “Purchase history and product per-
sonalization,” RAND Journal of Economics.
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