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ABSTRACT

Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments
or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated
unit to the outcome of a weighted average of untreated units that best resembles the characteristics of
the treated unit before the intervention. When disaggregated data are available, constructing separate
synthetic controls for each treated unit may help avoid interpolation biases. However, the problem of
finding a synthetic control that best reproduces the characteristics of a treated unit may not have a unique
solution. Multiplicity of solutions is a particularly daunting challenge when the data include many treated
and untreated units. To address this challenge, we propose a synthetic control estimator that penalizes
the pairwise discrepancies between the characteristics of the treated units and the characteristics of the
units that contribute to their synthetic controls. The penalization parameter trades off pairwise matching
discrepancies with respect to the characteristics of each unit in the synthetic control against matching
discrepancies with respect to the characteristics of the synthetic control unit as a whole. We study the
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properties of this estimator and propose data-driven choices of the penalization parameter.

1. Introduction

Synthetic control methods (Abadie and Gardeazabal 2003;
Abadie, Diamond, and Hainmueller 2010, 2015; Doudchenko
and Imbens 2016) are often applied to estimate the treatment
effects of aggregate interventions (see, e.g., Kleven, Landais, and
Saez, 2013; Bohn, Lofstrom, and Raphael, 2014; Hackmann,
Kolstad, and Kowalski, 2015; Cunningham and Shah, 2018).
Suppose we observe data for a unit that is affected by the treat-
ment or intervention of interest, as well as data on a donor pool,
that is, a set of untreated units that are available to approximate
the outcome that would have been observed for the treated unit
in the absence of the intervention. The idea behind synthetic
controls is to match each unit exposed to the intervention or
treatment of interest to the weighted average of the units in the
donor pool that most closely resembles the characteristics of the
treated unit before the intervention. Once a suitable synthetic
control is selected, differences in outcomes between the treated
unit and the synthetic control are taken as estimates of the effect
of the treatment on the unit exposed to the intervention of
interest.

The synthetic control method is akin to nearest neighbor
matching estimators (Dehejia and Wahba 2002; Abadie and
Imbens 2006; Imbens and Rubin 2015) but departs from nearest
neighbor matching methods in two important aspects. First, the
synthetic control method does not impose a fixed number of
matches for every treated unit. Second, instead of using a simple
average of the matched units with equal weights, the synthetic
control method matches each treated unit to a weighted average
of untreated units with weights calculated to minimize the

discrepancies between the treated unit and the synthetic control
in the values of the matching variables. Synthetic control estima-
tors retain, however, appealing properties of nearest neighbor
matching estimators. In particular, like nearest neighbor match-
ing estimators, synthetic control estimators use weights that
are nonnegative and sum to one. In addition, synthetic control
weights are often sparse. That is, like nearest neighbor matching
estimators, they only assign positive weights to a relatively small
number of untreated units. Sparsity and non-negativity of the
weights, along with the fact that synthetic control weights sum
to one and define a weighted average, are important features
that allow the use of expert knowledge to evaluate and interpret
the estimated counterfactuals (see Abadie, Diamond, and Hain-
mueller 2015). As shown in Abadie, Diamond, and Hainmueller
(2015), similar to the synthetic control estimator, a regression-
based estimator of the counterfactual of interest-that is, the out-
come for the treated in the absence of an intervention-implicitly
uses a linear combination of outcomes for the untreated with
weights that sum to one. However, unlike synthetic control
weights, regression weights are not explicitly reported in the
outcome of the estimation procedure, they are not sparse, and
they can be negative or greater than one, allowing unchecked
extrapolation outside the support of the data and complicating
the interpretation of the estimate and the nature of the implicit
comparison. While many applications of the synthetic control
framework have focused on cases where only one aggregate unit
is exposed to the intervention of interest, the method has found
recent applications in contexts with disaggregated data, where
datasets contain multiple treated units. In some cases, especially
in cases with a small number of treated units, the interest may
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lie on the treament effects for each of the treated. In other cases,
especially in settings with a large number of treated units, the
interest may lie on the average effect of the treatment among the
treated (see, e.g., Acemoglu et al. 2016; Gobillon and Magnac
2016; Kreif et al. 2016). In such settings, one could simply
construct a synthetic control for an aggregate of all treated
units. However, interpolation biases may be much smaller if
the estimator of the aggregate outcome that would have been
observed for the treated in the absence of the treatment is based
on the aggregation of multiple synthetic controls, one for each
treated unit.

Using synthetic controls to estimate treatment effects with
disaggregated data creates some practical challenges. In partic-
ular, when the values of the matching variables for a treated unit
fall in the convex hull of the corresponding values for the units
in the donor pool, it may be possible to find multiple convex
combinations of untreated units that perfectly reproduce the
values of the matching variables for the treated observation.
That is, the best synthetic control may not be unique. One
practical consequence of the curse of dimensionality is that,
even for a moderate number of matching variables, each par-
ticular treated unit is unlikely to fall in the convex hull of the
untreated units, especially if the number of untreated units is
not very large. As a result, lack of uniqueness is rarely an issue
in settings with one or a small number of treated units and,
if it arises, it can typically be solved by ad-hoc methods, like
increasing the number of covariates or by restricting the donor
pool to units that are similar to the treated units. In settings with
many treated and many untreated units, nonuniqueness may
be an important consideration and a problem which is harder
to solve.

More generally, in contrast to common aggregate data set-
tings with a small donor pool (see, e.g., Abadie and Gardeazabal
2003; Abadie, Diamond, and Hainmueller 2010), in settings with
a large number of units in the donor pool, single untreated
units may provide close matches to the treated units in the
data. Therefore, in such settings, the researcher faces a tradeoft
between minimizing the covariate discrepancy between each
treated unit and its synthetic control as a whole (synthetic
control case) and minimizing the covariate discrepancy between
each treated unit and each unit that contributes to its synthetic
control (matching case).

This article provides a generalized synthetic control frame-
work for estimation and inference. We introduce a penaliza-
tion parameter that trades off pairwise matching discrepancies
with respect to the characteristics of each unit in the syn-
thetic control against matching discrepancies with respect to
the characteristics of the synthetic control unit as a whole. This
type of penalization is aimed to reduce interpolation biases
by prioritizing inclusion in the synthetic control of units that
are close to the treated in the space of the matching variables.
Moreover, we show that as long as the penalization parame-
ter is positive, the generalized synthetic control estimator is
unique and sparse. If the value of the penalization parame-
ter is close to zero, then our procedure selects the synthetic
control that minimizes the sum of pairwise matching dis-
crepancies (among the synthetic controls that best reproduce
the characteristic of the treated units). If the value of the
penalization parameter is large, then our estimator coincides

with the pair-matching estimator. We study formal proper-
ties of the penalized synthetic control estimator and propose
data-driven choices of the penalization parameter. We pro-
pose, in addition, a bias-corrected version of the penalized
synthetic control estimator, which is analogous to the one
applied to matching estimators in Rubin (1973) and Abadie
and Imbens (2011). We show that the bias-correction substan-
tially improves the properties of penalized synthetic control
estimators.

Doudchenko and Imbens (2016), Athey et al. (2021), Amjad,
Shah, and Shen (2018), Arkhangelsky et al. (2018) and Cher-
nozhukov, Wiithrich, and Zhu (2021) have also proposed penal-
ization schemes for synthetic controls and related methods.
Doudchenko and Imbens (2016), Arkhangelsky et al. (2018) and
Chernozhukov, Wiithrich, and Zhu (2021) used an L; penalty
term (lasso), an L, penalty term (ridge), or a combination of
both (elastic net) to regularize synthetic control weights. This
is different from our penalization scheme, which depends on
the matching discrepancy between the treated unit and the
units in the synthetic control. Athey et al. (2021) assumed an
underlying sparse factor structure for the outcome under no
treatment and adapt matrix completion techniques to estimate
a counterfactual. Their estimator penalizes the complexity of
the factor structure. The estimator in Amjad, Shah, and Shen
(2018) used low-rank approximation techniques to de-noise
the outcomes for the units in the donor pool. Then, potential
outcomes without the treatment for the treated are estimated as
linear combinations of denoised outcomes for the units in the
donor pool, with ridge-regularized coefficients. Bias-corrected
synthetic control estimators have been independently studied
in Ben-Michael, Feller, and Rothstein (2021) and Arkhangelsky
et al. (2018).

The rest of the article is organized as follows. Section 2
presents the penalized synthetic control estimator and discusses
several of its geometric properties. Section 3 discusses permuta-
tion inference. Section 4 presents ways to choose the penaliza-
tion term. Section 5 illustrates the properties of the estimator
through simulations. Section 6 contains an application. Sec-
tion 7 contains a summary of the article and conclusions. The
appendix gathers the proofs.

2. Penalized Synthetic Control
2.1. Synthetic Control for Disaggregated Data

Assume we observe n units, some of which are exposed to the
treatment or intervention of interest. We code the treatment sta-
tus of unit 7 using the binary variable D;, so D; = 1if i is treated
and D; = 0 otherwise. To define treatment effects we adopt a
potential outcomes framework, as in Rubin (1974). Let Y}; and
Yyi be random variables representing potential outcomes under
treatment and under no treatment, respectively, for unit i. The
effect of the treatment for unit i is Y7; — Yy,. Realized outcomes

are defined as
Y .
Yi _ 1i
Yo

Let X; be a (p x 1)-vector of pretreatment predictors of Yp;.
We assume that we observe (Y;, X;) = (Y1;, X;) for ny treated

ifD; = 1,
if D; = 0.



observations and (Y}, X;) = (Yp;, X;) for ny untreated observa-
tions. Combining data for treated and nontreated we obtain the
pooled dataset, {(Y;, D;, X;)}1_;, with n = ng + n1. To simplify
notation, we reorder the observations in the data so that the n;
treated observations come first. The quantities of interest are
the treatment effects on the treated units, t; = Yy; — Yy, for
i=1,...,n;,and/or the average treatment effect on the treated
(ATET):

1 &
T = . Z (Y1; — Yoi). (1)
i=1

Many estimators of 7, are of the form,

1 — 1 «
— Y YiDi— — Y Yi(1 - DV )
Mo 5

Popular estimators of this type in micro-econometrics include
most notably regression (Angrist and Pischke 2008; Abadie,
Diamond, and Hainmueller 2015), matching estimators (Rosen-
baum and Rubin 1983; Dehejia and Wahba 2002; Abadie
and Imbens 2006), and propensity score weighting estimators
(Hirano, Imbens, and Ridder 2003). For example, in the case of
the pair-matching estimator, the weight V; given to control unit i
is equal to the number of times control unit i is the nearest neigh-
bor of a treated unit, rescaled by ng/n;. The synthetic control
method (Abadie and Gardeazabal 2003; Abadie, Diamond, and
Hainmueller 2010, 2015; Doudchenko and Imbens 2016) also
belongs to this class of estimators. It matches each treated unit
to a “synthetic control,” that is, a weighted average of untreated
units with weights chosen to make the values of the predictors
of the outcome variable of each synthetic control closely match
the values of the same predictors for the corresponding treated
units.

For any (p x 1) real vector X and any (p X p) real symmetric
positive-definite matrix I, define the norm ||X|| = (X'TX)"/2,
Because I' is diagonalizable with strictly positive eigenvalues, we
can always transform the vector X so that the matrix I becomes
the (p x p) identity matrix. As a result, without loss of generality,
we will consider only I' = I. In the synthetic control framework,
model selection-that is, the choice of the variables included in
X-is operationalized through the choice I', which rescales or
weights each predictor in X according to its predictive power on
the outcome (see Abadie, Diamond, and Hainmueller, 2010). In
a setting with many treated and untreated units, the standard
synthetic control estimation procedure is as follows:

1. For each treated unit,i = 1,...

weights W' = (W} ..

, n1, compute the ng-vector of
..» W} that solves

min

n
min[1X; - > WXl 3)

j=m+1
st. Win41>20,...,W;,, >0,

where W, is the weight given to control unit j in the synthetic
control unit corresponding to treated unit i. A synthetic
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control estimate of the effect of the treatment on treated unit
iis

n
T=Yi- ) WY
j=711+1

2. Averaging the treatment effects on the treated produces a
synthetic control estimate of 7,

S e
e
n
L

Notice that 7 is the estimator in Equation (2) reweighting each
nontreated unit, j = ny + 1,...,n,by V; = (no/n) Y1, Wl.’fj,
with Wi’fj =0fori>mn +1.

To simplify the exposition, so far we have described a simple
cross-sectional setting. The extension to the more common
panel data setting for synthetic controls, where the same units
are observed for a number of periods—before and after the
intervention happens for the treated—is immediate and we will
use it in later sections. Panel data settings with multiple treated
units also raise the possibility that different treated units adopt
the treatment at different points in time. Staggered adoption
of a treatment (Ben-Michael, Feller, and Rothstein 2019; Athey
and Imbens 2021) can easily be accommodated in the synthetic
control framework, although it creates some implementation
challenges related to the choice of a meaningful average of the
individual treatment effects as a target parameter, and the fact
that the donor pool changes in time. Moreover, even in cross-
sectional settings or when all treated units adopt the treatment
at the same time, 7 in Equation (1) is by no means the only
possible target parameter of interest. For instance, if the data
consist of a number of cities or states, one may wish to calculate
a population-weighted average treatment effect. This is, again,
easy to implement in a synthetic control framework like the
one in this article, where the effect of the treatment is esti-
mated separately for each treated unit. Abadie (2020) provided
an introduction to synthetic control estimation and discusses
feasibility and data requirements.

n
>owpnl @

Jj=n1+1

2.2. Penalized Synthetic Control

The main contribution of this article is to propose a penalized
version of the synthetic control estimator in Equation (3). For
treated unit i and given a positive penalization constant A, the
penalized synthetic control weights, W;‘jj (1), solve

n n
D WXl +x YD Wi

j=n1+1 j=n1+1
st. Win41>0,...,W;, >0,

Xi —XlI* (5

min ||X; —
W,‘ER"O

The penalized synthetic control estimates are

n
T =Yi— ) WY,
j=n1+1
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for the unit-level treatment effects, 7;, and
_ 1 ny n .
T =s) [ Yim )L WY, (6)
i=1 j=m+1
for the average effect on the treated, 7.

The tuning parameter A sets the tradeoff between compo-
nentwise fit and aggregate fit. The choice of the value of A is
important and will be discussed in Section 4. The penalized
synthetic control estimator encompasses both the synthetic con-
trol estimator and nearest neighbor matching as special polar
cases. At one end of the spectrum, as A — 0, the penalized
estimator becomes the synthetic control that minimizes the sum
of pairwise matching discrepancies among the set of synthetic
controls that best reproduce the characteristics of the treated
units. Our motivation to choose among synthetic controls that
fit the treated unit equally well by minimizing the sum of pair-
wise matching discrepancies is to reduce worst-case interpola-
tion biases. At the other end of the spectrum, as A — o0, the
penalized estimator becomes the one-match nearest neighbor
matching with replacement estimator in Abadie and Imbens
(2006).

Let Xo be the (p x ng) matrix with column j equal to X, +;,
and let A; be the (np x 1) vector with jth element equal to
be the smallest discrepancy between unit i and the units in the
donor pool. Finally, let W (1) be a solution to Equation (5), and
AT (D) = [IXi — XoW](L)] | be the square of the discrepancy
between unit i and the (penalized) synthetic control. The next
lemma establishes bounds on A (A1) and AJW}(%).

Lemma 1 (Discrepancy Bounds). Forany A > 0
NN
0= A7) = A,
and for A > 0

1+ A
ANN < AlWF(2) < TMN.

All proofs are in the appendix.
The first result in Lemma 1 states that the synthetic unit is
contained in a closed ball of center X; and radius equal to the dis-
NN
A

tance to the nearest neighbor, . The second result implies

that the tuning parameter A controls the compound discrepancy
between the treated unit and the units that contribute to the
synthetic control, AJWF(1).

The specific penalty term in Equation (5) is one of many
possible alternatives. For instance, in the spirit of elastic nets,
one could add an L, penalty term, V(Wi2,m+1 4ot WiZ’n))
to the objective function in Equation (5). The penalty term in
Equation (5) has the advantage of producing easy-to-interpret
sparse solutions, which is also a feature of the standard synthetic
control estimator. In the absence of the penalty term (that is,
when A = 0), the problem in Equation (5) can be solved by pro-
jecting X; on the convex hull of X,. Existence of sparse solutions
follows from Carathéodory’s theorem. However, if A = 0 the
solution to the problem in Equation (5) may not be unique if
X; belongs to the convex hull of the columns of X,. Adopting
A > 0 penalizes solutions with potentially large interpolation
biases created by large matching discrepancies and produces
uniqueness and sparsity as stated in the following result.

X2 Xl XB X4
& e | & &
1 2 3 4 3

Figure 1. A simple example.

Theorem I (Uniqueness and Sparsity). Suppose that any subma-
trix composed by rows of [X[; 1,, A;] has full rank, where 1,
is the (np x 1) vector of ones. Then, if . > 0 the optimization
problem in Equation (5) admits a unique solution W} (1) with
at most p + 1 nonzero components.

Notice that the condition that any submatrix composed by
rows of the g x (p+2) matrix [X{ 1,, A;]has full rank implies
that there are no two control units with the same values of the
predictors. It also implies that there is no set of control units of
cardinality p + 2 or larger such that the values of the predictors
belong to a sphere with center at X;.

Example. Consider a simple numerical example with only one
covariate. Suppose, there is one treated unit with X; = 2 and
three control units with X, = 1, X3 = 4 and X4 = 5. This
simple setting is depicted in Figure 1.

Notice that X; belongs to [1,5], the convex hull of the
columns of Xy, and A; = (1, 4, 9)’. Consider first the case
with A = 0. Then, W*(0) = (2/3, 1/3, 0)' and W**(0) =
(3/4, 0, 1/4)" are the only two sparse solutions (with number of
nonzero weights not greater than p+1 = 2) to Equation (5). The
first sparse solution, W*(0), interpolates X; = 2 using X5 = 1
and X3 = 4. The second sparse solution, W**(0) is of lower
quality relative to W*(0) in terms of compound discrepancy,
as it uses an interpolation scheme that replaces X3 with X4,
an observation farther away from X;. As a result, W*(0) is
preferred over W**(0) in terms of worst-case interpolation bias.
However, the better compound fit of W*(0) is not reflected in a
better value in the objective function in Equation (3). Moreover,
because any convex combination of W*(0) and W**(0) is also a
solution, the problem in Equation (3) has an infinite number of
solutions, Wj = {aW*(0) + (1 — @)W**(0) : a € [0,1]}. Let
V(a) = aW*(0) + (1 — a) W**(0). The compound discrepancy
of V(a) is

AiV(a) =3 —a.

W*(0), which is obtained making a = 1, produces the lowest
compound discrepancy among all the solutions to equation (3).

When A > 0, however, the program (5) has a unique solution,
which is sparse

Q2+ r/2,1—1/2,0)/3
(1, 0, 0)

ifo<x <2,

Wi = { if A > 2.

Notice that W*(1) never puts any weight on X4. As A — o0,
W*(A) selects the nearest neighbor match, andas A — 0, W*(%)
converges to W*(0), the (nonpenalized) synthetic control in W
with the smallest compound discrepancy. [J

2.3. Geometric Properties of Penalized Synthetic Controls

In this section, we use Delaunay tessellations to characterize the
geometric properties of penalized synthetic control estimators.



The results in this section provide a geometric interpretation
of penalized synthetic controls, and imply that there exists an
estimator for the case A — 0 that does not depend on approxi-
mating the limit estimate with the one obtained for an arbitrary
small value of A.

A Delaunay triangulation tessellates the convex hull of a
set of points, {x1,...,%,}, in R? into triangles with vertices
in {x1,...,x,}. Each triangle of the Delaunay triangulation
of {x1,...,x,} is such that its circumscribing circle does not
contain any point in {x,...,%,} in its interior. Delaunay tri-
angulations generalize to higher dimensions, in which case
they are often referred to as Delaunay tessellations. A Delaunay
tesselation in R? is a collection of tetrahedrons with vertices
in {x1,...,x,} such that their circumscribing spheres do not
contain points in {x1, ..., x,} in their interiors. More generally,
a Delaunay tesselation in R? is a collection of p-simplices with
vertices in {xi,...,x,} such that their circumscribing hyper-
spheres do not contain points of {xj,...,x,} in their interiors
(see, e.g., Boissonnat and Yvinec 1998; Okabe et al. 2000). We
will refer to the simplices of a Delaunay tessellation as Delau-
nay simplices. The set {xi,...,x,}, along with the collection
of segments connecting the vertices of each p-simplex of a
Delaunay tessellation, constitutes the Delaunay graph induced
by the tessellation. For the remainder of this section, we will
assume that every Delaunay tessellation is done on the convex
hull of a set of points in general quadratic position. We say that
n points in R? are in general quadratic position when (i) for k =
2,...,p,no k+1 points lie in a (k — 1)-dimensional hyperplane
of R? (non-collinearity), and (ii) no p + 2 points lie on the
boundary of an hypersphere in R? (non-cosphericity) (see, e.g.,
Okabe et al. 2000). If all the points in the set {xi,...,x,} are in
general quadratic position, then the Delaunay tessellation of the
convex hull of {x;, ..., x,} exists and is unique. The assumption
of general quadratic position is fairly innocuous. Realizations
of random vectors drawn from a distribution that is continuous
with respect to the Lebesgue measure are in general quadratic
position with probability one.

The next theorem provides a characterization of the units
contributing to a particular synthetic control, Xo W} (1) with
A > 0, as vertices of the Delaunay simplex containing Xo W} (1)
in the Delaunay tessellation of X;; 1, . . ., Xj,.

Theorem 2 (Delaunay Property I). Let W (i) be a solution to
the penalized synthetic control problem in (5) with A > 0.
Consider the Delaunay tessellation induced by the columns of
Xo. Then, for any control unit j = n; + 1,...,n, such that X;
is not a vertex of the Delaunay simplex containing Xo W} (1), it
holds that W;':j(k) =0.

This result provides a notion of proximity between a syn-
thetic control and each of the units that contribute to it. Theo-
rem 2 also provides a simple way to compute the solution for the
“pure synthetic control” case (A — 0) that does not entail the
choice of an arbitrarily small value of A to use in Equation (5).
Recall that when A = 0, the problem of minimizing || X;—Xo W/||
subject to the weight constraints has typically infinite solutions
if X; belongs to the convex hull of the columns of Xy, in which
case X; = XoW for all solutions. In the presence of multiple
solutions, the pure synthetic control case selects the solution
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that produces the lowest compound discrepancy, W’ A;, among
all W such that X; = XoW. Directly solving Equation (5) for
A — 0 requires, in practice, a choice of a small value for A.
It also creates computational difficulties, as the minimization
problem is close to one with multiple solutions. Theorem 2
provides a solution to these problems, because it implies that
the solution of Equation (5) for A — 0 can assign positive
weights only to the vertices of the simplex in the Delaunay
tessellation of X, 41, ..., X, that contains the projection of X;
on the convex hull of the columns of Xj. As a result, it is enough
to solve Equation (5) allowing positive weights only on the
observations that represent the vertices of the Delaunay face that
contains the projection of X; on the convex hull of the columns
of Xp. In high-dimensional settings, however, the large compu-
tation costs of Delaunay triangulations may make this approach
unfeasible.

Consider the Delaunay graph induced by the Delaunay tes-
sellation of the convex hull of a set of points representing the
predictor values for a treated unit, i, and for all the units in
the donor pool. The next theorem shows that, in such a graph,
the treated unit is connected to all the untreated units that
contribute to the synthetic control of unit i.

Theorem 3 (Delaunay Property II). Let W} (1) be a solution to
the penalized synthetic control problem in Equation (5) with
A > 0. Consider the Delaunay tessellation induced by the
columns of X and the treated X;, and denote Z; as the indices of
the points in {X,,+1,...,X,} that are connected to X; in the
corresponding Delaunay graph. For any j ¢ Z, it holds that
W50 = 0.

Theorem 3 provides a notion of proximity between a treated
unit and the units contributing to its penalized synthetic control.
It therefore restricts the donor pool to these units connected to
the treated and as such provides a way to simplify the computa-
tion of the synthetic control for A > 0.

Figure 2 illustrates Lemma 1 and Theorems 2 and 3 in two
dimensions. The top-left panel (a) displays the treated unit
(black cross) and the Delaunay triangulation of untreated units.
The top-right panel (b) draws the trajectory of the synthetic
unit as A changes (as A increases, the solution drifts toward the
nearest neighbor and away from the treated—solid black line)
and the circle centered on the treated of radius equal to the
distance between the treated and its nearest neighbor. Notice
that the synthetic unit is never located outside of this circle, as
per Lemma 1. The bottom left panel (c) shows the four untreated
units that have a nonzero weight across some solutions of the
penalized synthetic control as A changes (black dots). They are
the vertices of the two triangles where the synthetic unit is
located, as per Theorem 2. The bottom-right panel (d) shows
that these units are also connected to the treated in the aug-
mented Delaunay triangulation (that includes the treated unit),
as per Theorem 3.

Notice that being connected to the treated unit in the aug-
mented Delaunay triangulation is a necessary but not sufficient
condition for a unit to contribute to the synthetic control. This
can easily be seen in Figure 2(d). For example, the nearest
neighbor to the treated unit is connected to the treated unit
in the augmented Delaunay graph. This is, in fact, a general
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Figure 2. Geometric properties of penalized synthetic control estimator. (a) Treated unit (block cross) on the Delaunay triangulation of untreated units (dashed lines).
(b) The synthetic unit as A changes (solid black line) and the circle centered on the treated of radius equal to the distance between the treated and its nearest neighbor.
(c) The four untreated (black dots) that have a nonzero weight in some solutions of the penalized synthetic control as A changes. (d) Delaunay triangulation augmented

with the treated unit.

property: the (undirected) nearest neighbor graph is always a
subgraph of the Delaunay graph. However, there are positive
values of A for which the penalized synthetic control estimator
puts zero weight on the nearest neighbor of the treated unit. This
is implied by the fact that, for small values of A, the penalized
synthetic control does not lie on a Delaunay simplex with the
nearest neighbor as one of the vertices and Theorem 2. Although
the objective function in Equation (6) is a combination of the
objective functions minimized by the unpenalized synthetic
control and the nearest neighbor matching estimator, the penal-
ized synthetic controls estimator is not in general a combination
of the unpenalized synthetic control estimator and the nearest
neighbor matching estimator. Kellogg et al. (2020) proposed
averaging synthetic control and the nearest-neighbor matching
estimators.

2.4. Bias-Corrected Synthetic Control

We will also consider bias-corrected versions of synthetic con-
trol estimators. We adopt a bias correction analogous to that
implemented in Rubin (1973) and Abadie and Imbens (2011) for

matching estimators. Let jZo(x) be a regression predictor of the
outcome, Y;, of an untreated unit with covariate values X; = x.
A bias-corrected version of the synthetic control estimator in
equation (6) is

ny

- 1 ~
Te() = — Y[ (Y~ (X)) (7)

1o

— Y WEO(Y) — (X))

Jj=m+1

Like in Abadie and Imbens (2011), the bias correction in Equa-
tion (7) adjusts for mismatches between the characteristics of
the treated units and the characteristics of each of the units that
contribute to the synthetic controls. Depending on the setting
and the nature and quantity of data, f{y can be a parametric or
a nonparametric regression. A bias correction of this type has
been independently studied in Ben-Michael, Feller, and Roth-
stein (2021), who propose using ridge regression to estimate
o (x).



3. Permutation Inference

In this section, we adapt the inferential framework in Abadie,
Diamond, and Hainmueller (2010) to the penalized synthetic
control estimators of Section 2. Like in Abadie, Diamond, and
Hainmueller (2010), our inferential exercises compare the value
of a test statistic to its permutation distribution induced by
random reassignment of the treatment variable in the dataset.
Aside from simulation errors, this inferential exercise is exact
by construction, regardless of the number of units in the data.
We next describe two possible implementations that employ dif-
ferent test statistics and permutation schemes. Alternative test
statistics and permutation schemes are possible and, in practice,
the choice among them should take into account the nature
of the parameter(s) of interest (e.g., individual vs. aggregate
effects), the characteristics of the intervention that is the object
of the analysis, and the structure of the dataset. Randomized
reassignment of the treatment in the data is taken here as a
benchmark against which we evaluate the rareness of the value
of a test statistic, and it may not reflect the actual and typically
unknown treatment assignment process (see Abadie, Diamond,
and Hainmueller 2010, 2015). Firpo and Possebom (2018)
proposed a procedure to assess the sensitivity of permutation
inference to deviations from the reassignment benchmark. The
permutation procedure outlined in this section is conditional
on the data and its validity does not depend on the nature of
the mechanism used to generate the dataset. Alternative infer-
ential procedures for synthetic controls have been proposed by
Chernozhukov, Wiithrich, and Zhu (2021) and Cattaneo, Feng,
and Titiunik (2019), among others, and they are summarized
in Abadie (2020). While this section focuses exclusively on
p-values, permutation distributions are easy to visualize and
report, and they contain important additional information, like
the signs and magnitudes of the test statistics (Abadie 2020). In
addition, as in Firpo and Possebom (2018), confidence intervals
around synthetic control estimates can be obtained by inverting
the results on statistical tests based on the p-values in this
section.

3.1. Inference on Aggregate Effects

Here, we outline a simple permutation procedure that employs
a test statistic, T, that measures aggregate effects for the treated.
Examples of aggregate statistics of this type are the synthetic
controls estimators in Equations (6) and (7). Similar to Abadle,
Diamond, and Hainmueller (2010), in a panel data setting T can
be based on the ratio between the aggregate mean square predic-
tion error in a post-intervention period and a pre-intervention
period. Let Yj; be the observed outcome for unit i at time t,
and let 7;; be as in Equations (6) and (7) but with Y; and Y;
replaced by Yj; and Y, respectively. Then, the ratio between the
aggregate mean square prediction error in a post-intervention
period 71 € {To + 1,..., T} and a pre-intervention period

To € {1,...,To}is
ny 2 n 2
3 (zm) 3 (zatm) C®
teT1 \i= teTy \i=
Let D° = (Dy, ..., D,) be the observed treatment assignments

in the data. We will write T(D"bs ) to indicate the value of the test
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statistic in the data, and ’T(D) to indicate the value of the test
statistic when the treatment values are reassigned in the data as
indicated in D. The procedure is as follows:

1. Compute the test statistic in the original data ?(D”bs)

2. At each iteration, b = ,B, permute at random the
components of D°bs to obtam T(D(b))

3. Calculate p-values as the frequencies across iterations of the
values of T(D®) more extreme than T(DObS) Typically, for
two-sided tests

p=B+1<

For one-sided tests

p=B+1<

B
p= BLH (1 + I; 1{To") < ?(D“”S)}) .

B
+ > 1{ifo®) = |?<D°b5)|}> .

b=1

B
+> 1 {To®) = ?(D““)})
b=1

or

3.2. Inference Based on the Sum of Rank Statistics of
Unit-Level Treatment Effects Estimates

Similar to Dube and Zipperer (2015), we propose a test based on
the rank statistics of the unit-level treatment effects. Unlike the
test in Dube and Zipperer (2015), we calculate the permutation
distribution directly from the data. The test we employ is based
on the sum of the ranks of n1 x (B+1) unit-level test statistics for
the treated in the data and in B random permutation of observed
treatments. Individual treatment effects, 7;, may be based on
differences in outcomes between treated and synthetic controls,
n
bias corrected versions of the unit-level treatment effects,
n
The test statistic may be based on unit-level versions of the mean

squared prediction error ratio in Equation (8). The procedure is
implemented as follows:

(Y; — 10(Xi) — W)Y — (X))

1. Compute unit-level test statistic for the treated, T, fori =
1,...,n, under the actual treatment assignment, DO,

2. At each iteration b = 1,...,B, permute at random the
components of Db to obtain T (D(b)) for the treated. Denote
these estimates be), ces

3. Calculate the

T,(f) (in arbitrary order).

ranks Rj,...,Ry,, Rgl),...,R,(qll), A

RgB),...,R,(ﬁ) associated to the n;y x (B + 1) individual
treatment effect estimates ?1,...,i,1, ’ﬂl),...,ﬁl?, ce e
’ﬂB), ey ?,(f) (or of their absolute values or negative values)

and the sums of ranks for each permutation, SR = Y 1% | R;,
SR =y ™ RP pb=1,...,B
4. Calculate p-values as follows

S )

b=1
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4. Penalty Choice

We present two data-driven selectors for the penalty term, A. In
the context of treatment effects estimation, cross-validation is
complicated by the absence of data on a ground truth (i.e., on
the values of Yy for the treated units in the post-intervention
periods, see Athey and Imbens 2016). Since synthetic controls
are often applied to panel data, we consider a balanced panel
data setting with T periods and Tp < T pre-intervention
periods. As before, we define Yj; as the outcome for unit i at
time . Adaptation of Equations (5) and (6) to the panel data
setting is straightforward by allowing X; to potentially include
multiple pre-intervention values of the outcome variable and of
other predictors of post-intervention outcomes.

The first selector proposed in this section is based on cross-
validation on the outcomes on the untreated units in the post-
intervention period. The second selector minimizes prediction
error for the treated units in a hold-out pre-intervention period.

4.1. Leave-One-Out Cross-Validation of Post-Intervention
Outcomes for the Untreated

This section discusses a leave-one-out cross-validation pro-
cedure to select A by minimizing mean squared prediction
error for the treated units for the untreated units in the post-
intervention period. The procedure is as follows:

1. For each control unit i = n; + 1,..,n, and each post-
intervention period, t = Ty + 1,..., T, calculate

n
T() =Y — Yy W5 Y,
j=n+1
Jj#i

where Wl*] (1) is a synthetic control for unit i that is produced

by the donor pool {n; + 1,...,n}\{i}.
2. Choose A to minimize some measure of loss, such as the sum

of the squared prediction errors for the individual outcomes,

Sy (Bm),

i=n1+1t=Tp+1
or for the average outcomes

2
T n

S Y ww

t=To+1 \i=n;+1

4.2. Pre-Intervention Holdout Validation on the Outcomes
of the Treated

An alternative selector of A is based on validation over the
outcomes for the treated on a hold out pre-intervention period.
To simplify the exposition, and because it may be the most nat-
ural choice, we will only describe the case when the validation
period comes immediately before the intervention, although
other choices are possible. Let 1 and k be the lengths of the train-
ing and validation periods, respectively. The validation period
comprises the k dates immediately before the intervention, and
the training period comprises the h dates immediately before the
validation period. The procedure is as follows:

1. For each treated individual, i, and validation period, t €
{To —k+1,...,To}, compute

n
T =Yu— Y W5MY
j=n1+1

where Wz*] solve (5) with X, . . ., X, measured in the training
period.

2. Choose A to minimize a measure of error, such as the sum of
the squared prediction for the individual outcomes,

ny To 2
> Y (aw),
i=1 t=Ty—k+1

or the squared prediction error of the aggregate outcomes,

To ny 2
> (Z?ﬁu)) ,

t=To—k+1 \i=1

in the validation period.

5. Simulations

This section reports the results of a Monte Carlo experiment
that investigates the properties of the penalized synthetic control
estimator relative to its unpenalized version (A = 0) and
to the nearest neighbor matching estimator in a panel data
framework.

The data-generating process is as follows. Let X,,,; be the mth
component of X;. The simulation design includes two periods: a
pre-intervention period (¢ = 1), and a post-intervention period
(t = 2). Irrespective of the treatment status, the outcome at
date t € {1,2} is generated by Yy = (anle:m-) /B + €it
with 7 a positive constant governing the degree of linearity
of the outcome function. Hence, the treatment effects, t;, are
equal to zero. The error terms ¢;; are generated as independent
values from the standard normal distribution. For the n; treated
units, Xj, is a vector of dimension p with independent entries
uniformly distributed on [.1,.9]. For the ny control units, X;
is a vector of the same dimension with independent entries
distributed as ~/U, where U is uniform on [0,1]. We set B =

\/var (an:l X .|D; = 1), so that var(Y;4|D; = 1) = 2 and

the signal-to-noise ratio for the treated is equal to one.

We compare the performances of synthetic control and
matching estimators with M matches per unit (see, e.g., Abadie
and Imbens 2006). We will consider these two estimators with a
fixed choice and a data-driven choice of A and M. Under the
fixed procedure, we impose A — 0 for the synthetic control
and M = 1 in the matching estimator, encompassing both polar
cases of the penalized synthetic control estimator highlighted in
this article. The case . — 0 is referred to as the “pure synthetic
control”. Among all the solutions to the unpenalized synthetic
control optimization problem in Equation (3), it selects the
one with the smallest componentwise matching discrepancy,
Z]’Lnl 11 WijlIXi—X;| 2. The computation of the pure synthetic
control estimator is based on the result in Theorem 2 and
discussion thereafter. The pure synthetic control estimator is



not to be confused with the nonpenalized synthetic control
(0 = 0), for which we also report results, and which does
not take into account the compound discrepancy. The data-
driven choice of A and M uses the first period outcome to min-
imize the mean square error (MSE) over that period. In other
words, we follow the second procedure in Section 4. At each
simulation step, A and M are chosen so as to minimize mean
square error,

2

n
> oW |
j=n1+1

1 &
- Yy —

and
2

1 & 1
”_1; Yil_M Z Yi| »

j€IMm ()

with respect to A and M, respectively, where 7y (i) is the set of
indices of the M control units that are the nearest to treated
unit i as measured by the Euclidean norm. The parameter A
is selected over a grid of positive values. This implies that the
penalized synthetic control estimator, which is sparse, does not
nest the unpenalized one, which is not necessarily sparse if the
treated unit falls inside the convex hull defined by the values
of the predictors in the donor pool. The number of matches
is selected over the set of positive integers not greater than 20.
We also report a bias-corrected version of the estimators as in
Section 2.4, based on a linear specification for the regression
function, 7&.

For each configuration and each estimator, we report four
statistics computed on the estimates of the treatment effects on
the treated units in the second period. The first statistic is the
individual root mean square error (RMSE indiv.), computed as
the square root of average individual-level MSE across simula-
tions,

A 2\

~(b)

(rasey)
b=1 i=1

The second is the aggregate-level RMSE (RMSE aggreg.) across
simulations,

1/2

11 & 2
~(b)
gZ(n—l Tiz)
b=1 i=1

The third is the absolute value of the bias across simulations
(|Bias|),

ni
L WP
— Ty .
2
ny “
1 i=1

| =

B
b=

The last is the average density defined as the average number
of untreated units used as controls for each treated unit, that is,
number of nonzero entries of W}*(A) or number of matches in
the optimized matching procedure.

The results are reported in Tables 1-3 for ny € {20, 40, 100},
respectively, each time with n; = 10. Table 4 reports results
for ny = 100, ny = 400. Each table is divided into 16
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blocks corresponding to a particular value of (p, 7). Each block
is divided into two parts: the upper half reports the results
without bias-correction and the lower half reports results with a
bias-correction based on a linear specification of the regression
function. Results are color-coded column-by-column within
each half-block on a continuous color scale. For the upper half-
block, the scale varies from dark blue (minimum column value)
to light yellow (maximum column value). For the lower half-
block, the scale varies from bright red (minimum column value)
to light yellow (maximum column value).

Some clear patterns emerge from the results in Tables 1-
3. First, for most parameter values the penalized and the pure
synthetic control estimators outperform the matching proce-
dures across all three measures of performance. This advantage
appears to be increasing with p, the dimension of the covariates.
Second, in terms of aggregate RMSE and bias, the unpenalized
synthetic control estimator shows mixed results, especially when
p is small and r is large, but catches up with the pure synthetic
control estimator as p increases, which is expected. Indeed,
the pure and unpenalized synthetic control estimators coincide
for treated units outside of the convex hull of the untreated.
As the dimensionality of the matching variables increases, the
probability that a treated unit falls outside the convex hull
of the untreated increases. In terms of individual RMSE, the
unpenalized synthetic control estimator behaves very well at
the cost of large reductions in sparsity and, therefore, at the
cost of interpretability of the individual estimates. Third, the
advantage of the penalized and pure synthetic control estimators
with respect to the bias slightly decreases as the degree of the
outcome function r increases. When r is relatively large, the
matching procedure displays a low bias as expected, albeit at the
expense of a very large individual RMSE. These three patterns
are magnified in Table 4 where the penalized synthetic control
performs consistently well in each of the 16 blocks. The biases
of the estimators go down substantially when we adopt the bias-
correction procedure of Section 2.4. Here, it is more difficult
to rank estimators based on the simulation, as the amount of
bias corrected by the procedure is different for each estimator
in a way that may be directly linked to the simulation design.
That said, the overall patterns of relative performance of the
bias-corrected estimators is similar to that of the noncorrected
estimators, albeit with more muted differences in performance.
Overall, the penalized synthetic control estimator strikes a
favorable bias-variance tradeoff in Tables 1-4 by combining the
strength of matching and (unpenalized) synthetic control.

6. Empirical Application

Starting with LaLonde (1986), many studies have used data
from the National Supported Work Demonstration (NSW) to
demonstrate the applicability and performance of alternative
estimators of treatment effects (see, e.g., Dehejia and Wahba
2002; Smith and Todd 2005; Abadie and Imbens 2011). This
section provides an empirical application of penalized synthetic
control estimators using NSW data. The NSW program was
aimed at improving employment opportunities for individuals
at the margins of the labor market by providing them with tem-
porary subsidized jobs. It targeted individuals with low levels
of education, individuals with criminal records, former drug
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1830 A. ABADIE AND J. 'HOUR

addicts, and mothers who received welfare benefits for several
years. In this application, the quantity of interest is the impact
of the participation in the program on 1978 yearly earnings in
dollars for this specific population. In the original experiment,
individuals from the targeted population were randomly split
between a treatment arm (n; = 185) and a control arm
(np = 260). On that sample, the ATET estimate is $1,794,
which provides an experimental benchmark. A second control
group, extracted from the Panel Study of Income Dynamics
(PSID, ng = 2490), has been made available to study estimators
based on observational data (LaLonde 1986; Dehejia and Wahba
1999). We use this second sample to illustrate the penalized
synthetic control estimator. We include in X; the 10 covariates of
the dataset (age, education, black, hispanic, married, no degree,
income in 1974, income in 1975, no earnings in 1974, and no
earnings in 1975). Before computing estimates, we divide each
of the predictors in X; by their standard deviations in the treated
sample. For the 1974 and 1975 income variables, which feature
long right tails in their distributions, we first discard values
above the .9 quantiles before computing the standard deviation
that we use to rescale these variables.

We compare four penalized synthetic control estimators:
one with a fixed (and small) value of A (A = .1), the pure
synthetic control (A — 0) and two with data-driven penalties—
one that minimizes individual RMSE and one that minimizes
the bias over A > 0. The computation of the pure synthetic
control estimator is based on the result in Theorem 2 and
discussion thereafter. We also report the results from nearest
neighbor matching estimators: a one-match-with-replacement
procedure, and one where the number of neighbors minimizes
the individual RMSE. For the latter estimator, the number of
matches is selected over the set of positive integers not greater
than 30. In order to select the penalty level A (and the number
of neighbors in the matching procedure), we adapt the strategy
proposed in Section 4.1. In particular, to reduce the computa-
tional burden, we select 170 untreated units that are close to the

Table 5. LalLonde (1986) dataset, results.

treated units, and for each one of them construct a synthetic
unit using all the other (2489) untreated units. The goal is to
select a penalty level in a setting as close as possible to the one
where the estimator is going to be applied. The set of these 170
“placebo-treated” untreated units is constructed as the union
of all four nearest neighbors of each treated unit. The selected
penalty level X is then used to compute the synthetic units for
each of the 185 treated, using the 2490 untreated. In the PSID
dataset, several untreated individuals are identical in terms of
covariates, which can create ties in matches and nonunique
solutions in penalized synthetic control weights. To make the
solution unique, we consolidate identical untreated individuals
into a single individual whose outcome is an average of the
outcomes of its components before computing the synthetic
control weights.

Table 5 reports the results. All penalized synthetic control
estimators, as well as the one-match nearest neighbor matching,
in columns (1) to (5), come fairly close to the treated sample
in terms of average values of the predictors. These four esti-
mators yield treatment effects ranging from $1881 to $2171,
in the ballpark of the experimental benchmark, $1794. The
matching procedure in column (6) selects 23 neighbors, and
yields a matched sample that is substantially different than the
sample of treated units in the average value of the predictors.
The estimated treatment effect for this matching estimator is
$983, markedly smaller than the experimental benchmark. The
synthetic control estimators in columns (1), (3), and (4), which
employ positive values of A, are very sparse. In contrast, the
synthetic control estimator in column (2) employs A = 0 and
produces some highly dense estimates, as evidenced by the value
of its maximal density.

Figure 3 displays the results of permutation tests described
in Section 3 for an estimator with a fixed level A = .1, that is,
the estimator in column (1) of Table 5. We consider two tests
statistics: the sum of ranks and the aggregate treatment effect. p-
values are computed using one-sided tests (no effect vs. positive

Treated Untreated Untreated Pen. Synth. Pen. Synth. Pen. Synth. Pure Synth. Matching Matching
(Experimental) (PSID) 2 fixed J.RMSE ‘Abias r—0 M=1 MRMSE
m @ ®3) 4) (5) (6)

Married 0.19 0.15 0.87 0.20 0.20 0.21 0.20 0.21 0.44
Black 0.84 0.83 0.25 0.82 0.81 0.83 0.81 0.84 0.68
Hispanic 0.06 0.11 0.03 0.05 0.05 0.05 0.05 0.05 0.02
No degree 0.71 0.83 0.31 0.67 0.66 0.67 0.66 0.68 0.61
No Earnings 1974 0.71 0.75 0.09 0.67 0.68 0.67 0.68 0.69 0.54
No Earnings 1975 0.60 0.68 0.10 0.63 0.63 0.63 0.63 0.63 0.62
Age 25.8 25.1 349 27.2 274 26.6 274 26.3 29.5
Education 10.4 10.1 121 10.4 103 10.4 103 103 10.6
Earnings 1974 2095.6 2107.0 19,428.8 22251 2256.6 2235.6 2256.6 22754 2421.4
Earnings 1975 15321 1266.9 19,063.3 1602.4 1619.6 1582.4 1619.6 1598.7 1733.2
Treatment effect 1794.3 1977.3 2171.4 1881.4 2167.9 2138.8 982.9
A 0.1 0 0.95 —-0
Min. density 1 2 1 1 1 23
Median density 4 6 2 6 1 23
Max. density 8 1021 6 1" 2 26
Active units 260 2490 193 1664 124 263 67 511

Note: The upper part of the table displays the average characteristics of the individuals in the sample. For the columns “Pen. Synth.” (resp. “Matching”), it is an average
weighted by the synthetic control (resp. matching) weights. The lower part of the table displays the resulting treatment effect, the corresponding value of 1 and statistics
regarding the weights. Here, density counts the number of nonzero elements in a vector of synthetic weights, W;*(1). The median, min. and max. density rows report
the median, minimal and maximal densities observed for a synthetic unit. “Active units” refers to untreated units who receive a nonzero weight in at least one synthetic

unit. Notice that for matching estimators the density can differ from the chosen number of neighbors when there are ties.
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Figure 3. Permutation tests for the NSW data.
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Note: Results are obtained for 1000 permutations, using a fixed value of A = 0.1. The left panel displays the histogram of the sum-of-ranks statistics. The right panel displays
the histogram of the aggregate treatment effect. The red doted line is the value of the statistics for the observed assignment. p-values for the one-sided tests are 0.003 and

0.013, respectively.

effect) and 1000 permutations. In both cases, the effect lies at the
right tail of the distribution and is significant at the 1% level for
the sum-of-rank statistics and at the 5% level for the aggregate
treatment effect statistics.

7. Conclusions

In this article, we propose a penalized synthetic control estima-
tor that trades off pairwise matching discrepancies with respect
to the characteristics of each unit in the synthetic control against
matching discrepancies with respect to the characteristics of the
synthetic control unit as a whole. We study the properties of this
estimator and propose data-driven choices of the penalization
parameter. We show that the penalized synthetic control estima-
tor is unique and sparse, which makes it particularly convenient
for empirical applications with multiple treated units, where the
focus of the analysis may be on average treatment effects. We
propose a bias-correction for the penalized synthetic control
estimator, and extend the inferential methods for synthetic con-
trols in Abadie, Diamond, and Hainmueller (2010) to settings
with multiple treated units. We show that the penalized syn-
thetic control estimator performs well in simulations. The infer-
ential methods proposed in this article are conditional on the
sample and do not rely on the sampling mechanism. Sampling-
based inference, which requires an approximation to sampling
distribution of the penalized synthetic control estimator, is an
interesting avenue for future research.

Appendix
Notation

For any real matrix X, let CH(X) and D7 (X) be the convex hull and
the Delaunay tesselation of the columns of X, respectively. We recall
that DT (X) is a partition of CH(X).

Proof of Lemma 1

Notice that if the first result in Lemma 1 does not hold, then W;k Q)
cannot be a solution to the problem in equation (5) since the nearest
neighbor will result in a better fit. We start by proving the upper bound

in the second inequality. Since Wl?" (A) minimizes (5), it follows that
(Xi — XoW; (W) (Xi — XoWF (L) + AAWF (L)
= (% — X)) (X — Xowg) +AANY.
Therefore,
MAWER) < (14 1AM,
and the result follows from A > 0. The lower bound follows from the
definition of AIN N, ]
Proof of Theorem 1

Without loss of generality, consider the case with only one treated, n; =
1. The penalized synthetic control estimator is calculated as the vector
of weights that solves

mv\i/n fiW) = (X1 = XoW)' (X1 — XoW) + AW'Ay,

st. WeW, (A1)

where W = {W € [0,1]" | W'1,, = 1}. It is easy to check that the
feasible set, W, is convex and compact. Because f; is continuous and
W is compact, it follows that the function attains a minimum on W.
Moreover, X(’)Xo is positive semidefinite, so f; is convex.

Suppose that more than one solution exists. In particular, assume
that W1 and W, are solutions, with f(W1) = fi(W2) = ff . Then,
for any a € (0, 1) we have that aWj + (1 — a) W, € W. Because f; is
convex, we obtain

fulaWi + (1 — )W) < afp, (W1) + (1 — a)fh, (W2) =f;.

This implies that the problem has either a unique solution or infinitely
many. In addition, if there are multiple solutions, they all produce the
same fitted values Xo W. To prove this, suppose there are two solutions
W1 and W such that XoW; # XoW>. Then, because ||x — c||? is
strictly convex in ¢, for a € (0, 1) we obtain

f@Wi + (1 — a)W2) = ||X1 — Xo@W1 + (1 — @) Wa)||?
+2@W1 + (1 —a)W2) Ay
< al|X1 — XoW1|?
+ (1= a)||X; — XoWal|?
+2@W1 + (1 —a)Wa) Ay
=afy + (1 —a)fy
=f
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which contradicts that W1 and W, are solutions. As a result, if W
and W3 are solutions, then Xo W1 = XoW;. Moreover, > > 0 implies
WiA1L = WiA1. Let A = [X[ 14, A1) It follows that, if W1 and W,
are solutions, then A" (W1 — W) = 0p+2 (where Opyoisa (p+2) x 1
vector of zeros).

Karush-Kuhn-Tucker conditions imply

A
/ — .
X1 = XoW) = S Ay =7~

Wj =0, Wiy =1,y >0, yjW;=0.

Stacking the first ng conditions above and pre-multiplying by W’, we
obtain
aved A /!
WXy(X1 —XoW) — EW Al =m.
From this equation, it follows that the value of 7 is unique across
solutions, because X(’) W and W’ A are unique across solutions. Given
that 7 is unique, the equations
X[(X1 — XoW) — }‘ A1 =7 -y
'j A ]
imply that the y;’s are unique across solutions. Let X be the submatrix
of Xo formed by the columns associated with zero y;’s, and define W,
Al, and 15, analogously, where 71 is the number of columns of Xo
Then,
~, ~ o~ A~
X0 = XoW) = &1 + iy, (A.2)
Notice that if A > 0, then ||X; — XoW]|| = 0 implies that Zl is
a constant vector. We therefore obtain that if A > 0 and Z] is not
constant, then it must be the case that || X; — XoW]|| > 0.

LetA = [)N(é 1%, Zl]. Consider the case 7ip > p + 2. In this case
A has full column rank, which implies that Equation (A.2) cannot hold
if . > 0. As a result, when A > 0, the solution to Equation (A.1) has
p + 1 non-zero components at most.

Consider now the case 79 < p+ 1. For this case A has full row rank.
Moreover, if W1 and W2 are solutlons it must be the case that A’ (W1
Wz) = 0p+2. However, because A has full row rank the system Az =
0 p+2 admits only the trivial solution, z = 03, which implies that the
solution to Equation (A.1) is unique. ]

Lemma A.1 (Optimality of Delaunay for the Compound Discrepancy,

Rajan, 1994). Let Z € CH(Xp). Consider a solution W =
(Way+15- - -» W)’ of the problem
n
min WillX; — Z||%, A3
wamn, > willx;—ZI] (A.3)
Jj=n1+1
n
st. XoW=2, Y Wj=L (A4)

j=m+l

Then, nonzero values of WJ occur only among the vertices of the
Delaunay simplex containing Z.

We restate the proof of Lemma 10 in Rajan (1994) for clarity and
note that it does not rely on general quadratic position of the set of
points.

Proof of Lemma A.1

For a point X € R?, consider the transformation ¢ : X — (X, ||X| 12).
The images under ¢ of points in R? belong to the paraboloid of revolu-
tion P with vertical axis and equation xp41 = Z‘f 1% By Theorem

17.3.1 in Boissonnat and Yvinec (1998), the Delaunay tessellation of

the convex hull of the ng points Xy, 41,...,Xy in R? are obtained by
projecting onto RP the faces of the lower envelope of the convex hull
of the ng points ¢ (Xy,+1), . . . » ¢ (Xy) obtained by lifting the Xj’s onto
the paraboloid P.

Now consider points (Zji‘q=m+1 WiXj, Z;?:m_H Wj||Xj||2) sub-
ject to the constraints in Equation (A.4). These points are equal to
(Z, Z}’:nﬁ_l WillX; — Z| 12+ 12| |2> and belong to the convex hull of
¢ (X +1),...,9(Xn). Hence, a solution of (A.3) for a fixed Z is given
by such a point with the lowest (p + 1)th coordinate. It is a point on
the lower envelope of the convex hull of ¢ (Xy,+1),...,¢Xy), so Z
belongs to a p-simplex of the Delaunay tessellation. As a consequence,
nonzero entries of W occur only among the vertices of the face of the
Delaunay tessellation of the columns of X¢ containing Z. g

Proof of Theorem 2

It is enough to prove that the result holds for one treated unit, so we
consider the case n] = 1 and drop the treated units subscripts from the
notation. We proceed by contradiction. Suppose that the synthetic con-
trol weights are given by the vector W*(1) = (W3 (A),..., W (L),
and that W]* (A) > 0 for j which is not a vertex of the Delaunay simplex
in DT (Xp) containing Xo W*(1). Because Xo W* (1) € CH(Xp), it fol-
lows from Lemma A.1 that we can always choose a 119~ VCCt()}' of weights
W e [0,1]™, such that (i) XoW = XoW* (L), (ii) Z" W; = 1, (iii)
W = 0 for anyj that is not a vertex of the Delaunay s1mplex contamlng

Xo W* (A), and (iv) f/\z induces a lower compound discrepancy than
W* () relative to Xo W = XoW* (1),

n n
Y WillXj = XoWII? < Y- WrGIIX; — XoW* 112,
j=2 j=2

(A.5)
For any W € [0,1]™ it can be easily seen that

n
> wilix; - xal?
j=2

Corﬂrylbining equations (A.5) and (A.6) with the fact that ||X; —
XoWI2 = [|X1 — XoW*(1)||?, we obtain

n
=Y WillXj— XoWII* + X1 — XoW|[>. (A.6)
j=2

n n
Yo Willxg = Xall? < Y0 WEIIX; — Xall>

j=2 j=2

As a result

n
1X1 = XoWII* + 2 ) WillXj — X1|* < |IX1 — XoW* (W)

j=2
n
+A Y WEMIX; - Xl
j=2
which contradicts the premise that W* (1) is a solution to (5). O
Proof of Theorem 3

Since the columns of [X] Xo] are in general quadratic position, the aug-
mented Delaunay triangulation, D7 ([X1 : Xo]), exists and is unique.
Without loss of generality, consider the case of a single treated unit, and
normalize X to be at the origin. Let /7T (X1, Xo) be the union of the
Delaunay simplices that have X; as a vertex in D7 ([X1 : Xo]). Con-
sider a point z € CH([X7 : Xo])\UT (X1, Xo). We will first show that z
cannot be equal to Xo W*(1.). Because z does not belong to T (X1, Xo)
and because the set CH([X1 : Xo]) is convex, it is always possible to
find a point v € CH([X1 : Xo)\UT (X1,Xp) on the line segment that
connects z and X1 such that || X7 — v|| < ||X1 — z|| (or, equivalently,



[Iv|| < [|z]|). For any point in x € CH([X;1 : Xo]) consider the set of
nonnegative weights, w1 (x), . .., wy(x), such that (i) 2?21 wi(x) = 1,
(ii) 21": 1 wi(x)X; = x, and (iii) if X; is not a vertex of the Delaunay sim-
plex containing x, then w;j(x) = 0. If x € CH([X1 : Xo)\UT (X1,X0),
then the Delaunay simplex containing x in D7 ([X : Xo]) is the same
as the Delaunay simplex contain x in DT (Xp) (Devillers and Teillaud,
2003; Boissonnat, Devillers, and Hornus, 2009). Therefore, by Theo-
rem 2, if x € CH([X1 : Xo])\UT (X1,Xp) and XoW* (L) = x, then
W) = w2(0), .., wn(x)). Now, let g(x) = Y1) wi(0)[1X;]|* =
ZL] w;i(x)||X1 — X;||>. This function is convex because it is the
lower boundary of the convex hull of {(X1, [|X1][%),. .., (Xn, || Xn|*)}
(Rajan, 1994), and is minimized at x = Xj. As we move from z to v,
we travel in the direction of the minimum of g(x). Because g(x) is a
convex function, it follows that g(v) < g(z). Because ||v|| < [|z|| and
g(v) < g(2), it follows that Xo W*(1) # z, regardless of the value of A.
This implies that Xo W* () must belong to AT (X1, Xo) and the result
follows from Theorem 2. O
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