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In Abadie and Imbens (2006), it was shown that simple nearest-neighbor matching estimators include a
conditional bias term that converges to zero at a rate that may be slower than N1/2. As a result, match-
ing estimators are not N1/2-consistent in general. In this article, we propose a bias correction that ren-
ders matching estimators N1/2-consistent and asymptotically normal. To demonstrate the methods pro-
posed in this article, we apply them to the National Supported Work (NSW) data, originally analyzed in
Lalonde (1986). We also carry out a small simulation study based on the NSW example. In this simula-
tion study, a simple implementation of the bias-corrected matching estimator performs well compared to
both simple matching estimators and to regression estimators in terms of bias, root-mean-squared-error,
and coverage rates. Software to compute the estimators proposed in this article is available on the au-
thors’ web pages (http://www.economics.harvard.edu/ faculty/ imbens/software.html) and documented in
Abadie et al. (2003).
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1. INTRODUCTION

The purpose of this article is to investigate the properties of
estimators that combine matching with a bias correction pro-
posed in Rubin (1973) and Quade (1982), and derive the large
sample properties of a nonparametric extension of the bias-
corrected estimator. We show that a nonparametric implemen-
tation of the bias correction removes the conditional bias of
matching asymptotically to a sufficient degree so that the re-
sulting estimator is N1/2-consistent, without affecting the as-
ymptotic variance.

We apply simple matching estimators and the bias-corrected
matching estimators studied in the current article to the Na-
tional Supported Work (NSW) demonstration data, analyzed
originally by Lalonde (1986) and subsequently by many oth-
ers, including Heckman and Hotz (1989), Dehejia and Wahba
(1999), Smith and Todd (2005), and Imbens (2003). For the
Lalonde dataset we show that conventional matching estima-
tors without bias correction are sensitive to the choice for the
number of matches, whereas a simple implementation of the
bias correction using linear least squares is relatively robust
to this choice. Moreover, in small simulation studies designed
to mimic the data from the NSW application, we find that the
simple linear least-squares based implementation of the bias-
corrected matching estimator performs well compared to both
matching estimators without bias correction, and to regression
and weighting estimators, in terms of bias, root-mean-squared-
error, and coverage rates for the associated confidence intervals.

Bias-corrected matching estimators combine some of the ad-
vantages and disadvantages of both matching and regression
estimators. Compared to matching estimators without bias cor-
rection, they have the advantage of being N1/2-consistent and
asymptotically normal irrespective of the number of covariates.
However, bias-corrected matching estimators may be more dif-
ficult to implement than matching estimators without bias cor-
rection if the bias correction is calculated using nonparametric

smoothing techniques, and therefore, involves the choice of a
smoothing parameter as a function of the sample size. Com-
pared to estimators based on nonparametric regression adjust-
ment without matching (e.g., Hahn 1998; Heckman et al. 1998;
Imbens, Newey, and Ridder 2005; Chen, Hong, and Tarozzi
2008) or weighting estimators (Horvitz and Thompson 1952;
Robins and Rotnitzky 1995; Hirano, Imbens, and Ridder 2003;
Abadie 2005), bias-corrected matching estimators have the ad-
vantage of an additional layer of robustness because matching
ensures consistency for any given value of the smoothing para-
meters without requiring accurate approximations to either the
regression function or the propensity score. However, in con-
trast to some regression adjustment and weighting estimators,
bias-corrected matching estimator have the disadvantage of not
being fully efficient (Abadie and Imbens 2006).

2. MATCHING ESTIMATORS

2.1 Setting and Notation

Matching estimators are often used in evaluation research to
estimate treatment effects in the absence of experimental data.
As is by now common in this literature, we use Rubin’s po-
tential outcome framework (e.g., Rubin 1974). See Rosenbaum
(1995) and Imbens and Wooldridge (2009) for surveys. For N
units, indexed by i = 1, . . . ,N, let Wi be a binary variable that
indicates exposure of individual i to treatment, so that Wi = 1
if individual i was exposed to treatment, and Wi = 0 otherwise.
Let N0 = ∑N

i=1(1 − Wi) and N1 = ∑N
i=1 Wi = N − N0 be the

number of control and treated units, respectively. The variables
Yi(0) and Yi(1) represent potential outcomes with and without
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treatment, respectively, and therefore, Yi(1)− Yi(0) is the treat-
ment effect for unit i. Depending on the value of Wi, one of the
two potential outcomes is realized and observed:

Yi =
{

Yi(0) if Wi = 0
Yi(1) if Wi = 1.

In settings with essentially unrestricted heterogeneity in the ef-
fect of the treatment, the typical goal of evaluation research is
to estimate an average treatment effect. Here, we focus on the
unconditional (population) average

τ = E[Yi(1) − Yi(0)].
In addition, in the applied literature the focus is often on the
average effect for the treated,

τtreated = E[Yi(1) − Yi(0)|Wi = 1].
In the body of the article we will largely focus on τ . In Appen-
dix B we present the corresponding results for τtreated.

In general, a simple comparison of average outcomes be-
tween treated and control units does not identify the average
effect of the treatment. The reason is that this comparison may
be contaminated by the effect of other variables that are cor-
related with the treatment, Wi, as well as with the potential
outcomes, Yi(1) and Yi(0). The presence of these confounders
may create a correlation between Wi and Yi even if the treat-
ment has no causal effect on the outcome. Randomization of
the treatment eliminates the correlation between any potential
confounder and Wi. In the absence of randomization, the fol-
lowing set of assumptions has been found useful as a basis for
identification and estimation of τ when all confounders are ob-
served. These observed confounders for unit i will be denoted
by Xi, a vector of dimension k, with jth element Xij.

Assumption A.1. Let X be a random vector of dimension k
of continuous covariates distributed on R

k with compact and
convex support X, with (a version of the) density bounded and
bounded away from zero on its support.

Assumption A.2. For almost every x ∈ X,

(i) (unconfoundedness) W is independent of (Yi(0),Yi(1))

conditional on Xi = x;
(ii) (overlap) η < Pr(Wi = 1|Xi = x) < 1 − η, for some

η > 0.

Assumption A.3. {(Yi,Wi,Xi)}N
i=1 are independent draws

from the distribution of (Y,W,X).

Assumption A.4. Let μw(x) = E[Yi(w)|Xi = x] and σ 2
w(x) =

E[(Yi − μw(x))2|Xi = x]. Then, (i) μw(x) and σ 2
w(x) are Lip-

schitz in X for w = 0,1, (ii) E[(Yi(w))4|Xi = x] ≤ C for some
finite C, for almost all x ∈ X, and (iii) σ 2

w(x) is bounded away
from zero.

Assumption A.1 requires that all variables in X have a con-
tinuous distribution. Notice, however, that discrete covariates
with a finite number of support points can be easily accommo-
dated in our analysis by conditioning on their values. Assump-
tion A.2(i) states that, conditional on Xi, the treatment Wi is “as
good as randomized,” that is, it is independent of the potential
outcomes, Yi(1) and Yi(0). That will be the case, in particular,
if all potential confounders are included in X. Therefore, con-
ditional on Xi = x, a simple comparison of average outcomes

between treated and control units is equal to the average effect
of the treatment given Xi = x. This assumption originates in
the seminal article by Rosenbaum and Rubin (1983). Assump-
tion A.2(ii) is the usual support condition invoked for matching
estimators. Assumption A.2(i) and Assumption A.2(ii) com-
bined are referred to as “strong ignorability.” Assumption A.3
refers to the sampling process. Finally, Assumption A.4 collects
regularity conditions that will be used later. Note that given As-
sumption A.2(i), μw(x) = E[Yi|Xi = x,Wi = w], and σ 2

w(x) =
E[(Yi − E[Yi|Xi = x,Wi = w])2|Xi = x,Wi = w]. Abadie and
Imbens (2006) discussed Assumptions A.1 through A.4 in
greater detail. Identification conditions for matching estimators
are also discussed in Hahn (1998), Dehejia and Wahba (1999),
Lechner (2002), and Imbens (2004), among others.

As in Abadie and Imbens (2006), we consider matching
“with replacement,” allowing each unit to be used as a match
more than once. For x ∈ X, and for some positive definite sym-
metric matrix A, let ‖x‖A = (x′Ax)1/2 be some vector norm.
Typically the k × k matrix A is choosen to be the inverse of
the sample covariance matrix of the covariates, corresponding
to the Mahalanobis metric,

Amaha =
(

1

N

N∑
i=1

(Xi − X) · (Xi − X)′
)−1

,

where X = 1

N

N∑
i=1

Xi,

or the normalized Euclidean distance, the diagonal matrix with
the inverse of the sample variances on the diagonal (e.g., Abadie
and Imbens 2006):

Ane = diag(A−1
maha)

−1.

Let �m(i) be the index of the mth match to unit i. That is, among
the units in the opposite treatment group to unit i, unit �m(i) is
the mth closest unit to unit i in terms of covariate values. Thus,
�m(j) satisfies, (i) W�m(i) = 1 − Wi, and (ii)∑

j:Wj=1−Wi

1
{‖Xj − Xi‖A ≤ ∥∥X�m(i) − Xi

∥∥
A

} = m,

where 1{·} is the indicator function, equal to 1 if the expres-
sion in brackets is true and zero otherwise. For notational sim-
plicity, we ignore ties in the matching, which happen with
probability zero if the covariates are continuous. Let JM(i) =
{�1(i), . . . , �M(i)} denote the set of indices for the first M
matches for unit i, for M such that M ≤ N0 and M ≤ N1. Fi-
nally, let KM(i) denote the number of times unit i is used as a
match if we match each unit to the nearest M matches:

KM(i) =
N∑

l=1

1{i ∈ JM(l)}.

Under matching without replacement, Km(i) ∈ {0,1}, but in our
setting of matching with replacement, Km(i) can also take on
integer values larger than 1 if unit i is the closest match for
multiple units.
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2.2 Estimators

If we were to observe the potential outcomes Yi(0) and
Yi(1) for all units, we will simply estimate τ as the average∑N

i=1(Yi(1) − Yi(0))/N. The idea behind matching estimators
is to estimate, for each i = 1, . . . ,N, the missing potential out-
comes. For each i we know one of the potential outcomes,
namely Yi(0) if Wi = 0, and Yi(1) otherwise. Hence, if Wi = 0,
then we choose Ŷi(0) = Yi(0) = Yi, and if Wi = 1, then we
choose Ŷi(1) = Yi(1) = Yi. The remaining potential outcome
for unit i is imputed using the average of the outcomes for its
matches. This leads to

Ŷi(0) =

⎧⎪⎨
⎪⎩

Yi if Wi = 0
1

M

∑
j∈JM(i)

Yj if Wi = 1 and

Ŷi(1) =

⎧⎪⎨
⎪⎩

1

M

∑
j∈JM(i)

Yj if Wi = 0

Yi if Wi = 1.

Using this notation, we can write the matching estimators for τ

based on M matches per unit, with replacement, as

τ̂m
M = 1

N

N∑
i=1

(Ŷi(1) − Ŷi(0)). (1)

Using the definition of KM(i), we can also write this estimator
as a weighted average of the outcomes,

τ̂m
M = 1

N

N∑
i=1

(2Wi − 1) ·
(

1 + KM(i)

M

)
· Yi. (2)

This representation is useful for deriving the variance of the
matching estimator.

In empirical applications, matching estimators are often im-
plemented with small values for M, as small as 1 even in
reasonably large sample sizes. Therefore, in order to obtain
an accurate approximation to the finite sample distribution of
matching estimators in such settings, we focus asymptotic ap-
proximations as N increases for fixed M.

Before introducing the bias-corrected matching estimator, let
us briefly discuss regression estimators. Let μ̂w(x) be a consis-
tent estimator of μw(x). A regression imputation estimator uses
μ̂0(Xi) and μ̂1(Xi) to impute the missing values of Yi(0) and
Yi(1), respectively. That is, for

Yi(0) =
{

Yi if Wi = 0
μ̂0(Xi) if Wi = 1

and

Yi(1) =
{

μ̂1(Xi) if Wi = 0
Yi if Wi = 1,

the regression imputation estimator of τ is

τ̂ reg = 1

N

N∑
i=1

(Yi(1) − Yi(0)).

As in Abadie and Imbens (2006), we classify as regression im-
putation estimators those for which μ̂w(x) is a consistent es-
timator of μw(x). Various forms of such estimators were pro-
posed by Hahn (1998), Heckman et al. (1998), Chen, Hong,
and Tarozzi (2008), and Imbens, Newey, and Ridder (2005).

The matching estimators in Equation (1) are similar to the re-
gression imputation estimators, as they can be interpreted as
imputing Yi(0) and Yi(1) with a nearest-neighbor estimate of
μ0(Xi) and μ1(Xi), respectively. However, because M is held
fixed under the matching asymptotics, Ŷi(0) and Ŷi(1) do not
estimate μ0(Xi) and μ1(Xi) consistently.

Finally, we consider a bias-corrected matching estimator
where the difference within the matches is regression-adjusted
for the difference in covariate values:

Ỹi(0) =

⎧⎪⎨
⎪⎩

Yi if Wi = 0
1

M

∑
j∈JM(i)

(
Yj + μ̂0(Xi) − μ̂0(Xj)

)
if Wi = 1

and

Ỹi(1) =

⎧⎪⎨
⎪⎩

1

M

∑
j∈JM(i)

(
Yj + μ̂1(Xi) − μ̂1(Xj)

)
if Wi = 0

Yi if Wi = 1,

with corresponding estimator

τ̂ bcm
M = 1

N

N∑
i=1

(Ỹi(1) − Ỹi(0)). (3)

Rubin (1979) and Quade (1982) discussed such estimators in
the context of matching without replacement and with linear
covariance adjustment.

To further illustrate the difference between the simple match-
ing estimator, the regression estimator, and the bias-corrected
matching estimator, consider unit i with Wi = 0. For this unit,
Yi(0) is known, and only Yi(1) needs to be imputed. The sim-
ple matching estimator imputes the missing potential outcome
Yi(1) as

Ŷi(1) = 1

M

∑
j∈JM(i)

Yj(1).

The regression imputation estimator imputes this missing po-
tential outcome as

Yi(1) = μ̂1(Xi).

The bias-corrected matching estimator imputes the missing po-
tential outcome as

Ỹi(1) = 1

M

∑
j∈JM(i)

Yj(1) +
(

μ̂1(Xi) − 1

M

∑
j∈JM(i)

μ̂1(Xj)

)

= Ŷi(1) +
(

μ̂1(Xi) − 1

M

∑
j∈JM(i)

μ̂1(Xj)

)

= Yi(1) + 1

M

∑
j∈JM(i)

(Yj(1) − μ̂1(Xj)).

The imputation for the bias-corrected matching estimator ad-
justs the imputation under the simple matching estimator by
the difference in the estimated regression function at Xi and
the estimated regression function at the matched values, Xj for
j ∈ JM(i). Obviously that will improve the estimator if the es-
timated regression function is a good approximation to the true
regression function. Even if the estimated regression function is
noisy, the adjustment will typically be small because Xi −Xj for
j ∈ JM(i) should be small in large samples. At the same time,
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compared to the regression estimator, the bias-corrected match-
ing estimator adds 1

M

∑
j∈JM(i) Yj(1) − μ̂1(Xj). If the estimated

regression function is equal to the true regression function, this
is simply adding noise to the estimator, making it less precise
without introducing bias. However, if the regression function is
misspecified, the fact that under very weak assumptions the ex-
pectation of 1

M

∑
j∈JM(i) Yj(1) converges to μ1(Xi) implies that

bias correction, relative to imputation estimators, is, in expecta-
tion, approximately equal to μ1(Xi) − μ̂1(Xi), which will elim-
inate any inconsistency in the regression imputation estimator.
In other words, the bias-corrected matching estimator is robust
against misspecification of the regression function.

2.3 Large Sample Properties of Matching Estimators

Before presenting some results on the large sample properties
of the bias-corrected matching estimator, we first collect some
results on the large sample properties of matching estimators
derived in Abadie and Imbens (2006), which motivated the use
of bias-corrected matching estimators.

First, we introduce some additional notation. Let X be the
N × k matrix with ith row equal to X′

i . Similarly, let W be N ×1
vector with ith element equal to Wi. Let

τ(x) = E[Yi(1) − Yi(0)|Xi = x] = μ1(x) − μ0(x),

be the average effect of the treatment conditional on X = x, and

τ(X) = 1

N

N∑
i=1

(μ1(Xi) − μ0(Xi)),

the average of that over the covariate distribution. For i =
1, . . . ,N, define

Bm
M,i = E

[
Ŷi(1) − Ŷi(0) − (Yi(1) − Yi(0))|X,W

]
= 2Wi − 1

M

M∑
j=1

(
μ1−Wi(Xi) − μ1−Wi

(
X�j(i)

))
and

Bm
M = 1

N

N∑
i=1

Bm
M,i = E[τ̂m

M − τ(X)|X,W]

= 1

N

N∑
i=1

2Wi − 1

M

M∑
j=1

(
μ1−Wi(Xi) − μ1−Wi

(
X�j(i)

))
.

Now we can write the simple matching estimator minus the av-
erage treatment effect using simple algebra as

τ̂m
M − τ = (τ (X) − τ) + Dm

M + Bm
M,

where

Dm
M = 1

N

N∑
i=1

(2Wi − 1)

(
1 + KM(i)

M

)
· (Yi − μWi(Xi)

)
.

The first term, τ(X) − τ , captures the variation in the condi-
tional treatment effect. This term is a simple sample average
and satisfies a central limit theorem. The second term DN has
expectation zero conditional on X and W. This term also sat-
isfies a central limit theorem (Abadie and Imbens 2006). The
last term captures the bias conditional on the covariates. This

term does not necessarily satisfy a central limit theorem, and
our bias-correction approach is geared toward eliminating it.

Next, we turn to the variance. Note that KM(i) is nonstochas-
tic conditional on X and W. Therefore, Equation (2) implies
that the variance of τ̂m

M conditional on X and W is

V(τ̂m
M |X,W) = V(Dm

M|X,W) = 1

N2

N∑
i=1

(
1 + KM(i)

M

)2

σ 2
Wi

(Xi).

Let VE = N · V(τ̂m
M |X,W) be the corresponding normalized

variance. In addition, let Vτ(X) = E[(τ (X) − τ)2]. The follow-
ing result is given in Abadie and Imbens (2006):

Theorem 1 (Asymptotic normality for the simple matching
estimator). Suppose Assumptions A.1–A.4 hold. Then(

VE + Vτ(X)
)−1/2√

N(τ̂m
M − Bm

M − τ)
d−→ N (0,1).

Abadie and Imbens (2006) also proposed a consistent esti-
mator for VE and Vτ(X) under Assumptions A.1–A.4.

The result of Theorem 1 shows that, after subtracting the con-
ditional bias terms Bm

M , the simple matching estimator is N1/2-
consistent and asymptotically normal. Moreover, Abadie and
Imbens (2006) showed that the same result holds without sub-
tracting the conditional bias terms if matching is done for only
one covariate (e.g., matching on the true propensity score) be-
cause in that case

√
NBm

M = op(1).

3. BIAS CORRECTED MATCHING

In this section we analyze the properties of the bias-corrected
matching estimators, defined in Equation (3). In order to estab-
lish the asymptotic behavior of the bias-corrected estimator, we
consider a nonparametric series estimator for the two regres-
sion functions, μ0(x) and μ1(x), with K(N) terms in the series,
where K(N) increases with N. An important disadvantage of
this estimator is that it will rely on selecting smoothing para-
meters as functions of the sample size, something that the sim-
ple matching estimator allows us to avoid. The advantage of the
bias-corrected matching estimator is that it is root-N consistent
for any dimension of the covariates, k. In both these properties
the bias-corrected matching estimator is similar to the regres-
sion imputation estimator. However, it has the same large sam-
ple variance as the simple matching estimator, and therefore, it
is, in general, not as efficient as the regression imputation or
weighting estimators in large samples. Compared to the regres-
sion imputation estimator, the bias-corrected matching estima-
tor is more robust in the sense that it is consistent for a fixed
value of the smoothing parameters. Because choosing smooth-
ing parameters as functions of the sample size is precisely what
matching estimators allow us to avoid, in the empirical analy-
sis and simulations of Sections 4 and 5 we investigate the per-
formance of a simple implementation of the bias correction by
linear least squares.

Here, we discuss the formal nonparametric implementation
of the bias adjustment. Let λ = (λ1, . . . , λk) be a multi-index
of dimension k, that is, a k-dimensional vector of nonnegative
integers, with |λ| = ∑k

i=1 λi, and let xλ = xλ1
1 , . . . , xλk

k . Con-
sider a series {λ(K)}∞K=1 containing all distinct such vectors
such that |λ(K)| is nondecreasing. Let pK(x) = xλ(K), and let
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pK(x) = (p1(x), . . . ,pK(x))′. Following Newey (1995), the non-
parametric series estimator of the regression function μw(x) is
given by

μ̂w(x) = pK(N)(x)′
( ∑

i:Wi=w

pK(N)(Xi)p
K(N)(Xi)

′
)−

×
∑

i:Wi=w

pK(N)(Xi)Yi,

where (·)− denotes a generalized inverse. Given the estimated
regression function, let B̂m

M be the estimator for the average bias
term:

B̂m
M = 1

N

N∑
i=1

2Wi − 1

M

M∑
j=1

(
μ̂1−Wi(Xi) − μ̂1−Wi

(
X�j(i)

))
.

Then the bias corrected matching estimator is

τ̂ bcm
M = τ̂m

M − B̂m
M. (4)

The following theorem shows that the bias correction removes
the bias without affecting the asymptotic variance.

Theorem 2 (Bias-corrected matching estimator). Suppose
that Assumptions A.1–A.4 hold. Assume also that (i) the sup-
port of X, X ⊂ R

k, is a Cartesian product of compact intervals;
(ii) K(N) = O(Nν), with 0 < ν < min(2/(4k+3),2/(4k2 −k));
and (iii) there is a constant C such that for each multi-index λ

the λth partial derivative of μw(x) exists for w = 0,1 and its
norm is bounded by C|λ|. Then,

√
N(Bm

M − B̂m
M)

p−→ 0 and(
VE + Vτ(X)

)1/2√
N(τ̂ bcm

M − τ)
d−→ N (0,1).

Proof. See Appendix A.

The first result implies that we can estimate the bias faster
than N1/2. This may seem surprising, given that even in para-
metric settings we can typically not estimate parameters faster
than N1/2. That logic applies to objects of the type μw(x) −
μw(z); for fixed x and w we cannot estimate μw(x) − μw(z)
faster than N1/2. However, here we are estimating objects of
the type μw(x) − μw(z) where z − x goes to zero, allowing us
to obtain a faster rate for the difference μw(x)−μw(z). In other
words, Bm

M itself is op(1) [in fact, it is Op(N−1/k), giving us ad-
ditional room to estimate it at a rate faster than N1/2]. The sec-
ond result says that the bias-corrected matching estimator has
the same normalized variance as the simple matching estimator.

4. AN APPLICATION TO THE EVALUATION OF A
LABOR MARKET PROGRAM

In this section we apply the estimators studied in this arti-
cle to data from the National Supported Work (NSW) demon-
stration, an evaluation of a subsidized work program first an-
alyzed by Lalonde (1986) and subsequently by Heckman and
Hotz (1989), Dehejia and Wahba (1999), Imbens (2003), Smith
and Todd (2005), and others. The specific sample we use here
is the one employed by Dehejia and Wahba (1999) and is avail-
able on Rajeev Dehejia’s website. The dataset we use here con-
tains an experimental sample from a randomized evaluation of
the NSW program, and also a nonexperimental sample from the
Panel Study of Income Dynamics (PSID). Using the experimen-
tal data we obtain an unbiased estimate of the average effect of
the program. We then compute nonexperimental matching esti-
mators using the experimental participants and the nonexperi-
mental comparison group from the PSID, and compare them to
the experimental estimate. In line with previous studies using
these data, we focus on the average effect for the treated, and
therefore, only match the treated units.

Table 1 presents summary statistics for the three groups used
in our analysis. The first two columns present the summary sta-

Table 1. Summary statistics

Experimental data Normalized dif.

Treated (185) Controls (260) PSID (2490)
Treat/ Treat/

Mean (SD) Mean (SD) Mean (SD) Contr PSID

Panel A: Pretreatment variables
Age 25.8 (7.2) 25.1 (7.1) 34.9 (10.4) 0.08 −0.71
Education 10.3 (2.0) 10.1 (1.6) 12.1 (3.1) 0.10 −0.48
Black 0.84 (0.36) 0.83 (0.38) 0.25 (0.43) 0.03 1.05
Hispanic 0.06 (0.24) 0.11 (0.31) 0.03 (0.18) −0.12 0.09
Married 0.19 (0.39) 0.15 (0.36) 0.87 (0.34) 0.07 −1.30
Earnings 13–24 2.10 (4.89) 2.11 (5.69) 19.43 (13.41) −0.00 −1.21
Unemployed 13–24 0.71 (0.46) 0.75 (0.43) 0.09 (0.28) −0.07 1.16
Earnings ’75 1.53 (3.22) 1.27 (3.10) 19.06 (13.60) 0.06 −1.25
Unemployed ’75 0.60 (0.49) 0.68 (0.47) 0.10 (0.30) −0.13 0.87

Panel B: Outcomes
Earnings ’78 6.35 7.87 4.55 5.48 21.55 15.56 0.19 −0.87
Unemployed ’78 0.24 0.43 0.35 0.48 0.11 0.32 −0.17 0.24

NOTE: Earnings data are in thousands of 1978 dollars. Earnings 13–24 and Unemployed 13–24 refers to earnings and unemployment during the period 13 to 24
months prior to randomization.
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tistics for the experimental treatment group. The second pair
of columns presents summary statistics for the experimental
controls. The third pair of columns presents summary statistics
for the nonexperimental comparison group constructed from
the PSID. The last two columns present normalized differences
between the covariate distributions, between the experimental
treated and controls, and between the experimental treated and
the PSID comparison group, respectively. These normalized
differences are calculated as

nor-dif = X1 − X0√
(S2

0 + S2
1)/2

,

where Xw = ∑
i:Wi=w Xi/Nw and S2

w = ∑
i:Wi=w(Xi − Xw)2/

(Nw −1). Note that this differs from the t-statistic for the test of
the null hypothesis that E[X|W = 0] = E[X|W = 1], which will
be

t-stat = X1 − X0√
S2

0/N0 + S2
1/N1

.

The normalized difference provides a scale-free measure of the
difference in the location of the two distributions, and is useful
for assessing the degree of difficulty in adjusting for differences
in covariates.

Panel A contains the results for pretreatment variables and
Panel B for outcomes. Notice the large differences in back-
ground characteristics between the program participants and the
PSID sample. This is what makes drawing causal inferences

from comparisons between the PSID sample and the treatment
group a tenuous task. From Panel B, we can obtain an unbi-
ased estimate of the effect of the NSW program on earnings in
1978 by comparing the averages for the experimental treated
and controls, 6.35 − 4.55 = 1.80, with a standard error of 0.67
(earnings are measured in thousands of dollars). Using a nor-
mal approximation to the limiting distribution of the effect of
the program on earnings in 1978, we obtain a 95% confidence
interval, which is [0.49,3.10].

Table 2 presents estimates of the causal effect of the NSW
program on earnings using various matching, regression, and
weighting estimators. Panel A reports estimates for the exper-
imental data (treated and controls). Panel B reports estimates
based on the experimental treated and the PSID comparison
group. The first set of rows in each case reports matching es-
timates for M equal to 1, 4, 16, 64, and 2490 (the size of the
PSID comparison group). The matching estimates include sim-
ple matching with no-bias adjustment and bias-adjusted match-
ing, first by matching on the covariates and then by matching
on the estimated propensity score. The covariate matching es-
timators use the matrix Ane (the diagional matrix with inverse
sample variances on the diagonal) as the distance measure. Be-
cause we are focused on the average effect for the treated, the
bias correction only requires an estimate of μ0(Xi). We esti-
mate this regression function using linear regression on all nine
pretreatment covariates in Table 1, panel A, but do not include
any higher order terms or interactions, with only the control
units that are used as a match [the units j such that Wj = 0 and

Table 2. Experimental and nonexperimental estimates for the NSW data

M = 1 M = 4 M = 16 M = 64 M = 2490

Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE)

Panel A:
Experimental estimates

Covariate matching 1.22 (0.84) 1.99 (0.74) 1.75 (0.74) 2.20 (0.70) 1.79 (0.67)
Bias-adjusted cov matching 1.16 (0.84) 1.84 (0.74) 1.54 (0.75) 1.74 (0.71) 1.72 (0.68)
Pscore matching 1.43 (0.81) 1.95 (0.69) 1.85 (0.69) 1.85 (0.68) 1.79 (0.67)
Bias-adjusted pscore matching 1.22 (0.81) 1.89 (0.71) 1.78 (0.70) 1.67 (0.69) 1.72 (0.68)

Regression estimates
Mean difference 1.79 (0.67)
Linear 1.72 (0.68)
Quadratic 2.27 (0.80)
Weighting on pscore 1.79 (0.67)
Weighting and linear regression 1.69 (0.66)

Panel B:
Nonexperimental estimates

Simple matching 2.07 (1.13) 1.62 (0.91) 0.47 (0.85) −0.11 (0.75) −15.20 (0.61)
Bias-adjusted matching 2.42 (1.13) 2.51 (0.90) 2.48 (0.83) 2.26 (0.71) 0.84 (0.63)
Pscore matching 2.32 (1.21) 2.06 (1.01) 0.79 (1.25) −0.18 (0.92) −1.55 (0.80)
Bias-adjusted pscore matching 3.10 (1.21) 2.61 (1.03) 2.37 (1.28) 2.32 (0.94) 2.00 (0.84)

Regression estimates
Mean difference −15.20 (0.66)
Linear 0.84 (0.88)
Quadratic 3.26 (1.04)
Weighting on pscore 1.77 (0.67)
Weighting and linear regression 1.65 (0.66)

NOTE: The outcome is earnings in 1978 in thousands of dollars.
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j ∈ JM(i) for some i]. The confidence intervals are based on the
variance estimator proposed in Abadie and Imbens (2006). This
variance estimator is formally justified for the case of matching
on the covariates. It does not cover the case of matching on
the estimated propensity score. We implement it for the case
of matching on the estimated propensity score by ignoring the
estimation error in the propensity score. The next three rows
of each panel report estimates based on differences in means,
linear regression including terms for all covariates, and linear
regression also including quadratic terms and a full set of in-
teractions, respectively. The last two rows in each panel report
estimates for weighting estimators. Both rows use weights for
the treated units equal to 1, and weights for the control units
equal to the propensity score divided by 1 minus the propen-
sity score. Then we normalize the weights in both groups to
add up to N1. The first weighting estimator is based solely on
weighting, the second one uses weighted regression, with the
nine pretreatment variables included.

The experimental estimates in Panel A range from 1.16 (bias-
corrected matching with one match) to 2.27 (quadratic re-
gression). The nonexperimental estimates in Panel B have a
much wider range, from −15.20 (simple difference) to 3.26
(quadratic regression). For the nonexperimental sample, us-
ing a single match, there is little difference between the sim-
ple matching estimator and its bias-corrected version, 2.07 and
2.42, respectively. However, simple matching without bias-
correction produces radically different estimates when the num-
ber of matches changes; a troubling result for the empirical
implementation of these estimators. With M ≥ 16, the simple
matching estimator produces results outside the experimental
95% confidence interval. In contrast, the bias-corrected match-
ing estimator shows a much more robust behavior when the
number of matches changes: only with M = 2490 (that is, when
all units in the comparison group are matched to each treated)
the bias-corrected estimate deteriorates to 0.84, still inside the
experimental 95% confidence interval.

To see how well the simple matching estimator performs in
terms of balancing the covariates, Table 3 reports average dif-
ferences within the matched pairs. First, all the covariates are
normalized to have zero mean and unit variance. The first two

columns report the averages of the normalized covariates for the
PSID comparison group and the experimental treated. Before
matching, the averages for some of the variables are more than
one standard deviation apart, e.g., the earnings and employ-
ment variables. The next pair of columns reports the within-
matched-pairs average difference and the standard deviation of
this within-pair difference. For all the indicator variables the
matching is exact. The other, more continuously distributed
variables are not matched exactly, but the quality of the matches
appears very high: the average difference within the pairs is
very small compared to the average difference between treated
and comparison units before the matching, and it is also small
compared to the standard deviations of these differences. If we
increase the number of matches the quality of the matches goes
down, with even the indicator variables no longer matched ex-
actly, but in most cases the average difference is still very small
until we get to 16 or more matches. As expected, match quality
deteriorates when the number of matches increases. This ex-
plains why, as shown in Table 2, the bias correction matters
more for larger M. The last row reports matching differences
for logistic estimates of the propensity score. Although here
we match on the covariates directly, rather than on the propen-
sity score, the matching still greatly reduces differences in the
propensity score. With a single match (M = 1) the average dif-
ference in the propensity score is only 0.21, whereas without
matching the difference between treated and comparison units
is 8.16, almost 40 times higher.

5. A MONTE CARLO STUDY

In this section, we discuss some simulations designed to as-
sess the performance of the various matching estimators. To
get a realistic sense of the performance of the various estima-
tors, we simulated datasets that aim to resemble actual datasets.
For other Monte Carlo studies of matching type estimators see
Zhao (2002), Frölich (2004), and Busso, DiNardo, and McCra-
ry (2009). An additional Monte Carlo study based on data col-
lected by Imbens, Rubin, and Sacerdote (2001) is available in a
previous version of this article.

Table 3. Mean covariate differences in matched groups

Average M = 1 M = 4 M = 16 M = 64 M = 2490

PSID Treated Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age 0.06 −0.80 −0.02 (0.65) −0.06 (0.60) −0.30 (0.41) −0.57 (0.57) −0.86 (0.68)
Education 0.04 −0.54 −0.10 (0.44) −0.20 (0.48) −0.25 (0.39) −0.24 (0.42) −0.58 (0.66)
Black −0.09 1.21 −0.00 (0.00) 0.09 (0.32) 0.35 (0.47) 0.70 (0.66) 1.30 (0.80)
Hispanic −0.01 0.14 −0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.03) 0.15 (1.30)
Married 0.12 −1.64 0.00 (0.00) −0.06 (0.30) −0.33 (0.46) −0.90 (0.85) −1.76 (1.02)
Earnings 13–24 0.09 −1.18 −0.01 (0.10) −0.01 (0.12) −0.05 (0.17) −0.15 (0.30) −1.26 (0.36)
Unemployed 13–24 −0.13 1.72 0.00 (0.00) 0.02 (0.17) 0.24 (0.40) 0.41 (0.72) 1.85 (1.36)
Earnings ’75 0.09 −1.18 −0.04 (0.17) −0.07 (0.15) −0.11 (0.19) −0.19 (0.26) −1.26 (0.23)
Unemployed ’75 −0.10 1.36 0.00 (0.00) 0.00 (0.05) 0.03 (0.28) 0.10 (0.41) 1.46 (1.44)

Log odds
Prop score −7.08 1.08 0.21 (0.99) 0.56 (1.13) 1.70 (1.14) 3.20 (1.49) 8.16 (2.13)

NOTE: In this table all covariates have been normalized to have mean zero and unit variance. The first two columns present the averages for the experimental treated and the PSID
comparison units. The remaining pairs of columns present the average difference within the matched pairs and the standard deviation of this difference for matching based on 1, 4, 16,
64, and 2490 matches. For the last variable the logarithm of the odds ratio of the propensity score is used. This log odds ratio has mean −6.52 and standard deviation 3.30 in the sample.
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Table 4. Simulation results Lalonde design (10,000 replications)

Coverage rate
Mean Median Mean

M Estimator bias bias RMSE MAE SD SE (95% CI) (90% CI)

1 Covariate matching −0.91 −0.81 1.36 0.86 1.02 1.44 0.97 0.94
Bias-adj cov match 0.16 0.22 1.33 0.81 1.32 1.43 0.96 0.92

4 Covariate matching −1.33 −1.25 1.57 1.25 0.84 1.22 0.93 0.83
Bias-adj cov match 0.24 0.28 1.18 0.75 1.15 1.20 0.95 0.91

16 Covariate matching −2.04 −2.00 2.17 2.00 0.74 1.11 0.61 0.41
Bias-adj cov match 0.43 0.45 1.13 0.77 1.05 1.08 0.93 0.87

64 Covariate matching −3.07 −3.08 3.13 3.08 0.61 1.01 0.09 0.02
Bias-adj cov match 0.57 0.59 1.05 0.75 0.88 0.95 0.92 0.87

1 Pscore matching −0.02 0.29 1.72 0.91 1.72 1.64 0.98 0.95
Bias-adj pscore match 0.09 0.22 1.38 0.84 1.38 1.64 0.98 0.96

4 Pscore matching −0.29 −0.07 1.36 0.77 1.33 1.43 0.98 0.96
Bias-adj pscore match 0.09 0.22 1.23 0.74 1.22 1.45 0.97 0.95

16 Pscore matching −0.89 −0.82 1.39 0.90 1.06 1.33 0.98 0.93
Bias-adj pscore match 0.14 0.21 1.17 0.75 1.17 1.36 0.97 0.94

64 Pscore matching −1.69 −1.66 1.89 1.66 0.84 1.13 0.78 0.62
Bias-adj pscore match 0.27 0.31 1.06 0.72 1.03 1.16 0.96 0.92

Mean difference −22.41 −22.41 22.42 22.41 0.76 1.03 0.00 0.00
Linear regression −0.27 −0.25 1.33 0.88 1.30 1.48 0.97 0.94
Quadratic regression 3.35 3.36 3.90 3.36 1.99 2.05 0.62 0.49
Weighting on pscore −0.14 −0.07 1.28 0.79 1.27 1.28 0.96 0.92
Weighting and regression 0.15 0.19 1.09 0.68 1.08 1.13 0.97 0.94

The simulations are designed to mimic the Lalonde data. In
each of the 10,000 replications we draw 185 treated and 2490
control observations and calculate 21 estimators for the average
effect on the treated, τtreated. In the simulation we have eight
regressors, designed to match the following variables in the
NSW dataset: age, educ, black, married, re74, u74,
re75, and u75. In Appendix C we describe the precise data
generating process for the simulations. For each estimator we
report the mean and median bias, the root-mean-squared-error
(RMSE), the median-absolute-error (MAE), the standard devi-
ation, the average estimated standard error, and the coverage
rates for nominal 95% and 90% confidence intervals based on
the matching estimator for the variance. We implemented an ex-
tremely simple version of the bias adjustment, using only linear
terms in the covariates. The results are reported in Table 4.

In terms of RMSE and MAE, the bias-adjusted matching es-
timator is best with 64 matches, but with this many matches the
bias is substantial. With four matches the bias is considerably
smaller, and the actual coverage rates of the 90% and 95% con-
fidence intervals is close to the nominal coverage rate. The sim-
ple (not bias-adjusted) matching estimator does not perform as
well, in terms of bias or RMSE. The pure regression adjustment
estimators perform poorly. They have high RMSE and substan-
tial bias. Coverage rates of confidence intervals centered on the
bias-corrected matching estimator are closer to nominal levels
than those centered on the simple matching estimator. Confi-
dence intervals for the quadratic regression estimator have sub-
stantially lower than nominal coverage rates, although coverage
rates for the linear regression estimator are close to the nomi-
nal rates. In this setting the weighting estimators do fairly well,
both in terms of coverage rates and in terms of RMSE.

6. CONCLUSION

We propose a nonparametric bias-adjustment that renders
matching estimators N1/2-consistent. In simulations based on
a realistic setting for nonexperimental program evaluations,
a simple implementation of this estimator, where the bias-
adjustment is based on linear regression, performs well com-
pared to both matching estimators without bias-adjustment and
regression-based estimators in terms of bias and mean-squared
error. It also has good coverage rates for 90% and 95% confi-
dence intervals, suggesting it may be a useful estimator in prac-
tice.

APPENDIX A: PROOFS

Before proving Theorem 2 we state two auxiliary lem-
mas. Let λ be a multi-index of dimension k, that is, a k-
dimensional vector of nonnegative integers, with |λ| = ∑k

i=1 λi,
and let �l be the set of λ such that |λ| = l. Furthermore, let
xλ = xλ1

1 , . . . , xλk
k , and let ∂λg(x) = ∂ |λ|g(x)/∂xλ1

1 , . . . , ∂xλk
k . For

d ≥ 0, define |g|d = max|λ≤d| supx |∂λg(x)|.
Lemma A.1 (Uniform convergence of series estimators of re-

gression functions, Newey 1995). Suppose the conditions in
Theorem 2 hold. Then for any ξ > 0 and nonnegative integer d,

|μ̂w − μw|d = Op
(
K1+2d((K/N)1/2 + K−ξ

))
for w = 0,1.

Proof. Assumptions 3.1, 4.1, 4.2, and 4.3 in Newey (1995)
are satisfied for μw(x) and Nw → ∞, implying that Newey’s
theorems 4.2 and 4.4 apply. The result of the lemma holds be-
cause N/Nw = Op(1) for w = 0,1.
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Lemma A.2 (Unit-level bias correction). Suppose the condi-
tions in Theorem 2 hold. Then

max
i=1,...,N

∣∣μ̂w(Xi) − μ̂w
(
Xjm(i)

) − (
μw(Xi) − μw

(
Xjm(i)

))∣∣
= op

(
N−1/2)

for w = 0,1.

Proof. Let Um,i = Xjm(i) − Xi. Use a Taylor series expansion
around Xi to write∣∣∣∣μw

(
Xjm(i)

) − μw(Xi) −
∑

1≤l≤k−1

1

l!
∑
λ∈�l

∂λμw(Xi)U
λ
m,i

∣∣∣∣
≤ Ck

k!
∑
λ∈�k

|Uλ
m,i| ≤

Ck

k!
∑
λ∈�k

‖Um,i‖k.

Because all moments of N1/k
1−Wi

‖Um,i‖ and N/N1−Wi are uni-
formly bounded, applying Bonferroni’s and Markov’s inequali-
ties, we obtain that for any ε > 0:

max
i=1,...,N

∣∣∣∣μw
(
Xjm(i)

) − μw(Xi) −
∑

1≤l≤k−1

1

l!
∑
λ∈�l

∂λμw(Xi)U
λ
m,i

∣∣∣∣
= op(N

−1+ε).

Because we can choose ε ≤ 1/2, it follows that the left-hand
side of the last equation is op(N−1/2). Similarly, for any ε > 0:∣∣∣∣μ̂w

(
Xjm(i)

) − μ̂w(Xi) −
∑

1≤l≤k−1

1

l!
∑
λ∈�l

∂λμ̂w(Xi)U
λ
m,i

∣∣∣∣
≤ 1

k!
∑
λ∈�k

|μ̂w − μw|k‖Um,i‖k + Ck

k!
∑
λ∈�k

‖Um,i‖k.

Therefore, for arbitrary ξ > 0 and ε > 0:

max
i=1,...,N

∣∣∣∣μ̂w
(
Xjm(i)

) − μ̂w(Xi) −
∑

1≤l≤k−1

1

l!
∑
λ∈�l

∂λμ̂w(Xi)U
λ
m,i

∣∣∣∣
= Op

(
K1+2k((K/N)1/2 + K−ξ

))
op(N

−1+ε) + op(N
−1+ε).

Because ν < 2/(4k + 3), we can choose ξ and ε so that the left-
hand side of the last equation becomes op(N−1/2). Therefore,

max
i=1,...,N

∣∣μ̂w
(
Xjm(i)

) − μ̂w(Xi) − (
μw

(
Xjm(i)

) − μw(Xi)
)∣∣

≤ max
i=1,...,N

∑
1≤l≤k−1

1

l!
∑
λ∈�l

|∂λμ̂w(Xi) − ∂λμw(Xi)| · |Uλ
m,i|

+ op
(
N−1/2)

≤ |μ̂w − μw|k−1

∑
1≤l≤k−1

1

l!
∑
λ∈�l

max
i=1,...,N

‖Um,i‖|λ|

+ op
(
N−1/2)

= Op
(
K2k−1((K/N)1/2 + K−ξ

))
op

(
N−1/k+ε

) + op
(
N−1/2),

for arbitrary ξ > 0 and ε > 0. Consider for a particular λ ∈ �l

the term (∂λμ̂w(Xi)−∂λμw(Xi)) ·Uλ
m,i. The second factor is, us-

ing the same argument as before, of order Op(N−l/k), Since l ≥
1, the second factor is at most Op(N−1/k), and because all the

relevant moments exist maxi Uλ
m,i = op(N−1/k+ε) for any ε > 0.

Now consider the first factor. By Lemma A.1, | sup(∂λμ̂w(x) −
∂λμw(x))| is of order Op(K1+2k((K/N)1/2 +K−α)). Now, it can
be easily seen that ν < 2/(4k2 − k) guarantees that the result of
Lemma A.2 holds.

Proof of Theorem 2

We focus on the result for the average treatment effect. The
second part of the theorem for the average effect for the treated
follows the same pattern. The difference |B̂m

M −Bm
M| can be writ-

ten as

|B̂m
M − Bm

M|

≤ 1

N

N∑
i=1

1

M

M∑
i=1

∣∣μ̂1−Wi(Xi) − μ̂1−Wi

(
Xjm(i)

)
− (

μ1−Wi(Xi) − μ1−Wi

(
Xjm(i)

))∣∣
≤ max

i=1,...,N

∑
w=0,1

∣∣μ̂w(Xi) − μ̂w
(
Xjm(i)

)

− (
μw(Xi) − μw

(
Xjm(i)

))∣∣
= op

(
N−1/2),

by Lemma A.2.

APPENDIX B: THE AVERAGE EFFECT
ON THE TREATED

Here we present the results for the average effect on the
treated without proof. The formal proofs are similar to those
for the case of the overall average effect. Estimation of τtreated
requires weaker assumptions than estimation of τ . In particular,
Assumptions A.2 and A.3 can be weakened as follows.

Assumption A.2′. For almost every x ∈ X,

(i) W is independent of Y(0) conditional on X = x;
(ii) Pr(W = 1|X = x) < 1 − η, for some η > 0.

Assumption A.3′. Conditional on Wi = w the sample consists
of independent draws from Y,X|W = w, for w = 0,1. For some
r ≥ 1, Nr

1/N0 → θ , with 0 < θ < ∞.

Using the same definition for Ŷi(0) as before, we now esti-
mate τtreated and τcond,treated as

τ̂m
M,treated = 1

N1

∑
Wi=1

(Yi − Ŷi(0))

= 1

N1

∑
Wi=1

(
Wi − (1 − Wi)

KM(i)

M

)
Yi.

Define the average bias

Bm
M,treated = 1

N1

N∑
i=1

Wi

M

M∑
m=1

(
μ0(Xi) − μ0

(
Xjm(i)

))
,

the estimator for the average bias

B̂m
M,treated = 1

N1

N∑
i=1

Wi

M

M∑
m=1

(
μ̂0(Xi) − μ̂0

(
Xjm(i)

))
,



10 Journal of Business & Economic Statistics, January 2011

the bias-corrected estimator for the average effect on the treated

τ̂ bcm
M,treated = τ̂m

M,treated − B̂m
M,treated,

the conditional variance

V(τ̂m
M,treated|X,W)

= 1

N2
1

N∑
i=1

(
Wi − (1 − Wi)

KM(i)

M

)2

σ 2(Xi,Wi),

and its normalized version,

VE
treated = N1 · V(τ̂m

M,treated|X,W).

Also define Vτ(X)
treated = E[(τ (X) − τtreated)

2|W = 1]. Then the
equivalent of Theorems 1 and 2 is:

Theorem 1′ (Asymptotic normality for the simple matching
estimator for the average effect on the treated). Suppose As-
sumptions A.1, A.2′, A.3′, and A.4 hold. Then(
VE

treated + Vτ(X)
treated

)−1/2√
N1

× (τ̂m
M,treated − Bm

M,treated − τtreated)
d−→ N (0,1).

Theorem 2′ (Bias-corrected matching estimator for the av-
erage effect on treated). Suppose that Assumptions A.1, A.2′,
A.3′, and A.4 hold. Assume also that (i) the support of X, X ⊂
R

k, is a Cartesian product of compact intervals; (ii) K(N) =
O(Nν), with 0 < ν < min(2/(4k + 3),2/(4k2 − k)); and
(iii) there is a constant C such that for each multi-index λ the
λth partial derivative of μw(x) exists for w = 0,1 and its norm
is bounded by C|λ|. Then,√

N1(B
m
M,treated − B̂m

M,treated)
p−→ 0

and(
VE

treated + Vτ(X)
treated

)1/2√
N1(τ̂

bcm
M,treated − τtreated)

d−→ N (0,1).

APPENDIX C: DATA GENERATING PROCESSES
FOR THE SIMULATIONS

(i) Covariates. We draw separately from the covariate dis-
tribution given Wi = 0 and Wi = 1. The covariates are grouped
into a set of five subsets, and between the subsets the covariates
are drawn independently. The groups of covariates are {age},
{educ}, {black}, {married}, and {u74,u75,re74,

re75}. For each of the joint distributions within a subset the
distribution follows fairly closely to the corresponding distrib-
ution in the Lalonde data.

Among the control observations, the log of age has a nor-
mal distribution with mean 3.50 and standard deviation 0.30.
Among the treated it has a normal distribution with mean 3.22
and standard deviation 0.25.
educ has a discrete distribution with points of support of all

integers between 4 and 16. The probabilities for the 13 points
of support for the controls are 0.02, 0.01, 0.02, 0.02, 0.06, 0.04,
0.07, 0.07, 0.34, 0.05, 0.08, 0.02, and 0.20. For the treated the
probabilities are 0.02, 0.01, 0.01, 0.01, 0.10, 0.15, 0.17, 0.24,
0.21, 0.04, 0.02, 0.01, and 0.01.

black has a discrete distribution with, among the controls,
the population fraction of blacks is 0.25. Among the treated the
fraction is 0.84.

Among the controls, married has a binary distribution with
mean 0.87, and among the treated it has a binary distribution
with mean 0.19.

Among the controls the pr((u74,u75) = (0,0)) = 0.88,
pr((u74,u75) = (0,1)) = 0.03 pr((u74,u75) = (1,0)) =
0.02, and pr((u74,u75) = (1,1)) = 0.07. Among the treated
pr((u74,u75) = (0,0)) = 0.28, pr((u74,u75) = (0,1)) =
0.01, pr((u74,u75) = (1,0)) = 0.12, and pr((u74,u75) =
(1,1)) = 0.59.

Among the controls, conditional on (u74,u75) = (0,1), the
log of re75 has a normal distribution with mean 2.32 and stan-
dard deviation 1.45, conditional on (u74,u75) = (1,0), the
log of re74 has a normal distribution with mean 2.16 and stan-
dard deviation 1.20, and conditional on (u74,u75) = (0,0),
the log of (re74,re75) has a joint normal distribution with

mean (2.88,2.86) and covariance matrix
(

0.47
0.3700

0.37
0.5000

)
.

Among the treated, conditional on (u74,u75) = (0,1), the
log of re75 has a normal distribution with mean 0.60 and
standard deviation 0.88, conditional on (u74,u75) = (1,0),
the log of re74 has a normal distribution with mean 1.26 and
variance 0.78, and conditional on (u74,u75) = (0,0), the log
of (re74,re75) has a joint normal distribution with mean

(1.53,0.93) and covariance matrix
(

1.08
0.57

0.57
1.42

)
.

(ii) Conditional Outcome Distribution Given Covariates.
Conditional on the covariates, the outcome Yi has a mixed
discrete/continuous distribution, with separate coefficients for
the controls and treated. The probability that the outcome is
positive conditional on the covariate taking on the value x
is exp(γ ′

wh(x))/(1 + exp(γ ′
wh(x)), for w = 0,1. The vector

of covariates contains 16 elements: an intercept, age, educ,
black, married, u74, u75, re74, re75, black× u74,
black×u75, black×re74, black×re75, u75×u74,
educ × re75, and re74 × re75. The coefficients γ are
listed in Table C.1. Conditional on the outcome being posi-
tive, its logarithm has a normal distribution with mean β ′

wh(x),

Table C.1. Data generating process for Lalonde simulations

γ0 β0 γ1 β1

Const. 2.7437 1.3486 7.1253 1.7159
age −0.0331 −0.0054 0.0108 0.0023
educ 0.0022 0.0600 0.1003 0.0472
black −0.7322 −0.1570 −7.3174 −0.6217
married 0.1582 0.1559 0.6020 −0.0065
u74 −1.5517 0.4833 −16.3253 −0.7556
u75 −0.7797 −0.0372 11.9438 1.5019
re74 −0.0110 0.0271 −1.6848 −0.2240
re75 0.0931 0.0494 8.1122 0.0178
black× u74 1.4475 −0.9685 18.2770 1.1383
black. × u75 −0.1650 −0.2274 −12.7834 −0.7507
black× re74 0.0501 0.0047 1.5954 0.2021
black× re75 0.0392 0.0011 −7.1228 −0.1245
u74× u75 −1.0170 0.0217 −1.4175 −1.1367
educ× re75 −0.0007 −0.0017 −0.1118 0.0063
re74× re75 −0.0005 −0.0003 0.0361 0.0051

σ 0.5313 0.9876
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for w = 0,1, and variance σ 2, for the same vector of functions
of the covariates h(x). Again the values for βw are given in
Table C.1.
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