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This article considers the problem of assessing the distributional consequence s of a treatment on some outcome variable of interest when
treatment intake is (possibly) nonrandomized , but there is a binary instrument available for the researcher. Such a scenario is common in
observationa l studies and in randomized experiments with imperfect compliance. One possible approach to this problem is to compare
the counterfactual cumulative distribution functions of the outcome with and without the treatment. This article shows how to estimate
these distributions using instrumental variable methods and a simple bootstrap procedure is proposed to test distributional hypotheses ,
such as equality of distributions, � rst-order and second-orde r stochastic dominance. These tests and estimators are applied to the study
of the effects of veteran status on the distribution of civilian earnings. The results show a negative effect of military service during the
Vietnam era that appears to be concentrated on the lower tail of the distribution of earnings. First-order stochastic dominance cannot be
rejected by the data.
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1. INTRODUCTION

Although most empirical research on treatment effects focus
on the estimation of differences in mean outcomes, analysts
have long been interested in methods for estimating the impact
of a treatment on the entire distribution of outcomes. This is
especially true in economics, where social welfare compar-
isons may require integration of utility functions under alter-
native distributions of income. Following Atkinson (1970),
consider the class of symmetric utilitarian social welfare
functions:

W4P1 u5 D
Z ˆ

0
u4y5 dP4y51

where P is an income distribution and u2 ò 7! ò is a twice
continuously differentiable individual utility function. Let P415

and P405 denote the (potential) distributions that income would
follow if the population were exposed to the treatment in one
case, and excluded from the treatment in the other case. If u
is completely speci� ed (u D Nu) we rank P415 and P405 by com-
paring W4P4151 Nu5 and W 4P4051 Nu5. Note that af� ne transforma-
tions of u do not affect the ranking of any two distributions.

Typically, u is not � xed by the analyst but is restricted to
have some desirable properties. In particular, social welfare
(W 4P1u5) is usually assumed to increase with the income
of any subset of individuals in the population (u0 > 0). If
u is af� ne, then W 4P1u5 ranks income distributions solely
on the basis of average income. However, distributional con-
siderations often motivate social welfare functions that favor
income redistribution to the poorer (u0 > 0 and u00 < 0). Under
these assumptions, stochastic dominance can be used to estab-
lish a partial ordering on the distributions of income. If two
income distributions can be ranked by � rst-order stochastic
dominance,

Z x

0
dP4154y5 µ
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(for P415 dominating P405), then these distributions will be
ranked in the same way by any monotonic utilitarian social
welfare function (u0 > 0). If two income distributions can be
ranked by second-order stochastic dominance,
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(for P415 dominating P405), then these distributions will be
ranked in the same way by any concave monotonic utilitar-
ian social welfare function (u0 > 0, u00 < 0) (see Foster and
Shorrocks 1988 for details). Therefore, stochastic dominance
can be used to evaluate the distributional consequences of
treatments under mild assumptions about social preferences.
Another possible question is whether the treatment has any
effect on the distribution of the outcome, that is, whether or
not the two distributions P415 and P405 are the same.

In general, the assessment of the distributional conse-
quences of treatments may be carried on by estimating
P415 and P405. Estimation of the potential income distribu-
tions, P415 and P405, is straightforward when the treatment
is randomly assigned in the population. However, this type
of analysis becomes dif� cult in observational studies (or in
randomized experiments with imperfect compliance) when
treatment intake is not randomly determined. Recently, Imbens
and Rubin (1997) have shown that, when there is a binary
instrumental variable available for the researcher, the poten-
tial distributions of the outcome variable are identi� ed for the
subpopulation potentially affected in their treatment status by
variation in the instrument (the so-called compliers). In addi-
tion, Abadie, Angrist and Imbens (in press) have studied dis-
tributional effects of treatments for compliers in instrumental
variable models using quantile regression techniques. How-
ever, up to date, no testing procedure has been proposed to
compare entire potential outcome distributions for compliers.
This article proposes a bootstrap strategy to perform this kind
of comparison. In particular, equality of distributions, � rst-
order and second-order stochastic dominance hypotheses, all
important for social welfare comparisons, are considered.
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The proposed method is applied to the study of the
effects of Vietnam veteran status on the distribution of civil-
ian earnings. Following Angrist (1990), random variation in
enrollment induced by the Vietnam era draft lottery is used
to identify the effects of veteran status on civilian earnings.
However, the focus of the present article is not restricted to
the average treatment effect for compliers. The entire marginal
distributions of potential earnings for veterans and nonveter-
ans are described for this subgroup of the population. These
distributions differ in a notable way from the correspond-
ing distributions of realized earnings. Veteran status appears
to reduce lower quantiles of the earnings distribution, leav-
ing higher quantiles unaffected. Although the data show a fair
amount of evidence against equality in potential income dis-
tributions for veterans and nonveterans, statistical testing falls
short of rejecting this hypothesis at conventional signi� cance
levels. First- and second-order stochastic dominance of the
potential income distribution for nonveterans are not rejected
by the data.

The rest of the article is structured as follows. In Section 2,
a framework for identi� cation of treatment effects in instru-
mental variable models is brie� y reviewed. It also shows how
to estimate the distributions of potential outcomes for compli-
ers. In contrast with Imbens and Rubin (1997) who report his-
togram estimates of these distributions, here a simple method
is shown to estimate the cumulative distribution functions (cdf)
of the same variables. An approach based on cdfs rather than
histograms is often convenient. First, the problem of choos-
ing adequate binwidths for histograms is avoided. The cdf,
estimated by instrumental variable methods, can be evaluated
at each observation in our sample, just as for the conven-
tional empirical distribution function. Moreover, as inspec-
tion of equations (1) and (2) reveals, � rst- and second-order
stochastic dominance can be easily de� ned in terms of cdfs.
Estimated cdfs may therefore suggest stochastic dominance
between estimated distributions in a way that would be hard
to visualize from histograms. In addition, tests for stochastic
dominance can be easily constructed within the well-known
family of tests which are based on differences in cdfs (see Dar-
ling 1957 for a review of this class of tests). In summary, an
approach to estimation of distributions of potential outcomes
based on cdfs is important because it is often easier to de� ne,
visualize, and test some distributional hypotheses of inter-
est, such as � rst- or second-order stochastic dominance, using
cdfs rather than histograms (see, however, Anderson 1996 for
an approach to test for stochastic dominance based on his-
tograms; approaches based on nonparametric density estima-
tion can also be conceived for the case in which the outcome
variable of interest has a continuous distribution). A com-
plete description of the bootstrap strategy is also provided in
Section 2, along with a proposition which states the asymp-
totic validity of the bootstrap for the tests proposed in this
article. Section 3 describes the data and presents the empirical
results. Section 4 concludes.

2. STATISTICAL METHODS

Let Yi405 be the potential outcome for individual i without
treatment, and Yi415 be the potential outcome for the same

individual with treatment. De� ne Di to be the treatment partic-
ipation indicator (that is, Di equals one when individual i has
been exposed to the treatment, Di equals zero otherwise). Let
Zi be a binary variable that is independent of the responses
Yi405 and Yi415 but that is correlated with Di in the popula-
tion (an instrument). Denote Di405 the value that Di would
have taken if Zi D 0; Di415 has the same meaning for Zi D 1.
In practice, for any particular individual the analyst does not
observe both potential treatment indicators Di405 and Di415.
Instead the realized treatment Di D Di415 ¢Zi CDi405 ¢41ƒ Zi5
is observed. In the same fashion, the analyst does not observe
both Yi405 and Yi415 for any individual i, one of these poten-
tial outcomes is counterfactual. Only the realized outcome,
Yi D Yi415 ¢Di CYi405 ¢ 41ƒDi5, is observed. In the analysis of
randomized experiments with imperfect compliance, Zi usu-
ally represents treatment assignment (randomized) whereas Di

represents treatment intake (nonrandomized). In observational
studies, instruments are often provided by the so-called natu-
ral experiments or quasiexperiments. For the rest of the article
use the following identifying assumption:

Assumption 2.1.

(i) Independence of the Instrument: 4Yi4051 Yi4151Di405,
Di4155 is independent of Zi .

(ii) First Stage: 0 < P4Zi D 15 < 1 and P4Di415 D 15 >
P4Di405 D 15.

(iii) Monotonicity: P4Di415 ¶ Di4055 D 1.

Assumption 2.1 contains a set of nonparametric restrictions
under which instrumental variable models identify the causal
effect of the treatment for the subpopulation potentially
affected in their treatment status by variation in the instru-
ment: Di415 D 1 and Di405 D 0 (see Imbens and Angrist 1994;
Angrist, Imbens, and Rubin 1996). This subpopulation is
sometimes called compliers. When the treatment intake, Di ,
is itself randomized, Assumption 2.1 holds for Zi D Di and
every individual is a complier.

Notice that there are some important exclusion restrictions
implicit in the notation. First, for each individual i, potential
treatment indicators 4Di4051Di4155 are not affected by the val-
ues taken by the instrument for other individuals Zj , j 6D i;
in the same fashion, potential outcomes 4Yi4051 Yi4155 are not
affected by the values taken by the treatment and instrument
for other individuals 4Zj1Dj5, j 6D i. This restriction is called
stable-unit-treatment-value-assumption (SUTVA) and is fre-
quently used in statistical models of causal inference (see
Rubin 1990). In addition, potential outcomes 4Yi4051 Yi4155 do
not depend on Zi . This last restriction, commonly invoked in
instrumental variable models, allows us to attribute correlation
between the instrument and the outcome variables to the effect
of the treatment alone (see Angrist et al. 1996 for a more elab-
orate discussion of the restrictions in Assumption 2.1).

In this article, distributional effects of possibly nonrandom-
ized treatments are studied by comparing the distributions
of potential outcomes Yi415 and Yi405 with and without the
treatment. The � rst step is to show that the identi� cation con-
ditions in Assumption 2.1 allow us to estimate these distribu-
tions for the subpopulation of compliers. To estimate the cdfs
of potential outcomes for compliers, the following lemma will
be useful.
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Lemma 2.1. Let h4¢5 be a measurable function on the real
line such that E—h4Yi5— < ˆ. If Assumption 2.1 holds, then

E6h4Yi5Di—Zi D 17 ƒ E6h4Yi5Di—Zi D 07

E6Di—Zi D 17 ƒ E6Di—Zi D 07

D E6h4Yi4155—Di405 D 01Di415 D 171 (3)

and

E6h4Yi541ƒ Di5—Zi D 17 ƒ E6h4Yi541 ƒ Di5—Zi D 07

E641ƒ Di5—Zi D 17 ƒ E641 ƒ Di5—Zi D 07

D E6h4Yi4055—Di405 D 01Di415 D 170 (4)

Proof. Note that h4Yi5Di is equal to h4Yi4155 if Di D 1 and
equal to 0 if Di D 0. By Lemma 4.2 in Dawid (1979), we have
that 4h4Yi4155101Di4051 Di4155 is independent of Zi. Then by
Theorem 1 in Imbens and Angrist (1994), we have that

E6h4Yi4155—Di405 D 01Di415 D 17

D
E6h4Yi5 ¢Di—Zi D 17 ƒ E6h4Yi5 ¢ Di—Zi D 07

E6Di—Zi D 17 ƒ E6Di—Zi D 07
0

The second part of the lemma follows from an analogous argu-
ment.

Lemma 2.1 provides a simple way to estimate the cumula-
tive distribution functions of the potential outcomes for com-
pliers. De� ne F C

4154y5 D E618Yi415 µ y9—Di415 D 11 Di405 D 07

and F C
4054y5 D E618Yi405 µ y9—Di415 D 11Di405 D 07. Apply

Lemma 2.1 with h4Yi5 D 18Yi µ y9 to get

F C
4154y5 D 8E618Yi µ y9Di—Zi D 17 ƒ E618Yi µ y9Di—Zi D 079

¯
8E6Di—Zi D 17ƒ E6Di—Zi D 0791 (5)

and

F C
4054y5 D 8E618Yi µ y941ƒ Di5—Zi D 17

ƒE618Yi µ y941 ƒ Di5—Zi D 079
¯

8E641 ƒ Di5—Zi D 17 ƒ E641 ƒ Di5—Zi D 0790 (6)

Suppose that we have a random sample, 84Yi1Di1 Zi59n
iD1,

drawn from the studied population. The sample counterparts
of equations (5) and (6) can be used to estimate F C

4154y5 and
F C

4054y5 for y D 8Y11 : : : 1 Yn9. We can compare the distribu-
tions of potential outcomes by plotting the estimates of F C

415

and F C
405. This comparison tells us how the treatment affects

different parts of the distribution of the outcome variable, at
least for the subpopulation of compliers.

Researchers often want to formalize this type of comparison
using statistical hypothesis testing. In particular, a researcher
may want to compare F C

415 and F C
405 by testing the hypotheses

of equality in distributions, � rst-order or second-order stochas-
tic dominance. For two distribution functions FA and FB , the
hypotheses of interest can be formulated as follows.

Equality of distributions:

FA4y5 D FB4y5 8y 2 ò0 (H.1)

First-order stochastic dominance: FA dominates FB if

FA4y5 µ FB4y5 8y 2 ò (H.2)

Second-order stochastic dominance: FA dominates FB if
Z y

ƒˆ
FA4x5 dx µ

Z y

ƒˆ
FB4x5 dx 8y 2 ò (H.3)

One possible way to carry out these tests for the distribu-
tions of potential outcomes for compliers is to use statistics
directly based on the comparison between the estimates for
F C

415
and F C

405
. However, it is easier to test the implications of

these hypotheses on the two conditional distributions of the
outcome variable, given Zi D 1 and Zi D 0. Denote F1 the cdf
of the outcome variable conditional on Zi D 1, and de� ne F0 in
the same way for Zi D 0. That is, F14y5 D E618Yi µ y9—Zi D 17
and F04y5 D E618Yi µ y9—Zi D 07.

Proposition 2.1. Under Assumption 2.1, hypotheses
(H.1)–(H.3) hold for 4FA1FB5 D 4F C

4151F C
4055 if and only if they

hold for 4FA1FB5 D 4F11F05.

Proof. From equations (5) and (6), we have

F C
4154y5ƒ F C

4054y5

D
E618Yi µ y9—Zi D 17 ƒ E618Yi µ y9—Zi D 07

E6Di—Zi D 17 ƒ E6Di—Zi D 07
0

Therefore, F C
415 ƒ F C

405 D K ¢ 4F1 ƒ F05 for K D 1=4E6Di—Zi D
17 ƒ E6Di—Zi D 075 < ˆ, and the result of the proposition
holds.

Of course F1 and F0 can easily be estimated by the empir-
ical distribution of Yi for Zi D 1 and Zi D 0, respectively.
Divide 4Y11 0001Yn5 into two subsamples given by different val-
ues for the instrument, 4Y1111 0001Y11n1

5 are those observations
with Zi D 1 (n1 D P

i Zi) and 4Y0111 0001Y01n0
5 are those with

Zi D 0 (n0 D P
i 1 ƒ Zi). Consider the empirical distribution

functions

æ11n1
4y5 D

1

n1

n1X
iD1

18Y11i µ y91

æ01n0
4y5 D

1

n0

n0X
jD1

18Y01j µ y90

Then, the Kolmogorov–Smirnov statistic provides a nat-
ural way to measure the discrepancy in the data from
the hypothesis of equality of distributions. A two-sample
Kolmogorov–Smirnov statistic can be de� ned as

T eq
n D

³
n1n0

n

1́=2

sup
y2ò

­­æ11n1
4y5ƒ æ01n0

4y5
­­0 (7)

Following McFadden (1989), the Kolmogorov–Smirnov
statistic can be modi� ed to test the hypotheses of � rst-order
stochastic dominance (for F1 dominating F0)

T fsd
n D

±n1n0

n

²1=2
sup
y2ò

æ11n1
4y5ƒ æ01n0

4y5
¢
1 (8)

and second-order stochastic dominance

T ssd
n D

±n1n0

n

²1=2

sup
y2ò

Z y

ƒˆ
æ11n1

4x5ƒ æ01n0
4x5

¢
dx0 (9)
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Kolmogorov–Smirnov type nonparametric distance tests
generally have good power properties. Unfortunately, the
asymptotic distributions of the test statistics under the null
hypotheses are generally unknown, because they depend
on the underlying distribution of the data (see e.g.,
Romano 1988). In this article, a bootstrap strategy is used
to overcome this problem. This strategy is described by the
following 4 steps:

Step 1: In what follows, let Tn be a generic notation for
T eq

n , T fsd
n or T ssd

n . Compute the statistic Tn for the original
samples 4Y1111 0001Y11n1

5 and 4Y0111 0001 Y01n0
5.

Step 2: Resample n observations 4bY11 : : : 1 bYn5 from
4Y11 : : : 1 Yn5 with replacement. Divide 4bY11 : : : 1 bYn5 into two
samples: 4bY1111 0 0 0 1 bY11n1

5 given by the n1 � rst elements
of 4bY11 : : : 1 bYn5, and 4bY0111 : : : 1 bY01n0

5 given by the n0 last ele-
ments of 4bY11 : : : 1 bYn5. Use these two generated samples to
compute the test statistic bTn1b .

Step 3: Repeat Step 2, B times. Note that n0 and n1 are
constant across bootstrap repetitions.

Step 4: Calculate the p-values of the tests with p-value DPB
bD1 18bTn1b > Tn9=B. Reject the null hypotheses if the p-value

is smaller than some signi� cance level �, 0 < � < 005.

By resampling from the pooled data set 4Y11 : : : 1 Yn5 we
approximate the distribution of our test statistics when F1 D
F0. Note that for (H.2) and (H.3), F1 D F0 represents the least
favorable case for the null hypotheses. This strategy allows us
to estimate the supremum of the probability of rejection under
the composite null hypotheses, which is the conventional def-
inition of test size. The proof of next proposition shows that,
under a nondegeneracy condition, the asymptotic distributions
of T fsd

n and T ssd
n are continuous, perhaps except for an atom at

zero that must have probability mass less than 0.5. Therefore,
the restriction that � < 005 is necessary to establish asymptotic
size � . This restriction is, however, consistent with conven-
tional test levels.

Assumption 2.2. The distribution of the outcome variable
is nondegenerate with bounded support.

Justi� cation of the asymptotic validity of this procedure is
provided by the following proposition.

Proposition 2.2. Under Assumption 2.2, the procedure
described in Steps 1–4, for Tn equal to the test statistics in
equations (7)–(9) and hypotheses (H.1)–(H.3), (i) provides
correct asymptotic size, � , (ii) is consistent against any � xed
alternative, (iii) has power (greater or equal to size) against
contiguous alternatives.

This proposition is proven in Appendix A. Note that the dis-
tribution of Yi is not assumed to be continuous. This is impor-
tant because outcome variables of interest in economics typi-
cally have probability atoms (for example, earnings variables
typically have probability mass at zero; wage variables typi-
cally have probability mass at the minimum wage.) If the out-
come variable is absolutely continuous, then exact asymptotic
results can be obtained (as in Dudley 1989, chap. 12). The
bounded support assumption is stronger than necessary, but

simpli� es the asymptotic analysis considerably and is hardly
restrictive for empirical applications.

The results of a simulation study to assess the small sample
performance of the tests proposed in this article are reported in
Appendix B. This simulation study suggests that the bootstrap
distribution of the tests provides a good approximation to the
nominal level even in fairly small samples.

The idea of using resampling techniques to obtain criti-
cal values for Kolmogorov–Smirnov type statistics probably
originated with Bickel (1969) and has also been used by
Romano (1988), McFadden (1989), Klecan, McFadden, and
McFadden (1991), Præstgaard (1995) and Andrews (1997)
among others. A related approach based on simulation of p-
values can be found in Barrett and Donald (1999).

Note that Proposition 2.2 naturally applies to tests based
on perfectly randomized experiments (in which Zi D Di for
all i). In such case, the entire population is madeup of com-
pliers. Another interesting special case arises when Di405 D 0
for all i. This happens, for example, in randomized trials if
individuals in the control group are perfectly excluded from
treatment intake (not ruling out noncompliance in the treat-
ment group). Then, the distribution of 4Yi4051 Yi4155 for the
treated is the distribution for compliers (see, e.g., Abadie et al.
in press).

3. EMPIRICAL EXAMPLE

The data used in this study consist of a sample of 11,637
white men, born in 1950–1953, from the March Current Pop-
ulation Surveys of 1979 and 1981–1985. Annual labor earn-
ings, weekly wages, Vietnam veteran status and an indi-
cator of draft-eligibility based on the Vietnam draft lot-
tery outcome are provided for each individual in the sam-
ple. Additional information about the data can be found in
Appendix C.

Figure 1 shows the empirical distribution of realized annual
labor earnings (from now on, annual earnings) for veterans and
nonveterans. We can observe that the distribution of earnings
for veterans has higher low quantiles and lower high quantiles
than that for nonveterans. Naive reasoning would lead us to
conclude that military service during the Vietnam era reduced
the probability of extreme earnings without a strong effect
on average earnings. The difference in means is indeed quite
small. On average, veterans earn only $264 less than nonvet-
erans and this difference is not signi� cant at conventional test
levels. However, this analysis does not take into account that
veteran status was not randomly assigned in the population. In
fact, there was a strong selection process in the military dur-
ing the Vietnam era. Some individuals volunteered, and oth-
ers avoided enrollment using different methods, like student
or occupational deferments. In addition, there was a screening
process in the military prior to enrollment which disquali� ed
some individuals for service for a variety of reasons such as
having health problems or for having committed a felony (see
Baskir and Strauss 1978 for an account of the issues involved
in military enrollment during the Vietnam era). Thus, enroll-
ment for military service during the Vietnam era was in� u-
enced by variables associated with future potential earnings.



288 Journal of the American Statistical Association, March 2002

10,000 20,000 30,000 40,000 50,000 60,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Annual earnings

non–veterans
veterans    

Figure 1. Empirical Distributions of Earnings for Veterans and Nonveterans.

Therefore, we cannot draw causal inferences by simply com-
paring the distributions of realized earnings between veterans
and nonveterans.

If draft eligibility is a valid instrument, then the marginal
distributions of potential outcomes for compliers are consis-
tently estimated by using sample analogs of equations (5) and
(6). Figure 2 is the result of applying our data to those equa-
tions. Note that in � nite samples, the instrumental variables
estimates of the potential cdfs for compliers may not be non-
decreasing functions (see Imbens and Rubin 1997 for a related
discussion). The most remarkable feature of Figure 2 is the
change in the estimated distributional effect of veteran status
on earnings with respect to the naive analysis. The average
effect of military service for compliers can be easily estimated
using the techniques in Imbens and Angrist (1994). On aver-
age, veteran status is estimated to have a negative impact of
$1,278 on earnings for compliers, although this effect is far
from being statistically different from zero. Now, veteran sta-
tus seems to reduce low quantiles of the income distribution,
leaving high quantiles unaffected. If this characterization is
true, the potential outcome for nonveterans would dominate
that for veterans in the � rst-order stochastic sense.

Following the strategy described in Section 2, hypothe-
ses testing is performed. First, the test statistics in
equations (7)–(9) are computed for the draft-eligible/draft-
ineligible samples. Then, the distributions of the test statis-
tics under the least favorable null hypothesis are approximated
by resampling from the pooled sample and recomputing the
test statistics. In this way, we are able to make inference

about hypotheses (H.1)–(H.3) for the subpopulation of com-
pliers. (The computer code used for these calculations is avail-
able from the author on request.) Table 1 reports p-values for
the tests of equality of distributions, � rst-order and second-
order stochastic dominance. Notice that, for this example, the
stochastic dominance tests are for earnings for nonveterans
dominating earnings for veterans. The � rst row of Table 1
contains the results for annual earnings as the outcome vari-
able. In the second row the analysis is repeated for weekly
wages. Bootstrap resampling was performed 2,000 times
(B D2,000).

First, consider the results for annual earnings. The
Kolmogorov–Smirnov statistic for equality of distributions is
revealed to take an unlikely high value under the null hypoth-
esis. However, we cannot reject equality of distributions at
conventional test levels. The lack of evidence against the null
hypothesis increases as we go from equality of distributions
to � rst-order stochastic dominance, and from � rst-order to
second-order stochastic dominance. The results for weekly
wages are slightly different. For weekly wages we fall far from
rejecting equality of distributions at conventional test levels.

This example illustrates how useful it can be to think in
terms of distributional effects, and not merely average effects,
when formulating the null hypothesis. Once we consider dis-
tributional effects, the belief that military service in Vietnam
had a negative effect on civilian earnings can naturally be
incorporated in the null hypothesis by � rst- or second-order
stochastic dominance.
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Figure 2. Estimated Distributions of Potential Earnings for Compliers.

4. SUMMARY AND DISCUSSION OF
POSSIBLE EXTENSIONS

When treatment intake is not randomized, instrumental vari-
able models allow us to identify the effects of a treatment on
some outcome variable, for the subpopulation whose treatment
status is determined by variation in the instrument. For this
group of the population, called compliers, the entire marginal
distribution of the outcome under different treatments can be
estimated. In this article, a strategy to test for distributional
effects of treatments within the population of compliers is
developed. In particular, the focus is on the equality of dis-
tributions, � rst-order and second-order stochastic dominance
hypotheses. First, how to estimate the distributions of poten-
tial outcomes for compliers is explained. Then, bootstrap sam-
pling is used to approximate the null distribution of the test
statistics.

I illustrate this method with an application to the study of
the effects of veteran status on civilian earnings. Following
Angrist (1990), use variation in veteran status induced by ran-
domly assigned draft eligibility to identify the effects of inter-

Table 1. Tests on Distributional Effects of Veteran Status on Civilian
Earnings, p-values

First-order Second-order
Outcome Equality in stochastic stochastic
variable distributions dominance dominance

Annual earnings 01245 06260 07415
Weekly wages 02330 06490 07530

est. Estimates of cumulative distribution functions of poten-
tial outcomes for compliers show an adverse effect of mili-
tary experience on the lower tail of the distribution of annual
earnings. However, equality of distributions cannot be rejected
at conventional con� dence levels. First- and second-order
stochastic dominance are not rejected by the data. Results are
more favorable to the hypothesis of equality of distributions
when using weekly wages as the outcome variable.

Equality of distributions and � rst- and second-order stochas-
tic dominance are not the only hypotheses that can be tested
using the bootstrap to compare the distribution of the outcome
variable for different values of the instrument. For example,
a test for a constant treatment effect, � D Y 415 ƒ Y 405, can
be implemented by applying the test of equality of distribu-
tions to Wi D Yi ƒ � ¢ Di . If � is unknown and needs to be
estimated, the asymptotic distribution of the test statistic will
be affected. Nuisance parameters may also arise if parametric
models are used to adjust for the effect of covariates. Although
estimation of nuisance parameters is not explicitly addressed
in the present article, modi� cations along the lines of Romano
(1988) or theorem 19.23 in van der Vaart (1998) look like
promising starting points to obtain results analogous to those
in Proposition 2.2.

Another interesting question is how to make the cdf esti-
mators proposed in this article nondecreasing. One possi-
ble approach is to choose the nondecreasing function that
minimizes a weighted average quadratic distance to the esti-
mated cdf. This can be accomplished using well-known
isotonic regression methods as in Robertson, Wright, and
Dykstra (1988).
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Finally, using techniques similar to those in Appendix A, it
can be seen that the results in Proposition 2.2 also hold for the
permutation versions of the tests proposed in this article (for
permutation tests resampling is done without replacement). An
appealing feature of permutation tests is that, by construction,
they provide exact level in � nite samples (see, e.g., Efron and
Tibshirani 1993).

APPENDIX A: ASYMPTOTIC VALIDITY
OF THE BOOTSTRAP

Proof of Proposition 2.2.

Part (i) can be proven by extending the argument in van der Vaart
and Wellner (1996) chap. 3.7 to tests for � rst- and second-order
stochastic dominance. Let P1 , P0 , be the probability laws of Y con-
ditional on Z D 1 and Z D 0, respectively. Let Q be the probability
law of Z which is Bernoulli with parameter � . De� ne the empirical
measures

ð11n1
D

1

n1

n1X

iD1

„Y11i
1 ð01n0

D
1

n0

n0X

jD1

„Y01j
1

where „Y indicates a probability mass point at Y . Let ¦ D
8184ƒˆ1 y79 2 y 2 ò9, that is, the class of indicators of all lower half
lines in ò. Because ¦ is known to be universally Donsker, by theo-
rem 3.5.1 in van der Vaart and Wellner (1996) we have

G11n1
D n

1=2
1 4ð11n1

ƒP15 ) GP1
1 G01n0

D n
1=2
0 4ð01n0

ƒ P05 ) GP0

in lˆ4¦ 5, where “)” denotes weak convergence, lˆ4¦ 5 is the set of
all uniformly bounded real functions on ¦ and GP is a P-Brownian
bridge. Let

Dn D
±n1n0

n

²1=2
4ð11n1

ƒð01n0
50

As n ! ˆ, �n D n1=n ! � 2 401 15 almost surely. Then, if P1 D
P0 D P, Dn ) 41 ƒ � 51=2 ¢ GP ƒ � 1=2 ¢ G0

P , where GP and G0
P are

independent versions of a P-Brownian bridge. Because 41 ƒ � 51=2 ¢
GP ƒ� 1=2 ¢ G0

P is also a P-Brownian bridge, we have that Dn ) GP .
For f 2 ¦ , let a4f5 D sup8t 2 ò 2 f 4t5 D 19 and ‹ be the

Lebesgue measure on ò. For z 2 lˆ4¦ 5, de� ne the following
maps: T eq4z5 D supf 2¦ —z4f 5—, T fsd4z5 D supf 2¦ z4f 5 and T ssd4z5 D
supf 2¦

R
8g2 ¦ 2a4g5µa4f 59

z4g5 dŒ4g5 where Œ D ‹ � a. Our test statis-
tics are T eq4Dn5, T fsd4Dn5 and T ssd4Dn5. Let T be a generic nota-
tion for T eq , T fsd or T ssd. Notice that, for z11 z2 2 lˆ4¦ 5, T 4z25 µ
T 4z15CT4z2 ƒ z15. Because T eq is equal to the norm in lˆ4¦ 5, triv-
ially T eq is continuous. T fsd is also continuous because T fsd4z2 ƒ
z15 µ T eq4z2 ƒ z15. Finally, the bounded support condition allows us
to restrict ourselves to functions z21 z1 2 8x 2 lˆ4¦ 5 2 x4aƒ14t55 D
0 for t 2 4ƒˆ1 l5 [ 4u1ˆ59, for some real l, u (l < u) such that the
support of P is contained in the interval 6l1u7. Then, it is easy to
see that T ssd4z2 ƒ z15 µ 4u ƒ l5 ¢ T fsd4z2 ƒ z15, hence T ssd, is continu-
ous. For the stochastic dominance tests we will use the least favor-
able case (P1 D P0) to derive the null asymptotic distribution. Under
the least favorable null hypotheses, by continuity, the tests statistics
converge in distribution to T eq4GP 5, T fsd4GP 5, and T ssd4GP 5, respec-
tively. Note that, in general, the asymptotic distribution of our test
statistics under the least favorable null hypotheses depends on the
underlying probability P. It can easily be seen that our test statistics
tend to in� nity under any � xed alternative.

Let cP 4�5 D inf8c 2 P4T 4GP 5 > c5 µ �9. Consider a test that rejects
the null hypothesis if T4Dn5 > cn . Because cP 4�5 depends on P , the
sequence 8cn9 is determined by a resampling method. Consider the
pooled sample 4Y11 : : : 1 Yn5 D 4Y1111 : : : 1 Y11n1

1 Y0111 : : : 1 Y01n0
5, and

de� ne the pooled empirical measure

èn D
1

n

nX

iD1

„Yi
1

then ð11n1
ƒèn D 41 ƒ �n54ð11n1

ƒð01n0
5. Let 4bY11 : : : 1 bYn5 be a ran-

dom sample from the pooled empirical measure. De� ne the bootstrap
empirical measures:

bð11n1
D

1

n1

n1X

iD1

„bYi
1 bð01n0

D
1

n0

nX

jDn1C1

„bYj
0

By theorem 3.7.7 in van der Vaart and Wellner (1996), if
n ! ˆ, then n

1=2
1 4bð11n1

ƒ èn5 ) GH given almost every sequence
4Y1111 : : : 1 Y11n1

5, 4Y0111 : : : 1 Y01n0
5, where H D � ¢ P1 C 41 ƒ � 5 ¢ P0 .

The same result holds for n
1=2
0 4bð01n0

ƒèn5. Let

bDn D
±n1n0

n

²1=2
4bð11n1

ƒbð01n0
50

Note that T4bDn5 D T 441 ƒ �n51=2n1=2
1 4bð11n1

ƒ èn5 ƒ � 1=2
n n1=2

0 4bð01n0
ƒ

èn55. Therefore, T4bDn5 converges in distribution to T441 ƒ
� 51=2GH ƒ� 1=2G0

H 5 almost surely, where GH and G0
H are indepen-

dent H-Brownian bridges. Because 41ƒ� 51=2GH ƒ� 1=2G0
H is also an

H-Brownian bridge, we have that, if P1 D P0 D P, then T4bDn5 con-
verges in distribution to T4GP 5 almost surely. Let bP be the bootstrap
probability measure for the sample, and let

Ocn D inf8c2 bP4T 4bDn5 > c5 µ �90

To obtain the result of asymptotic size equal to � note that T eq , T fsd,
and T ssd are convex continuous functionals. Note also that if P is
nondegenerate, T4GP 5 has support equal to 601ˆ5. By theorem 11.1
in Davydov, Lifshits, and Smorodina (1998), T4GP 5 has continuous
and strictly increasing cdf everywhere except possibly at zero. If P
is nondegenerate, Pr4supf 2¦ —GP 4f5— D 05 D 0 so T eq4GP 5 has abso-
lutely continuous distribution. It is left to be shown that T fsd4GP 5

and T ssd4GP 5 cannot have probability mass greater than 0.5 at zero.
Because the variance of GP 4f5 is zero outside the support of P , we
have that Pr4supf 2¦ GP 4f5 D 05 D Pr4 6 9f 2 ¦ 2 GP 4f5 > 05. By
symmetry of Gaussian measures, Pr4 6 9f 2 ¦ 2 GP 4f5 > 05 D Pr4 6 9
f 2 ¦ 2 GP 4f5 < 05. By Assumption 2.2, P is nondegenerate, hence
Pr4 6 9f 2 ¦ 2 GP 4f 5 > 0 \ 6 9f 2 ¦ 2 GP 4f5 < 05 D 0. Therefore,
1 ¶ Pr4 6 9f 2 ¦ 2 GP 4f5 > 0 [ 6 9f 2 ¦ 2 GP 4f 5 < 05 D 2 ¢Pr4supf 2¦

GP 4f5 D 05. The same reasoning applies to T ssd4GP 5 once we sub-
stitute

R
8g2 ¦ 2a4g5µa4f59

GP 4g5 dŒ4g5 for GP 4f5. Therefore, for � < 05,
we have Ocn ! cP 4�5 almost surely. Then, the � rst result of the the-
orem holds by continuity of T 4GP 5 ƒ cP 4�5 at zero.

By tightness of the limiting process, Ocn is bounded in probability
and the tests are consistent against any � xed alternative. This proves
(i) and (ii).

To prove (iii), let M D Q ¢P . Under M ,

Dn4f5 D
±n0n1

n

²1=2
4ð11n1

4f5 ƒ ð01n0
4f55

D
1

n1=2

nX

iD1

µ±n0

n1

²1=2
Zi ƒ

±n1

n0

²1=2
41 ƒ Zi5

¶
¢ 4f4Yi5ƒ Pf4Yi55

D
1

n1=2

nX

iD1

µ±1 ƒ�

�

²1=2

Zi ƒ
± �

1 ƒ�

²1=2

41 ƒZi5

¶

¢ 4f4Yi5ƒ Pf4Yi55C op4150

Local alternatives are given by Mn D Q ¢Pn , where Pn is a sequence
of conditional probability measures equal to Pz1n for Z D z. P01n and



Abadie: Bootstrap Tests for Distributional Treatment Effects 291

Table 2. True Test Size in Small Samples, Monte Carlo Simulation

Distribution
Nominal test level

Empirical
example N(011) U(011) b(05110)

Sample
size .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

Equality 25 .119 .062 .017 .121 .063 .011 .130 .063 .014 .107 .053 .010
of distributions 50 .114 .059 .015 .127 .072 .017 .148 .085 .020 .108 .061 .013

100 .114 .055 .012 .114 .058 .011 .127 .069 .016 .115 .060 .016
250 .106 .051 .011 .119 .058 .011 .111 .053 .011 .121 .058 .013
500 .099 .047 .010 .107 .052 .010 .112 .055 .010 .106 .053 .012

First-order 25 .122 .059 .015 .125 .060 .012 .134 .070 .014 .101 .050 .011
stochastic dominance 50 .109 .055 .012 .135 .068 .018 .131 .072 .016 .118 .051 .013

100 .106 .056 .012 .115 .058 .011 .123 .067 .016 .112 .056 .015
250 .105 .053 .011 .120 .061 .013 .119 .056 .010 .110 .062 .014
500 .091 .049 .010 .106 .055 .011 .114 .057 .011 .093 .046 .009

Second-order 25 .110 .058 .011 .106 .052 .006 .107 .050 .011 .101 .049 .009
stochastic dominance 50 .101 .050 .012 .110 .059 .010 .103 .054 .011 .103 .052 .009

100 .104 .051 .009 .100 .047 .007 .105 .052 .011 .105 .053 .012
250 .098 .049 .011 .095 .048 .010 .100 .045 .007 .105 .051 .011
500 .100 .048 .011 .102 .053 .009 .101 .051 .009 .092 .045 .011

s.e. .005 .003 .002 .005 .003 .002 .005 .003 .002 .005 .003 .002

P11n approach a common limit P in the following sense:

Z µ
n1=24dP1=2

z1n ƒ dP1=25 ƒ
1

2
xz dP1=2

¶2

! 0 for z D 0111 (A.1)

where x1 , x0 are measurable real functions. Therefore,

Z µ
n1=24dM1=2

n ƒdM1=25 ƒ
1

2
x dM1=2

¶2

! 01

for x4Zi1 Yi5 D 41ƒ Zi5 ¢x04Yi5 CZi ¢x14Yi5.
It can be shown (van der Vaart and Wellner (1996), lemma

3.10.11) that the sequences of product measures Mn
n and Mn are con-

tiguous, Mx D 0, Mx2 < ˆ, and

log
dMn

n

dMn
D

nX

iD1

log
dMn

dM
4Zi1 Yi5 D

1

n1=2

nX

iD1

x4Zi1 Yi5 ƒ
1

2
Mx2 Cop4151

under M . Therefore
³

Dn4f51 log
dMn

n

dMn

0́
M n

) N

³³
0

ƒMx2=2

´
1

³
P4f ƒ Pf52 ’4f5

’4f5 Mx2

´´
1

where ’4f5 D � 1=241 ƒ � 51=24�14f5 ƒ �04f55 and �z4f5 D Pxzf .
Applying LeCam’s third lemma

Dn4f5
M n

n) N401P4f ƒPf525 C� 1=241 ƒ� 51=24�14f5 ƒ�04f550

Using the Donsker property of ¦ , we obtain the uniform version of
last result (see van der Vaart and Wellner 1996, theorem 3.10.12.)

Dn ) GP C� 1=241 ƒ � 51=2 ¢ 4�1 ƒ �050

In addition, supf 2¦ —n1=24Pz1n ƒ P5f ƒ �z4f 5— ! 0 for z D 011, and
therefore supf 2¦ —n1=24P11n ƒP01n5f ƒ 4�14f5 ƒ �04f55— ! 0.

By contiguity arguments bcn

M n
n! cP 4�5. Then, using a version of

Anderson’s lemma for general Banach spaces (see, e.g., van der Vaart
and Wellner 1996, lemma 3.11.4), we obtain the desired result for
the test of equality of distributions.

The same result holds for � rst- and second-order dominance tests
(note that for these tests the sequence of contiguous alternatives
should be speci� ed such that T fsd4�1 ƒ�05 ¶ 0 and T ssd4�1 ƒ�05 ¶ 0,
respectively.)

APPENDIX B: SMALL SAMPLE BEHAVIOR

To assess the small sample performance of the tests proposed in
this article a Monte Carlo study was conducted. To mimic as closely
as possible the actual small sample behavior of these tests in real
applications, one of the distributions used for the simulation study
is the empirical distribution of annual earnings from the data used
in Section 3. The other three distributions are a standard normal,
a uniform on (0,1), and a binomial with parameters (.5, 10). (Note
that the simulation considers a distribution, the standard normal, that
belongs to a larger family than permitted by the regularity conditions,
because it does not have bounded support.) For each distribution and
each Monte Carlo iteration, a sample of size n was drawn (n equal
to 25, 50, 100, 250, and 500). Each sample was divided into two
subsamples following the proportion of draft eligibles/noneligibles
in the original data for the � rst distribution, and a 1/1 proportion
(approximate for n odd) for the other three distributions. Then, the
test statistics in equations (7)–(9) were computed and the bootstrap
tests were performed using 2,000 bootstrap iterations. This process
was repeated for 4,000 Monte Carlo iterations. Table 2 shows the
results of this simulation study for samples sizes equal to 25, 50, 100,
250, and 500 and nominal test levels equal to 0.10, 0.05, and 0.01.
Asymptotic standard errors (as the number of Monte Carlo iterations
tends to in� nity) are reported in the last row of the table. The table
shows highly satisfactory performance of the tests, even in fairly
small samples (n D 25).

APPENDIX C: DATA DESCRIPTION

The data set was especially prepared for Angrist and Krueger
(1995). Both annual earnings and weekly wages are in real terms.
Weekly wages are imputed by dividing annual labor earnings by the
number of weeks worked. The Vietnam era draft lottery is carefully
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described in Angrist (1990), where the validity of draft eligibility as
an instrument for veteran status is also discussed. This lottery was
conducted every year between 1970 and 1974 and it used to assign
numbers (from 1 to 365) to dates of birth in the cohorts being drafted.
Men with lowest numbers were called to serve up to a ceiling deter-
mined every year by the Department of Defense. The value of that
ceiling varied from 95 to 195 depending on the year. Here, an indi-
cator for lottery numbers lower than 100 is used as an instrument
for veteran status. The fact that draft eligibility affected the probabil-
ity of enrollment along with its random nature makes this variable a
good candidate to instrument veteran status.

[Received March 2000. Revised May 2001.]
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