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ABSTRACT. - In paired randomized experiments units are grouped in pairs, often 
based on covariate information, with random assignment within the pairs. Average 
treatment effects are then estimated by averaging the within-pair differences in 
outcomes. Typically the variance of the average treatment effect estimator is 
estimated using the sample variance of the within-pair differences. However, 
conditional on the covariates the variance of the average treatment effect estimator 

may be substantially smaller. Here we propose a simple way of estimating the 
conditional variance of the average treatment effect estimator by forming pairs 
of-pairs with similar covariate values and estimating the variances within these 

pairs-of-pairs. Even though these within-pairs-of-pairs variance estimators are not 
consistent, their average is consistent for the conditional variance of the average 
treatment effect estimator and leads to asymptotically valid confidence intervals. 

Estimation de la variance conditionnelle dans des exp?riences 
par paires 

R?SUM?. - Dans les exp?riences al?atoires d'appariement les unit?s sont 

regroup?es par paires, souvent bas?es sur des caract?ristiques explicatives, et avec 

appariement al?atoire. Les effets de traitement moyens sont alors estim?s en faisant 
la moyenne des diff?rences intra-paires dans les r?sultats. Typiquement, la variance 
de l'estimateur de l'effet de traitement moyen est estim?e en utilisant la variance 
des diff?rences intra-paires dans l'?chantillon. Cependant, conditionnellement 
aux variables explicatives, l'estimateur de l'effet de traitement moyen peut ?tre 
substantiellement plus petit. Nous proposons ici une mani?re simple d'estimer la 
variance conditionnelle de l'estimateur de l'effet de traitement moyen en formant 
des paires de paires avec des valeurs de variables explicatives similaires et en 
estimant les variances entre ces paires de paires. M?me si ces estimateurs fond?s 
sur les paires de paires ne sont pas convergents, leur moyenne est convergente 
pour la variance conditionnelle de l'estimateur de l'effet de traitement moyen et 
conduit ? des intervalles de confiance asymptotiquement valides. 
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1 Introduction 

In paired randomized experiments units are grouped in pairs with randomized 

assignment within the pairs. Average treatment effects are then estimated by aver 

aging the within-pair differences in outcomes. Typically, the variance of the aver 

age treatment effect estimator is estimated using the sample variance of the within 

pair differences (e.g., Snedecor and Cochran [1989]). However, often the pairing 
is based on covariate information at least partially available to the researcher (e.g., 

Rosenbaum [1995]). Conditional on such information the variance may be substan 

tially smaller. 

The conditional variance of the average treatment effect estimator can be expressed 
in terms of the conditional outcome variances. Consistent estimation of these condi 
tional outcome variances is a difficult task which requires nonparametric estimation 

involving sample-size-dependent smoothing parameter choices (see, e.g., Stone 

[1977]). Here we propose a simple way of estimating the conditional variance of the 

average treatment effect estimator by forming pairs-of-pairs with similar covariate 
values. These pairs-of-pairs allow us to obtain close-to-unbiased estimators of the 
conditional outcome variances. Even though these estimators are not consistent for 
the conditional outcome variances, their average is consistent for the conditional 
variance of the average treatment effect estimator and allows us to obtain asymp 

totically valid confidence intervals. A Monte Carlo simulation suggests that our esti 
mator is accurate even in fairly small samples. The results for paired randomized 

experiments in this article complement previous result on the variance of matching 
estimators in observational settings (Abadie and Imbens [2006,2008]). 

2 Paired Experiments with Covariates 

Consider a setup in which pairs of units are matched on the basis of a vector of 
covariates. The covariates will be denoted by Xp i = 1,..., . Let X'= (XVX2, -X^). 
For each /, two units are drawn from the subpopulation with X=xv One of the two 
units is randomly selected to receive the active treatment, and for this unit we record 
the response Y?\). The second unit receives the control treatment and for this unit 

we record the response Yt(0). Let ( ) be the population average treatment effect for 
the subpopulation withX= x. Under standard conditions randomization implies: 

A( ) = E[ )- )\ . 
= ]. 

Let e. be the difference between the within-pair difference in outcomes and its 

population expectation conditional onX.: 

erY?)-YJ(0)-A(Xt). 

Conditional on Xp e. has mean zero and variance o\ (X?). 
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The average treatment effect for the sample conditional on the covariates is: 

The average treatment effect for the population is the expected value of A(X) 
(which is the same as the expected value of ( ) over the distribution of X in the 

population, f^x): 
= ?[ ( )] = E[A(X)] = J A(x)Fx (x)dx. 

The estimator we consider is the average over the sample of the within-pair dif 
ferences: 

1 

Conditional on , is unbiased for the average treatment effect ( ). Hence, if 
the elements of X are chosen as random draws from the distribution of the covari 

ates, is unconditionally unbiased for . 

The variance of conditional on Xv XN is 

( | ) = ?[( 
- ( ))2| 

N 

N2?{ 

The unconditional variance of is ( ) 
= 

?[( -?[ ])2]. If the vector JTischo 

sen at random ftomf^x) the unconditional variance is 

V(x) = m - 
)2 ] = ?[ ( | )] + V(E[x | X]) 

1=1 

+ V 

This last equation shows that the marginal variance V(x) is larger than the aver 

age of the conditional variance V(x | X) by the variance of the treatment effect 

A(X). Therefore, if the average effect of the treatment varies substantially with the 

covariates, the difference between the marginal variance and the average condi 
tional variance will be large. 

It is straightforward to estimate the normalized unconditional variance using the 

sample variance of the within-pair differences: 

(1) ^ ^ )=7 
- 

(}/(1)-- :(0)- )2, 

which has expectation equal to ? 
( ). See for example Snedecor and Cochran 

[1989]. Estimating the normalized conditional variance ( \ X) is more dif 
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ficult because it involves the unknown function 2( ). In this article, we propose 
a simple matching estimator of the conditional variance of . 

The choice of conditional or unconditional variance corresponds to a focus on the 

sample average treatment effect ( ) versus the population average treatment effect 
. There are two reasons for our interest in the former. The first is that in many paired 

experiments the sample is not chosen at random from a well-defined population and 
there is therefore no well-defined population average effect. The second reason is 
that we view it as useful to separate the uncertainty about the treatment effects for 
the sample (as captured by the conditional variance) from the uncertainty coming 
from the uncertainty stemming from the extrapolation from the sample to the popu 
lation (which is combined with the former in the unconditional variance). 

3 A Matching Estimator for 
the Variance 

The conditional variance of the average treatment effect estimator depends on 

the conditional variance of the outcome differences, g\(x). Estimating these con 

sistently requires non-parametric estimation of conditional expectations, which in 
turn requires choices of smoothing parameters that depend on sample size (see, 
e.g., Stone [1977]). However, we are not interested in the conditional variances at 

every jc, only in the average of these conditional variances in the form of the nor 
malized conditional variance: 

(2) . ( | ) = -^? e2(^). 

To estimate (2) we propose a nearest neighbor or matching approach. This match 

ing approach produces an approximately unbiased estimator of \( ) at every x9 
but not a consistent one. However, the average of these inconsistent variance esti 
mators is consistent for the average of the variances in the same way that, although 
the unit-level difference ?) 

- 
YfiO) are unbiased but not consistent for (A^.), the 

average difference ]T f (1^.(1)-},(()))/# is consistent for . 

Suppose we have two pairs i and j with the same covariates, X(=X.=jc. The aver 

age of the squared difference between the two within-pair differences is: 

?(i)-^(0))-(ry(i)-yy(0)))21 xf =Xj =*] = 2? e2(*). 

Therefore, 

i((y;(i)-};.(0))-(y,.(i)-ry(0)))2, 
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is unbiased for ag(jc). In practice, it may not be possible to find different pairs 
with the same value of the covariates. Hence let us consider the nearest pair to pair 
i by solving 

Ai) = SrgmnJ.J\X.-X.\\, 

where |a|| is the standard vector norm, |a| = ( != a?) 
* ̂et 

?(x,)=^ ((^?-^.^?-(^(D-r^iO)))2. 

Consider the conditional expectation of this variance estimator: 

ElfrX,) IX] = ? (cliX^+aliXj^) + (A(X,) - ( ,(0))2), 

which differs from 2(*) by a bias term 

B, = ?[i2(*,) I ]- 2(^) 
= 
|( 2(^.( ))- 2(^.)+( (^)- (^.(/)))2). 

At an intuitive level, if the conditional moments of ?1) 
- 

Y^O) given X. are suf 

ficiently smooth in the covariates, the bias of the pair-level variance estimates, B. 

will vanish asymptotically if the matching discrepancies, 
- 
Xj^, 

vanish as 

increases. However, even if the bias goes to zero as the sample size increases, 
the pair-level variance estimators, sl(X?)9 do not estimate the variances cl(X?) 
consistently because the variances of s% (X?) do not vanish. In fact, as increases 
the variance of s%(X?)9 conditional onX.9 converges to V(ef | X?)/2. 

We use these pair-level variance estimates to estimate the normalized conditional 
variance as: 

(3) ̂.F^) = 
l?^). 

Now, if the bias of ? 
V(x \ X) converges to zero, then it is sufficient to show that 

the variance also converges to zero in order to prove consistency. Notice that the 

pair-level variance estimates si(X?) are not all independent as the same pair may 

get used as a match more than once. Nevertheless, we will show that because the 

maximum number of times that a pair can be used as a match is bounded (dejjend 

ing only on the dimension of X9 see Miller et al [1997]) the average, 
? 
V(x \ X), 

is consistent. 

The next two assumptions contain sufficient regularity conditions for consist 

ency of our estimator of the conditional variance in paired experiments, defined in 

equation (3). 
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2 
Assumption l: (l/N) ?^ |at, -XJ(i)|| 

0. 

Assumption 2: fii) ( ) and g\(x) are Lipschitz in X, with constants CA and 

C??, respectively, and (ii) the fourth moments of the conditional distribution of 
e. given X=x exist and are uniformly bounded by some constant, 4. 

Assumption 1 is not primitive. However, the next lemma shows that boundedness 
of the set X, from which the elements of X are chosen, is enough for Assumption 
1 to hold. 

Lemma 1: If the components of the vector X. are chosen from a bounded set, X, 
then Assumption I holds. 

Assumption 2 contains regularity conditions. The following theorem shows that, 
under assumptions 1 and 2 the estimator of the conditional variance described in 

equation (3) is consistent. 

Theorem 1: Suppose that assumptions I and 2 hold. Then, conditional on X: 

N(ve\x)-v(?|x?=-L? t?(*,)-o*(jr,))->o. " i=l 

4 Discussion 

The pair-level variance estimators, sl(X?)9 can be interpreted as nearest-neighbor 
nonparametric estimators of 

2 
(Xf). For consistency of such estimators it is typi 

cally required that the number of neighbors increases with the sample size. However, 
increasing the number of neighbors is not required forconsistency of the normalized 
conditional treatment effect variance estimator, NV(x | X) = ]?T. sl(X?)IN. This 
is somewhat similar to Eicker [1967] estimation of the variance in regression mod 
els with heteroskedasticity. Although his estimators do not estimate the form of the 

heteroskedasticity consistently, they do consistently estimate the average variance. 

Although it is not required for consistency, one can use more than one neighbor 
to estimate the variances, G^(X?). Let D.-YfX)- YfjS) and let jm(i) be the index 
of the m-th closest match to pair in term of the covariates. An estimator of 

2 
(X? ) 

that uses M neighbors is: 

*e(*;) = 
^ (^, 

- . 
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where 
Dm =D, and DM{i) =(M + 

l)~l?w=0 DJm{i). 
If 2( ,) does not vaiy 

much with the covariates, using multiple neighbors may result in a more precise 
estimator for the variance and thus in improved confidence intervals in small sam 

ples. Notice that for the limiting case of M = JV - 1, the estimators in (1) and (3) 
are identical. 

Notice also that alternative estimators of ? 
( | X) could be constructed as: 

where ?l(x) is a consistent estimator of 2( ) given by non-parametric smooth 

ing techniques (e.g., series or kernel regression). The advantage of our matching 
estimator of ( \ X) is that it does not require consistent estimation of the 
function ( ), and therefore it does not force researchers to choose smoothing 
parameters as functions of the sample size. 

If the vector X is chosen at random from the distribution,^*), then the standard 
variance estimator in (1) provides asymptotically conservative confidence intervals 
for the conditional average treatment effect ( ), as well as valid confidence inter 
vals for the population average treatment effect . The variance estimator proposed 
here in (3) provides asymptotically tighter, but valid, confidence intervals for the 
conditional average treatment effect ( ) regardless of how X is chosen, but not 
for the population average treatment effect . Conditioning on the covariates can 
therefore be interpreted as changing the estimand. Which estimand is of interest 

may differ in applications, although often interest is in the specific sample at hand, 
and thus in ( ), especially when the sample is not representative of the population 
of interest in their covariate distribution. 

5 A Small Simulation Study 

In this section we carry out a small simulation study to investigate the small 

sample properties of the proposed variance estimator and the associated confidence 
intervals. We draw samples of = 50 and = 200 pairs. In each replication the 
scalar covariate is drawn from a uniform distribution on [0,4]. In our initial Monte 
Carlo specification, conditional on X.=jc, YfO) has a normal distribution with mean 

and variance equal to 1, and ?) has a normal distribution with mean zero and 
variance equal to 0.5. In Table 1, we report the average standard error based on the 
standard formula (1), the average standard error based on the proposed formula 

(3), and the coverage rates of the associated 95% and 90% confidence intervals of 
the conditional treatment effect ( ) (which differs between replications because 
the covariates are re-drawn each time). We use 50.000 Monte Carlo repetitions. In 
the simulations in Table 1, for both sample sizes (N 

= 50 and = 
200) the average 

standard error is considerably smaller for the matching variance estimator. In addi 

tion, the confidence intervals based on this variance estimator have approximately 
the right coverage, whereas the standard variance estimator leads to substantial 

over-coverage. A sample size of 50 pairs seems sufficiently large to lead to fairly 
accurate estimates of the variance. 
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Table 1 

_Monte-Carlo Simulation: Basic 
Results_ 

X~ U[09 4] 
7(0)|*= ~#(*, 1), 7(1)[*= 

~ #(0, 1/2) 
50.000 replications, one 

match_ 
#=50 #=200 

average 95%conf. 90%conf. average 95%conf. 90%conf. 

_s1e:_interv._interv._s^_interv._interv. 
Sfcmdard variance 

2m ms 9 42 .1189 .9918 .9743 
estimator 

Matching variance m6 9410 gg92 Qm 9463 8%3 
estimator 

Table 2, reports Monte Carlo results for the cases of multiple matches (Panel A) 
and heteroskedasticity (Panel B). In Panel A of Table 2, we repeat the analysis of 
Table 1 using one, five, and twenty-five matches for the calculation of the conditio 
nal variance estimator. For = 50 coverage rates improve by using five matches, 
relative to just one. For = 

50, coverage rates deteriorate when we go from five to 

twenty-five matches, but they stay reasonably close to nominal levels. For #= 200, 
coverage rates improve as we increase the number of matches from one to five, and 
from five to twenty-five. In Panel B, we repeat the analysis of Panel A, this time 

allowing for heteroskedasticity, and we obtain the same results. 

Table 2 

Monte-Carlo Simulation: Multiple Matches and Heteroskedasticity 
Panel A : Homoskedasticity 
X- 6T0,4] 
7(0)1*= 

~ 
#(*, 1), 7(1)1*= 

~ 
#(0, 1/2) 

50.000 replications, one and multiple matches_ 
#=50 #=200 

average 95%conf. 90%conf. average 95%conf. 90%conf. 

_s.e. interv. interv._s.e. interv. interv. 

Standard variance 
2m m5 9?42 ng9 991g 9?43 

estimator 

Matching variance 
estimator 

1 match .1716 .9410 .8892 .0864 .9463 .8963 
5 matches .1732 .9472 .8961 .0865 .9474 .8971 
25 matches_.1920 .9688 .9296 .0871 .9488 .9003 

Panel B: Heteroskedasticity 
X- U[0,4] 
7(0)|*= 

~ 
N(x, 1), 7(1)|*= je ~ #(0,1 

- + ?14) 
50.000 replications, one and multiple matches_ 

#=50 #=200 
average 95%conf. 90%conf. average 95%conf. 90%conf. 

_s.e. interv. interv._s.e. interv. interv. 

StMidard variance 229? ^ 9??5 U53 9940 9?g4 
estimator 

Matching variance 
estimator 

1 match .1616 .9403 .8887 .0814 .9463 .8965 
5 matches .1629 .9456 .8940 .0815 .9478 .8970 
25 matches .1787 .9659 .9259 .0819 .9491 .8985 
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In Table 3, we consider the case in which the variance of ?(X?) is equal to zero, so 
both the standard variance estimator in (1) and the matching variance estimator in 

(3) produce valid inference for ( ). As expected, confidence intervals constructed 

using the standard variance estimator and the matching variance estimator produce 
coverage rates that are close to nominal levels. 

Table 3 

_Monte-Carlo 
Simulation: V(A(X)) 

= 
0_ 

X- i7[0,4] 
)\ 

= ~ 
N(x91), Y(l)\X= 

~ 
N(0,1/2) 

50.000 replications, one and multiple matches_ 
#=50 #=200 

average 95%conf. 90%conf. average 95%conf. 90%conf. 

_?^e._interv._interv._s^._interv._interv. 
Standard variance .1723 .9467 .8940 .0865 .9476 .8976 
estimator 

Matching variance 
estimator 

1 match .1715 .9412 .8890 .0864 .9463 .8962 
5 matches .1721 .9456 .8936 .0865 .9473 .8970 
25 matches .1722 .9454 .8942 .0865 .9473 .8976 
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Annex 

A: Proofs 

Proof of Lemma 1 : Because the set X is bounded, it is enough to prove that the 

(l/N) =\ P^i ""^0( || conveiBes t0 zero- (Because the matching discrepancies 
are bounded by the diameter of X, convergence of (l/N) ~^0( || 

t0 
zero implies that (1 / ) ̂M \x? 

- 
Xjq) || converges to zero too.) Given that the 

set X is bounded, we can always embed X in a hypersphere of the same diameter. 
Without loss of generality, assume that the radius of such hypersphere is equal to 
one. Now, suppose that there are M matching discrepancies greater than 2e, with 
e < 1/2: X. - 

^?(i)|| 
> 2e. Construct an open ball of radius e around each such 

point. These M balls do not intersect because their radii are smaller than half of the 
distances between their centers. The volume of each such ball is equal to (&lk)Sk, 
where Sk is the surface area of a unit hypersphere in k dimensions. Obviously, all 
such balls are embedded in a hypersphere of radius (1 + e). Therefore: M(^/k)Sk 

< 

((1 + e)k/k)Sk. As a result, e < 1/2: 

?, 
' 
+ e 

* 
M <\ 

Then, because the diameter of X is bounded by 2, we obtain: 

1 VMIV II ^ ^ (n-M) j 1 (1 + e 
^ 

? 
> yff-jr/mB<2?+ 2e---<2( / + e)<2 

? - +e . 
N??\\ 0\\ nn [ { e ) 

Consider e = n^l/(hk\ As ? , e ? , and 

As a result, 

e ) 

1 

0(1) = (1). 

which along with boundedness of X proves the statement of the lemma. 
Proof of Theorem 1: Because, 
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and Assumption 2, we obtain: 

?I^(jr/)|X]-cJ(jf,^-A^i-jry(0|+-s.|jr<-jfy(0|" 

By Assumption 1 : 

2 

Cauchy-Schwarz Inequality implies that: 

fi N (\ N 2V72 
77 ^' ~ xm II - T7 \xi 

" xm II yv 1=1 vv /=i y 

Therefore: 

(A.1) 1? (?[5?2(^)| ]- 5(^))->0. 

Notice that: 

1? 
(*2(*,)-?tf(*,)|XD==l|; 

(e2- 2(^,.)) 

+^ (4?)- e(^( )) 
i=l 

(A.2) 
1 

+^ 
e.?( (^)- (^?( )) 

=1 

-77 e ( (^?)- (^?(0)). 7 /=! 

Clearly, the conditional expectations of all the terms on the right-hand-side of 

equation (A.2) are equal to zero. Next, we show that the conditional variances of 
all the terms on the right-hand-side of equation (A.2) converge to zero. Because the 

expectations of all the terms, conditional on X are equal to zero, the variances are 

equal to the expectations of the squares. The maximum of number of times that an 
observation can be used as a match, given that the dimension of Jfis equal to k9 is 
bounded by L(k). The integer L(k)<<x> (sometimes called the "kissing number" 
in k dimensions) is equal to the maximum number of non-overlapping unit balls in 

R* that can be arranged to overlap with a unit ball. For k = 1,2,3, L(k) = 2,6,12, 
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respectively. (See Miller et al. [1997].) For each of the five terms on the right 
hand-side of equation (A.2), the conditional second moments are: 

, 
? 

(e2 2N 
' - 

e2(*,?)) 
1=1 

ix 
4N? ti 

nei 
i=l 

?j?? <???>-?'<?< ?>? 
\zjy /=1 J 

+E 

(4 -^2(^( ))2 A 

1 

/= 

?N i=l />/ 

^ 4 t (*) 4 
4 2 

9 

ri 1 1 
77 e*e 0 

2 

"ti 
IX = E 

1 ^ 
7 e'e7<0 I 

/=1 
TT e/e;(0e/e; I 

/=1 />/ 

4 | 2 (?) 4 

[jfi 
e7(0( (*/)- 

(^(0))| |xj-?^? e5w(A(*?)-A(*yw))2|xJ 

/2 t 

+ *) 
/2 

1-1- ^-^ *?-**> 

s 0d)+I(t)p14/2c? i II ^ -^( 
n(? 

? >-xm 
)? 
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As a result, the conditional second moments of each of the five terms on the 

right-hand-side of equation (A.2) converge to zero. This implies that 

(\ N ? V (a?(*,)-?[*,2(*,)l XDI X 
M ) 

= o(l), 

and therefore, conditional on X: 

(A.3) 1 ? -El&X,) I X]) = op(l). 

Now, the result of the theorem follows from equations (A.l) and (A.3). 
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