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Inference for Misspecified Models With Fixed
Regressors

Alberto ABADIE, Guido W. IMBENS, and Fanyin ZHENG

Following the work by Eicker, Huber, and White it is common in empirical work to report standard errors that are robust against general
misspecification. In a regression setting, these standard errors are valid for the parameter that minimizes the squared difference between
the conditional expectation and a linear approximation, averaged over the population distribution of the covariates. Here, we discuss an
alternative parameter that corresponds to the approximation to the conditional expectation based on minimization of the squared difference
averaged over the sample, rather than the population, distribution of the covariates. We argue that in some cases this may be a more interesting
parameter. We derive the asymptotic variance for this parameter, which is generally smaller than the Eicker–Huber–White robust variance,
and propose a consistent estimator for this asymptotic variance. Supplementary materials for this article are available online.
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1. INTRODUCTION

Following the seminal work by Eicker (1967), Huber (1967),
and White (1980a, 1980b, 1982), researchers estimating regres-
sion functions routinely report standard errors that are robust
to misspecification of the models that are being estimated.
Müller (2013) gave the corresponding confidence intervals a
Bayesian interpretation. A key feature of the approach devel-
oped by Eicker, Huber, and White (EHW from hereon), is that
in regression settings it focuses on the best linear predictor that
minimizes the distance between a linear function and the true
conditional expectation, averaged over the joint distribution of
all variables, with extensions to nonlinear settings. We argue that
in some regression settings it may be more appropriate to focus
on the conditional best linear predictor defined by minimizing
this distance averaged over the empirical instead of the popula-
tion distribution of the covariates. The first contribution of this
article is to extend the EHW results to such settings. For a large
class of estimators, including maximum likelihood and method
of moment estimators, we formally characterize the generaliza-
tion to nonlinear models of the conditional best linear predictor.
We then derive a large sample approximation to the variance
of the least squares and method of moments estimators relative
to this conditional estimand. In general, in misspecified mod-
els, the robust variance for the conditional estimand is smaller
than or equal to the EHW robust variance. Second, we propose
a consistent estimator for this variance so that asymptotically
valid confidence intervals can be constructed. The proposed es-
timator generalizes the variance estimator proposed by Abadie
and Imbens (2006) for matching estimators and is related to
the differencing methods used in Yatchew (1997, 1999). In cor-
rectly specified models, the new variance estimator is simply
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an alternative to the standard EHW robust variance estimator.
In misspecified models, it is the only consistent estimator avail-
able for the asymptotic variance for the estimand conditional on
covariates.

Whether conditional or unconditional estimand should be the
primary focus is context specific and we do not take the position
that either the conditional or unconditional estimand is always
the appropriate one. We discuss some examples, first to clarify
the distinctions between the two estimands and, second, to make
an argument for our view that in some settings the conditional
estimand, corresponding to the fixed regressor notion, is of in-
terest. For example, we argue that in cases where the sample
is the population there is a strong case for using the estimand
conditional on at least some covariates, see also Abadie et al.
(2014). Such cases are common in economic analyses, for ex-
ample, when analyzing data where the units are all states of the
United States, or all countries of the world. Most importantly,
we argue that there is a choice to be made by the researcher that
has direct implications for inference. In making this choice the
researcher should bear in mind that the variance for the condi-
tional estimand is generally smaller than that for the population
or unconditional estimand, and thus tests for the former will
generally have better power than tests for the latter.

Note that although we focus on estimands defined in terms of
the finite sample distribution of the covariates, our inference re-
lies on large sample approximations. To focus on the conceptual
contribution of the current article and maintain comparability
with the preceding literature, we focus on unconditional infer-
ence.

The rest of this article is organized as follows. Section 2 con-
tains a heuristic discussion of the conceptual issues raised by
this article in a linear regression model setting. In Section 3
we discuss the motivation for the conditional estimand. Next,
in Section 4 we present formal results covering least squares,
maximum likelihood, and method of moments estimators. In
Section 5 we apply the methods developed in this article to
a dataset previously analyzed by Sachs and Warner (1997) to
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study the relation between country-level growth rates and gov-
ernment fiscal policies. In Section 6, we present two simulation
studies, one in a linear and one in a nonlinear setting. Section 7
concludes. The Appendix contains proofs.

2. THE CONDITIONAL BEST LINEAR PREDICTOR

In this section, we lay out some of the conceptual issues in
this article informally in the setting of a linear regression model.
In Section 4, we provide formal results, covering both this lin-
ear model setting and more general cases including maximum
likelihood and method of moments.

Consider the standard linear model

Yi = X′
iθ + εi, (2.1)

with Yi being the outcome of interest,Xi a K-vector of observed
covariates, possibly including an intercept, and εi an unobserved
error. Let X, Y, and ε be theN ×K matrix with ith row equal to
X′
i , the N-vector with ith element equal to Yi , and the N-vector

with ith element equal to εi , respectively. In this setting, re-
searchers have often assumed homoscedasticity, independence
of the errors terms, and Normality of the error terms,

ε|X ∼ N (0, σ 2 · IN ),

where IN is theN ×N identity matrix. Under those assumptions
the exact (conditional) distribution of the least-squares estimator

θ̂ = (
X′X

)−1 (
X′Y

)
,

is Normal:

θ̂ |X ∼ N (
θ, σ 2 · (X′X)−1

)
.

However, assumptions of linearity of the regression func-
tion, independence, homoscedasticity, and Normality of the er-
ror terms are often unrealistic. Eicker (1967), Huber (1967),
and White (1980a, 1980b), considered the properties of the least-
squares estimator θ̂ under substantially weaker assumptions. For
the most general case one needs to define the estimand if the
regression function is not linear. Suppose the sample (Yi,Xi)Ni=1
is a random sample from a large population satisfying some mo-
ment restrictions. Let μ(x) = E[Yi |Xi = x] be the conditional
expectation of Yi givenXi = x, and let σ 2(x) be the conditional
variance. Even if this conditional expectation μ(x) is not linear,
one might still wish to approximate it by a linear function x ′θ ,
and be interested in the value of the slope coefficient of this
linear approximation. Traditionally, the optimal approximation
is defined as the value of θ that minimizes the expectation of the
squared difference between the outcomes and the linear approx-
imation to the regression function. This is generally referred to
as the best linear predictor, formally defined as

θpop = arg min
θ

E

[(
Yi −X′

iθ
)2
]
. (2.2)

Because

E

[(
Yi −X′

iθ
)2
]

= E

[(
μ(Xi) −X′

iθ
)2
]

+ E
[
σ 2(Xi)

]
,

with the last term free of dependence on θ , it follows that we
can characterize θpop as

θpop = arg min
θ

E

[(
μ(Xi) −X′

iθ
)2
]

= (
E
[
XiX

′
i

])−1
(E [Xiμ(Xi)]) ,

which in turn shows that θpop can be interpreted as the value of
θ that minimizes the discrepancy between the true regression
function μ(x) and the linear approximation, weighted by the
population distribution of the covariates.

The results in EHW imply that, under some regularity condi-
tions,

√
N · (θ̂ − θpop

) d−→ N (
0,Vpop

)
,

where the asymptotic variance is

Vpop = (
E
[
XiX

′
i

])−1 (
E
[
(Yi −X′

iθpop)2XiX
′
i

])
× (

E
[
XiX

′
i

])−1
. (2.3)

White also proposed a consistent estimator for Vpop,

V̂pop =
(

1

N

N∑
i=1

XiX
′
i

)−1 (
1

N

N∑
i=1

(Yi −X′
i θ̂ )2XiX

′
i

)

×
(

1

N

N∑
i=1

XiX
′
i

)−1

. (2.4)

Using the EHW variance estimator V̂pop is currently the stan-
dard practice in empirical work in economics, see, for example,
Angrist and Pischke (2009). See Imbens and Kolesár (2012) for
a discussion of finite sample improvements. Resampling meth-
ods such as the jackknife and the bootstrap (Efron 1982; Efron
and Tibshirani 1993) can also be used to construct confidence
intervals for θpop.

In this article, we explore an alternative linear approximation
to the possibly nonlinear regression function μ(x). Instead of
minimizing the marginal expectation of the squared difference
between the outcomes and the regression function, we minimize
this expectation conditional on the observed covariates. Define
the conditional best linear predictor θcond(X) as

θcond(X) = arg min
θ

1

N

N∑
i=1

E

[(
Yi −X′

iθ
)2
∣∣∣X
]
. (2.5)

The difference with the best linear predictor defined in (2.2)
is that in (2.5) the expectation is taken over the empirical dis-
tribution of the covariates, whereas in (2.2) the expectation is
taken over the population distribution of the covariates. To be
explicit about the dependence of the conditional best linear pre-
dictor on the sample values of the covariates we write θcond(X)
as a function of the matrix of covariate values X. Denoting the
N-vector with ith element equal to μ(Xi) by μ(X), we can write
θcond(X) as

θcond(X) = arg min
θ

1

N

N∑
i=1

(
μ(Xi) −X′

iθ
)2

= (
X′X

)−1 (
X′μ(X)

)
,

to stress the interpretation of θcond(X) as the best approximation
to the true regression function, now with the weights based on the
empirical distribution of the covariates. Both θpop and θcond(X)
base the linear approximation to μ(x) on a minimizing of the
squared difference between the true regression function μ(x)
and the linear approximation x ′θ . The difference between the
two approximations is solely in how they weight, as a function
of the covariates, the squared difference between the regression

D
ow

nl
oa

de
d 

by
 [

H
ar

va
rd

 L
ib

ra
ry

] 
at

 0
8:

35
 1

6 
N

ov
em

be
r 

20
15

 



Abadie, Imbens, and Zheng: Inference for Misspecified Models With Fixed Regressors 1603

function and the linear approximation for each x. The first ap-
proximation, leading to θpop, uses the population distribution of
the covariates. The second approximation, leading to θcond(X),
uses the empirical distribution of the covariates.

We defer to Section 3 the important question whether, and
why, in a specific application, θcond(X) rather than θpop might
be the object of interest. In some applications we argue that
θpop is the estimand of interest. However, as discussed in detail
in Section 3, we also think that in other applications θcond(X)
is of more interest than θpop. Given that the main focus of the
previous literature is on population parameters like θpop, we view
the question of inference for θcond(X) as of general interest.

Next, we point out the implications of the difference be-
tween θpop and θcond(X). The first issue to note is that for
point estimation it is irrelevant whether we are interested in
θpop or θcond(X). In both cases, the least-squares estimator θ̂
is the natural estimator. However, for inference it does matter
whether we are interested in estimating θpop or θcond(X), un-
less E[ε|X] = 0 and the conditional expectation is truly lin-
ear. Consider the variance of the least-squares estimator θ̂ ,
viewed as an estimator of θcond(X). The exact (conditional)
variance of θ̂ is

V
(
θ̂
∣∣X
) = E

[ (
θ̂ − θcond(X)

) (
θ̂ − θcond(X)

)′∣∣∣X
]

(2.6)

= 1

N

(
X′X/N

)−1

(
1

N

N∑
i=1

σ 2(Xi)XiX
′
i

) (
X′X/N

)−1
.

Directly comparing the normalized variance N · V(θ̂ |X) to the
EHW variance Vpop is complicated by the fact that N · V(θ̂ |X)
is a conditional variance, rather than an asymptotic variance like
Vpop. We therefore look at the unconditional variance of the ols
estimator θ̂ as an estimator of θcond(X). Because θ̂ is unbiased
for θcond(X), it follows that the marginal variance is the expected
value of the conditional variance. Under random sampling the
asymptotic variance is

Vcond = plim
(
N · V(θ̂ |X)

) = (
E
[
XiX

′
i

])−1

× (
E
[
σ 2(Xi)XiX

′
i

]) (
E
[
XiX

′
i

])−1
, (2.7)

and we have, under regularity conditions, a large sample ap-
proximation to the distribution of

√
N · (θ̂ − θcond(X)

)
:

√
N · (θ̂ − θcond(X)

) d−→ N (0,Vcond) .

The key difference between the robust variance Vpop proposed
by White and the robust variance Vcond arises from the dif-
ference between the conditional variance σ 2(Xi) in (2.7) and
the expectation of the squared residual E[(Yi −X′

iθpop)2|Xi] in
(2.3). The latter is in general larger:

E[(Yi −X′
iθpop)2|Xi] = σ 2(Xi) + (μ(Xi) −X′

iθpop)2,

whereμ(Xi) −X′
iθpop captures the difference between the linear

approximation and the conditional expectation. For the asymp-
totic variances of θ̂ we have

Vpop = Vcond + V(θcond(X)), (2.8)

where

V(θcond(X)) = plim N · E
[(
θcond(X) − θpop

)
× (

θcond(X) − θpop
)′ ]

(2.9)

The last expectation is over the distribution of θcond(X) as a
function of X. Thus in general Vpop exceeds Vcond, and as a

result inference based on Vpop is conservative for θcond(X). The
difference between the two variances is the result of the mis-
specification in the regression function, that is, the difference
between the conditional expectation and the best linear predic-
tor, μ(x) − x ′θpop.

The final question we address in this section is how to estimate
Vcond. Simple bootstrapping methods do not work, see Tibshi-
rani (1986) and Wu (1986). The challenge is that the conditional
variance function σ 2(x) is generally unknown. Estimating this
is straightforward in the case with discrete covariates. One can
consistently estimate the conditional variance σ 2(Xi) at each
distinct value of the covariates and plug that in (2.7), followed
by replacing the expectations by averages over the sample. If the
covariates are continuous, however, this is not feasible. In the
remainder of this discussion, we focus on the continuous covari-
ate case. Dealing with the setting where some of the covariates
are discrete is conceptually straightforward, but would require
carrying along additional notation and come at the expense of
clarity. In the continuous covariate case estimating σ 2(x) con-
sistently for all x would require nonparametric estimation in-
volving bandwidth choices. Such an estimator would be more
complicated than the EHW robust variance estimator which
simply uses squared residuals to estimate the expectation of the
squared errors. Here we build on work by Yatchew (1997, 1999)
and Abadie and Imbens (2006, 2008, 2010) to develop a general
estimator for Vcond that does not require consistent estimation
of σ 2(x), much like the EHW variance estimator does not con-
sistently estimate E[(Yi −X′

iθpop)2|Xi = x] for all x. Let VX be
the covariance matrix of X, VX = ∑N

i=1(Xi −X)(Xi −X)′/N ,
where X = ∑N

i=1Xi/N . Next define �X(i) to be the index of
the unit closest to i in terms of X:

�X(i) = arg min
j∈{1,...,N},j �=i

∥∥Xi −Xj
∥∥ , (2.10)

where the norm we use is the Mahalanobis distance, ‖x‖ =
x ′V −1

X x, although others could be used. Then, our proposed
variance estimator is

V̂cond =
(

1

N

N∑
i=1

XiX
′
i

)−1

(2.11)

·
(

1

2N

N∑
i=1

(
ε̂iXi − ε̂�X (i)X�X (i)

) (
ε̂iXi − ε̂�X (i)X�X (i)

)′)

·
(

1

N

N∑
i=1

XiX
′
i

)−1

.

In Section 4, we show in a more general setting that this vari-
ance estimator is consistent for Vcond. An alternative estimator
for Vcond exploits the fact that the conditional variance of εiXi
conditional on Xi is the same as Xi times the conditional vari-
ance of εi given Xi ,

Ṽcond =
(

1

N

N∑
i=1

XiX
′
i

)−1

·
(

1

2N

N∑
i=1

(
ε̂i − ε̂�X(i)

)2
XiX

′
i

)

·
(

1

N

N∑
i=1

XiX
′
i

)−1

.

Although in this linear regression case with conditioning on
all covariates both V̂cond and Ṽcond are consistent for Vcond,
for nonlinear settings, or with conditioning on a subset of the
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covariates, only the first estimator V̂cond generalizes. To be spe-
cific, suppose that the covariate vector Xi can be partitioned as
Xi = (X′

1i , X2i)′ and correspondingly X = (X1,X2), and sup-
pose we wish to estimate the variance conditional on X1 only.
In this case, the probability limit of the normalized variance for
the least-squares estimator is

Vcond = (
E
[
XiX

′
i

])−1
(E [V (εiXi |X1i)])

× (
E
[
XiX

′
i

])−1
. (2.12)

Our proposed estimator for this conditional variance is

V̂cond =
(

1

N

N∑
i=1

XiX
′
i

)−1

(2.13)

·
(

1

2N

N∑
i=1

(
ε̂iXi − ε̂�X1 (i)X�X1 (i)

)
× (

ε̂iXi − ε̂�X1 (i)X�X1 (i)
)′ ) ·

(
1

N

N∑
i=1

XiX
′
i

)−1

.

This estimator is consistent for the conditional variance Vcond.
In contrast, replacing ε̂�X(i) by ε̂�X1 (i) in the expression for Ṽcond

would not lead to a consistent estimator for the variance. Al-
though the asymptotic variance Vcond is less than or equal to
the EHW variance Vpop, this need not hold for the estimators.
In finite samples, it may well be the case that V̂cond is larger
than V̂pop. We study the finite sample behavior of the variance
estimator in a simulation study in Section 6.

In the remainder of this article, we will generalize the results
in this section to maximum likelihood and method of moments
settings, and state formal results concerning the large sample
properties of the variance estimators.

3. MOTIVATION FOR CONDITIONAL ESTIMANDS

In this section, we address the question whether, when, and
why the estimand conditional on the covariates may be of inter-
est. We emphatically do not wish to argue that the conditional
estimand is the appropriate object of interest in all cases. Rather,
we wish to make the case, through two examples, that it depends
on the context what the appropriate object is, and that in some
settings the conditional best linear predictor is more appropriate
than the standard unconditional estimand.

One way to frame the question is in terms of different re-
peated sampling perspectives one can take. We can consider the
distribution of the least-squares estimator over repeated sam-
ples where we redraw the pairsXi and Yi (the random regressor
case), or we can consider the distribution over repeated sam-
ples where we keep the values of Xi fixed and only redraw the
Yi (the fixed regressor case). Under general misspecification,
both the mean and variance of these two distributions of the
estimator will differ. The population estimand θpop is the ap-
proximate (in a large sample sense) average over the repeated
samples when we redraw both Xi and Yi , and θcond(X) is the
approximate average over the repeated samples where Xi is
held fixed. Many introductory treatments of regression analy-
sis briefly introduce the fixed and random regressor concepts,
with a variety of opinions on what the most relevant perspec-
tive is. Wooldridge writes that “reliance on fixed regressors . . .

can have unintended consequences. . . . Because our focus is on
asymptotic analysis, we have the luxury of allowing for ran-
dom explanatory variables throughout the book” (Wooldridge
2002, pp. 10–11). Goldberger (1991) takes a different position,
assuming “X nonstochastic, which says that the elements of X
are constants, that is, degenerate random variables. Their values
are fixed in repeated samples . . .” (Goldberger, p. 164). Vander-
Vaart (2000) wrote “We assume that the independent variables
are a random sample to fit the example in our iid notation, but
the analysis could be carried out conditionally as well.” (Van-
derVaart, p. 57), and Gelman and Hill (2007) focus on the fixed
regressor perspective, writing “This book follows the usual ap-
proach of setting up regression models in the measurement-error
framework (y = a + bx + ε), with the sampling interpretation
implicit in that the errors ε1, . . . , εn, can be considered as a ran-
dom sample from a distribution” (Gelman and Hill, p. 17). These
discussions are in the context of correctly specified regression
models, however, where the averages of the distributions un-
der the two repeated sampling perspectives coincide, and their
variances agree in large samples. A point that has not received
attention in the literature is that under general misspecification,
the random versus fixed regressor distinction has implications
for inference that do not vanish with the sample size.

Another point is that the sole difference between the popu-
lation and conditional estimands is the weight function used to
measure the difference between the model and the true data gen-
erating process. For the population estimand the weight function
depends on the population distribution of the potential con-
ditioning variables, and for the conditional estimand it is the
sample distribution of these variables. Because the population
distribution of these variables, unlike the sample distribution, is
unknown, in general there is more uncertainty about the popula-
tion estimand. Thus, focusing on the conditional estimand θcond

generally leads to smaller standard errors than focusing on the
population estimand θpop.

3.1 Example I (Convenience Sample)

In the first example, we want to make the case that sometimes
there is intrinsically no more interest in θpop than θcond because
neither the weighting scheme corresponding to the population
distribution, nor the weighting scheme corresponding to the
empirical distribution function, is obviously of primary interest.

Consider the study of lottery winners by Imbens, Rubin and
Sacerdote (2001). Imbens, Rubin, and Sacerdote surveyed in-
dividuals who won large prizes in the lottery. Using a standard
life-cycle model of labor supply, they focused on linear re-
gressions of subsequent labor earnings on the annual prize and
some additional covariates including prior earnings. The coef-
ficient on the prize in this linear regression can be interpreted
as the marginal propensity to consume out of unearned income,
an economically meaningful parameter (e.g., Pencavel 1986).
Even if the conditional expectation as a function of the prize is
nonlinear, it may still be interesting to focus on the coefficient
in the linear regression, partly because it facilitates comparison
across studies. The question is whether the linear approximation
should be based on weighting the squared difference between
the true regression function and the linear predictor by the pop-
ulation or empirical distribution of lottery prizes. There does not
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appear to be a strong substantive argument for preferring one
weighting function (and thus the corresponding estimand) over
the other.

3.2 Example II (Experimental Design)

Karlan and List (2007) carried out an experimental evalu-
ation of incentives for charitable giving. Among the results
Karlan and List report are probit regression estimates where
the object of interest is the regression coefficient on the indica-
tor for being offered a matching incentive for charitable giving.
The specification of the probit regression function also includes
characteristics of the matching incentives.

In this case, the difference between Vpop and Vcond is that
Vpop takes into account sampling variation in θ̂ due to variation
in the sample values of the matching incentives over the repeated
samples, whereas Vcond conditions on these values. Given that
the distribution of these incentives in this experiment is fixed
by the researchers there appears to be no reason to take this
uncertainty into account, and we submit that the appropriate
measure of uncertainty is Vcond rather than Vpop.

4. INFERENCE FOR CONDITIONAL ESTIMANDS

In this section, we present the main formal results of the
article, covering linear regression, maximum likelihood, and
method of moments estimators. We cover settings where we
condition on the full set of regressors as well as cases where we
condition on a subset of the regressors. We focus on the just-
identified case, although the results can be extended to over-
identified generalized method of moment (GMM) settings, for
example, using empirical likelihood approaches (e.g., Qin and
Lawless 1994; Imbens 1997; Imbens, Johnson and Spady 1998;
Newey and Smith 2004).

Suppose we have a random sample of size N of a pair of
random vectors, (Xi, Yi), i = 1, . . . , N . Let X and Y be the
N ×KX and N ×KY matrices with ith rows equal to X′

i and
Y ′
i respectively. The distinction between X and Y is that we

may wish to condition on the Xi in defining the estimand. We
are interested in a finite-dimensional parameter θ , defined in
general as some function of the joint distribution of (Xi, Yi).
Under some statistical model, it follows that

E [ψ(Yi,Xi, θ )] = 0, (4.1)

with the dimension of θ equal to that of ψ . The model may
have additional implications beyond this moment restriction,
but these are not used for estimation. For example, it may be the
case that the conditional moment has expectation zero,

E [ψ(Yi,Xi, θ )|Xi] = 0.

Alternatively, we may have specified the joint distribution of
Yi and Xi , in which case ψ(y, x, θ ) could equal to the score
function. In that case, the model has the additional implication
that minus the expected value of the derivatives of ψ(y, x, θ )
with respect to θ is equal to the expected value of the second
moments of ψ(y, x, θ ). Based only on (4.1), and not on any
other implications of the motivating model, we may wish to

estimate θ by θ̂ , which satisfies

1

N

N∑
i=1

ψ(Yi,Xi, θ̂ ) = 0.

We are interested in the properties of the estimator θ̂ under
general misspecification of the model that motivated the moment
restriction.

The standard approach to GMM and empirical likelihood
estimation (Hansen 1984; Qin and Lawless 1993; Newey and
McFadden 1994; Wooldridge 2002; Imbens, Johnson and Spady
1997) focuses on the value θpop that solves

E
[
ψ(Yi,Xi, θpop)

] = 0.

If the pairs (Xi, Yi), for i = 1, . . . , N are independent and iden-
tically distributed, then under regularity conditions,

√
N
(
θ̂ − θpop

) d−→ N (
0,Vgmm,pop

)
, where

Vgmm,pop =
(
�′	−1

pop�
)−1

,

with

� = E

[
∂

∂θ ′ψ(Yi,Xi, θpop)

]
, and

	pop = E
[
ψ(Yi,Xi, θpop)ψ(Yi,Xi, θpop)′

]
.

Now we focus on the conditional estimand, where we condi-
tion on X. Define θcond(X) as the solution to

E

[
N∑
i=1

ψ(Yi,Xi, θ )

∣∣∣∣∣X

]
= 0. (4.2)

If the original model implied that the conditional expectation of
ψ(Yi,Xi, θ ) given Xi is equal to zero, then θ (X) = θpop for all
X, but this need not hold in general. The motivation for the es-
timand is the same as in the best-linear-predictor case. In cases
where the model implies a conditional moment restriction, but
we are concerned about misspecification, we may wish to fo-
cus on the value for θ that minimizes the discrepancy between
E[ψ(Yi,Xi, θ )|Xi] and zero. We can weight the discrepancy by
the population distribution of theXi’s, or by the empirical distri-
bution. The conditional estimand corresponds to the case, where
the weights are based on the empirical distribution function.

We make the following assumptions. These are closely related
to standard assumptions used for establishing asymptotic prop-
erties for moment-based estimators. See, for example, Newey
and McFadden (1994).

Assumption 1. (Yi,Xi), for i = 1, . . . , N , are independent
and identically distributed.

Assumption 2. (i) For some compact � ⊂ RK , there is
a unique value, θpop ∈ �, such that E[ψ(Yi,Xi, θpop)] = 0;
(ii) ψ(Y,X, θ ) is continuous at each θ ∈ � with probability
one; (iii) E[supθ∈� ‖ψ(Yi,Xi, θ )‖] < ∞.

Theorem 1. If Assumptions 1 and 2 hold, then:

θ̂ − θpop
p→ 0,

and

θ̂ − θcond(X)
p→ 0.
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All proofs are given in the appendix.

Assumption 3. (i) θpop is an interior point of�; (ii)ψ(y, x, θ )
is continuously differentiable with respect to θ in an
open neighborhood B of θpop; (iii) E[‖ψ(Yi,Xi, θpop)‖2] <
∞; (iv) E[supθ∈B ‖∂ψ(Yi,Xi, θ )/∂θ ′‖] < ∞; (v) � =
E[∂ψ(Yi,Xi, θpop)/∂θ ′] is nonsingular.

Theorem 2. Under Assumptions 1–3,
√
N (θ̂ − θpop)

d→ N (0, �−1	pop(�−1)′),

and
√
N (θ̂ − θcond(X))

d→ N (0, �−1	cond(�−1)′),

where 	cond = E[V (ψ(Yi,Xi, θpop)|Xi)].
Corollary 1. Under the conditions of Theorem 2, if

E[ψ(Yi,Xi, θpop)|Xi = x] = 0 for almost all x in the sup-
port of Xi , then θcond(X) = θpop for all X and (θ̂ − θpop) and√
N (θ̂ − θcond(X)) have the same asymptotic distribution.

Assumption 3(ii) requires differentiability ofψ(y, x, θ ). This
assumption can, however, be replaced by asymptotic equiconti-
nuity conditions as in Huber (1967), Pakes and Pollard (1989),
Andrews (1994), or Newey and McFadden (1994). In a sup-
plementary Web Appendix we show that the results of Theo-
rem 2 and Corollary 1 hold under an asymptotic equicontinuity
condition, with the only change that for the nondifferentiable
case we have � = ∂E[ψ(Yi,Xi, θpop)]/∂θ ′. Example VI below
discusses the case of L1 (quantile) regression. Notice that the
consistency result in Theorem 1 does not require everywhere
differentiability of ψ(y, x, θ ).

We now discuss two additional examples that illustrate the dif-
ferences between the large sample variances of

√
N (θ̂ − θpop)

and
√
N (θ̂ − θcond(X)). The first example is related to the dis-

cussion in Chow (1984).

4.1 Example III (Maximum Likelihood Estimation)

Suppose we specify the conditional distribution of Yi given
Xi as f (y|x; θ ). We estimate the model by maximum likelihood:

θ̂ = arg max
θ

N∑
i=1

ln f (Yi |Xi ; θ ).

The normalized asymptotic variance under correct specification,
and under some regularity conditions, is equal to the inverse of
the information matrix I−1

θ , where

Iθ = −E

[
∂2

∂θ∂θ ′ ln f (Yi |Xi ; θ )

]
= E

[
∂

∂θ
ln f (Yi |Xi ; θ ) · ∂

∂θ
ln f (Yi |Xi ; θ )′

]
.

Huber (1967) and White (1982) analyzed the properties of the
maximum likelihood estimator under general misspecification
of the conditional density. Let

θpop = arg max
θ

E [ln f (Yi |Xi ; θ )] .

They showed that under general misspecification,

θ̂
p−→ θpop, and

√
N · (θ̂ − θpop

) d−→ N (
0, �−1	pop�

−1) ,

with

� = −E

[
∂2

∂θ∂θ ′ ln f (Yi |Xi ; θpop)

]
,

	pop = E

[
∂

∂θ
ln f (Yi |Xi ; θpop) · ∂

∂θ
ln f (Yi |Xi ; θpop)′

]
.

The conditional version of the estimand under general misspec-
ification is

θcond(X) = arg max
θ

N∑
i=1

E [ ln f (Yi |Xi ; θ )|Xi] ,

where the expectation is taken only over the conditional distri-
bution of Yi given Xi . Theorem 2 implies that

√
N · (θ̂ − θcond(X)

) d−→ N (
0, �−1	cond�

−1) ,
where

	cond = E

[
V

(
∂

∂θ
ln f (Yi |Xi, θpop)

∣∣∣∣Xi)] .
If the model is correctly specified, then 	pop = 	cond. If the
model is misspecified, then

E

[
∂

∂θ
ln f (Yi |Xi, θpop)

]
= 0,

E

[
∂

∂θ
ln f (Yi |Xi, θpop)

∣∣∣∣Xi = x

]
�= 0,

for x in a set of positive probability. For such x,

E

[
∂

∂θ
ln f (Yi |Xi ; θpop) · ∂

∂θ
ln f (Yi |Xi ; θpop)′

∣∣∣∣Xi = x

]
≥ V

(
∂

∂θ
ln f (Yi |Xi, θpop)

∣∣∣∣Xi = x

)
,

implying that in general 	pop −	cond is positive semidefinite.

4.2 Example IV (Quantile Regression)

Suppose that the τ th conditional quantile of Yi given Xi is a
linear function, so E[I[Yi≤X′

i θpop]|Xi = x] = τ , where IA is the
indicator function for the event A. Therefore, E[Xi(I[Yi≤X′

i θpop] −
τ )] = 0. The quantile regression estimator θ̂ (Koenker and Bas-
sett 1978) solves the analogous sample moment restrictions:

∥∥∥∥∥ 1

N

N∑
i=1

Xi(I[Yi≤X′
i θ̂] − τ )

∥∥∥∥∥ = op(1/
√
N ) (4.3)

(see Powell 1984). If the quantile regression model is misspeci-
fied, so E[I[Yi≤X′

i θpop]|Xi = x] �= τ for some x in a set of positive
probability, there will generally still be a value θpop that solves
(4.3). Under regularity conditions the quantile regression esti-
mator estimates that parameter, and its distribution is

√
N (θ̂ − θpop)

p→ N (0, �−1	pop�
−1),

where

� = E[fY |X=Xi (X
′
iθpop)XiX

′
i]

and

	pop = E[Xi(I[Yi−X′
i θpop≤0] − τ )2X′

i]
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(see, e.g., Angrist, Chernozhukov, and Fernández-Val (2006),
or the online supplementary materials). Angrist, Chernozhukov,
and Fernández-Val (2006) provided an interpretation of quantile
regression under misspecification. In the online supplementary
meterials, we show that, in addition:

√
N (θ̂ − θ (X))

p→ N (0, �−1	cond�
−1),

where

	cond = E[XiV (I[Yi−X′
i θ≤0]|Xi)X′

i].

Because E[(I[Yi−X′
i θpop≤0] − τ )2|Xi] ≥ V (I[Yi−X′

i θ≤0]|Xi), it fol-
lows that 	pop −	cond is positive semidefinite. Under cor-
rect specification, E[I[Yi−X′

i θ≤0]|Xi] = τ , so E[(I[Yi−X′
i θ≤0] −

τ )2|Xi] = V (I[Yi−X′
i θ≤0]|Xi) = τ (1 − τ ) and 	cond = 	pop.

4.3 Variance Estimation

Next, we consider estimation of the variance in the general
case. Estimation of� is the same as for the population estimand,

�̂ = 1

N

N∑
i=1

∂

∂θ ′ψ(Yi,Xi, θ̂ ).

The key question concerns estimation of 	cond. Our proposed
estimator matches each unit to the closest unit in terms of Xi ,
and then differences the values of the moment function:

	̂cond = 1

2N

N∑
i=1

(
ψ(Yi,Xi, θ̂ ) − ψ(Y�X(i), X�X(i), θ̂ )

)
× (

ψ(Yi,Xi, θ̂ ) − ψ(Y�X(i), X�X(i), θ̂ )
)′
,

where �X(i) is as defined in (2.10). We then combine these
estimates to get an estimator for the variance of the conditional
estimand:

V̂gmm,cond = �̂−1	̂(�̂−1)′.

Assumption 4. The support ofXi is compact. The conditional
expectation E[ψk(Yi,Xi, θ )|Xi = x] is Lipschitz in x with con-
stant Ck for k ≤ 4, for all θ in an open neighborhood of θpop,
where Ck does not depend on θ .

Theorem 3. (Conditional Variance for Method of Moments
Estimators) Suppose Assumptions 1–4 hold. Then,

V̂gmm,cond
p−→ Vgmm,cond.

5. AN APPLICATION TO CROSS-COUNTRY GROWTH
REGRESSIONS

For an illustration of the methods discussed in this article,
we turn to an analysis in Sachs and Warner (1997) of the deter-
minants of country-level growth rates. Sachs and Warner have
data for 83 countries on the country’s per capita growth rate
between 1965 and 1990, and wish to relate this outcome to
country-level fiscal policies. These policies include the degree
of openness of the country (“open”) and the central government
budget balance (“cgb”). Sachs and Warner estimated a linear
regression of the per capita growth rate on these variables, also
including a number of characteristics of the country such as its
location relative to the tropics and the sea (landlocked or not),

Table 1. Cross-country growth regression, dependent variable: Per
capita GDP growth between 1965 and 1990

β̂

√
V̂pop

√
V̂cond

constant 1.66 3.08 3.03
gdp65 −1.50 0.18 0.17
open 10.91 2.76 2.56
open65 −1.08 0.35 0.33
dpop 0.69 0.40 0.45
cgb 0.115 0.025 0.023
inst 0.315 0.071 0.068
tropics −0.83 0.25 0.24
land −0.58 0.21 0.26
sxp −3.92 1.22 1.21
life 0.35 0.12 0.12
life2 −0.003 0.001 0.001
N = 83
R2 = 0.862

Description of variables: Dependent variable: Average annual growth in real GDP
per economically active population between 1970 and 1989. gdp65: Log of real GDP
per economically active population in 1965. open: Fraction of years during the period
1965–1990 in which the country is rated as an open economy according to the criteria
in Sachs and Warner (1995). open65: open*gdp65. dpop: Difference between the growth
rate of the economically active population (between ages 15 and 65) and growth of total
population. cgb: Current revenues minus current expenditures of the central government,
expressed as a fraction of GDP. inst: Institutional quality index. tropics: Approximate
proportion of land area subject to a tropical climate. land: Dummy variable that equals one
if a country is landlocked. sxp: Share of exports of primary products in GNP in 1970. life:
Life expectancy at birth, ca. 1965–1970. life2: life squared.

and some measures of the economic conditions at the begin-
ning of this period, including gross domestic product in 1965
(“gdp65”).

The estimates are reported in Table 1, with the variables de-
scribed at the bottom of the table. We calculate the EHW stan-
dard errors, as well as our proposed conditional standard errors
where the variables we condition on include all characteristics
of the countries other than the economic policy variables open,
open×gdp65, and cgb which are directly under the control of
the government. It would appear reasonable that at least some
of these variables should be conditioned on, including whether
a country is landlocked and what share of its landmass is in the
tropics.

We find that the standard errors for the key variables, the
indicator for being open and its interaction with gdp in 1965 go
down by about 7%.

6. TWO SIMULATION STUDIES

In this section, we assess the small sample properties of the
variance estimators. We focus on two models, first a linear re-
gression and second a logistic regression model.

6.1 A Simulation Study of a Linear Model

We consider estimating a regression function with K regres-
sors. the first regressor, X1i , has a mixture of a normal dis-
tribution with mean zero and unit variance, and a log normal
distribution with parameters μ = 0 and σ 2 = 0.5. The mixture
probability for the log normal component is p. We use two
values for p in the simulations, p = 0 and p = 0.1 with the
latter corresponding to a design with high leverage covariates.
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Table 2. Coverage rate 95% confidence interval and median estimated standard error (linear model, 50,000 replications)

Estimand −→ θpop θcond Median

Variance −→ V̂pop V̂cond V̂pop V̂cond

√
V̂pop

√
V̂cond

Mis- Homo Samp High K
spec Size Lev

I No Yes 50 No 1 0.926 0.921 0.926 0.921 0.367 0.368
II No Yes 50 No 5 0.912 0.897 0.912 0.897 0.366 0.354
III No Yes 50 Yes 1 0.923 0.916 0.923 0.916 0.345 0.344
IV No Yes 50 Yes 5 0.907 0.892 0.907 0.892 0.344 0.331
V No Yes 200 No 1 0.945 0.941 0.945 0.941 0.190 0.188
VI No Yes 200 No 5 0.940 0.927 0.940 0.927 0.190 0.182
VII No Yes 200 Yes 1 0.942 0.936 0.942 0.936 0.177 0.175
VIII No Yes 200 Yes 5 0.939 0.925 0.939 0.925 0.177 0.169
IX No No 50 No 1 0.914 0.877 0.914 0.877 0.561 0.548
X No No 50 No 5 0.893 0.853 0.893 0.853 0.542 0.508
XI No No 50 Yes 1 0.921 0.879 0.921 0.879 0.508 0.493
XII No No 50 Yes 5 0.901 0.861 0.901 0.861 0.492 0.460
XIII No No 200 No 1 0.938 0.915 0.938 0.915 0.318 0.310
XIV No No 200 No 5 0.937 0.903 0.937 0.903 0.316 0.291
XV No No 200 Yes 1 0.943 0.917 0.943 0.917 0.284 0.276
XVI No No 200 Yes 5 0.940 0.904 0.940 0.904 0.282 0.260
XVII Yes Yes 50 No 1 0.904 0.811 0.978 0.938 0.503 0.397
XVIII Yes Yes 50 No 5 0.885 0.826 0.967 0.941 0.489 0.422
XIX Yes Yes 50 Yes 1 0.816 0.673 0.984 0.948 0.535 0.404
XX Yes Yes 50 Yes 5 0.789 0.695 0.976 0.954 0.516 0.434
XXI Yes Yes 200 No 1 0.938 0.806 0.993 0.948 0.278 0.195
XXII Yes Yes 200 No 5 0.934 0.845 0.991 0.964 0.276 0.215
XXIII Yes Yes 200 Yes 1 0.796 0.569 0.998 0.965 0.333 0.204
XXIV Yes Yes 200 Yes 5 0.791 0.627 0.997 0.980 0.329 0.233
XXV Yes No 50 No 1 0.892 0.827 0.937 0.887 0.655 0.567
XXVI Yes No 50 No 5 0.870 0.819 0.922 0.884 0.628 0.556
XXVII Yes No 50 Yes 1 0.871 0.763 0.950 0.903 0.675 0.561
XXVIII Yes No 50 Yes 5 0.841 0.757 0.939 0.904 0.644 0.555
XXIX Yes No 200 No 1 0.931 0.865 0.966 0.919 0.376 0.314
XXX Yes No 200 No 5 0.928 0.868 0.964 0.924 0.373 0.312
XXXI Yes No 200 Yes 1 0.878 0.727 0.982 0.941 0.423 0.318
XXXII Yes No 200 Yes 5 0.873 0.739 0.981 0.950 0.418 0.324

The remainingK − 1 covariates have normal distributions with
mean zero and unit variance. All covariates are independent.
We use two values for the number of covariates: K = 1 where
onlyX1i is present in the regression function, andK = 5 where
there are four additional regressors. We use two sample sizes,
N = 50 and N = 200. The conditional distribution of Yi given
(X1i , . . . , XKi) is Normal:

Yi |X1i , . . . , XKi ∼ N (
μi, σ

2
i

)
,

where

μi = X1i + δ · (X2
1i − 1

)
, and ln σ 2

i = 1 − γ ·X1i .

A nonzero value for δ makes the model nonlinear and implies
that the linear regression model is misspecified. We use two
values for δ. In the first design, we fix δ = 0 (correct spec-
ification), and in the second design we use a larger value,
δ = 1 (misspecification). A nonzero value for γ implies het-
eroscedasticity. We use two values for γ , γ = 0 (homoscedastic-
ity) and γ = 0.5 (heteroscedasticity). With two values for each

of five parameters of the design, p ∈ {0, 0.1}, K ∈ {1, 5}, N ∈
{50, 200}, δ ∈ {0, 0.1}, andγ ∈ {0.0.5}, we consider a total of 32
designs.

For each of the 32 designs, we focus on estimating a linear
regression function

Yi = θ0 +
K∑
k=1

θk ·Xki + εi .

Table 2 presents the results, based on 50,000 replications for
each design. We focus on the coefficient on X1i , denoted by θ
(dropping the subscript 1 for ease of notation). For all designs,
we report four coverage rates. First, the coverage frequency of
the conventional (EHW standard error based) 95% confidence
interval for θpop. This coverage frequency is calculated as the

frequency with which (θ̂ − θpop)/
√

V̂pop is less than 1.96 in ab-
solute value. Note that both θpop and θcond need to be numerically
evaluated for these data-generating processes. The nominal cov-
erage rate of the confidence intervals is 0.95. Next, the frequency
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Table 3. Coverage rate 95% confidence interval and median estimated standard error (logistic model, 50,000 replications)

Estimand −→ θpop θcond Median

Variance −→ ˆVpop
ˆVcond

ˆVpop
ˆVcond

√
ˆVpop

√
ˆVcond

Mis- Homo Samp High K
spec Size Lev

I No Yes 50 No 1 0.946 0.941 0.946 0.941 0.378 0.387
II No Yes 50 No 5 0.934 0.929 0.934 0.929 0.419 0.428
III No Yes 50 Yes 1 0.946 0.940 0.946 0.940 0.370 0.379
IV No Yes 50 Yes 5 0.933 0.927 0.933 0.927 0.412 0.420
V No Yes 200 No 1 0.941 0.934 0.941 0.934 0.286 0.291
VI No Yes 200 No 5 0.947 0.945 0.947 0.945 0.191 0.191
VII No Yes 200 Yes 1 0.948 0.945 0.948 0.945 0.183 0.183
VIII No Yes 200 Yes 5 0.947 0.945 0.947 0.945 0.188 0.187
IX No No 50 No 1 0.947 0.941 0.948 0.941 0.350 0.358
X No No 50 No 5 0.935 0.930 0.936 0.931 0.383 0.389
XI No No 50 Yes 1 0.943 0.935 0.945 0.937 0.340 0.346
XII No No 50 Yes 5 0.930 0.924 0.933 0.927 0.371 0.377
XIII No No 200 No 1 0.950 0.946 0.950 0.946 0.173 0.173
XIV No No 200 No 5 0.945 0.941 0.945 0.941 0.177 0.176
XV No No 200 Yes 1 0.946 0.942 0.947 0.942 0.170 0.169
XVI No No 200 Yes 5 0.944 0.940 0.945 0.940 0.173 0.172
XVII Yes Yes 50 No 1 0.965 0.649 0.999 0.926 0.114 0.055
XVIII Yes Yes 50 No 5 0.957 0.802 0.999 0.978 0.136 0.089
XIX Yes Yes 50 Yes 1 0.962 0.658 0.999 0.926 0.120 0.059
XX Yes Yes 50 Yes 5 0.930 0.872 0.978 0.948 0.399 0.333
XXI Yes Yes 200 No 1 0.955 0.636 1.000 0.942 0.056 0.026
XXII Yes Yes 200 No 5 0.954 0.715 1.000 0.970 0.058 0.032
XXIII Yes Yes 200 Yes 1 0.955 0.648 1.000 0.941 0.058 0.028
XXIV Yes Yes 200 Yes 5 0.953 0.724 1.000 0.972 0.061 0.034
XXV Yes No 50 No 1 0.963 0.635 1.000 0.924 0.120 0.056
XXVI Yes No 50 No 5 0.956 0.784 0.999 0.980 0.138 0.089
XXVII Yes No 50 Yes 1 0.960 0.764 1.000 0.924 0.127 0.061
XXVIII Yes No 50 Yes 5 0.956 0.795 0.999 0.978 0.145 0.096
XXIX Yes No 200 No 1 0.956 0.627 1.000 0.942 0.058 0.027
XXX Yes No 200 No 5 0.954 0.702 1.000 0.971 0.061 0.033
XXXI Yes No 200 Yes 1 0.942 0.887 0.978 0.943 0.356 0.301
XXXII Yes No 200 Yes 5 0.953 0.710 1.000 0.971 0.064 0.035

with which the same confidence interval covers θcond, that is, the
frequency with which (θ̂ − θcond(X))/

√
V̂pop is less than 1.96 in

absolute value. This should in large samples be at least 0.95, and
more than 0.95 in misspecified models according to our formal
results. We also report the coverage rates for confidence inter-
vals based on the conditional standard errors. Now the coverage
for θpop could be less than 0.95, but the coverage for θcond(X)
should be 0.95.

In the first design (Design I) with a single covariate, 50 ob-
servations, a linear conditional expectation and a normal re-
gressor and homoscedasticity, both variance estimators lead to
coverage rates around 92%–93%, with the EHW variance doing
slightly better. With five covariates (Design II), the difference
between the two variance estimators (in favor of the EHW vari-
ance estimator) becomes more pronounced. Having a skewed
distribution for the covariate with some high leverage values
does not change the coverage rates very much in Design III.
With 200 observations (Design V), the coverage rates become
closer to the nominal coverage rates for both variance estima-
tors. Given heteroscedasticity (Design IX), the EHW variance

estimator does substantially better with a coverage rate of 91%,
whereas the conditional variance estimator leads to confidence
intervals with a coverage rate of 88% Allowing for misspeci-
fication of the regression function (Design XVII) changes the
coverage rates substantially. The coverage rate, based on the
EHW estimator, for θpop, is 90%. The coverage rate based on
the conditional variance estimator, for θcond, is much closer to
the nominal level, at 0.94.

Over the 32 designs, the worst performance of the EHW vari-
ance estimator is in Design XX, with misspecification and high
leverage covariates, 50 observations, and 5 covariates, where the
coverage rate is 79% instead of 95%. The worst performance
of the conditional variance estimator is in Design XII, with a
linear model, heteroscedasticity, five covariates, with high lever-
age, and 50 observations, with an actual coverage rate of 88%.
It appears that the conditional variance estimator is more sensi-
tive to heteroscedasticity, but less sensitive to the distribution of
the covariates. Overall the worst case for the conditional vari-
ance estimator is substantially better than for the EHW variance
estimator.
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6.2 A Simulation Study of a Logistic Regression Model

Next, we do a similar simulation study in a nonlinear setting.
Here, the outcome is a binary indicator. We estimate a logistic
regression model specified as

pr(Yi = 1|X1i , . . . , XKi) = 1

1 + exp(θ0 +∑K
k=1 θk ·Xki)

.

The data are generated through a model where a latent index Y ∗
i

satisfies

Y ∗
i = θ0 +

K∑
k=1

θk ·Xki + εi,

and the observed outcome is the indicator thatY ∗
i is nonnegative:

Yi = I[Y ∗
i ≥0].

In the base case, there are 50 observations, and εi has a logistic
distribution so that the logistic regression model is correctly
specified. In this case there is a single covariate (K = 1), θ1 = 1,
θ0 = 0, and the covariate has a standard Normal distribution with
unit variance.

We can consider combinations of five modifications, similar
to those in the linear model. First, we allow for the presence
of four additional covariates (K = 5), with the additional co-
variates all having independent normal distributions with zero
coefficients. Second, we change the distribution of the first co-
variate to include high leverage points by making it a mixture
of a standard Normal distribution and a log normal distribution
with parameters 0 and 0.5, and the probability of the log normal
component equal to 0.1. Third, we change the sample size to 200.
Fourth, we multiply the εi for all units by exp(1 − 0.5 ·X1i). In
the linear case, this corresponds to introducing heteroscedas-
ticity, but here this also implies misspecification of the logistic
regression model. Finally, we directly misspecify the regression
function by changing the specification of Y ∗

i to

Y ∗
i = X1i +

(
X2

1i − 1
)+ εi .

Table 3 presents the results for the 32 designs generated as
combinations of these changes to the base design, based on
50,000 replications. There are some qualitative differences with
the simulations for the linear case. There are generally big-
ger differences between the two variance estimators, ˆVcond and

ˆVpop. The coverage rates for confidence intervals, for θpop based
on ˆVpop, and for θcond(X) based on ˆVcond, are closer to nominal
levels. In contrast, inference for θcond(X) based on ˆVpop leads
to confidence intervals with substantially higher coverage, and
inference for θcond based on ˆVcond(X) leads to substantial under-
coverage.

In general, inference for θcond(X) is less affected by the
changes in the design than inference for θpop. For example,
the worst design for θpop is still Design XX, with both misspec-
ification and high leverage covariates, where the coverage rate
is 0.930. For the conditional estimand, the worst designs are
those with misspecification, with coverage rates around 0.924,
still close to the nominal 0.95 level.

7. CONCLUSION

In this article, we discuss inference for conditional estimands
in misspecified models. Following the work by Eicker (1967),
Huber (1967), and White (1980a, 1980b, 1982), it is common
in empirical work to report robust standard errors. These robust
standard errors are valid for the population value of the estima-
tor given random sampling. We show that if one is interested in
the conditional estimand, conditional on all or a subset of the
variables, robust standard errors are generally smaller than the
White robust standard errors. We derive a general characteriza-
tion of the variance for the conditional estimand and propose
a consistent estimator for this variance. We argue that in some
settings the conditional estimand may be of more interest than
the unconditional one.

APPENDIX A: PROOFS OF THEOREMS

A.1 Proof of Theorem 1

Given Assumptions 1 and 2, Theorem 2.6 in Newey and Mc-
Fadden (1994) implies the first result. To prove the second result,
let ρ(x, θ ) = E[ψ(Yi,Xi, θ )|Xi = x]. Notice that E[ρ(Xi, θpop)] = 0.
Therefore, θcond(X) can be thought of as an extremum estimator that
minimizes (

1

N

N∑
i=1

ρ(Xi, θ )

)′ (
1

N

N∑
i=1

ρ(Xi, θ )

)
.

We will prove θcond(X) − θpop
p→ 0 by showing that Assumption 2 also

holds if we replaceψ(Yi,Xi, θ ) with ρ(Xi, θ ). Because E[ρ(Xi, θ )] =
E[ψ(Yi,Xi, θ )] it follows that part (i) in Assumption 2 holds also
with ρ(Xi, θ ) replacing ψ(Yi,Xi, θ ). Part (ii) of Assumption 2 fol-
lows from dominated convergence because, by Assumption 2(iii),
E[supθ∈� ‖ψ(Yi,Xi, θ )‖|Xi] < ∞ with probability one. To prove that
part (iii) holds also after replacing ψ(Yi,Xi, θ ) with ρ(Xi, θ ), notice
that,

‖ρ(Xi, θ )‖ = ‖E[ψ(Yi,Xi, θ )|Xi]‖ ≤ E
[
‖ψ(Yi,Xi, θ )‖

∣∣∣Xi],
because the norm is a convex function by the triangle inequality. There-
fore,

sup
θ∈�

‖ρ(Xi, θ )‖ ≤ sup
θ∈�

E
[
‖ψ(Yi,Xi, θ )‖

∣∣∣Xi]
≤ E

[
sup
θ∈�

‖ψ(Yi,Xi, θ )‖
∣∣∣∣Xi].

Taking expectations on both sides of the previous equation and using
Assumption 2(iii), we obtain E[supθ∈� ‖ρ(Xi, θ )‖] < ∞. Now, Theo-

rem 2.6 in Newey and McFadden (1994) implies θcond(X) − θpop
p→ 0

and, therefore, the second result of the theorem. �

A.2 Proof of Theorem 2

The first result follows from Theorem 3.4 in Newey and McFadden
(1994).

To prove the second result, we will first establish the joint asymptotic
distribution of

√
N (θ̂ − θpop) and

√
N (θcond(X) − θpop), and then we use

this result to derive the asymptotic distribution of
√
N (θ̂ − θcond(X)) =

√
N (θ̂ − θpop)

−
√
N (θcond(X) − θpop). (A.1)

By Assumptions 3(ii) and (iv) and Lemma 3.6 in Newey and McFadden
(1994) we obtain that, for x in a set of probability one, ρ(x, θ ) is
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continuously differentiable with respect to θ in an open neighborhood
N of θpop, with

∂ρ(x, θ )

∂θ ′ = E

[
∂ψ(Yi,Xi, θ )

∂θ ′

∣∣∣∣Xi = x

]
.

Notice that

ψ(Yi,Xi, θpop)′ψ(Yi,Xi, θpop) = E[ψ(Yi,Xi, θpop)′

× |Xi]E[ψ(Yi,Xi, θpop)|Xi] + (ψ(Yi,Xi, θpop) − E[ψ(Yi,Xi, θpop)

× |Xi])′(ψ(Yi,Xi, θpop) − E[ψ(Yi,Xi, θpop)|Xi])
+2E[ψ(Yi,Xi, θpop)′|Xi](ψ(Yi,Xi, θpop) − E[ψ(Yi,Xi, θpop)|Xi]).

Taking expectation eliminates the cross-product term, which implies

E
[‖ρ(Xi, θpop)‖2

] ≤ E
[‖ψ(Yi,Xi, θpop)‖2

]
< ∞.

Using convexity of the norm, we obtain

sup
θ∈N

∥∥∥∥∂ρ(x, θ )

∂θ ′

∥∥∥∥ ≤ E

[
sup
θ∈N

∥∥∥∥∂ψ(Yi,Xi, θ )

∂θ ′

∥∥∥∥ ∣∣∣∣Xi = x

]
.

Taking averages on both sides of the last equation and using Assumption
3(iv) we obtain:

E

[
sup
θ∈N

∥∥∥∥∂ρ(x, θ )

∂θ ′

∥∥∥∥] < ∞.

Notice also that

E

[
∂ρ(Xi, θpop)

∂θ ′

]
= E

[
∂ψ(Yi,Xi, θpop)

∂θ ′

]
= �,

which is nonsingular by Assumption 3(v).
As a result, Theorem 3.4 in Newey and McFadden (1994) holds for

the estimator that minimizes(
1

N

N∑
i=1

(
ψ(Yi,Xi, θ1)
ρ(Xi, θ2)

))′ (
1

N

N∑
i=1

(
ψ(Yi,Xi, θ1)
ρ(Xi, θ2)

))
with respect to θ1 and θ2. Applying Theorem 3.4 of Newey and Mc-
Fadden (1994), we obtain

√
N

(
θ̂ − θpop

θcond(X) − θpop

)
d→ N

(
0, �−1

jointVjoint(�
−1
joint)

′) ,
where Vjoint is equal to
⎛⎜⎝ E[ψ(Yi ,Xi , θpop)ψ(Yi ,Xi , θpop)′] E[E[ψ(Yi ,Xi , θpop)|Xi ]E[ψ(Yi ,Xi , θpop)′ |Xi ]]

E[E[ψ(Yi ,Xi , θpop)|Xi ]E[ψ(Yi ,Xi , θpop)′ |Xi ]] E[E[ψ(Yi ,Xi , θpop)|Xi ]E[ψ(Yi ,Xi , θpop)′ |Xi ]]

⎞⎟⎠ ,
and

�joint =
(
� 0
0 �

)
.

Now, because Equation (A.1), we obtain,
√
N
(
θ̂ − θcond(X)

)
d→ N (0,Vgmm,cond),

where Vgmm,cond = �−1	cond(�−1)′, and

	cond = E
[
ψ(Yi,Xi, θpop)ψ(Yi,Xi, θpop)′

]
−E

[
E[ψ(Yi,Xi, θpop)|Xi]E[ψ(Yi,Xi, θpop)′|Xi]

]
= E

[
V (ψ(Yi,Xi, θpop)|Xi)

]
. �

A.3 Proof of Corollary 1

The result follows directly from V (ψ(Yi,Xi, θpop)|Xi) = E[ψ
(Yi,Xi, θpop)ψ(Yi,Xi, θpop)′|Xi] − E[ψ(Yi,Xi, θpop)|Xi]E[ψ(Yi,Xi,
θpop)′|Xi]. �

We next state a lemma from Abadie and Imbens (2010) that will be
useful in what follows.

Lemma A.1. (Lemma 1, Abadie and Imbens 2010, p. 180) Suppose
thatW1,W2, . . . is a sequence withWi ∈ W where W a compact subset
of RK . Then

lim
N→∞

1

N

N∑
i=1

∥∥Wi −W�W (i)

∥∥2 = 0.

Lemma A.2. (Average Conditional Moments) Let (Vi,Wi), i =
1, . . . , N , be a sequence of independent, identically distributed random
variables, with Vi scalar, and with compact support for Wi . For some
positive integer n, and for j = 1, 2, . . . , n, let μp(w) = E[V p

i |Wi =
w] be Lipschitz in w with constant Cp . Then for all nonnegative k,m
such that max(k,m) ≤ n/2,

1

N

N∑
i=1

V k
i · V m

�W (i)
p−→ E

[
E

(
V k
i

∣∣∣∣Wi

)
· E

(
V m
i

∣∣∣∣Wi

)]
.

A.4 Proof of Lemma A.2

First we show

E

[
1

N

N∑
i=1

V k
i · V m

�W (i) − E

[
E

(
V k
i

∣∣Wi

)
· E

(
V m
i

∣∣∣∣Wi

)]]
= o(1).

(A.2)

Because Vi and V�W (i) are independent conditional on W =
(W1,. . .,WN )′,

E

[
1

N

N∑
i=1

V k
i · V m

�W (i)

]
= 1

N

N∑
i=1

E
{

E
[
V k
i · V m

�W (i)

∣∣W
]}

= 1

N

N∑
i=1

E
{
E(V k

i

∣∣W) · E
(
V m
�W (i)

∣∣W
)}

= 1

N

N∑
i=1

E
{
E(V k

i

∣∣Wi) · E
(
V m
�W (i)

∣∣W�W (i)

)}
= 1

N

N∑
i=1

E
[
μk(Wi) · μm

(
W�W (i)

)]
= 1

N

N∑
i=1

E [μk(Wi) · μm(Wi)]

+E

{
1

N

N∑
i=1

μk(Wi)
[
μm

(
W�W (i)

)
− μm(Wi)]}

= 1

N

N∑
i=1

E
{
μk(Wi) · [μm(Wi) + μm

(
W�W (i)

)
− μm(Wi)]}

= 1

N

N∑
i=1

E
[
E
(
V k
i |Wi

) · E
(
V m
i |Wi

)]
+E

{
1

N

N∑
i=1

μk(Wi)
[
μm

(
W�W (i)

)
−μm(Wi)]} .

Therefore,∣∣∣∣∣E
[

1

N

N∑
i=1

V k
i · V m

�W (i) − E
[
E
(
V k
i |Wi

) · E
(
V m
i |Wi

)]]∣∣∣∣∣
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=
∣∣∣∣∣E
{

1

N

N∑
i=1

μk(Wi)
[
μm

(
W�W (i)

)− μm(Wi)
]}∣∣∣∣∣

≤ E

{
1

N

N∑
i=1

|μk(Wi)| · ∣∣μm (W�W (i)

)− μm(Wi)
∣∣}

≤ sup
w

|μk(w)| · E

{
1

N

N∑
i=1

Cm
∥∥Wi −W�W (i)

∥∥}
= o(1),

by Lemma A.1 and dominated convergence. This finishes the proof of
(A.2).

Next, we will show that

E

{[
1

N

N∑
i=1

V k
i · V m

�W (i)

−E

[
E

(
V k
i

∣∣Wi

)
· E

(
V m
i

∣∣Wi

)]]2
}

= o(1), (A.3)

which, together with (A.2), proves the claim in the Lemma. First, we
expand the square:

E

⎧⎨⎩
[

1

N

N∑
i=1

V k
i · V m

�W (i) − E

[
E

(
V k
i

∣∣Wi

)
· E

(
V m
i

∣∣Wi

)]]2
⎫⎬⎭

= E

⎧⎨⎩
[

1

N

N∑
i=1

V k
i · V m

�W (i)

]2
⎫⎬⎭+ {

E
[
E
(
V k
i |Wi

) · E
(
V m
i |Wi

)]}2

− 2E

{
1

N

N∑
i=1

V k
i · V m

�W (i) · E
[
E
(
V k
i |Wi

) · E
(
V m
i |Wi

)]}

By (A.2), this is equal to

E

⎡⎣( 1

N

N∑
i=1

V k
i · V m

�W (i)

)2
⎤⎦

−
{

E

[
E

(
V k
i |Wi

)
· E

(
V m
i |Wi

)]}2

+ o(1)

= 1

N 2

N∑
i=1

E
[
V 2k
i · V 2m

�W (i)

]
+ 1

N 2

N∑
i=1

∑
j �=i

E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

]
(A.4)

−
{

E

[
E

(
V k
i |Wi

)
· E

(
V m
i |Wi

)]}2

+ o(1).

Consider the first term in (A.4). Using the independence of Vi and
V�W (i) conditional on W we have

1

N 2

N∑
i=1

E
[
V 2k
i · V 2m

�W (i)

] = 1

N 2

N∑
i=1

E
[
E
[
V 2k
i |Wi

] · E
[
V 2m
�W (i)|W�W (i)

]]
= 1

N 2

N∑
i=1

E
[
μ2k(Wi) · μ2m(W�W (i))

] ≤ C

N ′

because the terms are bounded by the Lipschitz condition on μp(x) for
all p at least equal to 2k and 2m. Therefore, the first term in (A.4) is

o(1), and the entire expression is

1

N 2

N∑
i=1

∑
j �=i

E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

]
−
{

E

[
E

(
V k
i |Wi

)
· E

(
V m
i |Wi

)]}2

+ o(1). (A.5)

We write the expectation of the first term conditional on W as

1

N 2

N∑
i=1

∑
j �=i

E
[
E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

∣∣W
]]

= 1

N 2

N∑
i=1

∑
j �=i,�W (i)�=j,�W (j )�=i

E
[
E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

∣∣W
]]

+ 1

N 2

N∑
i=1

∑
j �=i,�W (i)=j or �W (j )=i

E
[
E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

∣∣W
]]
.

The number of terms in the second sum is limited by the “kissing
number” the number of units a given unit can be the closest match for
(Miller et al.1997; see also Abadie and Imbens 2010), which depends
on the dimension of Wi . Let the kissing number be denoted by L.
Then, for given i there is only one j such that �W (i) = j , and at most
L j such that �W (j ) = i. With each term in the second sum bounded
by E[V m+k

i |Wi] · E[V m+k
i |Wi], which is bounded, the second sum is

bounded by

E

[
L

N
· E[V m+k

i |Wi]
2

]
= o(1).[4pt]

Hence

1

N 2

N∑
i=1

∑
j �=i

E
[
E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

∣∣W
]]

= 1

N 2

N∑
i=1

∑
j �=i,�W (i)�=j,�W (j )�=i

E
[
E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

∣∣W
]]+ o(1)

= 1

N 2

N∑
i=1

∑
j �=i,�W (i)�=j,�W (j )�=i

E
{
E
(
V k
i |Wi

)
E
(
V m
�W (i)|W�W (i)

)
× E

(
V k
j |Wj

)
E
(
V m
�W (j )|W�W (j )

)}+ o(1). (A.6)

Because of the Lipschitz condition on μp(w) = E[V p

i |Wi = w] it fol-
lows that∣∣E (

V k
i |Wi

)
E
(
V m
�W (i)|W�W (i)

)
E
(
V k
j |Wj

)
E
(
V m
�W (j )|W�W (j )

)
−E

(
V k
i |Wi

)
E
(
V m
i |Wi

)
E
(
V k
j |Wj

)
E
(
V m
j |Wj

)∣∣
≤ C · max

i
‖Wi −W�W (i)‖ · max

j
‖Wj −W�W (j )‖,

which goes to zero by Lemma A.1. Hence (A.6) is

1

N 2

N∑
i=1

∑
j �=i,�W (i)�=j,�W (j )�=i

E
{
E
(
V k
i |Wi

)
E
(
V m
i |Wi

)
× E

(
V k
j |Wj

)
E
(
V m
j |Wj

)}+ o(1). (A.7)

Next we show that this is equal to

1

N 2

N∑
i=1

∑
j �=i

E
{
E
(
V k
i |Wi

)
E
(
V m
i |Wi

)
E
(
V k
j |Wj

)
× E

(
V m
j |Wj

)}+ o(1). (A.8)
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The difference between (A.7) and (A.8) is

1

N 2

N∑
i=1

∑
j |j=i or �W (i)=j, or �W (j )=i

E
{
E
(
V k
i |Wi

)
E
(
V m
i |Wi

)
E
(
V k
j |Wj

)
E
(
V m
j |Wj

)}
. (A.9)

All terms in this sum are bounded by the Lipschitz condition. By the
bound on the kissing number and the boundedness of the expectations,
it follows that (A.9) is o(1). Next,

1

N 2

N∑
i=1

∑
j �=i

E
{
E
(
V k
i |Wi

)
E
(
V m
i |Wi

)
× E

(
V k
j |Wj

)
E
(
V m
j |Wj

)}
=
{

E

[
E

(
V k
i |Wi

)
· E

(
V m
i |Wi

)]}2

+ o(1),

and thus

1

N 2

N∑
i=1

∑
j �=i

E
[
V k
i V

m
�W (i)V

k
j V

m
�W (j )

]
−
{

E

[
E

(
V k
i |Wi

)
· E

(
V m
i |Wi

)]}2

+ o(1) = o(1),

by (A.2). This finishes the proof of (A.3), and thus the claim in the
lemma. �

Lemma A.3. (Average Conditional Variances) Let (Vi,Wi), i =
1, . . . , N , be a random sample from the distribution of (V,W ) where
(V,W ) are a pair of random vectors, with compact support for Wi .
Suppose that μp(w) = E[V p

i |Wi = w] is Lipschitz in w with constant
Cp for p ≤ 4. Define

V̂cond = 1

2N

N∑
i=1

(
Vi − V�W (i)

) (
Vi − V�W (i)

)′
.

Then:

V̂cond
p−→ E

[
V(Vi |Wi)

]
. (A.10)

A.5 Proof of Lemma A.3

To prove V̂cond
p−→ E

[
V(Vi |Wi)

]
, we show

E
{
V̂cond − E

[
V(Vi |Wi)

]}2
= o(1).

Without loss of generality we focus on the case with V scalar:

V̂cond = 1

2N

N∑
i=1

(
Vi − V�W (i)

)2

= 1

2N

N∑
i=1

V 2
i + 1

2N

N∑
i=1

V 2
�W (i) − 1

N

N∑
i=1

ViV�W (i),

and

E
[
V(Vi |Wi)

] = E
{
E
(
V 2
i

∣∣Wi

)− [
E (Vi |Wi)

]2
}

= E
[
V 2
i

]− E
[
E (Vi |Wi)

2
]
.

Because
∑N

i=1 V
2
i /N

p−→ E[V 2
i ] by the law of large numbers, it is

sufficient to show

1

N

N∑
i=1

V 2
�W (i)

p−→ E
[
V 2
i

]
, and

1

N

N∑
i=1

Vi · V�W (i)
p−→ E

[
E (Vi |Wi)

2
]
. (A.11)

The first part of (A.11) follows from applying Lemma A.2 with k = 0
and m = 2, and the second part follows from applying Lemma A.2
with k = m = 1. �

A.6 Proof of Theorem 3

Since θ̂
p−→ θpop andψ(Yi,Xi, θ ) is differentiable in θ , �̂

p−→ � by

the law of large numbers. Then, it is sufficient to show 	̂cond
p−→ 	cond.

Define

	̃cond = 1

2N

N∑
i=1

(
ψ(Yi,Xi, θcond) − ψ(Y�X (i), X�X (i), θcond)

)
(
ψ(Yi,Xi, θcond) − ψ(Y�X (i), X�X (i), θcond)

)′
.

Let Vi = ψ(Yi,Xi, θcond), and Wi = Xi . By Lemma A.3, 	̃cond
p−→

V
(
ψ(Yi,Xi, θpop)

)
. Because θ̂

p−→ θpop and ψ(Yi,Xi, θ ) is differen-

tiable in θ , it follows that 	̂cond − 	̃cond
p−→ 0. Therefore, V̂gmm,cond =

�̂−1	̂cond(�̂′)−1 p−→ �−1	cond(�′)−1 = Vgmm, cond. �

SUPPLEMENTARY MATERIALS

The supplementary materials contain the proof of Theorem 2
and Corollary 1 under asymptotic equicontinuity condition and
an application to quantile regression.

[Received October 2012. Revised May 2014.]
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