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The difference-in-differences (DID) estimator is one of the most popular tools for applied research
in economics to evaluate the effects of public interventions and other treatments of interest on some
relevant outcome variables. However, itis well known that the DID estimator is based on strong identifying
assumptions. In particular, the conventional DID estimator requires that, in the absence of the treatment,
the average outcomes for the treated and control groups would have followed parallel paths over time. This
assumption may be implausible if pre-treatment characteristics that are thought to be associated with the
dynamics of the outcome variable are unbalanced between the treated and the untreated. That would be the
case, for example, if selection for treatment is influenced by individual-transitory shocks on past outcomes
(Ashenfelter’s dip). This article considers the case in which differences in observed characteristics create
non-parallel outcome dynamics between treated and controls. It is shown that, in such a case, a simple
two-step strategy can be used to estimate the average effect of the treatment for the treated. In addition,
the estimation framework proposed in this article allows the use of covariates to describe how the average
effect of the treatment varies with changes in observed characteristics.

A good way to do econometrics is to look for good natural experimamtisise statistical
methods that can tidy up the confounding factors that nature has not controlled for us.
(Daniel McFaddeniEconometric Tools

1. INTRODUCTION

The use of natural experiments to evaluate treatment effects in the absence of truly experimental
data has gained wide acceptance in empirical research in economics and other social sciences.
Simple comparisons of pre-treatment and post-treatment outcomes for those individuals exposed
to a treatment are likely to be contaminated by temporal trends in the outcome variable or by the
effect of events, other than the treatment, that occurred between both periods. However, when
only a fraction of the population is exposed to the treatment, an untreated comparison group
can be used to identify temporal variation in the outcome that is not due to treatment exposure.
The difference-in-differences (DID) estimator is based on this simple daed and Krueger
(1999 assess the employment effects of a raise in the minimum wage in New Jersey using a
neighbouring state, Pennsylvania, to identify the variation in employment that New Jersey would
have experienced in the absence of a raise in the minimum wage. Other applications of DID
include studies of the effects of immigration on native wages and employr@anti (1990,
the effects of temporary disability benefits on time out of work after an injMgyer, Viscusi
and Durbin 1995, and the effect of anti-takeover laws on firms’ leveraGaifvey and Hanka
1999.

It is well known that the conventional DID estimator is based on strong assumptions.
In particular, the conventional DID estimator requires that in absence of the treatment, the
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average outcomes for treated and controls would have followed parallel paths over time. This
assumption may be implausible if pre-treatment characteristics that are thought to be associated
with the dynamics of the outcome variable are unbalanced between the treated and the untreated
group.

This study considers the case in which differences in observed characteristics create non-
parallel outcome dynamics for the treated and untreated groups. It is shown that, in such a case, a
simple two-step strategy can be used to estimate the average effect of the treatment for the treated.
In addition, the estimation framework proposed in this article allows the use of covariates to
describe how the average effect of the treatment varies with changes in observed characteristics.

Despite the prolific literature on semiparametric and non-parametric methods, few articles
have been devoted to studying and relaxing the DID identification restrictions. Some exceptions
are Besley and Cas€1994), Meyer (1995, Heckman, Ichimura and Tod{lL997, Imbens,
Liebman and Eiss@l997, Heckman, Ichimura, Smith and Todq@998, Angrist and Krueger
(1999, Blundell and MaCurdy1999, Blundell, Costa Dias, Meghir and van Reer{2@01) and
Athey and Imbeng$2002).

The identification procedure used in this article originated wigckmanet al (1997,

1998. However, the estimation procedure differs from the earlier literature in three ways. First,

it does not require repeated observations for the same individuals. The proposed estimators are
feasible under the data requirements for traditional DID estimators when applied to repeated
cross-sections. Second, it allows the estimation of parsimonious parametric approximations
to the average effect of the treatment on the treated conditional on selected covariates of
interest. Finally, the framework can accommodate multilevel treatment variables (that is, different
treatment intensities).

The rest of the article is organized as follov&ection2 describes the conventional DID
model and discusses some of its limitatioBgction3 presents the main identification results
of the article, followed by some extensions. The estimation strategy along with asymptotic
distribution theory is provided isection4. Section5 concludes. Proofs are presented in the
Appendix.

2. THE DID ESTIMATOR

The basic DID framework can be described as follows.Y @t t) be the outcome of interest for
individuali at timet. The population is observed in a pre-treatment petiedO, and in a post-
treatment periotl = 1. Between these two periods, some fraction of the population is exposed to
the treatment. We denofe(i, t) = 1 if individual i has been exposed to the treatment previous
to periodt, D(i, t) = 0 otherwise. We call those individuals wib(i, 1) = 1 treated and those

with D(i, 1) = 0 controls(or untreated. Since individuals are only exposed to treatment after
the first periodD(i, 0) = O for alli.

The conventional DID estimator is often derived using a linear parametric model. It is useful
to consider this formulation of the DID model first, to fix ideas, before studying non-parametric
identification inSection3. The following formulation of the DID model is based on that given in
Ashenfelter and Car@l985. Suppose that the outcome variable is generated by a components
of variance process

Y(i,t) =8(t) +a-D(@,t)+nd)+ v(,t), Q)
whered(t) is a time-specific component, represents the impact of the treatmept,) is an
individual-specific component, andi, t) is an individual-transitory shock that has mean zero at

each periodt = 0, 1, and is possibly correlated in time. Onfyi, t) andD(i, t) are observed.
The effect of the treatment, is not identified without further restrictions. A sufficient condition
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for identification is that selection for treatment does not depend on the individual-transitory
shocks, that is

P(D@(,) =1|wv(,t)=P(D(@,1) =1 (2)
fort = 0, 1. Adding and subtracting[n(i) | D(i, 1)] in equation 1), we obtain
Y(@i,t) =8(t) +a-D(,t)+ E[n(@) | DG, 1]+ &, 1), 3)

wheree(i,t) = (i) — E[n(i) | DG, 1)] + v(,t). Notice thats(t) = §(0) + (§(1) — §(0))t,
andE[n(i) | D(,1)] = E[n() | D(G,1) =01+ (E[»() | DG, = 1] - E[»() | DG, =
0DD(, ). Letu = E[n(i) | D(G,1) =01+ 6(0), = = E[n() | DG{,1) = 1] — E[n() |
D(,1) = 0]ands = §(1) — §(0). We obtain

Yi,) =pu+7-D3U, D)+ -t+a-DG,t)+e(,t). (4)

The restriction in equation?f for t = 0,1 implies E[(1, D(, 1), t, D(,t)) - e(i,t)] = 0,

so all the parameters in equatiof),(including the treatment impaat, are estimable by least
squares. Notice that the model alloensy kind of dependence between selection for treatment,
D(i, 1) = 1, and the individual-specific componentj). This model is called “difference-in-
differences” because under the identifying condition in equawé have

o ={E[Y(,1) | D@,1) =1]— E[Y(i,1) | D(i,1) = 0]}
—{E[Y(,0) | D(i,1) = 1] - E[Y(i,0) | D(i,1) = 0]}, ®)

and the least squares estimatora$ the sample counterpart of equatid.
This formulation of the problem is useful when repeated cross sectiof§iot), D (i, 1))
fort = 0,1 are available. If a sample with repeated pre-treatment and post-treatment
observations of the outcome variab¥i, 1) andY(i, 0), is available, themr is estimable by
least squares regression¥ofi, 1) — Y (i, 0) on D(i, 1):

a=E[Y({,)—-Y(@(,0 | D(,1) =1]— E[Y(@{,1) —Y(i,0) | D(,1) =0].

Note that equation?) for t = 0, 1 implies thatv(i, 1) — v(i, 0) is mean independent of
D(i, 1), and therefore that, in absence of the treatment, the average outcome for the treated would
have experienced the same variation as the average outcome for the untreated. This restriction,
implied by the model, may be too stringent if treated and controls are unbalanced in covariates
that are thought to be associated with the dynamics of the outcome variable.

For example, it has been documented that participants in training programmes experience a
decline in earnings prior to the training period (Ashenfelter’'s dighenfelter(1978). This fact
suggests that selection for training may be affected by individual-transitory shocks in pre-training
earnings. To accommodate this conjectukshenfelter and Car1985 propose the following
model for the selection process:

D, 1) = 1 ifY@l,1—«)+u@)<Y ©)
"7 ]lo otherwise

wherex is a positive integery is a constant, and(i) is a random variable independent of any
variance component. Under this formulation for the selection process, those individuals with
low earningx periods before training are more likely to participate in the training programme.
The identification condition in equatior2)(does not hold in general for this example. The
reason is that the individual-specific component§, t), are allowed to be correlated in time.
However, if the selection process can be represented by equéjiothén P(D(i,1) = 1 |
Y(@i,1—«),v@,t) = P(D(@i,1) = 1] Y(i,1— «)). The DID model holds conditional on
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Y (i, 1— k), so the impact of the treatment is given by

{E[Y(@, D) | X(), D@, 1) =1]— E[Y(i,1) | X(i), D(i,1) =0l}

where X(i) = Y(i,1 — «).I More generally, in this articleX(i) is a vector of observed
characteristics, such as demographic attributes, predeterminéd -at 0. A conditional
identification restriction is appealing in the DID framework when the variableX({p are
believed to be related to the outcome dynamics and their distributions differ between treated
and controls.

The traditional way to accommodate covariates in the DID model is to introduce them
linearly in equation4):

Yi,) = u+ X(@O)mr®) +7-D@(, D) +8-t+a-D(,t)+e(,t), (8)

whereX (i) is assumed uncorrelated witli, t). Because the coefficients (i) change with,
this formulation of the DID model allows the use of covariates to represent heterogeneity in
outcome dynamics. Differencing the last equation with respeigti@ obtain

Y(i,1) —Y(@{,00 =8+ X({)7 +a-DGi,1)+ (i, 1) —e(i,0),

wherer = 7 (1) — 7 (0). This alternative formulation is useful when a sample with repeated
observations is available. However, as noticedMsyer (1999, introducing covariates in this
linear fashion may not be appropriate if the treatment has different effects for different groups
in the population. Heterogeneity in treatment effects can be studied by specifyingguation

(8) as a function ofX(i) (i.e. by including interactions betweeX(i) and D(i, t) in equation

(8)). Ideally, covariates should be treated non-parametrically, as in equ&jioro( that any
potential inconsistency created by functional form misspecification is avoided. However, when
the number of covariates required to attain identification is large, some kind of integration over
X(i) is required in order to obtain interpretable results.

The next section proposes a flexible new procedure to control for the effect of covariates in
the DID model which is based on conditional identification restrictions. As in the conventional
DID model, the role of the covariates in this new approach is twofold. First, by using covariates
we extend identification to those instances in which observed compositional differences between
treated and controls cause non-parallel dynamics in the outcome variable. In addition, the effect
of the treatment is allowed to differ among individuals, so covariates can be used to describe
the effect of the treatment for different groups of the population. A distinctive feature of the
methods proposed in this article is that, while covariates are treated non-parametrically for
identification, the estimators provide parsimonious parametric approximations to the average
effect of the treatment on the treated conditional on selected covariates of iRterest.

A related way to accommodate covariates in a DID estimator has been explored by
Heckmanet al. (1997, 1998 who propose a DID estimator of the average treatment effect on
the treated based also on conditional identification restrictions. Their estimator is constructed by
matching differences in pre-treatment and post-treatment outcomes for the treated to weighted
averages of differences in pre-treatment and post-treatment outcomes for the untreated. The
differences are matched on the probability of treatment exposure conditional on the covariates

1. In fact, for Ashenfelter's dip model in equatio6)(the second term in equatioi)(is zero and estimation
could be based solely on conditional averages of post-treatment outcomes.

2. In other words, while identification does not hinge on parametric restrictions, it allows the use of parametric
functions to describe how the effect of the treatment varies with covariates. This approach follows the ¥piteof
(1981 and Roehrig (1988 among others who propose treating parametric models as convenient approximations to
unknown functions of interest, so identification can be studied non-parametrically.
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(the propensity score) and the weights are determined non-parametrically using local linear
regressiort. This article, however, proposes a direct weighting scheme on the propensity score
that can be used to estimate the effect of the treatment on the treated without estimating weights
non-parametrically in a previous step.

Estimators of treatment effects that weight on functions of the probability of treatment
are based on the Horvitz—Thompson statistiorvitz and Thompson1952. Non-parametric
generalizations of the Horvitz—Thompson statistic have been studiémitiens, Hirano and
Ridder(2003. Ichimura and Lintor(2002 have developed higher-order asymptotic expansions
for this class of estimators to guide bandwidth selection. Robins and co-authors have proposed
related estimators in the context of parametric models for time-varying treatment®(gee,
Herran, Brumback and Robing2001J). In these studies it is assumed that all other factors, aside
from the treatment, that affect the outcome variable are either observed, or their distribution is
the same for treated and untreated. Consequently, all factors which confound simple comparisons
of the outcome distribution between treated and untreated are observed. In contrast, the
identification conditions used in this article allow for the distribution of both observed and
unobserved factors to differ between treated and untreated, as long as the effect of unobserved
factors on the outcome does not vary with time (or, more generally, if it experiences the same
variation, on average, for treated and untreated).

3. NON-PARAMETRIC IDENTIFICATION

In the previous section, we referredat@s the “impact of the treatment” or the “treatment effect”,
but the exact meaning of these terms was left undefined.

As in Rubin(1974 andHeckman(1990), the effect of the treatment will be defined in terms
of potential outcomesy (i, t) represents the outcome that individuavould attain at time in
absence of the treatment. In the same fashidtii, t) represents the outcome that individiial
would attain at time if exposed to the treatment. The effect of the treatment on the outcome for
individuali at timet is then naturally defined &G, t) — YO, t).

The fundamental identification problem is that for any particular individuahd time
periodt, we do not observe both potential outconY®si, t) andY1(i, t); so we cannot compute
the individual treatment effedt’(i, t) — YO(i, t). We only observe the realized outconyaj, t)
that can be expressed¥g, t) = YOG, t)- (1— D(i, t)) + Y1(i,t)- D(,t). Since, in the simple
scenario considered here, the treatment is only administered after petiddl we can denote
D() = D(, 1), then we have tha¥(i,0) = Y°Gi,0) andY(,1) = Y%, 1) - (1 - D()) +
Yii, 1) - D).

Given the impossibility of computing individual treatment effects, researchers often focus
on estimating some average effect, like the average effect of the treatment on the treated
E[Y1(i,1) — YOI, 1) | D(i) = 1] (seee.g.Heckman 1990. Sometimes, when the desired level
of aggregation is lower, researchers try to learn about some conditional version of the average
effect on the treate®@[Y1(i, 1) — YO(i, 1) | X(i), D(i) = 1].

For the rest of the article, the individual arguméentill be dropped to reduce notation. | will
take the next assumption to hold throughout this article.

Assumption 3.1. E[Y°%(1) — Y%©0) | X, D = 1] = E[Y°(1) — Y°(0) | X, D = 0].

AssumptiorB.1is the crucial identifying restriction in DID models. It states that, conditional
on the covariates, the average outcomes for treated and controls would have followed parallel

3. Blundellet al. (2001) propose a related estimator which combines DID and matching on the propensity score.
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paths in absence of the treatmémtlotice that wherE[Y?(0) | X, D = 1] = E[Y%0) | X,
D = 0], Assumption3.1 collapses to a “selection on observables” restrictigfiY%(1) | X,
D = 1] = E[Y%1) | X, D = 0]) which can be used in cross-sectional studies to identify the
effect of the treatment on the treatdé@herefore, the results in this article also apply to this
particular situation. This is the case for Ashenfelter’s dip example, discusS=tiion2. | will
come back to this point iBection3.2

Existence of the expectations is assumed throughout. Under AssurBptjahe effect of
the treatment on the treated conditionalXman be expressed addéckmaret al.,, 1997:8

EfyX1) — Yo1) | X,D = 1] = {E[Y(1) | X, D = 1] — E[Y(1) | X, D = O]}
—{E[Y(0) | X, D =1]— E[Y(0) | X, D=0]}.  (9)

Even when Assumptior8.1 holds unconditionally, if it also holds conditional on some
predetermined covariates of interesty.gender), we may still use the conditional identification
result to evaluate the effect of the treatment for different groups of the populatigrvpomen
VS. men).

In principle, the identification result in equatiof)) (can be used to estimat[Y(1) —
YO(1) | X, D = 1] by producing non-parametric estimates of each one of the four expectations
on the R.H.S. of equatior9). In practice, the number of observations required to attain an
acceptable precision for this type of non-parametric estimator increases very rapidly with the
dimension ofX. This problem, often called the curse of dimensionality, may prevent us from
using non-parametric estimators fBfY1(1) — YO(1) | X, D = 1] in many practical instances.
In addition, a simple non-parametric estimatorgr (1) — YO(1) | X, D = 1], directly based
on equation 9), may be difficult to interpret if the dimension of is larger than two, so we
cannot summarize the result in a graph. In those cases, some integration over the distribution of
X for the treated is required in order to produce summary statistics. Even then, the estimation
process is cumbersome. An estimator of average treatment effects for the treated directly based
on equation9) requires estimating four conditional expectations non-parametrically (or two if a
sample with repeated outcoma&g0) andY (1), for the same individuals is available) and then
integrating the estimates to the desired level of aggregation.

This article proposes simple weighting schemes to produce estimators of the average effect
on the treatedE[Y1(1) — Y°(1) | D = 1] and parsimonious parametric approximations to its
conditional versiorE[Y1(1) — Y°(1) | Xk, D = 1], whereX is a function ofX (for example,

4. Using experimental datdsleckmanet al. (1997 1998 have shown the plausibility of this identifying
assumption in the context of the evaluation of a subsidized training programme.

5. In that case, Assumptiad 1 implies E[Yl(l) - YO(l) | X,D =1] = E[Y() | X,D = 1] — E[Y(Q) |
X, D = 0], and pre-treatment data are not required to identify the average effect of the treatment on the treated. If, in
addition,E[Y1(1) | X, D = 1] = E[Y1(1) | X, D = 0], thenE[Y1(1) — YO(1) | X] = E[Y(D) | X, D = 1] — E[Y(1) |
X, D = 0]. Selection on observables implies that all factors which confound simple comparisons of outcomes between
treated and controls are observed. This is a too stringent assumption if the distribution of unobserved variables which
affect the outcome is believed to differ between treated and controlse §elRubin (1977 andHeckmanret al. (1997).

6. A researcher could be interested in estimafity1(1) | X, D = 1] andE[Y®(1) | X, D = 1] separately.
Since Yl(l) is observed for the treated, both conditional expectations are identified. In fact, givehrlthat is
observed for the treated, identification results Bpy1(1) — YO(1) | X,D = 1] are equivalent to identification
results onE[Yo(l) | X,D = 1]. Here, | concentrate on the differen&gY1(1) — Yo(l) | X, D = 1] because it
has been the object of interest in the difference-in-differences literaturee(geldeckmanet al. (1997, 1998). Notice
also that Assumptio.1 by itself does not identify the average treatment effects conditional only on the covariates
(Ery1@) — YO | X]), unless conditional average effects coincide for treated and untr&aét(1) — YO(1) |
X,D = 1] = E[YY@) — YO1) | X, D = 0]. The reason is that Assumpti@1 identifies E[YO(1) | X, D = 1],
and therefore, the effect of the treatment on the treated. However, AssurﬁptitemvesE[Yl(l) | X, D = 0] totally
unrestricted; so the effect of the treatment on the untreated is also unrestricted.
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a subset of the variables iK). The weighting scheme is directly based on the propensity
score,P(D = 1 | X), which is the only function which needs to be estimated in a first
step. As a result, the proposed method reduces the first step estimation burden and allows
the researcher to use four or two times more observations for first step estimation, relative to
direct estimation of equatiorB). In practice, this feature may be an important advantage if
non-parametric estimation is carried out in the first step. When the number of observations
is too small for non-parametric estimation in the first step, the proposed method allows the
researcher to circumvent the curse of dimensionality by placing parametric restrictions on the
propensity score, which leaves[Y1(1) — YO(1) | Xk, D = 1] unrestricted, rather than on
each one of the conditional means of equati®n Which may impose unwanted restrictions on
E[Y11) — YO(D) | Xk, D = 1].

The estimation of parametric approximations EY1(1) — YO(1) | Xk, D = 1] has
some benefits. First, it provides a simple method to produce estimation results at the level of
aggregation desired by the analyst. In addition, the results are parsimoniously summarized by
the estimates of the parameters that define the approximati®pvti(1) — YO(1) | Xk, D = 1].
However, the quality of the information provided by our estimators will be low if the quality of
the approximation t&E[Y1(1) — YO(1) | Xk, D = 1] is poor.

Since the object of study is the effect of the treatment on the treated, the minimal
requirement for the problem to be well defined is that some fraction of the population is exposed
to the treatment. In addition, since identification is attained after controlling for the effect of some
covariatesX, it will be required that for each given value of the covariates there is some fraction
of the population that remains untreated and can be used as controls.

Assumption 3.2. P(D = 1) > 0and with probability one PD = 1| X) < 1.

Note that Assumptior8.2 implies that the support of the propensity score for the treated is a
subset of the support of the propensity score for the untreated. This is a well-known condition
for identification of the average impact on the treated under selection on covariates.gsee,
Heckmanret al., 1997).

3.1. Random sample with repeated outcomes

In this section, | introduce the identification strategy proposed in this article by considering the
situation in which we can observe both pre-treatment and post-treatment outcomes for a random
sample of the population of interest. Examples of applications of DID estimators to data on
repeated outcomes afeard and Kruege(1994, Heckmanet al. (1997 1998, Garvey and

Hanka (1999 and Blundell et al. (200]). Under this sampling scheme, for each individual in

our sample we observeY (1), Y(0), D, X). Later in the article, the identification procedure is
extended to repeated cross sections.

Lemma 3.1. If Assumption3.1 holds, and for values of X such that< P(D = 1 |
X) < 1, we have EY1(1) — YO(1) | X, D = 1] = E[po - (Y(1) — Y(0)) | X], where
B D-—P(D=1]|X)
T PMD=1|X)-A=P(D=1|X)’

£o

For notational convenience, lpy = —1 if P(D = 1 | X) = 0 (this choice is inconsequential
since the objects of interest will be integrals over the distribution oiktleenditional onD = 1).
The average effect of the treatment for the treated is given by
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ElYYD) -Y°) | D=1= / ElYY1) - Y%1) | X, D =1dP(X | D = 1)

- / Elpo- (Y(L) — Y(0)) | X]dP(X | D = 1)

P(D=1|X)
=E |:,00 (YD) - Y(0) - W]

YD) -Y©O D-P(D=1]|X)
- |:P(D=1) '1—P(D=1|X)]

(10)

In words, under Assumptior&1and3.2, a simple weighted average of temporal differences in

the outcome variable recovers the average effect of the treatment for the treated. The weights
depend on the propensity score. On an intuitive level, this scheme works by weighting-down
the distribution ofY (1) — Y(0) for the untreated for those values of the covariates which are
over-represented among the untreated (that is, withR® = 1 | X)/P(D = 0 | X)),

and weighting-upr' (1) — Y (0) for those values of the covariates under-represented among the
untreated (that is with higk(D = 1 | X)/P(D = 0| X)). In this way the same distribution of

the covariates is imposed for treated and untreated.

Equation (0) suggests a simple two-step method to estimate the average effect of the
treatment on the treated under Assumpti@s and 3.2 (i) estimate the propensity score,
P(D = 1| X), and compute the fitted values for the sample; (ii) plug the fitted values into
the sample analogue of equatidrd) to obtain an estimate d&[Y1(1) — Y°(1) | D = 1].

In many practical instances, the desired level of aggregation is lower than the entire treated
population and the analyst wants to study how the treatment affects the treated for different
groups of the population. As explained above, a non-parametric estimagg¥df1) — YO(1) |
X, D = 1] may be difficult to interpret, especially if the dimensionfs large. Such a problem
is circumvented here by focusing on parametric approximatioB$Yd(1)—Y°(1) | X, D = 1].

More generally, consider the situation in which we need to condition on some vector of random
variablesX to attain identification, but we are interestedfY1(1) — Y°(1) | Xk, D = 1],

where Xy is some deterministic function of.8 This situation is relevant when the number of
covariates needed in order to attain identification is large, so the analyst may be willing to allow
for a higher level of aggregation in the second step in order to obtain parsimonious results.

Consider a class of approximating functiofis= {g(Xx;0) : 6 € © c RX}, square-
integrable with respect t&(Xx | D = 1). Then, a least squares approximation frgno
E[Y1(1) — YO1) | Xk, D = 1] is given byg(X; 6o) where

6o = argmin .o E{EIYY(D) — YO(D) | Xi. D =11 —g(Xi: ®}? | D =1].  (11)
For example, itG = {Xj0 : 0 € ©® C RX}, thendp defines a linear least squares approximation
to E[Y1(1) — YO(1) | Xk, D = 1]. It is assumed thaty exists uniquely.
Proposition 3.1. If Assumption8.1and3.2hold, then
6o = argminyco E[P(D =11 X) - {po - (Y(L) = Y(0)) — g(Xk; ))°1.

7. Similarly, Heckmanet al (1997 use matching on the propensity score to account for imbalances in the
distribution of the covariates between treated and untreated. Matching on the propensity score works because it imposes
the same distribution of the covariates for the two groups Reesenbaum and Ruhif©983.

8. For exampleXyx may contain a subset of the variablesXnIn other instancesX may contain indicators for
all different values of a discrete variable includedXp.
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As before, it is easy to construct a two-step estimator based on the sample analogue of the result
in the last proposition. After some algebra, the result in equafiGnhgan be obtained applying
Proposition3.1to the case wheg(Xy, #) is constant.

3.2. Some extensions and particular cases

This section contains extensions to repeated cross sections, and multilevel treatments. It also
discusses the case of selection on observables.

3.2.1. Repeated cross sectionsOften, a random sample with repeated outcomes is not
available. In such a case, repeated cross-section data-sets (pre-treatment and post-treatment)
may be used to construct DID estimators. However, the use of repeated cross sections for DID
presents some issues of data availability. First, treatment status (in the post-treatment period)
must be known for the individuals in the pre-treatment sample. This requirement is satisfied, for
example, if treatment exposure can be determined from some individual characteristic observed
in both periods: 10 In addition, covariates must be observed in the post-treatment sample. Since
covariates are often pre-treatment variables, this second requirement may prove a problem when
covariates are time-varying and there are not retrospective covariate data available. Examples of
applications of DID estimators with covariates to repeated cross sectio@aet€l99Q 1992,

Meyeret al. (1999, Eissa and Liebma(1996, Acemoglu and Angris2001), Corak(2001) and
Finkelstein(2002. Here, | show how to apply the methods proposed in this article to repeated
cross sections. The data requirements are the same as for traditional difference-in-differences
estimators which use cross-sectional data and covariates.

Assume that random samples are available for the pre-treatment and the post-treatment
periods. For each individual in the pooled sample (post-treatment and pre-treatment), we observe
Z = (Y, D, T, X) whereT is a time indicator that takes value one if the observation belongs to
the post-treatment sample.

Assumption 3.3. Conditional on T= 0, the data ard.i.d. from the distribution ofY (0),
D, X); conditional on T= 1, the data ard.i.d. from the distribution ofY (1), D, X).

This sampling scheme produces the following mixture distribution:
Pu(Y=y,D=d, X=x,T=t)=2-t-PYQD =y,D=d, X=Xx)
+(1=2)-A-1) PO =y, D=d, X=X,

wherei € (0, 1) reflects the proportion of the observations sampled in the post-treatment
period!! Let Ey[-] denote expectations with respectRg (-).

Lemma 3.2. If Assumption8.1and3.3hold, and for values of X such th@t< P(D =
1] X) <1, we have EY1(1) — YO(1) | X, D = 1] = Eml¢o - Y | X], where
_ T-1 D-—P(D=1]X)
T A-1=2) PMD=1|X)-P(D=0|X)’

Yo

9. Note that identification requires in turn that such individual characteristic is excludedfr@therwise, the

support condition in Assumptio®.2would be violated. This exclusion restriction is problematic if the excluded variable
influences the dynamics of the outcome variable, so Assumptibis not plausible.

10. The requirement may also be satisfied in other cases, for example when the pre-treatment sample can be linked
to administrative data records on treatment participation.

11. For simplicity, | do not consider more complicated situations in which the data may be generated by stratified
sampling (onX or D). In such a case, the results in this section apply for a suitably reweighted sample.¢see,
Wooldridge 2003).
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Then, following a reasoning similar to that of the previous section we have that the average
treatment effect on the treated is identified by

£ P(D=1]|X)
M TPD=1
The following proposition is analogous to Propositihi.

90 Y} = Eryt) - Y°w) | D =1]. (12)

Proposition 3.2. If Assumptions3.1, 3.2, and 3.3 hold, then for 8y defined in
equation(11) we have

6o = arg iy Em[P(D = 1| X) - {po- Y — g(Xk; 0)}°]. (13)
The result in equationl@) can be obtained by considering a cons@gXg, 6) in equation {3).

3.2.2. Selection on observables.In the previous section, it is shown how to approximate
conditional average treatment effects by first weighting temporal differences in the outcome
variable on the propensity score, and then projecting the weighted differences on a set
of parametric functions of the covariates. The interpretation of the resulting functionals as
approximations to conditional average treatment effects comes from the difference-in-differences
condition in Assumptior8.1. However, it should be noticed that the same “first weight, then
project” strategy can be applied in other contexts. In particular, the results in the previous section
carry over naturally to “selection on observables”:

E[Y%Q) | X, D =1] = E[Y°(1) | X, D = 0. (14)

The reason is that “selection on observables” can be expressed as a particular case of
Assumption3.1 (when E[Y%(0) | X,D = 1] = E[Y%0) | X,D = 0]). As a result, if
equation 14) holds, then

6o = argmin, .o E[P(D = 1| X) - {po- Y — g(Xk; )}?],

for 6o defined in equationl(l) andY = Y (1).12123 Similar estimators have been considered in
Wooldridge(2001). Imbenset al. (2003 consider the situation in which the average treatment
effect is estimated for a given distribution of the covariatébadie (2003 applies similar
approximation methods in the context of instrumental variable models for treatment effects.

3.2.3. Multilevel treatments. So far, we have considered only the case of a binary
treatment, which is the usual focus of DID estimators. However, the same ideas can be applied
when individuals may be exposed to different levels (or doses) of the treatmeh. tegiresent
the level of the treatment. For untreated individuals Viet= 0. For the treated, suppose that
W takes on a finite number of positive values < --- < w3, with positive probability** Let

12. For this case, it is useful to define = Y (1) because equatiori{) may be adopted as an identification
restriction in absence of measures on the outcome variable in a pretreatment period. However, as shown for Ashenfelter’'s
dip example, it may be necessary to condition on the values of the outcome variable in a pre-treatment period in order
for equation 14) to hold.

13. Alternatively, if the objects of interest are average treatment effects conditional only on the covégiates,
can be redefined a& = argmin.gE[{EIY1(1) — YO(1) | Xkl — g(Xk.6)}2]. However, equationl@) does not
identify the effect of the treatment on the untreated because it leBpe(1) | X, D = 0] completely unrestricted.

If we assume in addition thaE[Y1(1) | X,D = 1] = E[Y@) | X, D = 0], thenédy is identified bygy =
argminye El(po - Y — 9(Xk; 0))2].

14. Here, | assume that treatment levels are ordeeegl fumber of weeks in a training programme). For
expositional simplicity and since it is often the case in applications, | consider only a finite number of treatment levels.
However, the analysis presented in this section can be generalized to continuous treatments by substituting densities for
W for probabilities forW, and integrals over those densities for sums.
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Wt = {wi,..., w3}, thenD = 1+ (W), where L(-) is the indicator function for the sei
(thatis, Ja(w) = 1if w € A, zero otherwise). Fap € {0}UW™ andt € {0, 1}, let Y¥(t) be the
potential outcome for treatment leweland period. Suppose that Assumpti@Zlholds for each
treatment levelE[Y?(1) — YO(0) | X, W = w] = E[Y?(1) — YO0) | X, W = O], forw € W.
In words, this assumption requires that, in absence of the treatment, the average outcomes for
all treatment groups would have followed parallel trends, conditional on the covariates. As in
the usual DID case with a binary treatment variable, the assumption allows the levels of average
potential outcomes without the treatment to differ arbitrarily between treatment groups.

Forw e W, letpy = (Ljuy(W)/P(W = w | X)) —(Lioy(W)/P(W = 0| X)). (Note that,
for pg defined in Lemma&.1, pg = p&.) Then, following the same reasoning as for Lenm3rh
we obtainE[py (Y(1) — Y(0)) | X] = E[Y*(1) — YO(1) | X, W = w]. In addition, for some
class of square-integrable approximating functigns {g(W, Xy; 6) : 6 € ©}, redefine

6o = argmin, .o ELEYW (D) — YO(1) | Xi, W1 — g(W, Xk: 0))* | D =1].  (15)

The parameterg define a least squares approximation to a function describing average effects
for the treatecdE[Y™ (1) — YO(1) | Xk, W = w]. Then, these parameters are identified by

0 = : J o w) _ _ v a2
b =argmin o E [Zj_l PW =wj | X)(pg (YD —Y(0) — g(wj, Xk; 0)) ] .

This result collapses to the result in Proposititif W is binary, and can be proven using the
same argument as for Propositigri.

4. ESTIMATION AND ASYMPTOTIC DISTRIBUTION

For concreteness, | will concentrate here on linear approximaticBptd(1) —YO(1) | Xk, D =

1] where Xk is a deterministic function oX. In addition, only the case of repeated cross
sections is explicitly considered here. However, the analysis is also valid for the case of repeated
observations ifY (1) — Y (0) is substituted fof(T —1)/A(1— 1)) - Y, and expectations are taken

with respect to the distribution @¥ (1), Y (0), D, X). Consider

Bo = argmirg.o Emlmo - {poY — X B}
whererg(X) = P(D =1 X), and
_ T-1 D — mp(X)
T A=n) m(X) - A-m(X)’
Consider also the following estimator 8§:
-1
B= <} Zin:l inﬁ(xi)x/ki) % Zin:l Xt (Xi)@i Vi,

n

2)

(4

wherer (Xj) is an estimator ofrg(X;), and

. Ti-a Di — (X))

ATRA—n EXD-A-70))
for A = n1/(ng + n1). Under the conditions of the theorems stated beBSW,weII defined with
probability approaching one.

4.1. Non-parametric first step estimation of the propensity score

Here, | consider the case in which non-parametric (power series) regression is used in a first
step to estimaterg. Let ¢ = (¢1,...,¢ ) be a vector of non-negative integers wherés
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the dimension ofX. Also let X¢ = ]_[rjzl_ ij and|¢| = Z_rjzl 5. Let (£}, be a
sequence containing all distinct vectarswith |¢| non-decreasing. For a positive integer
let pK(X) = (pik (X), ..., pkk (X)) wherepkk (X) = X¢®_ Then, fork = K(n) - oo a
power series non-parametric estimatorgfis given by

7(X) = p“(X)7 (16)

where 7 = O, pROX) PR X))~ (L, pK(X)Di) and A~ denotes any symmetric
generalized inverse of the matrix

Assumption 4.1. (i) K&/n = o(1), mo(X) is continuously differentiable of order s, and
nK=28/" = O(1); (ii) the support of X is a Cartesian product of compact intervals on which
X has density that is bounded away from z€iid); 7o(X) is bounded away from zero and one;
(iv) Bo is an interior point of a compact s&@ c RK; (v) EmY?2 < oo, || Xkl is bounded, and
E[XkX | D = 1] is non-singular.

x] |

Theorem 4.1. If ng,n1 — o0, N1/(Ng +n1) = A € (0,1) and Assumption8.1, 3.3
and 4.1 hold, then #/2(8 — Bo) < N, V), where V = Q12Q%, Q = E[XkDX{l,
Z = Emy '], ¢ = Xeo(X) (goY — Xy Bo) + 8(X) - (D — mo(X)).

Let
T—x D-1
A-(1=A) (1-mg)?

3(X) =Em |:Xk< ~Y—Xf</30)

To construct an estimator of the asymptotic varianceylet Q-1 Q~1, where
1

O — " %D X! s_1y" oo
Q== XaDiXy,  Z=_-3" v,

TIX: ) — n . Ti—2 . Di —1 v ¥ 2\ nKex.V
5(X')_(Zi=lxk' (Ml—x) aA—702 " Xk'ﬂ>p (X')>

x (300, PR OOp< ) Ko

i=1

andyi = X @ X))@ Y — XILiB\) +3(Xi) - (D —7(X))). The following theorem establishes
the consistency of .

Theorem 4.2. If the assumptions of Theorefrl hold and K'/n — 0, thenV 3 V.

4.2. Parametric first step estimation of the propensity score

Often, samples are too small to use a non-parametric estimator in the first step. This is particularly
likely when the analyst deals with longitudinal data-sets. In such cases, it may be convenient
to use a parametric restriction in the first step and estimate the propensity score by maximum
likelihood. This section provides distribution theory for that case. The results include probit,
logit and linear probability first step estimationf as special cases.

Assumption 4.2. (i) yp is an interior point of a compact sdét C R'; (ii) the support
of X is a subset of a compact set S[XX'] is non-singular;(iii) there is a(known function
7 :R — [0, 1] such thatrg(X) = 7 (X'yg); (iv) letV = X'y : x € S,y € T};forv € V,
7 (v) is bounded away from zero and one, strictly increasing and continuously differentiable with



ABADIE SEMIPARAMETRIC DIFFERENCE-IN-DIFFERENCES 13

derivative bounded away from zero and infinify) So is an interior point of a compact set
©® c RX; (vi) EmY?2 < o0, || Xk|| is bounded, and EXk X} | D = 1] is non-singular.

Under this assumptiony can be estimated by maximum likelihood:

A 1 n ’ /
y=agmaxc - . Dilogm(X{y)+ (1 - Di)log(l —7(X{y)).

Then, 7(Xj) = =(X{y). Boundedness ofX is not a necessary restriction but allows
Assumption4.2 to encompass maximum likelihood estimation of the logit, probit and linear
probability models. For simplicity, and since in most ca¥gss some subset of the variables in
X, Xk is also assumed to be bounded. If the covariates are discrete and theX/éz&aturated
with indicators of all the possible values of the covariates, then the functional formshot
restrictive and the estimation @f(X) is completely non-parametric.

Let 7 = 0m(v)/dv and g = 7(X'yg). Under standard regularity conditions.d.
Assumptiomd.2()—(iv)), 7 is asymptotically linear, that isY/2(7 —yo) = n=Y2 31| 4,0 (Zi) +
0p(1), where

mo(1 — mo) mo(1 — mo)

L 1 .
Vyo(Z) = E [”—Oxx’} X—20 (D — ). (17)

Let

M EM X )\‘ Y - X/ /3() '()X/
o k )\.(1 - )\.) (1 - 7T0)2 K

Theorem 4.3. If ng,n; — o0, n1/(ng +nN1) = A € (0,1) and Assumption8.1, 3.3
and 4.2 hold, then/n(8 — Bo) LY N(O, V), where V = Q712Q71, Q = E[X«DX],
2 = EM[WW/L w = m(zs ﬁ()s VO) + M)/ow}/[)l m(zv ﬂ()v VO) = Xk”O[‘PO : Y - X{(ﬂO]

LetV = Q1201 where
A 1 / S 1 T
Q=2) 1 XiDiXg.  S==3"" Wi,
R el o Ti—A Di-1 ot A oy !
W7 = 5 21 X (m—x) =72 Xk"g> O
-1
~ (1w 7 (X(P)? o _ T (X{y) oy
vrta) = <ﬁ L F a7 X‘) M@ —moxy T

andyi = X7 (X))@ Yi — X B) + Myi5(Zi). The following theorem establishes consistency
of V.

Theorem 4.4. If the assumptions of Theore#n3 hold and (v) is twice differentiable
with bounded second derivative i) thenV Bv.

5. CONCLUSIONS

In this article, | have introduced a family of semiparametric difference-in-differences estimators

of treatment effects based on conditional identification restrictions. These estimators may be
particularly appropriate when the distribution of observed characteristics that are thought to
be related to the dynamics of the outcome variable differs between treated and untreated.
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Identification does not entail parametric restrictions. However, the methods presented here can be
used to estimate parsimonious parametric approximations to conditional versions of the average
treatment effect for the treated.

APPENDIX. PROOFS
Proof of Lemma&.1. For0< P(D =1| X) < 1, we have that
Elpo- (Y(D) = Y(0) | X] = El[po- (Y() = Y(0)) | X,D=1]- P(D=1] X)
+Elpo- (Y() = Y(0) | X,D=0]-P(D=0] X)
=EYQD-YO | X,D=1-E[YQD) -YO | X,D=0].
Applying equation 9) we obtain the result. ||
Proof of Propositior8.1  LetG(9) = E[P(D =1 X)-{pg-(Y(1)—-Y(0))—g(Xk; 0)}2]. Adding and subtracting
ErY1@ — YO(1) | Xk, D = 1], we obtain
G@®) = E[P(D=1]X)-{pg- (YD) — Y(0) — E[Y1D) - YO(1) | Xk, D = 11}?]
+E[P(D =1 X) - {E[YYD) - YO) | Xk, D = 1] — g(Xk; )}2]
+2E[P(D =1 X)-(pg- (Y(1) = Y(0) — E[YL(D) = YO(1) | X, D = 1))
x (E[YX(D) — YO(1) | Xk, D = 1] — g(Xk: 0))]. (A1)

The first term on the R.H.S. of equatiof.) does not depend ah
By the law of iterated expectations, the second term on the R.H.S. of equatigng equal to

E[D - {E[Y (D) - YO(1) | Xk, D = 1] — g(Xk: 0))°]
= EHEYY@) - YO() | Xk, D = 11— g(Xk; )}? | D = 1]P(D = 1).

Therefore, by AssumptioB.2and equationX(1), the second term on the R.H.S. of equatiéril] is minimized a®.
The expectation in the third term on the R.H.S. of equathkd)is equal to

E[E[P(D =1 X) - (po- (Y(1) = Y(0) — E[YX(1) = YO() | X, D = 1]) | Xk]
x (E[Y1(D) — YO(1) | Xk, D = 1] — g(Xk: 0))].

Applying the law of iterated expectations and Lem8na

E[P(D=1]X)-po-(Y(1) = Y(0) | Xkl = E[P(D = 1| X)Elpg - (Y(1) — Y(0)) | X] | Xk]
=E[P(D =1] X)E[YL(D) - Y1) | X, D = 1] | X¢] = E[E[D(Y1(1) — YO(1)) | X] | Xl
= E[D(YY(D) — YO) | Xkl = P(D = 1] Xp) - E[Y1(D) - YO() | X¢. D = 11.

Therefore,

E[P(D=1]X)- (oo~ (Y(D) = Y(0) — E[Y}(D) — YO) | Xi. D = 1]) | Xi]
=E[P(D=1|X)-po- (YD) = Y(O) | X]— P(D = 1| XEY D) - Y°(1) | X¢. D =1] =0.

Consequently, the third term on the R.H.S. of equathknd) is equal to zero, and the result of the proposition holdsg}

Proof of Lemma.2  Notice that

Emlgo-Y | X1 = Em[Emlgo-Y | X. T1| X1 = Em[Elgo-Y | X. T1| X]
— Elpo-Y X, T=1—Elpo-Y | X, T =0]=Elp- YD | X - Elpo- YO | X]
— (EIY(D) | X, D = 1] — E[Y(1) | X, D = 0]} — (E[Y(0) | X, D = 1] — E[Y(0) | X, D = O}},

and the result follows from equatioB)( ||
Proof of Propositior8.2  The proof follows the same steps as the proof of Proposgitn

Proof of Theorend.1  Let| - | denote the supremum norm. By Assumptibi(i), (i) and Theorem 4 ilNewey
(1997, it follows that | — mglec = Op(K - [(K/mY2 + K~S/"]) = 0p(1). Letm(Z, B, 7) = Xk (p(7) - Y — X[ B).
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Assumptiond.1(v) guarantees thaEy [Mm(Z, B, mg)] has a unique zero @y = (E[anoxl/(])—lEM [XkmopoY]. In
addition,

1 n - 1 n R
SUeo | =i, M(Zi. f.7) — EMIM(Z. B, 70)]| < SUgeq |~ D M(Zi. f.7) —M(Zi. p.70)
1
+SUgeo | Zinzl m(Z;, B, mo) — EmIM(Z, B, ﬂo)]” . (A.2)
Let
, L Dj — mo(X)
P0i

T @) mX) - A—mo(X)
Notice thatm(Z;, 8, @) — M(Z;, B, mo) = Xki {@(Xi) @i — mo(Xi) woi) Yi — @ (X;) — mo(X))) Xi; B}, and

i — A . Dj -1
AL1=2) A-7X)NA—m(Xi))

T(Xi) @i — mo(Xi) poi = < (@(X)) = wo(Xi)).
By Assumptiond. 1(iii) and uniform convergence cf, with probability approaching ore is bounded away from one
and there is a consta@tsuch that
1 n ~
<C- o3 X Yill+ X IZIBINIE = moloo-

1 R
SUpsco | = D,y M(Zi. B 7) — M(Zi. B 70)

Therefore, the first term of the R.H.S. of equatighn2) is op(1). Assumption4.1 also implies thatlm(Z, g, o) |l
is dominated by an integrable function. Then, sine€Z, 8, 7g) is continuous at eac € ® compact, Lemma 2.4
in Newey and McFadde(iL994 implies that the second term of the R.H.S. of equatir?) is alsoop(1) and that
E[m(Z, 8, 7p)] is continuous. Now, the usual consistency argument for estimators based on moment ecgiaticans (

der Vaart(1998 Theorem 5.9)) proves th§t—p> Bo-
Since|7 — mgleo CONVerges in probability to zero, with probability approaching oné Zin=1 Xki T (Xi) X is
non-singular and

nY/2(B - po) = (% S xkiﬁ<xi>><’ki) B % S XATD@ Y — X o).
Since Xy has second moments,
1 n R
=21 X T (XD X = EIXkD X + 0p(D).
Now, let us prove that
Tr M@ o B = = S RN~ Xigho) = = 31 w20+ op

Consider

d T—2 D-1
A(Z 7)=—mZ ) =Xe| ———— ——— .Y =X] ST
(Z,7, B, 7) (an ( ,ﬂ,n)\z_n> w k[k‘(l_}h) 1_72 kﬂ} m
It can be easily seen that far, 7 bounded away from one we have
T-—2x D-1
m(Z, B, m) —m(Z, B, 7) = AM(Z, 7w =7, B, 7) = X - Y (=72

AA-n A-mL-7)2

Therefore, since, with probability approaching offe— 7)1 is bounded by some consta®t we have

1 n ~ ~
H o Y . M(Zi. fo. @) = M(Zi. fo. 70) — A(Zi, T — mo. Po. o) H

1 n i— A Dj -1
1/2 2 . | i .
<n T — T C. - . Xki - . -Yi | = op(2).
= | 0l5 n E i 1” ki A d-n @ 0)2 IH p( )

This result holds because Assumptibd(i) implies thatn/2K 2. (K /n+K =25/7) — 0, and thereforal/2|7 —zg|2, =
0p(1). The assumptionEp |Y| < oo, || Xk|| bounded andrg bounded away from one take care of the sample average
term. Therefore

1 N 1 1 ~
% Z?:l m(Zj, fo, @) = % Zin:l m(Z;, Bo, mo) + ﬁ Zin:l A(Zi, @ — 70, Bo. mo) + 0p(D).
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Note that| A(Z, 7, Bo. 7o)l < B(Z) - |7|oo With B(Z) = | X [(T = )/ (- (1= 2))]-[(D = 1)/(1 = 70)?]- Y — X; Boll-
By Em Y2 < 00 and || Xk|| bounded, we have th&t), b(Z)2 < oco. Then, it follows from the proof of Theorem 6.1 in
Newey (1994 that

LS @z EmIA(Z, 7
T iz | A ® = 70, fo.m0) — EmIA(Z. 7 — 0. fo, m0)])
= Op(K™/") + Op(K - [(K/mY2 4+ K~%/"]) = 0p(1).
Note thatEm [A(Z, 7, Bo, o)1 = E[8(X)m(X)]. If:
(a) ForeactK, there existgy such thaE[||s(X)—&k pX (X)[12] — 0andnK~=25/T E[||s(X)—&k p¥ (X)[2] — O,

(b) K3/n— 0,
(¢) K2.K=3/T 5 0,

then, Assumption 6.6 ilNewey (1994 holds for A(Z, =, Bg, 7g). Condition (a) holds by Assumptiof.1(i) and by
square-integrability af (X). Conditions (b) and (c) follow from Assumptiehi(i). Under such conditiongyewey(1994)
shows that

- 1
N2EMIAZ 7~ 0. fo. mo)] = = 3 506) - (D1 — 70(Xi)) +0p(D:

So the result of the theorem follows from existence of second momerjts of ||

Proof of Theorend.2 By the law of large number® converges in probability t@, which is non-singular. Notice
that
X (X))@ Yi = Xii B) = Xkimo(Xi) (woi Yi — Xii o)

o Ti—)\. Di -1 o Nyl (A
% (G T Fra ooy ) VRO = 7000 = Xa Xy B ~ o)

Now, since|| Xkj || is boundedEp Y2 < o, 70 is bounded away from zero, aif@d — 7g|oo and||B\f Boll areop(1), we
obtain

1 - . N ,
a Zin:l IXki Z (XD @ Yi — Xii B) — Xkimo(Xi)(@ai Yi — Xii o)lI2 = op(D). (A.3)

Forz bounded away from one, we have that
T-2 (A-np)+@Q-m)
A= h T a-m2ZA - 0?2

AZ, 7, B, m) — MZ, 7, Bo, Q) = {(X (D - 1)Y) (T — 7o) — Xk X (B */50)}7?

Therefore, there exists some functidug,), such thal| A(Z, 7, 8, 7) — A(Z, 7, Bg. o) || < b(Z)(|m — mgloo + 1B —
BolD |7 |oo With Epb(Z) < oo. This result, along With<7/n — 0 guarantees that

1 = _
=3 1B (DI = 7(Xi) = (X)) (Di = mo(Xi)I? = 0p(1) (A.4)

(seeNewey, 1994. Equations A.3) and @A.4), along with the Triangle and &lder’s inequalities, impl@ L . Asa
result,V £ V. |

Proof of Theoren#.3.  First, let us prove that under Assumptidn2(i)—(iv), ¥ is asymptotically linear with
influence function given by equationl?). By Assumption 4.Xii), E[XX'] is non-singular, thereforgy —
o) EIXX'1(y — yg) > O fory # yp. As a result, fory # yg, X'y # X'y in a set of positive probability.
Sincen (v) is strictly increasing iv € V, we have thatr(X'y) # n(X'yg) in a set of positive probability. Let
m, = Dlog(@(X'y)) + (1 — D) log(1 — 7 (X'y)).

Elm, —my, | X] = E[Dlog(x(X'y)/m(X'yg)) + (L — D) log((L — 7 (X'y))/(L = 7 (X'yo))) | X]
= 7(X'y) log(m (X'y) /7w (X'y0)) + (L — 7 (X'y0)) log((1 — = (X'y))/ (L — 7 (X'vp)))
<o0. (A5)
The last inequality follows from log < A — 1, for A > 0, which is strict for» # 1. Sincer(X'y) # m(X'yg) with

positive probability, then the inequality in equatioh.§) is strict with positive probability an&[m,, — m,,] < 0 for
y # yo- Sincer (v) is bounded away from zero and onelnthen the absolute value of,, is bounded by a constant
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for any y € I'. This last fact, along with compactnessIofand S, continuity ofz(-), and Lemma 2.4 ilfNewey and
McFadden(1994 guarantees thd&[m,, ] is a continuous function gf and that

1 n p
SUBjer | = Do M (Zi) - E[my(Z)]H 0.
These conditions are sufficient fﬁr—p> yo (seee.g.Newey and McFadde(1994 Theorem 2.1)).

Now, let us study the asymptotic distribution ¢fi(7 — yg). Assumption4.2 along with Lemma 7.6 ivan der
Vaart(1998 guarantees that, fqp, = 7(X'y)P (1 — 7(X'y)A=D), the mapy + pi/z is differentiable in quadratic
mean with derivative

: ff(X,}’) ’

ly =X————"——(D—a(X"y)).

YT A XA - 2 (X)) 4
Therefore, the mapy +— pll,/ 2 is differentiable in guadratic mean @ with derivative I‘yo. Take a convex open
neighbourhood\,,, of yp contained inl". By Assumption4.2(ii) and (iv), [[am,, /dy || is bounded by a constant on
Ny,. Therefore, by Theorem 9.19 Rudin (1976, [m,, — m,,| < M|y — y2| for anyys, > € Ny, and for some
constantM. Finally notice that, by Assumptio#.2(ii)—(iv), E[I'yol';,o] = E[{ﬁg/(ﬂo(l — mg))}X X'] is non-singular.
Therefore, by Theorem 5.39 iran der Vaar(1998, we obtainn'/2(7 — o) = n=Y2 31| v, (Zi) + op(D).

Letm(Z, B, y) = Xk (X'V)lp(Z, y)Y — X B1. By Assumptiord.2(vi), Em[M(Z, 8, yp)] has a unique zero at
Bo = (E[anoX{(])*lEM [XkmowoY]. Under the assumptions of the theorem, the funcii@d, 8, y) is continuous
at each(, y) € ® x I'. Sincer(X'y) is bounded away from zero and one, and bétand || Xk| have finite first
moments, thedim(Z, 8, y)|| is dominated by a variable with finite first moment. Therefore, by Lemma 2N\kiney
and McFaddeif1994

SURRB,y)e®xT

1 n
=i (i B y) — EmIM(Z, B, mH Lo (A.6)
andE[m(Z, B, y)] is continuous at eactp, y) € ® x I'. By the Triangle inequality,

1 ~
SUpsce |~ 3\, MZi. B.7) — EIM(Z. B. yo)]

1 . -
= SUigeo | Zin:l m(Zi, ,y) — EIm(Z, B, y)]H
+ SUep IEIM(Z, B, 7)1 — EIM(Z, B, yo)lll. (A7)

Equation A.6) implies that the first term of the R.H.S. of equatigha®) is op(1). Continuity of E[m(Z, 8, )] and
consistency o give pointwise convergence for the second term of the R.H.S. of equati@) (iniform convergence
holds by® being compact. These conditions guararﬁeg Bo-

It can be shown thatm(Z, f1. y1) — M(Z. B2, y2)Il < IXkl% - 181 — Ball + (C - [Y] - [Xll + [ Xicl 2118211 -
7 (X'y1) — m(X'yp)||, for someC > 0 andfi, B2 € ©. Using Theorem 9.19 iRudin (1979, it is easy to show
that for y1, yo in some open ball containingg, and X € S, [7(X'y1) — #(X'y2)ll < Mlly1 — y2ll, for some
M > 0. This Lipschitz property, along with the existence of finite second moment¥ famd Xy, implies that the
class of functiondm(Z, 8,y) : |18 — Boll < ¢, lly — yoll < c} is Donsker for some& > 0 (see,e.g.van der
Vaart (1998 p. 271)). In additionEy [m(Z, B, v) — m(Z, Bo, y0)||2 — 0as(B,y) — (Bo. yo)- Existence of finite
second moments fofX|| also implies thab Em[m(Z, 8, y)1/98 = —E[Xkw(X'y)X}] which is non-singular in a
neighbourhood of/y by continuity. Notice thaM,, is the derivative ofEp [M(Z, Bo, )] at yp. Applying the delta
method:nY/2Ey [M(Z, Bo. 7)1 = n¥2My, (7 — y0) + 0p(1). Now, sincey is asymptotically linear, apply Theorem
5.31 invan der Vaar{1999 to get

-~ 1
23— fo) = Q15 Y M(Zi. fo. Y0) + Myt (Z) + 0p(D.

Then, existence of second moments/oimplies the result of the theorem. ||

Proof of Theorend.4.  Like in the proof of Theorerd.2, notice that
X (XD @ Yi = Xi B) = Xkimo(Xi) (w0 Yi — Xii o)

oy Ti—)». Dj —1 ey N v (B
= Xki <)»(1—)») (1—ﬁ(xi))(1—n0(xi))>Y'(”(X') (X)) — Xki X (B — Bo)-

By the Lipschitz property shown above for-), andEp Y2 < oo, we obtain

1 o~
n > Imzi, B 7) — mZi, o, v0)lI2 = 0p(D). A8)
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Continuity of 7 and Lemma 4.3 ilfNewey and McFadde(1994 imply that || M; — Myl = op(D). Using similar
arguments, it can be easily seen that boundednegsimplies thatn ™ 31, ¥7(Zi) — ¥y, lI% = 0p(2). Apply the
Triangle and Hlder’s inequalities to obtain the desired result.|
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