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The difference-in-differences (DID) estimator is one of the most popular tools for applied research
in economics to evaluate the effects of public interventions and other treatments of interest on some
relevant outcome variables. However, it is well known that the DID estimator is based on strong identifying
assumptions. In particular, the conventional DID estimator requires that, in the absence of the treatment,
the average outcomes for the treated and control groups would have followed parallel paths over time. This
assumption may be implausible if pre-treatment characteristics that are thought to be associated with the
dynamics of the outcome variable are unbalanced between the treated and the untreated. That would be the
case, for example, if selection for treatment is influenced by individual-transitory shocks on past outcomes
(Ashenfelter’s dip). This article considers the case in which differences in observed characteristics create
non-parallel outcome dynamics between treated and controls. It is shown that, in such a case, a simple
two-step strategy can be used to estimate the average effect of the treatment for the treated. In addition,
the estimation framework proposed in this article allows the use of covariates to describe how the average
effect of the treatment varies with changes in observed characteristics.

A good way to do econometrics is to look for good natural experimentsanduse statistical
methods that can tidy up the confounding factors that nature has not controlled for us.
(Daniel McFadden,Econometric Tools)

1. INTRODUCTION

The use of natural experiments to evaluate treatment effects in the absence of truly experimental
data has gained wide acceptance in empirical research in economics and other social sciences.
Simple comparisons of pre-treatment and post-treatment outcomes for those individuals exposed
to a treatment are likely to be contaminated by temporal trends in the outcome variable or by the
effect of events, other than the treatment, that occurred between both periods. However, when
only a fraction of the population is exposed to the treatment, an untreated comparison group
can be used to identify temporal variation in the outcome that is not due to treatment exposure.
The difference-in-differences (DID) estimator is based on this simple idea.Card and Krueger
(1994) assess the employment effects of a raise in the minimum wage in New Jersey using a
neighbouring state, Pennsylvania, to identify the variation in employment that New Jersey would
have experienced in the absence of a raise in the minimum wage. Other applications of DID
include studies of the effects of immigration on native wages and employment (Card, 1990),
the effects of temporary disability benefits on time out of work after an injury (Meyer, Viscusi
and Durbin, 1995), and the effect of anti-takeover laws on firms’ leverage (Garvey and Hanka,
1999).

It is well known that the conventional DID estimator is based on strong assumptions.
In particular, the conventional DID estimator requires that in absence of the treatment, the
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average outcomes for treated and controls would have followed parallel paths over time. This
assumption may be implausible if pre-treatment characteristics that are thought to be associated
with the dynamics of the outcome variable are unbalanced between the treated and the untreated
group.

This study considers the case in which differences in observed characteristics create non-
parallel outcome dynamics for the treated and untreated groups. It is shown that, in such a case, a
simple two-step strategy can be used to estimate the average effect of the treatment for the treated.
In addition, the estimation framework proposed in this article allows the use of covariates to
describe how the average effect of the treatment varies with changes in observed characteristics.

Despite the prolific literature on semiparametric and non-parametric methods, few articles
have been devoted to studying and relaxing the DID identification restrictions. Some exceptions
are Besley and Case(1994), Meyer (1995), Heckman, Ichimura and Todd(1997), Imbens,
Liebman and Eissa(1997), Heckman, Ichimura, Smith and Todd(1998), Angrist and Krueger
(1999), Blundell and MaCurdy(1999), Blundell, Costa Dias, Meghir and van Reenen(2001) and
Athey and Imbens(2002).

The identification procedure used in this article originated withHeckmanet al. (1997,
1998). However, the estimation procedure differs from the earlier literature in three ways. First,
it does not require repeated observations for the same individuals. The proposed estimators are
feasible under the data requirements for traditional DID estimators when applied to repeated
cross-sections. Second, it allows the estimation of parsimonious parametric approximations
to the average effect of the treatment on the treated conditional on selected covariates of
interest. Finally, the framework can accommodate multilevel treatment variables (that is, different
treatment intensities).

The rest of the article is organized as follows.Section2 describes the conventional DID
model and discusses some of its limitations.Section3 presents the main identification results
of the article, followed by some extensions. The estimation strategy along with asymptotic
distribution theory is provided inSection4. Section5 concludes. Proofs are presented in the
Appendix.

2. THE DID ESTIMATOR

The basic DID framework can be described as follows. LetY(i, t) be the outcome of interest for
individual i at timet . The population is observed in a pre-treatment periodt = 0, and in a post-
treatment periodt = 1. Between these two periods, some fraction of the population is exposed to
the treatment. We denoteD(i, t) = 1 if individual i has been exposed to the treatment previous
to periodt , D(i, t) = 0 otherwise. We call those individuals withD(i,1) = 1 treated, and those
with D(i,1) = 0 controls(or untreated). Since individuals are only exposed to treatment after
the first period,D(i,0) = 0 for all i .

The conventional DID estimator is often derived using a linear parametric model. It is useful
to consider this formulation of the DID model first, to fix ideas, before studying non-parametric
identification inSection3. The following formulation of the DID model is based on that given in
Ashenfelter and Card(1985). Suppose that the outcome variable is generated by a components
of variance process

Y(i, t) = δ(t)+ α · D(i, t)+ η(i )+ υ(i, t), (1)

whereδ(t) is a time-specific component,α represents the impact of the treatment,η(i ) is an
individual-specific component, andυ(i, t) is an individual-transitory shock that has mean zero at
each period,t = 0, 1, and is possibly correlated in time. OnlyY(i, t) andD(i, t) are observed.
The effect of the treatment,α, is not identified without further restrictions. A sufficient condition
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for identification is that selection for treatment does not depend on the individual-transitory
shocks, that is

P(D(i,1) = 1 | υ(i, t)) = P(D(i,1) = 1) (2)

for t = 0,1. Adding and subtractingE[η(i ) | D(i,1)] in equation (1), we obtain

Y(i, t) = δ(t)+ α · D(i, t)+ E[η(i ) | D(i,1)] + ε(i, t), (3)

whereε(i, t) = η(i ) − E[η(i ) | D(i,1)] + υ(i, t). Notice thatδ(t) = δ(0) + (δ(1) − δ(0))t ,
andE[η(i ) | D(i,1)] = E[η(i ) | D(i,1) = 0] + (E[η(i ) | D(i,1) = 1] − E[η(i ) | D(i,1) =

0])D(i,1). Let µ = E[η(i ) | D(i,1) = 0] + δ(0), τ = E[η(i ) | D(i,1) = 1] − E[η(i ) |

D(i,1) = 0] andδ = δ(1)− δ(0). We obtain

Y(i, t) = µ+ τ · D(i,1)+ δ · t + α · D(i, t)+ ε(i, t). (4)

The restriction in equation (2) for t = 0,1 implies E[(1, D(i,1), t, D(i, t)) · ε(i, t)] = 0,
so all the parameters in equation (4), including the treatment impactα, are estimable by least
squares. Notice that the model allowsanykind of dependence between selection for treatment,
D(i,1) = 1, and the individual-specific component,η(i ). This model is called “difference-in-
differences” because under the identifying condition in equation (2) we have

α = {E[Y(i,1) | D(i,1) = 1] − E[Y(i,1) | D(i,1) = 0]}

− {E[Y(i,0) | D(i,1) = 1] − E[Y(i,0) | D(i,1) = 0]}, (5)

and the least squares estimator ofα is the sample counterpart of equation (5).
This formulation of the problem is useful when repeated cross sections of(Y(i, t),D(i,1))

for t = 0,1 are available. If a sample with repeated pre-treatment and post-treatment
observations of the outcome variable,Y(i,1) andY(i,0), is available, thenα is estimable by
least squares regression ofY(i,1)− Y(i,0) on D(i,1):

α = E[Y(i,1)− Y(i,0) | D(i,1) = 1] − E[Y(i,1)− Y(i,0) | D(i,1) = 0].

Note that equation (2) for t = 0,1 implies thatυ(i,1) − υ(i,0) is mean independent of
D(i,1), and therefore that, in absence of the treatment, the average outcome for the treated would
have experienced the same variation as the average outcome for the untreated. This restriction,
implied by the model, may be too stringent if treated and controls are unbalanced in covariates
that are thought to be associated with the dynamics of the outcome variable.

For example, it has been documented that participants in training programmes experience a
decline in earnings prior to the training period (Ashenfelter’s dip,Ashenfelter(1978)). This fact
suggests that selection for training may be affected by individual-transitory shocks in pre-training
earnings. To accommodate this conjecture,Ashenfelter and Card(1985) propose the following
model for the selection process:

D(i,1) =

{
1 if Y(i,1 − κ)+ u(i ) < Ȳ

0 otherwise,
(6)

whereκ is a positive integer,̄Y is a constant, andu(i ) is a random variable independent of any
variance component. Under this formulation for the selection process, those individuals with
low earningκ periods before training are more likely to participate in the training programme.
The identification condition in equation (2) does not hold in general for this example. The
reason is that the individual-specific components,υ(i, t), are allowed to be correlated in time.
However, if the selection process can be represented by equation (6), then P(D(i,1) = 1 |

Y(i,1 − κ), v(i, t)) = P(D(i,1) = 1 | Y(i,1 − κ)). The DID model holds conditional on
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Y(i,1 − κ), so the impact of the treatment is given by

{E[Y(i,1) | X(i ), D(i,1) = 1] − E[Y(i,1) | X(i ), D(i,1) = 0]}

−{E[Y(i,0) | X(i ), D(i,1) = 1] − E[Y(i,0) | X(i ), D(i,1) = 0]} (7)

where X(i ) = Y(i,1 − κ).1 More generally, in this articleX(i ) is a vector of observed
characteristics, such as demographic attributes, predetermined att = 0. A conditional
identification restriction is appealing in the DID framework when the variables inX(i ) are
believed to be related to the outcome dynamics and their distributions differ between treated
and controls.

The traditional way to accommodate covariates in the DID model is to introduce them
linearly in equation (4):

Y(i, t) = µ+ X(i )′π(t)+ τ · D(i,1)+ δ · t + α · D(i, t)+ ε(i, t), (8)

whereX(i ) is assumed uncorrelated withε(i, t). Because the coefficients onX(i ) change witht ,
this formulation of the DID model allows the use of covariates to represent heterogeneity in
outcome dynamics. Differencing the last equation with respect tot , we obtain

Y(i,1)− Y(i,0) = δ + X(i )′π + α · D(i,1)+ (ε(i,1)− ε(i,0)),

whereπ = π(1) − π(0). This alternative formulation is useful when a sample with repeated
observations is available. However, as noticed byMeyer (1995), introducing covariates in this
linear fashion may not be appropriate if the treatment has different effects for different groups
in the population. Heterogeneity in treatment effects can be studied by specifyingα in equation
(8) as a function ofX(i ) (i.e. by including interactions betweenX(i ) and D(i, t) in equation
(8)). Ideally, covariates should be treated non-parametrically, as in equation (7), so that any
potential inconsistency created by functional form misspecification is avoided. However, when
the number of covariates required to attain identification is large, some kind of integration over
X(i ) is required in order to obtain interpretable results.

The next section proposes a flexible new procedure to control for the effect of covariates in
the DID model which is based on conditional identification restrictions. As in the conventional
DID model, the role of the covariates in this new approach is twofold. First, by using covariates
we extend identification to those instances in which observed compositional differences between
treated and controls cause non-parallel dynamics in the outcome variable. In addition, the effect
of the treatment is allowed to differ among individuals, so covariates can be used to describe
the effect of the treatment for different groups of the population. A distinctive feature of the
methods proposed in this article is that, while covariates are treated non-parametrically for
identification, the estimators provide parsimonious parametric approximations to the average
effect of the treatment on the treated conditional on selected covariates of interest.2

A related way to accommodate covariates in a DID estimator has been explored by
Heckmanet al. (1997, 1998) who propose a DID estimator of the average treatment effect on
the treated based also on conditional identification restrictions. Their estimator is constructed by
matching differences in pre-treatment and post-treatment outcomes for the treated to weighted
averages of differences in pre-treatment and post-treatment outcomes for the untreated. The
differences are matched on the probability of treatment exposure conditional on the covariates

1. In fact, for Ashenfelter’s dip model in equation (6), the second term in equation (7) is zero and estimation
could be based solely on conditional averages of post-treatment outcomes.

2. In other words, while identification does not hinge on parametric restrictions, it allows the use of parametric
functions to describe how the effect of the treatment varies with covariates. This approach follows the spirit ofWhite
(1981) and Roehrig (1988) among others who propose treating parametric models as convenient approximations to
unknown functions of interest, so identification can be studied non-parametrically.
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(the propensity score) and the weights are determined non-parametrically using local linear
regression.3 This article, however, proposes a direct weighting scheme on the propensity score
that can be used to estimate the effect of the treatment on the treated without estimating weights
non-parametrically in a previous step.

Estimators of treatment effects that weight on functions of the probability of treatment
are based on the Horvitz–Thompson statistic (Horvitz and Thompson, 1952). Non-parametric
generalizations of the Horvitz–Thompson statistic have been studied inImbens, Hirano and
Ridder(2003). Ichimura and Linton(2002) have developed higher-order asymptotic expansions
for this class of estimators to guide bandwidth selection. Robins and co-authors have proposed
related estimators in the context of parametric models for time-varying treatments (see,e.g.
Herńan, Brumback and Robins, 2001). In these studies it is assumed that all other factors, aside
from the treatment, that affect the outcome variable are either observed, or their distribution is
the same for treated and untreated. Consequently, all factors which confound simple comparisons
of the outcome distribution between treated and untreated are observed. In contrast, the
identification conditions used in this article allow for the distribution of both observed and
unobserved factors to differ between treated and untreated, as long as the effect of unobserved
factors on the outcome does not vary with time (or, more generally, if it experiences the same
variation, on average, for treated and untreated).

3. NON-PARAMETRIC IDENTIFICATION

In the previous section, we referred toα as the “impact of the treatment” or the “treatment effect”,
but the exact meaning of these terms was left undefined.

As in Rubin(1974) andHeckman(1990), the effect of the treatment will be defined in terms
of potential outcomes.Y0(i, t) represents the outcome that individuali would attain at timet in
absence of the treatment. In the same fashion,Y1(i, t) represents the outcome that individuali
would attain at timet if exposed to the treatment. The effect of the treatment on the outcome for
individual i at timet is then naturally defined asY1(i, t)− Y0(i, t).

The fundamental identification problem is that for any particular individuali and time
periodt , we do not observe both potential outcomesY0(i, t) andY1(i, t); so we cannot compute
the individual treatment effectY1(i, t)− Y0(i, t). We only observe the realized outcome,Y(i, t)
that can be expressed asY(i, t) = Y0(i, t) · (1− D(i, t))+ Y1(i, t) · D(i, t). Since, in the simple
scenario considered here, the treatment is only administered after periodt = 0, we can denote
D(i ) = D(i,1), then we have thatY(i,0) = Y0(i,0) andY(i,1) = Y0(i,1) · (1 − D(i )) +

Y1(i,1) · D(i ).
Given the impossibility of computing individual treatment effects, researchers often focus

on estimating some average effect, like the average effect of the treatment on the treated
E[Y1(i,1)−Y0(i,1) | D(i ) = 1] (see,e.g.Heckman, 1990). Sometimes, when the desired level
of aggregation is lower, researchers try to learn about some conditional version of the average
effect on the treatedE[Y1(i,1)− Y0(i,1) | X(i ), D(i ) = 1].

For the rest of the article, the individual argumenti will be dropped to reduce notation. I will
take the next assumption to hold throughout this article.

Assumption 3.1. E[Y0(1)− Y0(0) | X, D = 1] = E[Y0(1)− Y0(0) | X, D = 0].

Assumption3.1is the crucial identifying restriction in DID models. It states that, conditional
on the covariates, the average outcomes for treated and controls would have followed parallel

3. Blundellet al. (2001) propose a related estimator which combines DID and matching on the propensity score.
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paths in absence of the treatment.4 Notice that whenE[Y0(0) | X, D = 1] = E[Y0(0) | X,
D = 0], Assumption3.1 collapses to a “selection on observables” restriction(E[Y0(1) | X,
D = 1] = E[Y0(1) | X, D = 0]) which can be used in cross-sectional studies to identify the
effect of the treatment on the treated.5 Therefore, the results in this article also apply to this
particular situation. This is the case for Ashenfelter’s dip example, discussed inSection2. I will
come back to this point inSection3.2.

Existence of the expectations is assumed throughout. Under Assumption3.1, the effect of
the treatment on the treated conditional onX can be expressed as (Heckmanet al., 1997):6

E[Y1(1)− Y0(1) | X, D = 1] = {E[Y(1) | X, D = 1] − E[Y(1) | X, D = 0]}

− {E[Y(0) | X, D = 1] − E[Y(0) | X, D = 0]}. (9)

Even when Assumption3.1 holds unconditionally, if it also holds conditional on some
predetermined covariates of interest (e.g.gender), we may still use the conditional identification
result to evaluate the effect of the treatment for different groups of the population (e.g.women
vs. men).

In principle, the identification result in equation (9) can be used to estimateE[Y1(1) −

Y0(1) | X, D = 1] by producing non-parametric estimates of each one of the four expectations
on the R.H.S. of equation (9). In practice, the number of observations required to attain an
acceptable precision for this type of non-parametric estimator increases very rapidly with the
dimension ofX. This problem, often called the curse of dimensionality, may prevent us from
using non-parametric estimators forE[Y1(1) − Y0(1) | X, D = 1] in many practical instances.
In addition, a simple non-parametric estimator ofE[Y1(1)− Y0(1) | X, D = 1], directly based
on equation (9), may be difficult to interpret if the dimension ofX is larger than two, so we
cannot summarize the result in a graph. In those cases, some integration over the distribution of
X for the treated is required in order to produce summary statistics. Even then, the estimation
process is cumbersome. An estimator of average treatment effects for the treated directly based
on equation (9) requires estimating four conditional expectations non-parametrically (or two if a
sample with repeated outcomes,Y(0) andY(1), for the same individuals is available) and then
integrating the estimates to the desired level of aggregation.

This article proposes simple weighting schemes to produce estimators of the average effect
on the treatedE[Y1(1) − Y0(1) | D = 1] and parsimonious parametric approximations to its
conditional versionE[Y1(1) − Y0(1) | Xk, D = 1], whereXk is a function ofX (for example,

4. Using experimental data,Heckmanet al. (1997, 1998) have shown the plausibility of this identifying
assumption in the context of the evaluation of a subsidized training programme.

5. In that case, Assumption3.1 implies E[Y1(1) − Y0(1) | X, D = 1] = E[Y(1) | X, D = 1] − E[Y(1) |

X, D = 0], and pre-treatment data are not required to identify the average effect of the treatment on the treated. If, in
addition,E[Y1(1) | X, D = 1] = E[Y1(1) | X, D = 0], thenE[Y1(1)− Y0(1) | X] = E[Y(1) | X, D = 1]− E[Y(1) |

X, D = 0]. Selection on observables implies that all factors which confound simple comparisons of outcomes between
treated and controls are observed. This is a too stringent assumption if the distribution of unobserved variables which
affect the outcome is believed to differ between treated and controls. See,e.g.Rubin(1977) andHeckmanet al. (1997).

6. A researcher could be interested in estimatingE[Y1(1) | X, D = 1] and E[Y0(1) | X, D = 1] separately.
Since Y1(1) is observed for the treated, both conditional expectations are identified. In fact, given thatY1(1) is
observed for the treated, identification results onE[Y1(1) − Y0(1) | X, D = 1] are equivalent to identification
results onE[Y0(1) | X, D = 1]. Here, I concentrate on the differenceE[Y1(1) − Y0(1) | X, D = 1] because it
has been the object of interest in the difference-in-differences literature (see,e.g.Heckmanet al. (1997, 1998)). Notice
also that Assumption3.1 by itself does not identify the average treatment effects conditional only on the covariates
(E[Y1(1) − Y0(1) | X]), unless conditional average effects coincide for treated and untreatedE[Y1(1) − Y0(1) |

X, D = 1] = E[Y1(1) − Y0(1) | X, D = 0]. The reason is that Assumption3.1 identifiesE[Y0(1) | X, D = 1],
and therefore, the effect of the treatment on the treated. However, Assumption3.1 leavesE[Y1(1) | X, D = 0] totally
unrestricted; so the effect of the treatment on the untreated is also unrestricted.
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a subset of the variables inX). The weighting scheme is directly based on the propensity
score, P(D = 1 | X), which is the only function which needs to be estimated in a first
step. As a result, the proposed method reduces the first step estimation burden and allows
the researcher to use four or two times more observations for first step estimation, relative to
direct estimation of equation (9). In practice, this feature may be an important advantage if
non-parametric estimation is carried out in the first step. When the number of observations
is too small for non-parametric estimation in the first step, the proposed method allows the
researcher to circumvent the curse of dimensionality by placing parametric restrictions on the
propensity score, which leavesE[Y1(1) − Y0(1) | Xk, D = 1] unrestricted, rather than on
each one of the conditional means of equation (9), which may impose unwanted restrictions on
E[Y1(1)− Y0(1) | Xk, D = 1].

The estimation of parametric approximations toE[Y1(1) − Y0(1) | Xk, D = 1] has
some benefits. First, it provides a simple method to produce estimation results at the level of
aggregation desired by the analyst. In addition, the results are parsimoniously summarized by
the estimates of the parameters that define the approximation toE[Y1(1)− Y0(1) | Xk, D = 1].
However, the quality of the information provided by our estimators will be low if the quality of
the approximation toE[Y1(1)− Y0(1) | Xk, D = 1] is poor.

Since the object of study is the effect of the treatment on the treated, the minimal
requirement for the problem to be well defined is that some fraction of the population is exposed
to the treatment. In addition, since identification is attained after controlling for the effect of some
covariatesX, it will be required that for each given value of the covariates there is some fraction
of the population that remains untreated and can be used as controls.

Assumption 3.2. P(D = 1) > 0 and with probability one P(D = 1 | X) < 1.

Note that Assumption3.2 implies that the support of the propensity score for the treated is a
subset of the support of the propensity score for the untreated. This is a well-known condition
for identification of the average impact on the treated under selection on covariates (see,e.g.
Heckmanet al., 1997).

3.1. Random sample with repeated outcomes

In this section, I introduce the identification strategy proposed in this article by considering the
situation in which we can observe both pre-treatment and post-treatment outcomes for a random
sample of the population of interest. Examples of applications of DID estimators to data on
repeated outcomes areCard and Krueger(1994), Heckmanet al. (1997, 1998), Garvey and
Hanka(1999) andBlundell et al. (2001). Under this sampling scheme, for each individual in
our sample we observe(Y(1),Y(0), D, X). Later in the article, the identification procedure is
extended to repeated cross sections.

Lemma 3.1. If Assumption3.1 holds, and for values of X such that0 < P(D = 1 |

X) < 1, we have E[Y1(1)− Y0(1) | X, D = 1] = E[ρ0 · (Y(1)− Y(0)) | X], where

ρ0 =
D − P(D = 1 | X)

P(D = 1 | X) · (1 − P(D = 1 | X))
.

For notational convenience, letρ0 = −1 if P(D = 1 | X) = 0 (this choice is inconsequential
since the objects of interest will be integrals over the distribution of theX conditional onD = 1).
The average effect of the treatment for the treated is given by
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E[Y1(1)− Y0(1) | D = 1] =

∫
E[Y1(1)− Y0(1) | X, D = 1]d P(X | D = 1)

=

∫
E[ρ0 · (Y(1)− Y(0)) | X]d P(X | D = 1)

= E

[
ρ0 · (Y(1)− Y(0)) ·

P(D = 1 | X)

P(D = 1)

]
= E

[
Y(1)− Y(0)

P(D = 1)
·

D − P(D = 1 | X)

1 − P(D = 1 | X)

]
. (10)

In words, under Assumptions3.1and3.2, a simple weighted average of temporal differences in
the outcome variable recovers the average effect of the treatment for the treated. The weights
depend on the propensity score. On an intuitive level, this scheme works by weighting-down
the distribution ofY(1) − Y(0) for the untreated for those values of the covariates which are
over-represented among the untreated (that is, with lowP(D = 1 | X)/P(D = 0 | X)),
and weighting-upY(1) − Y(0) for those values of the covariates under-represented among the
untreated (that is with highP(D = 1 | X)/P(D = 0 | X)). In this way the same distribution of
the covariates is imposed for treated and untreated.7

Equation (10) suggests a simple two-step method to estimate the average effect of the
treatment on the treated under Assumptions3.1 and 3.2: (i) estimate the propensity score,
P(D = 1 | X), and compute the fitted values for the sample; (ii) plug the fitted values into
the sample analogue of equation (10) to obtain an estimate ofE[Y1(1)− Y0(1) | D = 1].

In many practical instances, the desired level of aggregation is lower than the entire treated
population and the analyst wants to study how the treatment affects the treated for different
groups of the population. As explained above, a non-parametric estimator ofE[Y1(1)− Y0(1) |

X, D = 1] may be difficult to interpret, especially if the dimension ofX is large. Such a problem
is circumvented here by focusing on parametric approximations toE[Y1(1)−Y0(1) | X, D = 1].
More generally, consider the situation in which we need to condition on some vector of random
variablesX to attain identification, but we are interested inE[Y1(1) − Y0(1) | Xk, D = 1],
whereXk is some deterministic function ofX.8 This situation is relevant when the number of
covariates needed in order to attain identification is large, so the analyst may be willing to allow
for a higher level of aggregation in the second step in order to obtain parsimonious results.

Consider a class of approximating functionsG = {g(Xk; θ) : θ ∈ 2 ⊂ Rk
}, square-

integrable with respect toP(Xk | D = 1). Then, a least squares approximation fromG to
E[Y1(1)− Y0(1) | Xk, D = 1] is given byg(Xk; θ0) where

θ0 = arg minθ∈2E[{E[Y1(1)− Y0(1) | Xk, D = 1] − g(Xk; θ)}
2

| D = 1]. (11)

For example, ifG = {X′

kθ : θ ∈ 2 ⊂ Rk
}, thenθ0 defines a linear least squares approximation

to E[Y1(1)− Y0(1) | Xk, D = 1]. It is assumed thatθ0 exists uniquely.

Proposition 3.1. If Assumptions3.1and3.2hold, then

θ0 = arg minθ∈2E[P(D = 1 | X) · {ρ0 · (Y(1)− Y(0))− g(Xk; θ)}
2
].

7. Similarly, Heckmanet al. (1997) use matching on the propensity score to account for imbalances in the
distribution of the covariates between treated and untreated. Matching on the propensity score works because it imposes
the same distribution of the covariates for the two groups (seeRosenbaum and Rubin, 1983).

8. For example,Xk may contain a subset of the variables inX. In other instances,X may contain indicators for
all different values of a discrete variable included inXk.
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As before, it is easy to construct a two-step estimator based on the sample analogue of the result
in the last proposition. After some algebra, the result in equation (10) can be obtained applying
Proposition3.1to the case wheng(Xk, θ) is constant.

3.2. Some extensions and particular cases

This section contains extensions to repeated cross sections, and multilevel treatments. It also
discusses the case of selection on observables.

3.2.1. Repeated cross sections.Often, a random sample with repeated outcomes is not
available. In such a case, repeated cross-section data-sets (pre-treatment and post-treatment)
may be used to construct DID estimators. However, the use of repeated cross sections for DID
presents some issues of data availability. First, treatment status (in the post-treatment period)
must be known for the individuals in the pre-treatment sample. This requirement is satisfied, for
example, if treatment exposure can be determined from some individual characteristic observed
in both periods.9,10 In addition, covariates must be observed in the post-treatment sample. Since
covariates are often pre-treatment variables, this second requirement may prove a problem when
covariates are time-varying and there are not retrospective covariate data available. Examples of
applications of DID estimators with covariates to repeated cross sections areCard(1990, 1992),
Meyeret al. (1995), Eissa and Liebman(1996), Acemoglu and Angrist(2001), Corak(2001) and
Finkelstein(2002). Here, I show how to apply the methods proposed in this article to repeated
cross sections. The data requirements are the same as for traditional difference-in-differences
estimators which use cross-sectional data and covariates.

Assume that random samples are available for the pre-treatment and the post-treatment
periods. For each individual in the pooled sample (post-treatment and pre-treatment), we observe
Z = (Y, D, T, X) whereT is a time indicator that takes value one if the observation belongs to
the post-treatment sample.

Assumption 3.3. Conditional on T= 0, the data arei.i.d. from the distribution of(Y(0),
D, X); conditional on T= 1, the data arei.i.d. from the distribution of(Y(1), D, X).

This sampling scheme produces the following mixture distribution:

PM (Y = y, D = d, X = x, T = t) = λ · t · P(Y(1) = y, D = d, X = x)

+ (1 − λ) · (1 − t) · P(Y(0) = y, D = d, X = x),

whereλ ∈ (0,1) reflects the proportion of the observations sampled in the post-treatment
period.11 Let EM [·] denote expectations with respect toPM (·).

Lemma 3.2. If Assumptions3.1and3.3hold, and for values of X such that0 < P(D =

1 | X) < 1, we have E[Y1(1)− Y0(1) | X, D = 1] = EM [ϕ0 · Y | X], where

ϕ0 =
T − λ

λ · (1 − λ)
·

D − P(D = 1 | X)

P(D = 1 | X) · P(D = 0 | X)
.

9. Note that identification requires in turn that such individual characteristic is excluded fromX. Otherwise, the
support condition in Assumption3.2would be violated. This exclusion restriction is problematic if the excluded variable
influences the dynamics of the outcome variable, so Assumption3.1 is not plausible.

10. The requirement may also be satisfied in other cases, for example when the pre-treatment sample can be linked
to administrative data records on treatment participation.

11. For simplicity, I do not consider more complicated situations in which the data may be generated by stratified
sampling (onX or D). In such a case, the results in this section apply for a suitably reweighted sample (see,e.g.
Wooldridge, 2002).
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Then, following a reasoning similar to that of the previous section we have that the average
treatment effect on the treated is identified by

EM

[
P(D = 1 | X)

P(D = 1)
· ϕ0 · Y

]
= E[Y1(1)− Y0(1) | D = 1]. (12)

The following proposition is analogous to Proposition3.1.

Proposition 3.2. If Assumptions3.1, 3.2, and 3.3 hold, then for θ0 defined in
equation(11) we have

θ0 = arg minθ∈2EM [P(D = 1 | X) · {ϕ0 · Y − g(Xk; θ)}
2
]. (13)

The result in equation (12) can be obtained by considering a constantg(Xk, θ) in equation (13).

3.2.2. Selection on observables.In the previous section, it is shown how to approximate
conditional average treatment effects by first weighting temporal differences in the outcome
variable on the propensity score, and then projecting the weighted differences on a set
of parametric functions of the covariates. The interpretation of the resulting functionals as
approximations to conditional average treatment effects comes from the difference-in-differences
condition in Assumption3.1. However, it should be noticed that the same “first weight, then
project” strategy can be applied in other contexts. In particular, the results in the previous section
carry over naturally to “selection on observables”:

E[Y0(1) | X, D = 1] = E[Y0(1) | X, D = 0]. (14)

The reason is that “selection on observables” can be expressed as a particular case of
Assumption3.1 (when E[Y0(0) | X, D = 1] = E[Y0(0) | X, D = 0]). As a result, if
equation (14) holds, then

θ0 = arg minθ∈2E[P(D = 1 | X) · {ρ0 · Y − g(Xk; θ)}
2
],

for θ0 defined in equation (11) andY = Y(1).12,13 Similar estimators have been considered in
Wooldridge(2001). Imbenset al. (2003) consider the situation in which the average treatment
effect is estimated for a given distribution of the covariates.Abadie (2003) applies similar
approximation methods in the context of instrumental variable models for treatment effects.

3.2.3. Multilevel treatments. So far, we have considered only the case of a binary
treatment, which is the usual focus of DID estimators. However, the same ideas can be applied
when individuals may be exposed to different levels (or doses) of the treatment. LetW represent
the level of the treatment. For untreated individuals, letW = 0. For the treated, suppose that
W takes on a finite number of positive valuesw1 < · · · < wJ , with positive probability.14 Let

12. For this case, it is useful to defineY = Y(1) because equation (14) may be adopted as an identification
restriction in absence of measures on the outcome variable in a pretreatment period. However, as shown for Ashenfelter’s
dip example, it may be necessary to condition on the values of the outcome variable in a pre-treatment period in order
for equation (14) to hold.

13. Alternatively, if the objects of interest are average treatment effects conditional only on the covariates,θ0
can be redefined asθ0 = arg minθ∈2E[{E[Y1(1) − Y0(1) | Xk] − g(Xk, θ)}

2
]. However, equation (14) does not

identify the effect of the treatment on the untreated because it leavesE[Y1(1) | X, D = 0] completely unrestricted.
If we assume in addition thatE[Y1(1) | X, D = 1] = E[Y1(1) | X, D = 0], then θ0 is identified byθ0 =

arg minθ∈2 E[(ρ0 · Y − g(Xk; θ))2].
14. Here, I assume that treatment levels are ordered (e.g. number of weeks in a training programme). For

expositional simplicity and since it is often the case in applications, I consider only a finite number of treatment levels.
However, the analysis presented in this section can be generalized to continuous treatments by substituting densities for
W for probabilities forW, and integrals over those densities for sums.
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W+
= {w1, . . . , wJ}, thenD = 1W+(W), where 1A(·) is the indicator function for the setA

(that is, 1A(w) = 1 if w ∈ A, zero otherwise). Forw ∈ {0}∪W+ andt ∈ {0,1}, let Yw(t) be the
potential outcome for treatment levelw and periodt . Suppose that Assumption3.1holds for each
treatment level:E[Y0(1)− Y0(0) | X,W = w] = E[Y0(1)− Y0(0) | X,W = 0], forw ∈ W+.
In words, this assumption requires that, in absence of the treatment, the average outcomes for
all treatment groups would have followed parallel trends, conditional on the covariates. As in
the usual DID case with a binary treatment variable, the assumption allows the levels of average
potential outcomes without the treatment to differ arbitrarily between treatment groups.

Forw ∈ W+, letρw0 = (1{w}(W)/P(W = w | X))−(1{0}(W)/P(W = 0 | X)). (Note that,
for ρ0 defined in Lemma3.1, ρ0 = ρ1

0.) Then, following the same reasoning as for Lemma3.1,
we obtainE[ρw0 (Y(1) − Y(0)) | X] = E[Yw(1) − Y0(1) | X,W = w]. In addition, for some
class of square-integrable approximating functionsG = {g(W, Xk; θ) : θ ∈ 2}, redefine

θ0 = arg minθ∈2E[(E[YW(1)− Y0(1) | Xk,W] − g(W, Xk; θ))
2

| D = 1]. (15)

The parametersθ0 define a least squares approximation to a function describing average effects
for the treatedE[Yw(1)− Y0(1) | Xk,W = w]. Then, these parameters are identified by

θ0 = arg minθ∈2E

[∑J

j =1
P(W = w j | X)(ρ

w j
0 (Y(1)− Y(0))− g(w j , Xk; θ))

2
]

.

This result collapses to the result in Proposition3.1 if W is binary, and can be proven using the
same argument as for Proposition3.1.

4. ESTIMATION AND ASYMPTOTIC DISTRIBUTION

For concreteness, I will concentrate here on linear approximations toE[Y1(1)−Y0(1) | Xk, D =

1] where Xk is a deterministic function ofX. In addition, only the case of repeated cross
sections is explicitly considered here. However, the analysis is also valid for the case of repeated
observations ifY(1)− Y(0) is substituted for((T − λ)/λ(1− λ)) · Y, and expectations are taken
with respect to the distribution of(Y(1),Y(0), D, X). Consider

β0 = arg minβ∈2EM [π0 · {ϕ0Y − X′

kβ}
2
]

whereπ0(X) = P(D = 1 | X), and

ϕ0 =
T − λ

λ · (1 − λ)
·

D − π0(X)

π0(X) · (1 − π0(X))
.

Consider also the following estimator ofβ0:

β̂ =

(
1

n

∑n

i =1
Xki π̂(Xi )X

′

ki

)−1 1

n

∑n

i =1
Xki π̂(Xi )ϕ̂i Yi ,

whereπ̂(Xi ) is an estimator ofπ0(Xi ), and

ϕ̂i =
Ti − λ

λ · (1 − λ)
·

Di − π̂(Xi )

π̂(Xi ) · (1 − π̂(Xi ))
,

for λ = n1/(n0 + n1). Under the conditions of the theorems stated below,β̂ is well defined with
probability approaching one.

4.1. Non-parametric first step estimation of the propensity score

Here, I consider the case in which non-parametric (power series) regression is used in a first
step to estimateπ0. Let ζ = (ζ1, . . . , ζr )

′ be a vector of non-negative integers wherer is
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the dimension ofX. Also let Xζ =
∏r

j =1 X
ζ j
j and |ζ | =

∑r
j =1 ζ j . Let {ζ(k)}∞k=1 be a

sequence containing all distinct vectorsζ , with |ζ | non-decreasing. For a positive integerK ,
let pK (X) = (p1K (X), . . . , pK K (X))′ wherepkK(X) = Xζ(k). Then, forK = K (n) → ∞ a
power series non-parametric estimator ofπ0 is given by

π̂(X) = pK (X)′γ̂ (16)

where γ̂ = (
∑n

i =1 pK (Xi )pK (Xi )
′)−(

∑n
i =1 pK (Xi )Di ) and A− denotes any symmetric

generalized inverse of the matrixA.

Assumption 4.1. (i) K 6/n = o(1), π0(X) is continuously differentiable of order s, and
nK−2s/r

= O(1); (ii) the support of X is a Cartesian product of compact intervals on which
X has density that is bounded away from zero;(iii) π0(X) is bounded away from zero and one;
(iv) β0 is an interior point of a compact set2 ⊂ Rk; (v) EMY2 < ∞, ‖Xk‖ is bounded, and
E[Xk X′

k | D = 1] is non-singular.

Let

δ(X) = EM

[
Xk

(
T − λ

λ · (1 − λ)
·

D − 1

(1 − π0)2
· Y − X′

kβ0

)∣∣∣∣ X

]
.

Theorem 4.1. If n0,n1 → ∞, n1/(n0 + n1) = λ ∈ (0,1) and Assumptions3.1, 3.3

and 4.1 hold, then n1/2(β̂ − β0)
d
→ N(0,V), where V = Q−16Q−1, Q = E[Xk DX′

k],
6 = EM [ψψ ′

], ψ = Xkπ0(X)(ϕ0Y − X′

kβ0)+ δ(X) · (D − π0(X)).

To construct an estimator of the asymptotic variance, letV̂ = Q̂−16̂ Q̂−1, where

Q̂ =
1

n

∑n

i =1
Xki Di X′

ki , 6̂ =
1

n

∑n

i =1
ψ̂i ψ̂

′

i ,

δ̂(Xi ) =

(∑n

i =1
Xki

(
Ti − λ

λ · (1 − λ)
·

Di − 1

(1 − π̂(Xi ))2
· Yi − X′

ki β̂

)
pK (Xi )

′

)
×

(∑n

i =1
pK (Xi )p

K (Xi )
′

)−

pK (Xi )

andψ̂i = Xki π̂(Xi )(ϕ̂i Yi − X′

ki β̂) + δ̂(Xi ) · (Di − π̂(Xi )). The following theorem establishes
the consistency of̂V .

Theorem 4.2. If the assumptions of Theorem4.1hold and K7/n → 0, thenV̂
p

→ V .

4.2. Parametric first step estimation of the propensity score

Often, samples are too small to use a non-parametric estimator in the first step. This is particularly
likely when the analyst deals with longitudinal data-sets. In such cases, it may be convenient
to use a parametric restriction in the first step and estimate the propensity score by maximum
likelihood. This section provides distribution theory for that case. The results include probit,
logit and linear probability first step estimation ofπ0 as special cases.

Assumption 4.2. (i) γ0 is an interior point of a compact set0 ⊂ Rr ; (ii) the support
of X is a subset of a compact set S; E[X X′

] is non-singular;(iii) there is a(known) function
π : R 7→ [0,1] such thatπ0(X) = π(X′γ0); (iv) let V = {x′γ : x ∈ S,γ ∈ 0}; for v ∈ V,
π(v) is bounded away from zero and one, strictly increasing and continuously differentiable with
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derivative bounded away from zero and infinity;(v) β0 is an interior point of a compact set
2 ⊂ Rk; (vi) EMY2 < ∞, ‖Xk‖ is bounded, and E[Xk X′

k | D = 1] is non-singular.

Under this assumption,γ0 can be estimated by maximum likelihood:

γ̂ = arg maxγ∈0

1

n

∑n

i =1
Di logπ(X′

i γ )+ (1 − Di ) log(1 − π(X′

i γ )).

Then, π̂(Xi ) = π(X′

i γ̂ ). Boundedness ofX is not a necessary restriction but allows
Assumption4.2 to encompass maximum likelihood estimation of the logit, probit and linear
probability models. For simplicity, and since in most casesXk is some subset of the variables in
X, Xk is also assumed to be bounded. If the covariates are discrete and the vectorX is saturated
with indicators of all the possible values of the covariates, then the functional form ofπ is not
restrictive and the estimation of̂π(X) is completely non-parametric.

Let π̇ = ∂π(v)/∂v and π̇0 = π̇(X′γ0). Under standard regularity conditions (e.g.
Assumption4.2(i)–(iv)), γ̂ is asymptotically linear, that isn1/2(γ̂−γ0) = n−1/2∑n

i =1ψγ0(Zi )+

op(1), where

ψγ0(Z) = E

[
π̇2

0

π0(1 − π0)
X X′

]−1

X
π̇0

π0(1 − π0)
(D − π0). (17)

Let

Mγ0 = EM

[
Xk

(
T − λ

λ(1 − λ)

D − 1

(1 − π0)2
Y − X′

kβ0

)
π̇0X′

]
.

Theorem 4.3. If n0,n1 → ∞, n1/(n0 + n1) = λ ∈ (0,1) and Assumptions3.1, 3.3

and 4.2 hold, then
√

n(β̂ − β0)
d
→ N(0,V), where V = Q−16Q−1, Q = E[Xk DX′

k],
6 = EM [ψψ ′

], ψ = m(Z, β0, γ0)+ Mγ0ψγ0, m(Z, β0, γ0) = Xkπ0[ϕ0 · Y − X′

kβ0].

Let V̂ = Q̂−16̂ Q̂−1, where

Q̂ =
1

n

∑n

i =1
Xki Di X′

ki , 6̂ =
1

n

∑n

i =1
ψ̂i ψ̂

′

i ,

M̂γ̂ =
1

n

∑n

i =1
Xki

(
Ti − λ

λ(1 − λ)

Di − 1

(1 − π̂(Xi ))2
Yi − X′

ki β̂

)
π̇(X′

i γ̂ )X
′

i ,

ψ̂γ̂ (Zi ) =

(
1

n

∑n

i =1

π̇(X′

i γ̂ )
2

π̂(Xi )(1 − π̂(Xi ))
Xi X′

i

)−1

Xi
π̇(X′

i γ̂ )

π̂(Xi )(1 − π̂(Xi ))
(Di − π̂(Xi )),

andψ̂i = Xki π̂(Xi )(ϕ̂i Yi − X′

ki β̂)+ M̂γ̂ ψ̂γ̂ (Zi ). The following theorem establishes consistency
of V̂ .

Theorem 4.4. If the assumptions of Theorem4.3 hold andπ(v) is twice differentiable

with bounded second derivative inV, thenV̂
p

→ V .

5. CONCLUSIONS

In this article, I have introduced a family of semiparametric difference-in-differences estimators
of treatment effects based on conditional identification restrictions. These estimators may be
particularly appropriate when the distribution of observed characteristics that are thought to
be related to the dynamics of the outcome variable differs between treated and untreated.
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Identification does not entail parametric restrictions. However, the methods presented here can be
used to estimate parsimonious parametric approximations to conditional versions of the average
treatment effect for the treated.

APPENDIX. PROOFS

Proof of Lemma3.1. For 0< P(D = 1 | X) < 1, we have that

E[ρ0 · (Y(1)− Y(0)) | X] = E[ρ0 · (Y(1)− Y(0)) | X, D = 1] · P(D = 1 | X)

+ E[ρ0 · (Y(1)− Y(0)) | X, D = 0] · P(D = 0 | X)

= E[Y(1)− Y(0) | X, D = 1] − E[Y(1)− Y(0) | X, D = 0].

Applying equation (9) we obtain the result. ‖

Proof of Proposition3.1. Let G(θ) = E[P(D = 1 | X)·{ρ0·(Y(1)−Y(0))−g(Xk; θ)}2]. Adding and subtracting
E[Y1(1)− Y0(1) | Xk, D = 1], we obtain

G(θ) = E[P(D = 1 | X) · {ρ0 · (Y(1)− Y(0))− E[Y1(1)− Y0(1) | Xk, D = 1]}
2
]

+ E[P(D = 1 | X) · {E[Y1(1)− Y0(1) | Xk, D = 1] − g(Xk; θ)}2]

+ 2E[P(D = 1 | X) · (ρ0 · (Y(1)− Y(0))− E[Y1(1)− Y0(1) | Xk, D = 1])

× (E[Y1(1)− Y0(1) | Xk, D = 1] − g(Xk; θ))]. (A.1)

The first term on the R.H.S. of equation (A.1) does not depend onθ .
By the law of iterated expectations, the second term on the R.H.S. of equation (A.1) is equal to

E[D · {E[Y1(1)− Y0(1) | Xk, D = 1] − g(Xk; θ)}2]

= E[{E[Y1(1)− Y0(1) | Xk, D = 1] − g(Xk; θ)}2 | D = 1]P(D = 1).

Therefore, by Assumption3.2and equation (11), the second term on the R.H.S. of equation (A.1) is minimized atθ0.
The expectation in the third term on the R.H.S. of equation (A.1) is equal to

E[E[P(D = 1 | X) · (ρ0 · (Y(1)− Y(0))− E[Y1(1)− Y0(1) | Xk, D = 1]) | Xk]

× (E[Y1(1)− Y0(1) | Xk, D = 1] − g(Xk; θ))].

Applying the law of iterated expectations and Lemma3.1:

E[P(D = 1 | X) · ρ0 · (Y(1)− Y(0)) | Xk] = E[P(D = 1 | X)E[ρ0 · (Y(1)− Y(0)) | X] | Xk]

= E[P(D = 1 | X)E[Y1(1)− Y0(1) | X, D = 1] | Xk] = E[E[D(Y1(1)− Y0(1)) | X] | Xk]

= E[D(Y1(1)− Y0(1)) | Xk] = P(D = 1 | Xk) · E[Y1(1)− Y0(1) | Xk, D = 1].

Therefore,

E[P(D = 1 | X) · (ρ0 · (Y(1)− Y(0))− E[Y1(1)− Y0(1) | Xk, D = 1]) | Xk]

= E[P(D = 1 | X) · ρ0 · (Y(1)− Y(0)) | Xk] − P(D = 1 | Xk)E[Y1(1)− Y0(1) | Xk, D = 1] = 0.

Consequently, the third term on the R.H.S. of equation (A.1) is equal to zero, and the result of the proposition holds.‖

Proof of Lemma3.2. Notice that

EM [ϕ0 · Y | X] = EM [EM [ϕ0 · Y | X, T] | X] = EM [E[ϕ0 · Y | X, T] | X]

= E[ρ0 · Y | X, T = 1] − E[ρ0 · Y | X, T = 0] = E[ρ0 · Y(1) | X] − E[ρ0 · Y(0) | X]

= {E[Y(1) | X, D = 1] − E[Y(1) | X, D = 0]} − {E[Y(0) | X, D = 1] − E[Y(0) | X, D = 0]},

and the result follows from equation (9). ‖

Proof of Proposition3.2. The proof follows the same steps as the proof of Proposition3.1.

Proof of Theorem4.1. Let | · |∞ denote the supremum norm. By Assumption4.1(i), (ii) and Theorem 4 inNewey
(1997), it follows that|π̂ − π0|∞ = Op(K · [(K/n)1/2 + K−s/r

]) = op(1). Let m(Z, β, π) = Xkπ(ϕ(π) · Y − X′
kβ).
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Assumption4.1(v) guarantees thatEM [m(Z, β, π0)] has a unique zero atβ0 = (E[Xkπ0X′
k])−1EM [Xkπ0ϕ0Y]. In

addition,

supβ∈2

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, π̂)− EM [m(Z, β, π0)]

∥∥∥∥ ≤ supβ∈2

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, π̂)− m(Zi , β, π0)

∥∥∥∥
+ supβ∈2

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, π0)− EM [m(Z, β, π0)]

∥∥∥∥ . (A.2)

Let

ϕ0i =
Ti − λ

λ · (1 − λ)
·

Di − π0(Xi )

π0(Xi ) · (1 − π0(Xi ))
.

Notice that,m(Zi , β, π̂)− m(Zi , β, π0) = Xki {(π̂(Xi ) ϕ̂i − π0(Xi ) ϕ0i )Yi − (π̂(Xi )− π0(Xi )) X′
kiβ}, and

π̂(Xi ) ϕ̂i − π0(Xi ) ϕ0i =
Ti − λ

λ(1 − λ)
·

Di − 1

(1 − π̂(Xi ))(1 − π0(Xi ))
· (π̂(Xi )− π0(Xi )).

By Assumption4.1(iii) and uniform convergence of̂π , with probability approaching onêπ is bounded away from one
and there is a constantC such that

supβ∈2

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, π̂)− m(Zi , β, π0)

∥∥∥∥ ≤ C ·
1

n

∑n

i =1
{‖Xki Yi ‖ + ‖Xki ‖

2
‖β‖}|π̂ − π0|∞.

Therefore, the first term of the R.H.S. of equation (A.2) is op(1). Assumption4.1 also implies that‖m(Z, β, π0)‖

is dominated by an integrable function. Then, sincem(Z, β, π0) is continuous at eachβ ∈ 2 compact, Lemma 2.4
in Newey and McFadden(1994) implies that the second term of the R.H.S. of equation (A.2) is alsoop(1) and that
E[m(Z, β, π0)] is continuous. Now, the usual consistency argument for estimators based on moment equations (e.g.van

der Vaart(1998, Theorem 5.9)) proves that̂β
p

→ β0.
Since|π̂ − π0|∞ converges in probability to zero, with probability approaching onen−1∑n

i =1 Xki π̂(Xi )X
′
ki is

non-singular and

n1/2(β̂ − β0) =

(
1

n

∑n

i =1
Xki π̂(Xi )X

′
ki

)−1
·

1
√

n

∑n

i =1
Xki π̂(Xi )(ϕ̂i Yi − X′

kiβ0).

SinceXk has second moments,

1

n

∑n

i =1
Xki π̂(Xi )X

′
ki = E[Xk DX′

k] + op(1).

Now, let us prove that

1
√

n

∑n

i =1
m(Zi , β0, π̂) =

1
√

n

∑n

i =1
Xki π̂(Xi )(ϕ̂i Yi − X′

kiβ0) =
1

√
n

∑n

i =1
ψ(Zi )+ op(1).

Consider

3(Z, π, β, π̃) =

(
∂

∂π
m(Z, β, π)|π=π̃

)
· π = Xk

[
T − λ

λ · (1 − λ)
·

D − 1

(1 − π̃)2
· Y − X′

kβ

]
· π .

It can be easily seen that forπ , π̃ bounded away from one we have

m(Z, β, π)− m(Z, β, π̃)−3(Z, π − π̃ , β, π̃) = Xk ·
T − λ

λ · (1 − λ)
·

D − 1

(1 − π)(1 − π̃)2
· Y · (π − π̃)2.

Therefore, since, with probability approaching one,(1 − π̂)−1 is bounded by some constantC, we have∥∥∥∥ 1
√

n

∑n

i =1
m(Zi , β0, π̂)− m(Zi , β0, π0)−3(Zi , π̂ − π0, β0, π0)

∥∥∥∥
≤ n1/2

|π̂ − π0|
2
∞C ·

1

n

∑n

i =1

∥∥∥∥Xki ·
Ti − λ

λ · (1 − λ)
·

Di − 1

(1 − π0)
2

· Yi

∥∥∥∥ = op(1).

This result holds because Assumption4.1(i) implies thatn1/2K 2
·(K/n+K−2s/r ) → 0, and thereforen1/2

|π̂−π0|
2
∞ =

op(1). The assumptionsEM |Y| < ∞, ‖Xk‖ bounded andπ0 bounded away from one take care of the sample average
term. Therefore

1
√

n

∑n

i =1
m(Zi , β0, π̂) =

1
√

n

∑n

i =1
m(Zi , β0, π0)+

1
√

n

∑n

i =1
3(Zi , π̂ − π0, β0, π0)+ op(1).
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Note that‖3(Z, π, β0, π0)‖ ≤ b(Z) · |π |∞ with b(Z) = ‖Xk[(T −λ)/(λ · (1−λ))] · [(D −1)/(1−π0)
2
] ·Y − X′

kβ0‖.

By EM Y2 < ∞ and‖Xk‖ bounded, we have thatEM b(Z)2 < ∞. Then, it follows from the proof of Theorem 6.1 in
Newey(1994) that

1
√

n

∑n

i =1
{3(Zi , π̂ − π0, β0, π0)− EM [3(Z, π̂ − π0, β0, π0)]}

= Op(K
−s/r )+ Op(K · [(K/n)1/2 + K−s/r

]) = op(1).

Note thatEM [3(Z, π, β0, π0)] = E[δ(X)π(X)]. If:

(a) For eachK , there existsξK such thatE[‖δ(X)−ξK pK (X)‖2
] → 0 andnK−2s/r E[‖δ(X)−ξK pK (X)‖2

] → 0,
(b) K 5/n → 0,
(c) K 2

· K−2s/r
→ 0,

then, Assumption 6.6 inNewey (1994) holds for3(Z, π, β0, π0). Condition (a) holds by Assumption4.1(i) and by
square-integrability ofδ(X). Conditions (b) and (c) follow from Assumption4.1(i). Under such conditions,Newey(1994)
shows that

n1/2EM [3(Z, π̂ − π0, β0, π0)] =
1

√
n

∑n

i =1
δ(Xi ) · (Di − π0(Xi ))+ op(1).

So the result of the theorem follows from existence of second moments ofψ . ‖

Proof of Theorem4.2. By the law of large numberŝQ converges in probability toQ, which is non-singular. Notice
that

Xki π̂(Xi )(ϕ̂i Yi − X′
ki β̂)− Xkiπ0(Xi )(ϕ0i Yi − X′

kiβ0)

= Xki

(
Ti − λ

λ(1 − λ)
·

Di − 1

(1 − π̂(Xi ))(1 − π0(Xi ))

)
Yi (π̂(Xi )− π0(Xi ))− Xki X′

ki (β̂ − β0).

Now, since‖Xki ‖ is bounded,EM Y2 < ∞, π0 is bounded away from zero, and|π̂ −π0|∞ and‖β̂ −β0‖ areop(1), we
obtain

1

n

∑n

i =1
‖Xki π̂(Xi )(ϕ̂i Yi − X′

ki β̂)− Xkiπ0(Xi )(ϕ0i Yi − X′
kiβ0)‖

2
= op(1). (A.3)

Forπ bounded away from one, we have that

3(Z, π̃ , β, π)−3(Z, π̃ , β0, π0) =

{(
Xk

T − λ

λ(1 − λ)
·
(1 − π0)+ (1 − π)

(1 − π)2(1 − π0)
2
(D − 1)Y

)
(π − π0)− Xk X′

k(β − β0)

}
π̃ ·

Therefore, there exists some function,b(·), such that‖3(Z, π̃ , β, π) − 3(Z, π̃ , β0, π0)‖ ≤ b(Z)(|π − π0|∞ + ‖β −

β0‖)|π̃ |∞ with EM b(Z) < ∞. This result, along withK 7/n → 0 guarantees that

1

n

∑n

i =1
‖̂δ(Xi )(Di − π̂(Xi ))− δ(Xi )(Di − π0(Xi ))‖

2
= op(1) (A.4)

(seeNewey, 1994). Equations (A.3) and (A.4), along with the Triangle and Ḧolder’s inequalities, implŷ6
p

→ 6. As a

result,V̂
p

→ V . ‖

Proof of Theorem4.3. First, let us prove that under Assumption4.2(i)–(iv), γ̂ is asymptotically linear with
influence function given by equation (17). By Assumption 4.2(ii), E[X X′

] is non-singular, therefore(γ −

γ0)
′E[X X′

](γ − γ0) > 0 for γ 6= γ0. As a result, forγ 6= γ0, X′γ 6= X′γ0 in a set of positive probability.
Sinceπ(v) is strictly increasing inv ∈ V , we have thatπ(X′γ ) 6= π(X′γ0) in a set of positive probability. Let
mγ = D log(π(X′γ ))+ (1 − D) log(1 − π(X′γ )).

E[mγ − mγ0 | X] = E[D log(π(X′γ )/π(X′γ0))+ (1 − D) log((1 − π(X′γ ))/(1 − π(X′γ0))) | X]

= π(X′γ0) log(π(X′γ )/π(X′γ0))+ (1 − π(X′γ0)) log((1 − π(X′γ ))/(1 − π(X′γ0)))

≤ 0. (A.5)

The last inequality follows from logλ ≤ λ − 1, for λ > 0, which is strict forλ 6= 1. Sinceπ(X′γ ) 6= π(X′γ0) with
positive probability, then the inequality in equation (A.5) is strict with positive probability andE[mγ − mγ0] < 0 for
γ 6= γ0. Sinceπ(v) is bounded away from zero and one inV, then the absolute value ofmγ is bounded by a constant
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for any γ ∈ 0. This last fact, along with compactness of0 and S, continuity ofπ(·), and Lemma 2.4 inNewey and
McFadden(1994) guarantees thatE[mγ ] is a continuous function ofγ and that

supγ∈0

∥∥∥∥ 1

n

∑n

i =1
mγ (Zi )− E[mγ (Z)]

∥∥∥∥ p
→ 0.

These conditions are sufficient for̂γ
p

→ γ0 (see,e.g.Newey and McFadden(1994, Theorem 2.1)).
Now, let us study the asymptotic distribution of

√
n(γ̂ − γ0). Assumption4.2 along with Lemma 7.6 invan der

Vaart(1998) guarantees that, forpγ = π(X′γ )D(1 − π(X′γ ))(1−D), the mapγ 7→ p1/2
γ is differentiable in quadratic

mean with derivative

l̇γ = X
π̇(X′γ )

π(X′γ )(1 − π(X′γ ))
(D − π(X′γ )).

Therefore, the mapγ 7→ p1/2
γ is differentiable in quadratic mean atγ0 with derivative l̇γ0. Take a convex open

neighbourhoodNγ0 of γ0 contained in0. By Assumption4.2(ii) and (iv), ‖∂mγ /∂γ ‖ is bounded by a constant on
Nγ0. Therefore, by Theorem 9.19 inRudin (1976), |mγ1 − mγ2| ≤ M‖γ1 − γ2‖ for anyγ1, γ2 ∈ Nγ0 and for some

constantM . Finally notice that, by Assumption4.2(ii)–(iv), E[l̇γ0 l̇ ′γ0
] = E[{π̇2

0/(π0(1 − π0))}X X′
] is non-singular.

Therefore, by Theorem 5.39 invan der Vaart(1998), we obtainn1/2(γ̂ − γ0) = n−1/2∑n
i =1ψγ0(Zi )+ op(1).

Let m(Z, β, γ ) = Xkπ(X
′γ )[ϕ(Z, γ )Y − X′

kβ]. By Assumption4.2(vi), EM [m(Z, β, γ0)] has a unique zero at

β0 = (E[Xkπ0X′
k])−1EM [Xkπ0ϕ0Y]. Under the assumptions of the theorem, the functionm(Z, β, γ ) is continuous

at each(β, γ ) ∈ 2 × 0. Sinceπ(X′γ ) is bounded away from zero and one, and bothY and‖Xk‖ have finite first
moments, then‖m(Z, β, γ )‖ is dominated by a variable with finite first moment. Therefore, by Lemma 2.3 inNewey
and McFadden(1994)

sup(β,γ )∈2×0

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, γ )− EM [m(Z, β, γ )]

∥∥∥∥ p
→ 0, (A.6)

andE[m(Z, β, γ )] is continuous at each(β, γ ) ∈ 2× 0. By the Triangle inequality,

supβ∈2

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, γ̂ )− E[m(Z, β, γ0)]

∥∥∥∥ ≤ supβ∈2

∥∥∥∥ 1

n

∑n

i =1
m(Zi , β, γ̂ )− E[m(Z, β, γ̂ )]

∥∥∥∥
+ supβ∈2 ‖E[m(Z, β, γ̂ )] − E[m(Z, β, γ0)]‖. (A.7)

Equation (A.6) implies that the first term of the R.H.S. of equation (A.7) is op(1). Continuity of E[m(Z, β, γ )] and
consistency of̂γ give pointwise convergence for the second term of the R.H.S. of equation (A.7), uniform convergence

holds by2 being compact. These conditions guaranteeβ̂
p

→ β0.
It can be shown that‖m(Z, β1, γ1) − m(Z, β2, γ2)‖ ≤ ‖Xk‖

2
· ‖β1 − β2‖ + (C · |Y| · ‖Xk‖ + ‖Xk‖

2
‖β2‖) ·

‖π(X′γ1) − π(X′γ2)‖, for someC > 0 andβ1, β2 ∈ 2. Using Theorem 9.19 inRudin (1976), it is easy to show
that for γ1, γ2 in some open ball containingγ0, and X ∈ S, ‖π(X′γ1) − π(X′γ2)‖ ≤ M‖γ1 − γ2‖, for some
M > 0. This Lipschitz property, along with the existence of finite second moments forY and Xk, implies that the
class of functions{m(Z, β, γ ) : ‖β − β0‖ < c, ‖γ − γ0‖ < c} is Donsker for somec > 0 (see,e.g. van der
Vaart (1998, p. 271)). In addition,EM‖m(Z, β, γ ) − m(Z, β0, γ0)‖

2
→ 0 as(β, γ ) → (β0, γ0). Existence of finite

second moments for‖Xk‖ also implies that∂EM [m(Z, β, γ )]/∂β = −E[Xkπ(X
′γ )X′

k] which is non-singular in a
neighbourhood ofγ0 by continuity. Notice thatMγ0 is the derivative ofEM [m(Z, β0, γ )] at γ0. Applying the delta

method:n1/2EM [m(Z, β0, γ̂ )] = n1/2Mγ0(γ̂ − γ0) + op(1). Now, sinceγ̂ is asymptotically linear, apply Theorem
5.31 invan der Vaart(1998) to get

n1/2(β̂ − β0) = Q−1 1

n1/2

∑n

i =1
m(Zi , β0, γ0)+ Mγ0ψγ0(Zi )+ op(1).

Then, existence of second moments ofψ implies the result of the theorem. ‖

Proof of Theorem4.4. Like in the proof of Theorem4.2, notice that

Xki π̂(Xi )(ϕ̂i Yi − X′
ki β̂)− Xkiπ0(Xi )(ϕ0i Yi − X′

kiβ0)

= Xki

(
Ti − λ

λ(1 − λ)
·

Di − 1

(1 − π̂(Xi ))(1 − π0(Xi ))

)
Yi (π̂(Xi )− π0(Xi ))− Xki X′

ki (β̂ − β0).

By the Lipschitz property shown above forπ(·), andEM Y2 < ∞, we obtain

1

n

∑n

i =1
‖m(Zi , β̂, γ̂ )− m(Zi , β0, γ0)‖

2
= op(1). (A.8)
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Continuity of π̇ and Lemma 4.3 inNewey and McFadden(1994) imply that ‖M̂γ̂ − Mγ0‖ = op(1). Using similar

arguments, it can be easily seen that boundedness ofπ̈ implies thatn−1∑n
i =1 ‖ψ̂γ̂ (Zi ) − ψγ0‖

2
= op(1). Apply the

Triangle and Ḧolder’s inequalities to obtain the desired result.‖
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