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Statistical Nonsignificance in Empirical Economics†

By Alberto Abadie*

Statistical significance is often interpreted as providing greater infor-
mation than nonsignificance. In this article we show, however, that 
rejection of a point null often carries very little information, while 
failure to reject may be highly informative. This is particularly true 
in empirical contexts that are common in economics, where data-
sets are large and there are rarely reasons to put substantial prior 
probability on a point null. Our results challenge the usual practice 
of conferring point null rejections a higher level of scientific signifi-
cance than non-rejections. Therefore, we advocate visible reporting 
and discussion of nonsignificant results. (JEL C12, C90)

It is usual and convenient for experimenters to take 5 per cent.  as a 
standard level of significance, in the sense that they are prepared to ignore 
all results which fail to reach this standard… 

R. A. Fisher in The Design of Experiments (Fisher 1935)

Nonsignificant empirical results (usually in the form of ​t​-statistics smaller 
than 1.96) relative to some null hypotheses of interest (usually zero coeffi-
cients) are notoriously hard to publish in professional / scientific journals (e.g., 
Andrews and Kasy 2019, Ziliak and McCloskey 2008).1 This state of affairs is in part 
maintained by the widespread notion that nonsignificant results are non-informative. 
After all, lack of statistical significance derives from the absence of extreme or sur-
prising outcomes under the null hypothesis. In this article, we argue that this view of 
statistical inference is misguided. In particular, we show that nonsignificant results 
are informative and argue that they are more informative than significant results in 
scenarios common in empirical practice in economics.

To discuss the informational content of different statistical procedures, we 
formally adopt a limited-information Bayes perspective. In this setting, agents rep-
resenting journal readership or the scientific community have priors, ​​, over some 
parameters of interest, ​θ  ∈  Θ​. That is, a member ​p​ of ​​ is a probability density 
function (with respect to some dominating measure, ​ν​) on ​Θ​. While agents are 

1 See also Kim and Ji (2015) and Brodeur et al. (2016).
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Bayesian, we will consider a setting where journals (or researchers) report frequentist 
results,  in particular, statistical significance. Agents construct limited-information 
Bayes posteriors based on the reported results of significance tests. We will deem 
a statistical result informative when it has the potential to substantially change the 
beliefs of the agents over a large range of values for ​θ​.

To understand the intuition behind the main result of this article, it is useful to 
draw attention to two features often present in empirical studies in economics. First, 
as argued later in this article, for the parameters of interest in empirical studies in 
economics, there is rarely any reason to put substantial prior belief on a point null 
hypothesis. Second, decent statistical power for parameter values away from the 
null is required and often present in applied studies in economics, where datasets 
are large are becoming larger. Both of these features increase the prior probability of 
rejection of the null hypothesis. If the probability of rejection is larger than 0.5, then 
nonsignificance is deemed surprising to a Bayesian agent relative to significance 
and therefore more informative than significance in the sense that it induces a larger 
change in beliefs.

Notice that, like Ioannidis (2005) and others, we restrict our attention to the 
effect of statistical significance on beliefs. We adopt this framework not because 
we believe it is (always) representative of empirical practice (in fact, researchers 
and journals typically report additional statistics, beyond statistical significance)
but because isolating the informational content of statistical significance has imme-
diate implications for how we should interpret its occurrence or lack of it. Correct 
interpretation of statistical significance is important because, while many other 
statistics are reported in practice, the scientific discussion of empirical results is 
often framed in terms of the statistical significance of some parameters of interest, 
and nonsignificant results may be underreported or unpublished. Moreover, by 
considering significance tests in isolation of other statistics, we restrict ourselves 
to the best possible scenario for the informational content of significance testing. 
As we demonstrate in Section I, once we start conditioning on the value of other 
statistics, the results of significance tests soon become completely uninformative.

Previous studies have described the important limitations of significance testing 
as an inferential tool in the social sciences and other disciplines (see, in particu-
lar, Leamer 1978; Berger 1985; Berger and  Sellke 1999; Sims and  Uhlig 1991; 
Gelman and Stern 2006; Ziliak and McCloskey 2008; Greenland and Poole 2013; 
Gelman 2015; Wasserstein and Lazar 2016; Amrhein, Korner-Nievergelt, and Roth 
2017; McShane et al. 2019).2 We, too, advise against the use of statistical signif-
icance as the primary marker of scientific discovery in empirical studies in the 
social sciences. However, the pervasiveness of significance testing in social science 
research suggests that significance tests will remain part of the empirical tool kit, at 
least for the foreseeable future. If so, it is important to confer an appropriate inter-
pretation to the results of significance tests.

A large literature has focused on the dangers of a larger-than-size prevalence 
of “false positives” resulting from selective reporting based on significance 

2 Also related to this article are Frankel and Kasy (2018) and Furukawa (2019), which adopt a policy choice 
perspective to study the question of which research results should be published.
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( ​p​-hacking and “file drawer”).3 This article switches the focus to the informational 
value of statistical nonsignificance and argues that in many empirical scenarios 
nonsignificant results carry more information than significant ones. Moreover, the 
informational value of nonsignificance relative to significance does not necessar-
ily emanate from the estimation of “precise zeros.” In Section IIA, we propose a 
metric to measure the informational value of significance and nonsignificance. We 
formally show that, under that metric, the informational value of nonsignificance 
exceeds the informational value of significance as long as the prior probability 
of rejection of the null is greater than 0.5. As a consequence, even in empirical 
settings where power / precision is low relative to conventional requirements 
(e.g., power exceeding 0.80 is an usual benchmark in the design of experiments), 
nonsignificance may substantially outperform significance in terms of the informa-
tional value of the result, especially when the prior assigns substantial probability 
to subsets of ​Θ​ away from the null. To illustrate the empirical relevance of this 
result, we use data from economics laboratory experiments (Camerer et al. 2016, 
Andrews and Kasy 2019).

The rest of the article is organized as follows. Section  I provides a simple 
example,  with normal priors and data, that clarifies the informational content of 
significance tests. Section  II provides finite-sample and large-sample results 
for a general setting, where priors or data may not be normal. In this section, 
we also consider the case when the prior exhibits probability mass at the point 
null. Section  III provides a calibration using data from experimental economics. 
Section IV concludes.

I.  A Simple Example

In this section, we consider a simple example with normal priors and data that 
captures the essence of our argument. In Section  II we relax these assumptions 
and consider the general case where the priors and distribution of the data are not 
restricted to being in a particular parametric family.

Assume an agent has a prior ​θ  ∼  N ​(μ, ​σ​​ 2​)​​ on ​θ​, with ​​σ​​ 2​  >  0​. A researcher 
observes ​n​ independent measurements of ​θ​ with normal errors mutually inde-
pendent and independent of ​θ​, and with variance normalized to one. That 
is, ​​x​ 1​​, …  , ​x​ n​​​ are independent ​N​(θ, 1)​​, conditional on ​θ​. Then, conditional on ​θ​,  
we obtain

	​​​ θ ˆ ​​n​​  =  ​ 1 _ n ​ ​ ∑ 
i=1

​ 
n

  ​​ ​x​ i​​  ∼  N​(θ, 1 / n)​​ .

Note that ​θ​ is deemed significant if ​​√ _ n ​ ​| ​​θ ˆ ​​n​​ |​  >  c​, for some ​c  >  0​. In empirical 
practice, ​c​ is often equal to 1.96, the ​0.975​-quantile of the standard normal distribu-
tion. Suppose the researcher reports on statistical significance. Suppose also that ​n​ is 
common knowledge, so agents know the precision of the estimates. We will calcu-
late the limited-information posteriors of the agents conditional on significance and 

3 See, e.g., Rosenthal (1979); Ioannidis (2005); Simmons, Nelson, and  Simonsohn (2011); Brodeur et  al. 
(2016); Wasserstein and Lazar (2016); Amrhein, Korner-Nievergelt, and Roth (2017).
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lack thereof. These posteriors are the distributions of ​θ​ conditional on ​​√ _ n ​ ​| ​​θ ˆ ​​n​​ |​  >  c​ 
and ​​√ _ n ​ ​| ​​θ ˆ ​​n​​ |​  ≤  c​. First, notice that

(1)	​ Pr ​(​√ _ n ​ ​| ​​θ ˆ ​​n​​ |​  >  c | θ)​  =  Pr ​(​​θ ˆ ​​n​​  >  c/​√ _ n ​ | θ)​ + Pr ​(− ​​θ ˆ ​​n​​  >  c/​√ _ n ​ | θ)​​

	 ​=  Φ​(​√ _ n ​ θ − c)​ + Φ ​(− ​√ _ n ​ θ − c)​​ .

Integrating over the prior, we obtain the prior probability of rejection (henceforth, 
probability of rejection):4

(2)	​ Pr ​(​√ _ n ​ ​| ​​θ ˆ ​​n​​ |​  >  c)​  =  Φ​
(

​ ​
√ _ n ​μ − c

 _ 
​√ 
_

 1 + n ​σ​​ 2​ ​
 ​
)

​ + Φ​
(

​ − ​√ _ n ​μ − c
 _ 

​√ 
_

 1 + n ​σ​​ 2​ ​
 ​
)

​​.

The limited-information posteriors given significance and nonsignificance are

(3)	​ p​(θ | ​√ _ n ​  ​|  ​​θ ˆ ​​n​​  |​  >  c)​  =  ​ 
​ 1 _ σ ​ ϕ​(​ θ − μ

 _ σ ​ )​​(Φ​(​√ _ n ​ θ − c)​ + Φ​(− ​√ _ n ​ θ − c)​)​
    _______________________________    

Φ​
(

​ ​
√ _ n ​ μ − c

 _ 
​√ 
_

 1 + n ​σ​​ 2​ ​
 ​
)

​ + Φ​
(

​ − ​√ _ n ​ μ − c
 _ 

​√ 
_

 1 + n ​σ​​ 2​ ​
 ​
)

​
 ​ ​ 

and

(4)  ​p​(θ | ​√ _ n ​  ​| ​​θ ˆ ​​n​​  |​  ≤  c)​  =  ​ 
​ 1 _ σ ​ ϕ​(​ θ − μ

 _ σ ​ )​​(1 − Φ​(​√ _ n ​ θ − c)​ − Φ​(− ​√ _ n ​ θ − c)​)​
     __________________________________    

1 − Φ​
(

​ ​
√ _ n ​ μ − c

 _ 
​√ 
_

 1 + n ​σ​​ 2​ ​
 ​
)

​ − Φ​
(

​ − ​√ _ n ​ μ − c
 _ 

​√ 
_

 1 + n ​σ​​ 2​ ​
 ​
)

​
 ​ ​ .

The two posteriors, along with the normal prior, are plotted in Figure  1 
for ​μ  =  1​, ​σ  =  1​, ​c  =  1.96​, and ​n  =  10​. This figure illustrates the informa-
tional  value of a significance test. Rejection of the null carves probability mass 
around zero in the limited-information posterior, while failure to reject concentrates 
probability mass around zero.

As noted earlier, the discrepancy between a prior and a posterior distribution pro-
vides a basic measure of informativeness of a statistical result. It tells us the extent 
to which the additional information contained in the results changes beliefs on the 
distribution of the parameter of interest. In Section IIA we will present a specific 
metric of informativeness based on such a discrepancy. However, in the absence of 
a specific metric of informativeness, a mere visual inspection of Figure 1 indicates 
that failure to reject carries substantial information.

Figure 2 shows how prior and posterior after significance compare as a function of 
the sample size. When ​n​ is small, significance affects the posterior over a large range 
of values. When ​n​ is large, significance provides only local-to-zero information. 

4 This calculation uses the following fact of integration:

	​ ∫ Φ​(​ λ − θ _ ξ ​ )​ ​ 1 _ σ ​ ϕ​(​ 
θ − μ

 _ σ ​ )​ d θ  =  Φ​
(

​ 
λ − μ

 _ 
​√ 
_

 ​σ​​ 2​ + ​ξ​​ 2​ ​
 ​
)

​​

for arbitrary real ​λ​ and ​μ​ and positive ​σ​ and ​ξ​. Alternatively, the result can be easily derived after noticing that the 
distribution of ​​​θ ˆ ​​n​​​ integrated over the prior is normal with mean ​μ​ and variance ​​σ​​ 2​ + 1 / n​.
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Figure 1. Posterior Distributions after a Significance Test

Figure 2. Prior and Posterior with Significance for Different Sample Sizes
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That is, significance is not informative in large samples. This is explained by the fact 
that the probability of rejection in equation (2) converges to one as the sample size 
increases. Intuitively, the occurrence of an event (rejection of the null) that has large 
probability under the prior should not have a substantial effect on beliefs. In con-
trast, by the law of total probability, it follows that conditional on nonsignificance, 
probability mass concentrates around zero as ​n​ increases, so the prior and posterior 
differ substantially in this case.5 That is, the occurrence of an event (non-rejection of 
the null) that is very unlikely given the prior has a large effect on beliefs.

Equations (3) and (4) report limited-information posteriors. The full-information 
posterior is

	​ p​(θ | ​x​ 1​​, …  , ​x​ n​​)​  =  ​ 1 _ ​σ​n​​ ​ ϕ​(​ θ − ​μ​n​​ _ ​σ​n​​ ​ )​​,

where

	​ ​μ​n​​  = ​ 
μ + n ​σ​​ 2​ ​​θ ˆ ​​n​​ ________ 
1 + n ​σ​​ 2​

 ​ ​ ,

and

	​ ​σ​ n​ 2​  =  ​  ​σ​​ 2​ _ 
1 + n ​σ​​ 2​

 ​​ .

So, in this very particular context, knowledge of ​​​θ ˆ ​​n​​​ is sufficient to go back to the 
full-information posterior. The same is true for the combined information given by 
the two-sided ​p​-value, ​2Φ​(− ​√ _ n ​ ​| ​​θ ˆ ​​n​​ |​)​​, and the sign of ​​​θ ˆ ​​n​​​ (or a one-sided ​p​-value 
on its own). More generally, under regularity conditions, there exist asymptotically 
sufficient statistics of the same dimension as the number of unknown parameters 
in a model. In particular, under regularity conditions, the maximum likelihood 
estimators of the unknown parameters of a model are asymptotically sufficient. 
Conditional on sufficient statistics, statistical significance carries no information. 
This result has two important implications. First, it underscores, in contrast to the 
R. A. Fisher quote in the preamble of this article, the importance of not ignoring 
results that fail to attain statistical significance.6 Instead, statistical inference should 
rely on statistics that may better describe the full-information posterior distribution 
of the parameters of interest. Confidence intervals, which have an interpretation as 
Bayes credible regions in large samples, seem a natural choice. Second, it demon-
strates that at least for the notion of informativeness adopted in this article, the study 
of the informational content of significance tests requires a limited-information 

5 To preserve a visually informative scale and because they concentrate around zero as ​n​ increases, we omit 
the posteriors without significance from Figure  2. For the values of ​μ​, ​σ​, ​c​, and ​n​ adopted for Figures  1 and 
2, the implied probabilities of rejection, ​Pr​(​√ _ n ​ ​|​​θ ˆ ​​n​​|​  >  c)​​, are 0.7028 (​n  =  10​), 0.9052 (​n  =  100​), 0.9700 
(​n  =  1,000​), and 0.9905 (​n  =  10,000​).

6 It is worth noticing that Fisher’s stance on the value of statistical significance seemed to soften in his late 
writings. In particular, Fisher (1958) (quoted in Amrhein, Korner-Nievergelt, and  Roth 2017) states, “tests of 
statistical significance are used as an aid to judgment, and should not be confused with automatic acceptance tests, 
or ‘decision functions.’”
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perspective. Under full information (e.g., after conditioning on sufficient statistics), 
statistical significance is irrelevant in terms of its informational content.7

The results of this section  have immediate counterparts in large-sample 
settings with asymptotically normal distributions. They can also be generalized to 
nonparametric settings, as we demonstrate next.

II.  General Case

A. Finite Sample Results

Results like that in Figure  1 are rather general and do not depend on normal 
priors or data. Consider a test statistic, ​​​T ̂ ​​n​​​, such that rejection of the null is given 
by ​​​T ̂ ​​n​​  >  c​. Let ​p​( ⋅ )​​ be a prior on ​θ​, and ​p​( ⋅ | ​​T ̂ ​​n​​  >  c)​​ and ​p​( ⋅ | ​​T ̂ ​​n​​  ≤  c)​​ be the 
limited-information posteriors under significance and nonsignificance, respectively. 
Regardless of the shape of the prior and/or distribution of the data, by the law of 
total probability

	​ p​(θ)​  =  p​(θ | ​​T ̂ ​​n​​  ≤  c)​Pr​(​​T ̂ ​​n​​  ≤  c)​ + p​(θ | ​​T ̂ ​​n​​  >  c)​Pr​(​​T ̂ ​​n​​  >  c)​​.

Rearranging terms, we obtain

(5)	​​ | 1 − ​ 
p​(θ | ​​T ̂ ​​n​​  ≤  c)​

  __________ 
p​(θ )​ ​  |​  = ​

(
 ​ 
Pr​(​​T ̂ ​​n​​  >  c)​

 _________  
Pr​(​​T ̂ ​​n​​  ≤  c)​

 ​ 
)

​​|  1 − ​ 
p​(θ | ​​T ̂ ​​n​​  >  c)​

  _________ 
p​(θ )​ ​  |​​

for ​Pr​(​​T ̂ ​​n​​  ≤  c)​  >  0​ and ​θ​ such that ​p​(θ)​  >  0​. The absolute value expressions on 
both sides of equation (5) measure the local (at ​θ​) informativeness of significance 
(right) and nonsignificance (left). They are zero when the posterior densities with 
significance (right) / nonsignificance (left) are equal to the prior density. Otherwise, 
they measure the discrepancy between prior and posterior densities at ​θ​ as a fraction 
of the prior density at ​θ​.

Equation (5) implies that the local informativeness of nonsignificance relative to 
significance at ​θ​ is solely determined by the ratio ​Pr​(​​T ̂ ​​n​​  >  c)​/Pr​(​​T ̂ ​​n​​  ≤  c)​​, which 
(remarkably) does not depend on ​θ​. That is, the ratio ​Pr​(​​T ̂ ​​n​​  >  c)​/Pr​(​​T ̂ ​​n​​  ≤  c)​​ 
provides also a global measure of the informativeness of nonsignificance relative to 
significance.8

7 It is, however, possible to increase the amount of information of the agents without making statistical signifi-
cance irrelevant. In a supplemental online Appendix we show that results similar to those in this section hold when 
the information sets of the agents are as in this section but additionally include the sign of ​​​θ ˆ ​​n​​​.

8 Notice that the result in equation (5) can easily be expressed in terms of the total variation distance to obtain a 
global measure of the discrepancy between the prior and posterior distributions,

	​​ (​ 1 _ 
2
 ​∫  ​| p​(θ | ​​T ̂ ​​n​​  ≤  c)​ − p​(θ)​|​ dν)​  = ​ (Pr​(​​T ̂ ​​n​​  >  c)​ / Pr​(​​T ̂ ​​n​​  ≤  c)​)​​(​ 1 _ 

2
 ​∫  ​| p​(θ | ​​T ̂ ​​n​​  >  c)​ − p​(θ)​|​ dν)​​.

See, e.g., DasGupta (2008) section 2.1 for the definition and properties of the total variation metric. Total variation 
is by no means the only possible measure of discrepancy between two distributions but is particularly well suited for 
our purposes because the relative informativeness of significance versus nonsignificance in terms of total variation 
follows directly from the law of total probability.
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The connection between the probability of rejection, the power of the test, and the 
prior distribution of ​θ​ is given by

	​ Pr​(​​T ̂ ​​n​​  >  c)​  =  ∫ Pr​(​​T ̂ ​​n​​  >  c | θ)​p​(θ)​ dν​ ,

where, for ​θ  ≠  0​, ​Pr​(​​T ̂ ​​n​​  >  c | θ)​​ is the power of the test. Now, for  
​Pr​(​​T ̂ ​​n​​  >  c)​  =  0.5​, which typically indicates a rather underpowered setting or a 
large prior probability mass at the point null, equation (5) implies that nonsignificance 
is exactly as informative as significance. Moreover, the relative informativeness of 
nonsignificance increases with the probability of rejecting the null. In turn, the prob-
ability of rejection depends on the central tendency of the prior but also crucially 
on its dispersion. That is, the probability of rejection could be substantial even if 
the power of the test evaluated at the center of the prior is close to zero.9 In partic-
ular, the adoption of a diffuse prior (“objective Bayes”) ​​increases the probability 
of rejection and, as a result, reduces the relative informativeness of significance. In 
Section III, we calibrate a prior using data from economics laboratory experiments, 
obtaining a probability of rejection greater than 0.5. Finally, it is worth mentioning 
that the result in equation (5) is general and does not rely on the nature of the null 
hypothesis (point null or composite).

B. Large-Sample Analysis

To extend the large-sample results of Section I beyond normal priors and data, we 
will consider testing procedures with certain basic properties. First, we will consider 
tests that have asymptotic size equal to some constant ​α  ∈  ​(0, 1)​​:

(6)	​ Pr​(​​T ̂ ​​n​​  >  c | θ  =  0)​  →  α.​

Let ​​β​n​​​(θ)​  =  Pr​(​​T ̂ ​​n​​  ≤  c | θ)​​. We will require that the probability of type II error 
converges to zero exponentially. That is,

(7)	​​ lim sup​ 
n→∞

​ ​  ​ 1 _ n ​ log ​β​n​​​(θ)​  <  0​

for every ​θ  ≠  0​. Equation (7) typically follows from large deviations results and 
implies that the test is consistent against fixed alternatives. Finally, we will rule out 
perfect local asymptotic power:

(8)	​ ∫ ​lim inf​ 
n→∞​ ​ ​β​n​​​(z / ​√ _ n ​)​ dz  >  0​.

9 To illustrate this point, consider the setting of Section I, with prior ​θ  ∼  N ​( 0.1, 1)​​ and ​n  =  100​. Then, the 
power evaluated at ​μ  =  0.1​ is equal to 0.17 (equation (1)). Notice, however, that the probability of rejection, inte-
grated over the prior, is equal to 0.85 (equation (2)). This distinction is important because, as reported in Ioannidis, 
Stanley, and Doucouliagos (2017), statistical power in empirical studies in economics may be low for values of ​θ​ 
close to an average of estimates across different studies.
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These are very weak requirements, as they hold for most testing procedures used in 
practice.

Continuous Prior.—We will first assume a prior that is absolutely continuous 
with respect to the Lebesgue measure, with a version of the density that is positive 
and continuous at zero. By dominated convergence, we obtain

	​ Pr​(​​T ̂ ​​n​​  >  c)​  →  1​ .

We first derive the posterior densities under significance:

	​ p​(0 | ​​T ̂ ​​n​​  >  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  >  c | θ  =  0)​

  ______________  
Pr​(​​T ̂ ​​n​​  >  c)​

 ​  p​(0)​  →  αp ​(0)​​,

and

	​ p​(θ | ​​T ̂ ​​n​​  >  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  >  c | θ)​  __________  
Pr​(​​T ̂ ​​n​​  >  c)​

 ​  p​(θ)​  →  p​(θ)​​

for ​θ  ≠  0​. So, in large samples significance only changes beliefs locally around 
zero. The posterior density at ​θ  =  0​ after nonsignificance is

	​ p​(0 | ​​T ̂ ​​n​​  ≤  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  ≤  c | θ  =  0)​

  ______________  
Pr​(​​T ̂ ​​n​​  ≤  c)​

 ​  p​(0)​  →  ∞​.

For ​θ  ≠  0​, the posterior density after nonsignificance is

	​ p​(θ | ​​T ̂ ​​n​​  ≤  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  ≤  c | θ)​  __________  
Pr​(​​T ̂ ​​n​​  ≤  c)​

 ​  p​(θ)​​ .

Calculating the limit of ​p​(θ | ​​T ̂ ​​n​​  ≤  c)​​ when ​θ  ≠  0​ is complicated by the fact that 

both ​Pr​(​​T ̂ ​​n​​  ≤  c | θ)​​ and ​Pr​(​​T ̂ ​​n​​  ≤  c)​​ converge to zero. By equation (7), for any 
fixed ​θ  ≠  0​, ​Pr​(​​T ̂ ​​n​​  ≤  c | θ)​​ converges to zero at an exponential rate as a func-
tion of ​n​. We will now show that equation (8) implies that the rate of decay of  
​Pr​(​​T ̂ ​​n​​  ≤  c)​​ is not faster than polynomial. By change of variable ​z  =  ​n​​ 1/2​ θ​ and 
Fatou’s lemma, we obtain

	​​ lim inf​ 
n→∞​ ​ ​n​​ 1/2​ Pr​(​​T ̂ ​​n​​  ≤  c)​  = ​ lim inf​ 

n→∞​ ​ ​n​​ 1/2​ ∫ ​β​n​​​(θ )​p​(θ)​ dθ​

	​ = ​ lim inf​ 
n→∞​ ​ ∫ ​β​n​​​(z / ​√ _ n ​)​p​(z / ​√ _ n ​)​ dz​

	​ ≥  ∫ ​lim inf​ 
n→∞​ ​ ​(​β​n​​​(z / ​√ _ n ​)​p​(z / ​√ _ n ​)​)​ dz​

	​ =  ∫ ​lim inf​ 
n→∞​ ​ ​β​n​​​(z / ​√ _ n ​)​​ lim​ 

n→∞​​ p​(z / ​√ _ n ​)​  dz​

	​ =  p​(0)​∫ ​lim inf​ 
n→∞​ ​ ​β​n​​​(z / ​√ _ n ​)​ dz  >  0​ .
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As a result,

	​ p​(θ | ​​T ̂ ​​n​​  ≤  c)​  →  0​ 

for ​θ  ≠  0​. That is, like in the normal case of Section  I, conditional on 
nonsignificance the posterior converges to a degenerate distribution at zero.

To sum up, we have shown that in a large-sample nonparametric setting without 
prior probability mass at the point null, nonsignificance can be extremely informa-
tive while significance carries no information. We will next consider the case where 
the prior exhibits a probability mass at the point null.

Prior with Probability Mass at Zero.—We now consider the case when the prior 
has probability mass ​q​ at zero, with ​0  <  q  <  1​. Then

	​ Pr​(​​T ̂ ​​n​​  >  c)​  →  qα + ​(1 − q)​  ∈  ​(α, 1)​​.

Now, the posterior after significance is

	​ p​(0 | ​​T ̂ ​​n​​  >  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  >  c  | θ  =  0)​

  ______________  
Pr​(​​T ̂ ​​n​​  >  c)​

 ​  p​(0)​  →  ​
(
​  α _  
qα + ​(1 − q)​ ​)

​q  <  q​ ,

and

	​ p​(θ | ​​T ̂ ​​n​​  >  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  >  c | θ)​  __________  
Pr​(​​T ̂ ​​n​​  >  c)​

 ​  p​(θ)​  →  ​
(

​  1 _  
qα + ​(1 − q)​ ​)​ p​(θ )​  >  p​(θ )​​ 

for ​θ  ≠  0​. In contrast to the continuous prior case, significance changes beliefs 
away from zero in large samples. If we start with a prior that assigns a large prob-
ability to ​θ  =  0​, significance may greatly affect beliefs over regions for ​θ​ that are 
away from zero. Notice, however, that for moderate values of ​q​ the effect of signif-
icance on beliefs may be negligible in large samples. Figure 3 shows the limit of  
​p​(θ | ​​T ̂ ​​n​​  >  c)​ / p​(θ )​​ as a function of ​q​ for ​θ  ≠  0​ and ​α  =  0.05​. This limit is 
close  to  one for modest values of ​q​. In order for significance to at least double 
the value of the probability density function at values ​θ​ such that ​θ  ≠  0​, we 
need ​q  ≥  1 / ​(2​(1 − α)​)​  =  0.5263​. Notice that reducing the size of the test,  
​α​, does not substantially change the value of the limit of ​p​(θ | ​​T ̂ ​​n​​  >  c)​/ p​(θ )​​, except 
for very large values of ​q​. Regardless of the size of the test, ​q​ needs to be larger than 
0.5 in order for significance to double the probability density function of beliefs at 
nonzero values of ​θ​.

The posterior after nonsignificance is

	​ p​(0 | ​​T ̂ ​​n​​  ≤  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  ≤  c | θ  =  0)​

  ______________  
Pr​(​​T ̂ ​​n​​  ≤  c)​

 ​  p​(0)​  →  ​  1 − α _ 
q​(1 − α)​ ​ q  =  1​,

and for ​θ  ≠  0​,

	​ p​(θ | ​​T ̂ ​​n​​  ≤  c)​  = ​ 
Pr​(​​T ̂ ​​n​​  ≤  c | θ)​  ___________  
Pr​(​​T ̂ ​​n​​  ≤  c)​

 ​  p​(θ )​  →  0​ .

Like in the case of a continuous prior, nonsignificance seems to have a stronger 
effect on beliefs than significance in settings that seem most relevant for empirical 
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practice in economics (i.e., settings with moderate values for a prior probability 
mass at the point null).

Some remarks about priors with probability mass at a point null are in order. 
First, it is difficult to think of relevant settings in empirical economics where reason-
able prior beliefs assign probability mass to point nulls. For example, beliefs on the 
causal effect of a policy intervention may sometimes concentrate smoothly around 
zero, but more rarely in such a way that a large probability mass at zero is a good 
description of a reasonable prior.10​​​​​ ,​​11 Moreover, priors with probability mass at a 
point null generate a drastic discrepancy, known as Lindley’s paradox, between fre-
quentist and Bayesian testing procedures (see, e.g., Berger 1985). Lindley’s paradox 
arises in settings with a fixed value of ​​​T ̂ ​​n​​​ and a large ​n​. In those settings, frequentists 
would reject the null hypothesis when ​​​T ̂ ​​n​​  >  c​. Bayesians, however, may find that 
the posterior probability of the point null far exceeds the posterior probability of 

10 See Berkson (1938), Berger (1985), De Long and Lang (1992), and McShane et al. (2019) for related discus-
sions. One could try to reinterpret significance tests as tests of the implicit null “​θ​ is close to zero.” In a supplemental 
online Appendix, we study the problem of testing the null that the parameter ​θ​ belongs to an interval.

11 This is not to say that there are not settings where a point null hypothesis could be highly privileged. Fisher 
(1935) motivated the development of statistical tests using the famous “lady tasting tea” example. The null hypothe-
sis stated that a certain lady could not discern, by tasting only, whether tea or milk had been added first to a cup. It is 
possible that in this example the null hypothesis was highly privileged. Similarly, statistical testing has been applied 
to detect extrasensory perception, where the belief in the null hypothesis of no extrasensory perception may be 
strong. In microarray studies, scientists may be interested in finding genes involved in the development of a medical 
condition. Efron and Hastie have called these exercises “fishing expeditions” because for each gene the null hypoth-
esis of no effect is highly privileged (Efron and Hastie 2016). Such settings do not seem common in economics.

Figure 3. Limit of ​p​(θ | ​​T ̂ ​​n​​  >  c)​/p​(θ )​​ as a Function of ​q ​(θ  ≠  0, α  =  0.05)​​
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the alternative. Lindley’s paradox can be explained by the fact that, as ​n​ increases, 
the distribution of the test statistic diverges under the alternative. Therefore, a fixed 
value of the test statistic as ​n​ increases can only be explained by the null hypothesis, 
provided that the prior assigns probability mass to the null. Notice that conditioning 
on the event ​​{​​T ̂ ​​n​​  ≤  c}​​ (as opposed to conditioning on the value of ​​​T ̂ ​​n​​​) is not subject 
to Lindley’s paradox, and it may be the natural choice to evaluate a testing proce-
dure for which significance depends on the value of ​​{​​T ̂ ​​n​​  ≤  c}​​ only.12

III.  Calibration Using Data from Economics Laboratory Experiments

In this section, we use data from economics laboratory experiments (Camerer 
et al. 2016, Andrews and Kasy 2019) to calibrate the parameters of the prior and 
the number of available observations in the posterior density formulas of Section I. 
The goal is to approximate the posterior densities with and without significance 
in a setting that roughly resembles a realistic scenario. Interestingly, the primary 
definition of a successful replication in Camerer et al. (2016) is a “significant effect 
in the same direction as in the original study,” without a reference to the magnitude 
of the coefficients in the original and replication studies. This choice illustrates the 
extent to which statistical significance is viewed as a primary attribute of scientific 
discovery in economics. Moreover, for this dataset Andrews and Kasy (2019) esti-
mates a large jump in the probability of publication for studies that attain statistical 
significance at the 5 percent level.

We make use of the fact that the data in Camerer et  al. (2016) and 
Andrews and Kasy (2019) contain the original values of test statistics for a set of 
18 experimental laboratory studies published in two leading economics journals and 
the corresponding test statistic values for replications of those 18 studies. In partic-
ular, we make use of the ​z​-statistics computed in Andrews and Kasy (2019) for the 
replication studies.

We consider ​θ​ equal to the probability limit of the rescaled ​z​-statistic,  
​2 ​​z ˆ ​​n​​ / ​√ _ n ​​, where ​n​ is the number of participants in an experiment. We 
calibrate a prior for ​θ​ using the distribution of the rescaled replication 
statistics, ​2 ​​z ˆ ​​ j, ​n​ j​ ⁎​​ 

⁎ ​  /​√ 
__

 ​n​ j​ ⁎​ ​​, ​j  =  1, … , 18​. In the previous expression, ​​​z ˆ ​​ j, ​n​ j​ ⁎​​ 
⁎ ​​  is the 

replication value of a ​z​-statistic for the point null evaluated in study ​j​, and ​​n​ j​ ⁎​​ is the 
number of participants in the replication. We make this particular choice for the 
sake of simplicity and because, for the simple case when ​​​z ˆ ​​n​​​ is the usual two-sample 
​z​-statistic with equal number of observations on the treatment and control arms,  
​θ​ becomes the average treatment effect measured in standard deviations units:

	​ θ  =  ​ ​τ​1​​ − ​τ​0​​ _ λ ​ ​ ,

where ​λ  =  ​√ 
_

  ​(​λ​ 1​ 2​ + ​λ​ 0​ 2​)​ / 2 ​​; ​​τ​1​​​ and ​​τ​0​​​ are average outcomes with and without 
treatment, respectively; and ​​λ​1​​​ and ​​λ​0​​​ are the standard deviations of the outcome 

12 In particular, notice that if ​Pr ​(​​T ̂ ​​n​​  >  c | θ  =  0)​  <  Pr ​(​​T ̂ ​​n​​  >  c)​​, then, by Bayes’ rule, we obtain  
​Pr​(θ  =  0 | ​​T ̂ ​​n​​  >  c)​  <  q​. This is in contrast with Lindley’s paradox, under which conditioning on a value of  
​​​T ̂ ​​n​​  =  t​ such that ​t  >  c​ may result in an increase in the probability of the null, ​Pr ​(θ  =  0 | ​​T ̂ ​​n​​  =  t, t  >  c)​  >  q​ 
(see Berger 1985).
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with and without treatment, respectively.13 We calibrate the parameters ​μ​ and ​​σ​​ 2​​ in 
Section I to be the mean and variance of ​2 ​​z ˆ ​​ j, ​n​ j​ ⁎​​ 

⁎ ​  /​√ 
__

 ​n​ j​ ⁎​ ​​, ​j  =  1, …  18​ (​μ  =  0.3864​ 
and ​σ  =  0.3680​), and we calibrate the number of observations to be the median 
number of participants in the original studies (​n  =  120​).14​​​​​ ,​​15 Notice that the distri-
bution of the replication statistics is conditional on publication of the original studies 
and may not correspond to a reasonable prior on ​θ​ unconditional on publication.16

Figure 4 shows the calibrated prior and posteriors with and without significance 
for the experimental economics dataset. In this scenario, there is no indication that 
significance conveys more information than nonsignificance. In these data, however, 
there is substantial evidence of publication bias on the basis of statistical signifi-
cance (see Andrews and Kasy 2019).

Finally, notice that the empirical context adopted in this section may be one of 
low rejection probability, if the effects investigated in laboratory experiments in 
economics are believed to be small in magnitude relative to sample sizes. Even in 
this setting, for the calibrated values of ​μ​, ​σ​, and ​n​, we obtain a value of 0.5627 for 
the probability of rejection, which implies that nonsignificance is about 29 percent 
more  informative than significance (​0.5627 /​(1 − 0.5627)​  =  1.2868​) under 
the metric of informativeness employed in equation (5). The informativeness of 
nonsignificance relative to significance will be even larger in empirical settings with 
higher probabilities of rejection. On the other hand, there are at least two reasons why 
the calibrated prior that we adopt in this section may artificially inflate the rejection 
probability and, as a result, the relative informativeness of nonsignificance. First, 
depending on the nature of the publication process, a prior distribution on ​θ​ condi-
tional on publication of the original study may feature smaller probability mass in 
the vicinity of the null, relative to the unconditional distribution, which increases the 
probability of rejection. In addition, the calibrated distribution is based on noised-up 
versions of the values of ​θ​ in the replication studies, which may increase the disper-
sion of the prior and, therefore, the probability of rejection.

IV.  Conclusions

Significance testing on a point null is the most prevalent form of inference in 
empirical economics. In this article, we have shown that rejection of a point null 
often carries very little information, while failure to reject is highly informative. 
This is especially true in empirical contexts that are common in economics, where 

13 ​θ  =  ​(​τ​1​​ − ​τ​0​​)​ / λ​ is the normalized difference in Abadie and Imbens (2011) and Imbens and Rubin (2015).
14 In a quantile-quantile plot, the distribution of the rescaled replication statistics closely matches a normal 

distribution.
15 Because, in the setting of this section, the distribution of the published ​z​-statistics, ​​​z ˆ ​​n​​​ , is approximately normal 

with mean ​​(​√ _ n ​ / 2)​θ​ and variance one, the limited-information posterior formulas of Section I apply with ​n​ replaced 
by ​n / 4​.

16 Whether or not the distribution of replication statistics approximates a reasonable prior for ​θ​, unconditional 
on publication of the original studies, depends on the specific nature of the publication process and the process that 
generates ​θ​ across experiments / replications. For example, if the nature of the publication / file-drawer process is 
such that experiments on the same realization of ​θ​ are repeated (perhaps by independent research teams) until pub-
lication, then the distribution of ​θ​ conditional on publication is the same as the unconditional distribution, and the 
calibrated prior is a noised-up version of the distribution of ​θ​. The same applies if ​θ​ is not fixed from experiment to 
replication but resampled from the same distribution as in the original study. In general, however, it is not possible 
to rigorously calibrate a prior for the unconditional distribution of ​θ​ without restrictions on the ​θ​-generating process 
and nature of the publication process.
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datasets are large (and, if anything, are becoming larger) and where there are rarely 
reasons to put substantial prior probability on a point null. Our results challenge 
the usual practice of conferring point null rejections a higher level of scientific 
significance than non-rejections. In consequence, we advocate visible reporting 
and discussion of nonsignificant results in empirical practice (e.g., as in Abadie 
2006; Abdulkadiroğlu, Angrist, and  Pathak 2014; Angrist et  al. 2019; Krueger 
and  Malečková 2003). More generally, as discussed in Ziliak and  McCloskey 
(2008), Gelman (2018), McShane et  al. (2019), and many others, the weight of 
statistical evidence should not be primarily assessed on the basis of statistical sig-
nificance. Other factors, such as the magnitude and precision of the estimates, the 
plausibility and novelty of the results, and the quality of the data and research design, 
should be carefully evaluated alongside discussions of statistical significance or of 
the magnitude of ​p​-values.

While this article does not directly address the problems of publication and file-
drawer biases (Rosenthal 1979, De Long and  Lang 1992, Furukawa 2019), our 
results imply that in settings where publication depends on statistical significance 
(see, e.g., Andrews and Kasy 2019), the process of publication may discard results 
of high informational value in favor of less informative results. To our knowledge, 
this additional avenue through which selective publication based on statistical 
significance distorts inference has not been previously identified in the literature.
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