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Abstract: This Supplemental Appendix contains proofs of some theoretical results stated in

Anatolyev and Mikusheva �Factor models with many assets: strong factors, weak factors, and the

two-pass procedure.� In particular, in Section S1 we prove su�cient conditions for Assumption

ERRORS stated in Example 1 and Lemma 1 of the paper. In Section S2 we prove validity of

Assumptions GAUSSIANITY and COVARIANCE as stated in Lemmas 2 and 3 of the paper.

Auxiliary statements are placed in Section S3.

Note on notation: All statements, assumptions, de�nitions stated in the paper �Factor

models with many assets:strong factors, weak factors, and the two-pass procedure� by Anatolyev

and Mikusheva keep the notations and labels from the paper, for example, Lemma 2. All new

lemmas and equations stated in the Supplementary Appendix have labels starting with S, for

example, Lemma S1 or equation (S2).

S1 Relation between di�erent assumptions on idiosyn-

cratic errors

S1.1 Example 1: conditional heteroskedasticity

Example 1. Here we restate it for proper reference. Assume that errors eit have the following

weak latent factor structure:

eit = π′
iwt + ηit,

where (wt, Ft) is stationary, wt is a kw × 1 serially independent, conditional on F , times se-

ries with E(wt|F) = 0 and E(wtw
′
t) = Ikw (normalization without loss of generality). As-

sume E
[
(∥Ft∥4 + 1)(∥wt∥4 + 1)

]
< ∞. We assume that the loadings satisfy the conditions
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∑N
i=1 πiπ

′
i → Γπ (the factors wt are weak) and N−1/2

∑N
i=1 πiγ

′
i → Γπγ . Assume that the

random variables ηit are independent both cross-sectionally and across time, are independent

from wt and Ft, have mean zero and �nite fourth moments and variances σ2
i that are bounded

above and such that N−1
∑N

i=1 σ
2
i → σ2.

Proof that Example 1 satis�es Assumption ERRORS. Assumption ERRORS(i)

follows from wt being serially uncorrelated conditionally on F , and time series independence of

ηit. For Assumption ERRORS(ii), note that for t ̸= s,

ρ(t, s) =
N∑
i=1

π′
i

wsw
′
t√

N
πi +

1√
N

N∑
i=1

ηitηis +
1√
N

N∑
i=1

(
π′
iwtηis + π′

iwsηit
)
.

By assumptions made we have E(wtw
′
s|F) = 0 and ηit's independent from F and wt's with mean

zero, so E(ρ(s, t)|F) = 0. This also implies that in E(ρ(s, t)2|F) all interaction terms are zero,

so we have:

E(ρ(s, t)2|F) = E

( N∑
i=1

π′
i

wsw
′
t√

N
πi

)2

|F

+ E

(
1√
N

N∑
i=1

ηitηis

)2

+ E

( 1√
N

N∑
i=1

π′
iwtηis

)2

|F

+ E

( 1√
N

N∑
i=1

π′
iwsηit

)2

|F

 .

Note that ∣∣∣∣∣
N∑
i=1

π′
iwsw

′
tπi

∣∣∣∣∣ =
∣∣∣∣∣tr
(
wsw

′
t

N∑
i=1

πiπ
′
i

)∣∣∣∣∣ ≤ kw max ev

(
wsw

′
t

N∑
i=1

πiπ
′
i

)

≤ kw∥ws∥∥wt∥max ev

(
N∑
i=1

πiπ
′
i

)
≤ C∥ws∥∥wt∥.

Here we used that the scalar product can be represented as a trace, tr(ABC) = tr(BCA), and

the trace is equal to a sum of eigenvalues and hence is bounded by its dimension times the

maximal eigenvalue. In the last inequality we used that the loadings πi imply only a weak factor

structure. By mutual independence of ηit's, it is easy to see that

E

(
1√
N

N∑
i=1

ηitηis

)2

=
1

N

N∑
i=1

σ2
i < C
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and

var

(
1√
N

N∑
i=1

π′
iwtηis|F

)
=

1

N

N∑
i=1

π′
iE(wtw

′
t|F)πiσ

2
i <

CE(∥wt∥2|F)

N
.

Thus,

E
[
(∥Ft∥4 + 1)ρ(s, t)2

]
= E

[
(∥Ft∥4 + 1)E(ρ(s, t)2|F)

]
≤ E

[
(∥Ft∥4 + 1)

(
C
(∥wt∥2 + 1)(∥ws∥2 + 1)

N
+ C

)]
< ∞,

which proves validity of Assumption ERRORS(ii).

Now consider

St =
1

N

N∑
i=1

e2it =

N∑
i=1

π′
i

wtw
′
t

N
πi + 2w′

t

∑N
i=1 πiηit
N

+
1

N

N∑
i=1

(η2it − σ2
i ) +

1

N

N∑
i=1

σ2
i .

Denote Φt = (1, F ′
t , vec(FtF

′
t)

′)′. First, let us prove that

√
N

T

T∑
t=1

(
St −

1

N

N∑
i=1

σ2
i

)
Φt = op(1). (S1)

The only non-trivial parts are 1√
NT

∑N
i=1

∑T
t=1Φtw

′
tπiηit = op(1) and

1√
NT

∑N
i=1

∑T
t=1Φt(η

2
it −

σ2
i ) = op(1). For them, we use Chebyshev's inequality:

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

Φtw
′
tπiηit

∥∥∥∥∥
2
 =

1

NT 2

N∑
i=1

σ2
iE

 T∑
t,s=1

Φ′
tΦsπ

′
iwtw

′
sπi


=

1

NT 2

N∑
i=1

σ2
i π

′
iE

(
T∑
t=1

∥Φt∥2E(wtw
′
t|F)

)
πi

≤ kw
NT 2

max ev

(
N∑
i=1

πiπ
′
iσ

2
i

)

×max ev

(
E

(
T∑
t=1

∥Φt∥2E(wtw
′
t|F)

))
.

For the �rst equality we used that ηit's are independent from each other and from all Ft's and

wt's; for the second � that wt's are conditionally serially uncorrelated and have conditional mean
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zero. By the moment assumptions,

max ev

(
E

(
T∑
t=1

∥Φt∥2E(wtw
′
t|F)

))
= max ev

(
E

(
T∑
t=1

∥Φt∥2wtw
′
t

))

≤ TE
[
(∥Ft∥4 + ∥Ft∥2 + 1)∥wt∥2

]
≤ CT.

The variances σ2
i are all bounded and the factors are weak, which leads to

1√
NT

N∑
i=1

T∑
t=1

Φtw
′
tπiηit = op(1).

Similarly,

E

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

Φt(η
2
it − σ2

i )

∥∥∥∥∥
2
 =

1

NT 2

N∑
i=1

T∑
t=1

E
(
η2it − σ2

i

)
E
[
∥Φt∥2

]
→ 0.

This yields validity of statement (S1).

Let us now prove the �rst statement in Assumption ERRORS(iii):

√
N

T

T∑
t=1

F̃tSt =

√
N

T

T∑
t=1

Ft

(
St −

1

N

N∑
i=1

σ2
i

)
+

1

T

T∑
t=1

Ft ·
√
N

(
1

N

N∑
i=1

σ2
i −

1

T

T∑
t=1

St

)
.

The �rst term is op(1) according to statement (S1) as Ft is a part of Φt. Statement (S1) also

implies that
√
N( 1

N

∑N
i=1 σ

2
i − 1

T

∑T
t=1 St) = op(1), which gives negligibility of the second term.

Now consider the second statement in Assumption ERRORS(iii):

1

T

T∑
t=1

F̃tF̃
′
tSt =

1

T

T∑
t=1

FtF
′
tSt − F

1

T

T∑
t=1

F̃ ′
tSt −

1

T

T∑
t=1

FtStF
′
.

We have already proved above that the second term is op(1). By equation (S1), the �rst term

equals 1
T

∑T
t=1 FtF

′
t
1
N

∑N
i=1 σ

2
i+op(1) →p σ2E(FtF

′
t), while the third term equals−FF

′ 1
N

∑N
i=1 σ

2
i

+ op(1) →p −σ2EFt(EFt)
′. So, the second statement in Assumption ERRORS(iii) holds with

ΣSF 2 = σ2var(Ft).

Finally, for Assumption ERRORS(iv), consider

Wt = wt
1√
N

N∑
i=1

πiγi +
1√
N

N∑
i=1

γiηit.
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Thus,

E
[
(1 + ∥Ft∥2)∥Wt∥2

]
= E

(1 + ∥Ft∥2)

∥∥∥∥∥
∑N

i=1 γiπ
′
iwt√

N

∥∥∥∥∥
2
+E

[
(1 + ∥Ft∥2)

]
E

∥∥∥∥∥
∑N

i=1 γiηit√
N

∥∥∥∥∥
2
 .

Notice that E(wt|F) = 0 and that ηit's are independent from all other variables, thus there are

no terms containing the �rst power of ηit. Now,∥∥∥∥∥
∑N

i=1 γiπ
′
iwt√

N

∥∥∥∥∥
2

=

(
1√
N

N∑
i=1

γiπ
′
i

)
wtw

′
t

(
1√
N

N∑
i=1

γiπ
′
i

)′

= tr

wtw
′
t

(
1√
N

N∑
i=1

γiπ
′
i

)′(
1√
N

N∑
i=1

γiπ
′
i

)
≤ kw∥wt∥2max ev

( 1√
N

N∑
i=1

γiπ
′
i

)′(
1√
N

N∑
i=1

γiπ
′
i

) < C∥wt∥2.

The assumptions on the loadings guarantee that the maximal eigenvalue is bounded above by a

constant. Next,

E

∥∥∥∥∥
∑N

i=1 γiηit√
N

∥∥∥∥∥
2
 =

1

N

N∑
i=1

∥γi∥2σ2
i < C.

Thus, Assumption ERRORS (iv) is valid as well. �

S1.2 Case of independence between errors and factors. Proof of

Lemma 1

Assumption ERRORS∗

(i) The factors {Ft, t = 1, ..., T} are independent from errors {eit, i = 1, ..., N, t = 1, ..., T};

the error terms et = (e1t, ..., eNt)
′ are serially independent and identically distributed for

di�erent t with Eeit = 0 and supi,tEe4it < ∞.

(ii) Let EN,T = E [ete
′
t] be the N × N cross-sectional covariance matrix. For some positive

constants a, c and C, we have limN,T
1
N tr(EN,T ) = a and

c < lim inf
N,T→∞

min ev (EN,T ) < lim sup
N,T→∞

max ev (EN,T ) < C.
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(iii) E
∣∣∣ 1√

N

∑N
i=1(e

2
it − Ee2it)

∣∣∣2 < C.

Lemma 1 Assumption LOADINGS and Assumption ERRORS∗ imply Assumption ERRORS.

Proof of Lemma 1. Assumption ERRORS∗(i) implies Assumption ERRORS(i). Given the

independence between the two groups of variables and the moment condition for Ft stated

in Assumption FACTORS, in order to prove Assumption ERRORS(ii) we need to show that

sups ̸=tEρ(s, t)2 is bounded from above. Indeed,

Eρ(s, t)2 =
1

N

N∑
i,j=1

E[eiteisejtejs] =
1

N

N∑
i,j=1

E[eitejt]E[eisejs] =
1

N
tr(EN,TEN,T ).

Here we used serial independence in Assumption ERRORS∗(i) and the de�nition of covari-

ance matrices. For any positive de�nite N × N matrix A we have tr(A2) =
∑N

i=1 λi(A)2 ≤

N (max ev(A))2, where λi(A), i = 1, ..., N , are eigenvalues of A. Thus, due to Assumption

ERRORS∗(ii), we have tr(EN,TEN,T ) ≤ NC2. Thus, the right hand side of the last displayed

equation is bounded from above.

Assumption ERRORS (iii): Notice that since
∑T

t=1 F̃t = 0, we have

√
N

T

T∑
t=1

F̃tSt =

√
N

T

T∑
t=1

F̃t

(
St − σ2

N

)
,

where we denote σ2
N = N−1

∑N
i=1Ee2it. Let us check that the second moment of the last expres-

sion converges to zero:

E

∥∥∥∥∥
√
N

T

T∑
t=1

F̃t

(
St − σ2

N

)∥∥∥∥∥
2

=
N

T 2

T∑
t=1

T∑
s=1

E
[
F̃ ′
t F̃s

(
St − σ2

N

)(
Ss − σ2

N

)]

Given Assumption ERRORS∗(i), only those terms survive that have s = t:

N

T 2

T∑
t=1

E
[
F̃tF̃

′
t

]
E
[(
St − σ2

N

)2]
.

Notice that

NE
[(
St − σ2

N

)2]
= E

∣∣∣∣∣ 1√
N

N∑
i=1

(e2it − Ee2it)

∣∣∣∣∣
2
 < C,

using Assumption ERRORS∗(iii). Thus, the �rst statement in Assumption ERRORS(iii) holds.
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For the second statement, note that

E

(
1

T

T∑
t=1

F̃tF̃
′
tSt

)
= ΣF

1

N
tr(ET ) → aΣF = ΣSF 2 .

In order to prove the second statement in Assumption ERRORS(iii) we will show that

T−1
T∑
t=1

F̃tF̃
′
t

(
St − σ2

N

)
→p 0.

Following the same steps as in the proof of the �rst statement,

E

∥∥∥∥∥ 1T
T∑
t=1

F̃tF̃
′
t

(
St − σ2

N

)∥∥∥∥∥
2

=
1

T 2

T∑
t=1

E
[
∥F̃t∥4

]
E
[(
St − σ2

N

)2]
,

and we showed before E
[(
St − σ2

N

)2] → 0. This �nishes a proof of validity of Assumption

ERRORS(iii).

Lastly,

E
[
∥Wt∥2

]
=

1

N
γ′EN,Tγ ≤ 1

N
∥γ∥2max ev(EN,T ) < C.

Thus, Assumption ERRORS (iv) holds as well. �

S2 Statements about gaussianity. Proofs of Lemmas 2

and 3

S2.1 Re-statement of the Lemmas

For a set of vectors aj , we denote by (aj)
4
j=1 = (a′1, ..., a

′
4)

′ a long vector consisting of the four

vectors stacked upon each other; we denote by (ajj∗)j<j∗ the vectors ajj∗ stacked together.
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Assumption GAUSSIANITY Assume that the following convergence holds:

1√
N

N∑
i=1



√
Tγiei

(
√
Tγiu

(j)
i )4j=1

(Teiu
(j)
i )4j=1

(Tu
(j)
i u

(j∗)
i )j<j∗

 =
1√
N

N∑
i=1

ξi ⇒ ξ =


ξγe

(ξγj)
4
j=1

(ξej)
4
j=1

(ξj,j∗)j<j∗

 ,

where ξ is a Gaussian vector with mean zero and covariance Σξ.

Assumption COVARIANCE Assume that 1
N

∑N
i=1 ξiξ

′
i →p Σξ, where ξi and Σξ are de�ned

in Assumption GAUSSIANITY.

The assumptions we maintained in the previous sections are enough to guarantee that

1√
N

∑N
i=1 ξi is Op(1). Assumption GAUSSIANITY establishes the asymptotic distribution of

that quantity, while Assumption COVARIANCE allows one to construct valid standard errors.

Below we provide su�cient conditions for the two new assumptions in the two leading exam-

ples discussed before: one where the observed factors are independent from the errors and the

example of factor-driven conditional heteroskedasticity.

Lemma 2 Assume that Assumption ERRORS∗ holds and additionally,

(i) E∥Ft∥8 < ∞; E
∥∥ 1
|Tj |
∑

t∈Tj
FtF

′
t − ΣF

∥∥→ 0;

(ii) maxi ∥γi∥ < C;

(iii) 1
N tr(E2

N,T ) → a2 and
1
N γ′EN,Tγ → Γσ, where Γσ is a full rank matrix;

(iv) 1
N2

∑N
i1=1

∑N
i2=1

∑N
i3=1

∑N
i4=1 |Eei1tei2tei3tei4t| < C;

then Assumption GAUSSIANITY holds. If in addition

∥EN,T − dg(EN,T )∥ → 0 as N,T → ∞,

then Assumption COVARIANCE holds as well.

Lemma 3 Assume we have a setting as in Example 3. Assume additionally that conditions (i)

and (ii) of Lemma S2.1 hold and the following is true:

(i) E
[
(∥Ft∥8 + 1)∥wt∥8

]
< ∞;
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(ii) 1
N

∑N
i=1 σ

4
i → µ4 and

1
N

∑N
i=1 σ

2
i γiγ

′
i → Γσ, where Γσ is a full rank matrix.

Then Assumption GAUSSIANITY holds. If in addition Γπγ = 0, then Assumption COVARI-

ANCE holds as well.

Proof of common part of Lemmas 2 and 3. First, rewrite di�erent components of ξi:

√
T√
N

N∑
i=1

γiei =
1√
NT

N∑
i=1

T∑
s=1

γieis =
1√
T

T∑
s=1

γ′es√
N

;

√
T√
N

N∑
i=1

γi ⊗ u
(j)
i =

1√
T

T∑
s=1

(
γ′es√
N

)
⊗
(
Σ−1
F F̃ (j)

s

)
I{s ∈ Tj}.

Consider the following sum:

T√
N

N∑
i=1

eiu
(j)
i =

1

T
√
N

N∑
i=1

T∑
t1=1

∑
t2∈Tj

Σ−1
F F̃

(j)
t2

eit1eit2

=
1

T
√
N

N∑
i=1

∑
t∈Tj

Σ−1
F F̃

(j)
t e2it +

1

T

T∑
t1=1

∑
t2∈Tj ,t1 ̸=t2

Σ−1
F F̃

(j)
t2

e′t1et2√
N

.

Assumption ERRORS(iii) guarantees that
(
T
√
N
)−1∑N

i=1

∑
t∈Tj

Σ−1
F F̃

(j)
t e2it = op(1). Thus, we

are only interested in gaussianity of the second sum. Thus,

T√
N

N∑
i=1

eiu
(j)
i =

1

T

T∑
s=1

∑
t<s

Σ−1
F

(
F̃

(j)
t I{t ∈ Tj}+ F̃ (j)

s I{s ∈ Tj}
) e′tes√

N
+ op(1).

Now assume that j∗ > j and consider the following sum:

vec

(
T√
N

N∑
i=1

u
(j∗)
i u

(j)′
i

)
=

1

T
√
N

N∑
i=1

∑
t∈Tj

∑
s∈Tj∗

vec
(
Σ−1
F F̃ (j∗)

s F̃
(j)′
t Σ−1

F eiteis
)

=
∑
s∈Tj∗

∑
t∈Tj

1

T

(
Σ−1
F F̃ (j∗)

s

)
⊗
(
Σ−1
F F̃

(j)
t

) e′tes√
N

.

De�ne

vs =

 1{(
Σ−1
F F̃

(j)
s

)
I{s ∈ Tj}

}4

j=1

 ;

w
(j)
st = Σ−1

F

(
F̃ (j)
s I{s ∈ Tj}+ F̃

(j)
t I{t ∈ Tj}

)
;
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w
(j,j∗)
st =

(
Σ−1
F F̃ (j∗)

s

)
⊗
(
Σ−1
F F̃

(j)
t

)
I{t ∈ Tj , s ∈ Tj∗}.

Now we can stack all the vectors w
(j,j∗)
st and w

(j)
st together. Call the resulting vector wst =

(w
(1)
st , ..., w

(1,2)′
st , w

(1,3)′
st , ...)′. Notice that

1√
N

∑
i

ξi =

 1√
T

∑T
s=1 vs

1√
N

∑N
i=1 γieis

1
T

∑T
s=1

∑
t<swst

1√
N

∑N
i=1 eiteis

 .

We will use the results established in the paper by Anatolyev and Mikusheva (2020); namely

Theorems 3.1 and 4.1 from Anatolyev and Mikusheva (2020) will be used to prove Lemma 2,

and Theorems 3.2 and 4.2 from Anatolyev and Mikusheva (2020) will be used to prove Lemma

3.

Now we check that Assumptions C, L and E from Anatolyev and Mikusheva (2020) hold in

both Lemma 2 and Lemma 3.

For Assumption C(i), taking into account the structure of vs =
(
v0′s , {v

(j)′
s }4j=1

)′
and that

|Tj |/T = 1
4 , we compute that

1

T

T∑
s=1

E(vsv
′
s) →

 1 0

0 1
4I4 ⊗ Σ−1

F

 .

Consider now various sub-blocks of Ωw = lim 1
T 2

∑T
s=1

∑
t<sE(wstw

′
st) and show that it is a full

rank matrix. First, notice that w
(j,j∗)
st w

(j1,j∗1 )′
st is a zero matrix when (j, j∗) ̸= (j1, j

∗
1). In the

same way, w
(j,j∗)
st w

(j1)′
st is a zero matrix when j1 /∈ (j, j∗). Notice that

E
[(
F̃

(j)
t F̃

(j)′
t

)
⊗
(
F̃ (j∗)
s F̃ (j∗)′

s

)]
=
(
EF̃

(j)
t F̃

(j)′
t

)
⊗
(
EF̃ (j∗)

s F̃ (j∗)′
s

)
+ E

[(
F̃

(j)
t F̃

(j)′
t − EF̃

(j)
t F̃

(j)′
t

)
⊗
(
F̃ (j∗)
s F̃ (j∗)′

s − EF̃ (j∗)
s F̃ (j∗)′

s

)]
.

For the (j, j∗)th block, we take T−2
∑

s∈Tj∗

∑
t∈Tj

of the last displayed expression. Due to

summability of covariances, the double average of covariances coming from the second term

becomes negligible in the limit. Thus,

1

T 2

T∑
s=1

∑
t<s

E
[
w

(j,j∗)
st w

(j,j∗)′
st

]
→ lim

(
|Tj ||Tj∗ |

T 2

)
Σ−1
F ⊗ Σ−1

F =
1

16
Σ−1
F ⊗ Σ−1

F .
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Let us now focus on the block corresponding to the variance of the jth term:

1

T 2

T∑
s=1

∑
t<s

E
[(
F̃ (j)
s I{s ∈ Tj}+ F̃

(j)
t I{t ∈ Tj}

)(
F̃ (j)
s I{s ∈ Tj}+ F̃

(j)
t I{t ∈ Tj}

)′]
=

1

T 2

T∑
s=1

∑
t<s

(
E
[
F̃ (j)
s F̃ (j)′

s

]
I{s ∈ Tj}+ E

[
F̃

(j)
t F̃

(j)′
t

]
I{t ∈ Tj}

+
(
E
[
F̃ (j)
s F̃

(j)′
t

]
+ E

[
F̃

(j)
t F̃ (j)′

s

])
I{s, t ∈ Tj}

)
=

1

T 2

T∑
t1=1

∑
t2∈Tj

E
[
F̃

(j)
t2

F̃
(j)′
t2

]
+

1

T 2

∑
t1∈Tj

∑
t2∈Tj

E
[
F̃

(j)
t1

F̃
(j)′
t2

]
.

Again, due to stationarity and summability of covariances, the second term is negligible, so we

have, in the limit,

1

T 2

T∑
s=1

∑
t<s

E
[
w

(j)
st w

(j)′
st

]
→ lim

(
|Tj |T
T 2

)
Σ−1
F E

[
F̃tF̃

′
t

]
Σ−1
F =

1

4
Σ−1
F .

By similar arguments, 1
T 2

∑T
s=1

∑
t<sE

[
w

(j)
st w

(j∗)′
st

]
→ 0 and 1

T 2

∑T
s=1

∑
t<sE

[
w

(j,j∗)
st w

(j)′
st

]
→ 0

when j ̸= j∗. To summarize, we have shown that Ωw is a block diagonal matrix, with each block

being a full-rank matrix.

Assumptions C(ii) and C(iv) follow from condition (i) of Lemma 2. For Assumption C(iii),

notice that the proof of convergence of all blocks follows the same outline as above, and condition

(i) of Lemma 2 is su�cient. Assumption L is the same as condition (ii) of Lemma 2. Validity of

Assumption E has been shown before in Lemma 1.

Proof of Lemma 2. Assumption I(i) was stated as a part of Assumption ERRORS∗. As-

sumptions I(ii)-(iv) of Anatolyev and Mikusheva (2020) have been formulated as conditions (iii)

and (iv) of Lemma 2.

Proof of Lemma 3. Assumption HC(i) of Anatolyev and Mikusheva (2020) comes from

condition (i) of Lemma 3 and assumptions of Example 3. Assumption HC(ii) is implied by

assumptions of Example 3. Assumption HC(iii) follows from condition (ii) of Lemma 3. Finally,

Assumption HC(iv) of Anatolyev and Mikusheva (2020) follows from the assumption in Example

3 that wt is, conditionally on F , time-series independent, and hence (wtwt) ⊗ (vtvt) is not

autocorrelated; thus, the law of large numbers applies coming from the moment condition stated

11



in condition (i) of Lemma 3.

S3 Auxiliary lemma

Lemma S1 Under Assumptions FACTORS, LOADINGS and ERRORS, we have the following

convergence as N,T → ∞:

(1) 1√
N |Tk||Tj |

∑N
i=1

∑
t∈Tj

∑
s∈Tk

F̃teitF̃
′
seis = Op(1) for Tj ∩ Tk = ∅,

(2) 1√
N |Tk||Tj |

∑N
i=1

∑
t∈Tj

∑
s∈Tk

F̃teiteis = Op(1) for Tj ∩ Tk = ∅,

(3) Σ−1
F

(
1

NT

∑N
i=1

∑T
t=1 F̃tF̃

′
te

2
it

)
Σ−1
F →p Σu = Σ−1

F ΣSF 2Σ−1
F ,

(4) 1
T
√
N

∑N
i=1

(∑T
t=1

∑T
s=1,s ̸=t F̃t(F̃

′
s, 1)eiteis

)
= Op(1),

(5)

√
|Tj |
N

∑N
i=1 γi ⊗

(
u
(j)
i

1
|Tj |
∑

t∈Tj
eit

)
= Op(1).

Proof of Lemma S1.

Preamble. Notice that due to the absence of serial correlation of idiosyncratic errors stated

in Assumption ERRORS(i), for t ̸= s and t1 ̸= s1 we have

E(ρ(s, t)ρ(s1, t1)|F) = 0

unless t = t1 and s = s1 or t = s1 and s = t1.

Part (1). Note that

1√
N |Tk||Tj |

N∑
i=1

∑
t∈Tj

∑
s∈Tk

F̃teitF̃
′
seis =

1√
|Tk||Tj |

∑
t∈Tj

∑
s∈Tk

F̃tF̃
′
sρ(t, s).

The expectation of the square of the last expression is equal to

1

|Tk||Tj |
∑
t∈Tj

∑
t1∈Tj

∑
s∈Tk

∑
s1∈Tk

E
(
F̃tF̃

′
sF̃t1F̃

′
s1E
(
ρ(t, s)ρ(t1, s1)|F

))
.

Using the preamble statement, we reduce four summation signs to only two, with each summand

bounded above by Assumption ERRORS(ii). This implies that the second moment of the last

sum is bounded, and hence implies statement (1).
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Part (2). Analogously to Part (1).

Part (3). Note that

1

NT

N∑
i=1

T∑
t=1

F̃tF̃
′
te

2
it =

1

T

T∑
t=1

F̃tF̃
′
tSt.

Then, Part (3) follows from Assumption ERRORS(iii).

Part (4). Note that

1

T
√
N

N∑
i=1

 T∑
t=1

T∑
s=1,s ̸=t

F̃teiteis

 =
1

T

T∑
t=1

T∑
s=1,s ̸=t

F̃tρ(s, t).

The second moment of this expression contains four summations � over t, s ̸= t, t1 and s1 ̸= t1.

However, by the preamble statement many terms are zero and the expression can be written

as a double sum. Assumption ERRORS(ii) guarantees that all summands are bounded by the

same constant, which leads to boundedness of the second moment of the expression of interest.

Chebyshev's inequality delivers statement (4).

Part (5). Observe that

√
|Tj |
N

N∑
i=1

γi ⊗
(

u
(j)
i

1
|Tj |
∑

t∈Tj
eit

)
=

1√
|Tj |

∑
t∈Tj

N∑
i=1

1√
N

(
γi ⊗

(
Σ−1
F F̃

(j)
t

1

))
eit

=
1√
|Tj |

∑
t∈Tj

Wt ⊗
(
Σ−1
F F̃

(j)
t

1

)
,

where Wt is de�ned in Assumption ERRORS(iv). Given serial independence of et conditional

on F , we obtain that Wt is conditionally serially independent and mean zero, and hence

E

∥∥∥∥∥∥ 1√
|Tj |

∑
t∈Tj

Wt ⊗
(
Σ−1
F F̃

(j)
t

1

)∥∥∥∥∥∥
2 =

1

|Tj |
∑
t∈Tj

E

∥∥∥∥∥Wt ⊗
(
Σ−1
F F̃

(j)
t

1

)∥∥∥∥∥
2


≤ CE
[
(1 + ∥Ft∥2)∥Wt∥2

]
< C.

�

13



References

Anatolyev, S. and Mikusheva, A. (2020): �Limit Theorems for Factor Models,� Econometric

Theory, forthcoming. Available at https://pages.nes.ru/sanatoly/Papers/CLTfm.htm

14


