The Aggregate Implications of Regional Business Cycles

Martin Beraja¹ Erik Hurst² Juan Ospina³

¹MIT and NBER

²U of Chicago and NBER

³Banco de la Republica (Colombia)

From Regional to Aggregate

- Regional and aggregate economies differ:
 - Shock elasticities
 - Shock realizations
- Great Recession: cross-state patterns different than US aggregates.
- ▶ Why? Because of 1. and 2.
- ▶ But then...Can we learn anything about aggregates from regional data?
- ▶ **Yes!** Regional info + Theory ⇒ identify shocks driving aggregates.

Martin Beraja (MIT) 1/22

What We Do

1. Make wage and price indices at the state level. Document that:

- Nominal and real wage growth were strongly positively correlated with economic activity across states.
- Aggregate wage growth, less so.

2. Monetary Union Model

- Regional v. aggregate shock elasticities.
- Use regional data to estimate structural parameters in NKWPC
- Impose those restrictions in aggregate DSGE model.
- Shock decomposition for the Great Recession

Martin Beraja (MIT) 2 / 22

Some Take Aways...

► Estimate that wages are fairly flexible (from cross-region variation).

Hard to get "demand shocks" as THE drivers of aggregate employment.

- ▶ A modest role in the early part of the recession. None in the recovery.
- ▶ But, regional business cycles are mainly driven by local demand shocks. Remember Mian and Sufi (2014)

Martin Beraja (MIT) 3/22

Part 1:

Regional and Aggregate Business Cycles

Martin Beraja (MIT) 4/22

Wage Data

- Data from the 2000 Census and 01-12 American Community Surveys.
- ► Hourly wage = earnings per hour for workers with ≥ 30 hrs. per week.
- Examine patterns for unadjusted and "adjusted" wages.
- To adjust wages, we regress log wage rate on age, education, citizenship, black, and usual hours worked dummies.
 - Do this separately for each year.
 - ► Take residuals from regression. Add constant back. Average by state.
- Regional patterns for adjusted and unadjusted wages are very similar.

Martin Beraja (MIT) 5/22

Data: Nielsen's Retail Scanner Database

- Data from first week of January 2006 through last week of December 2011.
- ▶ Data at level of UPC*store*week. Includes number of units sold and average price per unit during week.
- ► Each store can be matched to a specific location (county, MSA, state) and to a specific chain.
- ▶ 75 billion unique observations (UPC*store*week)!
- In 2011, ≈36000 participating stores and 86 participating chains (97 percent of sales come from grocery, drug, and mass merchandising stores).
- In 2011, \$236 billion dollars worth of sales (≈30 percent of food expenditures and ≈2 percent of total expenditures).
- Large geographic coverage: Data from about 86 percent of U.S. counties.

Martin Beraja (MIT) 6/22

Figure: State Employment Growth vs. State Wage Growth

PANEL A: NOMINAL WAGES

PANEL B: REAL WAGES

▶ 1 pp diff in \triangle emp growth \Longrightarrow 0.64 (0.72) pp diff in real (nominal) wage growth. \bigcirc ew

Martin Beraja (MIT) 7 / 22

Table: Time Series Estimates of Wage Elasticities During the Great Recession

	CPS Data	ACS Data	
	Panel A: Nominal Wages		
De-Trended Nominal Wage Growth, 2007-2010	-3.9 percent	-4.1 percent	
Nominal Wage Elasticity, 2007-2010	0.51	0.54	
	Panel B: De-Trended Real Wages		
De-Trended Real Wage Growth, 2007-2010	-2.6 percent	-2.8 percent	
Real Wage Elasticity, 2007-2010	0.34	0.37	

▶ Smaller time series elasticities compared to regional ones

Martin Beraja (MIT) 8 / 22

Part 2: A Monetary Union Model

Martin Beraja (MIT) 9 / 22

Purpose

1. Highlight differences in aggregate v. regional shock elasticities.

2. Specify a structural equation. Wage setting.

3. Identify shocks in a state-of-the-art DSGE.

Martin Beraja (MIT) 10 / 22

Model

- Economy composed of islands.
- Agents: households, firms and monetary authority.
- 2 sectors: final good and intermediates.
- One asset: one-period nominal bond.
- Sticky prices and wages a-la-Calvo
- 7 shocks with an island and aggregate level component
- ▶ DSGE bells-and-whistles: habits, investment adj. cost, etc.

Martin Beraja (MIT) 11 / 22

Equilibrium characterization

- Log-linearize around zero inflation SS.
- Claim 1: Log-linearized economy aggregates.
- Claim 2:
 - Island economies in log-deviation from aggregates are stationary.
 - Behave like independent small open economies.
- ▶ Can write $c_{kt} = c_t + \tilde{c}_{kt}$.
- Study aggregate and local economies separately.

Martin Beraja (MIT) 12 / 22

Aggregate v regional NKWPC

▶ Write the Regional New Keynesian Wage Phillips Curve as:

$$\tilde{\pi}_{kt}^{w} = \beta \mathbb{E}_{t} \left[\tilde{\pi}_{kt+1}^{w} \right] + \kappa_{w} \nu \tilde{n}_{kt} - \kappa_{w} \tilde{w}_{kt} + \iota_{w} (\tilde{\pi}_{kt-1} - \beta \tilde{\pi}_{kt}) + \frac{\kappa_{w}}{1 - h} (\tilde{c}_{kt} - h \tilde{c}_{kt-1}) + \tilde{\varphi}_{kt}$$

- "~" represent island variables in log-deviations from aggregates
- ▶ Furthermore, the slope of Regional New Keynesian Phillip's curve is:

$$\kappa_{w} \equiv \frac{(1 - \beta \xi_{w})(1 - \xi_{w})}{\xi_{w}} \frac{\lambda_{w} - 1}{\lambda_{w}(1 + \nu) - 1}$$

where $1 - \xi_w$ is the fraction of wages that re-set every period

► The Aggregate New Keynesian Wage Phillips Curve is:

$$\hat{\pi}_t^{w} = \beta \mathbb{E}_t \left[\hat{\pi}_{t+1}^{w} \right] + \kappa_w \nu \hat{n}_t - \kappa_w \hat{w}_t + \iota_w (\hat{\pi}_{t-1} - \beta \hat{\pi}_t) + \frac{\kappa_w}{1 - h} (\hat{c}_t - h \hat{c}_{t-1}) + \hat{\varphi}_t$$

" ^ " represent aggregate variables in log-deviations from BGP.

Martin Beraja (MIT) 13/22

Aggregate v. Local responses

- Simplified model: no habits, no capital, etc. and perfectly rigid prices
- Derive responses on impact to discount factor shock

$$\begin{split} \frac{d\hat{n}_{0}}{d\hat{b}_{0}} &= \frac{1}{1-\alpha} \frac{1-\rho_{b}}{1-\rho_{b}+\varphi_{y}} \\ \frac{d\tilde{n}_{k0}}{d\tilde{b}_{k0}} &= \frac{1-\rho_{b}}{1-\rho_{b}+\frac{1}{\beta}-a_{\tilde{B}\tilde{B}}} \\ \frac{d\hat{w}_{0}}{d\hat{n}_{0}} &= \frac{\kappa_{w}(1-\alpha+\nu)}{1-\beta(1-a_{ww}-\rho_{b})+\kappa_{w}} \\ \frac{d\tilde{w}_{k0}}{d\tilde{n}_{k0}} &= \frac{\kappa_{w}(1+\nu)}{1-\beta(1-a_{ww}-\rho_{b})+\kappa_{w}} \frac{1+\beta(1-a_{ww})+\kappa_{w}-\frac{1}{\beta}}{1+\beta(1-a_{ww})+\kappa_{w}-a_{\tilde{B}\tilde{B}}} \end{split}$$

- Differences come from:
 - Monetary policy
 - Openness

Martin Beraja (MIT) 14 / 22

Part 3:

The US Great Recession: From Regions to Aggregate

Martin Beraja (MIT) 15/22

Estimation

- Iterative procedure with aggregate and regional data.
 - 1. Fix β , ν , ι_w , h. Estimate κ_w from Regional NKWPC using regional data only.
 - lacktriangle Need to instrument for expectations and also all other variables because of $ilde{\phi}_{kt}$
 - To deal with expectations, we are gonna do GMM. Use lagged variables outside the equation (e.g., unemployment, output)
 - To deal with endogenous regressors, use current and lagged house prices (Mian and Sufi (2014)).
 - 2. Estimate aggregate model with aggregate data, but restricting κ_w .
 - 3. Obtain new β, ν, ι_w, h . Iterate until convergence.

Martin Beraja (MIT) 16/22

Table: Fit of Aggregate model and Regional NKWPC

	$\xi_w = 0.24 \ (\vartheta = 0)$	$\xi_w = 0.5 \ (\vartheta = 2)$
Aggregate model log-marginal likelihood	-592	-590
Mean-squared error of regional NKWPC	0.0002	0.0146

Note: The first line is the aggregate model fit to the aggregate time-series data, as measured by the log-marginal likelihood. The second line is the mean squared error of the regional NKWPC. $\vartheta=0$ uses regional data only for NKWPC estimation. $\vartheta=2$ uses aggregate data only.

Martin Beraja (MIT) 17/22

Figure: Distinguishing between high and low wage stickiness models: the role of demand and labor supply shocks

Table: Predicted $\frac{dlog(w^{agg})}{dlog(n^{agg})}$ during the Great Recession in Response to Various Shocks

		Shocks	
	b	$m{b}$ and μ	b , μ , and φ
Benchmark	0.97	0.83	0.31
Aggregate data alone	0.39	0.40	0.25

Martin Beraja (MIT) 19 / 22

Figure: Employment Response to 2007-2010 Household Demand shocks

Martin Beraja (MIT) 20 / 22

Figure: Employment shock decomposition

Martin Beraja (MIT) 21 / 22

Conclusions

- Most of the lit. estimates business cycle models with aggregate data only
 - Ignores regional data that can discipline hard-to-pin-down mechanisms
- A separate literature extrapolates from regional elasticities to aggregates
 - ▶ Misses channels/shocks that differ between regional and agg. economies
- Combine both regional and aggregate data to estimate a DSGE model
 - ► Demand shocks main driver of regional employment in the Great Recession
 - Yet, wage rigidity necessary for demand shocks to explain persistence in aggregate employment after the Great Recession is inconsistent with observed flexibility of wages across regions
 - Instead, aggregate labor supply shocks —which are differenced out when exploiting cross-region variation—are important

Martin Beraja (MIT) 22 / 22