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Abstract
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We also show that a naive procedure used in some applied work, which consists
of selecting the composition of the sample based on the value of the first-stage
t-statistic, may cause substantial over-rejection of a null hypothesis on a second-
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of local economic conditions on voter turnout using energy supply shocks as the
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1. Introduction

While most of the methodological literature on instrumental variable (IV) methods assumes

homogeneity in the first-stage parameters, empirical applications of IV estimators often

involve settings where the strength of the instruments varies depending on the composition

of the sample. Take the example of instruments constructed based on policy changes as

natural experiments. In this type of setting, variations in details of the policy or its level

of enforcement often result in natural first-stage heterogeneity across geographic regions

(e.g., Oreopoulos, 2006). Even if the policy intervention does not vary across regions, the

identification strength of the instrumental variable may vary with the characteristics of the

regions or because of differences in compliance rates across regions (e.g., Jackson, Johnson,

and Persico, 2016) or demographic groups (e.g., Lleras-Muney, 2005, Stephens and Yang,

2014, Currie and Moretti, 2003).

In this article, we show that ignoring first-stage heterogeneity in IV models results in in-

efficient estimators, and propose IV estimators that improve precision over existing methods

by addressing potential heterogeneity in the strength of the instruments.

In empirical studies in economics, it is common to select the sample on the basis of the

strength of the instrument. In the literature on the return to compulsory schooling, for

example, researchers often focus on Whites and/or early cohorts because data suggest that

Blacks and more recent cohorts are weakly affected by changes in compulsory schooling laws

(see Lleras-Muney, 2005; Stephens and Yang, 2014).1 Currie and Moretti (2003) uses county-

level variation in college availability to study of the effect of mother’s education on birth

outcomes. This study excludes Black mothers from the sample. The authors explain that,

in their data, Black women are not as strongly affected in their educational level as White

women by college availability. In a fuzzy RD study on the effect of publicizing workplace

safety and health violations on outcomes of neighboring facilities, Johnson (2020) excludes

1Footnote 44 of Lleras-Muney (2005) explains the exclusion of Blacks, “Lleras-Muney (2002) shows, for
example, that the laws affected whites but not blacks.” Stephens and Yang (2014) justifies the exclusion of
Blacks and the more recent cohorts, “the evidence on the efficacy of compulsory schooling laws is far more
substantial for these cohorts than for more recent birth cohorts. Our analysis focuses on whites since we
find no evidence supporting the efficacy of compulsory schooling laws for blacks in our sample”.
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two regions from the sample because data suggest low adherence to the RD cut-off rule in

these two regions, resulting in a weak first-stage. Cervellati, Jung, Sunde, and Vischer (2014)

argues that the instrument used in an influential article by Acemoglu, Johnson, Robinson,

and Yared (2008) on the effect of national income on democracy is weak for a sample of

non-colonies, and focus their analysis on the sample of former colonies.

The first contribution of this article is to show that sample selection based on the first-

stage correlation between an instrument and an endogenous variable using a fixed selection

cut-off produces invalid inference for the two-stage least squares (2SLS) estimators. It tends

to generate overly large biases of second-stage instrumental variable estimators, and overly

large second-stage t-statistics under the null in significance tests. Using different data sam-

ples for sample selection and 2SLS estimation (e.g., the U.S. analysis in Altmejd, Barrios-

Fernández, Drlje, Goodman, Hurwitz, Kovac, Mulhern, Neilson, and Smith, 2021) is a much

better practice, but the method is generally inefficient, as we discuss below.

An alternative empirical approach adopted in empirical research exploits variation in the

strength of first-stage identification across groups of observations by interacting excluded

instruments with group indicators. For example, in a study of the effect of air pollution on

health outcomes, Deryugina, Heutel, Miller, Molitor, and Reif (2019) interact wind direction

with pollution-monitor geo-cluster indicators to instrument for air pollution. Jackson, John-

son, and Persico (2016) use a natural experiment of school finance reforms in the U.S. to

investigate the effect of school spending on student outcomes. In one of their specifications

they interact cohort and district group indicators to capture variation in the identification

strength of the reform. Dix-Carneiro and Kovak (2017) interact excluded instruments with

year dummies in a study of the effect of trade liberalization on Brazilian local labor mar-

kets. Similarly, Pascali (2017) allows for time-varying first-stage coefficients when utilizing

the introduction of steamships to identify the causal effect of globalization on economic de-

velopment. This type of estimation strategy, which we call the fully-interacted method, is

first-order efficient for models with groupwise first-stage heterogeneity under proper assump-

tions. Yet, the method may suffer from misleading inference due to the “many IV bias”,
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especially when the number of groups is large. In the above-mentioned studies, the total

number of interacted instruments ranges from around twenty to over a hundred.

In this article, we propose a simple data-driven procedure that exploits heterogeneity

in the first-stage correlation between an instrument and an endogenous variable to improve

the asymptotic mean squared error (MSE) of 2SLS estimators. We consider a setting where

the strength of an instrument varies across groups of the population defined by observables.

If first-stage instrument strength is known for each population group, weighted 2SLS with

weights reflecting the strength of the instrument in each group would be optimal under the

assumption of homoskedasticity. In practice, IV strength is not known. Under our model

set-up, weighted 2SLS with estimated weights of groupwise IV strength is equivalent to

carrying out 2SLS interacting the instrument with the full set of group dummy variables.

Our proposed estimator improves upon the fully interacted estimator by employing multiple

testing of instrument strength in each group and using the asymptotic MSE of the second-

stage estimator as the criteria to form the decision rule of the first-stage tests. We propose

a procedure where the cut-off value for first-stage testing is adaptively chosen to minimize

the asymptotic MSE of the second-stage estimator. Sample splitting following, for example,

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2017); Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018); Wager and Athey (2018)

is adopted in the proposed adaptive procedure to separate first-stage testing from second-

stage estimation to reduce asymptotic bias.

This article builds on the pioneering work of Donald and Newey (2001) on higher-order

MSE expansion for IV estimators. For a wide range of cut-off values, our proposed estimators

have the same first-order asymptotic distribution. We analyze the higher-order MSE behavior

of the estimators, and propose a data-driven selector of cut-off values designed to minimize

higher-order MSE.

Our set-up assumes a homogeneous second-stage to facilitate the comparison of different

estimation approaches under the asymptotic MSE framework. When the second stage is

heterogeneous, our proposed estimator has an interpretation as a weighted average causal
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effect. Competing efficient estimators with the same order in the higher order term of the

MSE formula, such as the limited information likelihood estimator (LIML), the Jackknife IV

estimator (JIVE), or the bias-corrected 2SLS estimator (B2SLS) do not have such interpreta-

tion. In addition, we show that when the IV is allowed to have heterogeneous variation across

groups, our proposed estimator has an additional appealing property of being invariant to

groupwise rescaling of the IV, compared to many other competing estimators.

Our proposed estimation procedure focuses on higher-order asymptotic expansion of the

MSE to choose instruments, related to earlier work of Donald and Newey (2001), Okui

(2009), Cheng, Liao, and Shi (2019). The key difference between the MSE expansion lit-

erature and the instrument selection strategy in the machine learning literature (e.g., Bel-

loni, Chen, Chernozhukov, and Hansen, 2012; Chernozhukov, Chetverikov, Demirer, Duflo,

Hansen, Newey, and Robins, 2018) is that the IV selection criteria of the former is based

on the asymptotic MSE of the second-stage estimator while the latter is based on first-stage

fitting. When there is only a vanishing proportion of groups with weak first-stage signals,

our proposed estimator is close to a modified version of the split-sample IV lasso method

with groupwise interacted instruments. Our paper is also related to contemporary work by

Coussens and Spiess (2021), who study the evaluation of a binary endogeneity treatment

when a randomized IV is available, and proposes to reweigh 2SLS by individual compliance

propensity estimated through cross-validated flexible nonparametric tools, such as causal

forests. Like Coussens and Spiess (2021), we study the possibility of utilizing first-stage

heterogeneity to improve the precision of second-stage IV estimation. When the endogenous

regressor in our model is binary, the first-stage heterogeneity we consider reduces to the com-

pliance propensity discussed in Coussens and Spiess (2021). In addition, unlike Coussens

and Spiess (2021) and motivated by empirical practice, we explicitly consider the potential

presence of subsamples that might lack first-stage identification, and propose to discard such

groups. Our procedure selects the discarded groups adaptively to minimize high-order terms

in the asymptotic MSE formula of the second-stage estimator.

On the empirical side, this article contributes results to the return to schooling literature
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and to research that utilizes energy supply shocks to instrument for local economic conditions.

Our first empirical application reanalyzes the data in Stephens and Yang (2014), who

argue in favor of controlling for regional cohort fixed effects in studies on the return to

schooling. Once they control for regional cohort fixed effects, Stephens and Yang (2014)

obtain IV estimates of return to schooling that are not statistically significant. Using similar

model specifications, we find that while 2SLS over the entire sample produces statistically

insignificant results, after allowing for first-stage heterogeneity across geographic regions and

demographic groups, our proposed procedure consistently produces statistically significant

estimates of 3-4 percent for the effect of an additional year of schooling on wages. These

results are estimated for adaptively selected groups of White males and White females mostly

in the Northeast, Midwest, and South of the U.S.

Our second empirical application revisits the Charles and Stephens (2013) study of the

effect of local labor market variables on voter turnout in U.S. elections, with labor market

variables instrumented by employment shocks in the oil and coal industries. The main IV

specification in Charles and Stephens (2013) uses the 1974 County Business Patterns data

(CBP) to measure county-level employment in the oil and coal industries. Although the

1974 data set contains detailed industry-level information at the county level, instruments

based on these data may not provide completely exogenous variation for the 1964-2000

estimation window in Charles and Stephens (2013). As a robustness check, Charles and

Stephens (2013) use the 1969 CBP data. The 1969 CBP specification is based on a cleaner

exclusion restriction, but produces a weaker first-stage than the specification based on the

1974 data because the 1969 CBP measures county-level data for the entire mining industry.

We find that full-sample 2SLS and 2SLS restricted to states with substantial shares for

the oil and coal industries produce statistically insignificant coefficients with the 1969 CBP

instrument. However, more efficient estimators, including our proposed adaptive procedure,

produce negative and statistically significant effects of local market activity on voter turnout.

Applying our procedure to the 1969 CBP data produces results that are qualitatively similar

to those reported in Charles and Stephens (2013) for the 1974 CBP data.
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The remainder of this article is organized as follows. Section 2 sets up a simultaneous

equation model where the correlation between the instrument and the endogenous variable

could be non-trivial, weak, or zero for different population subgroups. We discuss asymptotic

properties of the existing methods and particularly the drawbacks of the naive direct selection

approach often used in applied work. In Section 3, we study the behavior of a modified

selective IV estimator that is consistent and efficient under mild conditions. We analyze the

asymptotic MSE of the proposed estimator as a function of a first-stage selection cut-off,

and propose a data-driven procedure to estimate the cut-off and construct a data-driven

adaptive IV estimator. In Section 4, we use simulations to confirm the MSE improvement

of our proposed adaptive estimator. In Section 5, we report the results from empirical

applications to the compulsory schooling data of Oreopoulos (2006) and the voter turnout

data of Charles and Stephens (2013). Section 6 concludes.

2. Model Set-up and Existing Methods

2.1. Model Set-up

As we discuss in the introduction, it is often the case in applied settings that the correlation

between an endogenous variable and an instrument is heterogeneous across different pop-

ulation groups. Consider a simultaneous equation model with a heterogeneous first stage,

where the instrument is strong for some population groups, weak for some other groups,

and uncorrelated with the endogenous variable for the rest. This model is a natural speci-

fication for a variety of economic applications. For example, in literature on the return to

compulsory schooling, economists compile information from multiple natural experiments

(e.g., state laws that shift minimum school dropping age) to create an instrument (e.g., the

minimum school dropping age an individual faced at the age of 14). This instrument is used

to estimate the effect of an endogenous variable (years of education) on the outcome (wages).

Effective policies—that is, policies that affect the years of education—make the instrument

correlated with the endogenous variable, while ineffective policies undermine this correlation.

We posit a simultaneous equation model with one endogenous covariate, W , and one

instrument, Z̃. Suppose that we observe N individuals, who are divided into G groups. We
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know which group each individual belongs to. We assume that for each individual i in group

g, we have

Yig = βWig +Xigθg + uig,

Wig = ρgZ̃ig +Xigγg + vig,
(1)

where Xig is a vector of covariates of dimension 1× d. Within each group, (Z̃ig, Xig, uig, vig)

are i.i.d. and there is potentially a non-zero correlation between uig and vig. The model

has heterogeneous first stage coefficients across groups as well as group-specific effects of the

exogenous regressors. In empirical research, groups could be determined by observables like

geographic regions, ethnic groups, etc. To facilitate the comparison of different estimators in

an asymptotic MSE framework, we initially assume that β is a constant. In Section 2.2.2, we

discuss the interpretation of existing and proposed estimators under heterogeneity in causal

effects. After residualizing the exogenous variables from the instrument (groupwise) and

writing the model in matrix form, we have

Yg = βWg +Xgθg + ug,

Wg = Zgρg +Xgωg + vg,

where Yg, Wg, Z̃g, ug, vg are vectors of length ng, Xg is matrix of dimension ng × d, Zg =

MXg Z̃g whereMXg = I−Xg(X
′
gXg)

−1X ′
g, and ωg = γ+(X ′

gXg)
−1(X ′

gZ̃g)ρg. By construction,

Z ′
gXg = 0. The following assumption provides regularity conditions.

Assumption 1.

1. Data Design: Observations are independent across groups and i.i.d. conditional on

grouping. There exist positive and finite c and c̄ such that cN
G

≤ ng ≤ c̄N
G

for all

g = 1, 2, . . . , G and G/N → 0 and N → ∞.

2. One-sided First-stage Relationship: There exist constants a1, . . . , aG, and positive and

finite ρ and ρ̄ such that ρ ≤ ag < ρ̄ for all g = 1, . . . , G. Groups with irrelevant IV

are defined as G0 = {g : ρg = 0}, groups with strong IV are defined as G+,s = {g :

ρg = ag}, and groups with weak IV are defined as G+,w = {g : ρg = ag/
√
ng}. We
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further denote G0 = |G0|, G+,s = |G+,s|, G+,w = |G+,w|, and let G+ = G+,w ∪ G+,s and

G+ = G+,w +G+,s.

3. Finite Moments: Let kg = E[ηig] where ηg is the error vector after projecting Z̃g

linearly onto Xg. There exist positive and finite k and k̄ such that k ≤ kg ≤ k̄ for all

g = 1, . . . , G and E[(ηig − kg)
2] ≤ ∆̄η < ∞ for all g = 1, . . . , G. In addition, there

exists a positive and finite constant that bounds E[Z̃8
ig] and E[X8

ig] uniformly across all

g = 1, . . . , G.

4. Error Terms: For all g = 1, . . . , G, (uig, vig)|(Z̃ig, Xig) have a common distribution

with mean 0 and non-singular variance-covariance matrix(
σ2
u σuv

σuv σ2
v

)
.

In addition, there exists a positive and finite constant that bounds E[v8ig] uniformly

across all g = 1, . . . , G.

5. Non-trivial Presence of Strong Groups: When G is fixed, G+,s > 0. When G,N → ∞,

G+,s/G → b > 0.

Assumption 1.1 allows for unbalanced sample sizes by group, but requires that all groups

have sample sizes of the same order, both in the fixed and the growing G cases. Assumption

1.2 requires that the instrument affects the endogenous regressor in the same direction across

all groups. It is adopted here for notational simplicity but is also in line with the monotonicity

condition in the local average treatment effect (LATE) literature (see Angrist and Pischke,

2009 for a review). Without loss of generality, we assume that first-stage effects are non-

negative. In our two empirical applications, where compulsory schooling laws instrument for

years of education and energy supply shocks instrument for local economic conditions, 1.2

is a natural assumption. When the first-stage coefficient is of order 1/
√

N/G, we say that

the instrument is weak.

Assumption 1.3 requires the instrument to have non-trivial variation in each group. In

practice, groups with zero or very small variation in the instrument can be dropped in ad-

vance, if necessary. Assumption 1.3 allows the variance of the instrument to be heterogeneous
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across groups, which could be important in some empirical applications including the two

examples we study later in the paper.

Assumption 1.4 imposes exclusion restrictions and the homoskedasticity condition on

the distribution of error terms. These assumptions are commonly adopted in the literature.

Assumption 1.5 is required for the identification of β. Similar assumptions of strong iden-

tification are often employed in the IV literature. For example, Okui (2009) and Cheng,

Liao, and Shi (2019) assume that researchers have prior knowledge about a subset of infor-

mative or strong instruments. In this article, we require non-trivial presence of population

subgroups with strong instruments, but we do not require prior knowledge of the identity of

the relevant subgroups.

2.2. Existing Methods

Let ℓg denote a vector of ng ones for g = 1, 2, ..., G. Let Y , W , X, Z̃, Z, u, v, and ℓ be

vectors or matrices with row size N that stack all group vectors Yg, Wg, Xg, Z̃g, Zg, ug, vg,

and ℓg, respectively. For any full-rank matrix A, let PA = A(A′A)−1A′ and MA = I−PA. In

this section, we discuss IV estimators that are often used in empirical studies with potential

first-stage heterogeneity.

2.2.1. Pooled and Fully Interacted 2SLS

Let D̃ be theN×G block diagonal matrix of Z̃1, Z̃2, ..., Z̃G, D theN×G block diagonal matrix

of Z1, ..., ZG, DX the N × G block diagonal matrix of X1, ..., XG, and Dℓ the N × G block

diagonal matrix of ℓ1, ..., ℓG. Dℓ is the set of group indicators and D̃ (or D, DX) includes all

interaction terms between Z̃ (or Z, X) and the set of group indicators. The most commonly

used IV estimators in empirical studies with potential first-stage heterogeneity across groups

are: (i) the pooled 2SLS estimator,

β̂pool = (Z ′W )−1Z ′Y,

which ignores group membership, and (ii) the fully-interacted 2SLS estimator,

β̂int = (W ′PDW )
−1

W ′PDY,
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that accounts for the groupwise heterogeneity in model (1) by interacting the instrument

with a full set of group membership indicators. The fully-interacted estimator could also

be written as β̂int =
(∑G

g=1 ρ̂gZ
′
gWg

)−1∑G
g=1 ρ̂gZ

′
gYg, where ρ̂g = (Z ′

gZg)
−1(Z ′

gWg) is the

groupwise first-stage estimator for ρg. Using the groupwise transformed instrument Z is

equivalent to allowing for groupwise slopes for the exogenous regressor X, which can be

important to the interpretation of 2SLS estimators, as we will discuss in the next section.

Let pg = ng/N for all g = 1, 2, ..., G. Under Assumption 1, the pooled estimator β̂pool

satisfies

√
N
(
β̂pool − β

)
/sp ⇒ N(0, 1), sp = σu/

√√√√( G∑
g=1

ρgkgpg

)2

/

(
G∑

g=1

kgpg

)
.

Under Assumption 1 and the additional rate condition G2/N → 0, the fully-interacted

estimator β̂int satisfies

√
N
(
β̂int − β

)
/sint ⇒ N (0, 1) , sint = σu/

√√√√ G∑
g=1

ρ2gkgpg.

Both estimators are consistent. The fully interacted estimator is more efficient since sint ≤ sp

by the Cauchy-Schwarz inequality. The equality holds if and only if the groupwise first-stage

slope ρg is constant across groups.

The growth condition G2/N → 0 is required to guarantee that the asymptotic bias of

β̂int vanishes in the limit. The fully-interacted estimator, β̂int, has the same asymptotic

distribution as the infeasible oracle 2SLS estimator using Zinf = (ρ1Z
′
1, . . . , ρGZ

′
G)

′ as the

instrument and is hence efficient under homoskedasticity. If homoskedasticity is violated,

efficient estimation of β would require a GLS-type of reweighing involving estimated variance

of the second-stage error term. In practice, however, the fully-interacted estimator may suffer

from the “many IV bias” as is discussed in Bekker (1994), Bound, Jaeger, and Baker (1995),

Staiger and Stock (1997), and Stock and Yogo (2005), among many others.

2.2.2. Interpretation Under Second-Stage Effect Heterogeneity

As we discuss in the introduction, IV methods such as LIML, JIVE, or B2SLS have been

proposed in the econometrics literature to preserve estimation efficiency under homoskedas-
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ticity while addressing the “many IV bias” problem of 2SLS. Nonetheless, 2SLS is still the

most popular method in empirical research, perhaps because 2SLS has a weighted average

interpretation when the second-stage causal effect is not constant. When the endogenous

regressor and instrument are both binary, and there are no other exogenous covariates in

the model, 2SLS estimates the average treatment effect of compliers (see, e.g., Imbens and

Angrist., 1994, and Abadie, 2003). This subsection studies the interpretation of pooled

and fully-interacted 2SLS estimators when a heterogeneous second-stage causal parameter

is added to our model in (1) with first-stage heterogeneity. To facilitate the discussion, we

temporarily simplify the exogenous regressor X to contain only the intercept. In the next

section we bring back the general case.

Replace β in model (1) with βg and assume |βg| ≤ β̄ < ∞ for all g = 1, ..., G. It is then

easy to show that given the regularity conditions in Assumption 1 and the corresponding

rate conditions (i.e., G/N → 0 for β̂pool and G2/N → 0 for β̂int),

β̂pool =
G∑

g=1

ρgVgpg∑G
g=1 ρgVgpg

βg + op(1), β̂int =
G∑

g=1

ρ2gVgpg∑G
g=1 ρ

2
gVgpg

βg + op(1), (2)

where Vg = V [Z̃ig]. For both estimators, groups with larger variance in the instrument

receive higher weights in the probability limit. The results in (2) are related to those in

Angrist and Imbens (1995) and Abadie (2003), which establish a causal interpretation for

2SLS estimators under parameter heterogeneity (see, e.g., Theorem 3 in Angrist and Imbens,

1995, and Proposition 5.1 in Abadie, 2003).

The pooled and fully interacted estimators differ in that the groupwise first-stage slope

enters the weighting formula linearly for the pooled estimator but in a squared form for the

fully interacted estimator. Although at first glance, the squared form may not appear intu-

itive, it reflects an advantage of the fully interacted estimator: the fully interacted estimator

is invariant to groupwise rescaling of the instrument. For example, if the instrument in group

g is multiplied factor of 10, the variance of the instrument in group g increases by a factor of

100, but the first-stage slope coefficient ρg is divided by a factor of 10 only. This seemingly

harmless transformation changes the interpretation of the pooled estimator but not the fully

interacted 2SLS estimator.
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The interpretation of 2SLS estimates as weighted averages of causal effects motivates the

use of the groupwise transformed instrument, Z, even for the case when the slope coefficients

θg and γg in model (1) are assumed to be homogeneous across groups. In the absence of group-

specific intercepts, the interpretation of the pooled and fully-interacted estimators becomes

complicated. Intuitively, imposing the same intercept across groups allows groups with no

first-stage identification, or ρg = 0, to influence the 2SLS estimator through their influence

on the value of the intercept. For example, for a model with no exogenous variables other

than the group indicators, the pooled 2SLS estimator with a universal intercept is β̂pool2 =(
Z̃ ′MℓW

)−1

Z̃ ′MℓY . Let ag = E[Z̃2
ig] and bg = E[Z̃ig]. In the appendix, we show β̂pool2 =

(
∑G

g=1 ρgpg(ag−bg
∑G

s=1 bsps))
−1(
∑G

g=1 βgpg(γ(bg−
∑G

s=1 bsps)+ρg(ag−bg
∑G

s=1 bsps)))+op(1),

where γ is the true intercept in the model. The first term on the right-hand side of last

equation is not a weighted average (the factors that multiply βg sum to one, as shown in

the appendix, but they could be negative or larger than one), and even groups with ρg = 0

influence the estimator. Also, because of the role of γ in the previous formula, the estimator

β̂pool2 is not invariant to recentering of the endogenous regressor, W .

2.2.3. Naive First-Stage Selection

A selective IV regression approach is sometimes used by applied researchers aiming to obtain

a strong first stage. If subsamples are selected for IV regression based on economic intuition

before seeing the data (e.g., Fredriksson, Ockert, and Oosterbeek., 2013; Card, Devicienti,

and Maida, 2014), the selective IV approach may be legitimate. However, when the selection

is based on first-stage regression results, the process turns out to invalidate the exclusion

restriction at a rate that endangers the validity of post-selection IV inference.

To show the breakdown of inference after sample selection based on the strength of the

instrument, we first formally describe the data-driven selective IV approach, which consists

of running an IV regression using only the groups selected by testing H0,g : ρg = 0 against

the alternative Ha,g : ρg > 0, g = 1, ..., G. Let tg be the t-statistic for group g, αFS be a

pre-determined and fixed significance level, and cg,αFS
be the (1−αFS) quantile of Student-t

distribution with ng − 1 degrees of freedom. Let ig,αFS
= 1(tg > cg,αFS

). Assuming that at
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least one group is selected, the resulting estimator is

β̂selp =

(
G∑

g=1

ig,αFS
Z ′

gWg

)−1 G∑
g=1

ig,αFS
Z ′

gYg. (3)

We refer the estimator as the select-and-pool estimator.

The next theorem shows that the exclusion restriction is in fact violated for the select-

and-pool estimator at a rate that invalidates the conventional inference.

Theorem 1. Suppose Assumption 1 holds, σuv ̸= 0, and G+,s/G → b ≤ b̄ < 1 as G,N → ∞.

Let 0 ≤ αFS < 1/2, then

E

[
1

(
G∑

g=1

ngig,αFS
> 0

)∣∣∣∣∣
G∑

g=1

ig,αFS
Z ′

gug

∣∣∣∣∣
/

G∑
g=1

ngig,αFS

]
≥ a/

√
N/G+ o(1/

√
N/G),

for some positive constant a.

Proof of the theorem is provided in the appendix.2 The theorem has multiple implications.

First, it implies that the exclusion restriction is violated for any finite sample if the select-

and-pool method is employed. This is because the selection is based on the value of the

first-stage t-statistic in each group, and a subgroup is more likely to be selected when there

is a large positive correlation between the instrument and the first-stage error term. Since

first and second-stage error terms are correlated, the select-and-pool procedure induces a

violation of the exclusion restriction.

Violation of the exclusion restriction for any finite sample size, however, does not nec-

essarily imply inconsistency of IV. Nor does it imply that classic inference methods become

invalid. An important previous literature has studied local to zero violations of the ex-

clusion restriction, particularly for a regime correlation of order 1/
√
N (e.g. Staiger and

Stock (1997), Berkowitz, Caner, and Fang (2008), Guggenberger (2012) among others). In

this regime of local violation, classical inference starts to fail for many IV estimators. For

instance Berkowitz, Caner, and Fang (2008) shows that 2SLS has a limiting distribution

2The proof applies to settings more general than those covered in Theorem 1. In particular, it allows for
negative values for the constants ag (relaxing Assumption 1.2) and groupwise heteroskedasticity (relaxing
Assumption 1.4).
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that no longer centers at the true parameter value under such local violation. Our result

in Theorem 1 implies that, for fixed G, select-and-pool violates the exclusion restriction at

a rate no smaller than 1/
√
N as long as not all groups have strong first stage coefficients.

When G grows together with N , Theorem 1 implies that the exclusion restriction of the

select-and-pool estimator is violated at a rate worse than 1/
√
N . Under such circumstances,

the type I error of conventional t-tests based on the select-and-pool estimator converges to

one.

Table 1 illustrates the over-rejection problem of the select-and-pool estimator. The data

generating process (DGP) used for the simulations is described in the footnote of the table.

As predicted by Theorem 1, the test based on the select-and-pool estimator over-rejects more

severely when the number of groups grows, and the size distortion is not alleviated with the

increase of sample size. When G = 10, the rejection rate ranges from 7 to 10 percent. When

G = 100, the rejection rate can be as high as 34 percent. The over-rejection problem also

gets worse with increased model endogeneity and higher proportion of zero groups.

Table 1 also reports the finite-sample performance of the pooled and the fully interacted

estimators. The pooled estimator controls size well. But it is also highly inefficient, as is

illustrated in Table A1 in the Appendix, which reports standard deviations for the different

estimators. The fully interacted estimator suffers from the “many IV bias” with the size

distortion increasing with the number of groups, the degree of endogeneity, and the first-

stage weakness of the instrument (proportion of groups with irrelevant IV). With our DGP,

the “many IV bias” is a finite sample problem. So the size distortion of β̂int improves as

the sample size grows. Table A2 in the Appendix provides a closer look at the finite-sample

biases of the different estimators using the same data generating processes (DGPs) as in

Table 1.

3. Adaptive Estimation

We have shown in the previous section that the fully-interacted 2SLS estimator has a simple

and intuitive interpretation as a weighted average causal effect when model (1) is extended

to allow for groupwise heterogeneity in the second-stage parameters. On the other hand,
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Table 1: Size-Distortion of Existing Estimators

G+,s/G = 0.1 G+,s/G = 0.3
ρuv = 0.25 ρuv = 0.5 ρuv = 0.25 ρuv = 0.5

β̂pool β̂int β̂selp β̂pool β̂int β̂selp β̂pool β̂int β̂selp β̂pool β̂int β̂selp

G = 10

n=250 0.007 0.082 0.036 0.030 0.264 0.100 0.018 0.074 0.047 0.042 0.165 0.080
n=500 0.010 0.063 0.039 0.028 0.184 0.072 0.020 0.063 0.046 0.034 0.105 0.069
n=1000 0.013 0.068 0.061 0.036 0.144 0.094 0.036 0.052 0.055 0.043 0.075 0.072

G = 40
n=250 0.013 0.209 0.073 0.036 0.683 0.186 0.036 0.122 0.061 0.043 0.391 0.111
n=500 0.028 0.169 0.077 0.052 0.521 0.184 0.056 0.122 0.065 0.050 0.258 0.097
n=1000 0.026 0.105 0.061 0.035 0.301 0.149 0.046 0.066 0.044 0.044 0.125 0.072

G = 100
n=250 0.025 0.414 0.115 0.044 0.971 0.341 0.048 0.237 0.072 0.051 0.737 0.182
n=500 0.031 0.302 0.111 0.038 0.841 0.263 0.043 0.168 0.072 0.040 0.500 0.118
n=1000 0.041 0.210 0.102 0.045 0.633 0.259 0.057 0.110 0.055 0.060 0.303 0.106

G = 200
n=250 0.031 0.698 0.190 0.038 0.999 0.532 0.043 0.435 0.111 0.040 0.948 0.308
n=500 0.041 0.551 0.166 0.045 0.984 0.435 0.057 0.287 0.072 0.060 0.775 0.184
n=1000 0.038 0.360 0.144 0.039 0.899 0.418 0.043 0.157 0.079 0.041 0.527 0.156
Note: The table reports the rejection proportion of the Wald test based on different estimators for H0 : β = 0 among
1000 simulations with 5 percent nominal level. The data generating process is Xig , Z̃ig ∼ i.i.d. N(0, 1), (uig , vig) ∼
N((0 0), (1 ρuv ; ρuv 1)), Wig = ρgZ̃ig + Xig + vig , Yig = βWig + Xig + uig for i = 1, 2, . . . , n, where β = 0, ρg = 0.2
for g = 1, ..., G+,s and ρg = 0 for g > G+,s.
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the fully-interacted 2SLS estimator could be subject to substantial “many IV bias” in finite

samples when the number of groups is large. It is, therefore, natural to ask if it is possible

to construct a new estimator that preserves the interpretation of the fully-interacted 2SLS

estimator and mitigates its “many IV bias” problem, without large increases in variance.

We next propose an estimator that satisfies this requirements and is amenable to classic

asymptotic inference.

3.1. Split-Sample Select-and-interact 2SLS

We define the select-and-interact estimator, β̂sel,int(δ), in the same way as the fully-interacted

estimator, except that only groups that pass a fist-stage significance test are used to estimate

β,

β̂sel,int(δ) =

(
G∑

g=1

ρ̂gZ
′
gWg1(µ̂g > δ)

)−1 G∑
g=1

ρ̂gZ
′
gYg1(µ̂g > δ), (4)

where 1(µ̂g > δ) is the selection rule with µ̂g = ρ̂g(Z
′
gZg)

1/2 = (Z ′
gZg)

−1/2Z ′
gWg, for some δ.

When δ = −∞, the estimator reduces to the fully-interacted 2SLS estimator β̂int(δ). If the

interactions between Z and group indicators are pre-normalized to have unit variances as is

usual for regularized regression methods such as lasso and ridge, the selection rule 1(µ̂g > δ)

is then solely based on the magnitude of the first-stage slope coefficient estimator, ρ̂g. In

this section, we examine the statistical properties of select-and-interact estimators when δ is

a fixed constant. In Section 3.3 we consider the adaptive choice of δ based on an expansion

of the MSE of the second-stage estimator.

Note that the estimator in (4) runs the second-stage regression using only data from the

groups selected in the first stage. The estimator is identical to a full-sample 2SLS estimator

of the second-stage causal parameter if DX is used as the exogenous regressor and columns

in the matrix D corresponding to the selected groups are used as excluded instruments. The

drawback of using the full-sample 2SLS regression is that, although data from unselected

groups do not affect the second-stage estimator itself, they affect the standard error calcu-

lation through the estimation of σu. Therefore, we choose to define the select-and-interact

estimator as in (4) and carry out 2SLS only using data from selected groups.
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We next propose a split-sample version of the select-and-interact 2SLS estimator. We

first randomly split the data into two samples of equal proportions within each group. We

use superscripts a and b to refer to the observations in the two sample splits. Let ρ̂ag =(
(Za

g )
′Za

g )
)−1

(Za
g )

′W a
g , µ̂

a
g =

(
(Za

g )
′Za

g )
)−1/2

(Za
g )

′W a
g and define similar terms for subsample

b. Let

β̂a(δ) =

(∑
g

ρ̂bg(Z
a
g )

′W a
g 1(µ̂

b
g ≥ δ)

)−1∑
g

ρ̂bg(Z
a
g )

′Y a
g 1(µ̂

b
g ≥ δ),

β̂b(δ) =

(∑
g

ρ̂ag(Z
b
g)

′W b
g1(µ̂

a
g ≥ δ)

)−1∑
g

ρ̂ag(Z
b
g)

′Y b
g 1(µ̂

a
g ≥ δ), and

β̂sssel,int(δ) =
(
β̂a(δ) + β̂b(δ)

)
/2. (5)

β̂a(δ) and β̂b(δ) use one of the splits for first-stage instrument selection and reweighting

and the other split for second-stage estimation. By averaging across β̂a(δ) and β̂b(δ), the

repeated split-sample select-and-interact estimator, defined in (5), preserves efficiency, as we

show below.

The following Assumption gives a range condition for δ.

Assumption 2. (Range of δ) The thresholding value δ ∈ ∆ =
{
δ : δ ≤ Cδ (N/G)1/2

}
for

some constant Cδ < ρ
√

kc/2.

The range defined in Assumption 2 is wide. It accommodates first-stage testing proce-

dures with a fixed nominal size. It also allows for testing procedures that adjust the critical

value for an increasing number of first stage tests. These include Bonferroni’s correction

and other more liberal rules for false discovery proportion or false discovery rate control

under some additional mild rate conditions. See detailed discussions in Lemma A1 in the

Appendix.

Lemma 1. Let ssel,int = σu/
√∑

g∈G+,s
ρ2gkgpg. Suppose Assumption 1 and 2 hold. Then, as

G,N → ∞:

1. If G2/N → 0, then
√
N(β̂sel,int(δ)− β)/ssel,int ⇒ N(0, 1).
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2. If G/N → 0, then
√
N(β̂sssel,int(δ)− β)/ssel,int ⇒ N(0, 1).

The lemma has several interesting implications. First, unlike the select-and-pool method

discussed in the previous section, the select-and-interact estimator has conventional large

sample inference. Intuitively, this is because interacting the instrument with group indicators

essentially re-weights the instrument by the estimated first-stage slope coefficient. This re-

weighting changes the order of magnitude at which the exclusion restriction is violated

through first-stage selection. At any finite sample, the exclusion restriction of the select-

and-interact method is still violated, but the order of violation goes to zero faster than the

local rate 1/
√
N and, therefore, does not have first-order impact on inference.

Under the assumptions of Lemma 1, β̂sel,int(δ) and β̂sssel,int(δ) are first-order asymptot-

ically equivalent and efficient.3 This equivalence result, however, is not reflective of the

finite-sample behavior of the two estimators. The weaker growth condition between G and

N required in the second part of Lemma 1 suggests that the higher-order asymptotic bias

and/or higher-order efficiency loss terms of the split-sample select-and-interact estimator

might be of smaller order of magnitude than the full sample select-and-interact estimator.

Next, we formalize this argument by deriving the asymptotic MSEs of the two estimators as

a function of δ.

3.2. Characterization of Asymptotic Mean Squared Errors

To approximate the MSEs of the select-and-interacted 2SLS estimators as a function of

the value δ, we apply the higher-order asymptotic expansion techniques in Nagar (1959),

Donald and Newey (2001), Okui (2009), Cheng, Liao, and Shi (2019), and others. To keep

the calculation tractable, we assume in this section that the error terms (u, v) follow a joint

normal distribution. Let Φ(.) and ϕ(.) be the cumulative distribution function and the

probability density function of the standard normal distribution function, respectively.

Theorem 2. Under Assumption 1 and 2 and the additional assumptions that (u, v) follow

joint normal distribution, we have that

3Efficiency follows by comparison between sint and ssel,int, and
∑

g∈Gc
+,s

ρ2gkgpg = Op(G/N).
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1. if G2/N → 0 as G,N → ∞, the asymptotic MSE of β̂sel,int(δ) can be decomposed to

N(β̂sel,int(δ)− β)2 = Q̂sel,int(δ) + r̂sel,int(δ),

E[Q̂sel,int(δ)|Z̃,X] = σ2
u/H + Ssel,int(δ) + Tsel,int(δ),

sup
δ∈∆

(
(r̂sel,int(δ) + Tsel,int(δ))/Ssel,int(δ)

)
= op(1),

where H = 1
N

∑
g∈G+,s

ρ2gZ
′
gZg and

H2Ssel,int(δ) = σ2
uv

(∑
g

(
1− Φ

(
δ−µg

σv

)
+
(

δ
σv

)
ϕ
(

δ−µg

σv

)))2
/N ,

2. if G/N → 0 as G,N → ∞, the asymptotic MSE of β̂sssel,int can be decomposed as

N(β̂sssel,int(δ)− β)2 = Q̂sssel,int(δ) + r̂sssel,int(δ),

E[Q̂sssel,int(δ)|Z̃,X] = σ2
u/H + Ssssel,int(δ) + Tsssel,int(δ),

sup
δ∈∆

(
(r̂sssel,int(δ) + Tsssel,int(δ))/Ssssel,int(δ)

)
= op(1),

where H2Ssssel,int(δ) = Asssel,int(δ) +Bsssel,int(δ) + Csssel,int(δ) with

Asssel,int(δ) =2σ2
uσ

2
v

∑
g

(
1− Φ

(
δ − µg/

√
2

σv

)
+

(
δ − µg/

√
2

σv

)
ϕ

(
δ − µg/

√
2

σv

))
/N,

Bsssel,int(δ) =σ2
u

∑
g

µ2
gΦ

(
δ − µg/

√
2

σv

)
/N,

Csssel,int(δ) =2σ2
uv

∑
g

(
1− Φ

(
δ − µg/

√
2

σv

)
+

δ

σv

ϕ

(
δ − µg/

√
2

σv

))2

/N.

For the full-sample select-and-interact estimator β̂sel,int, the first-order term in its asymp-

totic MSE decomposition is the variance term σ2
u/H, which is expected given the asymptotic

variance formula in Lemma 1. The higher-order terms of the estimator may come from three

different sources, the “many IV bias”, the bias introduced by first-stage selection, and the

efficiency loss from falsely excluding groups with relevant instruments. Under the δ range

specified in Assumption 2, the higher-order efficiency loss term in the asymptotic MSE is

dominated in order of magnitude by the bias terms. If the first-stage selection were orthog-

onal to the second-stage estimation, the bias term would be σ2
uv

(∑
g

(
1− Φ

(
δ−µg

σv

)))2
/N .
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The additional terms in Ssel,int(δ) hence represent extra asymptotic bias introduced from

first-stage selection.

The repeated split-sample estimator β̂sssel,int has the same first-order MSE term as the

full-sample select-and-interact estimator but its higher-order leading term is of a smaller

order, or G/N . The higher order MSE terms are from two different sources. Asssel,int(δ)

represents the higher order bias of the split-sample estimators. Bsssel,int(δ) represents higher-

order efficiency loss from excluding groups with weak instruments. Csssel,int(δ) is a higher-

order bias term due to combining the two split-sample estimators.

3.3. Adaptive δ selection for optimal MSE

In this section, we discuss how to select the thresholding value, δ, adaptively to achieve

second-stage MSE-optimality relative to the expansion in Theorem 2.

Corollary 1. Under Assumption 1 and the rate condition G/N → 0 as G,N → ∞,

inf
δ
L(δ) = 2bσ2

uσ
2
v(1 + ρ2uv)

G
N
+ op(

G
N
) if G+,w/G → 0, where b is defined in Assumption 1.5

and L(δ) = H2Ssssel,int(δ).

Corollary 1 establishes the optimal level of the asymptotic MSE of the repeated split-

sample select-and-interact estimator when the proportion of groups with weak first-stage

coefficients vanishes. In this case, the minimum asymptotic MSE is achieved when the

thresholding value of δ singles out all groups with strong first-stage identification in the

limit. When the proportion of groups with weak first-stage coefficients does not vaninsh, the

minimum asymptotic MSE is still of order G/N , but the constant depends on the distribution

of µg for g ∈ G+,w, often in a very complicated fashion. Moreover, it is not possible to

consistently estimate the optimal constant, which is akin to the “impossibility” result for

post-model selection estimator as discussed in Leeb and Pötscher (2005). As a result, we

do not expect characterizing the minimum asymptotic MSE level of β̂sssel,int in the not

well-separated case would lead to meaningful adaptive procedure for choosing the optimal

thresholding value δ given data.

Let L∗ = 2bσ2
uσ

2
v(1+ρ2uv)

G
N
. The next theorem suggests an adaptive estimator for the op-
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timal thresholding value δ whose leading higher order term in asymptotic MSE is equivalent

to L∗. The theorem requires an additional assumption on the tail behavior of the instrument

distribution and a slightly stronger rate condition that G logG/N → 0 as G,N → ∞.

Theorem 3. Let (σ̂2
u, σ̂

2
v , σ̂

2
uv) be consistent estimators of (σ2

u, σ
2
v , σ

2
uv) and µ̂(g) be the order

statistic such that µ̂(1) ≥ µ̂(2) · · · ≥ µ̂(G). Let

R̂(K) =
σ̂2
u

N

G∑
g=K+1

µ̌2
(g) + 2(σ̂2

uσ̂
2
v + σ̂2

uv)
K

N
,

where µ̌(g) = µ̂(g)/
√
κG,N , and κG,N is a tuning sequence of order higher than logG and at

most
√

N
G
logG used to adjust for the first-stage estimation of ρg. Let K̂ = argminKR̂(K)

and δ̂ = µ̌(K̂). Under Assumption 1, G logG/N → 0 as G,N → ∞, and the assumption that

the instrument Z̃ follows a sub-exponential distribution, we have that

L(δ̂)/L∗ p→ 1.

Let the adaptive estimator be β̂adpt ≡ β̂sssel,int(δ̂) with δ̂ defined in Theorem 3. Theorem 3

implies that for δ̂ equal to the K̂-th order statistics of µ̌, the adaptive estimator has a leading

higher-order asymptotic MSE term that converges to the minimum stated in Corollary 1.

Note that the convergence result in this theorem does not require the proportion of groups

with weak first-stage identification to vanish in the limit as assumed in Corollary 1. When

G+,w/G → 0 holds, the adaptive estimator has optimal asymptotic MSE in both the first

order and the leading higher order terms. When G+,w/G → 0 does not hold, the adaptive

estimator is still first order efficient. The leading higher order terms still converges to L∗, but

L∗ may not necessarily be the smallest among all split-sample select-and-interact estimators

defined in equation (5).

The tuning parameter κG,N is used as a wedge to separate the groups with strong first-

stage signals from those with weak or irrelevant instruments when the first-stage parameter

ρg has to be replaced by its estimator. Intuitively, κG,N is chosen to dominate all µ̂g terms

in G+,w and G0 groups and be dominated by all µ̂g terms in G+,s groups such that R̂(.) is

minimized at a value that will include all strong groups but discard all other groups in the
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limit. We set the rule-of-thumb κG,N to κ∗
G,N = (logG)2 in the simulations and empirical

sections. In the empirical section, we report robustness checks with alternative κG,N choices

using 2κ∗
G,N and κ∗

G,N/2 and find the empirical results stable to such perturbations.

Theorem 3 implies that, under second-stage parameter heterogeneity (like in section

2.2.2), the adaptive estimator β̂adpt satisfies

β̂adpt =
∑

g∈G+,s

ρ2gVgpg∑
g∈G+,s

ρ2gVgpg
βg + op(1). (6)

Under correct selection of the strong first-stage groups, the adaptive estimator is equiva-

lent to the oracle estimator that employs the identity of the groups with a strong first-stage

identification, that is, β̂adpt = β̂oracle, where

β̂oracle =
( ∑

g∈G+,s

ρ̂gZ
′
gWg

)−1 ∑
g∈G+,s

ρ̂gZ
′
gYg.

It is clear that β̂oracle has probability limit
∑

g∈G+,s

ρ2gVgpg∑
g∈G+,s

ρ2gVgpg
βg, following the same ar-

guments as in Section 2.2.2. Because correct selection of strong first-stage groups occurs

with probability approaching one under the conditions in Theorem 3, the same weighted

average causal effect interpretation of the adaptive estimator in (6) is valid for the adaptive

estimator.

Our proposed adaptive procedure is akin to a version of the split-sample lasso selection

estimator of Belloni, Chen, Chernozhukov, and Hansen, 2012. In simulations, we find that

our proposed adaptive estimator behaves comparably and in some DGPs better than split-

sample lasso. In the two empirical applications, the two methods give similar point estimates

and standard errors across almost all specifications, although their exact groups selected for

2SLS estimation often differ slightly.

4. Monte Carlo Simulations

In this section, we study the finite-sample performance of different IV estimation procedures

under first-stage heterogeneity. We use three data generating processes. Let Xi, Z̃i, vi, ei ∼

i.i.d. N(0, 1), and ui = ρu,vvi+
√

1− ρ2u,vei with varying correlation coefficient ρu,v. Endoge-

nous variables Yig and Wig are generated following the simultaneous equation model in (1)
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with β = 0, and θ = γ = 1. The parameter ρg controls the relevance of instrument Z in

group g and varies across DGPs.

Figure 1 summarizes the distribution of ρg for the three DGPs. We fix group size to

ng = 500 throughout. DGP 1 represents the case with well-separated first-stage signals.

Out of G groups, where G varies from 40 to 200 in the simulations, a proportion ps of them

have strong first-stage (ρg = 1). For the rest of the groups the instrument is not correlated

with the endogenous variable (ρg = 0). The first two graphs from the left in Figure 1 plot

the cumulative distribution functions (CDFs) of DGP 1 with ps equal to 0.25 and 0.05,

respectively. In DGP 2, we mix in some non-negligible proportion, pw, of weak groups where

ρg = 0.2. The third and fourth graphs from the left in Figure 1 plot the CDFs of DGP

2, where ps = pw = 0.125 and ps = pw = 0.025, respectively. The last graph plots DGP

3, which represents a case where the weak and strong groups have no separation. Eighty

percent of the groups in DGP 3 have irrelevant instruments. Among remaining twenty

percent of groups, half of them have first-stage effect ρg ∼ N (0.2, 0.12) and the other half

have ρg ∼ N (1, 0.252). Motivated by the data patterns of the two empirical examples in

Section 5, all DGPs considered in this section have large proportions of groups with zero

first-stage coefficients.
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Figure 1: Distribution of ρg for three DGPs
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In our simulations, we study the performance of the following estimators: (1) β̂pool (2SLS-

P) the conventional 2SLS estimator that ignores first-stage heterogeneity, (2) β̂int (2SLS-INT)

the 2SLS that uses full interaction of the scalar instrumental variable with all group dum-

mies as the instruments, (3) the repeated split-sample version of 2SLS-INT, denoted as

2SLS-SSINT, (4) the infeasible repeated split-sample interacted 2SLS which interacts the in-

strument only with groups that have non-zero first-stage correlation, denoted as 2SLS-INF,

(5) the limited information maximum likelihood estimator (LIML-INT) with fully interacted

instrument with group dummies, (6) The jack-knife estimator (JIVE), which was first pro-

posed by Angrist, Imbens, and Krueger (1999) to alleviate finite-sample bias of 2SLS, (7) a
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split-sample 2SLS estimator that uses lasso for first-stage selection (2SLS-SSL), and (8) our

split-sample adaptive estimator (2SLS-ADPT) with the thresholding value estimated from

the data using Theorem 3 and κG,N = (log(G))2. 2SLS-INT and 2SLS-SSINT correspond to

estimators β̂sel,int(∞) and β̂sssel,int(∞) defined in Section 3.1, respectively.

Tables 2-4 report empirical MSE and MAE (median absolute error) across 500 simula-

tions, as well as rejection proportions for the second-stage t-test for the three DGPs under

two different error distributions: normal and chi-squared with 3 degress of freedom (χ2
3).

For all DGPs, the pooled two stage least square estimator (2SLS-P) has very poor MSE and

MAE performance. This is mainly driven by variance inflation: the large number of groups

with no first stage makes the pooled 2SLS estimator inefficient. 2SLS-INT is first-order effi-

cient. It behaves well when the number if instruments (i.e., G in our setup) is small and the

first-stage signal (i.e., the proportion of nonzero groups in our setup) is strong. However,

because of many IV bias, 2SLS-INT can have much higher MSE than 2SLS-INF when G

is large and the proportion of nonzero group is small.4 In such cases, 2SLS-SSINT help to

reduce the asymptotic bias, but is not as optimal in terms of asymptotic MSE as 2SLS-INF.

These observations provide motivation for our proposed estimator, which uses a data-driven

procedure to mimic 2SLS-INF. We next study the performance of 2SLS-ADPT, 2SLS-SSL,

LIML-INT and JIVE relative to the infeasible estimator 2SLS-INF.

For DGP1 with normal errors, the proposed adaptive estimator is almost as good as the

corresponding infeasible oracle estimator 2SLS-INF. All the other three competitors: 2SLS-

SSL, LIML-INT and JIVE behave similarly. LIML-INT is a very competitive estimator

under normal error which is not surprising given its optimality as discussed in Kolesár (2018).

However, as discussed in Kolesár (2013), when treatment effects vary across groups LIML-

INT does not have a clear causal interpretations, while JIVE also needs additional adjustment

in this setting and has the highest computation burden.

For the same DGP but with χ2
3 error distribution and a small proportion of non-zero

4In some settings, especially when the proportion of strong groups is large, 2SLS-INT can perform similar
to 2SLS-INF. For example, under DGP1 with ps = 0.5 (not reported), 2SLS-INT has similar MSE and MAE
as 2SLS-INF. Motivated by the empirical applications in Section 5, the simulation designs consider settings
with a small or moderate fraction of strong groups.
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groups, there is a noticeable gap between the MSE of the 2SLS-INF and that of the 2SLS-

ADPT estimator, however 2SLS-ADPT outperforms LIML-INT, 2SLS-SSL and JIVE by a

substantial margin. When ps = pw = 0.125, they perform similarly. We also note there that

the LIML-INT has noticeable size inflation whenever the error term is not normal. This

phenomenon has been previously documented by Hahn, Hausman, and Kuersteiner (2004)

and Sølvsten (2020), among others. Results for DGP2, which adds a small proportion of

weak first-stage groups, are reported in Table 3. Table 4 reports simulation results for

DGP3, which features groups with weak and strong first-stage effects that are not well-

separated. For DGP2 and DGP3, we redefine the 2SLS-INF estimator as the infeasible

estimator that chooses δ to minimize the theoretical MSE of the split-sample select-and-

interact estimator stated in Thereom 2 using oracle information of ρg. The results in Tables

3 and 4 display similar patterns as those in Table 2. Both 2SLS-ADPT and 2SLS-SSL,

designed to learn first-stage identification structure, out-perform the 2SLS-P, 2SLS-INT and

2SLS-SSINT estimators. Among its competitors, the proposed 2SLS-ADPT consistently

performs the best or equally well.
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Table 2: Rejection Proportion and MSE Performance for DGP 1

2SLS-P 2SLS-INT 2SLS-SSINT 2SLS-INF 2SLS-ADPT LIML-INT 2SLS-SSL JIVE
ps = 0.05, ρu,v = 0.25 and normal errors

G = 40
N×MSE 436.882 21.215 22.669 20.390 20.390 20.837 21.579 21.210
N×MAE 1923.779 443.467 423.261 430.740 430.740 432.387 426.859 435.797
Rej. Prop. 0.038 0.066 0.046 0.050 0.050 0.058 0.050 0.040

G = 100
N×MSE 458.475 23.663 20.486 19.609 19.599 19.740 19.808 19.807
N×MAE 3318.415 761.088 646.376 627.586 627.586 593.404 625.040 619.632
Rej. Prop. 0.058 0.082 0.038 0.048 0.048 0.052 0.048 0.030

G = 200
N×MSE 387.056 32.099 23.843 21.686 21.683 22.272 22.479 22.351
N×MAE 4341.239 1267.731 1043.499 1021.058 1018.517 1001.641 1007.512 1005.655
Rej. Prop. 0.038 0.150 0.058 0.056 0.056 0.068 0.064 0.018

ps = 0.25, ρu,v = 0.25 and normal errors

G = 40
N×MSE 16.240 4.221 4.334 4.215 4.215 4.223 4.253 4.238
N×MAE 385.748 206.675 202.563 198.870 198.870 203.090 196.234 200.877
Rej. Prop. 0.054 0.042 0.042 0.042 0.042 0.048 0.042 0.048

G = 100
N×MSE 17.488 4.594 4.390 4.399 4.399 4.365 4.374 4.359
N×MAE 661.972 311.558 306.842 320.676 320.676 307.353 322.333 307.540
Rej. Prop. 0.062 0.076 0.066 0.072 0.072 0.078 0.068 0.050

G = 200
N×MSE 15.208 4.578 4.156 4.051 4.050 4.046 4.093 4.058
N×MAE 875.906 469.002 427.221 421.565 421.565 418.238 425.306 410.839
Rej. Prop. 0.042 0.068 0.056 0.050 0.050 0.058 0.052 0.034

ps = 0.05, ρu,v = 0.25 and χ2
3 errors

G = 40
N×MSE 6113.771 135.939 199.797 129.725 136.969 157.074 153.161 171.311
N×MAE 5278.398 1145.955 1321.611 1048.631 1052.631 1127.648 1156.241 1186.001
Rej. Prop. 0.028 0.108 0.042 0.054 0.056 0.082 0.058 0.030

G = 100
N×MSE 2791.348 189.829 191.282 124.294 142.841 146.779 143.370 155.182
N×MAE 7135.788 2340.853 1928.876 1541.093 1632.401 1796.948 1658.365 1833.990
Rej. Prop. 0.026 0.174 0.054 0.058 0.064 0.074 0.054 0.014

G = 200
N×MSE 2663.635 314.390 183.905 121.197 132.861 148.093 137.191 151.503
N×MAE 10743.992 4569.327 2901.436 2378.734 2545.821 2497.460 2494.414 2533.932
Rej. Prop. 0.040 0.302 0.052 0.040 0.038 0.068 0.046 0.012

ps = 0.25, ρu,v = 0.25 and χ2
3 errors

G = 40
N×MSE 106.285 25.804 26.797 25.590 25.747 25.776 26.262 26.081
N×MAE 1072.737 492.951 532.019 496.556 501.732 486.464 532.610 504.988
Rej. Prop. 0.050 0.068 0.042 0.050 0.054 0.060 0.054 0.036

G = 100
N×MSE 94.806 30.146 29.370 26.310 27.498 26.725 27.206 27.058
N×MAE 1439.007 799.533 803.419 813.880 790.668 792.318 776.718 780.011
Rej. Prop. 0.040 0.080 0.058 0.058 0.060 0.064 0.060 0.028

G = 200
N×MSE 98.786 34.913 27.915 25.958 26.671 26.495 26.435 26.654
N×MAE 2165.718 1327.275 1159.424 1110.788 1140.030 1123.004 1140.352 1127.452
Rej. Prop. 0.048 0.112 0.048 0.046 0.048 0.046 0.046 0.022

Note: DGP1 under normal and χ2
3 errors. Scaled mean squared error, absolute sum of error and rejection probability are

reported for different configurations of G, ps, and pw. The group sample size is fixed at ng = 500. Results are based on 500
simulation repetitions.
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Table 3: Rejection Proportion and MSE Performance for DGP 2

2SLS-P 2SLS-INT 2SLS-SSINT 2SLS-INF 2SLS-ADPT LIML-INT 2SLS-SSL JIVE
ps = pw = 0.025, ρu,v = 0.25 and normal errors

G = 100
N×MSE 1435.660 43.079 47.703 40.468 41.944 42.666 44.084 43.596
N×MAE 3239.714 621.016 661.890 610.296 623.647 603.854 615.128 616.694
Rej. Prop. 0.026 0.076 0.058 0.048 0.048 0.064 0.056 0.036

G = 100
N×MSE 1905.386 64.325 54.582 46.870 48.225 49.529 50.044 50.688
N×MAE 6199.708 1318.320 1069.955 1036.453 1017.512 1016.949 1041.127 1022.186
Rej. Prop. 0.038 0.118 0.050 0.046 0.042 0.070 0.056 0.020

G = 200
N×MSE 1120.562 75.823 47.525 40.191 40.989 42.814 42.847 42.988
N×MAE 7228.982 2043.003 1493.240 1459.994 1445.584 1477.341 1478.735 1462.110
Rej. Prop. 0.032 0.202 0.064 0.054 0.050 0.066 0.060 0.012

ps = pw = 0.125, ρu,v = 0.25 and normal errors

G = 40
N×MSE 45.407 8.481 8.708 8.414 8.546 8.391 8.575 8.413
N×MAE 647.919 265.315 276.036 260.195 272.046 261.139 270.705 260.026
Rej. Prop. 0.054 0.076 0.062 0.054 0.056 0.050 0.058 0.046

G = 100
N×MSE 51.337 9.325 8.816 8.750 9.021 8.658 8.706 8.635
N×MAE 1145.194 464.062 431.866 431.265 426.228 428.505 429.941 431.041
Rej. Prop. 0.062 0.062 0.064 0.058 0.066 0.070 0.060 0.046

G = 200 (update me)
N×MSE 27.041 7.782 6.782 6.497 6.586 6.529 6.589 6.561
N×MAE 1170.808 618.080 566.300 545.431 551.192 553.065 564.334 547.325
Rej. Prop. 0.042 0.074 0.056 0.048 0.050 0.054 0.050 0.030

ps = pw = 0.025, ρu,v = 0.25 and χ2
3 errors

G = 40
N×MSE 720188.116 260.451 564.523 246.761 259.075 356.072 342.620 413.830
N×MAE 8722.373 1709.158 2091.322 1523.892 1644.423 1703.432 1842.463 1712.082
Rej. Prop. 0.014 0.142 0.026 0.032 0.032 0.082 0.026 0.028

G = 100
N×MSE 98979469.114 543.929 729.808 293.429 369.645 429.374 399.998 471.112
N×MAE 14080.389 4194.958 3740.958 2470.492 2619.759 2883.843 2789.741 2884.065
Rej. Prop. 0.016 0.296 0.054 0.050 0.048 0.100 0.042 0.036

G = 200
N×MSE 5137.888 586.768 356.761 187.578 220.009 253.785 229.412 262.706
N×MAE 14205.318 6525.808 3756.477 3003.463 3115.503 3338.126 3132.682 3373.438
Rej. Prop. 0.038 0.420 0.058 0.040 0.036 0.090 0.048 0.012

ps = pw = 0.125, ρu,v = 0.25 and χ2
3 errors

G = 40
N×MSE 303.819 51.212 59.449 52.709 54.365 52.746 55.503 54.548
N×ASE 1761.756 716.053 754.384 710.452 697.723 731.689 699.147 732.123
Rej. Prop. 0.048 0.080 0.042 0.048 0.054 0.062 0.058 0.036

G = 100
N×MSE 279.308 68.797 67.898 57.511 60.779 58.803 60.541 60.508
N×ASE 2458.124 1280.568 1188.038 1107.445 1163.068 1127.071 1093.128 1127.870
Rej. Prop. 0.040 0.116 0.068 0.064 0.078 0.078 0.072 0.030

G = 200
N×MSE 275.248 84.233 59.538 51.447 54.105 53.604 53.655 54.091
N×ASE 3568.601 2127.199 1583.559 1398.683 1518.890 1544.208 1528.103 1547.351
Rej. Prop. 0.048 0.178 0.060 0.050 0.056 0.062 0.058 0.006

Note: DGP2 under normal and χ2
3 errors. Scaled mean squared error, absolute sum of error and rejection probability are

reported for different configurations of G, ps, and pw. The group sample size is fixed at ng = 500. Results are based on 500
simulation repetitions.
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Table 4: Rejection Proportion and MSE Performance for DGP 3

2SLS-P 2SLS-INT 2SLS-SSINT 2SLS-INF 2SLS-ADPT LIML-INT 2SLS-SSL JIVE
DGP3 with ρu,v = 0.25 and normal errors

G = 40
N×MSE 467.057 35.303 38.713 33.382 33.810 34.822 35.869 35.534
N×MAE 1992.620 581.345 552.848 528.262 556.787 530.137 562.163 547.722
Rej. Prop. 0.040 0.074 0.064 0.046 0.052 0.062 0.058 0.042

G = 100
N×MSE 390.835 25.589 21.891 20.821 21.321 21.037 20.999 21.114
N×MAE 3071.019 786.978 686.456 648.956 668.154 632.800 671.309 652.069
Rej. Prop. 0.058 0.084 0.046 0.054 0.054 0.052 0.052 0.032

G = 200
N×MSE 316.284 33.967 24.779 22.619 23.071 23.142 23.374 23.229
N×MAE 3923.494 1328.891 1061.998 1039.967 1033.464 1061.145 1041.426 1079.376
Rej. Prop. 0.038 0.146 0.068 0.052 0.056 0.060 0.048 0.028

DGP3 with ρu,v = 0.25 and χ2
3 errors

G = 40
N×MSE 9623.419 206.304 398.164 213.024 260.572 270.101 290.787 311.778
N×MAE 5459.984 1440.192 1897.443 1441.298 1512.635 1517.961 1627.616 1531.046
Rej. Prop. 0.026 0.134 0.028 0.042 0.050 0.086 0.040 0.034

G = 100
N×MSE 2318.217 201.848 204.249 132.450 158.688 156.942 158.259 166.689
N×MAE 6620.035 2313.303 1980.954 1658.628 1879.294 1876.630 1761.201 1877.781
Rej. Prop. 0.026 0.186 0.052 0.048 0.056 0.084 0.054 0.010

G = 200
N×MSE 2150.827 327.106 190.661 125.153 138.088 153.325 143.897 156.877
N×MAE 9760.407 4617.979 2970.616 2480.836 2663.850 2604.448 2496.421 2702.159
Rej. Prop. 0.042 0.308 0.054 0.030 0.030 0.080 0.050 0.010

Note: DGP3 under normal and χ2
3 errors. Scaled mean squared error, absolute sum of error and rejection probability are

reported for different configurations of G. The group sample size is fixed at ng = 500. Results are based on 500 simulation
repetitions.

5. Empirical Examples

5.1. Return to Compulsory Schooling

The return to schooling literature studies how an extra year of schooling affects individual

outcomes, such as earnings and health outcomes, later in life. Years of schooling may corre-

late with omitted variables, such as early cognitive ability and family background. For this

reason, researchers often use variation in compulsory schooling laws across states and across

time in the U.S. (see, Lleras-Muney, 2005, Oreopoulos, 2006, and Stephens and Yang, 2014,

among others) and other countries (Oreopoulos, 2006) to instrument for years of schooling.

The argument for identification is that any law change in minimum school leaving age may

affect individual education attainment, but not individual well-being later in life, other than

through the education channel.

In this section we re-analyze the public-use U.S. Census dataset compiled by Stephens

and Yang (2014). In contrast to Stephens and Yang (2014), we explicitly model first-stage

heterogeneity in the effects of compulsory schooling laws. Our first stage regression interacts
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years of compulsory schooling with indicators for geographic regions and demographic groups.

The dataset include native-born individuals between 25 and 54 years of age across the 1960-

1980 U.S. Decennial Censuses. We use subscripts i, t, and s, to index individuals, cohorts,

and birth states, respectively. We consider the model

Logwageist = βEducist +Xistθg + uist

Educist =
G∑
g

ρg1(Sst = g)CLst +Xistγg + vist,

where Logwageist and Educist are the log wage and years of schooling of individual i, CLst

is the number of years of compulsory schooling that cohort t in state s faces at age 14,

and Sst is the group indicator which varies with birth cohort t and birth state s. The

exogenous regressor Xist includes survey year, birth state, census division by gender and

race, and census division by birth year fixed effects, and a fourth-order polynomial in age

when applicable (as we explain below).

We use four definitions of groups to characterize heterogeneity in the first-stage correla-

tion between the instrument and the endogenous regressor across groups: A) census region

by demographic control, B) census division by demographic control, C) census region by de-

mographic control by survey year, and D) census division by demographic control by survey

year. The demographic control is a categorical variable with four categories: White males,

White females, non-White males, and non-White females. Because non-White minorities

only consist of 11.75 percent of the data sample (10.88 percent black, 0.87 percent other

race), we pool non-White males and females together in a robustness check.

Besides allowing for first-stage heterogeneity, our simultaneous equation model is the

same as the one used in Table 1 of Stephens and Yang (2014), except that Stephens and

Yang (2014) uses three indicators (corresponding to being required to attend seven, eight,

and nine or more years of schooling) constructed from CLst as instruments while we use CLst

directly. We adopt this specification because our formal results consider only the scalar IV

case. In addition, our specification includes census division by year-of-birth fixed effects,

while Stephens and Yang (2014) include census region by year-of-birth fixed effects. We
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adopt this specification because our group definitions B) and D) use census division to form

groups. Recall that the method we propose allows for group-specific slopes for exogenous

regressors including intercepts. To ensure the same set of fixed effect controls are used across

regressions with all four group definitions, we upgrade the census region by birth year fixed

effects used in Stephens and Yang (2014) to census division by birth year fixed effects.

Geographic groups are natural in our context because of the heterogeneity in the en-

forcement of compulsory schooling laws and in school quality across the U.S. historically.

Gender and race are used because the literature has found that males are most responsive to

changes in the minimum school leaving age and often selects them for subsample analysis.

Besides males, Oreopoulos (2006) also selects non-White males for subsample analysis, while

Stephens and Yang (2014) selects White males. Survey years are used because of concerns in

survey accuracy in earlier years. When survey year is used to define groups, the fourth-order

polynomial in age is omitted from Xist as age is then perfectly collinear with birth year fixed

effects in groupwise regressions.

Figure 2 plots p-values of groupwise first-stage upper one-sided t-tests. The first panel

is for group definition C and the second panel is for group definition D. Both graphs show

strong evidence of a mixture between groups with strong and weak/irrelevant first-stages.

The graphs also show that some groups actually have a negative and statistically significant

first-stage relationship between years of compulsory schooling and years of actual schooling

(a p-value close to one for an upper one-sided t-test implies the rejection of the corresponding

lower one-sided t-test with high confidence). This could be the result of unrelated changes

in the distribution of the variables that happen at the same time as changes in compulsory

schooling, creating a threat to the validity of the exclusion restriction. By design, our

adaptive procedure only selects groups with a strong and positive first-stage, which is also

necessary for a LATE-type interpretation of 2SLS.
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Figure 2: Return to Compulsory Schooling: First-stage Signal by Groups
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Note: Dataset is from Stephens and Yang (2014). The endogenous regressor is years of schooling. The instrument is the
compulsory schooling year a birth cohort faces at age 14. All regressions also control state, survey year, subregion by birth
year, gender, and race fixed effects. The graphs plot the top ten groupwise µ̂g against their corresponding first-stage ρ̂g slope
estimates.

Table 5 reports regression results from various existing and proposed estimation methods.

Panels A1-D1 use four gender and race categories, White males, White females, non-White

males, and non-White females, as the demographic control. Panels A2-D2 use White males,

White females, and non-White as a robustness check. Columns (1)-(5) report estimates

from OLS, pooled 2SLS (2SLS-P), fully-interacted 2SLS (2SLS-INT), fully-interacted LIML

(LIML-INT), and interacted 2SLS with repeated split-sample lasso selection of strong groups

(2SLS-SSL), respectively. Columns (6)-(8) report estimation results from the proposed pro-

cedure, which is repeated split-sample 2SLS with adaptive selection of strong groups to

minimize asymptotic MSE. Column (6) uses the tuning sequence κ∗
G,N = (log(G))2 discussed

in Section 3. Columns (7) and (8) provide robustness checks of the proposed method using

2κ∗
G,N and κ∗

G,N/2, respectively. LIML results are not reported in panels A1-B1 and A2-B2

because both Stata and R fail to compute LIML with these model specifications due to mul-

ticollinearity across census division by birth year fixed effects, census year indicators, and

a fourth-order polynomial in age. LIML results are reported in panels C1-D1 and C2-D2,

which omit the fourth-order polynomial in age because of perfect collinearity with birth year

in groupwise regressions. The 2SLS estimator in column (5) uses only lasso-selected groups
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with a positive first-stage relationship.

Stephens and Yang (2014) find that allowing for region by year-of-birth fixed effects often

yields insignificant estimates of the return to compulsory schooling. This corresponds to the

insignificant pooled 2SLS estimates across all eight rows of Table 5. All estimators reported

in columns (3)-(8) are first-order equivalent under assumptions discussed in Section 3. When

higher-order asymptotic MSE terms are considered, 2SLS-INT has the smallest asymptotic

variance but could potentially suffer from nontrivial “many IV bias” as shown in simula-

tions. The proposed adaptive method, on the other hand, has better rates of higher-order

asymptotic bias. As is seen from the table, 2SLS-INT has a small advantage in standard

error relative to competing estimators. But it also has a larger point estimate, likely because

many-IV bias makes the 2SLS-INT estimate close the OLS estimate. Estimation results

for the proposed adaptive procedure in columns (6)-(8) are mostly statistically significant

but qualitatively smaller than both OLS in column (1) and 2SLS-INT in column (3). The

estimates are also robust to perturbations in the definition of the tuning parameter sequence

κG,N . In this application, 2SLS-SSL in column (5) gives similar point estimates and standard

errors as the proposed procedure, although the exact groups selected for 2SLS regression are

slightly different for different methods.
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Table 5: Return to Compulsory Schooling: Estimation Results

Full-sample Select-and-interact

OLS 2SLS-P 2SLS-INT LIML-INT 2SLS-SSL 2SLS-ADPT

(κ∗) (2κ∗) (κ∗/2)

(1) (2) (3) (4) (5) (6) (7) (8)
Panels A1-D1: four gender and race categories

Panel A1: groups defined by census region, gender, and race
0.070∗∗∗ -0.254 0.066∗∗∗ - 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.040∗∗∗

(0.000) (0.145) (0.011) - (0.015) (0.015) (0.015) (0.015)

Panel B1: groups defined by census division, gender, and race
0.070∗∗∗ -0.255 0.061∗∗∗ - 0.035∗∗∗ 0.036∗∗∗ 0.037∗∗∗ 0.036∗∗∗

(0.000) (0.145) (0.009) - (0.013) (0.013) (0.013) (0.013)

Panel C1: groups defined by census region, gender, race, and survey year
0.070∗∗∗ -0.266 0.069∗∗∗ 0.068∗∗∗ 0.011 0.025 0.026 0.025
(0.000) (0.170) (0.013) (0.015) (0.022) (0.021) (0.021) (0.021)

Panel D1: groups defined by census division, gender, race, and survey year
0.070∗∗∗ -0.266 0.065∗∗∗ 0.063∗∗∗ 0.036∗∗ 0.0036∗∗∗ 0.0037∗∗∗ 0.036∗∗

(0.000) (0.170) (0.009) (0.010) (0.015) (0.014) (0.014) (0.014)

Panels A2-D2: three gender and race categories
Panel A2: groups defined by census region, gender, and race
0.069∗∗∗ -0.243 0.063∗∗∗ - 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.000) (0.155) (0.011) - (0.015) (0.015) (0.015) (0.015)

Panel B2: groups defined by census division, gender, and race
0.069∗∗∗ -0.242 0.057∗∗∗ - 0.038∗∗∗ 0.037∗∗∗ 0.038∗∗∗ 0.037∗∗∗

(0.000) (0.154) (0.009) - (0.013) (0.012) (0.013) (0.013)

Panel C2: groups defined by census region, gender, race, and survey year
0.069∗∗∗ -0.257 0.066∗∗∗ 0.065∗∗∗ 0.011 0.024 0.021 0.024
(0.000) (0.174) (0.013) (0.015) (0.022) (0.021) (0.021) (0.021)

Panel D2: groups defined by census division, gender, race, and survey year
0.069∗∗∗ -0.257 0.063∗∗∗ 0.061∗∗∗ 0.036∗∗ 0.035∗∗ 0.036∗∗ 0.034∗∗

(0.000) (0.174) (0.009) (0.010) (0.015) (0.015) (0.015) (0.015)

Note: Dataset is from Stephens and Yang (2014). The endogenous regressor is years of schooling. The
instrument is the compulsory schooling year a birth cohort faces at age 14. All regressions also control state,
survey year, census division by birth year, and census division by gender and race fixed effects. Panels A1-
D1 uses four demographic groups: White males, White females, non-White males, and non-White females.
Panels A1-D1 uses three demographic groups as a robustness check: White males, White females, and the
non-Whites. Regressions in Panels A1-B1 and A2-B2 also include a fourth-order polynomial in age.

The graphs in Figure 3 plot the groups with highest values of µ̂g for each specification to

illustrate how the adaptive procedure selects groups in this empirical application. The top

two graphs correspond to Panel A1 and A2 in Table 5, which are the coarsest definition of

groups we’ve considered. The bottom two graphs correspond to Panel D1 and D2, which are

the finest definition of groups we’ve considered. Each dot in the graphs represents a group.
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The selection of two, one, or none of the subsamples by our adaptive 2SLS procedure is color-

coded. The results in the figure show that White males and White females in some divisions

in the Northeast, Midwest, and South have larger contributions to first-stage identification

than the rest. Non-white and groups in West divisions do not seem to contribute much to

identification.

Figure 3: Return to Compulsory Schooling: First-stage Signal by Groups
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“2000” denote Census survey year.
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5.2. Voter Turnout

Charles and Stephens (2013) uses county-level data to study the effect of local labor market

variables, such as wages or employment rates, on voter turnout in various U.S. elections,

including elections for governor, senator, US Congress, state House of Representatives, and

U.S. President. The identification strategy first differences out county-level fixed effects and

then accounts for potentially endogenous changes in local market activities using exogenous

shocks to oil/natural gas (oil, thereafter) and coal supply. This strategy follows the earlier

work by Black, Daniel, and Sanders (2002), who utilizes coal shocks to study the impact of

local economic conditions on participation in programs of disability payments, and Acemoglu,

Finkelstein, and Notowidigdo (2013) who utilizes oil shocks to study the effect of local income

on health spending. Recently, Charles, Li, and Stephens (2018) also uses oil shocks to study

the effect of local labor market conditions on disability take-up in federal programs.

The articles mentioned above measure energy shocks as changes in national employment

in energy production industries or global energy price, interacted with a measure of the

importance of energy industry in a county prior to the period of study. The identification

power of the first-stage instrument varies across states, and the authors in this literature often

restrict the sample to a pre-selected list of oil and/or coal states. For example, Charles and

Stephens (2013) defines coal states to be Kentucky, Ohio, Pennsylvania, and West Virginia,

following Black, Daniel, and Sanders (2002), and defines oil states to be Colorado, Kansas,

Mississippi, Montana, New Mexico, North Dakota, Oklahoma, Texas, Utah, and Wyoming,

those with at least 1 percent of annual state wages in the 1974 County Business Patterns

(CBP) in the oil industry. Charles, Li, and Stephens (2018) adds Louisiana to the list of oil

states. Acemoglu, Finkelstein, and Notowidigdo (2013) uses a sample of southern states.

In this section, we revisit Charles and Stephens (2013). We adopt the same model

specification as in Charles and Stephens (2013), except for a modification in the definition

of the instrumental variable, as explained below. Also, instead of using a pre-determined list

of oil and coal states, we select states for our sample using our proposed adaptive procedure.

Let subscript c denote county, s denote state, and t denote year (when an election takes
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place). We consider the model,

∆V otecst = β∆Economycst +Xcstθs + ucst

∆Economycst =
S∑

s=1

ρs∆EnergySupplyt × EnergySharecs +Xcstγs + vcst, (7)

where ∆V otecst is the change in voter turnout between two elections, ∆Economycst is local

market activity measured by change in log per capita earning or change in log employment

per adult, the instrument ∆EnergySupplyt ×EnergySharecs is the change in national em-

ployment level in oil and coal industries interacted with initial county-level employment share

of the mining industry documented in 1967 CBP, and Xcst is the list of exogenous regressors

in Charles and Stephens (2013), which includes county-year fixed-effects as well as changes in

time-varying county characteristics such as log total population, percentage of female adults,

percentage of Black adults, percentage of other race and percentage of population aged 30s,

40s, 50s, 60s, and 70s and up.

Our definition of EnergySharecs is different from that in Charles and Stephens (2013),

which uses two dummy variables that indicate large and median employment share in oil or

coal generated by 1974 CBP industry employment data. Because the sample spans from 1969

to 2000, using the 1974 CBP can potentially harm the validity of the exclusion restriction. On

the other hand, the 1967 CBP employment measurement (also used in Charles and Stephens

(2013) for robustness checks) is not for the oil and coal industries, but for the entire mining

industry. Hence, the 1967 CBP mining industry employment measure is expected to produce

a weaker first stage than the 1974 CBP, which refers specifically to the oil and coal industries.

Indeed, the use of the 1967 employment measure instead of the 1974 measure to construct

the instruments of the model in equation (7) generates non-significant pooled 2SLS results

for the second-stage coefficient, β, even after restricting the sample to the fourteen oil/coal

states defined in Charles and Stephens (2013). To preserve the exclusion restriction, in our

analysis we employ the 1967 CBP industry employment data and define EnergySharecs to

be employment share in the mining industry. As we show below, β becomes significant when

it is estimated with our adaptive procedure.
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Figure 4: Voter Turnout: p-values of Groupwise First-Stage t-Tests
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Note: Dataset is from Charles and Stephens (2013). The endogenous regressor is change in log county-level per capita earning
in the left column and change in log county-level employment per adult in the right column. The instrument is the change
in national employment in oil/gas and coal interacted with the share of the mining industry in local employment in 1967.
Other exogenous controls include county-year fixed-effects as well as changes in time-varying county characteristics such as
log total population, percentage female adults, percentage Black adults, percentage “other” race and percentage population
aged 30s, 40s, 50s, 60s, and 70s and up.
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Graphs in Figure 4 report p-values of groupwise one-sided first-stage t-tests. The graphs

in the left column are for Economycst equal to log per capita earning, while those in the

right column are for Economycst equal to log employment per adult. Row-wise, the graphs

report results for gubernatorial, senate, and presidential elections, respectively, as indicated

in the titles. All graphs show a mix between groups with strong and irrelevant instruments.

Groups with strong first-stage identification give close to zero p-values, while groups with

irrelevant instruments give near uniformly distributed p-values on the graphs.

Furthermore, although all four coal states defined in Charles and Stephens (2013) seem

to have a strong first stage, not all ten oil states have a strong first stage. Moreover, there

are states other than the fourteen oil/coal states in Charles and Stephens (2013) that have

a strong first-stage relationship between local labor market outcomes and energy supply

shocks. Therefore, Figure 4 provides ample motivation to apply our proposed methodology

of selecting strong first-stage signals with the target of minimizing the asymptotic MSE.
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Table 6: Effects of Local Economic Performance on Voter Turnout: Estimation Results

Full-sample Select-and-interact

OLS 2SLS-P 2SLS-INT LIML-INT 2SLS-SSL 2SLS-ADPT 2SLS-CS

(κ∗) (2κ∗) (κ∗/2)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panels A1-C1: log per- capita earning

Panel A1: Gubernatorial elections
-0.001 -0.024 -0.038∗∗ -0.044∗∗∗ -0.046∗ -0.056∗∗ -0.057∗∗ -0.050∗ -0.020
(0.002) (0.020) (0.015) (0.016) (0.023) (0.025) (0.028) (0.026) (0.021)

Panel B1: Senate elections
0.007∗∗∗ -0.017 -0.026∗∗ -0.032∗∗ -0.054∗∗∗ -0.039∗∗ -0.038∗∗ -0.038∗∗ -0.029
(0.002) (0.017) (0.013) (0.014) (0.020) (0.016) (0.017) (0.016) (0.018)

Panel C1: Presidential Elections
0.002 -0.018 -0.007 -0.009 -0.025 -0.108 -0.106 -0.104 -0.003
(0.001) (0.021) (0.015) (0.016) (0.030) (0.067) (0.067) (0.067) (0.024)

Panels A2-C2: log employment per adult
Panel A2: Gubernatorial Elections
0.008∗∗ -0.065 -0.105∗∗∗ -0.117∗∗∗ -0.189 -0.152∗∗∗ -0.148∗∗∗ -0.161∗∗∗ -0.045
(0.004) (0.054) (0.030) (0.032) (0.118) (0.045) (0.049) (0.043) (0.048)

Panel B2: Senate Elections
0.020∗∗∗ -0.049 -0.066∗∗ -0.085∗∗ -0.111∗∗∗ -0.118∗∗∗ -0.123∗∗∗ -0.140∗∗∗ -0.070
(0.004) (0.049) (0.029) (0.032) (0.038) (0.039) (0.039) (0.040) (0.043)

Panel C2: Presidential Elections
0.023∗∗∗ -0.050 -0.023 -0.036 -0.186 -0.166∗ -0.166∗ -0.194∗∗ -0.007
(0.003) (0.060) (0.036) (0.041) (0.142) (0.092) (0.092) (0.098) (0.055)

Note: Dataset is from Charles and Stephens (2013). The endogenous regressor is change in log county-level per capita
earning in Panel A and change in log county-level employment per adult in Panel B. The instrument is the change in
national employment in oil/gas and coal interacted with the share of the mining industry in local employment in 1967.
Other exogenous controls include county-year fixed-effects as well as changes in time-varying county characteristics such
as log total population, percentage female adults, percentage Black adults, percentage “other” race and percentage
population aged 30s, 40s, 50s, 60s, and 70s and up.

Columns (1)-(8) of Table 6 report regression results from the same estimation methods as

in Table 5. Column (9) reports results from pooled 2SLS using the fourteen pre-determined

oil and coal states defined in Charles and Stephens (2013). Full-sample pooled 2SLS and

pooled 2SLS with data from oil and coal states produces statistically insignificant results

across all six rows. This could be caused by the use of the 1967 crude measure of local

employment to construct the instrument. In contrast, all regressions in columns (3)-(8) utilize

the heterogeneity in first-stage model. Results in these columns are generally negative and

statistically significant for the gubernatorial and senate elections. This finding is qualitatively

the same as the results reported in Charles and Stephens (2013), who find that higher local
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wages and employment lower turnout in elections for Governor and Senator but have no

effect on presidential turnout.

All estimators reported in columns (3)-(8) are first-order equivalent under the assump-

tions discussed in Section 3. The fully-interacted 2SLS (2SLS-INT) has the smallest asymp-

totic variance, but could suffer from non-trivial “many IV bias”. The proposed adaptive

method (2SLS-ADPT) and the repeated split-sample interacted 2SLS lasso estimator (2SLS-

SSL) have larger higher order asymptotic variances compared to the fully-interacted 2SLS,

but also enjoy better rates in higher order asymptotic bias. The result in Table 6 are consis-

tent with the formal properties of the estimators. The 2SLS-INT in column (3) has smaller

standard errors than the split-sample adaptive estimators in columns (5)-(8). However, point

estimates in column (3) fall between the OLS estimates in column (1) and the split-sample

selective estimates in columns (5)-(8), providing evidence of “many IV bias” in the direction

of OLS. Similar to the first empirical application, the proposed adaptive procedure gives

results that are robust to perturbations in the tuning parameter sequence κG,N . The results

for 2SLS-SSL are similar to those of 2SLS-ADPT procedure in panels A1, B1, and B2, but

they appear to be less precise than the 2SLS-ADPT results in panels A2 and C2.

6. Conclusion

In this article, we study a linear simultaneous equation model with a scalar endogenous

regressor, an external instrument, and a heterogeneous first-stage relationship between the

endogenous regressor and the instrument that varies across groups. This is a natural set-up

in many empirical applications in economics. Under first-stage heterogeneity, pooled 2SLS

is inefficient. 2SLS using the interactions between the external instrument and the full set

of group dummies as IV suffers from “many IV bias”. We show that sample selection based

on the first-stage correlation coupled with pooled 2SLS, a strategy seen in some applied

studies, yields invalid inference. Sample selection followed by a interacted 2SLS preserves

first-order efficiency but may still have substantial higher-order asymptotic bias. Following

earlier work of Donald and Newey (2001) and others, we propose a data-driven procedure for

the selection of groups in the sample. Our procedure is designed to minimize the high-order
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MSE expansion of the second-stage estimator.

Although our set-up assumes a homogeneous second stage to facilitate the asymptotic

MSE comparison, our proposed estimator has a weighted average causal effect type of in-

terpretation when the second stage is heterogeneous. We show that, for the weights to be

positive and for the estimator to be invariant to groupwise rescalings of the instrument, it

is crucial to interact the external instrument as well as all exogenous controls with the full

set of group dummies.

Our adaptive procedure is akin to a version of the split sample lasso of Belloni, Chen,

Chernozhukov, and Hansen (2012) applied to the case when the first stage regressors are

interactions between an instrument and group indicators. Our allowance for a non-zero

proportion of weak instruments is similar to their approximate sparsity condition. When

the proportion of weak instruments goes to zero, our adaptive estimator is asymptotically

equivalent to the split-sample lasso estimator, because both methods consistently select

all groups with strong instruments in the first-stage. When weak instrument proportion

does not go to zero, both estimators are consistent and asymptotic normal. To the best

of our knowledge, there is no higher order analysis of the split-sample lasso estimator. In

simulations, we find that our proposed adaptive estimator behaves comparably and in some

DGPs better than the split-sample lasso selection estimator.

We apply our proposed methods to study (i) the return to compulsory schooling, and (ii)

the effect of local labor market conditions on voter turnout, following Stephens and Yang

(2014) and Charles and Stephens (2013), respectively. We show that taking into account

first-stage heterogeneity improves statistical precision in both applications. In contrast to the

results in Stephens and Yang (2014), our proposed procedure produces statistically significant

estimates of 3-4 percent for the effect of an additional year of schooling on wages, even after

controlling for demographic region by birth cohort fixed effects. In the second application,

efficiency gains obtained through our group selection procedure allows us to replicate the

main results of Charles and Stephens (2013) using an alternative sample with a weaker

instrument, but with higher plausibility of the exclusion restriction.
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Appendix A: Proofs of Auxiliary Lemmas

In the appendix, we replace cg,αFS
by cg and αFS by α for convenience in notations. We

will use ≲ to denote that an inequality holds up to a universal constant for all groups. For

instance, a random element Ag ≲ ng means that there exists a universal constant C < ∞

such that Ag/ng ≤ C for large enough ng, for all g = 1, ..., G. Also, let X̃g = [Zg Xg] be an

ng×(d+1) matrix. For all g = 1, ..., G, let Hg,1 =
√

W ′
gMX̃g

Wg/ng and Hg,2 =
√

Z ′
gZg/ng =√

Z̃ ′
gMXg Z̃g/ng.

Lemma A1. Suppose we use Bonforroni-type correction to simultaneously test H0 : ρg = 0

vs Ha : ρg > 0 for all g = 1, 2, . . . , G. The implied thresholding value δ falls inside the δ

range specified in Assumption 2 as long as G logG/N → 0 as G,N → ∞.

Proof. The threshold δ∗ corresponding to the Bonferroni-type multiple testing controlling

family-wise error rate α test would satisfy that 1−Φ(δ∗/σv) =
α
G
. Without loss of generality,

set σv = 1. Since 1 − Φ(x) ≤ ϕ(x)/x for all x > 0, we know that as long as 1 − α
G

> 0.5,

α
G
≤ ϕ(δ∗)/δ∗. For any δ∗ > 1, we further have that α

G
≤ ϕ(δ∗) ≤ exp(−(δ∗)2/2). Therefore,

δ∗ = O(
√
logG), which implies that δ∗ = o((N

G
)1/2) as long as G logG/N → 0 as G,N →

∞. Other multiple testing procedures are less stringent than the Bonferroni correction

(see a comparison in Genovese and Wasserman, 2002), hence the associated threshold δ

corresponding to those procedures will not be larger than the Bonferroni method.

Lemma A2. Under Assumption 1,

P

(
|H2

g,1 − σ2
v | >

σ2
v

2

)
≲

1

n2
g

, P

(
|H2

g,2 − kg| >
kg
2

)
≲

1

n2
g

.

Proof. Notice that H2
g,1 = W ′

gMX̃g
Wg/ng = v′gMX̃g

vg/ng = v′gvg/ng − v′gPX̃g
vg/ng, where

E[v′gPX̃g
vg|X̃g] = tr(PX̃g

)E[vgv
′
g|X̃g] = σ2

v(d+ 1). We know that for large enough n

P (|H2
g,1 − σ2

v | > σ2
v/2) ≤P (|v′gvg/ng − σ2

v |+ v′gPX̃g
vg/ng > σ2

v/2)

≤P (|v′gvg/ng − σ2
v | > σ2

v/4) + P (v′gPX̃g
vg/ng > σ2

v/4)

≤P (|v′gvg/ng − σ2
v | > σ2

v/4) + P (v′gPX̃g
vg/ng − σ2

v(d+ 1)/ng > σ2
v/8)

≤E[(v′gvg/ng − σ2
v)

4]/(σ2
v/4)

4 + E[(v′gPX̃g
vg)

2]/n2
g/(σ

2
v/8))

2,
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where

E
[(
v′gvg/ng − σ2

v

)4]
=
[
V
(
v′gvg/ng

)]2
+ V

[(
v′gvg/ng − σ2

v

)2]
≲ 1/n2

g,

uniformly over all g due to the moment condition of the error term vig in Assumption 1. To

bound E[(v′gPX̃g
vg)

2] uniformly over all g, let Pij denote the (i, j)-th element of PX̃g
and notice

that
∑ng

i=1 Pii = tr(PX̃g
) = d + 1, 0 ≤ Pii ≤ 1. It follows that 0 ≤

∑
i ̸=j PiiPjj,

∑
i(Pii)

2 ≤

(
∑

i Pii)
2 = (d + 1)2, and 0 ≤

∑
i ̸=j PijPij ≤

∑
i,j P

2
ij = tr(P ′

X̃g
PX̃g

) = d + 1. Then by the

moment condition of the error term vig in Assumption 1, we know

E[(v′gPX̃g
vg)

2|Xg] =
∑
i,j,k,l

E[vigPijvjgvkgPklvlg|Xg]

=
∑
i

P 2
iiE(v4ig|Xg) +

∑
i ̸=j

PiiPjjE(v2igv
2
jg|Xg) +

∑
i ̸=j

(P 2
ij + PijPji)E(v2igv

2
jg|Xg)

is bounded by a universal constant across all groups.

The second inequality for H2
g,2 = Z̃ ′

gMXg Z̃g/ng = η′gMXgηg/ng could be proven with the

same arguments as above. We omit the details.

Lemma A3. Under Assumption 1 and provided that δ ≤ Cδ(
N
G
)1/2 with Cδ < ρ

√
kc/2,

sup
δ≤Cδ(

N
G
)1/2

P (µ̂g ≤ δ) ≲
1

n2
g

.

Proof. We only need to show that the above rate condition holds for all g ∈ G+,s as the results

for other groups follow from that of the strong group. Use supδ in short for supδ≤Cδ(
N
G
)1/2 .

Since Cδ < ρ
√

kc/2, then there exists a small positive constant η ∈ (0, 1) such that Cδ ≤
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ρ
√
kc/2(1− η). Given that η, we know

sup
δ

P (µ̂g ≤ δ) ≤ sup
δ

P
(
δ >

√
1− η · µg

)
+ sup

δ
P
(
µ̂g ≤

√
1− η · µg

)
≤ sup

δ
P
(√

Z ′
gZg < δ/ρg/

√
1− η

)
+ P

(
Z ′

gvg/
√

Z ′
gZg ≤ (

√
1− η − 1) · µg

)
≤ sup

δ
P
(√

Z ′
gZg <

√
(1− η)kc/2 ·

√
N/G

)
+ P

(
Z ′

gvg/
√

Z ′
gZg ≤ (

√
1− η − 1)ρg

√
3

2
kgng

)
+ P (Z ′

gZg/ng >
3

2
kg)

≤P
(
H2

g,2 < (1− η)kg
)
+ P

(
v′gPZgvg/ng ≥

3

2
(
√
1− η − 1)2ρ2k

)
+ P

(
H2

g,2 >
3

2
kg

)
≲

1

n2
g

.

The last line follows since, with similar arguments as those in Lemma A2, one can show

that P
(
|H2

g,2 − kg| > η · kg
)
≲ 1

n2
g
and P

(
v′gPZgvg/ng ≥ C

)
≲ 1

n2
g
for any positive η and C,

respectively. The lemma is then proven.

Lemma A4. Under Assumptions 1 and 2, for any non-negative integer k, as G,N → ∞,

1. sup
δ≤Cδ(

N
G
)1/2

|(δ − µg)/σv|kϕ((δ − µg)/σv) < ∞ for all g;

2. E
[
|(δ − µg)/σv|kϕ((δ − µg)/σv)

]
≲ 1

n2
g
and E

[
Φ((δ − µg)/σv)

]
≲ 1

n2
g
for all g ∈ G+,s;

3. sup
δ≤Cδ(

N
G
)1/2

∑
g∈G+,w

µh
g |(δ − µg)/σv|kϕ((δ − µg)/σv)/N = Op(G/N),

sup
δ≤Cδ(

N
G
)1/2

∑
g∈G+,w

µh
gΦ((δ − µg)/σv)/N = Op(G/N) for h = 1, 2;

4. sup
δ≤Cδ(

N
G
)1/2

∑
g∈G+,s

µg|(δ − µg)/σv|kϕ((δ − µg)/σv)/N = Op(G
2/N2) = op(G/N),

sup
δ≤Cδ(

N
G
)1/2

∑
g∈G+,s

µgΦ((δ − µg)/σv)/N = Op(G
2/N2) = op(G/N),

sup
δ≤Cδ(

N
G
)1/2

∑
g∈G+,s

µ2
g|(δ − µg)/σv|kϕ((δ − µg)/σv)/N = Op((G/N)3/2) = op(G/N) and

sup
δ≤Cδ(

N
G
)1/2

∑
g∈G+,s

µ2
gΦ((δ − µg)/σv)/N = Op((G/N)3/2) = op(G/N).

Proof. In this proof, supδ is used in short for supδ≤Cδ(
N
G
)1/2 . For the first statement, notice

that the exponential function has the property that for any x, l > 0, ex ≥ 1 + xl/l!. That is,
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e−x2 ≤ l!/x2l. Therefore,

|(δ − µg)/σv|kϕ((δ − µg)/σv) ≤ 1/
√
2π · |(δ − µg)/σv|k · (k/2)!/(|(δ − µg)/σv|)k = (k/2)!/

√
2π,

and hence the first statement holds.

For the second statement, notice that for any non-negative integer k, we have

sup
δ

E
[
|(δ − µg)/σv|ke−((δ−µg)/σv)2

]
≤ sup

δ
E
[
ek·(|δ−µg |/σv−1)−((δ−µg)/σv)2

]
= ek

2/4−k sup
δ

E
[
e−(|δ−µg |/σv−k/2)2

]
≤ ek

2/4−k sup
δ

ζg + ek
2/4−k sup

δ
P (e−(|δ−µg |/σv−k/2)2 > ζg)

≤ek
2/4−kζg + ek

2/4−k sup
δ

P (e−(1−
√
1−η)2µ2

g/σ
2
v/2 > ζg) + ek

2/4−k sup
δ

P
(
δ ≥

√
1− η · µg

)
,

where the last inequality holds for large enough ng as both k and η are fixed. Set ζg =

e−ngkg(1−
√
1−η)2ρ2g/σ

2
v/8, we know that ζg ≲ 1

n2
g
, and P (e−(1−

√
1−η)2µ2

g/σ
2
v/2 > ζg) = P (Z ′

gZg <

kgng/4) ≲ 1
n2
g
. The first inequality in the second statement is then proven as supδ P

(
δ ≥

√
1− η · µg

)
≲ 1

n2
g
is already shown at the end of the proof for Lemma A3.

Denote Φ((δ − µg)/σv) by Φg,δ for simplicity. For the second inequality in the second

statement of the lemma, notice that

sup
δ

E
[
Φg,δ

]
= sup

δ

{
E
[
Φg,δ1

(
δ <

√
1− ηµg

)]
+ E

[
Φg,δ1

(
δ ≥

√
1− ηµg

)]}
≤E
[
ϕ
((1−√

1− η)µg

σv

)
/
(1−

√
1− η)µg

σv

]
+ sup

δ
P (δ ≥

√
1− η · µg),

where the inequality holds as Φ(−d) ≤ ϕ(d)/d for all d > 0. Following the same arguments as

in proving the first inequality of the second statement, E
[
ϕ
(

(1−
√
1−η)µg

σv

)
/ (1−

√
1−η)µg

σv

]
≲ 1

n2
g
.

Following the proof of Lemma A3, sup
δ
P
(
δ ≥

√
1− η · µg

)
≲ 1

n2
g
.

The third statement of the lemma is apparent given the first statement and the fact

that
∑

g∈G+,w
µ2
g/N ≤ ρ̄2 · 1

G+,w

∑
g∈G+,w

Z ′
gZg/ng · G+,w

N
= Op(G/N), and

∑
g∈G+,w

µg/N ≤

ρ̄ · 1
G+,w

∑
g∈G+,w

√
Z ′

gZg/ng · G+,w

N
= Op(G/N), where all the convergence results hold by

LLN for inid sequences.

Denote ϕ((δ − µg)/σv) by ϕg,δ for simplicity. To show the first inequality of the last

statement when k = 0, we notice that

sup
δ

E[µgϕg,δ] ≤ sup
δ

√
E[µ2

gϕg,δ]
√

E[ϕg,δ] ≤ ρ̄E[(Z ′
gZg)

2]1/4 sup
δ

E[ϕ2
g,δ]

1/4 sup
δ

E[ϕg,δ]
1/2 ≲ 1/ng
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where follows the same arguments as in proving the second statement of the lemma one can

show that supδ E[ϕ2
g,δ] ≲ 1/n2

g. Similarly, supδ E[µ2
gϕg,δ] ≲ 1/

√
ng, supδ E[µgΦg,δ] ≲ 1/ng,

and supδ E[µ2
gΦg,δ] ≲ 1/

√
ng. The last statement is therefore proven.

Lemma A5. Under Assumption 1, we have that as G,N → ∞, if the additional rate

condition G logG/N → 0 holds, then (i) N/G
min

g∈G+,s
µ2
g
= Op(1); (ii) if in addition Z̃ is assumed

to be sub-exponential, we have max
g∈G+,w

µ2
g = Op(1).

Proof. To show (ii), we first note that

max
g∈G+,w

µ2
g ≤ max

g∈G+,w

agZ
′
gZg/ng ≤ ρ̄ max

g∈G+,w

Z ′
gZg/ng.

Since Z ′
gZg ≤ Z̃ ′

gZ̃g, then it suffices to prove that max
g∈G+,w

1
ng

∑
i Z̃

2
ig = Op(1) under the con-

ditions stated. Under the assumption that Z̃ig is sub exponential, there exists some λ > 0

such that k̃g = E[exp(λZ̃2
ig)] exists for all g ∈ G+,w and max

g∈G+,w

k̃g < ∞. Note that if Z̃ig

is a bounded random variable, which is commonly the case for an instrument (i.e. binary

indicator or proportions), then the exponential moment existence condition is satisfied.

Under the stated condition, for any ϵ > 0

P

(
max
g∈G+,w

Z̃ ′
gZ̃g/ng > ϵ

)
≤
∑

g∈G+,w

P

(∑
i

Z̃2
ig > ngϵ

)
=
∑

g∈G+,w

P

(
exp(λ

∑
i

Z̃2
ig) > exp(λngϵ)

)

≤
∑

g∈G+,w

E[exp(λ
∑

i Z̃
2
ig)]

exp(λngϵ)
=
∑

g∈G+,w

k̃
ng
g

exp(λngϵ)

=
∑

g∈G+,w

exp
(
−ng(λϵ− log k̃g)

)
.

Now pick λϵ > maxg∈G+,w log k̃g, which is finite, then we can find a constant τ > 0 such that

P

(
max
g∈G+,w

Z̃ ′
gZ̃g/ng > ϵ

)
≤ G+,w exp(−N

G
τ) ≤ G exp(−N

G
τ)

= exp

(
N

G

(G logG

N
− τ
))

→ 0

provided G logG/N → 0.
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To show (i), we note that we have Zig ≡ Z̃ig −Xigλ̂ where λ̂ is the OLS estimator for the

coefficient λ in the linear model Z̃g = Xgλ+ ηg. For all g ∈ G+,s, we have that

µ2
g =

ng∑
i=1

ρ2gZ
2
ig = ρ2g

ng∑
i=1

(
Z̃ig −X ′

igλ+X ′
igλ−X ′

igλ̂
)2

≥ ρ2g

ng∑
i=1

η2ig + 2

ng∑
i=1

ηigX
′
ig(λ− λ̂) ≥ ρ̄2

ng∑
i=1

η2ig + 2

ng∑
i=1

ηigX
′
ig(λ− λ̂).

Then for any C,

P

(
min
g∈G+,s

µ2
g ≤ C

)
≤ P

(
min
g∈G+,s

(
ρ̄2

ng∑
i=1

η2ig + 2

ng∑
i=1

ηigX
′
ig(λ− λ̂)

)
≤ C

)
≤ P

(
min
g∈G+,s

ρ̄2/2

ng∑
i=1

η2ig ≤ C

)
.

The last inequality holds since
∑ng

i=1 η
2
ig = Op(ng) and

∑ng

i=1 ηigX
′
ig(λ − λ̂) = Op(

√
ng ·

1/
√
ng) = Op(1).

Lastly, using the one-sided Bernstein inequality positive random variables, we know that

P
( ng∑

i=1

(
η2ig − kg

)
≤ −ngkg/2

)
≤ exp

(
− ng(kg/2)

2

2E[η4ig]

)
.

Under assumption 1, we know there exists some ∆̄Z such that E[η4ig] ≤ ∆̄Z for all g =

1, 2, ..., G. Then

P
(∑

i

η2ig ≤ k/2 · cN
G

)
≤ P

( ng∑
i=1

(
η2ig − kg

)
≤ −ngkg/2

)
≤ exp

(
−

ck2N
G

8∆̄z

)
.

Therefore,

P
(
min
g∈G+,s

µ2
g ≤

1

4
ρ̄2ck

N

G

)
≤
∑

g∈G+,s

P
(∑

i

η2ig ≤ k/2 · cN
G

)
≤ G exp

(
−

ck2N
G

8∆̄z

)
= exp

(N
G

(G logG

N
− ck2

8∆̄z

))
→ 0.

The Lemma is proven.
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Appendix B: Proof of Theorems and Corollaries

Proof of Some Limiting Results Stated in Section 2.2:

Asymptotic Results of β̂pool and β̂int in Section 2.2.1:

Proof. First, we note that the pooled estimator β̂pool = (Z ′W )−1Z ′Y defined in Section 2.2.1

using the groupwise transformed instrument Z is equivalent to a 2SLS estimator of β using

the original excluded variable Z̃ as the instrument in a model that also controls for group-

specific X in both stages. This is because[(
(W DX)

′P(Z̃ DX)(W DX)
)−1

(W DX)
′P(Z̃ DX)Y

]
1

=
[(
(W DX)

′P(Z DX)(W DX)
)−1

(W DX)
′P(Z DX)Y

]
1

= (Z ′W )−1Z ′Y = β̂pool,

where [.]1 denotes the first element of a vector.

Similarly, the fully-interacted 2SLS estimator defined in Section 2.2.1 is equivalent to a

2SLS estimator of β in a model that uses group-specific Z̃ as the instrument and group-

specific X as the exogenous control in both stages.

β̂int =

[(
(W DX)

′P(D̃ DX)(W Dℓ)
)−1

(W Dℓ)
′P(D̃ DX)Y

]
1

=
[(
(W DX)

′P(D DX)(W DX)
)−1

(W DX)
′P(D DX)Y

]
1

= (W ′PDW )
−1

W ′PDY.

Next, we show the limiting results of the two estimators stated in Section 2.2.1.

The pooled estimator β̂pool = (Z ′W )−1Z ′Y = β + (Z ′W )−1Z ′u. The estimator is consis-

tent because by the LLN for independent and not identically distributed sequences and the
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rate condition G/N → 0,

Z ′W/N =
G∑

g=1

Z ′
g(Zgρg +Xgωg + vg)/N =

G∑
g=1

ρgZ
′
gZg/ng · ng/N +

G∑
g=1

Z ′
gvg/N

=
G∑

g=1

ρgZ̃
′
gMXg Z̃g/ng · ng/N + op(1) =

G∑
g=1

ρgη
′
gηg/ng · ng/N −

G∑
g=1

ρgη
′
gPXgηg/N + op(1)

=
G∑

g=1

ρgE[η′gηg/ng]pg + op(1) =
G∑

g=1

ρgkgpg + op(1);

Z ′u/N =
G∑

g=1

Z ′
gug/N = op(1).

In addition, since

G∑
g=1

V [Z ′
gug/

√
ng ·

√
ng/N ] =

G∑
g=1

E[Z ′
gugu

′
gZg/ng]pg = σ2

u

G∑
g=1

kgpg + o(1)

and that the Lyapunov’s condition
∑G

g=1 E[|Z ′
gug/

√
ng|2+δ · (ng/N)1+δ/2] → 0 holds under

Assumption 1, we have that

Z ′u/
√
N/

√√√√σ2
u

G∑
g=1

kgpg ⇒ N(0, 1)

by the Lindeberg-Feller CLT, which further implies that

√
N
(
β̂pool − β

)
/sp ⇒ N(0, 1).

where sp = σu

√∑G
g=1 kgpg/

(∑G
g=1 ρgkgpg

)2
.

The fully-interacted estimator β̂int = β+(W ′PDW )−1W ′PDu. It is is consistent because
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by the LLN and the rate condition G2/N → 0,

W ′PDW/N =
G∑

g=1

(W ′
gZg/ng)

2/(Z ′
gZg/ng) · ng/N =

G∑
g=1

(ρgZ
′
gZg/ng + v′gZg/ng)

2/(Z ′
gZg/ng) · pg

=
G∑

g=1

ρ2gZ
′
gZg/ng · pg + op(1) =

G∑
g=1

ρ2gkgpg + op(1)

W ′PDu/N =
G∑

g=1

(W ′
gZg/ng)(W

′
gug/ng)/(Z

′
gZg/ng) · ng/N =

G∑
g=1

ρ2gZ
′
gug/ng · pg + op(1) = op(1)

W ′PDu/
√
N =

G∑
g=1

(W ′
gZg/ng)(Z

′
gug/

√
ng)/(Z

′
gZg/ng) ·

√
ng/N

=
G∑

g=1

ρg(Z
′
gug/

√
ng) ·

√
ng/N + op(1)

Therefore, by the Lindeberg-Feller CLT, we have that

√
N
(
β̂int − β

)
/sint ⇒ N(0, 1).

where sint = σu/
√∑G

g=1 ρ
2
gkgpg.

By the Cauchy-Schwarz inequality, sint ≤ sp, since
(∑G

g=1 ρg
√
kgpg ·

√
kgpg

)2
≤
(∑G

g=1 ρ
2
gkgpg

)
·(∑G

g=1 kgpg

)
. The equality holds if and only if ρg = ρ for all g = 1, 2, . . . , G.

Limiting Results of β̂pool and β̂int in Section 2.2.2 under Causal Effect Heterogeneity:

Proof. Recall that in Section 2.2.2 the causal effect parameter β is replaced by βg, and only

the intercept is included in X (i.e. X = ℓ, which is a vector of 1); |βg| ≤ β̄ < ∞ for all
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g = 1, ..., G. Then by LLN for independent and not identically distributed sequences,

β̂pool =

(
G∑

g=1

(
ρgZ

′
gZg/ng + Z ′

gvg/ng

)
pg

)−1( G∑
g=1

(
βgZ

′
gWg/ng + θgZ

′
gℓg/ng + Z ′

gug/ng

)
pg

)

=

(
G∑

g=1

ρgZ
′
gZg/ng · pg + op(1)

)−1( G∑
g=1

βgρgZ
′
gZg/ng · pg + op(1)

)

=
G∑

g=1

ρgVgpg∑G
g=1 ρgVgpg

βg + op(1),

β̂int =

(
G∑

g=1

(W ′
gZg/ng)

2/(Z ′
gZg/ng) · pg

)−1 G∑
g=1

(W ′
gZg/ng)(Z

′
gYg/ng)/(Z

′
gZg/ng) · pg

=

(
G∑

g=1

ρ2gZ
′
gZg/ng · pg + op(1)

)−1( G∑
g=1

βgρ
2
gZ

′
gZg/ng · pg + op(1)

)

=
G∑

g=1

ρ2gVgpg∑G
g=1 ρ

2
gVgpg

βg + op(1).

with Vg = V [Z̃ig].

Limiting Results of β̂pool2 and β̂int2 in footnote 3 in Section 2.2.2 :

Proof. Recall that footnote 3 defines ag = E[Z̃2
ig] and bg = E[Z̃ig]. If a single intercept is

used in the regression model, the pooled estimator β̂pool2 =
(
Z̃ ′MℓW

)−1

Z̃ ′MℓY . By LLN

for independent and not identically distributed sequences,

β̂pool2 =
(
Z̃′W/N − Z̃′ℓ/N ·W ′ℓ/N

)−1 (
Z̃′Y/N − Z̃′ℓ/N · Y ′ℓ/N

)
=

 G∑
g=1

ρgpg

ag − bg

G∑
g=1

bgpg

−1  G∑
g=1

βgpg

γ

bg −
G∑

g=1

bgpg

+ ρg

ag − bg

G∑
g=1

bgpg

+ op(1).

The above result holds because

Z̃ ′W/N =
∑
g

Z̃ ′
g(ρgZ̃g + γℓg + vg)/N =

∑
g

ρgZ̃
′
gZ̃g/N + γZ̃ ′ℓ/N + op(1),

Z̃ ′ℓ/N ·W ′ℓ/N = Z̃ ′ℓ/N ·
∑
g

(ρgZ̃g + γℓg + vg)
′ℓg/N

= Z̃ ′ℓ/N ·
∑
g

ρgZ̃
′
gℓg/N + γZ̃ ′ℓ/N + op(1),
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implying that the denominator

Z̃ ′W/N − Z̃ ′ℓ/N ·W ′ℓ/N =
∑
g

ρgZ̃
′
gZ̃g/N −

∑
g

Z̃ ′
gℓg/N ·

∑
g

ρgZ̃
′
gℓg/N + op(1)

=
∑
g

(
ρgag − ρgbg ·

∑
g

bgpg

)
pg + op(1) ≡

∑
g

DENg + op(1).

Meanwhile,

Z̃ ′Y/N =
∑
g

Z̃ ′
g(βgρgZ̃g + βgγℓg + θℓg + βgug + vg)/N

=
∑
g

βgρgZ̃
′
gZ̃g/N + γ

∑
g

βgZ̃
′
gℓg/N + θZ̃ ′ℓ/N + op(1),

Z̃ ′ℓ/N · Y ′ℓ/N = Z̃ ′ℓ/N ·
∑
g

(βgρgZ̃g + βgγℓg + θℓg + βgug + vg)
′ℓg/N

= Z̃ ′ℓ/N ·
∑
g

βgρgZ̃
′
gℓg/N + Z̃ ′ℓ/N · γ

∑
g

βgng/N + θZ̃ ′ℓ/N + op(1),

implying that the numerator

Z̃ ′Y/N − Z̃ ′ℓ/N · Y ′ℓ/N =
∑
g

βgρgZ̃
′
gZ̃g/N −

∑
g

Z̃ ′
gℓg/N ·

∑
g

βgρgZ̃
′
gℓg/N

+ γ

(∑
g

βgZ̃
′
gℓg/N − Z̃ ′ℓ/N ·

∑
g

βgng/N

)
+ op(1)

=
∑
g

βg

(
ρgag − ρgbg ·

∑
g

bgpg + γ(bg −
∑
g

bgpg)

)
pg + op(1) ≡

∑
g

βgNUMg + op(1).

The weight of group g in the probability limit is therefore NUMg/
∑

g DENg. Note

that the weights sum up to one, or
∑

g

(
NUMg/

∑
g DENg

)
= 1 although the first-stage

intercept γ enters the weighting formula.

However, the weight NUMg/
∑

g DENg for group g could be negative. This could be

seen in a simple example where γ = 0, G = 2, and p1 = p2 = 1/2. Then the sign of the

weights for group g = 1 depends on the sign of NUM1/(p1ρ1) = a1 − b1(b1 + b2)/2. Let

a1 = V1 + b21 where V1 is the variance of Z̃1, then the sign follows from V1 + b1(b1 − b2)/2. So

if b2 is a lot larger than b1, the weight for group g = 1, or NUM1/(DEN1 +DEN2) could

be negative, in which case the weight for group g = 2, or NUM2/(DEN1 +DEN2), would

be greater than one.
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Similarly, if a single intercept is used in the fully-interacted 2SLS regression, the estimator

is defined as β̂int2 =

[(
(W ℓ)′P(D̃ X)(W ℓ)

)−1

(W ℓ)′P(D̃ ℓ)Y

]
1

=
(
W ′PMℓD̃

W
)−1

W ′PMℓD̃
Y .

Let (m1 m2 ... mG) = W ′MℓD̃
(
D̃′MℓD̃

)−1

, we have that

β̂int2 =

 G∑
g=1

mgZ̃
′
gWg/N −

G∑
g=1

mgZ̃
′
gℓg/N ·W ′ℓ/N

−1  G∑
g=1

mgZ̃
′
gYg/N −

G∑
g=1

mgZ̃
′
gℓg/N · Y ′ℓ/N


=

 G∑
g=1

ρgpg

mgag − bg

G∑
g=1

mgbgpg

−1
G∑

g=1

βgpg

γ

mgbg −
G∑

g=1

mgbgpg

+ ρg

mgag − bg

G∑
g=1

mgbgpg

+ op(1).

Proof of Theorem 1

Proof. We only need to prove the theorem for the case where G goes to infinity together

with N . In the proof, we will repeatedly use Lemmas shown in Appendix A, as well as the

property that the truncated mean monotonically increases with the truncation cutoff since

∂
∂y
E[X|X > y] = fX(y)

1−FX(y)
(E[X|X > y] − y) ≥ 0. Further, although Assumption 1 assumes

both homoskedasticity and a one-sided first-stage relationship, we will prove this theorem

under the more general setting where error term variance is allowed to vary across groups

and instruments are allowed to have negative first-stage effects in some groups, denoted by

G− = {g : ρg < 0}. Assume without loss of generality that σu,v > 0. Let σ2
g,v = E[v2ig] with

0 < σv ≤ σg,v ≤ σ̄v < ∞ for all g = 1, ..., G. Let G−=|G−| = G−G0 −G+,s −G+,w.

Since

√
N/G · E

[
G∑

g=1

igZ
′
gug/NαFS

· 1 (NαFS
> 0)

]
≥ 1√

NG
E

[
G∑

g=1

igZ
′
gug

]
,

and that ug and vg are non-trivially positively correlated, to prove the theorem, it suffices

to show that there exists some positive constant a∗ such that

1

G
E

[
G∑

g=1

igZ
′
gvg/

√
ng

]
≥ a∗ + o(1).
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Decomposing the left hand side, we have that

1

G
E

[
G∑

g=1

igZ
′
gvg/

√
ng

]
=

1

G
E

 ∑
g∈G+,s

igZ
′
gvg/

√
ng

+
1

G
E

[∑
g∈G0

igZ
′
gvg/

√
ng

]

+
1

G
E

 ∑
g∈G+,w

igZ
′
gvg/

√
ng

+
1

G
E

∑
g∈G−

igZ
′
gvg/

√
ng


=A+B +D + E.

All four terms are non-negative as E
[
Z′
gvg√
ng

∣∣∣Zgvg√
ng

> cgHg,1Hg,2 −
√
ngH

2
g,2ρg

]
P [tg > cg]

≥ E
[
Z′
gvg√
ng

]
P [tg > cg] = 0. Next, we would like to show that terms B and D are bounded

away from zero under the conditions stated in Assumption 1.

Let δc = infg cg and ∆c = supg cg; δc > 0 and ∆c < ∞ for any 0 < α < 1/2.

Let Ig =
{
|H2

g,1 − σ2
g,v| ≤ σ2

g,v/2; |H2
g,2 − kg| ≤ kg/2

}
. Applying Lemma A2, we have that

1
G

∑
g P (Icg) = O(G2/N2) = o(1). Therefore,

B =
1

G

∑
g∈G0

E

[
Z ′

gvg√
ng

1(tg > cg)

]
=

1

G

∑
g∈G0

E

[
Z ′

gvg√
ng

1

(
Z ′

gvg√
ng

> cgHg,1Hg,2

)]
≥ 1

G

∑
g∈G0

cgE

[
Hg,1Hg,21

(
Z ′

gvg√
ng

> cgHg,1Hg,2

)]
≥ 1

G

∑
g∈G0

cgE

[
Hg,1Hg,21

(
Ig,

Z ′
gvg√
ng

> cgHg,1Hg,2

)]
≥ 1

G

∑
g∈G0

cgE

[
1

2
σg,v

√
kg1

(
Ig,

Z ′
gvg√
ng

> cg
3

2
σg,v

√
kg

)]

≥ 1

2
σv

√
kδc

1

G

∑
g∈G0

(
P

[
Z ′

gvg√
ngkgσg,v

>
3

2
cg

]
− P [Icg]

)

=
1

2
σv

√
kδc

1

G

∑
g∈G0

P

[
Z ′

gvg√
ngkgσg,v

>
3

2
cg

]
+ o(1).
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For any g ∈ G0,

P

[
Z ′

gvg√
ngkgσg,v

>
3

2
cg

]
= 1− P

[
e′gvg√
ngkgσg,v

≤ 3

2
cg +

e′gPXgvg√
ngkgσg,v

]

≥1− P

[
e′gvg√
ngkgσg,v

≤ 3

2
cg +

e′gPXgvg√
ngkgσg,v

,
e′gPXgvg√
ngkgσg,v

≤ cg/2

]
− P

[
e′gPXgvg√
ngkgσg,v

> cg/2

]

≥1− P

[
e′gvg√
ngkgσg,v

≤ 2cg

]
− P

[
|e′gPXgvg| >

√
ngkgσg,vcg/2

]
.

By regularity conditions in Assumption 1, we apply the Berry-Esseen theorem to the first

probability term and the Markov and Cauchy-Schwarz inequalities to the second probability

term, then we have

B ≥G0

G
· 1
2
σv

√
kδcΦ(−2∆c) + o(1).

Similarly, for term D, we have

D =
1

G

∑
g∈G+,w

E

[
Z ′

gvg√
ng

∣∣Z ′
gvg√
ng

> cgHg,1Hg,2 − agH
2
g,2

]
P

[
Z ′

gvg√
ng

> cgHg,1Hg,2 − agH
2
g,2

]

≥ 1

G

∑
g∈G+,w

E

[
Z ′

gvg√
ng

∣∣∣Z ′
gvg√
ng

> −agH
2
g,2

]
P

[
Z ′

gvg√
ng

> cgHg,1Hg,2

]

≥ 1

G

∑
g∈G+,w

E

[
Z ′

gvg√
ng

1

(
Z ′

gvg√
ng

> −agH
2
g,2

)]
P

[
Z ′

gvg√
ng

> cgHg,1Hg,2

]

=
1

G

∑
g∈G+,w

E

[
−
Z ′

gvg√
ng

1

(
Z ′

gvg√
ng

≤ −agH
2
g,2

)]
P

[
Z ′

gvg√
ng

> cgHg,1Hg,2

]

≥ 1

G

∑
g∈G+,w

E

[
agH

2
g,21

(
Z ′

gvg√
ng

≤ −agH
2
g,2

)
1(Ig)

]
P

[
Z ′

gvg√
ng

> cgHg,1Hg,2, Ig

]

≥
ρk

2

1

G

∑
g∈G+,w

(
P

[
Z ′

gvg√
ng

≤ − ρ̄3kg
2

]
− P (Icg)

)(
P

[
Z ′

gvg√
ng

>
cg3σg,v

√
kg

2

]
− P (Icg)

)

≥ G+,w

G
·
ρk

2
Φ

(
−2

ρ̄
√
k̄

σv

)
Φ (−2∆c) + o(1).

Under Assumption 1, the term (G0+G+,w)/G = 1−G+,s/G is bounded away from zero.

Therefore we have that both B and D terms lower bounded by a non-vanishing quantity.

Putting together the results stated above, the theorem is proven.
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Proof of Lemma 1

Proof. For the select-and-interact estimator, we have

√
N(β̂sel,int(δ)− β) =

(
G∑

g=1

ρ̂gZ
′
gWg1(µ̂g > δ)/N

)−1 G∑
g=1

ρ̂gZ
′
gug1(µ̂g > δ)/

√
N.

First, consider

G∑
g=1

ρ̂gZ
′
gWg1(µ̂g > δ)/N =

G∑
g=1

(
ρg + (Z ′

gZg)
−1Z ′

gvg
) (

ρgZ
′
gZg + Z ′

gvg
)
1(µ̂g > δ)/N

=
1

N

∑
g∈G+,w

ρ2gZ
′
gZg1(µ̂g > δ) +

1

N

∑
g∈G+,s

ρ2gZ
′
gZg1(µ̂g > δ)

+ 2
1

N

G∑
g=1

ρgZ
′
gvg1(µ̂g > δ) +

1

N

G∑
g=1

(Z ′
gZg)

−1(Z ′
gvg)

21(µ̂g > δ)

=AI + AII +B + C.

First, AI , B, and C are op(1) by Markov’s inequliaty and the fact that

E [|AI |] ≤
1

N

∑
g∈G+,w

a2gE[Z ′
gZg/ng] ≤ k̄ρ̄ ·G+,w/N → 0,

E [|B|] ≤ 1

N

∑
g

ρgE
[∣∣Z ′

gvg
∣∣] ≤ 1

N

∑
g

ρg

√
E[(Z ′

gvg)
2] =

1

N

∑
g

ρg

√
σ2
g,vngkg ≤

√
σ̄2
v k̄c̄

G

N
→ 0.

E [|C|] ≤ E

[
1

N

∑
g

(Z ′
gZg)

−1(Z ′
gvg)

2

]
=

1

N

∑
g

σ2
g,v ≤

G

N
σ̄2
v → 0.

Then, we prove that AII =
∑

g∈G+,s
ρ2gkgpg + op(1). Let k′′ =

∑
g∈G+,s

ρ2gkgpg. Since it is

clear 1
N

∑
g∈G+,s

ρ2gZ
′
gZg = k′′ + op(1) as is shown in earlier proofs, it suffices to show that

P

∣∣∣∣∣∣ 1N
∑

g∈G+,s

ρ2gZ
′
gZg(1(µ̂g > δ)− 1)

∣∣∣∣∣∣ > ϵ

 ≤ E

∣∣∣∣∣∣ 1N
∑

g∈G+,s

ρ2gZ
′
gZg(1(µ̂g > δ)− 1)

∣∣∣∣∣∣
 /ϵ → 0.

Notice that given the δ range in Assumption 2, there exists a small positive constant
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η ∈ (0, 1) such that δ ≤ ρ
√

kc/2(1− η)
√

N/G,

E

∣∣∣∣∣∣ 1N
∑

g∈G+,s

ρ2gZ
′
gZg(1(µ̂g > δ)− 1)

∣∣∣∣∣∣
 ≤ 1

N

∑
g∈G+,s

ρ2gE
[
Z ′

gZg1(µ̂g ≤ δ)
]

≤ 1

N

∑
g∈G+,s

ρ2gng

√
E[(Z ′

gZg/ng)2]
√

P (µ̂g ≤ δ)

≤ 1

N

∑
g∈G+,s

ρ2gng

√
E[(Z̃ ′

gZ̃g/ng)2]

√
P
(
µ̂g ≤ ρ

√
kc/2(1− η)

√
N/G

)
≤ 1

N

∑
g∈G+,s

ρ̄2c̄N/G
√

E[(Z̃4
ig)]
√

P
(
Z ′

gZg/ng ≤ kg(1− η)
)

→ 0.

where the convergence result comes from the moment restriction in Assumption 1.3 and a

result similar to Lemma A2.

Then we consider

1√
N

G∑
g=1

ρ̂gZ
′
gug1(µ̂g > δ)

=
1√
N

∑
g

ρgZ
′
gug −

1√
N

∑
g

ρgZ
′
gug1(µ̂g ≤ δ) +

1√
N

∑
g

(Z ′
gvg)(Z

′
gZg)

−1Z ′
gug1(µ̂g > δ)

= F1 + F2 + F3.

Under Assumption 1.3, F1/
√
σ2 · k′′ ⇒ N(0, 1) by the Lindeberg-Feller CLT. In addition,
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F3 and F2 are op(1) by the Markov’s inequality and the fact that

E[|F3|] ≤ E

[
1√
N

∑
g

∣∣∣∣∣ Z ′
gvg√
Z ′

gZg

Z ′
gug√
Z ′

gZg

∣∣∣∣∣
]
≤ 1√

N

∑
g

√√√√√E

( Z ′
gvg√
Z ′

gZg

)2

√√√√√E

( Z ′
gug√
Z ′

gZg

)2


≤ G√
N
σ̄vσu → 0,

E[|F2|] ≤
1√
N

∑
g∈G+,s

E[|ρgZ ′
gug1(µ̂g ≤ δ)|] + 1√

N

∑
g∈G+,w

E[|ρgZ ′
gug1(µ̂g ≤ δ)|]

≤ 1√
N

∑
g∈G+,s

ρg

√
E
[
(Z ′

gug)2
]√

P (µ̂g ≤ δ) +
1√
N

∑
g∈G+,w

ρgE[|Z ′
gug|]

≤ 1√
N

∑
g∈G+,s

ρ̄ng

√
E
[
(Z ′

gug/
√
ng)2

]√
P (µ̂g ≤ δ) +

1√
N

∑
g∈G+,w

ρ̄
√
E[(Z ′

gug/
√
ng)2]

= O(G/
√
N ·N/G · 1/(N/G)) +O(G/

√
N) = o(1).

Note that the convergence result follows from the moment restrictions in Assumption 1 and

the fact that P (µ̂g ≤ δ) ≤ P
(
Z ′

gZg/ng ≤ kg(1− η)
)
≲ 1/n2

g given the δ range and Lemma

A2.

Combining results and applying Slutsky’s Theorem, we obtain

√
N(β̂sel,int(δ)− β)/

√
σ2
u/k

′′ ⇒ N(0, 1).

Notice that ssel,int =
√

σ2
u/k

′′, the first part of the lemma is proven.

For the second part of the lemma, first we consider the asymptotic property of β̂a(δ), the

split-sample estimator with sample a. Notice that we have

√
Na(β̂a(δ)− β)

=

(
1

Na

∑
g

(W b
g )

′Zb
g(Z

b′

g Z
b
g)

−1(Za
g )

′W a
g 1(µ̂

b
g > δ)

)−1
1√
Na

∑
g

(W b
g )

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′ua
g1(µ̂

b
g > δ).
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Note that the denominator follows that

1

Na

∑
g

(W b
g )

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′W a
g 1(µ̂

b
g > δ)

=
1

Na

∑
g

(
ρg + ((Zb

g)
′Zb

g)
−1(Zb

g)
′vbg
) (

ρg(Z
a
g )

′Za
g + (Za

g )
′vag
)
1(µ̂b

g > δ)

=
1

Na

∑
g

ρ2g(Z
a
g )

′Za
g 1(µ̂

b
g > δ) +

1

Na

∑
g

ρg(Z
a
g )

′vag1(µ̂
b
g > δ)

+
1

Na

∑
g

ρg(Z
a
g )

′Za
g ((Z

b
g)

′Zb
g)

−1(Zb
g)

′vbg1(µ̂
b
g > δ) +

1

Na

∑
g

((Zb
g)

′Zb
g)

−1(Zb
g)

′vbg(Z
a
g )

′vag1(µ̂
b
g > δ)

=
1

Na

∑
g

ρ2gZ
a′

g Za
g 1(µ̂

b
g > δ) + op(1),

=k′′ + op(1).

The numerator∑
g

(W b
g )

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′ua
g1(µ̂

b
g > δ)/

√
Na

=
1√
Na

∑
g

ρg(Z
a
g )

′ua
g −

1√
Na

∑
g

ρg(Z
a
g )

′ua
g1(µ̂

b
g ≤ δ) +

1√
Na

((Zb
g)

′Zb
g)

−1(Zb
g)

′vbg(Z
b
g)

′ua
g1(µ̂

b
g > δ)

=
1√
Na

∑
g

ρg(Z
a
g )

′ua
g + op(1).

Similar derivations also hold for the split-sample estimator in sample b. Putting them

together, we obtain

√
N(β̂sssel,int(δ)− β) =

1

2

√
N/Na

√
Na(β̂a(δ)− β) +

1

2

√
N/N b

√
N b(β̂b(δ)− β)

=
1√
2
(ha + hb)/k′′ + op(1)

where ha = 1√
Na

∑
g ρgZ

a′
g ua

g and hb = 1√
Nb

∑
g ρ

2
gZ

b′
g u

b
g. Since h

a and hb are independent, we

have that (ha/
√

σ2
uk

′′, hb/
√

σ2
uk

′′)′ converges jointly to N((0, 0)′, I2). Therefore,

√
N(β̂sssel,int(δ)− β)/ssel,int ⇒ N(0, 1).
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Proof for Theorem 2

Proof. We first state Lemma A.1 of Donald and Newey (2001) in the following Lemma A6.

Since instead of choosing K as in Donald and Newey (2001), we are choosing the cutoff value

δ, the decomposition in the following Lemma depends on δ.

Lemma A6 (Donald and Newey (2001) Lemma A.1). Suppose the estimator examined has

the form
√
N(β̂ − β0) = Ĥ−1ĥ. If there is a decomposition ĥ = h + T h + Zh and Ĥ =

H + TH + ZH and

(h+ T h)2 − 2h2H−1TH = Â(δ) + ZA(δ)

such that

1) h = Op(1), H = Op(1), 2) sup
δ

S(δ) = op(1), 3) sup
δ

T h = op(1),

4) sup
δ

(
(TH)2/S(δ)

)
= op(1), 5) sup

δ

(
(TH)(T h)/S(δ)

)
= op(1), 6) sup

δ

(
ZH/S(δ)

)
= op(1),

7) sup
δ

E[Â(δ)|Z̃, X̃]− σ2
uH − S(δ)H2

S(δ)
= op(1).

8) sup
δ

(
ZA(δ)/S(δ)

)
= op(1)

then

N(β̂ − β0)
2 = Q̂(δ) + r̂(δ)

E[Q̂(δ)|Z̃, X̃] = σ2
uH

−1 + S(δ) + T (δ)

sup
δ

{
(r̂(δ) + T (δ))/S(δ)

}
= op(1) as G,N → ∞.

Note that the asymptotic MSE decomposition in Lemma A6 refers to the mean squared

error of the estimator of interest conditional on exogenous variables. Following the proofs

of Donald and Newey (2001), we omit the conditioning from the expectation for the rest of

the proof for notational simplicity.

First, we prove the first statement of the theorem for the select-and-interact estimator

β̂sel,int. Note that the estimator has the form

√
N(β̂sel,int(δ)− β) = Ĥ−1

δ ĥδ
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where ĥδ =
W ′Pδu√

N
and Ĥδ =

W ′PδW
N

and Pδ is a block diagonal matrix consisting of matrices

Zg(Z
′
gZg)

−1Z ′
g1(µ̂g > δ) on its diagonals. Let f = [ρ1Z

′
1 ρ2Z

′
2 ... ρGZ

′
G]

′, ĥδ = h + T h
1 + T h

2 ,

and Ĥδ = H + TH
1 + TH

2 + TH
3 + ZH with

h = f ′u/
√
N =

∑
g

ρgZ
′
gug/

√
N ; H =

∑
g∈G+,s

ρ2gZ
′
gZg/N =

∑
g∈G+,s

µ2
g/N ;

T h
1 (δ) = −f ′(I − Pδ)u/

√
N = −

∑
g

ρg1(µ̂g < δ)Z ′
gug/

√
N ;

T h
2 (δ) = v′Pδu/

√
N =

∑
g

v′gZg(Z
′
gZg)

−1Z ′
gug1(µ̂g ≥ δ)/

√
N ; TH

1 = f ′f/N −H =
∑

g∈G+,w

µ2
g/N ;

TH
2 (δ) = −f ′(I − Pδ)f/N ; TH

3 = (v′f + f ′v) /N ; ZH(δ) = (v′Pδv − v′(I − Pδ)f − f ′(I − Pδ)v) /N.

Now conforming to the notations in Lemma A6, let ZA(δ) = 0 hence Âsel,int(δ) = (h +

T h
1 (δ) + T h

2 (δ))
2 − 2h2H−1(TH

1 + TH
2 (δ) + TH

3 ).

Denote tg,δ = (δ − µg)/σv. Let Φg,δ = Φ(tg,δ) and ϕg,δ = ϕ(tg,δ). By the normality

assumption of error terms, we are able to simplify the following expectations:

E[1(µ̂g > δ)] = 1− Φg,δ

E[1(µ̂g > δ)Z ′
gvg] = σvϕg,δ

√
Z ′

gZg

E[1(µ̂g > δ)
(
Z ′

gvg
)2
] = σ2

v (1− Φg,δ + tg,δϕg,δ)Z
′
gZg

E[1(µ̂g > δ)
(
Z ′

gvg
)3
] = σ3

vϕg,δ

(
t2g,δ + 2

)
(Z ′

gZg)
3/2

E[1(µ̂g > δ)
(
Z ′

gvg
)4
] = σ4

vϕg,δ

(
t3g,δ + 3tg,δ

)
(Z ′

gZg)
2 + 3(1− Φg,δ)(Z

′
gZg)

2

E[1(µ̂g > δ)Z ′
gug] =

σuv

σv

ϕg,δ

√
Z ′

gZg

E[1(µ̂g > δ)(Z ′
gug)(Z

′
gvg)] =

σuv

σ2
v

E[1(µ̂g > δ)(Z ′
gvg)

2] = σuv (1− Φg,δ + tg,δϕg,δ)Z
′
gZg

E[1(µ̂g > δ)(Z ′
gug)

2] =
σ2
uv

σ4
v

E[1(µ̂g > δ)(Z ′
gvg)

2] + (σ2
u −

σ2
uv

σ2
v

)E[1(µ̂g > δ)]Z ′
gZg

=

(
σ2
u(1− Φg,δ) +

σ2
uv

σ2
v

tg,δϕg,δ

)
Z ′

gZg.

Asymptotic MSE for the Select-and-Interact Estimator

Given Lemma A6, we know that to prove that the first part of the theorem, we just need
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to prove that under Assumption 2,

1) h = Op(1), H = Op(1), 2) sup
δ∈∆

Ssel,int(δ) = op(1), 3) sup
δ∈∆

T h
1 + T h

2 = op(1),

4) sup
δ∈∆

(
(TH

1 + TH
2 + TH

3 )2/Ssel,int(δ)
)
= op(1),

5) sup
δ∈∆

(
(TH

1 + TH
2 + TH

3 )(T h
1 + T h

2 )/Ssel,int(δ)
)
= op(1), 6) sup

δ∈∆

(
ZH/Ssel,int(δ)

)
= op(1),

7) sup
δ∈∆

E[Âsel,int(δ)]− σ2
uH −H2Ssel,int(δ)

Ssel,int(δ)
= op(1).

To prove all seven statements above hold, we take the following steps: (1) we decompose

E[Âsel,int(δ)]; 2) we show that Ssel,int(δ) defined in the theorem is the right higher-order

leading term such that the seventh statement above holds; (3) we prove the remaining six

statements.

Step 1: Decomposition of E[Âsel,int(δ)]

Note that

E[Âsel,int(δ)] =E[(h+ T h
1 + T h

2 )
2]− 2E[h2H−1(TH

1 + TH
2 + TH

3 )]

=σ2
uH +

(
E[(h+ T h

1 )
2]− σ2

uH
)
+ 2E[(h+ T h

1 )T
h
2 ] + E[(T h

2 )
2]− 2E[h2H−1TH

1 ]

− 2E[h2H−1TH
2 ]−−2E[h2H−1TH

3 ]

=σ2
uH +∆1(δ) + ∆2(δ) + ∆3(δ) + ∆4 +∆5(δ) + ∆6.
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For the ∆1(δ) term,

∆1(δ) =E[(f ′Pδu)
2/N ]− σ2

uH

=E

(∑
g

ρgZ
′
gug1(µ̂g > δ)

)2
 /N − σ2

u

∑
g∈G+,s

µ2
g/N

=
∑
g

E[ρ2g(Z
′
gug)

21(µ̂g > δ)]/N +

(∑
g

E[ρgZ
′
gug1(µ̂g > δ)]

)2

/N

−
∑
g

E[ρgZ
′
gug1(µ̂g > δ)]2 − σ2

u

∑
g∈G+,s

µ2
g/N

=σ2
u

∑
g∈G+,w

µ2
g/N +

σ2
uv

σ2
v

(∑
g

µgϕg,δ

)2

/N

− σ2
u

∑
g

µ2
gΦg,δ/N +

σ2
uv

σ2
v

∑
g

µ2
gtg,δϕg,δ/N − σ2

uv

σ2
v

∑
g

µ2
gϕ

2
g,δ/N.

Now use results in Lemma A4, we have

sup
δ∈∆

∆1(δ) = sup
δ∈∆

σ2
uv

σ2
v

(∑
g

µgϕg,δ

)2

/N +Op(G/N).

64



For the ∆2(δ) terms, we have

∆2(δ) =2E[(f ′Pδu)(v
′Pδu)/N ]

=2E

[∑
g

ρgZ
′
gug1(µ̂g ≥ δ)

∑
g

v′gZg(Z
′
gZg)

−1Z ′
gug1(µ̂g ≥ δ)/N

]
=2
∑
g

E
[
ρg(Z

′
gZg)

−1(Z ′
gug)

2(Z ′
gvg)1(µ̂g ≥ δ)

]
/N

+ 2
∑
g

E[ρgZ
′
gug1(µ̂g ≥ δ)]

∑
g

E[v′gZg(Z
′
gZg)

−1Z ′
gug1(µ̂g ≥ δ)]/N

− 2
∑
g

E[ρgZ
′
gug1(µ̂g ≥ δ)]E[v′gZg(Z

′
gZg)

−1Z ′
gug1(µ̂g ≥ δ)]/N

=2
σ2
uv

σv

∑
g

µgϕg,δ

(
t2g,δ + 2

)
/N + 2σv(σ

2
u −

σ2
uv

σ2
v

)
∑
g

µgϕg,δ/N

+ 2
σ2
uv

σv

∑
g

µgϕg,δ

∑
g

(1− Φg,δ + tg,δϕg,δ)/N − 2
σ2
uv

σv

∑
g

µgϕg,δ(1− Φg,δ + tg,δϕg,δ)/N

=2
σ2
uv

σv

∑
g

µgϕg,δt
2
g,δ/N + 2σvσ

2
u

∑
g

µgϕg,δ/N

+ 2
σ2
uv

σv

∑
g

µgϕg,δ

∑
g

(1− Φg,δ + tg,δϕg,δ)/N + 2
σ2
uv

σv

∑
g

µgϕg,δ(Φg,δ − tg,δϕg,δ)/N.

Note that Φ(x) − xϕ(x) is monotonically increasing and therefore 0 ≤ Φ(x) − xϕ(x) ≤ 1,

then by results in Lemma A4, we have

sup
δ∈∆

∆2(δ) = sup
δ∈∆

2
σ2
uv

σv

(∑
g

µgϕg,δ

)(∑
g

(1− Φg,δ + tg,δϕg,δ)

)
/N +Op(G/N),

where the last equality holds as Φ(x) − xϕ(x) is monotonically increasing and therefore

0 ≤ Φ(x)− xϕ(x) ≤ 1 and by convergence results derived in Lemma A4.
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For the ∆3(δ) term, we have

∆3(δ) =E[(v′Pδu)
2/N ] = E

(∑
g

v′gZg(Z
′
gZg)

−1Z ′
gug1(µ̂g > δ)

)2

/N


=
∑
g

E[(v′gZg)
2(Z ′

gZg)
−2(Z ′

gug)
21(µ̂g > δ)]/N +

[∑
g

E[v′gZg(Z
′
gZg)

−1Z ′
gug1(µ̂g > δ)]

]2
/N

−
∑
g

E
[
v′gZg(Z

′
gZg)

−1Z ′
gug1(µ̂g > δ)

]2
/N

=σ2
uv

∑
g

(t3g,δ + 3tg,δ)ϕg,δ/N + σ2
uv

∑
g

3(1− Φg,δ)/N + (σ2
uσ

2
v − σ2

uv)
∑
g

(1− Φg,δ + tg,δϕg,δ)/N

+ σ2
uv

(∑
g

(1− Φg,δ + tg,δϕg,δ)

)2

/N − σ2
uv

∑
g

(1− Φg,δ + tg,δϕg,δ)
2 /N

Then, since 0 ≤ 1− Φ(x) + xϕ(x) ≤ 1 and the results in Lemma A4,

sup
δ∈∆

∆3(δ) = sup
δ∈∆

σ2
uv

(∑
g

(1− Φg,δ + tg,δϕg,δ)

)2

/N +Op(G/N).

For the ∆4 term, notice that

∆4 = −2E[h2H−1TH
1 ] = −2E[h2]H−1TH

1 = −2σ2
u(H + TH

1 )TH
1 /H = Op(G/N)

as H
p→ k′′ and TH

1 = Op(G/N) as is shown in the proof of Lemma 1.

For the ∆5(δ) term,

0 ≤ ∆5(δ) =2E

(∑
g

ρgZ
′
gug

)2∑
g

ρ2gZ
′
gZg1(µ̂g < δ)

 /(N2H)

=2
∑
g

E
[
ρ4g(Z

′
gug)

2Z ′
gZg1(µ̂g < δ)

]
/(N2H)

+ 2
∑
g

E[ρ2g(Z
′
gug)

2]
∑
g

E[ρ2gZ
′
gZg1(µ̂g < δ)]/(N2H)

− 2
∑
g

E[ρ2g(Z
′
gug)

2]E[ρ2gZ
′
gZg1(µ̂g < δ)]/(N2H)

=2
∑
g

µ4
g

(
σ2
uΦg,δ −

σ2
uv

σ2
v

tg,δϕg,δ

)
/(N2H) + 2σ2

u

∑
g

µ2
gΦg,δ(H + TH

1 )/(NH)

− 2σ2
u

∑
g

µ4
gΦg,δ/(N

2H).
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Apply the results derived in Lemma A4, we have supδ∈∆ ∆5(δ) = Op(G/N).

The last term ∆6 = −2E[h2H−1TH
3 ] = −2E[(f ′u)2(v′f + f ′v)]/H = 0 by symmetry of

normal distributions.

Step 2: determine Ssel,int(δ)

Notice that adding up ∆1 to ∆6, we get

E[Âsel,int(δ)] =σ2
uv

(∑
g

(1− Φg,δ + tg,δϕg,δ)

)2

/N + 2
σ2
uv

σv

(∑
g

µgϕg,δ

)(∑
g

(1− Φg,δ + tg,δϕg,δ)

)
/N

+
σ2
uv

σ2
v

(∑
g

µgϕg,δ

)2

/N +Op(G/N)

=

(
σuv

∑
g

(1− Φg,δ + tg,δϕg,δ) +
σuv

σv

∑
g

µgϕg,δ

)2

/N +Op(G/N).

Notice that 0 ≤ 1−Φg,δ + tg,δϕg,δ ≤ 1 and
∑

g µgϕg,δ = Op(G) following convergence results

derived in Lemma A4. Set Ssel,int(δ)H
2 =

(
σuv

∑
g(1− Φg,δ + tg,δϕg,δ) +

σuv

σv

∑
g µgϕg,δ

)2
/N ,

we know that supδ∈∆ Ssel,int(δ) = Op(G
2/N). Further, since

∑
g∈G+,s

(Φg,δ − tg,δϕg,δ) =

Op(G
3/N2) following convergence results derived in Lemma A4, we also know that infδ∈∆ Ssel,int(δ)H

2 ≥

σ2
uvG

2
+,s/N + op(G

2/N) = σ2
uvb

2G2/N + op(G
2/N) for some strictly positive b following As-

sumption 1. Therefore, any term of order op(G
2/N) is dominated by Ssel,int(δ) uniformly

over δ ∈ ∆.

Step 3: Proof of the corresponding statement (1) - (6) in Lemma A6

For statement (1), both h = Op(1) and H = Op(1) have been shown in the proof of

Lemma 1.

For statement (2), supδ∈∆ Ssel,int(δ) = op(1) as G
2/N → 0.

For statement (3), note that T h
1 = op(1) follows from the Markov inequality and the fact

that

E[(T h
1 )

2 ≤
√

E[(T h
1 )

2] = σ2
u

∑
g

µ2
gΦg,δ/N − σ2

uv

σ2
v

∑
g

µ2
gtg,δϕg,δ/N

− σ2
uv

σ2
v

∑
g

µ2
gϕ

2
g,δ/N +

σ2
uv

σ2
v

[∑
g

µgϕg,δ

]2
/N
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Applying Lemma A4, we have supδ∈∆ T h
1 (δ) = Op(G

2/N) = op(1). Similarly supδ∈∆ T h
2 (δ) =

op(1) follows from the fact that supδ∈∆ ∆3(δ) = Op(G
2/N) = op(1).

For statement (4), note that TH
1 = Op(G/N) by following Assumption 1. supδ∈∆ TH

2 (δ) =

Op(G/N) by Markov inequality and the fact that supδ∈∆ E[|TH
2 |] = supδ∈∆

1
N

∑
g µ

2
gΦg,δ =

Op(G/N). TH
3 = Op(1/

√
N) by the central limit theorem. Since each of G2/N2, N−1 and

G/N/
√
N is op(G

2/N), supδ∈∆

(
(TH

1 + TH
2 + TH

3 )2/Ssel,int(δ)
)
= op(1).

For statement (5), note that supδ∈∆ T h
1 (δ) + T h

2 (δ) = Op(G
2/N) and TH

1 + supδ∈∆ TH
2 +

TH
3 = Op(G/N + 1/

√
N). Therefore, their product is op(G

2/N), and hence supδ∈∆

(
(TH

1 +

TH
2 + TH

3 )(T h
1 + T h

2 )/Ssel,int(δ)
)
= op(1).

Lastly, for statement (6), note that ZH(δ) = v′Pδv−v′(I−Pδ)f−f ′(I−Pδ)v
N

. The first term is

v′Pδv/N = tr(PδE[vv′|X])/N = Op(G/N) uniformly over δ ∈ ∆. The second and third

terms are Op(G/N) uniformly over δ ∈ ∆ by the Markov inequality. Combine the fact that

E [v′(I − Pδ)f/N ] ≤
√

E
[
(v′(I − Pδ)f/N)2

]
, and that

E
[
(v′(I − Pδ)f/N)

2
]
= E

(∑
g

ρgZ
′
gvg1(µ̂g < δ)

)2
 /N2

=
∑
g

ρ2gE[(Z ′
gvg)

21(µ̂g < δ)]/N2 +

(
E

[∑
g

ρgZ
′
gvg1(µ̂g < δ)

])2

/N2

−
∑
g

(
E
[
ρgZ

′
gvg1(µ̂g < δ))2

])2
/N2

=
∑
g

µ2
gσ

2
v(Φg,δ − tg,δϕg,δ)/N

2 +

(∑
g

µgσvϕg,δ

)2

/N2 −
∑
g

(µgσvϕg,δ)
2 /N2.

Applying results in Lemma A4, we have supδ∈∆

(
ZH(δ)/Ssel,int(δ)

)
= op(1).

Following the three steps, the first part of the theorem is proven.

Asymptotic MSE for the Repeated Split-Sample Select-and-Interact Estimator

Now we prove the second part of the theorem. To facilitate the proof, we first provide

the result for the MSE decomposition for the split-sample 2SLS estimator using half of

the sample in the following lemma. Let µa
g = ρg

√
(Za

g )
′Za

g , µ̂
a
g = ((Za

g )
′Za

g )
−1/2(Za

g )
′W a

g ,

Φa
g,δ = Φ(

δ−µa
g

σv
), ϕa

g,δ = ϕ(
δ−µa

g

σv
), tag,δ =

δ−µa
g

σv
, and define similar expressions for subsample b.
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Lemma A7. Under Assumptions stated in Thereom 2, the asymptotic MSE of β̂a follows

the decomposition

Na(β̂a(δ)− β)2 = Q̂a(δ) + r̂a(δ),

E[Q̂a(δ)|Z̃,X] = σ2
u(H

a)−1 + Sa(δ) + T a(δ),

sup
δ∈∆

(
(r̂a(δ) + T a(δ))/Sa(δ)

)
= op(1),

with Ha =
∑

g ρ
2
gZ

a′
g Za

g /Na =
∑

g(µ
a
g)

2/Na and (Ha)2Sa(δ) = σ2
uσ

2
v

∑
g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
/Na+

σ2
u

∑
g(µ

a
g)

2Φb
g,δ/N

a.

Proof. Similar to the proof in the first part of the theorem, we first specify the terms in the

E[Q̂a(δ)|Z̃,X]), and then verify the conditions of Lemma A6 hold with the Sa(δ) defined in

the lemma.

First, notice that
√
Na(β̂a(δ)−β) = (Ĥa

δ )
−1ĥa

δ , where ĥ
a
δ =

∑
g W

b′
g Z

b
g(Z

b′
g Z

b
g)

−1Za′
g ua

g1(µ̂
b
g >

δ)/
√
Na and Ĥa

δ =
∑

g W
b′
g Z

b
g(Z

b′
g Z

b
g)

−1Za′
g W a

g 1(µ̂
b
g > δ)/Na. Let ĥa

δ = ha + T a
1h(δ) + T a

2h(δ)

and Ĥa
δ = Ha + T a

1H(δ) + T a
2H(δ) + Za

H(δ), where

ha =
∑
g

ρgZ
a′

g ua
g/
√
Na; Ha =

∑
g

ρ2gZ
a′

g Za
g /N

a; T a
1h(δ) = −

∑
g

ρg1(µ̂
b
g < δ)Za′

g ua
g/
√
Na;

T a
2h(δ) =

∑
g

vb
′

g Z
b
g(Z

b′

g Z
b
g)

−1Za′

g ua
g1(µ̂

b
g ≥ δ)/

√
Na; T a

1H(δ) = −
∑
g

ρ2gZ
a′

g Za
g 1(µ̂

b
g < δ)/Na;

T a
2H(δ) =

(∑
g

ρgv
b′

g Z
b
g(Z

b′

g Z
b
g)

−1Za′

g Za
g 1(µ̂

b
g ≥ δ) +

∑
g

ρgZ
a′

g vag

)
/Na;

Za
H(δ) := Za

1H(δ) + Za
2H(δ) =

∑
g

vb
′

g Z
b
g(Z

b′

g Z
b
g)

−1Za′

g vag1(µ̂
b
g ≥ δ)/Na −

∑
g

ρgZ
a′

g vag1(µ̂
b
g < δ)/Na.

Conforming to notations in Lemma A6 and let ZA(δ) = 0 hence Âa(δ) = (ha + T a
1h(δ) +

T a
2h(δ))

2−2(ha)2(Ha)−1(T a
1H(δ)+T a

2H(δ)). Following Lemma A6, to prove the result stated in

the above lemma, we just need to show the following seven statements hold with the defined
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Sa(δ).

1) ha = Op(1), Ha = Op(1), 2) sup
δ∈∆

Sa(δ) = op(1), 3) sup
δ∈∆

(
T a
1h(δ) + T a

2h(δ)
)
= op(1),

4) sup
δ∈∆

(
(T a

1H(δ) + T a
2H(δ))

2/Sa(δ)
)
= op(1), 5) sup

δ∈∆

(
(T a

1H(δ) + T a
2H(δ))(T

a
1h(δ) + T a

2h(δ))/S
a(δ)

)
= op(1),

6) sup
δ∈∆

(
Za

H(δ)/S
a(δ)

)
= op(1), 7) sup

δ∈∆

E[Âa(δ)]− σ2
uH

a − (Ha)2Sa(δ)

Sa(δ)
= op(1).

Step 1: Decomposition of E[Âa(δ)]

We have

E[Âa(δ)] =σ2
uH

a +
(
E[(ha + T a

1h(δ))
2]− σ2

uH
a
)
+ 2E[(ha + T a

1h(δ))T
a
2h(δ)] + E[(T a

2h(δ))
2]

− 2E[(ha)2T a
1H(δ)/H

a]− 2E[(ha)2T a
2H(δ)/H

a]

=σ2
uH

a +∆a
1(δ) + ∆a

2(δ) + ∆a
3(δ) + ∆a

4(δ) + ∆a
5(δ).

For the ∆a
1(δ) term,

∆a
1(δ) = E

(∑
g

ρg1(µ̂
b
g ≥ δ)Za′

g ua
g

)2
 /Na − σ2

uH
a

=
∑
g

ρ2gE[1(µ̂b
g ≥ δ)(Za′

g ua
g)

2]/Na − σ2
uH

a = σ2
u

∑
g

(µa
g)

2(1− Φb
g,δ)/N

a − σ2
uH

a

= −σ2
u

∑
g

(µa
g)

2Φb
g,δ/N

a.

For the ∆a
2(δ) term,

∆a
2(δ) =2ρgE

[∑
g

(Za
g )

′ua
g1(µ̂

b
g ≥ δ)

∑
g

(vbg)
′Zb

g((Z
b
g)

′Zb
g)

−1(Za
g )

′ua
g1(µ̂

b
g ≥ δ)/N

]
=2
∑
g

ρgE[((Za
g )

′ua
g)

2]E
[
(vbg)

′Zb
g((Z

b
g)

′Zb
g)

−11(µ̂b
g ≥ δ)/N

]
=2σ2

uσv

∑
g

ρg(Z
a
g )

′Za
gϕ

b
g,δ/
√

(Zb
g)

′Zb
g

=2σ2
uσv

∑
g

µa
gϕ

b
g,δ

√(
(Za

g )
′Za

g

)
/
(
(Zb

g)
′Zb

g)
)
.
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For the ∆a
3(δ) term,

∆a
3(δ) = E

(∑
g

(vbg)
′Zb

g((Z
b
g)

′Zb
g)

−1(Za
g )

′ua
g1(µ̂

b
g ≥ δ)

)2
 /Na

=
∑
g

E
[(
(vbg)

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′ua
g

)2
1(µ̂b

g ≥ δ)
]
/Na

=
∑
g

E
[(
(vbg)

′Zb
g

)2
1(µ̂b

g ≥ δ)
]
/((Zb

g)
′Zb

g)
2E
[
(Za

g )
′ua

g)
2
]
/Na

= σ2
vσ

2
u

∑
g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
(Zb′

g Z
b
g)

−1(Za′

g Za
g )/N

a

= σ2
vσ

2
u

∑
g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
/Na + σ2

vσ
2
u

∑
g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
(Za′

g Za
g /(Z

b′

g Z
b
g)− 1)/Na

= σ2
vσ

2
u

∑
g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
/Na + op(G/N).

For the last equality to hold, it suffices to show that Za′
g Za

g /(Z
b′
g Z

b
g) − 1 = Op(

√
G/N)

for all groups. Note Zg = MXgηg = ηg −PXgηg where ηg is the residual of a linear projection

of Z̃g onto Xg (i.e. Z̃g = Xgλ + ηg). Therefore Z ′
gZg = η′gηg − η′gPXgηg. Under Assumption

1 we have E[η2ig] = kg and E[(η2ig − kg)
2] ≤ ∆̄η < ∞ and η′gPXgηg = Op(E[η′gPXgηg]) = Op(1)

uniformly over all groups. Now by Markov inequality, for any arbitrary ϵ > 0 and pick

C2 = ∆̄η c̄, then

P
(∑

i

((ηaig)
2 − kg) ≥ C(N/G)1/2

)
≤

E|
∑

i((η
a
ig)

2 − kg)|2

C2N/G
≤

2
∑

iE|(ηaig)2 − kg|2

C2N/G

=
2na

gE[((η1g)
2 − kg)

2]

C2N/G
≤ 1

C2
∆̄η c̄ = ϵ.

This implies that Za′
g Za

g /n
a
g − kg = Op(1/

√
N/G) for all groups. Similar result holds for the

other split of the sample and therefore Za′
g Za

g /(Z
b′
g Z

b
g)− 1 = Op(

√
G/N) for all groups.
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For the ∆a
4(δ) term,

∆a
4(δ) =2E

(∑
g

ρg(Z
a
g )

′ua
g

)2∑
g

ρ2g(Z
a
g )

′Za
g 1(µ̂

b
g < δ)

 /((Na)2Ha)

=2E

(∑
g

ρg(Z
a
g )

′ua
g

)2
∑

g

(µa
g)

2E
[
1(µ̂b

g < δ)
]
/((Na)2Ha)

=2
∑
g

ρ2gE
[(
Za

g )
′ua

g

)2]∑
g

(µa
g)

2Φb
g,δ/((N

a)2Ha) = 2σ2
u

∑
g

(µa
g)

2Φb
g,δ/N

a.

For the ∆a
5(δ) term,

∆a
5(δ) =− 2E

(∑
g

ρg(Z
a
g )

′ua
g

)2∑
g

ρg(v
b
g)

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′Za
g 1(µ̂

b
g ≥ δ)

 /((Na)2Ha)

− 2E

(∑
g

ρg(Z
a
g )

′ua
g

)2∑
g

ρg(Z
a
g )

′vag

 /((Na)2Ha)

=− 2
∑
g

E
[(
ρg(Z

a
g )

′ua
g

)2]∑
g

E
[
ρg(v

b
g)

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′Za
g 1(µ̂

b
g ≥ δ)

]
/((Na)2Ha)

=− 2σ2
uσv

∑
g

µa
gϕ

b
g,δ

√
((Za

g )
′Za

g )/((Z
b
g)

′Zb
g)/N

a.

Step 2: Determine Sa(δ)

Collecting the leading terms from ∆a
1(δ) to ∆a

5(δ) we get

σ2
vσ

2
u

∑
g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
/Na + σ2

u

∑
g

(µa
g)

2Φb
g,δ/N

a,

which is the (Ha)2Sa(δ) term defined in Lemma A7. Modifying the convergence results

derived in Lemma A4 for the subsampled analysis, it is easy to show that supδ∈∆ Sa(δ) =

Op(G/N). In addition,
∑

g∈G+,s
(Φg,δ − tg,δϕg,δ) /N = Op(G

3/N3). Therefore, infδ∈∆ Sa(δ) ≥

σ2
vσ

2
ubG/N+op(G/N) and any terms of order op(G/N) is dominated by Sa(δ) uniformly over

δ ∈ ∆.

Step 3: Prove statements corresponding to (1) - (6) in Lemma A6

For statement (1), ha = Op(1) and Ha = Op(1) are shown in the proof of Lemma 1.
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For statement (2), since we have supδ∈∆ Sa(δ) = Op(G/N), hence supδ∈∆ Sa(δ) = op(1)

as G/N → 0.

For statement (3), note that supδ∈∆ T a
1h(δ) = op(1) and supδ∈∆ T a

2h(δ) = op(1) by the

Markov inequality and the facts that E[|T a
1h(δ)|] ≤

√
E[(T a

1h(δ))
2] = Op(

√
G/N) for all

δ ∈ ∆, and E[|T a
2h(δ)|] ≤

√
E[(T a

2h(δ))
2] = Op(

√
G/N) for all δ ∈ ∆.

To prove (4), notice that supδ∈∆ T a
1H(δ) = Op(G/N) by the Markov inequality. Further-

more we have E[|T a
1H(δ)|] = E

[∑
g ρ

2
gZ

a′
g Za

g 1(µ̂
b
g < δ)

]
/Na =

∑
g(µ

a
g)

2Φb
g,δ/N

a. Applying

results in Lemma A4 proves statement (4).

For T a
2H(δ), notice that its second component is free from δ and is Op(1/

√
N) by the

central limit theorem, and its first component is Op(G/N) uniformly over δ ∈ ∆ by the

Markov inequality and the fact that

E
[(∑

g

ρg(v
b
g)

′Zb
g((Z

b
g)

′Zb
g)

−1(Za
g )

′Za
g 1(µ̂

b
g > δ)

)2]
/(Na)2

=σ2
v

∑
g

(µb
g)

2(1− Φb
g,δ + tbg,δϕ

b
g,δ) +

(∑
g

µb
gϕ

b
g,δ

)2

−
∑
g

(µb
g)

2(ϕb
g,δ)

2

 ((Za
g )

′Za
g /(Z

b
g)

′Zb
g)

2/(Na)2

=Op(G
2/N2).

Since each of 1/N , G2/N2, and G/N/
√
N is of order op(G/N), hence supδ∈∆

(
(T a

1H +

T a
2H)

2/Sa(δ)
)
= op(1).

For statement (5), note that by statements (3) and (4) supδ∈∆

(
T a
1h(δ) + T a

2h(δ)
)

=

op(1), and supδ∈∆

(
T a
1H(δ) + T a

2H(δ)
)

= Op(G/N). Therefore supδ∈∆

(
(T a

1h + T a
2h)(T

a
1H +

T a
2H)/S

a(δ)
)
= op(1).

Lastly, for statement (6), notice that the first term of Za
H(δ) is of order Op(

√
G

N
) by the
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Markov inequality, the Cauchy-Schwarz inequality and the facts that for all δ ∈ ∆,

E[(Za
1H(δ))

2] = E

(∑
g

(vbg)
′Zb

g((Z
b
g)

′Zb
g)

−1(Za
g )

′vag1(µ̂
b
g > δ)

)2
 /(Na)2

=
∑
g

E
[
((vbg)

′Zb
g((Z

b
g)

′Zb
g)

−1)21(µ̂b
g > δ)

]
E
[
(Za

g )
′vag )

2
]
/(Na)2

= σ4
v

∑
g

(1− Φb
g,δ + tbg,δϕ

b
g,δ)(Z

a
g )

′Za
g /((Z

b
g)

′Zb
g)/(N

a)2 = Op(G/N2),

E[(Za
2H(δ))

2] = E

(∑
g

ρg(Z
a
g )

′vag1(µ̂
b
g < δ)

)2
 /(Na)2 = σ2

v

∑
g∈G

(µa
g)

2Φb
g,δ/(N

a)2 = Op(G
2/N).

Putting together, we have supδ∈∆

(
Za

H(δ)/S
a(δ)

)
= op(1).

Following the three steps, the lemma is hence proven.

Finally, we are going to collect the asymptotic limits of both split-sample estimators and

derive the asymptotic limit of the repeated split-sample select-and-interact estimator.

Note that by Lemma A7, we know that

√
Na(β̂a

sssel,int(δ)− β) = (Ĥa
δ )

−1ĥa
δ

= (Ha)−1
(
ha + T a

1h(δ) + T a
2h(δ)− (T a

1H(δ) + T a
2H(δ))(H

a)−1ha
)
+ op(G/N),

and a similar result holds for β̂b
sssel,int(δ).

Since ng−1 ≤ 2na
g ≤ ng+1, we know that |1/Na−2/N | = O(G/N2) and a similar result

holds for N b. Furthermore, since Ĥa
δ , ĥ

a
δ , Ĥ

b
δ , ĥ

b
δ are all Op(1), we know that

√
N(β̂sssel,int(δ)− β) =

1

2

(√
N/Na

√
Na(β̂a

sssel,int(δ)− β) +
√
N/N b

√
N b(β̂b

sssel,int(δ)− β)
)

=
(
ha + T a

1h(δ) + T a
2h(δ)− (T a

1H(δ) + T a
2H(δ))(H

a)−1ha
)
/Ha/

√
2

+
(
hb + T b

1h(δ) + T b
2h(δ)− (T b

1H(δ) + T b
2H(δ))(H

b)−1hb
)
/Hb/

√
2

+ op(G/N).

Denote Q̂a(δ) = E[(ha + T a
1h(δ) + T a

2h(δ)− (T a
1H(δ) + T a

2H(δ))(H
a)−1ha) /Ha and denote
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Q̂b(δ) similarly. Notice that(
ha + T a

1h(δ) + T a
2h(δ)− (T a

1H(δ) + T a
2H(δ))(Ha)−1ha

) (
hb + T b

1h(δ) + T b
2h(δ)− (T b

1H(δ) + T b
2H(δ))(Hb)−1hb

)
=(ha + T a

1h(δ) + T a
2h(δ))

(
hb + T b

1h(δ) + T b
2h(δ)

)
− (ha + T a

1h(δ) + T a
2h(δ)) (T

b
1H(δ) + T b

2H(δ))(Hb)−1hb

− (T a
1H(δ) + T a

2H(δ))(Ha)−1ha
(
hb + T b

1h(δ) + T b
2h(δ)

)
+ (T a

1H(δ) + T a
2H(δ))(Ha)−1ha(T b

1H(δ) + T b
2H(δ))(Hb)−1hb

=(ha + T a
1h(δ) + T a

2h(δ))
(
hb + T b

1h(δ) + T b
2h(δ)

)
− ha(T b

1H(δ) + T b
2H(δ))(Hb)−1hb − (T a

1H(δ) + T a
2H(δ))(Ha)−1hahb

+ op(G/N),

where the last equality holds since in the proof of Lemma A7 we also showed that ha =

Op(1), H
a = Op(1) and supδ∈∆ T a

1h(δ) + T a
2h(δ) = Op(

√
G/N) and supδ∈∆ T a

1H(δ) + T a
2H(δ) =

op(
√

G/N) and similar results hold for subsample b. Denote Q̂ab(δ) such that

Q̂ab(δ)HaHb =(ha + T a
1h(δ) + T a

2h(δ))
(
hb + T b

1h(δ) + T b
2h(δ)

)
− ha(T b

1H(δ) + T b
2H(δ))(H

b)−1hb − (T a
1H(δ) + T a

2H(δ))(H
a)−1hahb.

Then we know

N(β̂sssel,int(δ)− β)2 = Q̂a(δ)/2 + Q̂a(δ)/2 + Q̂ab(δ) + op(G/N).

where the form of E[Q̂a(δ)] is derived in Lemma A7, and a similar result holds for E[Q̂b(δ)].

For the last term, recognizing that E[ha(T b
1H(δ) + T b

2H(δ))h
b] = 0, we know that

E[Q̂ab(δ)]HaHb = E[(ha + T a
1h(δ) + T a

2h(δ))
(
hb + T b

1h(δ) + T b
2h(δ)

)
]

= E[(T a
1h(δ) + T a

2h(δ))(T
b
1h(δ) + T b

2h(δ))]

as E[hahb] = E[haT b
1h(δ)] = E[haT b

2h(δ)] = E[T a
1h(δ)h

b] = E[T a
2h(δ)h

b] = 0. For the last
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expectation, we know that

E[(T a
1h(δ) + T a

2h(δ))(T
b
1h(δ) + T b

2h(δ))]

=
∑
g

E[(vag )
′PZa

g
ua
g1(µ̂

a
g ≥ δ)]E[(vbg)

′PZb
g
ub
g1(µ̂

b
g ≥ δ)]/

√
NaN b

+
∑
g

ρ2gE[1(µ̂a
g < δ)(Za

g )
′ua

g]E[1(µ̂b
g < δ)(Zb

g)
′ub

g]/
√
NaN b

−
∑
g

ρgE[(vag )
′PZa

g
ua
g1(µ̂

a
g ≥ δ)]E[1(µ̂b

g < δ)(Zb
g)

′ub
g]/

√
NaN b

−
∑
g

ρgE[(vbg)
′PZb

g
ub
g1(µ̂

b
g ≥ δ)]E[1(µ̂a

g < δ)(Za
g )

′ua
g]/

√
NaN b

=
∑
g

σ2
uv

(
1− Φa

g,δ + tag,δϕ
a
g,δ

) (
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
/(N/2) +

σ2
uv

σ2
v

∑
g

µa
gµ

b
gϕ

a
g,δϕ

b
g,δ/(N/2)

+
σ2
uv

σv

∑
g

[
µb
g

(
1− Φa

g,δ + tag,δϕ
a
g,δ

)
ϕb
g,δ + µa

g

(
1− Φb

g,δ + tbg,δϕ
b
g,δ

)
ϕa
g,δ

]
/(N/2) + op(G/N)

=2σ2
uv

∑
g

(
1− Φa

g,δ +
δ

σv

ϕa
g,δ

)(
1− Φb

g,δ +
δ

σv

ϕb
g,δ

)
/N + op(G/N).

Further, since
∣∣∣Φ( δ−µg/

√
2

σv
)− Φ(

δ−µa
g

σv
)
∣∣∣ ≤ ∣∣µg/

√
2− µa

g

∣∣ϕ( δ−µ∗
g

σv

)
for a µ∗

g between µg/
√
2

and µa
g, by Cauchy-Schwarz inequality we have the following results:

E

∣∣∣∣∣Φ(δ − µg/
√
2

σv

)− Φ(
δ − µa

g

σv

)

∣∣∣∣∣ ≤
√

E

[(
µg/

√
2− µa

g

)2]√
E[ϕ2(

δ − µ∗
g

σv

)]

≤ ρ2gng ·

√
E

[(√
Z ′

gZg/ng −
√

(Za
g )

′Za
g /n

a
g

)2]√
E[ϕ2(

δ − µ∗
g

σv

)]

≲

√
E

[(√
Z ′

gZg/ng −
√

(Za
g )

′Za
g /n

a
g

)2]
≲ (G/N)−1/4

and∣∣∣∣∣δ − µg/
√
2

σv

ϕ(
δ − µg/

√
2

σv

)−
δ − µa

g

σv

ϕ(
δ − µa

g

σv

)

∣∣∣∣∣ ≤ ∣∣∣µg/
√
2− µa

g

∣∣∣ ∣∣∣∣δ − µ∗
g

σv

∣∣∣∣ϕ(δ − µ∗
g

σv

)
≲ (G/N)−1/4

and∣∣∣∣∣µg/
√
2ϕ(

δ − µg/
√
2

σv

)− µa
gϕ(

δ − µa
g

σv

)

∣∣∣∣∣ ≤ ∣∣∣µg/
√
2− µa

g

∣∣∣ϕ(δ − µ∗
g

σv

)
+
∣∣∣µg/

√
2− µa

g

∣∣∣ ∣∣∣∣δ − µ∗
g

σv

∣∣∣∣ϕ(δ − µ∗
g

σv

)
≲ (G/N)−1/4
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Therefore, we know that

E[Q̂ab(δ)] = 2σ2
uv

∑
g

(
1− Φ

(
δ − µg/

√
2

σv

)
+

δ

σv

ϕ

(
δ − µg/

√
2

σv

))2

/Ha/Hb/N + op(G/N).

Putting together, we get that

E[Q̂a(δ)|Z̃,X] + E[Q̂b(δ)|Z̃,X]

=σ2
u(1/H

a + 1/Hb)/2

+ σ2
uσ

2
v

∑
g

(
1− Φ

(
δ − µg/

√
2

σv

)
+

(
δ − µg/

√
ng

σv

)
ϕ

(
δ − µg/

√
2

σv

))(
1/(Ha)2 + 1/(Hb)2

)
/N

+ σ2
u

∑
g

µ2
gΦ

(
δ − µg/

√
2

σv

)(
1/(Ha)2 + 1/(Hb)2

)
/N.

Moreover under Assumption 1 we obtain 1
Na

∑
g(Z

a
g )

′Za
g = 1

Na

∑
g n

a
g((Z

a
g )

′Zg/n
a
g − kg) +

1
Na

∑
g n

a
gkg = k̄ + Op(

G
N

√
G
N
) = k̄ + op(

G
N
). A similar argument yields

∑
g Z

′
gZg/N =

k̄ + op(G/N). Put together, we have |Ha − H| ≤ op(G/N). A similar result holds for

subsample b. Collecting all terms that contribute to the N(β̂sssel,int(δ) − β)2 leads to the

formulation of Ssssel,int(δ) stated in the theorem.

Proof of Corollary 1

Proof. Recall the definition of Ssssel,int(δ), Asssel,int(δ), Bsssel,int(δ), and Csssel,int(δ) in Theo-

rem 2. In this proof, we omit the subscript for notational simplicity.

Recall the definition of Asssel,int(δ), Bsssel,int(δ), and Csssel,int(δ) in Theorem 2. In this

proof, we omit the subscript for notational simplicity.

First, we notice that A(δ) ≥ 0 as 1 − Φ(x) + xϕ(x) ≥ 0 and B(δ) ≥ 0 as Φ(x) is

nonnegative. Decompose C(δ) to C1(δ) + C2(δ) where C1(δ) = 2σ2
uv

N

∑
g

(
1− Φ

(
δ−µg/

√
2

σv

)
+

δ−µg/
√
2

σv
ϕ
(

δ−µg/
√
2

σv

))2
and C2(δ) = 4σ2

uv

N

(
1−Φ

(
δ−µg/

√
2

σv

)
+ δ−µg/

√
2

σv
ϕ
(

δ−µg/
√
2

σv

))
µg/

√
2

σv
ϕ
(

δ−µg/
√
2

σv

)
+

σ2
uv

σ2
vN

µ2
gϕ

2
(

δ−µg/
√
2

σv

)
. It is clear that both C1(δ) and C2(δ) are non-negative as well.

In addition, we have ∇δA(δ) = −2σ2
uσv

N

∑
g

(
δ−µg/

√
2

σv

)2
ϕ
(

δ−µg/
√
2

σv

)
≤ 0, ∇δB(δ) =

σ2
u

σvN

∑
g µ

2
gϕ
(

δ−µg/
√
2

σv

)
≥ 0
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and∇δC1(δ) = −2 σ2
uv

σvN

∑
g

(
1−Φ

(
δ−µg/

√
2

σv

)
+ δ−µg/

√
2

σv
ϕ
(

δ−µg/
√
2

σv

))(
δ−µg/

√
2

σv

)2
ϕ
(

δ−µg/
√
2

σv

)
≤

0. The sign of ∇δC2(δ) is generally ambiguous but it is easy to show that ∇δC2(δ) ≥ 0 when

δ − µg/
√
2 ≤ 0.

Denote L(δ) ≡ A(δ) + B(δ) + C1(δ) + C2(δ). Next, we use superscripts to indicate

that a term is evaluated for particular set of groups. For example, contributions from the

groups in the set G0 are denoted as L0(δ) and contributions from the groups in the set G+,w

are denoted as L+,w(δ). We have L0(δ) ≡ A0(δ) + B0(δ) + C0
1(δ) + C0

2(δ) with A0(δ) =

2σ2
uσ

2
v

N

∑
g∈G0

(
1− Φ

(
δ
σv

)
+ δ

σv
ϕ
(

δ
σv

))2
, C0

1(δ) = 2σ2
uvσ

2
v

N

∑
g∈G0

(
1− Φ

(
δ
σv

)
+ δ

σv
ϕ
(

δ
σv

))2
,

and B0(δ) = C0
2(δ) = 0. To prove the Corollary, we show in sequence the following results:

1) As N → ∞, L0(δN) = o(G
N
) for any sequence δN → +∞.

2) For any δ ≥ 0, L+,w(δ) = op(
G
N
) when G2/G → 0.

3) L(δ) ≥ 2bσ2
uσ

2
v(1 + ρ2uv)

G
N
+ op(

G
N
) for ∀δ ≥ 0.

Proof of 1): For any sequence δN → ∞, we have

L0(δN) =A0(δN) + C0
1(δN)

=2σ2
uσ

2
v

G0

N
·
(
1− Φ

(
δN
σv

)
+

δN
σv

ϕ

(
δN
σv

))
+ 2σ2

uv

G0

N
·
(
1− Φ

(
δN
σv

)
+

δN
σv

ϕ

(
δN
σv

))2

≤2σ2
uσ

2
v

G0

N
·
(
1/

(
δN
σv

)
+

δN
σv

)
ϕ

(
δN
σv

)
+ 2σ2

uv

G0

N
·
((

1/

(
δN
σv

)
+

δN
σv

)
ϕ

(
δN
σv

))2

≤σ2
uσ

2
v

G0

N
·

(
1/

(
δN
σv

)3

+ 1/

(
δN
σv

))
+ σ2

uv

G0

N
·

((
1/

(
δN
σv

)3

+ 1/

(
δN
σv

)))2

=o(G/N).

where the first inequality holds as 1−Φ(x) ≤ ϕ(x)/x for any x > 0 and the second holds as

ϕ(x) ≤ 1/x2/
√
2π.

Proof of 2): For the weak groups, for any δ ≥ 0, we have that

B+,w(δ) ≤ σ2
u

N

∑
g∈G+,w

µ2
g =

G+,w

G
Op(G/N)
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and

A+,w(δ) + C+,w
1 (δ) ≤σ2

uσ
2
v

N

∑
g∈G+,w

1/

∣∣∣∣∣δ − µg/
√
2

σv

∣∣∣∣∣
3

+ 1/

∣∣∣∣∣δ − µg/
√
2

σv

∣∣∣∣∣


+
σ2
uv

N

∑
g∈G+,w

1/

∣∣∣∣∣δ − µg/
√
2

σv

∣∣∣∣∣
3

+ 1/

∣∣∣∣∣δ − µg/
√
2

σv

∣∣∣∣∣
2

=
G+,w

G
Op(G/N),

Similarly,

C+,w
2 (δ) ≤

∑
g∈G+,w

2
σ2
uv

N

µg/
√
2

σv

ϕ
(δ − µg/

√
2

σv

)
+
∑

g∈G+,w

σ2
uv

Nσ2
v

µ2
gϕ

2
(δ − µg/

√
2

σv

)
=
G+,w

G
Op(G/N).

When G+,w/G → 0, we have L+,w(δ) = op(G/N) for any δ ≥ 0. The second statement is

hence proven.

Proof of 3):

Let U ≡ 2σ2
uσ

2
v + 2σ2

uv = 2σ2
uσ

2
v(1 + ρ2uv). Focus on the contribution of one group

g ∈ G+,s to the terms B+,s(δ), A+,s(δ) and C+,s
1 (δ). For that group g, let δ∗g satisfy

that σ2
uµ

2
gΦ(

δ∗g−µg/
√
2

σv
) = U . Then it is easy to derive that Φ

(
δ∗g−µg/

√
2

σv

)
= U

σ2
uµ

2
g
, or that

δ∗g = µg/
√
2 + σvΦ

−1
(

U
σ2
uµ

2
g

)
.

For any δ > δ∗g , since each term in B+,s(δ) increases in δ, we know that σ2
u

N
µ2
gΦ
(

δ−µg/
√
2

σv

)
≥

U
N

≥ G+,s

G
U
N
. For any 0 ≤ δ ≤ δ∗, notice that∣∣∣∣2σ2

uσ
2
v

N
Aδ + 2

σ2
uv

N
A2

δ −
G+,s

G

U
N

∣∣∣∣ ≤ 2
σ2
uσ

2
v

N
|Aδ − 1|+ 2

σ2
uv

N

∣∣A2
δ − 1
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≤2

σ2
uσ

2
v

N
(1−Aδ) + 4

σ2
uv

N
(1−Aδ) ≤ 6

σ2
uσ

2
v

N
(1−Aδ)

≤6
σ2
uσ

2
v

N
(1−Aδ) ≤ 6

σ2
uσ

2
v

N
(1−Aδ∗g )

=6
σ2
uσ

2
v

N

(
Φ(x∗

g)− x∗
gϕ
(
x∗
g

))
=Op

(
1

N
E
[
Φ(x∗

g)
])

+Op

(
1

N
E
[
|x∗

g|ϕ
(
x∗
g

)])
= op(G/N),
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where Aδ = 1 − Φ
(

δ−µg/
√
2

σv

)
+ δ−µg/

√
2

σv
ϕ
(

δ−µg/
√
2

σv

)
which decreases with δ and let x∗

g =

(δ∗g − µg/
√
2)/σv = Φ−1

(
U

σ2
uµ

2
g

)
and Aδ∗g = 1− Φ(x∗

g) + x∗
gϕ(x

∗
g) ≤ 1.

The last equality follows as

E
[
Φ(x∗

g)
]
=E

[
Φ(x∗

g)1

(
µg > ρg

√
kgng/2

)]
+ P (µg ≤ ρg

√
kgng/2)

= E

[
U

σ2
uµ

2
g

1

(
µg > ρg

√
kgng/2

)]
+ P (µg ≤ ρg

√
kgng/2)

≤2σ2
v(1 + ρ2uv)

ρ2gkgng/2
+ P

(
Z ′

gZg/ng ≤ kg/2
)
≲ G/N,

and

E
[
|x∗

g|ϕ
(
x∗
g

)]
≤E

[
|x∗

g|ϕ
(
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g

)
1

(
µg > ρg

√
kgng/2

)]
+ P

(
µg ≤ ρg

√
kgng/2

)
≤E

[
|x∗∗

g |ϕ
(
x∗∗
g

)]
+ P

(
Z ′

gZg/ng ≤ kg/2
)

≤E
[
1/|x∗∗

g |/
√
2π
]
+ P

(
Z ′

gZg/ng ≤ kg/2
)

≤1/
∣∣∣Φ−1

(
2σ2

v(1 + ρ2uv)

ρ̄2k̄c̄N/G/2

) ∣∣∣+ P
(
Z ′

gZg/ng ≤ kg/2
)
= o(1)

where x∗∗
g = Φ−1

(
2σ2

v(1+ρ2uv)
ρ2gkgng/2

)
and last convergence result holds uniformly over g.

Therefore, we know that

2
σ2
uσ

2
v

N
Aδ + 2

σ2
uv

N
A2

δ =
G+,s

G

U
N

+ op(G/N).

Therefore we know that for any δ ≥ 0, the contribution from the g group to B+,s(δ) +

A+,s(δ) + C+,s
1 (δ) is lower bounded by

G+,s

G

U
N
.

Now we can make this argument for all groups g ∈ G+,s, therefore, since G+,s/G → b under

Assumption 1, we know that L(δ) ≥ 2bσ2
uσ

2
v(1 + ρ2uv)

G
N
+ op(

G
N
) for ∀δ ≥ 0.

Proof of Theorem 3

Proof. To establish the result, we first prove the following two statements:
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i) min
g∈G+,s

µ̂2
g/κG,N diverges with probability approaching 1,

ii) max
g∈Gc

+,s

µ̂2
g/κG,N goes to zero with probability approaching 1.

To prove i), note

min
g∈G+,s

µ̂2
g = inf

g∈G+,s

{µ2
g + µ̂2

g − µ2
g} ≥ min
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µ2
g − max

g∈G+,s

|µ̂2
g − µ2

g|.

For the second term on the right hand side, we have

P ( max
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|µ̂2
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P
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|µ̂2
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)
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P
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2
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2
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(
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2
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.

Since vig ∼ N (0, σ2
v), apply the tail bound for Gaussian random variable,5

P
(∣∣2ρgZ ′

gvg
∣∣ > ϵ/2
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≤ 2 exp(−1

2
ρ2gkgng/σ

2
v).

Therefore, under Assumption 1 and the rate condition (G logG)/N → 0, we have that

when ϵ = C1

√
N
G
logG with C2

1 > 32c̄ρ̄2σ2
v k̄,

P ( max
g∈G+,s

|µ̂2
g − µ2

g| > ϵ) ≤ G exp(−1

2

ϵ2/4

4ρ̄2c̄N
G
σ2
v k̄

) +G exp(−1

2
ρ2kc

N

G
)

= exp(logG− C2
1 logG

32ρ̄2c̄σ2
v k̄

) + exp(logG− 1

2σ2
v

ρ2kc
N

G
) → 0.

5For any random variable W ∼ N(µ, σ2) P (|W − µ| ≥ σx) ≤ 2e−x2/2 for all x ≥ 0.
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Therefore, together with the result in Lemma A5 that with probability approaching one

min
g∈G+,s

µ2
g is of order at least N

G
, we know that with probability approaching one

min
g∈G+,s

µ̂2
g√

N
G
logG

≥
min
g∈G+,s

µ2
g√

N
G
logG

−
max
g∈G+,s

|µ̂2
g − µ2

g|√
N
G
logG

diverges to +∞ if (G logG)/N → 0. Therefore take κG,N = O
(√

N
G
logG

)
, we have that

with probability approaching one min
g∈G+,s

µ̂2
g/κG,N diverges as well and (i) is satisfied.

To prove ii), note

max
g∈Gc

+,s

µ̂2
g = max
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+,s
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g + µ̂2

g − µ2
g} ≤ max
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+,s

|µ̂2
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g|.

For the second term on the right hand side, we have
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v

).

Let η = C2 logG with any C2 > 4σ2
v , we know that P ( sup

g∈Gc
+,s

|µ̂2
g − µ2

g| > η) → 0.

Therefore, together with the result in Lemma A5 that with probability approaching one

max
g∈G+,w

µ2
g is bounded with probability approaching one. Then we know that for any t > 1,

max
g∈Gc

+,s

µ̂2
g

(logG)t
≤

max
g∈Gc

+,s

µ2
g

(logG)t
+

max
g∈Gc

+,s

|µ̂2
g − µ2

g|

(logG)t
= op(1).

Then (ii) is satisfied as long as logG/κG,N = o(1). For example the tuning sequence κG,N

can be of order (logG)t for any t > 1 and at most
√

N
G
logG, which is well-defined since

G logG/N → 0.

Let δ̂ = µ̂(K̂)/
√
κG,N . The above analysis has shown that with probability approaching

one ming∈G+,s µ̂g > maxg∈Gc
+,s

µ̂g and K̂ = G+,s. That is, all strong groups are selected and

all other groups are not selected. Therefore, δ̂ ≍
√

N/(G · κG,N) which meets Assumption 2.
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Plug in δ̂ into L(δ̂) = H2Ssssel,int(δ̂) in Theorem 2, it is easy to see that L(δ̂) = L∗+op(G/N).

Then as G,N → ∞ and G logG/N → 0,

L(δ̂)/L∗ p→ 1.

Appendix C: Additional Simulation Results

Table A1: Standard Deviation of Existing Estimators

G+,s/G = 0.1 G+,s/G = 0.3
ρuv = 0.25 ρuv = 0.5 ρuv = 0.25 ρuv = 0.5

β̂pool β̂int β̂selp β̂pool β̂int β̂selp β̂pool β̂int β̂selp β̂pool β̂int β̂selp

G = 10

n=250 75.655 0.240 0.325 76.856 0.222 0.318 161.254 0.165 0.189 625.875 0.159 0.187
n=500 91.204 0.193 0.238 46.181 0.183 0.236 0.270 0.123 0.133 0.278 0.121 0.133
n=1000 26.381 0.146 0.167 32.785 0.141 0.165 0.175 0.089 0.094 0.177 0.088 0.093

G = 40
n=250 26.381 0.112 0.150 32.785 0.103 0.144 0.175 0.079 0.090 0.177 0.076 0.088
n=500 7.259 0.091 0.112 10.335 0.086 0.110 0.121 0.060 0.065 0.122 0.058 0.065
n=1000 0.291 0.071 0.083 0.300 0.068 0.081 0.084 0.044 0.047 0.085 0.043 0.046

G = 100
n=250 0.913 0.070 0.093 1.138 0.064 0.089 0.107 0.050 0.056 0.108 0.047 0.055
n=500 0.243 0.057 0.070 0.247 0.054 0.068 0.075 0.038 0.041 0.075 0.037 0.040
n=1000 0.166 0.044 0.052 0.168 0.043 0.051 0.053 0.028 0.029 0.053 0.027 0.029

G = 200
n=250 0.243 0.049 0.065 0.247 0.045 0.063 0.075 0.035 0.040 0.075 0.033 0.039
n=500 0.166 0.040 0.049 0.168 0.038 0.048 0.053 0.027 0.029 0.053 0.026 0.029
n=1000 0.115 0.031 0.037 0.116 0.030 0.036 0.037 0.020 0.021 0.037 0.019 0.021

Note: The table reports the standard deviation of the different estimators among 1000 simulations. The
data generating process setups are the same as those used in Table 1.
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Table A2: Finite-sample Bias of Existing Estimators

G+,s/G = 0.1 G+,s/G = 0.3
ρuv = 0.25 ρuv = 0.5 ρuv = 0.25 ρuv = 0.5

β̂pool β̂int β̂selp β̂pool β̂int β̂selp β̂pool β̂int β̂selp β̂pool β̂int β̂selp

G = 10

n=250 -0.192 0.123 0.038 -0.206 0.243 0.079 0.179 0.056 0.020 0.746 0.110 0.039
n=500 0.004 0.083 0.027 -0.104 0.156 0.046 -0.027 0.033 0.009 -0.048 0.061 0.014
n=1000 -0.484 0.049 0.026 -0.654 0.091 0.045 -0.015 0.018 0.009 -0.021 0.033 0.014

G = 40
n=250 -0.484 0.124 0.060 -0.654 0.247 0.120 -0.015 0.061 0.026 -0.021 0.121 0.053
n=500 -0.169 0.084 0.043 -0.318 0.165 0.080 0.003 0.036 0.014 -0.004 0.070 0.024
n=1000 -0.026 0.045 0.025 -0.047 0.094 0.054 -0.003 0.017 0.006 -0.005 0.035 0.014

G = 100
n=250 -0.046 0.123 0.063 -0.074 0.248 0.127 -0.008 0.061 0.026 -0.010 0.123 0.053
n=500 -0.011 0.079 0.040 -0.024 0.163 0.081 -0.001 0.034 0.013 -0.002 0.070 0.026
n=1000 -0.013 0.050 0.030 -0.020 0.100 0.061 -0.002 0.018 0.008 -0.003 0.038 0.017

G = 200
n=250 -0.011 0.124 0.064 -0.024 0.249 0.128 -0.001 0.062 0.028 -0.002 0.124 0.055
n=500 -0.013 0.084 0.043 -0.020 0.167 0.085 -0.002 0.035 0.012 -0.003 0.071 0.025
n=1000 -0.003 0.050 0.031 -0.008 0.100 0.063 -0.000 0.020 0.009 -0.001 0.038 0.018

Note: The table reports the finite-sample bias of the different estimators among 1000 simulations. The
data generating process setups are the same as those used in Table 1.
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