Data-intensive Innovation and the State: Evidence from AI Firms in China

Martin Beraja David Yang Noam Yuchtman MIT Harvard LSE

SED July, 2021

Research assistants: Haoran Gao, Shiyun Hu, Andrew Kao, Shuhao Lu, Junxi Liu, Shengqi Ni, Wenwei Peng, Yucheng Quan, Linchuan Xu, Peilin Yang, and Guoli Yin

Motivation: government data as input in Al innovation

- ► Al innovation is data-intensive
 - Many recent AI advances made with decades-old algorithms applied to newly available big data

Motivation: government data as input in Al innovation

- ► Al innovation is data-intensive
 - Many recent AI advances made with decades-old algorithms applied to newly available big data
- ▶ Literature has focused on how data collected by **private** firms shapes Al innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)

Motivation: government data as input in Al innovation

- ► Al innovation is data-intensive
 - Many recent Al advances made with decades-old algorithms applied to newly available big data
- ► Literature has focused on how data collected by **private** firms shapes Al innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- Yet, throughout history, states have also collected massive quantities of data (Scott, 1998)
- ▶ The state has a large role in many areas
 - ▶ Public security, health care, education, basic science...
 - ⇒ **Government data** can exceed privately-collected data in magnitude/scope; or lack good substitutes altogether

Motivation: China's facial recognition Al sector

► A common way in which Al firms **gain access** to valuable government data is by **providing services** to the state

Motivation: China's facial recognition Al sector

- ► A common way in which Al firms **gain access** to valuable government data is by **providing services** to the state
- ► Think about facial recognition Al firms in China...
 - ► Train algorithms with, e.g., video streams of faces from many angles
 - ► The state's public security units collect this form of data through their surveillance apparatus, and contract AI firms for services
 - Al firms gaining access to surveillance data can use it to train algorithms and develop software

This paper

Does access to **government data** when providing Al services to the state stimulate **commercial** Al innovation?

This paper

Does access to **government data** when providing Al services to the state stimulate **commercial** Al innovation?

The mechanism(s)

- If gov't data and algorithms are sharable across uses, they can be used to develop AI products for commercial markets (e.g., a facial recognition platform for retail stores)
- 2. Firms may **learn** to manage and utilize large datasets too

 \implies a procurement contract with access to gov't data can fuel commercial innovation, overcoming **crowd-out** from the contract

This paper

Does access to **government data** when providing Al services to the state stimulate **commercial** Al innovation?

The mechanism(s)

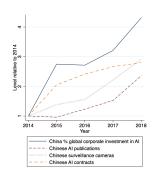
- If gov't data and algorithms are sharable across uses, they can be used to develop AI products for commercial markets (e.g., a facial recognition platform for retail stores)
- 2. Firms may learn to manage and utilize large datasets too

⇒ a procurement contract with access to gov't data can fuel commercial innovation, overcoming **crowd-out** from the contract

Evidence of this in China's facial recognition Al sector

Two implications

- 1. Access to gov't data contributed to Chinese firms' emergence as leading innovators in facial recognition Al
 - ► Indeed, this has coincided with the expansion of the government's procurement of AI and surveillance capacity



Two implications

- 1. Access to gov't data contributed to Chinese firms' emergence as leading innovators in facial recognition Al
 - ► Indeed, this has coincided with the expansion of the government's procurement of AI and surveillance capacity

2. Novel role for the state in data-intensive economies

- ► So far, emphasis on the regulation of privately-collected data due to antitrust or privacy concerns (Tirole, 2020; Aridor et al., 2020)
- Al procurement and policies of gov't data collection and provision could, whether intentionally or not, stimulate and shape the direction of innovation in a range of sectors

Empirical challenges

Would like to compare software output changes after receipt of gov't procurement contracts giving access to more v. less data

Empirical challenges

Would like to compare software output changes after receipt of gov't procurement contracts giving access to more v. less data

Data challenges

- 1. Dataset linking AI firms to govt. contracts did not exist
- Dataset on AI firms' software did not exist (our measure of product innovation). Also, critical for us to classify by use (commercial or not)
- 3. No available direct measures of firm-level use of gov't data

Empirical challenges

Would like to compare software output changes after receipt of gov't procurement contracts giving access to more v. less data

Data challenges

- 1. Dataset linking AI firms to govt. contracts did not exist
- Dataset on AI firms' software did not exist (our measure of product innovation). Also, critical for us to classify by use (commercial or not)
- 3. No available direct measures of firm-level use of gov't data

Identification challenges

- 1. Non-random assignment of gov't contracts
- 2. Contracts work through other mechanisms unrelated to data

Data 1: linking Al firms to govt. contracts

1. Identify all facial recognition Al firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- Include: (i) firms specialized in facial recognition AI (e.g., Yitu); (ii) hardware firms that devote substantial resources to develop AI software (e.g., Hik-Vision); (iii) facial recognition AI units of large tech conglomerates (e.g., Baidu AI)

Data 1: linking Al firms to govt. contracts

1. Identify all facial recognition Al firms

- 7.837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- Include: (i) firms specialized in facial recognition AI (e.g., Yitu); (ii) hardware firms that devote substantial resources to develop AI software (e.g., Hik-Vision); (iii) facial recognition AI units of large tech conglomerates (e.g., Baidu AI)

2. Obtain universe of **government contracts**

- 2,997,105 contracts
- Source: Chinese Govt. Procurement Database (Ministry of Finance)

Data 1: linking Al firms to govt. contracts

1. Identify all facial recognition Al firms

- 7.837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- Include: (i) firms specialized in facial recognition AI (e.g., Yitu); (ii) hardware firms that devote substantial resources to develop AI software (e.g., Hik-Vision); (iii) facial recognition AI units of large tech conglomerates (e.g., Baidu AI)

2. Obtain universe of **government contracts**

- 2,997,105 contracts
- Source: Chinese Govt. Procurement Database (Ministry of Finance)
- 3. Link government buyers to Al suppliers

Data 2: Al firms' software production

Registered with Min. of Industry and Information Technology

- Validation exercise: check against IPO Prospectus of MegVii

Data 2: Al firms' software production

Registered with Min. of Industry and Information Technology

- Validation exercise: check against IPO Prospectus of MegVii

Categorize by intended customers:

- 1. **Commercial:** e.g., visual recognition system for smart retail;
- Government: e.g., smart city real time monitoring system on main traffic routes;
- 3. General: e.g., a synchronization method for multi-view cameras based on FPGA chips.

Categorization: analyze text using machine learning

- ► Recurrent Neural Network (RNN) model using tensorflow
 - Corpus: 13,000 manually labeled software programs
 - Word-embedding: converted sentences to vectors based on word frequencies and used the words from full datasets as dictionary
 - Long Short-Term Memory (LSTM) algorithm: 2 layers of 32 nodes
 - 90% of corpus for training, 10% for validating
 - 10,000 training cycles are run for gradient descent on loss function
- Results robust to perturbing parameters of learning model

Data 3: measuring access to government data

Within Al public security contracts: variation in the data collection capacity of the public security agency's local surveillance network

- 1. Identify non-Al contracts: police department purchases of street cameras
- 2. Measure quantity of advanced cameras in a prefecture at a given time
- Categorize public security contracts as coming from "high" or "low" camera capacity prefectures

Baseline empirical strategy

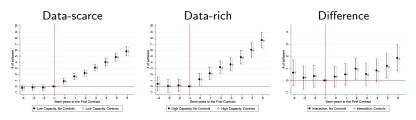
► **Triple diffs:** compare cumulative software releases before and after firms received 1st data-rich contracts, relative to the data-scarce ones

$$y_{it} = \sum_{T} \beta_{1T} T_{it} \frac{Data_i}{Data_i} + \sum_{T} \beta_{2T} T_{it} + \alpha_t + \gamma_i + \sum_{T} \beta_{3T} T_{it} X_i + \epsilon_{it}$$

- T_{it}: 1 if, at time t, T semi-years have passed before/since firm i received 1st contract
- Data_i: 1 if firm i receives "data rich" contract (i.e., from "high" camera capacity prefecture at time of contract receipt)
- X_i controls for pre-contract firm characteristics: age, size (cap), and software production

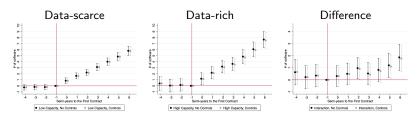
Public security contract "richer in data" & firm innovation

Commercial use cumulative software releases



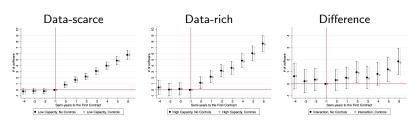
Public security contract "richer in data" & firm innovation

Commercial use cumulative software releases

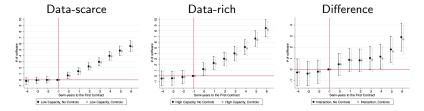


Magnitude: 2 new software products over 3 years

Public security contract "richer in data" & firm innovation Commercial use cumulative software releases



Government use cumulative software releases



Commercial innovation overcomes crowd-out of inputs by gov't

Evaluating alternative hypotheses

1. **Selection** at a given time differs by contract

- Firm controls. No differential pre-contract levels/trends of software

2. Terms and tasks differ by contract Language distance

- Descriptions of data-rich and -scarce contracts are similar in content
- Similar govt soft produced after data-rich and -scarce contracts too

3. Importance of capital differs by contract Capital

 Control for time-period x: pre-contract market cap or amount of external financing, and monetary value of contract

4. **Signals** differ by contract Signals

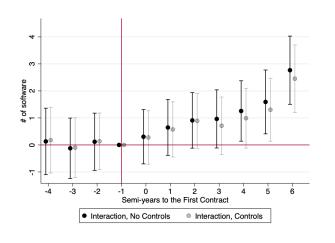
- Subsamples of firms: (i) from a *mother* firm that has already received contract, or (ii) receiving a 2nd data-rich contract

5. Govt connections or opportunities differ by contract • Local

- Drop contracts with Beijing/Shangai or firm's home province.
- Control for time-period × GDP-per-cap

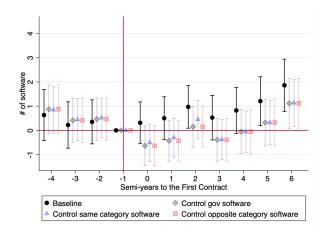
Additional evidence for our mechanism(s)

Data-complementary software (e.g., storage/transmission) differentially increases after data-rich contract. **Learning?**



Additional evidence for our mechanism(s)

- Include pre-contract Al production interacted with Time period fixed-effects. (Over)controls for learning potential
- Baseline estimate still positive, but halves in magnitude.
 Direct effect due to sharability of data/algorithms?



Contributions to literature

- To the literature on the economics of Al and data (e.g., Aghion et al., 2017; Agrawal et al., 2018; Farboodi et al., 2019; Jones and Tonetti, 2019)
 - Highlight the role of government data in shaping commercial AI innovation, and the sharability of data/algorithms within the firm

Contributions to literature

- To the literature on the economics of Al and data (e.g., Aghion et al., 2017; Agrawal et al., 2018; Farboodi et al., 2019; Jones and Tonetti, 2019)
 - Highlight the role of government data in shaping commercial Al innovation, and the sharability of data/algorithms within the firm
- To the literature on industrial and innovation policies (e.g., Rodrik, 2007; Lane, 2020; Bloom et al., 2019)
 - Government data provision to firms can act as an innovation policy, whether intentionally or not
 - Mechanisms similar to other government policies (e.g., learning spillovers from space exploration) but distinct too (direct effect of sharability)

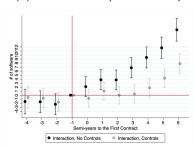
Contributions to literature

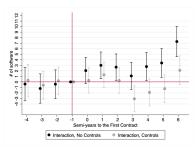
- To the literature on the economics of Al and data (e.g., Aghion et al., 2017; Agrawal et al., 2018; Farboodi et al., 2019; Jones and Tonetti, 2019)
 - Highlight the role of government data in shaping commercial AI innovation, and the sharability of data/algorithms within the firm
- To the literature on industrial and innovation policies (e.g., Rodrik, 2007; Lane, 2020; Bloom et al., 2019)
 - Government data provision to firms can act as an innovation policy, whether intentionally or not
 - Mechanisms similar to other government policies (e.g., learning spillovers from space exploration) but distinct too (direct effect of sharability)
- To the literature on the rise of China emphasizing the role of the state (e.g., Lau et al., 2000; Brandt and Rawski, 2008; Song et al., 2011)
 - Highlight the role of the surveillance apparatus in commercial innovation
 - Next project: Al-tocracy. Alignment between innovation and autocracy?
 Contrasts with e.g., North (1991); Acemoglu and Robinson (2006, 2012)

Appendix

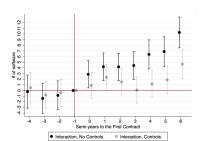
(a) Government (for video-AI)

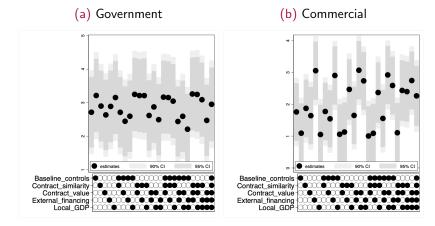
(b) Commercial (for video-AI)





(c) Data-complementary (for video-AI)





▶ Back

Table A.11: Scale effects and learning-by-doing

Table A.11: Scale effects and learning-by-doing						
	Government Commercial		Data-complementary			
	(1)	(2)	(3)			
Panel A: Baseline						
4 Semiyears Before	-0.177	-0.239	-0.310			
	(0.268)	(0.231)	(0.270)			
6 Semiyears After	5.595***	5.811***	6.383***			
•	(0.444)	(0.378)	(0.443)			
4 Semiyears Before × High Capacity	-0.279	0.633	0.130			
, , ,	(0.620)	(0.539)	(0.627)			
6 Semiyears After × High Capacity	2.911***	1.861***	2.766***			
,	(0.642)	(0.550)	(0.644)			
Panel B: Control for government pre-contract software production						
4 Semiyears Before	0.138	-0.076	-0.081			
ŕ	(0.233)	(0.220)	(0.252)			
6 Semiyears After	1.769***	3.846***	3.652***			
,	(0.386)	(0.362)	(0.415)			
4 Semiyears Before × High Capacity	0.170	0.869*	0.489			
, , , , , , , , , , , , , , , , , , , ,	(0.538)	(0.514)	(0.586)			
6 Semiyears After × High Capacity	1.477***	1.116**	1.722***			
	(0.556)	(0.525)	(0.602)			
Panel C: Control for same category pre-contract software production						
4 Semiyears Before	0.138	0.034	-0.047			
,	(0.233)	(0.209)	(0.253)			
6 Semiyears After	1.769***	2.577***	3.173***			
,	(0.386)	(0.344)	(0.418)			
4 Semiyears Before × High Capacity	0.170	0.841*	0.361			
yy	(0.538)	(0.487)	(0.589)			
6 Semiyears After × High Capacity	1.477***	1.132**	2.013***			
o sensy cars rates wrager capacity	(0.556)	(0.498)	(0.605)			
Panel D: Control for opposite category pre-contract software production						
4 Semiyears Before	0.080	-0.076	-0.061			
•	(0.250)	(0.220)	(0.256)			
6 Semiyears After	2.399***	3.846***	3.474***			
	(0.416)	(0.362)	(0.423)			
4 Semiyears Before × High Capacity	-0.078	0.869*	0.302			
, xxigit empticity	(0.579)	(0.514)	(0.596)			
6 Semiyears After × High Capacity	2.231***	1.116**	2.111***			
,,,	(0.599)	(0.525)	(0.612)			
	(0.077)	(0.020)	(0.012)			

Table A.12: Effects of 2nd public security contracts

	Government Commercial		Data-complementary	
	(1)	(2)	(3)	
Panel A: Baseline				
4 Semiyears Before	-0.177	-0.239	-0.310	
	(0.268)	(0.231)	(0.270)	
6 Semiyears After	5.595***	5.811***	6.383***	
	(0.444)	(0.378)	(0.443)	
4 Semiyears Before × High Capacity	-0.279	0.633	0.130	
	(0.620)	(0.539)	(0.627)	
6 Semiyears After × High Capacity	2.911***	1.861***	2.766***	
	(0.642)	(0.550)	(0.644)	
Panel B: Sample — not first contract w	ithin mother fir	m		
4 Semiyears Before	-0.078	-0.431	-0.184	
	(0.213)	(0.362)	(0.283)	
6 Semiyears After	4.606***	6.730***	6.370***	
•	(0.332)	(0.557)	(0.438)	
4 Semiyears Before × High Capacity	1.035	1.047	0.820	
	(0.786)	(1.384)	(1.081)	
6 Semiyears After × High Capacity	2.753***	1.975*	1.024	
	(0.710)	(1.200)	(0.947)	
Panel C: Sample — second contract w	ithin subsidiary	firm		
4 Semiyears Before	-1.577*	2.214***	2.015***	
•	(0.916)	(0.656)	(0.697)	
6 Semiyears After	8.533***	7.856***	13.538***	
•	(1.430)	(1.025)	(1.088)	
4 Semiyears Before × High Capacity	1.090	-1.943**	-1.819*	
. 0 1 7	(1.287)	(0.923)	(0.980)	
6 Semiyears After × High Capacity	29.042***	2.876**	17.833***	
, , ,	(1.881)	(1.349)	(1.432)	

Table A.13: Robustness — firm geography

·	Government	Commercial	Data-complementary
	(1)	(2)	(3)
Panel A: Baseline			
4 Semiyears Before	-0.177	-0.239	-0.310
,	(0.268)	(0.231)	(0.270)
6 Semiyears After	5.595***	5.811***	6.383***
,	(0.444)	(0.378)	(0.443)
4 Semiyears Before × High Capacity	-0.279	0.633	0.130
, , , ,	(0.620)	(0.539)	(0.627)
6 Semiyears After × High Capacity	2.911***	1.861***	2.766***
, , , , , , , , , , , , , , , , , , , ,	(0.642)	(0.550)	(0.644)
Panel B: Drop Beijing, Shanghai			
4 Semiyears Before	-0.179	-0.242	-0.277
,	(0.264)	(0.166)	(0.249)
6 Semiyears After	5.511***	5.873***	6.286***
,	(0.423)	(0.264)	(0.397)
4 Semiyears Before × High Capacity	-0.114	0.763*	0.235
, , ,	(0.634)	(0.404)	(0.603)
6 Semiyears After × High Capacity	2.983***	1.118***	2.863***
, , ,	(0.641)	(0.403)	(0.605)
Panel C: Firm based outside contract province			
4 Semiyears Before	-0.195	-0.165	-0.293
100111,0110 001010	(0.209)	(0.245)	(0.218)
6 Semiyears After	5.254***	5.862***	6.153***
,	(0.333)	(0.387)	(0.346)
4 Semiyears Before × High Capacity	-0.053	0.721	0.177
	(0.555)	(0.658)	(0.586)
6 Semiyears After × High Capacity	2.365***	2.747***	2.815***
,,,,,	(0.542)	(0.636)	(0.567)