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Abstract

Many nonlinear Econometric models show evidence of weak identi�cation. In this paper

we consider minimum distance statistics and show that in a broad class of models the problem

of testing under weak identi�cation is closely related to the problem of testing a �curved null�

in a �nite-sample Gaussian model. Using the curvature of the model, we develop new �nite-

sample bounds on the distribution of minimum-distance statistics, which we show can be used

to detect weak identi�cation and to construct tests robust to weak identi�cation. We apply our

new method to new Keynesian Phillips curve and DSGE examples and show that it provides a

signi�cant improvement over existing approaches.
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1 Introduction

Empirical researchers in Economics frequently �nd that even in large samples the data

provides little information about some model parameters. In such cases, known as weakly

identi�ed, the usual asymptotic approximations to the behavior of estimators and test

statistics may be quite poor, making standard approaches to inference unreliable. Weak

identi�cation has been detected in a wide range of non-linear estimation contexts, includ-

ing estimation of the new Keynsian Phillips curve (Dufour, Khalaf, and Kichian (2006),

Kleibergen and Mavroeidis (2009), Mavroeidis (2005), Nason and Smith (2008)), mone-

tary policy rules (Mavroeidis (2010)), Dynamic Stochastic General Equilibrium (DSGE)

Models ( Ruge-Murcia (2007), Canova and Sala (2009), Iskrev (2010), I. Andrews and

Mikusheva (2013), Guerron-Quintana, Inoue and Kilian (2013)), and Euler equations

(Yogo (2004)). The need for more reliable procedures robust to weak identi�cation in
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non-linear contexts has inspired a large literature in econometrics - for a survey, see

Dufour (2003) and Stock, Wright, and Yogo (2002).

A number of di�erent testing procedures have been proposed in this literature, most

of which address two situations: the case in which one is interested in testing the full

parameter vector, and the case in which one is interested in testing only a subset of

parameters but the parameters not under test (the nuisance parameters) are strongly

identi�ed. Examples of such tests include those of Stock and Wright (2000), Guggen-

berger and Smith (2005, 2008), Kleibergen (2005, 2007), I. Andrews and Mikusheva

(2013), and Qu (2013). The literature to date has, however, been largely silent about the

case in which part of the nuisance parameter vector may be weakly identi�ed. A notable

exception is the recent paper by D. Andrews and Cheng (2012).

Our paper directly addresses the question of inference with weakly identi�ed nuisance

parameters in the context of minimum distance estimation. We suggest a fully robust

testing procedure which controls size without any assumption on the strength of iden-

ti�cation of the parameters. Further, if the nuisance parameters are strongly identi�ed,

our procedure is asymptotically equivalent to the �concentrated out� S-test suggested by

Stock and Wright (2000) for hypotheses with strongly identi�ed nuisance parameters.

Our procedure is based on novel �nite-sample bounds on the distribution of the test

statistic under the null, derived under the assumption that the reduced-form parameter

estimate is exactly normally distributed with a known covariance matrix. We show

that tests based on these bounds control asymptotic size uniformly over a broad class

of models. For our asymptotic results, we assume that the reduced-form parameter

estimates are uniformly asymptotically normal with consistently estimable variance. Our

results hold uniformly over a large class of link functions relating the structural and

reduced-form parameters and do not rely on any particular asymptotic embedding, such

as those used by Stock and Wright (2000) or D. Andrews and Cheng (2012), to model

weak identi�cation.

The bounds we derive rely on techniques from di�erential geometry which are new

in the econometrics literature. Our starting point is the observation that hypotheses

in non-linear models with strongly identi�ed nuisance parameters are asymptotically

linear in a geometrical sense. In contrast, hypotheses with weakly identi�ed nuisance

parameters need not be asymptotically linear and can exhibit substantial curvature even

in large samples, leading to the breakdown of the usual asymptotic approximations. Our
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bounds can be viewed as a strengthening of the usual approximations, where rather

than appealing to asymptotic linearity of the null hypothesis we quantify the maximal

deviation of the null from linearity and use it to construct stochastic bounds. As a result,

under strong-identi�cation asymptotics our bounds recover the usual approximations.

The test we suggest uses a standard minimum-distance statistic paired with easy-to-

simulate robust critical values derived using these geometric bounds. The bounds we

derive are also of potential interest for a range of other applications, including testing

nonlinear hypotheses and inference in highly non-linear models. Our approach di�ers

from the statistical geometry literature initiated by Efron (1975) in that we produce

�nite sample bounds on the distribution of the test statistic, whereas the statistical

geometry literature is primarily concerned with higher-order asymptotic approximations.

To date the dominant recommendation for testing hypotheses with weakly identi�ed

nuisance parameters has been the projection method (see Dufour and Jasiak (2001),

Dufour and Taamouti (2005), Dufour, Khalaf, and Kichian (2006)). The strength of the

projection method is that it requires no assumptions beyond the validity of the test for the

full parameter vector. It is in general conservative, however, and may be extremely so in

cases where the nuisance parameter is high-dimensional and/or strongly identi�ed. Our

approach is an improvement over the projection method, in that it pairs the minimum

distance statistic with smaller critical values while still maintaining size.

If one knows that part of the nuisance parameter vector is strongly identi�ed, it has

been proved that in many cases one can obtain a more powerful test by concentrating

out the nuisance parameter as in e.g. Stock and Wright (2000). Maintaining correct

size in such cases, however, relies critically on the strong identi�cation assumption on

the nuisance parameter. In contrast, our approach requires no assumption of strong

identi�cation but, in the event that the nuisance parameters are strongly identi�ed, is

asymptotically equivalent to concentrating them out. In this sense, our robust critical

values can be viewed as providing a continuous transition between projecting over and

concentrating out the nuisance parameters, depending on the strength of identi�cation.

To illustrate our approach, we revisit the question of weak identi�cation-robust in-

ference on new Keyensian Phillips curve parameters previously studied by Magnusson

and Mavroeidis (2010). Applying our method to their empirical example we �nd that

there is a substantial amount of curvature. Using our robust approach we construct con-

�dence sets which both have better coverage than those developed by Magnusson and
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Mavroeidis and are smaller in the empirical application. We also apply our approach to

a small-scale DSGE model and �nd evidence of substantial curvature. We consider the

problem of testing composite hypotheses about model parameters, and show that our

robust critical values are substantially smaller than those used by the projection method

while still controlling size.

The paper is structured as follows. In Section 2 we show that hypotheses with strongly

identi�ed nuisance parameters are asymptotically linear, while weakly identi�ed nuisance

parameters may cause non-trivial curvature of the null hypothesis. In Section 3 we derive

our geometric and stochastic bounds. In Section 4 we introduce our �nite-sample test

as well as several modi�cations, under the assumption that the reduced-form parameters

are normally distributed with known variance. In Section 5 we relax the �nite-sample

normality assumption and discuss the uniform asymptotic validity of our procedure. We

also compare our testing procedures with existing methods. Section 6 presents empirical

results from applying our approach to a new Keyensian Phillips curve example, and

Section 7 presents simulation results from a small-scale DSGE model. Most may be

found in the Appendix, while proofs of secondary importance and the details of our

empirical and simulation examples are given in the Supplementary Appendix, which can

be found on Anna Mikusheva's website3.

Throughout the paper we use the following notation: α̇ is the derivative of the function

α, α̈ is the second derivative, BR(x0) = {x ∈ Rk : ∥x − x0∥ ≤ (1 +
√
2)R} is a k-

dimensional ball of radius (1 +
√
2)R with center x0. Let DC = {x = (x(1), x(2)) :

∥x(1)∥ ≤ C, ∥x(2)∥ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk, which is a natural generalization of

a cylinder. We take NZ to equal I − Z(Z ′Z)−1Z ′.

2 Model setting

In many empirical settings researchers are interested in statistical inference on a subset of

structural parameters, for example constructing con�dence sets for individual parameters

in multi-parameter models. Suppose we are interested in testing a hypothesis H0 : α = α0

about a structural parameter α but that the model also has a p-dimensional nuisance

parameter (i.e. parameter not under test) β which can vary freely under the null. This

paper is concerned with inference in cases where we are not willing assume that the

3economics.mit.edu/files/9271
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nuisance parameter β is strongly identi�ed.

We explore this issue in a minimum-distance context, and in particular assume that

we have some k-dimensional (k > p) reduced-form parameter θ which is known to be

strongly identi�ed. Here by strong identi�cation we mean that there is an estimator

θ̂ of the unknown true value θ0 such that, for some estimator Σ̂ for the variance of θ̂,

Σ̂− 1
2

(
θ̂ − θ0

)
is uniformly asymptotically normally distributed. In time-series models θ

could consist of auto-covariances or reduced-form VAR parameters, while in linear IV

it could contain reduced-form regression coe�cients. For the main part of our analysis

we make the stronger assumption that our estimator θ̂ is exactly normally distributed,

θ̂ − θ0 ∼ N(0,Σ) for a known covariance matrix Σ. This allows us to develop exact

�nite-sample results. We then relax our assumptions to require that θ̂ be uniformly

asymptotically normal and its asymptotic variance be uniformly consistently estimable,

and show that our �nite-sample results imply uniform asymptotic results.

Let θ(α, β) be a link function connecting the structural and reduced-form parameters.

For many models the link function and its derivatives can easily be calculated for any

values α and β. In such cases, we consider a test based on the minimum-distance statistic

MD = min
β

(θ̂ − θ(α0, β))
′Σ−1(θ̂ − θ(α0, β)). (1)

In some contexts the link function may only be de�ned implicitly, for example by the

restriction that the true parameter values θ0 and α0 must satisfy g(θ0, α0) = 0 for a

(k − p)-dimensional function g. This corresponds to having an implicit p-dimensional

nuisance parameter, and in such models we de�ne the minimum-distance statistic as

MD = min
θ:g(θ,α0)=0

(θ̂ − θ)′Σ−1(θ̂ − θ).

Our empirical example, inference on New Keynesian Phillips curve parameters, falls into

this class.

To proceed, it is useful for us to introduce the random vector ξ = Σ−1/2(θ̂ − θ0) ∼

N(0, Ik) and the p-dimensional manifold S = {x : x = Σ−1/2(θ(α0, β) − θ0), β ∈ Rp}.

Note that under the null the manifold S is known up to a location shift determined by

the true value β0, since θ0 = θ(α0, β0). Thus, we know the shape of S and, moreover,

know that it passes through the origin. In the case of an implicitly de�ned link function
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we have S = {x : x = Σ−1/2(θ − θ0), g(θ, α0) = 0}. The minimum distance statistics

de�ned above are simply the squared distance between ξ and S:

MD = min
x∈S

(ξ − x)′(ξ − x) = ρ2(ξ, S). (2)

The distribution of ρ2(ξ, S) is in general non-standard and depends on the unknown β0.

The central statistical issue of this paper is how to de�ne critical values such that tests

based on ρ2(ξ, S) control size.

A well-known property of the normal distribution is that if S is a p-dimensional linear

sub-space in Rk then the squared distance ρ2(ξ, S) has a χ2
k−p distribution. Note that

in this special case the distribution does not depend on β0. Numerous classical results

on testing in the presence of nuisance parameters are based on this fact. Indeed, most

of the classical statistics literature deals with testing hypotheses that are either linear

or asymptotically linear, in the sense that S is either a linear subspace or is arbitrarily

well-approximated by one in large samples. Below, we argue that testing in the presence

of strongly identi�ed nuisance parameters is asymptotically equivalent to testing a linear

hypothesis, while testing in the presence of weakly identi�ed nuisance parameters tends to

result in asymptotically non-linear null hypotheses. Our main results construct bounds

on the distribution of ρ2(ξ, S) and de�ne critical values based on a measure of the non-

linearity of S, speci�cally its maximal curvature.

There is a less informative bound that can be placed on ρ2(ξ, S) without any assump-

tions, namely that ρ2(ξ, S) is dominated by a χ2
k distribution. Indeed, since 0 ∈ S,

ρ(ξ, S)2 = min
x∈S

(ξ − x)′(ξ − x) ≤ (ξ − 0)′(ξ − 0) ∼ χ2
k. (3)

This bound is precisely the one used by the �projection method�, which is currently

the main approach available for testing with weakly identi�ed nuisance parameters, see

Dufour and Jasiak (2001), Dufour and Taamouti (2005), and Dufour, Khalaf, and Kichian

(2006).

2.1 Strength of identi�cation and linearity.

In this section we argue that testing with strongly identi�ed nuisance parameters is

asymptotically equivalent to the case when the manifold S is linear. In contrast, if
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there are weakly identi�ed nuisance parameters the manifold corresponding to the null

hypothesis need not converge to a linear subspace, so S may remain non-linear even in

large samples. To �x ideas, in this section we use the weak identi�cation asymptotic

framework introduced by Stock and Wright (2000). It is important to emphasize that

the discussion in this section is solely for motivation and that the validity of our method

does not rely on this or any other device for modeling weak identi�cation.

Consider a GMM model in which the moment function is additively separable in

the data. In particular, assume that we observe a sample {xi} of size n consisting of

identically and independently distributed observations such that

E(h(xi)− θ(α, β)) = 0 for α = α0, β = β0. (4)

Here θ0 = Eh(xi) is a k-dimensional reduced-form parameter, while α and β are pα × 1

and pβ × 1 vectors respectively, with pα + pβ ≤ k. Assume that (α0, β0) is the unique

point at which the moment condition (4) is satis�ed, so the model is point identi�ed. As

in Stock and Wright (2000), we allow the function θ(α, β) to change as the sample size

grows. In particular, let

θ(α, β) = θn(α, β) = M̃(α) +
1√
n
M∗(α, β), (5)

where M̃(α) and M∗(α, β) are �xed twice-continuously-di�erentiable functions with full-

rank Jacobians. In this setting α is strongly identi�ed while β is weakly identi�ed,

because information about β does not accumulate as the sample size grows.

Suppose we are interested in testing hypotheses about the structural parameters α

and β. Consider �rst the problem of testing the hypothesis H0 : β = β0 with strongly

identi�ed nuisance parameter α. The appropriate minimum distance test statistic is

MD(β0) = min
α
n

(
1

n

∑
i

h(xi)− θn(α, β0)

)′

Σ−1

(
1

n

∑
i

h(xi)− θn(α, β0)

)
,

where Σ is the covariance matrix of random vector h(xi) (which we take to be nonsin-

gular) or a consistent estimate thereof. Stock and Wright (2000) prove that under the

null MD(β0) ⇒ χ2
k−pα

. Interested readers may �nd a full proof of this result in Stock

and Wright (2000): here, we instead show that this testing problem is asymptotically
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equivalent to a testing problem with linear S.

De�ne ξn =
√
nΣ−1/2( 1

n

∑
i h(xi) − θn(α0, β0)). By the central limit theorem, ξn ⇒

ξ ∼ N(0, Ik). Let the manifold Sn be the image of the function

mn(α) =
√
nΣ−1/2(θn(α, β0)− θn(α0, β0)) =

=
√
nΣ−1/2(M̃(α)− M̃(α0)) + Σ−1/2(M∗(α, β0)−M∗(α0, β0)) =

=
√
nΣ−1/2(M̃(α)− M̃(α0)) +O(||α− α0||). (6)

Then MD(β0) = ρ2(ξn, Sn). Under standard conditions for global identi�cation, the

value of M̃(α) is in a small neighborhood of M̃(α0) only if α is close to α0. Under

such conditions one can easily show that the range of values of α such that mn(α) ∈

Sn

∩
B is of order 1/

√
n for any bounded set B containing zero. Consequently, Taylor

approximation shows that the intersection Sn

∩
B converges to the intersection of B with

the pα-dimensional linear sub-space S spanned by the columns of the Jacobian of M̃(α)

at point α0. Informally, we may say that due to the factor
√
n in equation (6), as the

sample size increases we zoom in on an in�nitesimal neighborhood of the true value α0 of

the strongly identi�ed nuisance parameter. Any regular manifold, however, is arbitrarily

well approximated by its tangent space on an in�nitesimal neighborhood of a regular

point. As a result, it is easy to show that ρ2(ξn, Sn) ⇒ ρ2(ξ, S) ∼ χ2
k−pα

, where the last

step uses the fact discussed at the beginning of this section that the squared distance

from a standard normal vector to a linear subspace is χ2-distributed.

Tests for hypotheses with weakly identi�ed nuisance parameters behave quite di�er-

ently. In particular, the curvature of a null hypothesis with a weakly identi�ed nuisance

parameter does not in general vanish asymptotically. To illustrate this point, assume

that the hypothesis of interest is H0 : α = α0, so that β is a weakly identi�ed nuisance

parameter. Again, we consider the appropriate minimum distance statistic:

MD(α0) = min
β
n

(
1

n

∑
i

h(xi)− θn(α0, β)

)′

Σ−1

(
1

n

∑
i

h(xi)− θn(α0, β)

)
.

De�ne ξn =
√
nΣ−1/2( 1

n

∑
i h(xi)− θn(α0, β0)) as before, and let Sn be the image of

mn(β) =
√
nΣ−1/2(θn(α0, β)− θn(α0, β0)) = Σ−1/2(M∗(α0, β)−M∗(α0, β0)).
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By construction, Sn is a pβ-dimensional manifold in k-dimensional Euclidean space. In

contrast to the strongly identi�ed case, however, here Sn does not change with the sample

size so we may denote it by S. Hence, if Sn is nonlinear for a given sample size, it remains

nonlinear in the limit. As a result, we have that

MD(α0) = ρ2(ξn, S) ⇒ ρ2(ξ, S),

where ξ ∼ N(0, Ik) and S is a pβ-dimensional manifold, which is not in general a linear

sub-space.

Linearity vs strength of identi�cation. We showed above that the problem of test-

ing a hypothesis with strongly identi�ed nuisance parameters is asymptotically equivalent

to testing a linear hypothesis in a Gaussian model. In contrast, if there are weakly iden-

ti�ed nuisance parameters the manifold S corresponding to the null hypothesis need not

converge to a linear subspace and may remain non-linear even in large samples. Rather

than focusing on strength of identi�cation, we may view the key distinction here as be-

tween linearity and non-linearity. In particular, while strong identi�cation guarantees

that the null hypothesis will correspond to a linear subspace in the limit, even with

weakly identi�ed nuisance parameters if S (the set of parameter values satisfying the

null) happens to be a linear subspace, the usual χ2
k−p limiting distribution will be correct

asymptotically. Hence, in models where the nuisance parameters enter the link func-

tion θ linearly, the usual (strong-identi�cation) critical values for the minimum distance

statistic will yield asymptotically valid tests regardless of the strength of identi�cation.

Asymptotic linearity, not strong identi�cation as such, is the essential condition. On a

related note, Andrews and Mikusheva (2013) show that in a parametric model, a score

test which concentrates out nuisance parameters is una�ected by weak identi�cation of

these parameters provided they enter the log-likelihood function linearly.

Weak Instrumental Variable regression. A natural example of a model with nui-

sance parameters that enter linearly is linear IV. In particular, consider the linear IV

model written in reduced-form:  Y = βπZ + v

X = πZ + u
,
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where Y is a n× 1 vector of realizations of the dependent variable, X is an endogenous

regressor of interest, and Z is a set of k instrumental variables. The hypothesis of interest

is H0 : β = β0, where the nuisance parameter π takes values in Rk.

To construct a minimum-distance statistic we match reduced-form coe�cients. Let

θ(β, π) = (βπ′, π′)′ be the link function between the 2k × 1-dimensional reduced form

parameter θ and structural parameters β and π. We take θ̂ = vec((Z ′Z)−1Z ′(Y,X))

to be the OLS estimator of the reduced-form coe�cients. Under mild assumptions θ̂

is consistent and
√
n-asymptotically normal with consistently estimable variance matrix

Σ. Algebraic manipulation shows that the minimum distance statistic in this case is

a version of the well-known Anderson-Rubin (1949) statistic. The null manifold S =

{
√
nΣ−1/2(θ(β0, π) − θ0), π ∈ Rk} is a k-dimensional linear subspace in R2k. Thus, by

the argument above we can use χ2
k critical values. Hence, in this case our approach gives

us the Anderson-Rubin test, which is known to be robust to weak instruments. This

example happens to be trivial from a theoretical perspective, as the nuisance parameter

π enters linearly.

3 Geometry

In the previous section we argued that the distribution of the statistic MD depends on

the shape of the null hypothesis manifold S. In this section, we begin by introducing a

number of geometrical concepts. Using these tools, and in particular the curvature of

S, we bound MD from above for each realization of the data. From this realization-

by-realization bound we then derive an upper bound on the distribution of MD that

depends only on the dimension and curvature of S.

3.1 Manifolds, tangent spaces, curvature

In this paper we focus on regular manifolds embedded in k-dimensional Euclidean space

with the usual Euclidean norm ∥ · ∥. A subset S ⊂ Rk is called a p-dimensional regular

manifold if for each point q ∈ S there exists a neighborhood V in Rk and a twice-

continuously-di�erentiable map x : U → V
∩
S from an open set U ⊂ Rp onto V

∩
S ⊂

Rk such that (i) x is a homeomorphism, which is to say it has a continuous inverse and

(ii) the Jacobian dxq has full rank. A mapping x which satis�es these conditions is
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called a parametrization or a system of local coordinates, while the set V
∩
S is called a

coordinate neighborhood.

Note that the manifold S is de�ned as a set, rather than as a map. In keeping with

this spirit, many of the statements below will be invariant to parametrization. Hence,

if we have di�erent parameterizations for the same manifold, which of them we use is

entirely a matter of convenience. In some problems it may be the case that there does

not exist a global parametrization, that is a �xed mapping x satisfying the conditions

above such that S is the image of x. For instance, suppose that as discussed in Section

2, S is de�ned as the set of points q satisfying the k− p-dimensional restriction g(q) = 0.

If we assume that the twice continuously di�erentiable function g has a Jacobian of rank

k − p at all points, the Implicit Function Theorem guarantees the existence of a local

parametrization in a neighborhood of each point q ∈ S but a global parametrization need

not exist.

We begin by developing some geometrical concepts for the special case of a regular

1-dimensional manifold, also known as a curve. In particular, let S be a curve given by

α : (t0, t1) → Rk where α is twice continuously di�erentiable and (t0, t1) is an interval in

R. The arc length is de�ned as s(t) =
∫ t

t0
∥α̇(τ)∥dτ. Without loss of generality, we can

take α to be parameterized by arc length s, in which case at all points ∥α̇(s)∥ = 1 and

the vector α̈(s) is perpendicular to α̇(s). The vector α̇(s) is called the tangent vector to

S at q = α(s), while κq(S) = ∥α̈(s)∥ is called the curvature at q. The curvature measures

how quickly the curve S deviates from its tangent line local to q, and the scaling is such

that a circle of radius C has curvature 1/C at all points.

The change of variables from the arbitrary parametrization t to arc length s is not

necessary for the calculation of curvature. In particular, as before let α̇(t) and α̈(t) denote

the �rst and second derivatives of α, now with respect to t. If we let (α̈(t))⊥ be the part

of α̈(t) orthogonal to α̇(t), then the curvature at q = α(t) is κq(S) =
∥(α̈(t))⊥∥
∥α̇(t)∥2 . One can

show that this de�nition of curvature is invariant to parametrization, and hence that in

the special case of a curve parameterized by arc length it reduces to the de�nition given

above.

These concepts can all be extended to general regular manifolds. Fixing a p-dimensional

manifold S, for any curve α : (−ε, ε) → S on S which passes through the point

q = α(0) ∈ S the tangent vector α̇(0) is called a tangent vector to S at q. For x a

system of local coordinates at q, the set of all tangent vectors to S at q coincides with
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the linear space spanned by the Jacobian dxq and is called the tangent space to S at q

(denoted Tq(S)). While we have de�ned the tangent space using the local coordinates

x, as one would expect from its geometrical interpretation Tq(S) is independent of the

parametrization.

To calculate the curvature at q, consider a curve α : (t0, t1) → S which lies in S and

passes through q = α(0). Taking T⊥
q to be the k− p-dimensional linear space orthogonal

to Tq(S), de�ne

κq(α, S) =

∥∥(α̈(0))⊥∥∥
∥α̇(0)∥2

,

where (W )⊥ stands for the projection of W onto the space T⊥
q . One can show that

κq(α, S) depends on the curve α only through α̇(0), so for two curves α and α∗ in S with

α(0) = α∗(0) = q and α̇(0) = α̇∗(0) we have κq(α, S) = κq(α
∗, S). We can also show

that for any X ∈ Tq(S) one can �nd a curve α in S with property that α(0) = q and

α̇(0) = X. The measure of curvature we consider is

κq(S) = sup
X∈Tq(S),α̇(0)=X

κq(α, S) = sup
X∈Tq(S),α̇(0)=X

∥∥(α̈(0))⊥∥∥
∥α̇(0)∥2

. (7)

This measure of curvature is closely related to the Second Fundamental Tensor (we refer

the interested reader to Kobayashi and Nomizu (1969, v.2, ch. 7)), and is equal to the

maximal curvature over all curves passing through the point q. As with the curvature

measure discussed for curves, (7) is invariant to the parametrization. Also analogous to

the 1-dimensional case, if S is a p-dimensional sphere of radius C then for each q ∈ S we

have κq(S) = 1/C. Finally, if S is a linear subspace its curvature is zero at all points.

How to calculate curvature in practice. Let S be a p-dimensional manifold in Rk,

and let x be a local parametrization at a point q, q = x(y∗). Denote the derivatives of

x at q by vi =
∂x
∂yi

(y∗). By the de�nition of a local parametrization, we know that the

Jacobian Z = (v1, ..., vp) is full rank, so the tangent space Tq(S) = span{v1, ..., vp} is p-

dimensional. As before, for any vector W ∈ Rk let W⊥ denote the part of W orthogonal

to Tq(S), that is, W
⊥ = NZW = (I − Z(Z ′Z)−1Z ′)W . Finally, denote the p2 vectors of

second derivatives Vij =
∂2

∂yi∂yj
x(y∗). The curvature can then be written as

12



κq(S) = sup
u=(u1,..,up)∈Rp

∥
∑p

i=1 uivi∥=1

∥∥∥∥∥
p∑

i,j=1

uiujV
⊥
ij

∥∥∥∥∥ = sup
(w1,...,wp)∈Rp

∥∥∥∑p
i,j=1wiwjV

⊥
ij

∥∥∥
∥
∑p

i=1wivi∥2
. (8)

Notice that here we calculate maximal curvature over all directions in the tangent

space; the possibility of calculating curvature over only a subset of directions is discussed

in Section 4.2.

3.2 Geometric bounds

In this section we establish a bound on the distance in Rk from a random vector ξ ∼

N(0, Ik) to a p-dimensional non-random manifold S that contains zero. Our bound

depends on the maximal curvature κq(S) over all relevant points in the manifold S. Our

bound will be based on global properties of the manifold, in the sense of properties that

hold on a �xed bounded set, but we abstract from the behavior of the manifold at in�nity

as irrelevant. In what follows, we restrict attention to a connected part of the manifold

that lies inside of a �nite cylinder centered at zero.

We derive our bound in two steps: �rst, we construct an envelope for the manifold S

using a collection of p-dimensional spheres. We show that the distance from any point ξ

to S is bounded above by the distance from ξ to the most distant sphere in the collection

we consider. Second, we show that our geometric construction implies a bound on the

distribution of ρ2(ξ, S) and hence on the distribution of the minimum distance statistic.

To provide intuition for our main statement we walk the reader through two simple cases

in which the construction of the envelope can be easily visualized.

Case 1 (k=2, p=1): A curve in R2. Consider a curve S passing through zero (i.e.

(0, 0) ∈ S). Suppose that the curvature of S is less than or equal to 1/C for all points

in S. If we imagine two circles of radius C tangent to S at zero, we can see that the

curve lies between them- see Figure 1 for illustration. Since S lies between the circles, the

distance from any point ξ to S (denoted by d1 in Figure 1) does not exceed the distance

from ξ to the further of the two circles (denoted by d2). This is the geometrical bound we

use. Note that if the maximal curvature of S goes to zero at all points (so that C → ∞)

then the two bounding circles converge to the tangent line to S at zero on any bounded

13



Figure 1: Bounding a line between two circles.
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set. Further, note that the distribution of the distance d2 from a normal random vector

to the furthest of two circles depends only on C and is easy to simulate.

The logic of this example is quite straightforward to generalize to the case of a k− 1-

dimensional manifold in Rk, known as a hyper-surface or a manifold of co-dimension 1.4

If a regular k − 1 dimensional manifold S in Rk has curvature κq(S) ≤ 1/C at all q ∈ S,

consider the two k − 1-dimensional spheres of radius C that are tangent to the manifold

at zero. One can show (see Theorem 1 below) that as in the one-dimensional case S lies

between these two spheres. Hence, we again have that the distance from any point ξ to

S is bounded above by the distance from ξ to the furthest of the two spheres. Likewise,

if the maximal curvature of S goes to zero (so that C → ∞) we again have that on any

bounded set the two spheres converge to the tangent space to S at zero, which in this

case is a k − 1-dimensional hyperplane.

Dealing with manifolds of co-dimension greater than 1 is much more challenging, but

the basic principle of the approach can be illustrated using a curve in R3.

Case 2 (k=3, p=1): A curve in R3. Suppose now that we have a one-dimensional

space curve S in R3 which passes through zero and whose curvature at all points is

bounded above by 1/C. We construct our envelope by considering the collection of all

one-dimensional circles of radius C tangent to S at zero. Equivalently, one can take a

given circle tangent to S at zero and rotate it around the tangent line. An example of

the resulting surface is given on the left panel of Figure 2: as in the case of co-dimension

1, we can see that the curve S lies inside the envelope. One can show that the distance

from any point ξ to the curve S (denoted by d1 in Figure 2) is bounded above by the

4The co-dimension of a manifold is the di�erence between the dimension of the space and the dimen-
sion of the manifold.
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Figure 2: Left panel: the envelope for a space curve in R3. Right panel: distribution of the distance d2

distance from ξ to the furthest circle in the collection used to construct the envelope

(denoted d2). Note that if the curvature of S goes to zero at all points (so that C → ∞)

then on any bounded set the envelope we consider converges to the tangent line to S at

zero.

This geometric bound immediately implies a bound on the distribution of ρ2(ξ, S).

For ξ ∼ N(0, I3) the distribution of the distance d2 from ξ to the furthest circle is simple

to simulate. One can show that it is distributed as the squared distance from a two-

dimensional random vector η depicted on the right panel of Figure 2 to the circle of

radius C with center (0,−C) where the coordinates of η are distributed as independent√
χ2
1 and

√
χ2
2 random variables.

General case With the intuition provided by these examples, we now turn to the

general case. Let S be a regular connected p-dimensional manifold in Rk passing through

zero. By the rotation invariance of standard normal vectors we can assume without loss of

generality that the tangent space T0(S) to manifold S at zero is spanned by the �rst p basis

vectors. For each x ∈ Rk, let x = (x(1), x(2)) where x(1) = (x1, ..., xp) ∈ Rp contains the

�rst p coordinates of x while x(2) = (xp+1, ..., xk) ∈ Rk−p contains the last k− p. In what

follows, we restrict attention to points on the manifold that lie inside of a (large) �nite

cylinder DC = {x = (x(1), x(2)) : ∥x(1)∥ ≤ C, ∥x(2)∥ ≤ C, x(1) ∈ Rp, x(2) ∈ Rk−p} ⊂ Rk.

Let SC be the intersection S
∩
DC if it is connected or the connected part of S

∩
DC

that passes through zero (that is, the part of S
∩
DC which can be reached by continuous

paths lying in S
∩
DC which pass through zero) if S

∩
DC is not connected. Note that
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ρ(ξ, S) ≤ ρ(ξ, SC).

To obtain some of our bounding results, we need one further assumption:

Assumption 1 For any y(1) ∈ Rp with
∥∥y(1)∥∥ ≤ C there exists a point x ∈ SC such that

x(1) = y(1).

Assumption 1 requires that the projection of SC on its tangent space at zero cover a

p-dimensional ball of radius C centered at zero, and hence that SC have dimension

p in a global sense. By a local property we mean one that holds on an in�nitesimal

neighborhood of a point. In contrast, by a global property we mean one that holds on a

�xed bounded set. We have already imposed a local dimensionality assumption on S by

restricting the rank of the tangent space at all points. The distribution of the minimum

distance statistic, however, depends on global properties of the manifold S and so to

bound the distribution we need a global dimensionality assumption. To illustrate why

local dimensionality assumptions are insu�cient, imagine a strip S = {(x, y, z) ∈ R3 :

z = 0,−ε < y < ε, x ∈ R} in R3. At any point q ∈ S the dimension of the tangent space

is equal to 2, but if ε > 0 is small enough then S does not satisfy Assumption 1. For

ε su�ciently small, however, the distance from ξ to S behaves like the distance from ξ

to the line S∗ = {(x, y, z) : y = 0, z = 0}, which is one dimensional both locally and

globally.

Theorem 1 Let S be a regular p-dimensional manifold in Rk passing through zero. As-

sume that the tangent space T0(S) is spanned by the �rst p basis vectors. Assume that

for some constant C > 0 we have that κq(S) ≤ 1
C
for all points q ∈ SC. Then:

(a) Manifold SC lies inside the set M∩DC, where

M = {∥x(1)∥2 + (C − ∥x(2)∥)2 ≥ C2}. (9)

(b) If Assumption 1 is satis�ed, then for any point ξ ∈ Rk we have

ρ(ξ, S) ≤ max
u∈Rp−k,∥u∥=1

ρ(ξ,Nu),

where Nu = {x ∈ Rk : x = (x(1), zu), x(1) ∈ Rp, z ∈ R+, ∥x(1)∥2 + (C − z)2 = C2}.

(c) maxu∈Rp−k,∥u∥=1 ρ(ξ,Nu) = ρ(ξ,Nũ), where ũ = − 1
∥ξ(2)∥ξ

(2).
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(d) If ξ ∼ N(0, Ik) we have for all x, y:

P

{
max

u∈Rp−k,∥u∥=1
ρ2(ξ,Nu) ≤ x, ∥ξ∥ ≤ y

}
= P

{
ρ22(η,N

C
2 ) ≤ x, ∥η∥ ≤ y

}
,

where the coordinates of the 2-dimensional random vector η = (
√
χ2
p,
√
χ2
k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z21 +(C+z2)

2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidian distance in R2.

Figure 3: The stochastic bound described in Theorem 1 (d).
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Theorem 1 (a) establishes that the manifold SC lies inside the set M bounded by

an envelope we construct from a collection of p-dimensional spheres Nu. Statement (b)

asserts that the distance from a point ξ to the manifold S is bounded by the distance

from ξ to the furthest sphere in this collection, while (c) picks out exactly which sphere

Nũ(ξ) is the furthest away for a given ξ. Finally, (d) shows that the distribution of the

distance from ξ ∼ N(0, Ik) to Nũ(ξ) is the same as the distribution of the distance from

a random variable η to a particular circle in R2 as depicted in Figure 3.

Theorem 1 (b) relies on Assumption 1. In some models, like our empirical example

in Section 6, this assumption holds trivially. In other contexts, we may try to check

Assumption 1 numerically. In particular, we can draw points at random from the manifold

S, for example running MCMC on the restricted model. We can then project these draws

on the tangent space. As the number of draws increases, we can check that the sampler

draws points in all parts of the ball of radius C in the tangent space. This bears a

resemblance to how one would check that a Gibbs sampling procedure visits the whole

parameter space.
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3.3 Stochastic bound

Theorem 1 implies a bound on the distribution of the distance from ξ ∼ N(0, Ik) to a

p-dimensional manifold S. Assume that for some C > 0, S satis�es all the assumptions

of Theorem 1 including Assumption 1. Then almost surely,

ρ2(ξ, S) ≤ ρ2(ξ,Nũ), (10)

as follows from statements (b) and (c) of Theorem 1. By Theorem 1 (d), the distribution

of the right hand side of (10) is the same as the distribution of the random variable ψC

de�ned as

ψC = ρ22(η,N
C
2 ), (11)

where the coordinates of the two-dimensional random vector η = (
√
χ2
p,
√
χ2
k−p) ∈ R2

are independently distributed, NC
2 = {(z1, z2) ∈ R2 : z21 + (C + z2)

2 = C2} is a circle

of radius C with the center at (0,−C), and ρ2 is Euclidean distance in R2. Combining

these results, we establish the bound

P
{
ρ2(ξ, S) ≥ x

}
≤ P {ψC ≥ x} for all x > 0,

so the distribution of ψC is an upper bound on the distribution of ρ2(ξ, S). We make the

following observations:

(1) The distribution of ψC depends only on the dimension of the space k, the dimension

of the manifold p and the maximal value of the curvature, 1
C
.

(2) The distribution of ψC is stochastically increasing in the maximal curvature and

hence stochastically decreasing in C, so if C1 < C2 then ψC1 �rst-order stochasti-

cally dominates ψC2 .

(3) ψC ⇒ χ2
k−p as C → ∞, so if the curvature converges to zero at all relevant points

then our bounding distribution converges to the distribution of the distance from

ξ ∼ N(0, Ik) to a p-dimensional linear subspace.

(4) At the other extreme, ψC ⇒ χ2
k as C → 0 so if the curvature of the manifold

becomes arbitrarily large our bound coincides with the naive bound (3) that can
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be imposed without any assumptions on the manifold.

We want to emphasize that what we suggest is a stochastic bound that holds under

quite general assumptions. If the model of interest has additional structure, this can

potentially be exploited to obtain tighter bounds.

4 Statistical application of the stochastic bound and

its modi�cations

In this section, we discuss how we can use the bounds obtained above to construct tests

based on MD which control size in �nite samples under the assumption that θ̂ − θ0

is normally distributed with known variance Σ. In this section we also propose three

modi�cations of our baseline procedure that o�er practical advantages in some contexts

and which, as we discuss below, may be freely combined to suit the preferences of the

researcher and the circumstances at hand.

As we note in equation (2) the minimum distance statistic is equal to ρ2(ξ, S), where

ξ ∼ N(0, Ik) and the manifold S = {Σ−1/2(θ(β) − θ0), β ∈ U ⊂ Rp} ⊂ Rk describes

the restrictions imposed on the reduced-form parameters by the null, and passes through

zero if the null is true. If the manifold S satis�es the assumptions of Theorem 1 then by

the results of Section 3.3 the MD statistic is stochastically dominated by ψC under the

null. Thus if we use F1−α(C, k, p), the (1−α)-quantile of ψC (which is easy to simulate),

as a critical value the resulting test has size not exceeding α.

A practical question is what value of C to use. According to Theorem 1, C is tied

to the maximal curvature of S over the intersection of S with a cylinder DC centered

at zero. In practice, however, we do not observe the manifold S, which depends on

the unknown θ0. Nonetheless, we can see that the desired curvature is the same as the

maximal curvature of the observed manifold S∗ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk over

all points in the intersection of S∗ with the cylinder D∗
C(x0) = {x ∈ Rk : x − x0 ∈ DC}

centered at x0 = Σ−1/2θ0. This maximal curvature, in turn, is clearly bounded above by

the maximal curvature over the whole manifold, so if we take C∗ = 1/ (maxq∗∈S∗ κq∗(S
∗)),

using critical values based on ψC∗ provides a test that controls size. Moreover, since C∗

does not depend on any unobservables, a test based on these critical values is feasible.

If the null hypothesis has a global parametrization, as when H0 : θ0 = θ(β), β ∈ U ,
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let κ(β) = κq∗=Σ−1/2θ(β)(S
∗). The latter is a function on U and depends only on the

�rst two derivatives of θ(β). Hence, if we can evaluate these derivatives, �nding C∗ =

1/ (maxβ∈U κ(β)) is a standard non-stochastic optimization problem. If θ(β) is fairly

tractable we may be able to solve for C∗ analytically, while if not we can use the usual

menu of numerical optimization techniques, such as Newton's method.

4.1 Modi�cation 1: curvature over a smaller set

There are a variety of problems in which using C∗ may be unappealing. For example, it

may be that searching numerically for the maximal curvature over the whole manifold is

quite time-consuming, or that the manifold has irregularities or points of high curvature

which are far away from θ̂. In such cases we may wish to restrict attention to the curvature

of the manifold over some smaller set, which raises two issues. First, we do not know the

true value θ0 and hence the center of the cylinder D
∗
C(x0). Second, if the manifold is close

to �at (so C is large) to �nd the maximal curvature over D∗
C(x0) we might need to check

the curvature over a huge set, which could again be very computationally demanding.

We suggest a test which overcomes both of these problems and is easy to implement

in practice. For a �xed value R, let C ∧ R = min{C,R}. Denote by Fα(C,R, k, p) the

α−quantile of the distribution of ψC(R) de�ned as

ψC(R) =

 ρ22(η,N
C
2 ) if ∥η∥ ≤ R;

∥η∥2 if ∥η∥ > R,
(12)

where η and and NC
2 are de�ned in statement (d) of Theorem 1. For any �nite R the

distribution of ψC(R) �rst order stochastically dominates the distribution of ψC . In

Lemma 1 below we show that one may calculate curvature only over that part of the

manifold lying inside a ball of radius proportional to R, but that one must compensate

for this by using larger critical values, speci�cally quantiles ψC(R) rather than ψC . This

is the price paid for calculating curvature over a smaller set of points.

Lemma 1 Assume that we have a single observation θ̂ from a population θ̂ ∼ N(θ0,Σ)

with unknown mean θ0. We wish to test the hypothesis H0 : θ0 = θ(β) for some β ∈

U ⊂ Rp. Let S∗ = {Σ−1/2θ(β), β ∈ U ⊂ Rp} ⊂ Rk be a regular p-dimensional manifold,

and B∗ = BR(x̂) a ball of radius (1 +
√
2)R around x̂ = Σ−1/2θ̂, where R is such that
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P{χ2
k ≥ R2} < α. Let

C∗
R =


(
minq∗∈S∗ ∩

B∗ 1/κq∗(S
∗)
)
∧R, if S∗∩B∗ ̸= ∅;

0, if S∗∩B∗ = ∅.

Assume that for any x ∈ S∗ such that ∥x − x̂∥ ≤ R we have that the projection of

S∗∩BR(x) onto Tx(S
∗) contains a p-dimensional ball centered at x with radius C∗

R ∧R.

Then the test which rejects the null if and only if MD > F1−α(C
∗
R, R, k, p) has size not

exceeding α.

4.2 Modi�cation 2: Working with a subset of parameters

Suppose we wish to test a hypothesis of the form H0 : θ0 = θ(β) for some value of the

p-dimensional structural parameter β ∈ Rp. The procedures discussed above treat the

multi-dimensional vector β in such a way that only the direction of highest curvature

a�ects the value of C and thus in�uences the critical values. Imagine instead that β can

be divided into two sub-sets of parameters β = (β′
1, β

′
2)

′ in such a way that the curvature

corresponding to directions β1 is high, but the null hypothesis exhibits only a low degree

of curvature in the directions corresponding to β2. Let p1 be the dimension of β1, p2 the

dimension of β2, and p = p1 + p2. In this section we propose a modi�ed procedure that

treats β1 and β2 di�erently. In particular we may reduce the critical value of the test due

to the low curvature with respect to β2 while projecting over β1. The modi�ed procedure

may be more powerful if the di�erence in curvature with respect to parameters β1 and

β2 is large.

For any value β1 consider the p2-dimensional manifold S(β1) = {Σ−1/2θ(β1, β2), β2 ∈

Rp2}. For any point q = Σ−1/2θ(β1, β2) ∈ S(β1) �nd the curvature κq(S(β1)). Let

Cβ2 = min
β1

min
q∈S(β1)

1/κq(S(β1)), (13)

be the inverse of the maximal curvature with respect to β2, where the maximum is

taken over all p2-dimensional sub-manifolds S(β1). One also needs that the analog of

Assumption 1 is satis�ed, speci�cally that for the true value β1,0 the projection of S(β1,0)

onto its tangent space at zero covers a p2-dimensional ball of radius Cβ2 . The test

which rejects the null if and only if MD > F1−α(Cβ2 , k, p2) controls size. Note that the
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new critical value may increase since p2 < p, but it may also decrease if the curvature

corresponding to directions β2 is substantially smaller than the maximal curvature over

all directions.

If we calculate curvature multiple times, projecting over any collection of di�erent

subsets of β and using the smallest critical value, the resulting test will still control size.

Thus, it is perfectly valid to search over all subsets of the parameter vector and choose

the one which, when we project over it, yields the smallest critical value. Moreover,

we can combine projection with the approach discussed in Section 4.1 and calculate the

maximal curvature of S(β1) only on a ball of radius (1 +
√
2)R around the reduced-form

parameter estimate, and the resulting tests will again control size.

4.3 Modi�cation 3: Pre-test for weak identi�cation

If for some reason a researcher prefers not to use our robust critical values, we propose

a simple �pre-test of weak identi�cation� which is of a similar �avor to procedures based

on the �rst-stage F -statistic in linear IV. Speci�cally, imagine that a researcher wants to

use a robust procedure (for example our robust critical values or the projection method)

unless she knows that nonlinearity will not cause large size distortions, in which case she

prefers to use standard, non-robust critical values. Our bounds can be used to address

this question, and in particular to determine whether nonlinearity constitutes a problem

in a given setting. Below we suggest an approach which, used as the �rst step in a

two-step test, ensures that the procedure as a whole controls size.

To proceed, let us introduce the notion of a �tolerance level�. Suppose we would

like to have a test of size α, but are uncertain whether the usual strong-identi�cation

asymptotics provide a reasonable approximation in our context; in the event that these

approximations are imperfect, we are willing to accept a test with true size α + α∗ in

exchange for the additional power and convenience of using conventional critical values.

The potential size distortion α∗ is called the tolerance level and was previously discussed

by e.g. Stock and Yogo (2005).

The pretest we propose asks whether the curvature of the model is su�ciently small

to ensure that tests based on classical χ2
k−p critical values (that is, tests which treat the

nuisance parameter β as well-identi�ed) with nominal size α have true size not exceeding

α + α∗. To determine whether this is the case we calculate C∗, the smallest value C
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such that the (1 − α)-quantile of a χ2
k−p distribution does not exceed F1−(α+α∗)(C, k, p).

The cut-o� C∗ depends on the dimension k of the reduced-form parameter vector and

the dimension p of the nuisance parameter. To implement the pre-test we can calculate

the value C over the whole manifold and compare C to C∗. If C > C∗ the researcher

can safely concentrate out β and use χ2
k−p critical values while if C ≤ C∗ she should

use a robust procedure. We can guarantee that the resulting two-step test will have size

less than α + α∗. Table S1 in the Supplementary Appendix reports the cut-o�s C∗ for

nominal 5% tests with tolerance level 5% for di�erent values of p and k. We can see that

for a �xed dimension k of the reduced-form parameter, increasing the number of nuisance

parameters p tightens the restrictions imposed on curvature if one wants to concentrate

out the nuisance parameters. Rather than calculating the maximal curvature over the

whole manifold, or over all parameters, we can also create pre-tests based on the modi�ed

robust critical values discussed in Sections 4.1 and 4.2.

The main di�erence between the pre-testing procedures we suggest and the majority

of existing tests for weak identi�cation is that our approach guarantees that the true

size does not exceed the pre-speci�ed tolerance level. In contrast, many alternative

approaches to detecting identi�cation failure in nonlinear models, for example those

discussed by Inoue and Rossi (2011), Iskrev (2010) and Wright (2003), do not control

the size distortion of two-step testing procedures.

5 Asymptotic procedure

5.1 Uniformity result

The main procedure described above guarantees that �nite-sample size is controlled when

the reduced-form parameter estimates are normally distributed with a known covariance

matrix. In this section we show that the procedure is asymptotically correct uniformly

over a large set of models for which the reduced-form parameter estimator is asymptoti-

cally Gaussian.

We take a model to be a set consisting of the true value of the k-dimensional reduced-

form parameter θ0, its estimator θ̂, the true value of uncertainty associated with this

estimate (asymptotic covariance matrix Σ), an estimator Σ̂, and a link function con-

necting the structural and reduced form parameters, or more generally a manifold S̃
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describing the null hypothesis. The hypothesis of interest is H0 : θ ∈ S̃. Here by

estimators θ̂ and Σ̂ we understand some procedures or algorithms for producing such es-

timators, where θ̂n and Σ̂n are estimators for the sample of size n. We allow S̃ to change

with the sample size n as well, and will denote it S̃n. This allows for sequences of link

functions such as those which arise under drifting asymptotic embeddings like those of

Andrews and Cheng (2012) and Stock and Wright (2000). We consider a set of models

M = {M :M = (θ0, θ̂,Σ, Σ̂, S̃)} satisfying the following assumptions.

Assumption 2

(i)
√
n(θ̂n − θ0) ⇒ N(0,Σ) uniformly over M;

(ii) Σ̂n →p Σ uniformly over M;

(iii) The highest and lowest eigenvalues of Σ are bounded above and away from zero

uniformly over M;

(iv) For each n the manifold Sn = {x =
√
nΣ−1/2(y − θ0), y ∈ S̃n} belongs to the set S

described below.

Assumption 3 Let S be a set of regular p-dimensional manifolds in Rk passing

through zero where for each S ∈ S there is some C(S) such that for SC as de�ned in

Section 3.2, C(S) = 1/(supq∈SC(S)
κq(S)) and the orthogonal projection of SC onto the

tangent space T0(S) covers the ball of radius C centered at zero.

Description of the procedure. Let us introduce a manifold Ŝn = {
√
nΣ̂

−1/2
n (x − θ0) :

x ∈ S̃n}, which di�ers from Sn in using an estimator Σ̂n in place of Σ. Let Ĉn =

1/(supq∈Ŝn
κq(Ŝn)). Our main test uses the statistic nminθ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) along

with critical value F1−α(Ĉn, k, p), where we denote by Fα(C, k, p) the α-quantile of the

random variable ψC discussed in Section 3.3.

Theorem 2 The testing procedure described above has uniform asymptotic size α:

lim
n→∞

sup
M∈M

P

{
nmin

θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(Ĉn, k, p)

}
≤ α

In the Supplementary Appendix we show that the test which maximizes curvature

over the ball of radius (1+
√
2)R around Σ̂− 1

2 θ̂ (the modi�cation suggested in Section 4.1)

likewise has correct uniform asymptotic size over M, and establishing analogous results

for the other modi�cations discussed in the previous section is straightforward.
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5.2 Curvature of strongly identi�ed parameters.

In Section 2.1 we motivated our geometric perspective by showing that if a set of nui-

sance parameters is strongly identi�ed in the sense of Stock and Wright (2000), the null

hypothesis is asymptotically linear in these parameters. Here we show that the curva-

ture corresponding to strongly identi�ed parameters is asymptotically of order O(1/
√
n),

where n is the sample size.

Consider a sample of size n from a model parameterized by structural parameter

β that belongs to some bounded set U ⊆ Rp and assume that one has consistent and

asymptotically normal estimates for the reduced-form parameter θ:

√
n(θ̂ − θ0) ⇒ N(0,Σ).

Assume that the relation between structural and reduced-form parameters θ = θ(β) is

�xed (not changing with n), twice continuously di�erentiable with respect to β, and that

the matrix ∂
∂β
θ(β) has full rank in a neighborhood of β0, which is the only point in the

closure of U that solves the equation θ0 = θ(β). The null hypothesis manifold Sn for

sample size n is the graph of function xn(β) =
√
nΣ−1/2(θ(β)− θ0), β ∈ U . The maximal

curvature over all points of the manifold Sn is equal to 1/
√
n times the maximal curvature

of the manifold S1 obtained for the sample of size 1, assuming the maximal curvature is

�nite. This can easily be seen by examining the role of the scale of parametrization xn in

formula (8). As a result, the inverse curvature Cn for the sample of size n is proportional

to
√
n and so diverges to in�nity. Consequently, the critical value F1−α(Cn, k, p) converges

to the (1−α)-quantile of the χ2
k−p-distribution, which is the true asymptotic distribution

under the assumption of the strong identi�cation.

To summarize, our procedure makes no assumption about the strength of identi�-

cation of the nuisance parameter but if the nuisance parameter happens to be strongly

identi�ed our robust critical values converge to those derived under the assumption of

strong identi�cation. Thus, our baseline approach to constructing robust critical values

does not sacri�ce power in cases with strongly identi�ed nuisance parameters.
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5.3 Comparison with other methods available for testing hy-

potheses with weak nuisance parameters

As previously discussed, there is a wide literature discussing weak-identi�cation-robust

tests for the full parameter vector and for hypotheses with strongly identi�ed nuisance

parameters, but much less is known about testing with weakly identi�ed nuisance pa-

rameters.

Projection method. The projection method has recently been the standard approach

to inference with weakly identi�ed nuisance parameters. The projection method was

popularized in econometrics by Dufour and Jasiak (2001) and Dufour and Taamouti

(2005), and recent applications to non-standard testing problems in econometrics include

Dufour, Khalaf, and Kichian (2006), Guerron-Quintana, Inoue and Kilian (2013), and

Qu (2013).

The projection method is based on the observation that the hypothesis H0 : α = α0

with nuisance parameter β is equivalent to the hypothesis

H0 : ∃ β0 s.t. α = α0, β = β0.

Let MD(α0, β0) = n(θ̂ − θ(α0, β0))
′Σ̂−1(θ̂ − θ(α0, β0)) be the test statistic for the hy-

pothesis H0 : α = α0, β = β0, and note that under the assumptions of Theorem 2 it is

uniformly asymptotically χ2
k under the null. Recall that the minimum distance statistic

for testing a hypothesis on α alone is MD(α0) = infβ∗ MD(α0, β
∗), so since

MD(α0) = inf
β∗
MD(α0, β

∗) ≤MD(α0, β0) ⇒ χ2
k,

we know that comparing MD(α0) to χ
2
k critical values will yield a test which controls

size. The name �projection method� stems from the fact that constructing con�dence

sets for α based on this procedure is equivalent to constructing a joint con�dence set for

(α0, β0) using the full-vector MD statistic and then projecting this set on the parameter

space for α.

The obvious advantage of the projection method is that it requires no assumption

about the strength of identi�cation of β, since it relies only on the validity of the test for

the full parameter vector. Other advantages include its ease of implementation and broad
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applicability. The primary disadvantage of the projection method is its conservativeness.

Our test, introduced in Section 4, is based on the same statistic as the projection method

but uses smaller critical values while still maintaining size. Only in the limiting case

of in�nitely high curvature (C = 0) do our critical values equal those of the projection

method. As a result, except for this limiting case our test is strictly more powerful than

the projection method and produces smaller con�dence sets in all realizations of the

sample.

Concentrating out nuisance parameters. If one knows that the nuisance parameter

β in a given testing problem is strongly identi�ed then he/she can simply �concentrate

out� the nuisance parameter and pair the MD(α0) statistic with χ
2
k−p critical values. As

discussed in Section 2.1, this reduction in degrees of freedom (from k to k − p) stems

from the fact that any manifold corresponding to a hypothesis with a strongly identi�ed

nuisance parameter converges to a linear subspace asymptotically.

The obvious advantage of this approach is that it is strictly more powerful than the

projection method. However, the assumption of strong identi�cation of the nuisance

parameter is essential, and the test may over-reject if this assumption fails. In many

practical settings, including the DSGE and Phillips curve examples discussed below, the

exact nature and source of weak identi�cation is not clear, and we are unaware of any

previous test of the null of weak identi�cation which can be used to separate the weakly

and strongly identi�ed parameters. In contrast, the test we suggest in this paper does not

employ any assumptions about the strength of identi�cation of any parameter in point

identi�ed models. Indeed, since our approach is based on a �nite-sample perspective we

do not even require that there be a meaningful distinction between weakly and strongly

identi�ed structural parameters in the model.

Other methods. There are very few other papers that work directly with weakly

identi�ed nuisance parameters. One alternative approach, developed by D. Andrews

and Cheng (2012), proceeds by assuming we know the structure of weak identi�cation.

In particular, they assume we know which parameters are weakly identi�ed and that

there is a known parameter that controls the strength of identi�cation. Under these

assumptions, they show that statistics for testing hypotheses with weakly identi�ed nui-

sance parameters have non-standard asymptotic distributions which depend on the value
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of the nuisance parameter. They then propose creating robust tests by simulating the

asymptotic distribution of the test statistic for di�erent values of the nuisance parameter

and taking the �least favorable� among those distributions over a set of relevant nuisance

parameter values. Unfortunately, this approach can become quite computationally de-

manding in models with more than a few nuisance parameters. Moreover, the assumption

that a known parameter controls the strength of identi�cation rules out many models of

economic interest, for example the new Keyensian Phillips curve and DSGE examples

discussed below. As one might expect given the additional structure imposed by D. An-

drews and Cheng's approach, in contexts where both their results and those developed

in this paper can be applied, their approach will generally yield smaller critical values.

Another example of inference with weakly identi�ed nuisance parameters is given

in I. Andrews and Mikusheva (2013). That paper considers a case when concentrating

out a weakly identi�ed parameter leads to asymptotically correct inferences, but this

result holds only for weakly identi�ed parameters which enter the log-likelihood function

linearly.

6 Empirical application: new Keynesian Phillips curve

To illustrate the methods developed in this paper we consider the application of our ap-

proach to an empirical example drawn from Magnusson and Mavroeidis (2010) (hence-

forth MM), who study the problem of identi�cation-robust inference on new Keynesian

Phillips curve (NKPC) parameters. These parameters govern the behavior of in�ation

and play a central role in monetary policy-making. There is substantial evidence that

NKPC parameters are weakly identi�ed: see Mavroeidis, Plagborg-Moller and Stock

(2013) for extensive discussion of this issue.

6.1 Model setting

MM consider identi�cation-robust inference on new Keynesian Phillips curve parameters,

building on the minimum-distance approach of Sbordone (2005). They study the simple

NKPC model

πt =
(1− ν)2

ν (1 + ϱ)
xt +

1

1 + ϱ
E [πt+1| It] +

ϱ

1 + ϱ
πt−1 + εt (14)
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where xt is a measure of marginal costs, πt is in�ation, E [ ·| It] denotes an expecta-

tion conditional on information available at time t, and εt is an exogenous shock with

E [εt+1| It] = 0. The structural parameters ν and ϱ denote the degree of price stickiness

and price indexation, respectively. MM further assume that (πt, xt) follows a third order

VAR process which can be written in companion form as

zt = A(θ)zt−1 + ϵt,

where zt = (πt, xt, πt−1, xt−1, πt−2, xt−2)
′ is a 6×1 vector, A (θ) is a 6×6 companion form

matrix, the reduced-form parameter θ is a vector of 12 unknown VAR coe�cients, and ϵt

are VAR innovations with E [ϵt+1| It] = 0. MM note that the NKPC model (14) implies

that the true parameter value (θ, ν, ϱ) satis�es the 6-dimensional restriction

f (θ, ν, ϱ) = A (θ)′
{[

I − 1

1 + ϱ
A (θ)′

]
eπ −

(1− ν)2

ν (1 + ϱ)
ex

}
− ϱ

1 + ϱ
eπ = 0,

where eπ and ex are unit vectors with e′πzt = πt and e
′
xzt = xt

Under mild assumptions the VAR estimate θ̂ for the reduced-form parameter θ satis-

�es
√
T
(
θ̂ − θ

)
→d N (0,Σ), where the asymptotic covariance matrix Σ is consistently

estimable, so from this perspective θ is strongly identi�ed. MM propose testing the

hypothesis H0 : (ν, ϱ) = (ν0, ϱ0) using the statistic

MM = T · f
(
θ̂, ν0, ϱ0

)′
Σ̂−1

f f
(
θ̂, ν0, ϱ0

)
,

where Σ̂f is a ∆-method estimator for the asymptotic variance of f
(
θ̂, ν0, ϱ0

)
, together

with χ2
6 critical values.

5 MM argue that this test controls size regardless of whether the

parameters ν and ϱ are weakly identi�ed.

The minimum-distance approach studied in this paper provides an alternative route

to inference on (ν, ϱ) . For any �xed (ν0, ϱ0) the restriction f (θ, ν0, ϱ0) = 0 de�nes a

6-dimensional manifold in the 12-dimensional space of reduced-form parameter values θ,

Sν0,ϱ0 = {θ ∈ R12 : f (θ, ν0, ϱ0) = 0}. Hence, to test H0 : (ν, ϱ) = (ν0, ϱ0) we can consider

5See the Supplementary Appendix for details. MM propose other identi�cation-robust tests as well,
but since these tests produce similar con�dence sets in their empirical application we will focus on this
one, which is the most closely related to our MD test.

29



̺

ν

MD

MM

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: 95% con�dence sets based on inverting our robust MD test and the MM test proposed by
Magnusson and Mavroeidis (2010). Robust MD test compares the MD statistic MDν,ϱ to χ2

8 critical
values, while the MM test compares the MM statistic to χ2

6 critical values.

the statistic

MD (ν0, ϱ0) = min
θ∈Sν0,ϱ0

T ·
(
θ̂ − θ

)′
Σ̂−1

θ

(
θ̂ − θ

)
together with robust critical values based on the curvature of the manifold Sν0,ϱ0 .

6.2 Empirical Results

We calculate 95% con�dence sets for ν and ϱ based on the MD statistic together with our

robust critical values and compare these con�dence sets to those obtained from inverting

the MM test. We use the same data as MM, which consists of quarterly observations on

US GDP de�ator (πt) and labor share (xt) from 1984 to 2008- see MM for details.

To implement our robust MD test, we need to calculate an appropriate curvature-

based critical value. We show in the Supplementary Appendix that for all (ν0, ϱ0) the

manifold Sν0,ϱ0 can be parametrized by a 6-dimensional sub-vector of VAR parameters

θ1, θ = θ (θ1, ν0, ϱ0) ∈ Sν0,ϱ0 . We �nd that the maximal curvature of Sν0,ϱ0 is quite

high for many values (ν0, ϱ0), but that by projecting over two elements of θ1 we can

reduce curvature with respect to the remaining parameters to zero. Hence, for all values

(ν0, ϱ0) we use robust critical values equal to the 95th percentile of a χ2
8 distribution,

or equivalently F0.95 (∞, 12, 4) where p = 4 rather than 6 because we project over two
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ν ρ

MD [0.91, 0.99] [0.39, 0.56]
MM [0.81, 0.99] [0.27, 0.63]

Table 1: 95% con�dence intervals for ν and ϱ based on our robust MD test and the MM test. In both
cases, con�dence intervals correspond to projection-method con�dence intervals obtained from joint
con�dence sets in Figure 4.

parameters. To calculate our robustMD con�dence set for the parameters ν and ϱ jointly,

we take a �ne grid of values (ν0, ϱ0) and for each value in this grid test the hypothesis

H0 : (ν, ϱ) = (ν0, ϱ0). The con�dence sets consist of all those values not rejected, and are

plotted in Figure 4. As we can see from this �gure, in this application our robust MD

con�dence set is contained entirely within MM's con�dence set.

In addition to building joint con�dence sets for (ν, ϱ) together we can construct con-

�dence intervals for these parameters separately. To do so, we �rst check whether it is

possible to obtain smaller critical values by calculating curvature with respect to ν or ϱ.

We �nd that curvature with respect to these parameters is quite high and that the small-

est robust critical value we can obtain again corresponds to a χ2
8 distribution. Thus, our

robust MD con�dence intervals for ν and ϱ correspond to the projection of the joint MD

con�dence set on the coordinate axes, and are reported in Table 1. From these results, we

again see that con�dence intervals based on our robust MD test are signi�cantly smaller

than those based on the MM test in this context. One reason the con�dence sets are

small is that the NKPC model is barely compatible with the estimated VAR coe�cients.

Indeed, a test of overidentifying restrictions using our robust critical values rejects the

model at the 10%, though not 5%, level.

6.3 Size Simulation

One might worry that, despite the asymptotic validity of our robust MD test, the small

volume of robust MD con�dence sets in this application might re�ect poor size control for

the model and sample size considered. To address this issue we calculate the size of our

robust MD test and the MM test for H0 : (ν, ϱ) = (ν0, ϱ0) in a model calibrated to match

the empirical application.6 For comparison, we also calculate the size of the non-robust

MD test that incorrectly treats all parameters as strongly identi�ed, which uses χ2
6 critical

values, and the projection-method MD test, which uses χ2
12 critical values. The simulated

6For details on the simulation design, see the Supplementary Appendix.
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Robust MD Non-robust MD Projection MD MM

Size 7.0% 13.5% 1.9% 11.9%

Table 2: Size of nominal 5% tests of H0 : (ν, ϱ) = (ν0, ϱ0) based on 100 observations. Robust MD
compares the MD statistic to χ2

8 critical values (based on the curvature), while non-robust MD and pro-
jection MD use χ2

6 and χ2
12 critical values, respectively. MM is the AR-MD test proposed in Magnusson

and Mavroeidis (2010). Size is calculated based on 10,000 simulations.

size of these tests is reported in Table 2. As might be expected, the non-robust MD test

substantially over-rejects, while the projection-method MD test is conservative. With

simulated size 7% our robust MD test is only mildly over-sized, re�ecting small-sample

issues in the distribution of θ̂ and Σ̂θ. Finally, we see that the MM test substantially over-

rejects. While this may seem surprising given that Magnusson and Mavroeidis show that

this test is robust to identi�cation issues for ν and ϱ, the χ2
6 distribution of MM under

the null relies on the ∆-method approximation f
(
θ̂, ν0, ϱ0

)
≈ ∂

∂θ
f (θ, ν0, ϱ0)

(
θ̂ − θ

)
.

Such an approximation, if accurate, would also suggest low curvature for the manifold

Sν0,ϱ0 which is inconsistent with the data. As a result, in the sample-size considered

the ∆-method approximation underlying the MM test is unreliable, while our robust

MD test successfully accounts for the curvature of Sν0,ϱ0 . Hence, in addition to yielding

smaller con�dence sets in this application, robust MD con�dence sets also have better

�nite-sample coverage than MM con�dence sets for the parameter values considered.

7 Simulation Example: DSGE Model

In this section we further illustrate our results by considering tests of Dynamic Stochastic

General Equilibrium (DSGE) model parameters in a small simulation example. DSGE

models are highly non-linear, very multi-dimensional dynamic models that describe the

evolution of the main macro indicators in the economy. These models are currently

quite popular in applied Macroeconomics and are used by many central banks. A recent

literature raises concerns about identi�cation in these models (e.g. Ruge-Murcia (2007),

Canova and Sala (2009), Iskrev (2010)), and many authors have noted that standard

frequentist statistical procedures seem to be unreliable. The source and extent of weak

identi�cation in these models is not well understood, and it is typically impossible to

distinguish which parameters are weakly identi�ed using currently-available procedures.

Motivated by these issues, several recent papers (Dufour, Khalaf and Kichian (2009),

Guerron-Quintana, Inoue and Kilian (2013), I. Andrews and Mikusheva (2013), and
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Qu (2013)) suggest tests for full parameter vector hypotheses which are robust to weak

identi�cation. With the exception of I. Andrews and Mikusheva (2013) and Guerron-

Quintana, Inoue and Kilian (2013), these papers use the projection method for inference

on subsets of parameters which, due to the high dimension of the parameter vector, tends

to be quite conservative.

Most DSGE models can be cast into our framework, which is natural here as one

suggestion for how to estimate DSGE models is through two-step matching procedures

(Christiano and Eichenbaum (1992), Rotemberg and Woodford (1997), Ruge-Murcia

(2012), Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2013)). Log-linearized

DSGE models can be written in state-space form

zt = A(β̃)zt−1 +B(β̃)ut,

where zt is a vector of state-space variables at time t, ut are i.i.d. mean zero shocks

with identity covariance matrix, the state-space parameter matrices A(β̃) and B(β̃) are

non-linear functions of the structural parameter β̃ which typically need to be evaluated

numerically, and we observe xt = Czt. In this context, a natural choice of reduced-form

parameters is the auto-covariances of the observed vector-series xt. In particular, let

Σx(j) be j-th order auto-covariance of xt (for details see Iskrev (2010)):

θj(β̃) = vec(Σx(j)) = (C ⊗ CAj)(I − (A⊗ A))−1vec(BB′).

One may choose the reduced form parameter θ to be some subset of vec(Σx(j)), so

θ = m(β̃) = W (θ0(β̃)
′, ..., θj(β̃)

′)′, where W is a selection matrix. In the absence of

persistence (exact or near unit roots) the usual estimators

θ̂j = vec

(
1

T − j − 1

T−j∑
t=1

(xt+j − x)(xt − x)′

)

of θj satisfy a central limit theorem and achieve normality quite quickly. As a result,

normal approximations to the distribution of θ̂ = W (θ̂0, ..., θ̂j) are usually reliable for

realistic sample sizes. Hence, we can conduct inference on the structural parameters β

using a minimum-distance approach focused on matching auto-covariances.

While our discussion focuses on log-linearized DSGE model, one could equally well
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apply our approach to nonlinear DSGE models, for example matching covariances cal-

culated from higher-order approximations as in Andreasen, Fernandez-Villaverde, and

Rubio-Ramirez (2013). Even in the log-linear case we could base inference on quanti-

ties other than auto-covariances, for example matching the parameters of the state-space

representation. Indeed, by matching the parameters of the matrices A(β̃) and B(β̃) we

may be able to obtain a more powerful test. However, one should be cautious with

this choice of reduced-form parameters since it is known that state-space coe�cients are

sometimes poorly identi�ed, casting doubt on the normal approximation to the distribu-

tion of state-space parameter estimates. In particular, if the dynamics of the data are

described by a VARMA process such that some VAR and MA roots are close to each

other (near-canceling roots), the corresponding state-space representation coe�cients are

weakly identi�ed. This issue has been raised by Schorfheide (2013) in the DSGE context

and is studied in an ARMA model by D. Andrews and Cheng (2012).

7.1 Simulation study: A Small-scale DSGE Model

We apply our approach to a small-scale DSGE model based on Clarida, Gali and Gertler

(1999). The (log-linearized) equilibrium conditions for the model are

bEtπt+1 + κxt − πt + εt = 0,

−[rt − Etπt+1 − rr∗t ] + Etxt+1 − xt = 0,

λrt−1 + (1− λ)ϕππt + (1− λ)ϕxxt + ut = rt,

rr∗t = ρ∆at,

(15)

where the exogenous variables (∆at and ut) evolve according to

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t;

(εt, εa,t, εu,t)
′ ∼ iidN(0,Σ);Σ = diag(σ2, σ2

a, σ
2
u).

Here we assume that a researcher observes data on in�ation πt, the interest rate rt and

some measure of real activity xt. This model has ten parameters: the discount rate b,

the structural parameters κ, ϕx, ϕπ, and λ, and the parameters describing the evolution

of the exogenous variables. We set b = 0.99 and estimate the remaining parameters by

maximum likelihood using de-meaned US macro data from Smets and Wouters (2007).

Since the estimated values of ρ and κ are quite close to the boundaries of their respective

parameter spaces (one and zero respectively), we set ρ = .85 and κ = .1 while calibrating

the remaining parameters to their ML estimates, in particular taking ϕx = 2.278, ϕπ =
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2.023, λ = .898, δ = .103, σa = .325, σa = .265, and σ = .556. We generate samples

of size 300 from this model and then discard the �rst 100 observations, using only the

last 200 observations for the remainder of the analysis. Given well-documented problems

with estimating b in many models, from this point forward we treat this parameter as

known and focus on the remaining nine parameters.

As discussed above, to test hypotheses on the structural parameters in DSGE mod-

els we can test the implied restriction on the auto-covariances θ(β̃). In particular, we

let θ consist of the unique entries of the covariance matrix of (xt, πt, rt) and their �rst

auto-covariance, giving us 15 reduced-form parameters. To focus on the problem of weak

identi�cation and abstract from the issues which may arise from HAC covariance ma-

trix estimation, we treat the true covariance matrix Σ of our reduced-form parameter

estimates as known.

We consider the problem of separately testing that each of the structural parameters is

equal to its true value (as one needs to do to construct con�dence sets for each parameter

individually). For example, to test H0 : κ = κ0, we let β contain all the parameters other

than κ (that is, β̃ = (κ, β)) and consider the MD statistic MD(κ0) = minβ T (θ̂ −

θ(κ0, β))
′Σ−1(θ̂ − θ(κ0, β)). As before, the key issue is what critical values to use. The

projection method uses the 95th percentile of a χ2
15, which is equal to 25. If we assume

that a p-dimensional sub-vector of β is strongly identi�ed, we can use χ2
15−p critical

values instead, which are equal to 14.07 (for p = 8). Applying our robust critical values,

in contrast, requires no assumption on the strength of identi�cation. As we might expect

in a poorly identi�ed model, tests which concentrate out the nuisance parameters do not

have correct size. We simulated tests for each parameter separately, and all of them over-

reject, though the degree of over-rejection is limited. The largest size distortion occurs

for tests of κ = κ0, where nominal 5% tests have true size 11.4%.

For each of the nine parameters we calculate the curvature of the submanifold of

{Σ− 1
2 θ(β)} obtained by holding that parameter equal to its null value, intersected with

the ball of radius
√
2R around θ0, for R the .99 quantile of a χ2

15 distribution. We �nd

quite substantial curvature: the manifold corresponding to κ = κ0, for example, has a

maximal curvature of 5.16, which if plugged into F (C,R, 15, 8) implies a robust critical

value nearly as large as that used by the projection method.

These large values of curvature result from calculating curvature with respect to all

nuisance parameters simultaneously. As noted above, however, if some nuisance pa-
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Parameter tested Robust Critical Value Robust Test Size Projection Size

ϕx 17.3 2.5% 0.4%
ϕπ 17.3 2.8% 0.6%
λ 20.4 1.0% 0.3%
ρ 20.2 1.4% 0.6%
δ 20.2 0.9% 0.3%
κ 22.5 2.4% 1.7%
σa 17.7 3.0% 0.4%
σu 19.0 2.4% 0.6%
σ 19.5 1.5% 0.6%

Table 3: Nominal 5% Tests of one-dimensional hypotheses on structural parameters. The �rst
column lists the tested parameter for each row, while the other parameters are treated as nui-
sance parameters. The statistic is AR minimized over nuisance parameters. Projection method
critical values are 25. Robust critical values are obtained by considering projection over ϕx, ϕπ,
(ϕx, ϕπ), (ϕx, ϕπ, λ), (ϕx, ϕπ, ρ), (ϕx, ϕπ, κ) and using the smallest critical value

rameters correspond to directions of high curvature (we may loosely call them weakly

identi�ed) while others enter nearly linearly, we may be able to substantially reduce our

critical values by projecting over the weakly identi�ed parameters. Speci�cally, we �nd

that projecting over ϕx and ϕπ often substantially reduces curvature with respect to the

remaining parameters. Motivated by this fact we calculate curvature projecting over the

following subsets of parameters: ϕx, ϕπ, (ϕx, ϕπ), (ϕx, ϕπ, λ), (ϕx, ϕπ, ρ), (ϕx, ϕπ, κ). To

test hypotheses on each of the nine structural parameters we use the smallest robust

critical value obtained by projecting over one of these six subsets.

For each structural parameter, Table 3 reports the robust critical value obtained from

this exercise (column 2), together with the simulated size (based on 10,000 simulations) of

nominal 5% tests based on our robust critical values (column 3), and projection-method

tests (column 4). As we can see, projection-method based tests (using critical values of

25) are typically quite conservative, with simulated size less than or equal to 0.6% for all

parameters but κ. In contrast, for most parameters our robust critical values fall about

halfway between projection method critical values (25) and non-robust critical values

(14.07). Tests based on our robust critical values control size and, while conservative,

are for the most part substantially less so than projection-method tests.
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8 Appendix with proofs

8.1 Proof of Theorem 1

The proof is based on the following lemma:

Lemma 2 Assume the curve α(s) : [0, b] → DC ⊂ Rk is parameterized by arc length

and that its curvature κ(s) = ∥α̈(s)∥ ≤ 1
C
for all points s. Assume that α(0) = 0 and

α̇(0) = v ∈ span{e1, ..., ep}, where e1, ..., ep are �rst p basis vectors. Then the curve α(s)

is contained in the set Mv ∩DC, where

Mv = {x : ⟨x, v⟩2 + (C − ∥x− ⟨x, v⟩v∥)2 ≥ C2}. (16)

Proof of Lemma 2.

Consider the curve de�ned by β(s) = α̇(s), the �rst derivative of α. Since the curve

α is parameterized by arc length ∥β(s)∥ = ∥α̇(s)∥ = 1 and the new curve β lies on the

unit sphere Sph = {x ∈ Rk : ∥x∥ = 1}, with β(0) = v. Let t ≤ π
2
C and t ≤ b. Consider

the arc length of the restriction of the curve β to the interval [0, t]:

length(t) =

∫ t

0

∥β̇(s)∥ds =
∫ t

0

∥α̈(s)∥ds =
∫ t

0

κ(s)ds ≤ t

C
.

This implies that the geodesic (a curve of a shortest length) on the sphere Sph connecting

β(0) and β(t) has length less than or equal to t
C
or, equivalently, that the angle between

vectors β(0) = v and β(t) is less than or equal to t
C
. Hence

⟨v, β(t)⟩ = ⟨v, α̇(t)⟩ ≥ cos(
t

C
). (17)

Since α(s) is parameterized by arc length, from inequality (17) we have:

∥α̇(t)− ⟨v, α̇(t)⟩v∥ ≤ | sin( t
C
)|. (18)

This, in turn, implies that

∥α(t)− ⟨v, α(t)⟩v∥ = ∥
∫ t

0

(α̇(s)− ⟨v, α̇(s)⟩v)ds∥ ≤

≤
∫ t

0

∥α̇(s)− ⟨v, α̇(s)⟩v∥ds ≤
∫ t

0

sin(
s

C
)ds = C − C cos(

t

C
)
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Inequality (17) also implies that

⟨v, α(t)⟩ ≥
∫ t

0

cos(
s

C
)ds = C sin(

t

C
). (19)

Combing these results yields

⟨v, α(t)⟩2 + (C − ∥α(t)− ⟨v, α(t)⟩v∥)2 ≥ C2

for all t ≤ π
2
C. Notice that (19) implies that for τ = π

2
C we have ⟨v, α(τ)⟩ ≥ C and thus

for the �rst p coordinates of α(τ), which we denote α(1)(τ), we have ∥α(1)(τ)∥ ≥ C so

the curve is leaving or has already left the cylinder DC and thus b ≤ π
2
C. This concludes

the proof of the lemma. �
Proof of statement (a) of Theorem 1. First, let us show that

∪
v∈T0(S)
∥v∥=1

Mv = {∥x(1)∥2 + (C − ∥x(2)∥)2 ≥ C2} = M, (20)

where Mv is de�ned in (16), M is de�ned in (9) and T0(S) is the tangent space to S at

zero and is spanned by �rst p basis vectors. Indeed, the set on the left hand side consists

of points x for which there exists a vector v ∈ span{e1, ..., ep}, ∥v∥ = 1, such that

⟨x, v⟩2 + (C − ∥x− ⟨x, v⟩v∥)2 ≥ C2. (21)

For each x let us �nd the maximum of the expression on left-hand side of inequality (21)

over v ∈ T0(S), ∥v∥ = 1 :

⟨x, v⟩2 + (C − ∥x− ⟨x, v⟩v∥)2 =

= ⟨x, v⟩2 + C2 + ∥x∥2 − ⟨x, v⟩2 − 2C∥x− ⟨x, v⟩v∥ =

= C2 + ∥x∥2 − 2C∥x− ⟨x, v⟩v∥

where we used that ∥x−⟨x, v⟩v∥2 = ∥x∥2−⟨x, v⟩2. We see that maximizing the left-hand

side of (21) over v ∈ span{e1, ..., ep}, ∥v∥ = 1 is equivalent to minimizing ∥x − ⟨x, v⟩v∥.

The minimum is achieved at the projection of x onto T0(S) = span{e1, ..., ep}, that is,

v = 1
∥x(1)∥(x

(1), 0, ..., 0), where x(1) ∈ Rp consists of the �rst p components of x. As a

38



result, the maximum of the left-hand side of (21) equals

C2 + ∥x∥2 − 2C∥x(2)∥ = ∥x(1)∥2 + (C − ∥x(2)∥)2.

This proves statement (20).

Now assume that statement (a) of Theorem 1 is incorrect and there exists a point

q ∈ SC with q /∈ M. Take a geodesic (a curve of the shortest distance lying in SC)

α(s) connecting q and 0 lying in SC , where such a curve exists since SC is a connected

manifold. Parameterize this curve by the arc length. The curve α(s) is a geodesic in S

if and only if at any point q = α(t) the second derivative α̈(t) is perpendicular to Tq(S)

(see Spivak (1999) for discussion of geodesics, v.3, p.3). As a result, the curvature of the

geodesic α at each point q = α(t) is equal to κq(X,S) (where X = α̇(t)), and thus it is

less than 1
C
. Denote the tangent to this curve at 0 by v ∈ T0(S). Applying Lemma 2

we obtain that the curve belongs to Mv ∩ DC and thus belongs to M
∩
DC . We have

arrived at a contradiction. �
Proof of statement (c) of Theorem 1. Let

f(u) = ρ2(ξ,Nu) = min
x(1)∈Rp,z∈R+

∥x(1)∥2+(C−z)2=C2

∥ξ(1) − x(1)∥2 + ∥ξ(2) − zu∥2.

We need to �nd the maximizer of f(u) subject to the constraint ∥u∥ = 1. To di�erentiate

f(u) we use the �envelope theorem� that allows one to di�erentiate a function which is

the optimum of a constrained optimization problem and yields df(u)
du

= −2(ξ(2) − zu).

Hence, the �rst-order condition for �nding ũ implies that u is proportional to ξ(2). The

sign is a re�ection of the fact that we search for a max rather than a min. �
Proof of statement (b) of Theorem 1. For a given point ξ ∈ Rk �nd the

sphere Nũ furthest from ξ, ũ is described in Theorem 1 (c), and the point τ ∈ Nũ

such that ρ(ξ,Nũ) = ρ(ξ, τ). Consider the k − p dimensional linear space Rτ = {x ∈

Rk : x(1) = τ (1)} that restricts the �rst p components of x to coincide with the �rst p

components of τ . We will put forward two statements: �rst, that all points in the inter-

section of Rτ

∩
M
∩
DC are not further from ξ than τ ; and second, that this intersection

Rτ

∩
M
∩
DC contains at least one point from S. Together, these two statements imply

that ρ(ξ, S) ≤ ρ(ξ, τ).
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The intersection of the three sets Rτ

∩
M
∩
DC can be written as follows:

Rτ

∩
M
∩

DC = {x = (τ (1), x(2)) ∈ DC : ∥τ (1)∥2 + (C − ∥x(2)∥)2 ≥ C2} =

=

{
x = (τ (1), x(2)) : ∥x(2)∥ ≤ C −

√
C2 − ∥τ (1)∥2

}
.

Now let us show that for each x ∈ Rτ

∩
M
∩
DC we have ρ(ξ, x) ≤ ρ(ξ, τ). Indeed, one

can solve the constrained maximization problem

ρ(ξ, x)2 = ∥ξ(1) − τ (1)∥2 + ∥ξ(2) − x(2)∥2 → max s.t. x ∈ Rτ

∩
M
∩

DC .

From the �rst-order condition for this problem one can see that the maximum is achieved

at x(2) proportional to ξ(2). We recall that τ ∈ Nũ and by statement (c) τ (2) is proportional

to ξ(2). Further inspection reveals that the maximum is achieved at x = τ . Hence,

all points lying in the intersection Rτ

∩
M
∩
DC have distance to ξ less or equal than

ρ(ξ,Nũ).

To complete the proof we need only show that Rτ

∩
M
∩
DC contains at least one

point from the manifold S. Recall that from the de�nition of τ ∈ Nũ it follows that

∥τ (1)∥ ≤ C. Then Assumption 1 guarantees that the intersection of SC with Rτ is

non-empty, while statement (a) of Theorem 1 implies that SC ⊆ M
∩
DC . �

Proof of statement (d) of Theorem 1. Note that since ũ is proportional to ξ(2)

by statement (c), both ξ and Nũ belong to the same p+ 1- dimensional linear sub-space

Lũ = {x : x = (x(1),−zũ), x(1) ∈ Rp, z ∈ R}. Let us restrict our attention to this

subspace only. Let (x(1), z) be the coordinate system in this sub-space, so ξ corresponds

to ξ̃ = (ξ(1), ∥ξ(2)∥), and Nũ corresponds to the sphere NC = {x = (x(1), z) ∈ Rp+1 :

∥x(1)∥2 + (C + z)2 = C2}. The distance implied by the distance in Rk is the usual

Euclidean metric, which we denote by ρ̃. So far, we proved that ρ(ξ,Nũ) = ρ̃(ξ̃, NC). By

invariance of the distance to orthonormal transformations of �rst p components we have

ρ̃(ξ̃, NC) = ρ̃(ξ∗, NC), where ξ∗ = (∥ξ(1)∥, 0, ..., 0, ∥ξ(2)∥) ∈ Rp+1. From this it is easy to

see that

ρ(ξ,Nũ) = ρ2(η,N
C
2 ),

where η = (∥ξ(1)∥, ∥ξ(2)∥) ∈ R2, NC
2 = {(z1, z2) ∈ R2 : z21 + (C + z2)

2 = C2}, and ρ2 is

Euclidian distance in R2. It then follows that if ξ ∼ N(0, Ik) then components of η have
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independent
√
χ2
p and

√
χ2
k−p distributions, respectively. �

8.2 Proof of Lemma 1

Proof of Lemma 1. Let ξ = Σ−1/2(θ̂ − θ0) ∼ N(0, Ik) and S = {Σ−1/2(θ − θ0), θ ∈

H0} ⊂ Rk. Let C be the largest value for which all assumptions of Theorem 1 are

satis�ed. Let ψC(ξ, R) be de�ned as

ψC(ξ, R) =

 ρ2(ξ,Nũ), if ∥ξ∥ ≤ R;

∥ξ∥2, if ∥ξ∥ > R,

where Nũ = {x ∈ Rk : x = (x(1), zũ), x(1) ∈ Rp, z ∈ R+, ∥x(1)∥2 + (C − z)2 = C2}, ũ =

− 1
∥ξ(2)∥ξ

(2). Random variable ψC(ξ, R) has the same distribution as ψC(R) de�ned in

Section 4.1, but is de�ned on a di�erent probability space, as ψC(R) is written in terms

of random vector η ∈ R2 described in Theorem 1 (d). Consider the infeasible test φ

which rejects (φ = 1) if and only if ψC(ξ, R) ≥ F1−α(C,R, k, p). The size Eφ(ξ) = α, so

since P{χ2
k ≥ R2} < α we know that φ rejects for all realizations of ξ where ∥ξ∥ > R as

∥ξ∥ ≥ ρ(ξ,Nũ). This test is infeasible, however, since we do not know the true value of

θ0 and hence cannot calculate ξ. The (feasible) test described in Lemma 1 is

φ̃ =

 1, if MD ≥ F1−α(C
∗
R, R, k, p);

0, otherwise.
(22)

We claim that φ̃ ≤ φ almost surely (realization-by-realization). To show that this is the

case, assume that φ̃ = 1. If at the same time ∥ξ∥ > R then φ = 1, so the claim holds. If,

on the other hand, ∥ξ∥ ≤ R, then the cylinder D̃R(x0) around x0 = Σ−1/2θ0 lies inside of

ball B∗ of radius (1 +
√
2)R around x̂ = x0 + ξ, and thus

C∗
R =

(
min

q∈S∗ ∩
B∗

1/κq(S
∗)

)
∧R ≤

(
min

q∈S∗ ∩
D̃R(x0)

1/κq(S
∗)

)
∧R ≤ C.

Indeed, to justify the last inequality, consider two cases R ≤ C and R > C. In the �rst

case C∗
R ≤ R ≤ C, in the second case D∗

C ⊂ D∗
R and thus minq∈S∗ ∩

D∗
R(x0) 1/κq(S

∗) ≤

minq∈S∗ ∩
D∗

C(x0) 1/κq(S
∗) ≤ C.

Note that the function F1−α(c, R, k, p) is decreasing in c, and hence F1−α(C,R, k, p) ≤

F1−α(C
∗
R, R, k, p). Further, all the assumptions of Theorem 1 are satis�ed so MD =
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ρ2(ξ, S) ≤ ρ2(ξ,Nũ) ≤ ψC(ξ, R). Combining these results we obtain that

F1−α(C,R, k, p) ≤ F1−α(C
∗
R, R, k, p) ≤MD = ρ2(ξ, S) ≤ ψC(ξ, R),

and thus φ = 1. Hence whenever φ̃ = 1, we get that φ = 1 as well, so φ̃ ≤ φ as we

wanted to show, and the size of the feasible test φ̃ is bounded above by α, completing

the proof. �
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