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CHOOSING AMONG REGULARIZED ESTIMATORS IN EMPIRICAL

ECONOMICS: THE RISK OF MACHINE LEARNING

Alberto Abadie and Maximilian Kasy*

Abstract—Many settings in empirical economics involve estimation of a
large number of parameters. In such settings, methods that combine reg-
ularized estimation and data-driven choices of regularization parameters
are useful. We provide guidance to applied researchers on the choice be-
tween regularized estimators and data-driven selection of regularization
parameters. We characterize the risk and relative performance of regular-
ized estimators as a function of the data-generating process and show that
data-driven choices of regularization parameters yield estimators with risk
uniformly close to the risk attained under the optimal (unfeasible) choice
of regularization parameters. We illustrate using examples from empirical
economics.

I. Introduction

APPLIED economists often confront problems that re-

quire estimation of a large number of parameters. Ex-

amples include (a) estimation of causal (or predictive) effects

for a large number of treatments such as neighborhoods or

cities, teachers, workers and firms, or judges; (b) estimation

of the causal effect of a given treatment for a large number of

subgroups; and (c) prediction problems with a large number

of predictive covariates or transformations of covariates. The

statistics and machine learning literature provides a host of es-

timation methods, such as ridge, lasso, and pretest, which are

particularly well adapted to high-dimensional problems. In

view of the variety of available methods, applied researchers

face the question of which of these procedures to adopt in any

given situation. This paper provides guidance on this choice

based on the risk (mean squared error) properties of a class

of regularization-based machine learning methods.

A practical concern that often motivates the adoption of

machine learning procedures is the potential for overfitting

in high-dimensional settings. To avoid overfitting, most ma-

chine learning procedures for “supervised learning” (i.e., re-

gression and classification methods for prediction) involve

two key features: regularized estimation and data-driven

choice of regularization parameters. These features are also

Received for publication December 4, 2017. Revision accepted for pub-
lication September 17, 2018. Editor: Yuriy Gorodnichenko.

∗Abadie: MIT; Kasy: Harvard University.
We thank Gary Chamberlain, Ellora Derenoncourt, Jiaying Gu, Jérémy

L’Hour, José Luis Montiel Olea, Jann Spiess, Stefan Wager, and seminar
participants at several institutions for helpful comments and discussions.

A supplemental appendix is available online at http://www.mitpress
journals.org/doi/suppl/10.1162/rest_a_00812.

central to nonparametric estimation methods in economet-

rics, such as kernel or series regression.

Main Takeaways. For empirical practitioners, we empha-

size two main takeaway messages of this paper. First, no

one method for regularization is universally optimal. Differ-

ent methods work well in different types of settings, and we

provide guidance based on theoretical considerations, simu-

lations, and empirical applications. Second, a choice of tun-

ing parameters using cross-validation or Stein’s unbiased risk

estimate is guaranteed to work well in high-dimensional es-

timation and prediction settings under mild conditions. For

econometric theorists, our main contribution are our results

on uniform loss consistency for a general class of regulariza-

tion procedures. In seeming contrast to some results in the lit-

erature, data-driven tuning performs uniformly well in high-

dimensional settings. Further interesting findings include that

lasso is surprisingly robust in its performance across many

settings, and flexible regularization methods such as nonpara-

metric empirical Bayes dominate in very high-dimensional

settings but are dominated by more parsimonious regularizers

in more moderate dimensions.

Setup. In this paper, we consider the canonical problem

of estimating the unknown means, µ1, . . . , µn, of a poten-

tially large set of observed random variables, X1, . . . , Xn. Af-

ter some transformations, our setup covers applications (a)

to (c) already mentioned and many others. Our results do not

cover cases where the sample size is smaller than the dimen-

sion of the parameter of interest.

We consider componentwise estimators of the form µ̂i =
m(Xi, λ), where λ is a nonnegative regularization parameter.

Typically, m(x, 0) = x, so that λ = 0 corresponds to the un-

regularized estimator µ̂i = Xi. Positive values of λ typically

correspond to regularized estimators, which shrink toward

0, |µ̂i| ≤ |Xi|. The value λ = ∞ typically implies maximal

shrinkage: µ̂i = 0 for i = 1, . . . , n. Shrinkage toward zero is

a convenient normalization but is not essential. Shifting Xi

by a constant to Xi − c, for i = 1, . . . , n, results in shrinkage

toward c.

The Risk Function of Regularized Estimators. Our paper

is structured according to the two mentioned features of
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machine learning procedures: regularization and data-driven

choice of regularization parameters. We first focus on reg-

ularized estimation and study the risk properties (mean

squared error, averaged across components i) of regular-

ized estimators with fixed and with oracle-optimal regu-

larization parameters. We show that for any given data-

generating process, there is an (infeasible) risk-optimal

regularized componentwise estimator. This estimator has the

form of the posterior mean of µI given XI , where µI is

drawn uniformly at random from the empirical distribution

of µ1, . . . , µn. The optimal regularized estimator is useful to

characterize the risk properties of machine learning estima-

tors. The risk function of any regularized estimator can be

expressed as a function of the distance between that regular-

ized estimator and the optimal one.

Instead of conditioning on µ1, . . . , µn, one can consider

the case where each (Xi, µi) is a realization of a random

vector (X, µ) with distribution π and a notion of risk that

is integrated over the distribution of both X and µ in the

population. For this alternative definition of risk, we derive

results analogous to those of the previous paragraph.

We next turn to a family of parametric models for π. We

consider models that allow for a probability mass at zero in

the distribution of µ, corresponding to the notion of sparsity,

while conditional on µ 6= 0, the distribution of µ is normal

around some grand mean. For these parametric models, we

derive analytic risk functions, assuming oracle-optimal (risk-

minimizing) choices of λ. We focus our attention on three

estimators: ridge, lasso, and pretest. When the point-mass of

true zeros is small, ridge tends to perform better than lasso or

pretest. When there is a sizable share of true zeros, the ranking

of the estimators depends on the other characteristics of the

distribution of µ: (a) if the nonzero parameters are smoothly

distributed in a vicinity of zero, ridge still performs best;

(b) if most of the distribution of non-zero parameters assigns

large probability to a set well separated from zero, pretest

estimation tends to perform well; and (c) lasso tends to do

comparatively well in intermediate cases that fall somewhere

between (a) and (b), and overall is remarkably robust across

the different specifications. This characterization of the rel-

ative performance of ridge, lasso, and pretest is consistent

with the results that we obtain for the empirical applications

discussed later in the paper.

Data-Driven Choice of Regularization Parameters. The

second part of the article turns to the feature of machine

learning estimators and studies the data-driven choice of reg-

ularization parameters. We consider choices of regularization

parameters based on the minimization of a criterion function

that estimates risk. Ideally, a machine learning estimator eval-

uated at a data-driven choice of the regularization parameter

would have a risk function that is uniformly close to the risk

function of the infeasible estimator using an oracle-optimal

regularization parameter (which minimizes true risk). We

show that this type of uniform consistency can be achieved

under fairly mild conditions whenever the dimension of the

problem under consideration is large, and risk is defined as

mean squared error averaged across components i. We further

provide fairly weak conditions under which machine learning

estimators with data-driven choices of the regularization pa-

rameter, based on Stein’s unbiased risk estimate (SURE) and

on cross-validation (CV), attain uniform risk consistency. In

addition to allowing data-driven selection of regularization

parameters, uniformly consistent estimation of the risk of

shrinkage estimators can be used to select among alternative

shrinkage estimators on the basis of their estimated risk in

empirical settings.

Applications. We illustrate our results in the context of

three applications taken from the empirical economics litera-

ture. The first application uses data from Chetty and Hendren

(2018) to study the effects of locations on intergenerational

earnings mobility of children. The second application uses

data from the event-study analysis in Della Vigna and La

Ferrara (2010), who investigate whether the stock prices of

weapon-producing companies react to changes in the inten-

sity of conflicts in countries under arms trade embargoes.

The third application considers nonparametric estimation of a

Mincer equation using data from the Current Population Sur-

vey (CPS), as in Belloni and Chernozhukov (2011). The pres-

ence of many neighborhoods in the first application, many

weapon-producing companies in the second one, and many

series regression terms in the third one makes these estima-

tion problems high-dimensional.

These examples showcase how simple features of the data-

generating process affect the relative performance of machine

learning estimators. They also illustrate the way in which con-

sistent estimation of the risk of shrinkage estimators can be

used to choose regularization parameters and select among

different estimators in practice. For the estimation of loca-

tion effects in Chetty and Hendren (2018), we find estimates

that are not overly dispersed around their mean and no ev-

idence of sparsity. In this setting, ridge outperforms lasso

and pretest in terms of estimated mean squared error. In the

setting of the event-study analysis in Della Vigna and La Fer-

rara (2010), our results suggest that a large fraction of values

of parameters are closely concentrated around zero, while

a smaller but nonnegligible fraction of parameters are pos-

itive and substantially separated from zero. In this setting,

pretest dominates. Similarly, to the result for the setting in

Della Vigna and La Ferrara (2010), the estimation of the pa-

rameters of a Mincer equation in Belloni and Chernozhukov

(2011) suggests a sparse approximation to the distribution of

parameters. In this setting, however, shrinkage at the tails of

the distribution is still helpful, and lasso dominates ridge and

pretest.

Road Map. The rest of this paper is structured as follows.

Section II introduces our setup. Section IIA discusses a series

of examples from empirical economics. Section III provides
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characterizations of the risk function of regularized estima-

tors. Section IV turns to data-driven choices of regularization

parameters. We show uniform risk consistency results for

Stein’s unbiased risk estimate and for cross-validation. Sec-

tion V reports simulation results. Section VI discusses several

empirical applications. Section VII concludes. An online ap-

pendix contains proofs and supplemental materials, includ-

ing a review of the substantial literature on statistical decision

theory and machine learning this article builds on.

II. Setup

Throughout this paper, we consider the following setting.

We observe a realization of an n-vector of real-valued random

variables, X = (X1, . . . , Xn)′, where the components of X are

mutually independent with finite mean µi and finite variance

σ2
i , for i = 1, . . . , n. Our goal is to estimate µ1, . . . , µn.

In many applications, the Xi arise as preliminary least

squares estimates of the coefficients of interest, µi. Consider,

for instance, a randomized controlled trial where randomiza-

tion of treatment assignment is carried out separately for n

nonoverlapping subgroups. Within each subgroup, the dif-

ference in the sample averages between treated and control

units, Xi, has mean equal to the average treatment effect for

that group in the population, µi. Further examples are dis-

cussed in section IIA.

Componentwise estimators. We restrict our attention to

componentwise estimators of µi,

µ̂i = m(Xi, λ),

where m : R × [0, ∞] → R defines an estimator of µi as a

function of Xi and a nonnegative regularization parameter,

λ. The parameter λ is common across the components i and

might depend on the vector X . We study data-driven choices

λ̂ in section IV, focusing in particular on Stein’s unbiased risk

estimate (SURE) and cross-validation (CV).

Popular choices for m(x, λ) are ridge, lasso, and pretest.

They are defined as follows:

Ridge: mR(x, λ) = argmin
m∈R

(x − m)2 + λm2 = 1
1+λ

x

Lasso: mL(x, λ) = argmin
m∈R

(x − m)2 + 2λ|m| = 1(x < −λ)

(x + λ) + 1(x > λ)(x − λ)

Pretest: mPT (x, λ) = argmin
m∈R

(x − m)2 + λ21(m 6= 0) =

1(|x| > λ)x,

where 1(A) denotes the indicator function, which equals 1 if A

holds and 0 otherwise. Figure 1 plots mR(x, λ), mL(x, λ) and

mPT (x, λ) as functions of x. For reasons apparent in figure

1, ridge, lasso, and pretest estimators are sometimes referred

to as linear shrinkage, soft thresholding, and hard thresh-

FIGURE 1.—SHRINKAGE ESTIMATORS

This graph plots mR (x, λ), mL (x, λ), and mPT (x, λ) as functions of x. The regularization parameters are

λ = 1 for ridge, λ = 2 for lasso, and λ = 4 for pretest.

olding, respectively.1 The functions mR(x, λ), mL(x, λ) and

mPT (x, λ) all fall between the 45 degree line and the flat line

at zero. That is, they produce shrinkage toward zero. As we

discuss below, the problem of determining the optimal choice

among these estimators in terms of minimizing mean squared

error is equivalent to the problem of determining which of

these estimators best approximates a certain optimal estimat-

ing function.

Let µ = (µ1, . . . , µn)′ and µ̂ = (µ̂1, . . . , µ̂n)′, where, for

simplicity, we leave the dependence of µ̂ on λ implicit in our

notation. Let P1, . . . , Pn be the distributions of X1, . . . , Xn,

and let P = (P1, . . . , Pn).

Loss and risk. We evaluate estimates based on the squared

error loss function, or compound loss,

Ln(X , m(·, λ), P) =
1

n

n∑

i=1

(
m(Xi, λ) − µi

)2
,

where Ln depends on P via µ. We write m(·, λ) here and

below to emphasize that we are evaluating the function m,

mapping Xi into µ̂i, for fixed λ. We will use expected loss to

rank estimators. There are different ways of taking this expec-

tation, resulting in different risk functions, and the distinction

between them is conceptually important.

Componentwise risk fixes Pi and considers the expected

squared error of µ̂i as an estimator of µi:

R(m(·, λ), Pi) = E [(m(Xi, λ) − µi)
2|Pi].

The expectation on the right-hand side averages over the

sampling distribution of Xi, given Pi. We use Bayesian

1Pretest is also known as Hodge’s estimator, in settings where λ → 0 at
a rate slower than σi. See Leeb and Pötscher (2006).
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notation, conditioning on the parameter Pi, to make this

explicit.

Compound risk averages componentwise risk over the em-

pirical distribution of Pi across the components i = i, . . . , n.

Compound risk is given by the expectation of compound loss

Ln given P:

Rn(m(·, λ), P) = E [Ln(X , m(·, λ), P)|P]

=
1

n

n∑

i=1

E [(m(Xi, λ) − µi)
2|Pi]

=
1

n

n∑

i=1

R(m(·, λ), Pi).

Finally, integrated (or empirical Bayes) risk considers

P1, . . . , Pn to be themselves draws from some population dis-

tribution, 5. This induces a joint distribution, π, for (Xi, µi).

Throughout the paper, we often use a subscript π to denote

characteristics of the joint distribution of (Xi, µi). Integrated

risk refers to loss integrated over π or, equivalently, compo-

nentwise risk integrated over 5:

R̄(m(·, λ), π) = Eπ[Ln(X , m(·, λ), P)]

= Eπ[(m(Xi, λ) − µi)
2]

=
∫

R(m(·, λ), Pi)d5(Pi). (1)

Notice the similarity between compound risk and integrated

risk: they differ only by replacing an empirical (sample) dis-

tribution by a population distribution. For large n, the differ-

ence between the two vanishes, as we will demonstrate in

section IV.

Regularization parameter. Throughout, we use Rn(m(·,
λ), P) to denote the risk function of the estimator m(·, λ)

with fixed (nonrandom) λ, and similarly for R̄(m(·, λ), π).

In contrast, Rn(m(·, λ̂n), P) is the risk function taking into

account the randomness of λ̂n, where the latter is chosen in

a data-dependent manner, and similarly for R̄(m(·, λ̂n), π).

For a given P, we define the “oracle” selector of the regular-

ization parameter as the value of λ that minimizes compound

risk,

λ∗(P) = argmin
λ∈[0,∞]

Rn(m(·, λ), P),

whenever the argmin exists. We use λ∗
R(P), λ∗

L(P) and λ∗
PT (P)

to denote the oracle selectors for ridge, lasso, and pretest,

respectively. Analogously, for a given π, we define

λ̄∗(π) = argmin
λ∈[0,∞]

R̄(m(·, λ), π) (2)

whenever the argmin exists, with λ̄∗
R(π), λ̄∗

L(π), and λ̄∗
PT (π)

for ridge, lasso, and pretest, respectively. In section III, we

characterize compound and integrated risk for fixed λ and

for the oracle-optimal λ. In section IV, we show that data-

driven choices λ̂n are, under certain conditions, as good as

the oracle-optimal choice, in a sense to be made precise.

A. Empirical Examples

Our setup describes a variety of settings often encountered

in empirical economics, where X1, . . . , Xn are unbiased or

close to unbiased but noisy least squares estimates of a set of

parameters of interest, µ1, . . . , µn. As mentioned in section I,

examples include (a) studies estimating causal or predictive

effects for a large number of treatments such as neighbor-

hoods, cities, teachers, workers, firms, or judges; (b) studies

estimating the causal effect of a given treatment for a large

number of subgroups; and (c) prediction problems with a

large number of predictive covariates or transformations of

covariates.

Large number of treatments. Examples in the first cate-

gory include Chetty and Hendren (2018), who estimate the

effect of geographic locations on intergenerational mobil-

ity for a large number of locations. Chetty and Hendren use

differences between the outcomes of siblings whose parents

move during their childhood in order to identify these effects.

The problem of estimating a large number of parameters also

arises in the teacher value-added literature when the objects

of interest are individual teachers’ effects (see, e.g., Chetty,

Friedman, & Rockoff, 2014). In labor economics, estimation

of firm and worker effects in studies of wage inequality has

been considered in Abowd, Kramarz, and Margolis (1999).

Another example within the first category is provided by

Abrams, Bertrand, and Mullainathan (2012), who estimate

differences in the effects of defendant’s race on sentencing

across individual judges.

Treatment for large numbers of subgroups. Within the sec-

ond category, which consists of estimating the effect of a

treatment for many subpopulations, our setup can be applied

to the estimation of heterogeneous causal effects of class size

on student outcomes across many subgroups. For instance,

Project STAR (Krueger, 1999) involved experimental assign-

ment of students to classes of different sizes in 79 schools.

Causal effects for many subgroups are also of interest in med-

ical contexts or for active labor market programs, where doc-

tors or policymakers have to decide on treatment assignment

based on individual characteristics. In some empirical set-

tings, treatment impacts are individually estimated for each

sample unit. This is often the case in empirical finance, where

event studies are used to estimate reactions of stock market

prices to newly available information. For example, Della Vi-

gna and La Ferrara (2010) estimate the effects of changes in

the intensity of armed conflicts in countries under arms trade

embargoes on the stock market prices of arms-manufacturing

companies.
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Prediction with many regressors. The third category is pre-

diction with many regressors (but no more than the number

of observations). This category fits in the setting of this pa-

per after orthonormalization of the regressors, such that their

sample second-moment matrix is the identity. Prediction with

many regressors arises, in particular, in macroeconomic fore-

casting. Stock and Watson (2012), in an analysis comple-

menting this paper, evaluate various procedures in terms of

their forecast performance for a number of macroeconomic

time series for the United States. Regression with many pre-

dictors also arises in series regression, where series terms

are transformations of a set of predictors. Series regression

and its asymptotic properties have been widely studied in

econometrics (see, e.g., Newey, 1997). Wasserman (2006,

sections 7.2–7.3) provides an illuminating discussion of the

equivalence between the many means model studied in this

paper and nonparametric regression estimation. For that set-

ting, X1, . . . , Xn and µ1, . . . , µn correspond to the estimated

and true regression coefficients on an orthogonal basis of

functions. Application of lasso and pretesting to series regres-

sion is discussed, for instance, in Belloni and Chernozhukov

(2011). Appendix A.1 further discusses the relationship be-

tween the many means model and prediction models.

In section VI, we return to three of these applications,

revisiting the estimation of location effects on intergenera-

tional mobility, as in Chetty and Hendren (2018), the effect

of changes in the intensity of conflicts in arms embargo coun-

tries on the stock prices of arms manufacturers, as in Della

Vigna and La Ferrara (2010), and nonparametric series esti-

mation of a Mincer equation, as in Belloni and Chernozhukov

(2011).

III. The Risk Function

We now turn to our first set of formal results, which pertain

to the mean squared error of regularized estimators. Our goal

is to guide the researcher’s choice of estimator by describing

the conditions under which each of the alternative machine

learning estimators performs better than the others.

We first derive a general characterization of the mean

squared error of regularized estimators. This characteriza-

tion is based on the geometry of estimating functions m as

depicted in figure 1. It is a priori not obvious which of these

functions is best suited for estimation. We show that for any

given data-generating process, there is an optimal function

m∗
P

that minimizes mean squared error. Moreover, we show

that the mean squared error for an arbitrary m is equal, up to

a constant, to the L2 distance between m and m∗
P
. A function

m thus yields a good estimator if it is able to approximate the

shape of m∗
P

well.

In section IIIB, we discuss analytic characterizations for

the componentwise risk of ridge, lasso, and pretest estimators,

imposing the additional assumption of normality. Summing

or integrating componentwise risk over some distribution for

(µi, σi) delivers expressions for compound and integrated

risk.

In section IIIC, we turn to a specific parametric family

of data-generating processes where each µi is equal to zero

with probability p, reflecting the notion of sparsity, and is

otherwise drawn from a normal distribution with some mean

µ0 and variance σ2
0. For this parametric family indexed by

(p, µ0, σ0), we discuss analytic risk functions and visual com-

parisons of the relative performance of alternative estimators.

This allows us to identify key features of the data-generating

process that affect the relative performance of alternative

estimators.

A. General Characterization

Recall the setup introduced in section II, where we observe

n jointly independent random variables X1, . . . , Xn, with

means µ1, . . . , µn. We are interested in the mean squared er-

ror for the compound problem of estimating all µ1, . . . , µn si-

multaneously. In this formulation of the problem, µ1, . . . , µn

are fixed unknown parameters.

Let I be a random variable with a uniform distribution

over the set {1, 2, . . . , n} and consider the random compo-

nent (XI , µI ) of (X , µ). This construction induces a mixture

distribution for (XI , µI ) (conditional on P),

(XI , µI )|P ∼
1

n

n∑

i=1

Piδµi
,

where δµ1
, . . . , δµn

are Dirac measures at µ1, . . . , µn. Based

on this mixture distribution, define the conditional expecta-

tion and the average conditional variance:

m∗
P

(x) = E [µI |XI = x, P] and v
∗
P

= E
[
var(µI |XI , P)|P

]
.

Theorem 1 characterizes the compound risk of an estimator

in terms of the average squared discrepancy relative to m∗
P
,

which implies that m∗
P

is optimal (lowest mean squared error)

for the compound problem.

Theorem 1 (characterization of risk functions). Consider

the many means model of section II, where Xi|P has distribu-

tion Pi with expectation µi. If supλ∈[0,∞] E [(m(XI , λ))2|P] <

∞, the compound risk function Rn of µ̂i = m(Xi, λ) can be

written as

Rn(m(·, λ), P) = v
∗
P

+ E
[
(m(XI , λ) − m∗

P
(XI ))2|P

]
,

which implies

λ∗(P) = argmin
λ∈[0,∞]

E
[
(m(XI , λ) − m∗

P
(XI ))2|P

]

whenever λ∗(P) is well defined.

The proof of this theorem and all further results are in the

online appendix.

The statement of this theorem implies that the risk of

componentwise estimators is equal to an irreducible part v
∗
P
,

plus the L2 distance of the estimating function m(., λ) to
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the infeasible optimal estimating function m∗
P
. A given data-

generating process P maps into an optimal estimating func-

tion m∗
P
, and the relative performance of alternative estimators

m depends on how well they approximate m∗
P
.

We can easily write m∗
P

explicitly because the conditional

expectation defining m∗
P

is a weighted average of the values

taken by µi. Suppose, for example, that Xi ∼ N (µi, 1) for

i = 1 . . . n. Let φ be the standard normal probability density

function. Then,

m∗
P

(x) =
n∑

i=1

µi φ(x − µi)
/ n∑

i=1

φ(x − µi).

Theorem 1 conditions on the empirical distribution of

µ1, . . . , µn, which corresponds to the notion of compound

risk. Replacing this empirical distribution by the population

distribution π, so that

(Xi, µi) ∼ π,

results analogous to those in theorem 1 are obtained for the

integrated risk and the integrated oracle selectors in equations

(1) and (2). That is, let

m̄∗
π(x) = Eπ[µi|Xi = x] and v̄

∗
π = Eπ[varπ(µi|Xi)],

and assume supλ∈[0,∞] Eπ[(m(Xi, λ) − µi)
2] < ∞. Then

R̄(m(·, λ), π) = v̄
∗
π + Eπ

[
(m(Xi, λ) − m̄∗

π(Xi))
2
]
,

and

λ̄∗(π) = argmin
λ∈[0,∞]

Eπ

[
(m(Xi, λ) − m̄∗

π(Xi))
2
]
. (3)

The proof of these assertions is analogous to the proof of

theorem 1. m∗
P

and m̄∗
π are optimal componentwise estimators

or “shrinkage functions” in the sense that they minimize the

compound and integrated risk, respectively.

B. Componentwise Risk

The characterization of the risk of componentwise esti-

mators in the previous section relies only on the existence

of second moments. Explicit expressions for compound risk

and integrated risk can be derived under additional struc-

ture. We now consider a setting in which the Xi are normally

distributed:

Xi ∼ N (µi, σ
2
i ).

This is a particularly relevant scenario in applied research,

where the Xi are often unbiased estimators with a normal

distribution in large samples, as in examples (a) to (c) in

sections I and IIA. For concreteness, we focus on the three

widely used componentwise estimators introduced in section

FIGURE 2.—COMPONENTWISE RISK FUNCTIONS

This figure displays componentwise risk, R(m(·, λ)), as a function of µi for componentwise estimators,

where σ2
i = 2. “mle” refers to the maximum likelihood (unregularized) estimator, µ̂i = Xi , which has risk

equal to σ2
i = 2. The regularization parameters are λ = 1 for ridge, λ = 2 for lasso, and λ = 4 for pretest,

as in figure 1.

II—ridge, lasso, and pretest—whose estimating functions m

were plotted in figure 1. Lemma A.1 in the appendix pro-

vides explicit expressions for the componentwise risk of these

estimators.

Figure 2 plots the componentwise risk functions in lemma

A.1 as functions of µi (with λ = 1 for ridge, λ = 2 for lasso,

and λ = 4 for pretest). It also plots the componentwise risk

of the unregularized maximum likelihood estimator, µ̂i = Xi,

which is equal to σ2
i . As figure 2 suggests, componentwise

risk is large for ridge when |µi| is large. The same is true for

lasso, except that risk remains bounded. For pretest, compo-

nentwise risk is large when |µi| is close to λ.

Notice that these functions are plotted for a fixed value of

the regularization parameter. If λ is chosen optimally, then the

componentwise risks of ridge, lasso, and pretest are no greater

than the componentwise risk of the unregularized maximum

likelihood estimator µ̂i = Xi, which is σ2
i . The reason is that

ridge, lasso, and pretest nest the unregularized estimator (as

in the case λ = 0).

C. Spike and Normal Data-Generating Process

If we take the expressions for componentwise risk de-

rived in lemma A.1 and average them over some population

distribution of (µi, σ
2
i ), we obtain the integrated, or empir-

ical Bayes, risk. For parametric families of distributions of

(µi, σ
2
i ), this might be done analytically. We do so now, con-

sidering a family of distributions that is rich enough to cover

common intuitions about data-generating processes but sim-

ple enough to allow for analytic expressions. Based on these

expressions, we characterize scenarios that favor the relative
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performance of each of the estimators considered in this

paper.

We consider a family of distributions for (µi, σi) such

that (a) µi takes value 0 with probability p and is otherwise

distributed as a normal with mean value µ0 and standard

deviation σ0, and (b) σ2
i = σ2. Proposition A.1 in the ap-

pendix derives the optimal estimating function m̄∗
π, as well as

integrated risk functions of ridge, lasso, and pretest for this

family of distributions.

Even under substantial sparsity (i.e., if p is large), the op-

timal shrinkage function, m̄∗
π, never shrinks all the way to

zero (unless, of course, µ0 = σ0 = 0 or p = 1). This could

in principle cast some doubts about the appropriateness of

thresholding estimators, such as lasso or pretest, which in-

duce sparsity in the estimated parameters. However, as we

will see below, despite this stark difference between thresh-

olding estimators and m̄∗
π, lasso and, to a certain extent, pretest

are able to approximate the integrated risk of m̄∗
π in the spike

and normal model when the degree of sparsity in the param-

eters of interest is substantial.

Visual representations. Figure 3 plots the minimal inte-

grated risk function of the different estimators. Each of the

four subplots in figure 3 is based on a fixed value of p ∈
{0, 0.25, 0.5, 0.75}, with µ0 and σ2

0 varying along the bottom

axes, and σ2 = 1. For each value of the triple (p, µ0, σ0), the

first three panels of figure 3 report minimal integrated risk

of each shrinkage estimator (ridge, lasso, and pretest) mini-

mized over λ ∈ [0, ∞]. As a benchmark, the fourth panel of

figure 3 reports the risk of the optimal shrinkage function,

m̄∗
π, simulated over 10 million repetitions. Figure 4 maps the

regions of parameter values over which each of the three es-

timators (ridge, lasso, or pretest) performs best in terms of

integrated risk.

Figures 3 and 4 provide some useful insights into the per-

formance of shrinkage estimators. With no true zeros, ridge

performs better than lasso or pretest. A clear advantage of

ridge in this setting is that in contrast to lasso or pretest,

ridge allows shrinkage without shrinking some observations

all the way to zero. As the share of true zeros increases, the

relative performance of ridge deteriorates for pairs (µ0, σ0)

away from the origin. Intuitively, linear shrinkage imposes

a disadvantageous trade-off on ridge. Using ridge to heav-

ily shrink toward the origin in order to fit potential true zeros

produces large expected errors for observations with µi away

from the origin. As a result, ridge performance suffers con-

siderably unless much of the probability mass of the distribu-

tion of µi is tightly concentrated around zero. In the absence

of true zeros, pretest performs particularly poorly unless the

distribution of µi has much of its probability mass tightly

concentrated around zero, in which case, shrinking all the

way to zero produces low risk. However, in the presence of

true zeros, pretest performs well when much of the probabil-

ity mass of the distribution of µi is located in a set that is well

separated from zero, which facilitates the detection of true

zeros. Intermediate values of µ0 coupled with moderate val-

ues of σ0 produce settings where the conditional distributions

Xi|µi = 0 and Xi|µi 6= 0 greatly overlap, inducing substan-

tial risk for pretest estimation. The risk performance of lasso

is particularly robust. It outperforms ridge and pretest for

values of (µ0, σ0) at intermediate distances to the origin and

uniformly controls risk over the parameter space. This robust-

ness of lasso may explain its popularity in empirical practice.

Despite the fact that, unlike optimal shrinkage, thresholding

estimators impose sparsity, lasso—and, to a certain extent,

pretest—are able to approximate the integrated risk of the

optimal shrinkage function over much of the parameter space.

All in all, the results in figures 3 and 4 for the spike and

normal case support the adoption of ridge in empirical appli-

cations where there are no reasons to presume the presence of

many true zeros among the parameters of interest. In empir-

ical settings where many true zeros may be expected, figures

3 and 4 show that the choice among estimators in the spike

and normal model depends on how well separated the distri-

butions Xi|µi = 0 and Xi|µi 6= 0 are. Pretest is preferred in

the well-separated case, while lasso is preferred in the non-

separated case.

IV. Data-Driven Choice of Regularization Parameters

In section IIIC, we adopted a parametric model for the dis-

tribution of µi to study the risk properties of regularized esti-

mators under an oracle choice of the regularization parameter,

λ̄∗(π). In this section, we return to a nonparametric setting

and show that it is possible to consistently estimate λ̄∗(π)

from the data, X1, . . . , Xn, under some regularity conditions

on π. We consider estimates λ̂n of λ̄∗(π) based on Stein’s un-

biased risk estimate and based on cross-validation. The result-

ing estimators m(Xi, λ̂n) have risk functions that uniformly

close to those of the infeasible estimators m(Xi, λ̄
∗(π)). The

asymptotic sequences we consider assume that (Xi, µi) are

i.i.d. draws from the distribution π, and uniformity is over all

distributions π with bounded fourth moments.

The uniformity part of this statement is important and

not obvious. Absent uniformity, asymptotic approximations

might misleadingly suggest good behavior, while in fact, the

finite sample behavior of proposed estimators might be quite

poor for plausible sets of data-generating processes. Notice

also that our definition of compound loss averages (rather than

sums) component-wise loss. For large n, any given compo-

nent i thus contributes little to compound loss or risk, and

uniform risk consistency is to be understood accordingly.

A. Uniform Loss and Risk Consistency

For the remainder of the paper, we adopt the following

shorthand notation:

Compound loss: Ln(λ) = Ln(X , m(·, λ), P)

Compound risk: Rn(λ) = Rn(m(·, λ), P)

Empirical Bayes or Integrated Risk: R̄π(λ) = R̄(m(·, λ), π)
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FIGURE 3.—RISK FOR ESTIMATORS IN SPIKE AND NORMAL SETTING

A color version of this figure is available online at https://doi.org/10.1162/rest_a_00812.

We now consider estimators λ̂n of λ̄∗(π) that are obtained

by minimizing some empirical estimate of the risk function

R̄π (possibly up to a constant that depends only on π). The

resulting λ̂n is then used to obtain regularized estimators of

the form µ̂i = m(Xi, λ̂n). We will show that for large n, the

compound loss, the compound risk, and the integrated risk

functions of the resulting estimators are uniformly close to

the corresponding functions of the same estimators evaluated
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FIGURE 4.—BEST ESTIMATOR IN SPIKE AND NORMAL SETTING

This figure compares integrated risk values attained by ridge, lasso, and pretest for different parameter values of the spike and normal specification in section IIIC. Circles (blue in the digital version) are placed at

parameter values for which ridge minimizes integrated risk, (green) crosses at values for which lasso minimizes integrated risk, and (red) dots are parameter values for which pretest minimizes integrated risk. A color

version of this figure is available online at https://doi.org/10.1162/rest_a_00812.

at oracle-optimal values of λ. As n → ∞, the differences be-

tween Ln, Rn, and R̄π vanish, so compound loss optimality,

compound risk optimality, and integrated risk optimality be-

come equivalent.

Let Q be a set of probability distributions for (Xi, µi).

The following theorem establishes our key result for this

section.

Theorem 2 (uniform loss consistency). Assume

sup
π∈Q

Pπ

(
sup

λ∈[0,∞]

∣∣∣Ln(λ) − R̄π(λ)

∣∣∣ > ǫ

)
→ 0, ∀ǫ > 0. (4)

Assume also that there are functions, r̄π(λ), v̄π, and rn(λ) (of

(π, λ), π, and ({Xi}n
i=1, λ), respectively) such that R̄π(λ) =

r̄π(λ) + v̄π, and

sup
π∈Q

Pπ

(
sup

λ∈[0,∞]

∣∣rn(λ) − r̄π(λ)
∣∣ > ǫ

)
→ 0, ∀ǫ > 0. (5)

Then,

sup
π∈Q

Pπ

(∣∣∣∣Ln (̂λn) − inf
λ∈[0,∞]

Ln(λ)

∣∣∣∣ > ǫ

)
→ 0, ∀ǫ > 0,

where λ̂n = argmin
λ∈[0,∞]

rn(λ).

Theorem 2 provides sufficient conditions for uniform loss

consistency over π ∈ Q, namely, that (a) the supremum of the

difference between the loss, Ln(λ), and the empirical Bayes

risk, R̄π(λ), vanishes in probability uniformly over π ∈ Q

and (b) that λ̂n is chosen to minimize a uniformly consistent

estimator, rn(λ), of the risk function, R̄π(λ) (possibly up to a

constant v̄π). Under these conditions, the difference between

loss Ln (̂λn) and the infeasible minimal loss infλ∈[0,∞] Ln(λ)

vanishes in probability uniformly over π ∈ Q.
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The sufficient conditions given by this theorem, as stated

in equations (4) and (5), are rather high level. We now give

more primitive conditions for these requirements to hold. In

sections IVB and IVC, we propose suitable choices of rn(λ)

based on Stein’s unbiased risk estimator (SURE) and cross-

validation (CV) and show that equation (5) holds for these

choices of rn(λ).

Theorem 3 provides a set of conditions under which equa-

tion (4) holds, so the difference between compound loss and

integrated risk vanishes uniformly. Aside from a bounded mo-

ment assumption, the conditions in theorem 3 impose some

restrictions on the estimating functions, m(x, λ). Lemma 1

shows that those conditions hold, in particular, for ridge,

lasso, and pretest estimators.

Theorem 3 (uniform L2-convergence). Suppose that:

1. m(x, λ) is monotonic in λ for all x in R

2. m(x, 0) = x and limλ→∞ m(x, λ) = 0 for all x in R

3. supπ∈Q Eπ[X 4] < ∞
4. For any ǫ > 0 there exists a set of regularization pa-

rameters 0 = λ0 < . . . < λk = ∞, which may depend

on ǫ, such that

Eπ[(|X − µ| + |µ|)|m(X, λ j ) − m(X, λ j−1)|] ≤ ǫ

for all j = 1, . . . , k and all π ∈ Q.

Then,

sup
π∈Q

Eπ

[
sup

λ∈[0,∞]

(
Ln(λ) − R̄π(λ)

)2
]

→ 0. (6)

Notice that the finiteness of supπ∈Q Eπ[X 4] is equivalent

to the finiteness of supπ∈Q Eπ[µ4] and supπ∈Q Eπ[(X − µ)4]

via Jensen’s and Minkowski’s inequalities.

Lemma 1. If supπ∈Q Eπ[X 4] < ∞, then equation (6) holds

for ridge and lasso. If, in addition, X is continuously dis-

tributed with a bounded density, then equation (6) holds for

pretest.

Theorem 2 provides sufficient conditions for uniform loss

consistency. The following corollary shows that under the

same conditions we obtain uniform risk consistency, that is,

the integrated risk of the estimator based on the data-driven

choice λ̂n becomes uniformly close to the risk of the oracle-

optimal λ̄∗(π).2 For the statement of this corollary, recall that

R̄(m(., λ̂n), π) is the integrated risk of the estimator m(., λ̂n)

using the stochastic (data-dependent) λ̂n.

Corollary 1 (uniform risk consistency). Under the assump-

tions of theorem 3,

sup
π∈Q

∣∣∣∣R̄(m(., λ̂n), π) − inf
λ∈[0,∞]

R̄π(λ)

∣∣∣∣ → 0. (7)

2An analogous result holds for uniform compound risk consistency.

In this section, we have shown that approximations to the

risk function of machine learning estimators based on oracle-

knowledge of λ are uniformly valid over π ∈ Q under mild

assumptions. It is worth pointing out that such uniformity

is not a trivial result. This is made clear by comparison to

an alternative approximation, sometimes invoked to moti-

vate the adoption of machine learning estimators, based on

oracle knowledge of true zeros among µ1, . . . , µn (see, e.g.,

Fan & Li, 2001). As shown in appendix A.2, assuming or-

acle knowledge of zeros does not yield a uniformly valid

approximation.

B. Stein’s Unbiased Risk Estimate

Theorem 2 provides sufficient conditions for uniform loss

consistency using a general estimator rn of risk. We now es-

tablish that our conditions apply to a particular estimator of

rn, known as Stein’s unbiased risk estimate (SURE), first pro-

posed by Stein (1981). SURE leverages the assumption of

normality to obtain an elegant expression of risk as an ex-

pected sum of squared residuals plus a penalization term.

SURE as originally proposed requires that m be piecewise

differentiable as a function of x, which excludes discontin-

uous estimators such as the pretest estimator mPT (x, λ). We

provide a generalization in lemma 2 that allows for disconti-

nuities. This lemma is stated in terms of integrated risk; with

the appropriate modifications, the same result holds verbatim

for compound risk.

Lemma 2 (SURE for piecewise differentiable estimators

with discontinuities). Suppose that µ ∼ ϑ and X |µ ∼
N (µ, 1). That is, the marginal density of X , fπ, is the convo-

lution of ϑ with the standard normal distribution. Consider

an estimator m(X ) of µ, and suppose that m(x) is differen-

tiable everywhere in R\{x1, . . . , xJ} but might be discontin-

uous at {x1, . . . , xJ}. Let ∇m be the derivative of m (defined

arbitrarily at {x1, . . . , xJ}), and let 1m j = limx↓x j
m(x) −

limx↑x j
m(x) for j ∈ {1, . . . , J}. Assume that Eπ[(m(X ) −

X )2] < ∞, Eπ[∇m(X )] < ∞, and (m(x) − x)φ(x − µ) →
0 as |x| → ∞ ϑ-a.s. Then,

R̄(m(.), π) = Eπ[(m(X ) − X )2]

+ 2


Eπ[∇m(X )] +

J∑

j=1

1m j fπ(x j )


− 1.

The result of this lemma yields an objective function for

the choice of λ of the general form we considered in section

IVA, with v̄π = −1 and

r̄π(λ) = Eπ[(m(X, λ) − X )2]

+ 2


Eπ[∇xm(X, λ)] +

J∑

j=1

1m j (λ) fπ(x j )


, (8)
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where ∇xm(x, λ) is the derivative of m(x, λ) with respect to

its first argument, and {x1, . . . , xJ} may depend on λ. The

expression in equation (8) can be estimated using its sample

analog,

rn(λ) =
1

n

n∑

i=1

(m(Xi, λ) − Xi)
2

+ 2


1

n

n∑

i=1

∇xm(Xi, λ) +
J∑

j=1

1m j (λ) f̂ (x j )


, (9)

where f̂ (x) is an estimator of fπ(x). This expression can be

thought of as a penalized least squares objective function.

The following are explicit expressions for the penalty for the

cases of ridge, lasso, and pretest:

Ridge:
2

1 + λ

Lasso:
2

n

n∑

i=1

1(|Xi| > λ)

Pretest:
2

n

n∑

i=1

1(|Xi| > λ) + 2λ( f̂ (−λ) + f̂ (λ))

The lasso penalty was previously derived in Donoho and

Johnstone (1995). The result in lemma 2 applies not only to

ridge, lasso, and pretest, but also to any other component-wise

estimator of the normal means model.

To apply the uniform risk consistency in theorem 2, we

need to show that equation (5) holds. That is, we have to

show that rn(λ) is uniformly consistent as an estimator of

r̄π(λ). The following lemma provides the desired result.

Lemma 3. Assume the conditions of theorem 3, and let r̄π(λ)

and rn(λ) be as in equations (8) and (9), respectively. Then

equation (5) holds for m(·, λ) equal to mR(·, λ), mL(·, λ). If,

in addition,

sup
π∈Q

Pπ

(
sup
x∈R

∣∣|x| f̂ (x) − |x| fπ(x)
∣∣ > ǫ

)
→ 0 ∀ǫ > 0,

then equation (5) holds for m(·, λ) equal to mPT (·, λ).

Identification of m̄∗
π. Under the conditions of lemma 2, the

optimal regularization parameter λ̄∗(π) is identified. In fact,

under the same conditions, the stronger result holds that m̄∗
π as

defined in section IIIA is identified as well (see, e.g., Brown,

1971; Efron, 2011). The next lemma states the identification

result for m̄∗
π:

Lemma 4. Under the conditions of lemma 2, the optimal

shrinkage function is given by

m̄∗
π(x) = x + ∇ log( fπ(x)).

Several nonparametric empirical Bayes estimators (NPEB)

that target m̄∗
π(x) have been proposed (see Brown & Green-

shtein, 2009; Jiang & Zhang, 2009; Efron, 2011; Koenker &

Mizera, 2014). In particular, Jiang and Zhang (2009) derive

asymptotic optimality results for nonparametric estimation of

m̄∗
π and provide an estimator based on the EM algorithm. The

estimator proposed in Koenker and Mizera (2014), which is

based on convex optimization techniques, is particularly at-

tractive in terms of computational properties and because it

sidesteps the selection of a smoothing parameters (see, e.g.,

Brown & Greenshtein, 2009). Both estimators, in Jiang and

Zhang (2009) and Koenker and Mizera (2014), use a discrete

distribution over a finite number of values to approximate

the true distribution of µ. In sections V and VI, we use the

Koenker-Mizera estimator to visually compare the shape of

this estimated m̄∗
π(x) to the shape of ridge, lasso, and pretest

estimating functions and to assess the performance of ridge,

lasso, and pretest relative to the performance of a nonpara-

metric estimator of m̄∗
π.

C. Cross-Validation

A popular alternative to SURE is cross-validation, which

chooses tuning parameters to optimize out-of-sample predic-

tion. In this section, we investigate data-driven choices of

the regularization parameter in a panel data setting, where

multiple observations are available for each value of µ in the

sample.

For i = 1, . . . , n, consider i.i.d. draws, (x1i, . . . , xki,

µi, σi), of a random variable (x1, . . . , xk, µ, σ) with distribu-

tion π ∈ Q . Assume that the components of (x1, . . . , xk ) are

i.i.d. conditional on (µ, σ2) and that for each j = 1, . . . , k,

E [x j |µ, σ] = µ, and var(x j|µ, σ) = σ2.

Let

Xk =
1

k

k∑

j=1

x j and Xki =
1

k

k∑

j=1

x ji.

For concreteness and to simplify notation, we consider an

estimator based on the first k − 1 observations for each group

i = 1, . . . , n,

µ̂k−1,i = m(Xk−1,i, λ),

and use observations xki, for i = 1, . . . , n, as a holdout sam-

ple to choose λ. Similar results hold for alternative sample

partitioning choices. The loss function and empirical Bayes

risk function of this estimator are given by

Ln,k (λ) =
1

n

n∑

i=1

(m(Xk−1,i, λ) − µi)
2 and

R̄π,k (λ) = Eπ[(m(Xk−1, λ) − µ)2].
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Consider the following cross-validation estimator:

rn,k (λ) =
1

n

n∑

i=1

(
m(Xk−1,i, λ) − xki

)2
.

Lemma 5. Assume conditions 1 and 2 of theorem 3 and

Eπ[x2
j ] < ∞, for j = 1, . . . k. Then,

Eπ[rn,k (λ)] = R̄π,k (λ) + Eπ[σ2].

That is, the cross-validation yields an (up to a constant)

unbiased estimator for the risk of the estimating function

m(Xk−1, λ). The following theorem shows that this result can

be strengthened to a uniform consistency result.

Theorem 4. Assume conditions 1 and 2 of theorem 3 and

supπ Eπ[x4
j ] < ∞, for j = 1, . . . k. Let v̄π = −Eπ[σ2],

r̄π,k (λ) = Eπ[rn,k (λ)] = R̄π,k (λ) − v̄π,

and λ̂n = argmin
λ∈[0,∞]

rn,k (λ). Then, for ridge, lasso, and pretest,

sup
π∈Q

Eπ

[
sup

λ∈[0,∞]

(
rn,k (λ) − r̄π,k (λ)

)2
]

→ 0, and

sup
π∈Q

Pπ

(∣∣∣∣Ln,k

(̂
λn

)
− inf

λ∈[0,∞]
Ln,k (λ)

∣∣∣∣ > ǫ

)
→ 0, ∀ǫ > 0.

Cross-validation has advantages as well as disadvantages

relative to SURE. On the positive side, cross-validation does

not rely on normal errors, while SURE does. Normality is

less of an issue if k is large, so Xki is approximately nor-

mal. On the negative side, however, cross-validation requires

holding out some of the data from the second-step estima-

tion of µ once the value of the regularization parameter has

been chosen in a first step. This affects the essence of the

cross-validation efficiency results, which apply to estimators

of the form m(Xk−1,i, λ), rather than to feasible estimators

that use the entire sample in the second step, m(Xki, λ). Fi-

nally, cross-validation imposes greater data availability re-

quirements, as it relies on availability of data on repeated

realizations, x1i, . . . , xki, of a random variable centered at

µi, for each sample unit i = 1, . . . , n. This may hinder the

practical applicability of cross-validation selection of regu-

larization parameters in the context considered in this paper.

D. Comparison with Leeb and Pötscher (2006)

Our results on the uniform consistency of estimators of

risk such as SURE or CV appear to stand in contradiction to

those of Leeb and Pötscher (2006). They consider the same

setting as we do—estimation of normal means—and the same

types of estimators, including ridge, lasso, and pretest. In this

setting, Leeb and Pötscher (2006) show that no uniformly

consistent estimator of risk exists for such estimators.

The apparent contradiction between our results and the

results in Leeb and Pötscher (2006) is explained by the dif-

ferent nature of the asymptotic sequence adopted in this paper

to study the properties of machine learning estimators, rela-

tive to the asymptotic sequence adopted in Leeb and Pötscher

(2006) for the same purpose. In this paper, we consider the

problem of estimating a large number of parameters, such

as location effects for many locations or group-level treat-

ment effects for many groups. This motivates the adoption

of an asymptotic sequence along which the number of es-

timated parameters increases as n → ∞. In contrast, Leeb

and Pötscher (2006) study the risk properties of regularized

estimators embedded in a sequence along which the num-

ber of estimated parameters stays fixed as n → ∞ and the

estimation variance is of order 1/n. We expect our approx-

imation to work well when the dimension of the estimated

parameter is large; the approximation of Leeb and Pötscher

(2006) is likely to be more appropriate when the dimen-

sion of the estimated parameter is small while sample size is

large.

In the simplest version of the setting in Leeb and Pötscher

(2006), we observe a (k × 1) vector X n with distribution

X n ∼ N (µn, Ik/n), where Ik is the identity matrix of dimen-

sion k. Let Xni and µni be the i-components of X n and µn,

respectively. Consider the componentwise estimator mn(Xni)

of µni. Leeb and Pötscher (2006) study consistent estimation

of the normalized compound risk,

RLP
n = nE‖mn(X n) − µn‖2,

where mn(X n) is a (k × 1) vector with the ith element equal

to mn(Xni) and the sequence µn is taken as fixed.

Adopting the reparameterization, Y n =
√

nX n and hn =√
nµn, we obtain Y n − hn ∼ N (0, Ik ). Notice that for

the maximum likelihood estimator, mn(X n) − µn = (Y n −
hn)/

√
n and RLP

n = E‖m(Y n) − hn‖2 = k, so the risk of the

maximum likelihood estimator does not depend on the se-

quence hn and therefore can be consistently estimated. This

is not the case for shrinkage estimators, however. Choos-

ing hn = h for some fixed h, the problem becomes invariant

in n, Y n ∼ N (h, Ik ). In this setting, it is easy to show that

the risk of machine learning estimators, such as ridge, lasso,

and pretest, depends on h, and therefore it cannot be esti-

mated consistently. For instance, consider the lasso estima-

tor, mn(x) = mL(x, λn), where
√

nλn → c with 0 < c < ∞,

as in Leeb and Pötscher (2006). Then, lemma A.1 in the ap-

pendix implies that RLP
n converges to a constant that depends

on h. As a result, RLP
n cannot be estimated consistently.3

Contrast the setting in Leeb and Pötscher (2006) to the one

adopted in this paper, where we consider a high-dimensional

setting, such that X and µ have dimension equal to n. The

3This result holds more generally outside the normal error model. Let
mL (X n,λ) be the (n × 1) vector with the ith element equal to mL (Xi,λ).
Consider the sequence of regularization parameters λn = c/

√
n; then

mL (x,λn ) = mL (
√

nx, c)/
√

n. This implies RLP
n = E‖mL (Y n, c) − h‖2,

which is invariant in n.
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pairs (Xi, µi) follow a distribution π, which may vary with n.

As n increases, π becomes identified, and so does the average

risk, Eπ[(mn(Xi) − µi)
2], of any componentwise estimator,

mn(·).
Whether the asymptotic approximation in Leeb and

Pötscher (2006) or ours provides a better description of the

performance of SURE, CV, or other estimators of risk in

actual applications depends on the dimension of µ. If this di-

mension is large, as is typical in the applications we consider

in this paper, we expect our uniform consistency result to

apply: a “blessing of dimensionality.” As Leeb and Pötscher

(2006) demonstrated, however, precise estimation of a fixed

number of parameters does not ensure uniformly consistent

estimation of risk.

E. Mixed Estimators and Estimators of the Optimal

Shrinkage Function

We have discussed criteria such as SURE and CV as means

to select the regularization parameter, λ. In principle, these

same criteria might also be used to choose among alterna-

tive estimators, such as ridge, lasso, and pretest, in specific

empirical settings. Our uniform risk consistency results im-

ply that such a mixed-estimator approach dominates each

of the estimators that are being mixed, for n large enough.

Going even further, one might aim to estimate the optimal

shrinkage function, m̄∗
π, using the result of lemma 4, as in

Jiang and Zhang (2009), Koenker and Mizera (2014), and

others. Under suitable consistency conditions, this approach

will dominate all other componentwise estimators for large

enough n (Jiang & Zhang, 2009). In practice, these results

should be applied with some caution, as they are based on

neglecting the variability in the choice of estimation pro-

cedure or in the estimation of m̄∗
π. For small and moderate

values of n, procedures with fewer, degrees of freedom may

perform better in practice. We return to this issue in section

V, where we compare the finite sample risk of the machine

learning estimators considered in this paper (ridge, lasso,

and pretest) to the finite sample risk of the nonparametric

empirical Bayes (NPEB) estimator of Koenker and Mizera

(2014).

V. Simulations

Designs. To gauge the relative performance of the esti-

mators considered in this paper, we next report the results

of a set of simulations that employ the spike and normal

data-generating process of section IIIC. That is, we consider

distributions π of (X, µ) such that µ is degenerate at zero

with probability p and normal with mean µ0 and variance

σ2
0 with probability (1 − p). We consider all combinations

of parameter values p = 0.00, 0.25, 0.50, 0.75, 0.95, µ0 =
0, 2, 4, σ0 = 2, 4, 6, and sample sizes n = 50, 200, 1000.

Given a set of values µ1, . . . , µn, the values for X1, . . . , Xn

are generated as follows. To evaluate the performance of es-

timators based on SURE selectors and of the NPEB esti-

mator of Koenker and Mizera (2014), we generate the data

as

Xi = µi + Ui, (10)

where the Ui follow a standard normal distribution indepen-

dent of other components. To evaluate the performance of

cross-validation estimators, we generate x ji = µi +
√

ku ji

for j = 1, . . . , k, where the u ji are draws from independent

standard normal distributions. As a result, the averages,

Xki =
1

k

k∑

j=1

x ji,

have the same distributions as the Xi in equation (10), which

makes the comparison between the cross-validation estima-

tors and the SURE and NPEB estimators a meaningful one.

For cross-validation estimators, we consider k = 4, 20.

Estimators. The SURE criterion function employed in the

simulations is the one in equation (9), where, for the pretest

estimator, the density of X is estimated with a normal kernel

and the bandwidth implied by Silverman’s rule of thumb.4

The cross-validation criterion function employed in the sim-

ulations is a leave-one-out version of the one considered in

section IVC,

rn,k (λ) =
k∑

j=1

(
1

n

n∑

i=1

(m(X− ji, λ) − x ji)
2

)
, (11)

where X− ji is the average of {x1i, . . . , xki} \ x ji. Notice that

because the result in theorem 4 applies to each of the k terms

on the right-hand side of equation (11), it also applies to

rn,k (λ).

Results. Figures 5, 6, and 7 report average compound risk

across 1,000 simulations for n = 50, n = 200 and n = 1,000,

respectively. Each row corresponds to a particular value of

(p, µ0, σ0), and each column corresponds to a particular esti-

mator or regularization criterion. The results are coded row by

row on a continuous color scale that varies from dark (mini-

mum row value; blue in the digital version) to light (maximum

row value; yellow in the digital version).

Several clear patterns emerge from the simulation results.

First, even for a dimensionality as modest as n = 50, the pat-

terns in figure 3, which were obtained for oracle choices of

regularization parameters, are reproduced in Figures 5 to 7

for the same estimators but using data-driven choices of reg-

ularization parameters. As in figure 3, among ridge, lasso,

and pretest, ridge dominates when there is little or no spar-

sity in the parameters of interest, pretest dominates when the

distribution of nonzero parameters is substantially separated

from zero, and lasso dominates in the intermediate cases.

4See Silverman (1986, eq. 3.31).
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FIGURE 5.—AVERAGE COMPOUND LOSS ACROSS 1,000 SIMULATIONS WITH n = 50

A color version of this figure is available online at https://doi.org/10.1162/rest_a_00812.

Second, while the results in Jiang and Zhang (2009) sug-

gest good performance of nonparametric estimators of m̄∗
π

for large n, the simulation results in Figures 5 and 6 indicate

that the performance of NPEB may be substantially worse

than the performance of the other machine learning estima-

tors in the table for moderate and small n. In particular, the

performance of the NPEB estimator suffers in the settings

with low or no sparsity, especially when the distribution of

the nonzero values of µ1, . . . , µn has considerable disper-

sion. This is explained by the fact that in practice, the NPEB

estimator approximates the distribution of µ using a discrete

distribution supported on a small number of values. When

most of the probability mass of the true distribution of µ

is also concentrated around a small number of values (i.e.,

when p is large or σ0 is small), the approximation employed

by the NPEB estimator is accurate and the performance of the
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FIGURE 6.—AVERAGE COMPOUND LOSS ACROSS 1,000 SIMULATIONS WITH n = 200

A color version of this figure is available online at https://doi.org/10.1162/rest_a_00812.

NPEB estimator is good. This is not the case, however, when

the true distribution of µ cannot be closely approximated with

a small number of values (i.e., when p is small and σ0 is large).

Lasso shows a remarkable degree of robustness to the value of

(p, µ0, σ0), which makes it an attractive estimator in practice.

For large n, as in figures 7, NPEB dominates except in settings

with no sparsity and a large dispersion in µ (p = 0 and σ0

large).

VI. Applications

In this section, we apply our results to three data sets

from the empirical economics literature. The first applica-

tion, based on Chetty and Hendren (2018), estimates the ef-

fect of living in a given commuting zone during childhood on

intergenerational income mobility. The second application,

based on Della Vigna and La Ferrara (2010), estimates
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FIGURE 7.—AVERAGE COMPOUND LOSS ACROSS 1,000 SIMULATIONS WITH n = 1,000

A color version of this figure is available online at https://doi.org/10.1162/rest_a_00812.

changes in the stock prices of arms manufacturers follow-

ing changes in the intensity of conflicts in countries un-

der arms trade embargoes. The third application uses data

from the 2000 U.S. census, previously employed in Angrist,

Chernozhukov, and Fernández-Val (2006) and Belloni and

Chernozhukov (2011), to estimate a nonparametric Mincer

regression equation of log wages on education and potential

experience. We use these three examples for illustrative pur-

poses only. The original studies provide in-depth analyses of

the issues considered in this section.

For all applications, we normalize the observed Xi by their

estimated standard error. Note that this normalization defines

(a) the implied loss function, which is quadratic error loss

for estimation of the normalized latent parameter µi, and

(b) the class of estimators considered, which are componen-

twise shrinkage estimators based on the normalized Xi.
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A. Neighborhood Effects: Chetty and Hendren (2018)

Chetty and Hendren (2018) use information on income at

age 26 for individuals who moved between commuting zones

during childhood to estimate the effects of location on in-

come. Identification comes from comparing differently aged

children of the same parents who are exposed to different lo-

cations for different durations in their youth. In the context of

this application, Xi is the (studentized) estimate of the effect

of spending an additional year of childhood in commuting

zone i, conditional on parental income rank, on child income

rank relative to the national household income distribution

at age 26.5 In this setting, the point zero has no special role;

it is just defined, by normalization, to equal the average of

commuting zone effects. We therefore have no reason to ex-

pect sparsity or the presence of a set of effects well separated

from zero. Our discussion in section III would thus lead us to

expect that ridge will perform well, and this is indeed what

we find.

Figure 8 (top panel) reports SURE estimates of risk for

ridge, lasso, and pretest estimators, as functions of λ. Among

the three estimators, minimal estimated risk is equal to 0.29,

and it is attained by ridge for λ̂R,n = 2.44. Minimal estimated

risk for lasso and pretest are 0.31 and 0.41, respectively. The

relative performance of the three shrinkage estimators reflects

the characteristics of the example and, in particular, the very

limited evidence of sparsity in the data.

The second panel of figure 8 shows the Koenker-Mizera

NPEB estimator (solid line) along with the ridge, lasso,

and pretest estimators (dashed lines) evaluated at SURE-

minimizing values of the regularization parameters. The iden-

tity of the estimators can be easily recognized from their

shape. The ridge estimator is linear, with positive slope equal

to estimated risk, 0.29. Lasso has the familiar piecewise lin-

ear shape, with kinks at the positive and negative versions of

the SURE-minimizing value of the regularization parameter,

λ̂L,n = 1.34. Pretest is flat at 0 because SURE is minimized

for values of λ higher than the maximum absolute value of

X1, . . . , Xn. The second panel shows a kernel estimate of the

distribution of X .6 Among ridge, lasso, and pretest, ridge best

approximates the optimal shrinkage estimator over most of

the estimated distribution of X . Lasso comes a close second,

as evidenced in the minimal SURE values for the three esti-

mators, and pretest is way off. Despite substantial shrinkage,

these estimates suggest considerable heterogeneity in the ef-

fects of childhood neighborhood on earnings. In addition, as

expected given the nature of this application, we do not find

evidence of sparsity in the location effects estimates.

5The data employed in this section were obtained from http://www
.equality-of-opportunity.org/images/nbhds_online_data_table3.xlsx. We
focus on the estimates for children with parents at the 25th percentile of the
national income distribution among parents with children in the same birth
cohort.

6To produce a smooth depiction of densities, for the panels reporting
densities in this section we use the normal reference rule to choose the
bandwidth. See Silverman (1986, equation 3.28).

FIGURE 8.—NEIGHBORHOOD EFFECTS

The middle panel shows the Koenker-Mizera NPEB estimator (solid line) along with the ridge, lasso, and

pretest estimators (dashed lines) evaluated at SURE-minimizing values of the regularization parameters.

The ridge estimator is linear, with positive slope equal to estimated risk, 0.29. lasso is piecewise linear, with

kinks at the positive and negative versions of the SURE-minimizing value of the regularization parameter,

λ̂L,n = 1.34. Pretest is flat at 0 because SURE is minimized for values of λ higher than the maximum

absolute value of X1, . . . , Xn . The bottom panel shows a kernel estimate of the distribution of X .

B. Detecting Illegal Arms Trade: Della Vigna

and La Ferrara (2010)

Della Vigna and La Ferrara (2010) use changes in stock

prices of arms manufacturing companies at the time of large

changes in the intensity of conflicts in countries under arms

trade embargoes to detect illegal arms trade. In this section,

we apply the estimators in section IV to data from the Della

Vigna and La Ferrara study.7

7Della Vigna and La Ferrara (2010) divide their sample of arms man-
ufacturers into two groups, depending on whether the company is head-
quartered in a country with a high or low level of corruption. They also
divide the events of changes in the intensity of the conflicts in embargo
areas in two groups, depending on whether the intensity of the conflict in-
creased or decreased at the time of the event. For concreteness, we use the

http://www.equality-of-opportunity.org/images/nbhds_online_data_table3.xlsx
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FIGURE 9.—ARMS EVENT STUDY

The middle panel shows the Koenker-Mizera NPEB estimator (solid line) along with the ridge, lasso, and

pretest estimators (dashed lines) evaluated at SURE-minimizing values of the regularization parameters.

The ridge estimator is linear, with positive slope equal to estimated risk, 0.50. Lasso is piecewise linear, with

kinks at the positive and negative versions of the SURE-minimizing value of the regularization parameter,

λ̂L,n = 1.50. Pretest is discontinuous at λ̂PT,n = 2.39 and −̂λPT,n = −2.39. The bottom panel shows a

kernel estimate of the distribution of X .

In contrast to the location effects example in section VIA,

in this application there are reasons to expect a certain amount

of sparsity if changes in the intensity of the conflicts in arms

embargo areas do not affect the stock prices of arms manu-

facturers that comply with the embargoes.8 In this case, our

discussion in section III would lead us to expect that pretest

might be optimal, which is again what we find. Figure 9 (top

214-event study estimates for events of increase in the intensity of con-
flicts in arms embargo areas and for companies in high-corruption coun-
tries. The data for this application are available at http://eml.berkeley.edu
/∼sdellavi/wp/AEJDataPostingZip.zip.

8In the words of Della Vigna and La Ferrara (2010), “If a company is
not trading or trading legally, an event increasing the hostilities should not
affect its stock price or should affect it adversely, since it delays the removal
of the embargo and hence the re-establishment of legal sales. Conversely,
if a company is trading illegally, the event should increase its stock price,
since it increases the demand for illegal weapons.”

panel) shows SURE estimates for ridge, lasso, and pretest.

Pretest has the lowest estimated risk, for λ̂PT,n = 2.39,9 fol-

lowed by lasso, for λ̂L,n = 1.50.

Figure 9 (middle panel) depicts the different shrinkage es-

timators and shows that lasso and, especially, pretest closely

approximate the NPEB estimator over a large part of the dis-

tribution of X . The NPEB estimate suggests a substantial

amount of sparsity in the distribution of µ. There is, how-

ever, a subset of the support of X around x = 3 where the

estimate of the optimal shrinkage function implies only a

small amount of shrinkage. Given the shapes of the optimal

shrinkage function estimate and the estimate of the distribu-

tion of X , it is not surprising that the minimal values of SURE

in figure 9 (top panel) for lasso and pretest are considerably

lower than for ridge.

C. Nonparametric Mincer Equation: Belloni and

Chernozhukov (2011)

In our third application, we use data from the 2000 U.S.

Census in order to estimate a nonparametric regression of log

wages on years of education and potential experience, simi-

lar to the example considered in Belloni and Chernozhukov

(2011).10 We construct a set of 66 regressors by taking a satu-

rated basis of linear splines in education, fully interacted with

the terms of a sixth-order polynomial in potential experience.

We orthogonalize these regressors and take the coefficients

Xi of an OLS regression of log wages on these orthogonalized

regressors as our point of departure. We exclude three coef-

ficients of very large magnitude,11 which results in n = 63.

In this application, economics provides less intuition as to

what distribution of coefficients to expect. Belloni and Cher-

nozhukov (2011) argue that for plausible families of functions

containing the true conditional expectation function, sparse

approximations of the coefficients of series regression as in-

duced by the lasso penalty have low mean squared error.

Figure 10 (top panel) reports SURE estimates of risk for

ridge, lasso, and pretest. In this application, the estimated

risk for lasso is substantially smaller than for ridge or pretest.

The middle panel of figure 10 reports the three regular-

ized estimators—ridge, lasso, and pretest—evaluated at the

data-driven choice of regularization parameter, along with

the Koenker-Mizera NPEB estimator. In order to visualize

the differences between the estimates close to the origin,

where most of the coefficients are, we report the value of the

9Notice that the pretest’s SURE estimate attains a negative minimum
value. This could be a matter of estimation variability, of inappropriate
choice of bandwidth for the estimation of the density of X in small samples,
or it could reflect misspecification of the model (in particular, normality of
X given µ).

10The data for this application are available at http://economics.mit.edu
/files/384.

11The three excluded coefficients have values of 2938.04 (the intercept),
98.19, and −77.35. The largest absolute value among the included coef-
ficients is −21.06. Most of the included coefficients are small in absolute
value. About 40% of them have absolute values smaller than 1, and about
60% have absolute value smaller than 2.

http://eml.berkeley.edu/
http://economics.mit.edu/files/384
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FIGURE 10.—NONPARAMETRIC MINCER EQUATION

The middle panel shows the Koenker-Mizera NPEB estimator (solid line) along with the ridge, lasso, and

pretest estimators (dashed lines) evaluated at SURE-minimizing values of the regularization parameters.

The ridge estimator is linear, with positive slope equal to estimated risk, 0.996. Lasso is piecewise linear,

with kinks at the positive and negative versions of the SURE-minimizing value of the regularization

parameter, λ = 0.59. Pretest is discontinuous at λ̂PT,n = 1.14 and −̂λPT,n = −1.14. The bottom panel

shows a kernel estimate of the distribution of X .

estimates for x ∈ [−10, 10]. The bottom panel of figure 10

reports an estimate of the density of X . Locally, the shape

of the NPEB estimate looks similar to a step function. This

behavior is explained by the fact that the NPEB estimator

is based on an approximation to the distribution of µ that is

supported on a finite number of values. However, over the

whole range of x in figure 10, the NPEB estimate is fairly lin-

ear. In view of this close-to-linear behavior of NPEB in the

[10,10] interval, the very poor risk performance of ridge rela-

tive to lasso and pretest, as evidenced in figure 10 (top panel),

may appear surprising. This is explained by the fact that in

this application, some of the values in X1, . . . , Xn fall exceed-

ingly far from the origin. Linearly shrinking those values to-

ward 0 induces severe loss. As a result, ridge attains minimal

risk for a close-to-zero value of the regularization parameter,

λ̂R,n = 0.04, resulting in negligible shrinkage. Among ridge,

lasso, and pretest, minimal estimated risk is attained by lasso

for λ̂L,n = 0.59, which shrinks about 24% of the regression

coefficients all the way to zero. Pretest induces higher sparsity

(̂λPT,n = 1.14, shrinking about 49% of the coefficients all the

way to zero) but does not improve over lasso in terms of risk.

VII. Conclusion

The interest in adopting machine learning methods in eco-

nomics is growing rapidly. Two common features of machine

learning algorithms are regularization and data-driven choice

of regularization parameters. We study the properties of such

procedures. We consider, in particular, the problem of esti-

mating many means µi based on observations Xi. This prob-

lem arises often in economic applications. In such applica-

tions, the “observations” Xi are usually equal to preliminary

least squares coefficient estimates, like fixed effects.

Our goal is to provide guidance for applied researchers

on the use of machine learning estimators. Which estima-

tion method should one choose in a given application? And

how should one choose regularization parameters? To the

extent that researchers care about the squared error of their

estimates, procedures are preferable if they have lower mean

squared errors than the competitors do.

Based on our results, ridge appears to dominate the al-

ternatives considered when the true effects µi are smoothly

distributed, and there is no point mass of true zero. This is

likely to be the case in applications where the objects of

interests are the effects of many treatments, such as loca-

tions or teachers, and applications that estimate effects for

many subgroups. Pretest appears to dominate if there are true

zeros and non-zero effects are well separated from zero. This

happens in economic applications when there are fixed costs

for agents who engage in non-zero behavior. Lasso finally

dominates for intermediate cases and appears to do well for

series regression in particular.

Regarding the choice of regularization parameters, we

prove a series of results that show that data-driven choices

are almost optimal (in a uniform sense) for large-dimensional

problems. This is the case, in particular, for choices of regu-

larization parameters that minimize Stein’s unbiased risk es-

timate (SURE), when observations are normally distributed,

and for cross-validation (CV), when repeated observations

for a given effect are available. Although not explicitly an-

alyzed in this paper, equation (3) suggests a new empirical

selector of regularization parameters based on the minimiza-

tion of the sample mean square discrepancy between m(Xi, λ)

and NPEB estimates of m̄∗
π(Xi).

There are, of course, some limitations to our analysis. First,

we focus on a restricted class of estimators: those that can be

written in the componentwise shrinkage form µ̂i = m(Xi, λ̂).

This covers many estimators of interest for economists, most

notably ridge, lasso, and pretest estimation. Many other es-

timators in the machine learning literature, such as random
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forests or neural nets, do not have this tractable form. The

analysis of the risk properties of such estimators constitutes

an interesting avenue of future research. Finally, we focus

on mean square error. This loss function is analytically quite

convenient and amenable to tractable results. Other loss func-

tions might be of practical interest, however, and might be

studied using numerical methods. In this context, it is also

worth emphasizing again that we were focusing on point es-

timation, where all coefficients µi are simultaneously of in-

terest. This is relevant for many practical applications such

as those discussed here. In other cases, however, one might

instead be interested in the estimates µ̂i solely as input for a

lower-dimensional decision problem or in (frequentist) test-

ing of hypotheses on the coefficients µi. Our analysis of mean

squared error does not directly speak to such questions.
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