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Abstract
This Supplementary Appendix contains proofs of technical results stated in the paper.
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S1 Lemmas for sums involving projection matrix.
Lemma S1.1 Assume that P = (P;;,i,5 = 1,...,N) satisfy Assumption 1, then
(1) |Py;| <1 and |M;;| <1 for anyi,j;
(i1) nyzl |Pir Pyj| <1 for any i, j;
(i1i) Z]#l < Z] \ Pi =P, <1 for any i;
(iv) 35 P3 <32 Pi = K;
(v) SN P Pyl < i VP | Pyl < /K - Pj; < VK for any j.

Proof of Lemma S1.1. M2 = P2 < Z, , P2 = P; < 1. Both M and P are non-

ij =
negative definite, thus, P; > 0, thus M;; =1 — P; < 1.

N N
Z|P P/]|<\ZP Z 2 < \/PuPj; <1,
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Lemma S1.2 Denote I to be the set of all combinations of four indezes (i, 7,4, j') where

no two indexes coincide. Let Assumption 1 hold for matrix P, then:

(a) 732, P2P2, PP, = 0;

iyt iy

(b) = >4, P2P3.| P Pij Piji Pyj| — 0;

(Y

(C) %ZI4P2P2 |M M//’P —)O

ij= 4’5’

(d) 7= >, PP} |Mii Py Puj Prj| — 0;

i+ g’

(¢) 23, |PEP3, PuiPy| — 0.

gt iy

Proof of Lemma S1.2. Statements (a) and (c) are proved similarly. We bound the

corresponding sums by first noticing that P2 < 1 and |M;; M| < 1, and then apply

Lemma S1.1 (iii) and (iv):
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Statement (b) is proved by applying Lemma S1.1 (i) and then (ii) twice:
1 2 p2 1 2
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Statement (d) is proved by applying Lemma S1.1 (ii) and then (iii):

%ZP%PEJ MP/P”P’J‘< ZZP2 )Piy| ”’<[;2 ZPﬁj,g.j,p
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Statement (e) is proved by applying Lemma S1.1 (i) and lastly (v):

%Zreﬁaﬁp Pyl < 73 (S PP |1%-|=%ZP PPy =

i'g,0" 1 i,3,5"
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Lemma S1.3 Let Assumption 1 hold for matriz P, then for any vectors a,b,c and d:
(a) 32,3 Pilai| < VEda;
(b) 32,32, Phlaillbj] < Vdab'h;
(¢) 32,32, Prlallbille;| < Vaabbe'e;
(d) 32352, Pilaillbillejlld;| < Va'abbe'ed'd;
(e) ¥, P2la;| < \/Padla.

Proof of Lemma S1.3

ZZPZ‘(M < szz|az| < \/ZR%\/ZG? <VKda,
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Lemma S1.4 Let Assumption 1 holds for matriz P. Let U; be independent random

variables with E[U?] < C. Define w; = 3., P;ll;, where I = (II;) s a N x 1 non-

random vector. Then we have
(a) max; |w;|* <II'TL, YO, w? <AV, and Y, wi < 4(IT'T)?;
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(b) If B — 0 as N — oo, then + 5, w?U; —? 0.
Proof of Lemma S1.4. By the Cauchy-Schwarz inequality and Lemma S1.1:

|wz\2<z ZH2<P“HH<HH

= (PII — Pﬁni)2 < 2(PII)? 4 2PA1?

(23 7))

1 K3

Zw <2HP2H+22P2H2 < 4TT'TH,

Zw <max\wz|22w < 4(IT'TD)?,

I — €« , OIl

S2 Proof for consistency of the variance estimator

Lemma S2.1 Let assumptions of Lemma 3 hold, then A2A; —P 0, where

= & XX PG+ 5 T X PG

i g i g
b SOSTBATGME + - 30 ST BALIL MEME
e i gt

Proof of Lemma S2.1. Notice that the first term is mean zero, and the three last

sums have non-trivial means:

k

1 jFi

where we denote 0? = E£2. These means are negligible asymptotically:

CA? CA?II'TI
A?[EA,| < ZZ (L] + (AT + IL[IL]) < ——7— =0
i jFi

Here we apply Assumption 2, Lemma S1.1 and Lemma S1.3 (b). Consider the variance

of each sum in As. Due to Assumption 2, the variance of the first sum in A2A, is:



A? ~ At 1y2y2 ~ AN
r <?ZZPZ-J-)\¢>\J-£¢£J-> < FZP”)\A] <=5 0.

i i i,J

The second sum in A%A, is %2 sz (Z é%»)\iHijk> &&.. Tt has correlated summands

J7#
whenever the set of indexes (i, k) coincides. Thus the variance of this sum is bounded by

2
CA
(Z 2\ L M ) - (ZJDZ%MZ»H]-MM) (ZP,?]-/MkHj/Mﬁl) <
. ,k’ ] j/
< K2 (ZZP;Pg [T T A2 (| M kM/k|+Z|H |11, |Z “Pl |A||Ak> <

i,5,7" k

= K2 ZAZ(Z ‘HJ‘V> +Z\HHHI NN <

2
CA? o CA*
<< zxf(zaz)nnw(zw) .
( J

J
Here we apply Lemma S1.1 (ii) and the Cauchy-Schwarz inequality multiple times. The

third sum in A?A4, is %2 ijk Z#j é%)\iHiMjkfjfk. Its variance is bounded by

2
(Z Pz‘%‘MiHiMjH) + (Z 3§|AiHiMjk\> <Z Bi\AiHiMM) <

2 2
CA* CA OA4 )
< 7o > (Z ’Ain‘Mjk\) <o ik (Z !)\¢H¢!> 1o KITTINA = 0.

Jik i i

The last sum in A2A4, is %2 Y <ZZ > ]Si%HiHjMiijO £1€. Tts variance has bound

2
CA*
Z(Z 2 |TLIL | (| Mo M| + | M ka>) <
CA* -
<5 > PPy [ILIL L, \Z]MlkM,kH M| <
4,5,8" .5’



©oat
< K2 (Z |H,-Hj|> e (I'TD)? — 0.

Lemma S2.2 Let assumptions of Lemma 8 hold, then AA; —P 0, where

A= = STS T PGS + = 30 PAILMEG M€

i g i g

Proof of Lemma S2.2. A, has a non-trivial mean: EA; = 37,3, é%HiMiijjE[gf].
Applying Lemma S1.3 (a), we note this mean vanishes under the assumptions of Lemma

3 from the paper:

C|A| ) C|AVITT
AEA| < —— P £ ——— —= 0.
’ 1| - K ;; 2]| ’ \/?

Next, we re-write the demeaned expression as seven distinct terms:

A - A e ~
A(A —EA) = Z D PINMiEE + 22 DY BIAM&ss + Y PINM it &t
i j# i g I3
+— ZZ M Mj; + My M) €26, + — ZZPQHM M, (€3 — E€3)+
gk i#j Ji#g
A ~ A ~
+2 Z (Z Pé‘HiMiijk> &éh + 174 Z (Z PZ%'HiMiijl> &i&kéi-
AN Gk DEly \i#j

The variances of the first two terms have the same bound (we use Lemma S1.1 (i)):

Z Z =S ¢,
ij

For the third term, we notice that the two summands with indexes (i, j, k) and (¢, j', k)
are correlated iff {7, j,k} = {¢/,j',k'}. There are six permutations of the three indexes,

for all of them except those with {i,j} = {7, 7'} we use Lemma S1.1 (i) to drop terms



containing elements of matrix M.The variance of the third term is bounded by

CA?
K2

D [PEOIME A Dl [ Mac M) + PSP + (Xl M) + PEPR NI + [l [Ak])] <

ij = ik iy gk
I3

< K2 {ZP4 >\2+\>\iH)\jD+ZH§)\f Z FAPYPYAES
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For the last inequality we use Lemma S1.3 (a) and (e). The variance of the fourth term

is bounded by

<Z M Mj; + M Mjk)) <

Jik i#£]

= Kz ZZPEPHHH |(| M| + | M) (| Mirge| + | Mjr|) <

gk i,d
2
CAII'TI
m | <22 = o,
X (T < S

where in the first inequality we apply Lemma S1.1 (i) to drop terms that do not index

it iy

Z P2P2 IIL,IT, | =

_K2

over k such as Mj; and |M;;|. In the second inequality we apply Lemma S1.1 (ii) The
variance of the fifth term is bounded by

2
AT
(Z P§|Hi\> < CT — 0.

The variance of the sixth term is bounded by

2
(Z Pé|Hz'Miijk|> + <Z PémiMiijH) (Z Pi2k|HiMiijk|> <
i CA 141
i (Z 11, |> 0.
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Consider the seventh term that has summation over I3. Denote o to be a permutation
over indexes (7, k,[), and summation over o is the summation over all permutations. A

bound on the variance of the seventh term is:

> DD PEP ) T[T | M My Moy Mogpo -

(]7k7l)613 o izi/

Consider those permutations for which o(j) = j, then the term is

CA2 !
(ZP5|H1|> Z|Mzk Mzo(k jo(l |_ K2 Z (Z ’H |> %

In the expression above, when o(k) = [ the summation over k and [ is bounded by 1 due
to Lemma S1.1 (ii). When o(k) = k the summation over k is bounded by 1 due to Lemma
S1.1 (ii), and the summation over [ is bounded by 1 due to Lemma S1.1 (iii). Then we

use Lemma S1.3 (e). Consider those permutations for which o(j) = k, then the term is

P TG | [T || Mg My Mo

gt

7.k, i

For either o(l) =1 or o(k) = [, we apply Lemma S1.1 (ii) to the summation over [, which
is bounded by 1. Then we drop all remaining M’s such as |M;;| as they are bounded by
1 by Lemma S1.1 (i). Finally we use Lemma S1.3 (a). Consider those permutations for
which o(j) = [ we repeat the last argument but to the index over k. To sum up, we show

that all seven terms in A(A; — EA;) converge in probability to zero. O

S3 Statements used in Proof of Theorem 5

Lemma S3.1 Let errors (e;,v;) satisfy Assumption 2, Assumption 1 hold and I1; be such

that TI' MTI < CIIT(/H nd 11;[21/_[3 — 0 as N — oo. Then the following statements hold:

N e; M;e
(a) % Dict (Zj;éi PinJ’) A{Z I Zz 1 Zﬁez Pz;QjMiXeiMjX‘fj -V =P0,

N 20w Ve N _
() e Sl (Zomi P ) (g + 30 ) 4 & Ty S PEMX e X Xy =7 =70,
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2
(Z 2|11, |) < %H’H — 0.
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(¢) %S (Zj;ﬁi P X; ) X S Y PAMIX X MX X = T =7 0,

where

:%i(z% i ZZ A+ ZZ ot

i=1 j#i i=1 j#i =1 j#i
N
T:%Z(ZR‘J’ )i+ = ZZ StV
i=1  j#i =1 j#i
4 N
= 5 QP+ ZZ Pysis
=1 j#i i=1 j#i

Proof of Lemma S3.1. Applying Lemmas 2 and 3 to different combinations of ¢;

variables containing X; = II; + v; and e; gives that:

N N
% NS BEMXeMXe; % > > Fi,

i=1 j#i =1 g#i
N
%ZZE@MZ»X@ZM XX = — ZZPJ%@,
i=1 j£i =1 j#
N N
% SN PEMX XM XX — % SN PR
i=1 j#i =1 j#i

Thus, all that remains to prove is the convergences of the first terms in statements (a)-
(c). We use Z#l X = w; + Z#Z Vi, where w; = Z#i P,ll;, X; = II; + v;, and

7 = € M“_ Z#i ;€. Furthermore, denote \; = M;II.

Consider the first term in statement (a):

) e ) o

e -

i=1 \ j#i i=1 \j#i "okt
1 & 1 e
=2 (Z Pz'ij> -T2 (Z Pz‘ij> I 2 Piker
i=1 \ j#i i=1 \ j#i M;; ki

We apply Lemma S3.2 (a) and (b) to the above, this finishes the proof of statement (a).

Consider the first term in statement (b):



>:

| XN 2 \ 1 1
K ; (; Pinj) <6i [E v — M, ; Pipor | + (I + ;) | e — i 2 Pirex

1 N 2 N ) .

? Zl <Z ) e;v; — Z (Z inj) {M; ZPikvk + M“ Z szek}

. 77 =1 \j#i k#i k#i

1 N . 1 N

K Z (Z > “ {.MZ Z} Z (Z BJXJ’) Z Pirey.
i=1 J#i 1 i1 i zz oy

We apply Lemma S3.2 (a)-(d) to all four terms respectively. Only the first and the last
terms have non-trivial limits. The first one has limit = Zl LW+ 2>, ki PZr;. The
last one has the limit not showing up in the expression for 7: —= Z 4 wl-M— > s Pl
However, this limit is negligible as it is bounded by £ SV w3 i P < H I 0. Fi-
nally, comparing the limit with the expression for 7, we note the difference — e Zi:l wiy; <

€5 w? < 0 vanishes by Lemma S1.4 (a). This finishes the proof of (b).

Finally, we consider the first term in statement (c):

N
%Z ZPinj I; + v;) (]\); toi— oo szkvk) =
i=1 \ j#i K i
1 — 1 —
Ly (sex) gz(mx) Y Pt
i=1 \ jti i=1 \ jti st
L L
+EZ ZPZ'ij Ui(H Z <Z inj) Zszvk—l—
i=1 \ j#i z:1 G M k#i
1 & DY
+?Z > PiX; HM
i=1 \ j#i

We apply Lemma S3.2 (a)-(e) to all five terms respectively. Only the first and the fourth
terms have non-trivial limits. The first term has limit = S~ w?¢?+L S > i P

i35 Mi;
pression for YT, but is negligible as it is bounded by %\/ II'TINA < HI'(H — 0. Finally,

The fourth term has limit - ZZ 1Dt P2¢2 211, which does not show up in the ex-
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comparing the limit with the expression for T, we note the difference = Z Lwick <

g3 wi < HKH — 0 vanishes by Lemma S1.4 (a). This finishes the proof of Lemma S3.1.

Lemma S3.2 Suppose assumptions of Lemma S3.1 hold. Let w; = Z#i Py;IT;. Let

random variables & ;,&2; stay for either e; or v;, random variables U; stay for ef, e;v; or

)\ .

v? i Then the following statements hold:

and constants a;

170

(@) & 58, (vt Sy Pvs) Ui—(%z%wm ]+ & Xy PREIUE) 570,

2

) %> (wz + > 5 Pij > e 2> i Pinbar =70,
2

(C) K (  + Zg;ﬁz RJU]> 151 ) —P 0
2 a;

(d) K (UJ + Z];éz B]“J) Mzu Zk;ﬁz ’Lkgl k — K Zz 1 Z];éz sz [Ungj] _>p O,
2

(¢) 5N, (wit Sy Pyvy) The =0 0.

Proof of Lemma S3.2 For statement (a) notice that

1 — ’ 1 — 1 —
9 N
K Z kUU]Uk ?;;R]wﬂ}][]l

We apply Lemma S1.4 (b) to the first term. For the second term we notice that
—ZZ (03U; — B[U}] ZZP22U EU;) ZZP% — ) (U; — EUY).
i=1 j#i zlj;éz 21]751

The summands in both sums are uncorrelated unless indexes (¢ in the first and 7, j in the

second) coincide as sets. Thus, the variance is bounded by

IA
= Q

i(zpz)lizw

i=1 \ j#i i=1 j#i
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The third term is

Z Py U,y = Z Uilvjup + — Z Py (U; — EU;)vjvg.

Again the summands in both sums are uncorrelated unless indexes coincide. Thus, the

variance is bounded by

< fo (Z (Z PmeP”PQ z 37 ) .-

4,1’ 7.k

The last term is negligible as it has zero mean, and by Lemma S1.3 (b) and Lemma S1.4

(a), its variance is bounded by & e ZZ >

s P07 + |wi|lwy]) < G < S 0.

To prove statement (b) notice that the expression expands to:

—ZZBMUQ&Z&;H- Zzpéwlvji/lllfgj

1=1 k#i =1 j#i

KZ zkaJM 52’”_[(2(2 ) glzzpzkéék

=1 J#i ” k#1

All terms are mean zero. The variances of the first two are bounded by:

o
ﬁZZ(Pkw + Pjwiwy + Py} + Pylwiwg]) <
1=1 k#i
_C ) _ carny
=702 (maxw ww+ww> S 7 — 0.

Above we applied Lemma S1.3 (b). The variance of the third term is bounded by

C C Cuw'w
= O (PAPjw} + Py PawiPy Pyl < 25 (Zw%ZPEIwiwA) <z 0
i i

I3

Here we used Lemma S1.4 (a) and Lemma S1.3 (b).
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The fourth term contains summation over 7 as well as summations over j, k,[ where
these three indexes are different from ¢ and appear as indexes in the random variables
vj,v; and &y We re-write this term as sums when all three indexes j, k,[ coincide,
when two of them coincide, and when all three are different. When all three indexes
j,k,1 coincide, the variance of that sum is bounded by % SET iz Py < < £ When
two of indexes j, k, coincide (call the two distinct indexes as j, k), the variance of that
sum is bounded by 5 DI P%\PiﬂPf(i)o(j)|Po(i)o(k)| where the summation over o is the
summation over all permutations of 7, j, k. Consider those permutations for which o(i) = i,
then the term is bounded by 5% > 1, P2Pj — 0. Consider those permutations for which
o(i) # i, then the term is bounded by FZL; 2| Pil| P < ZZ 1Dt P: — 0.
Finally, when all three indexes j, k,[l are distinct, the variance of that sum is bounded
by 5 21, 20 | Pisl| Pkl | Pl | Pogiyo(i) || Potiyotiy || Potijoy | Where the summation over o is the
summation over all permutations. Consider those permutations for which o(i) = ¢, then
the term is bounded by & >, P2P3P3 — 0. Consider those permutations for which

oi) # i, then it is bounded by & 3, P2| Pl Pl Pall Pal < % SN, X2, P2 — 0.

For proof of statement (c) we re-write this mean-zero term:

N
%Z (wZ+ZPz]U]> ifl,i - _Zw a‘lgll—i_ ZZ ij ] z£11+

J#i =1 j#i

1 2
+§ IZ Pij Pir.a;§ v, + ¥d Z Z Pijw;v;a;y ;.
3

i=1 j#i

The variance of the third sum is bounded by

c ¢ Ca
EZ(PQR’“G + P2| Py Pjra;a;]) < 7 (Zpiaf Z |aiaj‘) < [?26‘ — 0.

I3

The variance of the remaining three terms is bounded by

o (X N
ﬁ{zw?a?+221% 2+ ool + 35 P +|w@az||w]a]r>} <
=1 i=1 j#i =1 j#i
C
< e (I')*d'a + d'a + (I')d'a) .
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We used Lemma S1.4 to derive the bound by setting a; equal to either II; o

C(H H)

case the last variance is bounded by — 0.

For proof of statement (d) we expand the expression of interest to:

Z (Z ) &1+ Z (Z Phw Z) (0615 — Elvi& )+

1#£j i#]
N , 1N ?
ZZ Z Prw; ; vi&k + e Z MZ“ (Z Pij”j) Zpikii,k-
J=1 k#j \i¢{k,j} =1 j#i k#i

The first three terms are mean zero. The variances of the first two are bounded by

e ZZ wiw}|a;ay Pij Pyl + PZ%PZQ]|wZ-wZ-/aiaZ-/|) <

J=1 43
i \  carmy
< K2 <Z ’U]Q‘al > + <Z ’w1&1‘> < T — 0.

Above we first summed up over j using Lemma S1.1 (i) and (ii), then Lemma S1.3 and

A

finally the definition of a;. Variance of the third term is bounded by

ZZ| Piywia; Pyj Prwyay| < —= (ZIM%) _0(1;('?)2%0.

7.k i,

The fourth term has mean % 3°, 3", P 47-E[vi6; 5], which is bounded by

C C (11’11
1% % P,,|a2| K\/Kaa C K — 0

The de-meaned fourth term contains summation over ¢ as well as summations over 7, j', k
where these three indexes appear as indexes in the random variables v;, vy and & . we
re-write this de-meaned term as sums when all three indexes 7, j', k coincide, when two of
them coincide and when they all three are different. The sum of variances of these three

terms are bounded by

14



2 2 2
3
Z (Z | Pyl |ai|> + Z <Z |a/szk:|P5) + Z (Z |ai Pij Pij Pig| )
j i gk i g.jkely \ i
For all three sums we derive the bound as follows: we write the square of the sum over i
as the product of a sum over ¢ and a sum over ', change the order of summation (moving
the summation over ¢ and ' outside). We then apply Lemma S1.1 (ii) to the summation

over j, or (j,k) or I3. Then we conclude that the expression above is bounded by

% <Z P“|CLZ’) S K2 ZPQ / H/H — 0.

For proof of statement (e) notice:

1 & D V. :
1= J i#]

tefemt) iveleie

j 1#] J k#j

The first term is deterministic and negligible:

C«(H/H)3/2<>\/)\)1/2 - C(H’H)2

% S~ — 0.

C
< ?maxw II'TIN A <

Zw’

The variances of the second and third term are bounded in similar fashion:

2
J

i#]
C’(H’H)Q/\’A C(mrm?
242
< maxwZ 70 ZHZ Ay < 702 < [E 0,
2
Ai C 2 p2 ) CII'TIN'A
X (Trng) < GO mmman <
i \i#j M

Thus, the second term is negligible, while the third term converges to its mean, which
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happens to be negligible and is bounded by: & Z >

< CVIITINVA — 0.

#J
Finally, the last term is mean zero with variance bounded by:

2
CII'TIN A
_ZZ (Z 2) = K2 Z <Z| k’PZJP’k"> ’HiHi’)\i)\i/‘ < Kz —

J k#j \i#jk i,/
S4 Quadratic CLT for small K

Lemma S4.1 Assume K is fized, errorsn; are independently drawn with E[n;] = 0, E[n?] =
o2 and max; En! < C. Assume also that as N — oo the K X 1-dimensional instruments
Z; satisfy the following convergence le Zf\il Z; 2! — Q, where Q is a full rank K x K

matriz, and SV NZi|I* < C. Then as N — oo

Xk — K
\/—\/_ZZPUWIJ NI

i=1 j#i

Proof of Lemma S4.1. Under homoscedasticity we have ®y = 204 - (1 — #), but
we show later ZZ , P2 — 0, thus ® = 20*. Below we use Zfil P, =K.

N
. ! ! —Lrr A 1 » 77_2'2_
\/_0222 Unmjf\/_z{ nZ(Z'Z)Z'n — Ko*} —\/ﬁ;az(o_2 1).

i=1 j#i

By the standard argument we have \%NZ’H = N(0,02Q), and thus,

1 _
;W’Z(Z’Z) 7' = xk-
Noticing that SN Z:Z — Q, where Q is a full rank, we have
AN
()

N N
C C
§ 2 E 4

1zl

. clzl
N Y

P, =Z(Z'2)7'Z; < -=-
(22 < A2

2

Thus, by Chebyshev’s inequality we have F ZZ 1 (m- 1) —P0as N — oco. I
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Figure 1: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse vs. dense first stage. The instruments are K = 40 balanced group indicators.
Sample size is N = 200. Number of simulation draws is 1,000. Details of the simulation design can be
found in the Appendix.

S5 Additional Simulations

Here we report additional simulations to the ones reported in Section 4.2 about the effect
of naive vs cross-fit variance estimator on the power of the AR test. We consider the
following simulation design. The DGP is given by a homoscedastic linear IV model with
a linear first stage:

Y, = BXi+ e,

X, =1Z; +v;.
The instruments are K = 40 group indicators, where the sample is divided into equal
groups. The sample size is N = 200. The error terms are generated i.i.d. as

€; 0 1 p

~ N ;
v; 0 p 1

with p = 0.2. We simulate a sparse first stage by setting one large coefficient 7 = 2 and
1, = 0.001 for all £ < K. The dense first stage has homogeneous first stage coefficients
mr = 0.316 for all £ =1,..., K. Identification strength is held the same at -\’% = 2.5 for
both settings. The results are reported in Figure 1.

As we discuss in the main text, the power difference between tests with the cross-fit and
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Figure 2: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse first stage. The instruments are K = 40 balanced group indicators. Sample size
is N = 200. Number of simulation draws is 1000.
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Figure 3: Power curves for leave-one-out AR tests with cross-fit (blue line) and naive (red dash) variance
estimators under sparse first stage. The instruments are K = 40 balanced group indicators. Sample size
is N = 200. Number of simulation draws is 1000.
the naive variance estimators is less pronounced when identification is strong. Figure 2
illustrates this by considering the same sparse design as in Figure 1, but with 7x = 3 in
plot (a) and 7k = 3.6 in plot (b). These settings correspond to stronger identification as
T
measured by Ti
Interestingly enough, the level of endogeneity changes the shape of the power curves,
but not the power comparison between the two tests. Figure 3 reports results for the
same sparse setting as in Figure 1, but with moderate (p = 0.5) and strong (p = 0.9)

endogeneity environments.
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